xref: /openbmc/linux/fs/btrfs/space-info.c (revision fa121a26)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     may_commit_transaction() is the ultimate arbiter on whether we commit the
137  *     transaction or not.  In order to avoid constantly churning we do all the
138  *     above flushing first and then commit the transaction as the last resort.
139  *     However we need to take into account things like pinned space that would
140  *     be freed, plus any delayed work we may not have gotten rid of in the case
141  *     of metadata.
142  *
143  * OVERCOMMIT
144  *
145  *   Because we hold so many reservations for metadata we will allow you to
146  *   reserve more space than is currently free in the currently allocate
147  *   metadata space.  This only happens with metadata, data does not allow
148  *   overcommitting.
149  *
150  *   You can see the current logic for when we allow overcommit in
151  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
152  *   is no unallocated space to be had, all reservations are kept within the
153  *   free space in the allocated metadata chunks.
154  *
155  *   Because of overcommitting, you generally want to use the
156  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
157  *   thing with or without extra unallocated space.
158  */
159 
160 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
161 			  bool may_use_included)
162 {
163 	ASSERT(s_info);
164 	return s_info->bytes_used + s_info->bytes_reserved +
165 		s_info->bytes_pinned + s_info->bytes_readonly +
166 		(may_use_included ? s_info->bytes_may_use : 0);
167 }
168 
169 /*
170  * after adding space to the filesystem, we need to clear the full flags
171  * on all the space infos.
172  */
173 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
174 {
175 	struct list_head *head = &info->space_info;
176 	struct btrfs_space_info *found;
177 
178 	rcu_read_lock();
179 	list_for_each_entry_rcu(found, head, list)
180 		found->full = 0;
181 	rcu_read_unlock();
182 }
183 
184 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
185 {
186 
187 	struct btrfs_space_info *space_info;
188 	int i;
189 	int ret;
190 
191 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
192 	if (!space_info)
193 		return -ENOMEM;
194 
195 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
196 				 GFP_KERNEL);
197 	if (ret) {
198 		kfree(space_info);
199 		return ret;
200 	}
201 
202 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
203 		INIT_LIST_HEAD(&space_info->block_groups[i]);
204 	init_rwsem(&space_info->groups_sem);
205 	spin_lock_init(&space_info->lock);
206 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
207 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
208 	INIT_LIST_HEAD(&space_info->ro_bgs);
209 	INIT_LIST_HEAD(&space_info->tickets);
210 	INIT_LIST_HEAD(&space_info->priority_tickets);
211 
212 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
213 	if (ret)
214 		return ret;
215 
216 	list_add_rcu(&space_info->list, &info->space_info);
217 	if (flags & BTRFS_BLOCK_GROUP_DATA)
218 		info->data_sinfo = space_info;
219 
220 	return ret;
221 }
222 
223 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
224 {
225 	struct btrfs_super_block *disk_super;
226 	u64 features;
227 	u64 flags;
228 	int mixed = 0;
229 	int ret;
230 
231 	disk_super = fs_info->super_copy;
232 	if (!btrfs_super_root(disk_super))
233 		return -EINVAL;
234 
235 	features = btrfs_super_incompat_flags(disk_super);
236 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
237 		mixed = 1;
238 
239 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
240 	ret = create_space_info(fs_info, flags);
241 	if (ret)
242 		goto out;
243 
244 	if (mixed) {
245 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
246 		ret = create_space_info(fs_info, flags);
247 	} else {
248 		flags = BTRFS_BLOCK_GROUP_METADATA;
249 		ret = create_space_info(fs_info, flags);
250 		if (ret)
251 			goto out;
252 
253 		flags = BTRFS_BLOCK_GROUP_DATA;
254 		ret = create_space_info(fs_info, flags);
255 	}
256 out:
257 	return ret;
258 }
259 
260 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
261 			     u64 total_bytes, u64 bytes_used,
262 			     u64 bytes_readonly,
263 			     struct btrfs_space_info **space_info)
264 {
265 	struct btrfs_space_info *found;
266 	int factor;
267 
268 	factor = btrfs_bg_type_to_factor(flags);
269 
270 	found = btrfs_find_space_info(info, flags);
271 	ASSERT(found);
272 	spin_lock(&found->lock);
273 	found->total_bytes += total_bytes;
274 	found->disk_total += total_bytes * factor;
275 	found->bytes_used += bytes_used;
276 	found->disk_used += bytes_used * factor;
277 	found->bytes_readonly += bytes_readonly;
278 	if (total_bytes > 0)
279 		found->full = 0;
280 	btrfs_try_granting_tickets(info, found);
281 	spin_unlock(&found->lock);
282 	*space_info = found;
283 }
284 
285 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
286 					       u64 flags)
287 {
288 	struct list_head *head = &info->space_info;
289 	struct btrfs_space_info *found;
290 
291 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
292 
293 	rcu_read_lock();
294 	list_for_each_entry_rcu(found, head, list) {
295 		if (found->flags & flags) {
296 			rcu_read_unlock();
297 			return found;
298 		}
299 	}
300 	rcu_read_unlock();
301 	return NULL;
302 }
303 
304 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
305 {
306 	return (global->size << 1);
307 }
308 
309 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
310 			  struct btrfs_space_info *space_info,
311 			  enum btrfs_reserve_flush_enum flush)
312 {
313 	u64 profile;
314 	u64 avail;
315 	int factor;
316 
317 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
318 		profile = btrfs_system_alloc_profile(fs_info);
319 	else
320 		profile = btrfs_metadata_alloc_profile(fs_info);
321 
322 	avail = atomic64_read(&fs_info->free_chunk_space);
323 
324 	/*
325 	 * If we have dup, raid1 or raid10 then only half of the free
326 	 * space is actually usable.  For raid56, the space info used
327 	 * doesn't include the parity drive, so we don't have to
328 	 * change the math
329 	 */
330 	factor = btrfs_bg_type_to_factor(profile);
331 	avail = div_u64(avail, factor);
332 
333 	/*
334 	 * If we aren't flushing all things, let us overcommit up to
335 	 * 1/2th of the space. If we can flush, don't let us overcommit
336 	 * too much, let it overcommit up to 1/8 of the space.
337 	 */
338 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
339 		avail >>= 3;
340 	else
341 		avail >>= 1;
342 	return avail;
343 }
344 
345 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
346 			 struct btrfs_space_info *space_info, u64 bytes,
347 			 enum btrfs_reserve_flush_enum flush)
348 {
349 	u64 avail;
350 	u64 used;
351 
352 	/* Don't overcommit when in mixed mode */
353 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
354 		return 0;
355 
356 	used = btrfs_space_info_used(space_info, true);
357 	avail = calc_available_free_space(fs_info, space_info, flush);
358 
359 	if (used + bytes < space_info->total_bytes + avail)
360 		return 1;
361 	return 0;
362 }
363 
364 /*
365  * This is for space we already have accounted in space_info->bytes_may_use, so
366  * basically when we're returning space from block_rsv's.
367  */
368 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
369 				struct btrfs_space_info *space_info)
370 {
371 	struct list_head *head;
372 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
373 
374 	lockdep_assert_held(&space_info->lock);
375 
376 	head = &space_info->priority_tickets;
377 again:
378 	while (!list_empty(head)) {
379 		struct reserve_ticket *ticket;
380 		u64 used = btrfs_space_info_used(space_info, true);
381 
382 		ticket = list_first_entry(head, struct reserve_ticket, list);
383 
384 		/* Check and see if our ticket can be satisified now. */
385 		if ((used + ticket->bytes <= space_info->total_bytes) ||
386 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
387 					 flush)) {
388 			btrfs_space_info_update_bytes_may_use(fs_info,
389 							      space_info,
390 							      ticket->bytes);
391 			list_del_init(&ticket->list);
392 			ticket->bytes = 0;
393 			space_info->tickets_id++;
394 			wake_up(&ticket->wait);
395 		} else {
396 			break;
397 		}
398 	}
399 
400 	if (head == &space_info->priority_tickets) {
401 		head = &space_info->tickets;
402 		flush = BTRFS_RESERVE_FLUSH_ALL;
403 		goto again;
404 	}
405 }
406 
407 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
408 do {									\
409 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
410 	spin_lock(&__rsv->lock);					\
411 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
412 		   __rsv->size, __rsv->reserved);			\
413 	spin_unlock(&__rsv->lock);					\
414 } while (0)
415 
416 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
417 				    struct btrfs_space_info *info)
418 {
419 	lockdep_assert_held(&info->lock);
420 
421 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
422 		   info->flags,
423 		   info->total_bytes - btrfs_space_info_used(info, true),
424 		   info->full ? "" : "not ");
425 	btrfs_info(fs_info,
426 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
427 		info->total_bytes, info->bytes_used, info->bytes_pinned,
428 		info->bytes_reserved, info->bytes_may_use,
429 		info->bytes_readonly);
430 
431 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
432 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
433 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
434 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
435 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
436 
437 }
438 
439 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
440 			   struct btrfs_space_info *info, u64 bytes,
441 			   int dump_block_groups)
442 {
443 	struct btrfs_block_group *cache;
444 	int index = 0;
445 
446 	spin_lock(&info->lock);
447 	__btrfs_dump_space_info(fs_info, info);
448 	spin_unlock(&info->lock);
449 
450 	if (!dump_block_groups)
451 		return;
452 
453 	down_read(&info->groups_sem);
454 again:
455 	list_for_each_entry(cache, &info->block_groups[index], list) {
456 		spin_lock(&cache->lock);
457 		btrfs_info(fs_info,
458 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
459 			cache->start, cache->length, cache->used, cache->pinned,
460 			cache->reserved, cache->ro ? "[readonly]" : "");
461 		btrfs_dump_free_space(cache, bytes);
462 		spin_unlock(&cache->lock);
463 	}
464 	if (++index < BTRFS_NR_RAID_TYPES)
465 		goto again;
466 	up_read(&info->groups_sem);
467 }
468 
469 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
470 					 unsigned long nr_pages, int nr_items)
471 {
472 	struct super_block *sb = fs_info->sb;
473 
474 	if (down_read_trylock(&sb->s_umount)) {
475 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
476 		up_read(&sb->s_umount);
477 	} else {
478 		/*
479 		 * We needn't worry the filesystem going from r/w to r/o though
480 		 * we don't acquire ->s_umount mutex, because the filesystem
481 		 * should guarantee the delalloc inodes list be empty after
482 		 * the filesystem is readonly(all dirty pages are written to
483 		 * the disk).
484 		 */
485 		btrfs_start_delalloc_roots(fs_info, nr_items);
486 		if (!current->journal_info)
487 			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
488 	}
489 }
490 
491 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
492 					u64 to_reclaim)
493 {
494 	u64 bytes;
495 	u64 nr;
496 
497 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
498 	nr = div64_u64(to_reclaim, bytes);
499 	if (!nr)
500 		nr = 1;
501 	return nr;
502 }
503 
504 #define EXTENT_SIZE_PER_ITEM	SZ_256K
505 
506 /*
507  * shrink metadata reservation for delalloc
508  */
509 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
510 			    u64 orig, bool wait_ordered)
511 {
512 	struct btrfs_space_info *space_info;
513 	struct btrfs_trans_handle *trans;
514 	u64 delalloc_bytes;
515 	u64 dio_bytes;
516 	u64 async_pages;
517 	u64 items;
518 	long time_left;
519 	unsigned long nr_pages;
520 	int loops;
521 
522 	/* Calc the number of the pages we need flush for space reservation */
523 	items = calc_reclaim_items_nr(fs_info, to_reclaim);
524 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
525 
526 	trans = (struct btrfs_trans_handle *)current->journal_info;
527 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
528 
529 	delalloc_bytes = percpu_counter_sum_positive(
530 						&fs_info->delalloc_bytes);
531 	dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
532 	if (delalloc_bytes == 0 && dio_bytes == 0) {
533 		if (trans)
534 			return;
535 		if (wait_ordered)
536 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
537 		return;
538 	}
539 
540 	/*
541 	 * If we are doing more ordered than delalloc we need to just wait on
542 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
543 	 * that likely won't give us the space back we need.
544 	 */
545 	if (dio_bytes > delalloc_bytes)
546 		wait_ordered = true;
547 
548 	loops = 0;
549 	while ((delalloc_bytes || dio_bytes) && loops < 3) {
550 		nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
551 
552 		/*
553 		 * Triggers inode writeback for up to nr_pages. This will invoke
554 		 * ->writepages callback and trigger delalloc filling
555 		 *  (btrfs_run_delalloc_range()).
556 		 */
557 		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
558 
559 		/*
560 		 * We need to wait for the compressed pages to start before
561 		 * we continue.
562 		 */
563 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
564 		if (!async_pages)
565 			goto skip_async;
566 
567 		/*
568 		 * Calculate how many compressed pages we want to be written
569 		 * before we continue. I.e if there are more async pages than we
570 		 * require wait_event will wait until nr_pages are written.
571 		 */
572 		if (async_pages <= nr_pages)
573 			async_pages = 0;
574 		else
575 			async_pages -= nr_pages;
576 
577 		wait_event(fs_info->async_submit_wait,
578 			   atomic_read(&fs_info->async_delalloc_pages) <=
579 			   (int)async_pages);
580 skip_async:
581 		spin_lock(&space_info->lock);
582 		if (list_empty(&space_info->tickets) &&
583 		    list_empty(&space_info->priority_tickets)) {
584 			spin_unlock(&space_info->lock);
585 			break;
586 		}
587 		spin_unlock(&space_info->lock);
588 
589 		loops++;
590 		if (wait_ordered && !trans) {
591 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
592 		} else {
593 			time_left = schedule_timeout_killable(1);
594 			if (time_left)
595 				break;
596 		}
597 		delalloc_bytes = percpu_counter_sum_positive(
598 						&fs_info->delalloc_bytes);
599 		dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
600 	}
601 }
602 
603 /**
604  * maybe_commit_transaction - possibly commit the transaction if its ok to
605  * @root - the root we're allocating for
606  * @bytes - the number of bytes we want to reserve
607  * @force - force the commit
608  *
609  * This will check to make sure that committing the transaction will actually
610  * get us somewhere and then commit the transaction if it does.  Otherwise it
611  * will return -ENOSPC.
612  */
613 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
614 				  struct btrfs_space_info *space_info)
615 {
616 	struct reserve_ticket *ticket = NULL;
617 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
618 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
619 	struct btrfs_trans_handle *trans;
620 	u64 bytes_needed;
621 	u64 reclaim_bytes = 0;
622 	u64 cur_free_bytes = 0;
623 
624 	trans = (struct btrfs_trans_handle *)current->journal_info;
625 	if (trans)
626 		return -EAGAIN;
627 
628 	spin_lock(&space_info->lock);
629 	cur_free_bytes = btrfs_space_info_used(space_info, true);
630 	if (cur_free_bytes < space_info->total_bytes)
631 		cur_free_bytes = space_info->total_bytes - cur_free_bytes;
632 	else
633 		cur_free_bytes = 0;
634 
635 	if (!list_empty(&space_info->priority_tickets))
636 		ticket = list_first_entry(&space_info->priority_tickets,
637 					  struct reserve_ticket, list);
638 	else if (!list_empty(&space_info->tickets))
639 		ticket = list_first_entry(&space_info->tickets,
640 					  struct reserve_ticket, list);
641 	bytes_needed = (ticket) ? ticket->bytes : 0;
642 
643 	if (bytes_needed > cur_free_bytes)
644 		bytes_needed -= cur_free_bytes;
645 	else
646 		bytes_needed = 0;
647 	spin_unlock(&space_info->lock);
648 
649 	if (!bytes_needed)
650 		return 0;
651 
652 	trans = btrfs_join_transaction(fs_info->extent_root);
653 	if (IS_ERR(trans))
654 		return PTR_ERR(trans);
655 
656 	/*
657 	 * See if there is enough pinned space to make this reservation, or if
658 	 * we have block groups that are going to be freed, allowing us to
659 	 * possibly do a chunk allocation the next loop through.
660 	 */
661 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
662 	    __percpu_counter_compare(&space_info->total_bytes_pinned,
663 				     bytes_needed,
664 				     BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
665 		goto commit;
666 
667 	/*
668 	 * See if there is some space in the delayed insertion reservation for
669 	 * this reservation.
670 	 */
671 	if (space_info != delayed_rsv->space_info)
672 		goto enospc;
673 
674 	spin_lock(&delayed_rsv->lock);
675 	reclaim_bytes += delayed_rsv->reserved;
676 	spin_unlock(&delayed_rsv->lock);
677 
678 	spin_lock(&delayed_refs_rsv->lock);
679 	reclaim_bytes += delayed_refs_rsv->reserved;
680 	spin_unlock(&delayed_refs_rsv->lock);
681 	if (reclaim_bytes >= bytes_needed)
682 		goto commit;
683 	bytes_needed -= reclaim_bytes;
684 
685 	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
686 				   bytes_needed,
687 				   BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
688 		goto enospc;
689 
690 commit:
691 	return btrfs_commit_transaction(trans);
692 enospc:
693 	btrfs_end_transaction(trans);
694 	return -ENOSPC;
695 }
696 
697 /*
698  * Try to flush some data based on policy set by @state. This is only advisory
699  * and may fail for various reasons. The caller is supposed to examine the
700  * state of @space_info to detect the outcome.
701  */
702 static void flush_space(struct btrfs_fs_info *fs_info,
703 		       struct btrfs_space_info *space_info, u64 num_bytes,
704 		       int state)
705 {
706 	struct btrfs_root *root = fs_info->extent_root;
707 	struct btrfs_trans_handle *trans;
708 	int nr;
709 	int ret = 0;
710 
711 	switch (state) {
712 	case FLUSH_DELAYED_ITEMS_NR:
713 	case FLUSH_DELAYED_ITEMS:
714 		if (state == FLUSH_DELAYED_ITEMS_NR)
715 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
716 		else
717 			nr = -1;
718 
719 		trans = btrfs_join_transaction(root);
720 		if (IS_ERR(trans)) {
721 			ret = PTR_ERR(trans);
722 			break;
723 		}
724 		ret = btrfs_run_delayed_items_nr(trans, nr);
725 		btrfs_end_transaction(trans);
726 		break;
727 	case FLUSH_DELALLOC:
728 	case FLUSH_DELALLOC_WAIT:
729 		shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
730 				state == FLUSH_DELALLOC_WAIT);
731 		break;
732 	case FLUSH_DELAYED_REFS_NR:
733 	case FLUSH_DELAYED_REFS:
734 		trans = btrfs_join_transaction(root);
735 		if (IS_ERR(trans)) {
736 			ret = PTR_ERR(trans);
737 			break;
738 		}
739 		if (state == FLUSH_DELAYED_REFS_NR)
740 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
741 		else
742 			nr = 0;
743 		btrfs_run_delayed_refs(trans, nr);
744 		btrfs_end_transaction(trans);
745 		break;
746 	case ALLOC_CHUNK:
747 	case ALLOC_CHUNK_FORCE:
748 		trans = btrfs_join_transaction(root);
749 		if (IS_ERR(trans)) {
750 			ret = PTR_ERR(trans);
751 			break;
752 		}
753 		ret = btrfs_chunk_alloc(trans,
754 				btrfs_metadata_alloc_profile(fs_info),
755 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
756 					CHUNK_ALLOC_FORCE);
757 		btrfs_end_transaction(trans);
758 		if (ret > 0 || ret == -ENOSPC)
759 			ret = 0;
760 		break;
761 	case RUN_DELAYED_IPUTS:
762 		/*
763 		 * If we have pending delayed iputs then we could free up a
764 		 * bunch of pinned space, so make sure we run the iputs before
765 		 * we do our pinned bytes check below.
766 		 */
767 		btrfs_run_delayed_iputs(fs_info);
768 		btrfs_wait_on_delayed_iputs(fs_info);
769 		break;
770 	case COMMIT_TRANS:
771 		ret = may_commit_transaction(fs_info, space_info);
772 		break;
773 	default:
774 		ret = -ENOSPC;
775 		break;
776 	}
777 
778 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
779 				ret);
780 	return;
781 }
782 
783 static inline u64
784 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
785 				 struct btrfs_space_info *space_info)
786 {
787 	struct reserve_ticket *ticket;
788 	u64 used;
789 	u64 avail;
790 	u64 expected;
791 	u64 to_reclaim = 0;
792 
793 	list_for_each_entry(ticket, &space_info->tickets, list)
794 		to_reclaim += ticket->bytes;
795 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
796 		to_reclaim += ticket->bytes;
797 
798 	avail = calc_available_free_space(fs_info, space_info,
799 					  BTRFS_RESERVE_FLUSH_ALL);
800 	used = btrfs_space_info_used(space_info, true);
801 
802 	/*
803 	 * We may be flushing because suddenly we have less space than we had
804 	 * before, and now we're well over-committed based on our current free
805 	 * space.  If that's the case add in our overage so we make sure to put
806 	 * appropriate pressure on the flushing state machine.
807 	 */
808 	if (space_info->total_bytes + avail < used)
809 		to_reclaim += used - (space_info->total_bytes + avail);
810 
811 	if (to_reclaim)
812 		return to_reclaim;
813 
814 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
815 	if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
816 				 BTRFS_RESERVE_FLUSH_ALL))
817 		return 0;
818 
819 	used = btrfs_space_info_used(space_info, true);
820 
821 	if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
822 				 BTRFS_RESERVE_FLUSH_ALL))
823 		expected = div_factor_fine(space_info->total_bytes, 95);
824 	else
825 		expected = div_factor_fine(space_info->total_bytes, 90);
826 
827 	if (used > expected)
828 		to_reclaim = used - expected;
829 	else
830 		to_reclaim = 0;
831 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
832 				     space_info->bytes_reserved);
833 	return to_reclaim;
834 }
835 
836 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
837 					struct btrfs_space_info *space_info,
838 					u64 used)
839 {
840 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
841 
842 	/* If we're just plain full then async reclaim just slows us down. */
843 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
844 		return 0;
845 
846 	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
847 		return 0;
848 
849 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
850 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
851 }
852 
853 /*
854  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
855  * @fs_info - fs_info for this fs
856  * @space_info - the space info we were flushing
857  *
858  * We call this when we've exhausted our flushing ability and haven't made
859  * progress in satisfying tickets.  The reservation code handles tickets in
860  * order, so if there is a large ticket first and then smaller ones we could
861  * very well satisfy the smaller tickets.  This will attempt to wake up any
862  * tickets in the list to catch this case.
863  *
864  * This function returns true if it was able to make progress by clearing out
865  * other tickets, or if it stumbles across a ticket that was smaller than the
866  * first ticket.
867  */
868 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
869 				   struct btrfs_space_info *space_info)
870 {
871 	struct reserve_ticket *ticket;
872 	u64 tickets_id = space_info->tickets_id;
873 	u64 first_ticket_bytes = 0;
874 
875 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
876 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
877 		__btrfs_dump_space_info(fs_info, space_info);
878 	}
879 
880 	while (!list_empty(&space_info->tickets) &&
881 	       tickets_id == space_info->tickets_id) {
882 		ticket = list_first_entry(&space_info->tickets,
883 					  struct reserve_ticket, list);
884 
885 		/*
886 		 * may_commit_transaction will avoid committing the transaction
887 		 * if it doesn't feel like the space reclaimed by the commit
888 		 * would result in the ticket succeeding.  However if we have a
889 		 * smaller ticket in the queue it may be small enough to be
890 		 * satisified by committing the transaction, so if any
891 		 * subsequent ticket is smaller than the first ticket go ahead
892 		 * and send us back for another loop through the enospc flushing
893 		 * code.
894 		 */
895 		if (first_ticket_bytes == 0)
896 			first_ticket_bytes = ticket->bytes;
897 		else if (first_ticket_bytes > ticket->bytes)
898 			return true;
899 
900 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
901 			btrfs_info(fs_info, "failing ticket with %llu bytes",
902 				   ticket->bytes);
903 
904 		list_del_init(&ticket->list);
905 		ticket->error = -ENOSPC;
906 		wake_up(&ticket->wait);
907 
908 		/*
909 		 * We're just throwing tickets away, so more flushing may not
910 		 * trip over btrfs_try_granting_tickets, so we need to call it
911 		 * here to see if we can make progress with the next ticket in
912 		 * the list.
913 		 */
914 		btrfs_try_granting_tickets(fs_info, space_info);
915 	}
916 	return (tickets_id != space_info->tickets_id);
917 }
918 
919 /*
920  * This is for normal flushers, we can wait all goddamned day if we want to.  We
921  * will loop and continuously try to flush as long as we are making progress.
922  * We count progress as clearing off tickets each time we have to loop.
923  */
924 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
925 {
926 	struct btrfs_fs_info *fs_info;
927 	struct btrfs_space_info *space_info;
928 	u64 to_reclaim;
929 	int flush_state;
930 	int commit_cycles = 0;
931 	u64 last_tickets_id;
932 
933 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
934 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
935 
936 	spin_lock(&space_info->lock);
937 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
938 	if (!to_reclaim) {
939 		space_info->flush = 0;
940 		spin_unlock(&space_info->lock);
941 		return;
942 	}
943 	last_tickets_id = space_info->tickets_id;
944 	spin_unlock(&space_info->lock);
945 
946 	flush_state = FLUSH_DELAYED_ITEMS_NR;
947 	do {
948 		flush_space(fs_info, space_info, to_reclaim, flush_state);
949 		spin_lock(&space_info->lock);
950 		if (list_empty(&space_info->tickets)) {
951 			space_info->flush = 0;
952 			spin_unlock(&space_info->lock);
953 			return;
954 		}
955 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
956 							      space_info);
957 		if (last_tickets_id == space_info->tickets_id) {
958 			flush_state++;
959 		} else {
960 			last_tickets_id = space_info->tickets_id;
961 			flush_state = FLUSH_DELAYED_ITEMS_NR;
962 			if (commit_cycles)
963 				commit_cycles--;
964 		}
965 
966 		/*
967 		 * We don't want to force a chunk allocation until we've tried
968 		 * pretty hard to reclaim space.  Think of the case where we
969 		 * freed up a bunch of space and so have a lot of pinned space
970 		 * to reclaim.  We would rather use that than possibly create a
971 		 * underutilized metadata chunk.  So if this is our first run
972 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
973 		 * commit the transaction.  If nothing has changed the next go
974 		 * around then we can force a chunk allocation.
975 		 */
976 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
977 			flush_state++;
978 
979 		if (flush_state > COMMIT_TRANS) {
980 			commit_cycles++;
981 			if (commit_cycles > 2) {
982 				if (maybe_fail_all_tickets(fs_info, space_info)) {
983 					flush_state = FLUSH_DELAYED_ITEMS_NR;
984 					commit_cycles--;
985 				} else {
986 					space_info->flush = 0;
987 				}
988 			} else {
989 				flush_state = FLUSH_DELAYED_ITEMS_NR;
990 			}
991 		}
992 		spin_unlock(&space_info->lock);
993 	} while (flush_state <= COMMIT_TRANS);
994 }
995 
996 void btrfs_init_async_reclaim_work(struct work_struct *work)
997 {
998 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
999 }
1000 
1001 static const enum btrfs_flush_state priority_flush_states[] = {
1002 	FLUSH_DELAYED_ITEMS_NR,
1003 	FLUSH_DELAYED_ITEMS,
1004 	ALLOC_CHUNK,
1005 };
1006 
1007 static const enum btrfs_flush_state evict_flush_states[] = {
1008 	FLUSH_DELAYED_ITEMS_NR,
1009 	FLUSH_DELAYED_ITEMS,
1010 	FLUSH_DELAYED_REFS_NR,
1011 	FLUSH_DELAYED_REFS,
1012 	FLUSH_DELALLOC,
1013 	FLUSH_DELALLOC_WAIT,
1014 	ALLOC_CHUNK,
1015 	COMMIT_TRANS,
1016 };
1017 
1018 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1019 				struct btrfs_space_info *space_info,
1020 				struct reserve_ticket *ticket,
1021 				const enum btrfs_flush_state *states,
1022 				int states_nr)
1023 {
1024 	u64 to_reclaim;
1025 	int flush_state;
1026 
1027 	spin_lock(&space_info->lock);
1028 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1029 	if (!to_reclaim) {
1030 		spin_unlock(&space_info->lock);
1031 		return;
1032 	}
1033 	spin_unlock(&space_info->lock);
1034 
1035 	flush_state = 0;
1036 	do {
1037 		flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
1038 		flush_state++;
1039 		spin_lock(&space_info->lock);
1040 		if (ticket->bytes == 0) {
1041 			spin_unlock(&space_info->lock);
1042 			return;
1043 		}
1044 		spin_unlock(&space_info->lock);
1045 	} while (flush_state < states_nr);
1046 }
1047 
1048 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1049 				struct btrfs_space_info *space_info,
1050 				struct reserve_ticket *ticket)
1051 
1052 {
1053 	DEFINE_WAIT(wait);
1054 	int ret = 0;
1055 
1056 	spin_lock(&space_info->lock);
1057 	while (ticket->bytes > 0 && ticket->error == 0) {
1058 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1059 		if (ret) {
1060 			/*
1061 			 * Delete us from the list. After we unlock the space
1062 			 * info, we don't want the async reclaim job to reserve
1063 			 * space for this ticket. If that would happen, then the
1064 			 * ticket's task would not known that space was reserved
1065 			 * despite getting an error, resulting in a space leak
1066 			 * (bytes_may_use counter of our space_info).
1067 			 */
1068 			list_del_init(&ticket->list);
1069 			ticket->error = -EINTR;
1070 			break;
1071 		}
1072 		spin_unlock(&space_info->lock);
1073 
1074 		schedule();
1075 
1076 		finish_wait(&ticket->wait, &wait);
1077 		spin_lock(&space_info->lock);
1078 	}
1079 	spin_unlock(&space_info->lock);
1080 }
1081 
1082 /**
1083  * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
1084  * @fs_info - the fs
1085  * @space_info - the space_info for the reservation
1086  * @ticket - the ticket for the reservation
1087  * @flush - how much we can flush
1088  *
1089  * This does the work of figuring out how to flush for the ticket, waiting for
1090  * the reservation, and returning the appropriate error if there is one.
1091  */
1092 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1093 				 struct btrfs_space_info *space_info,
1094 				 struct reserve_ticket *ticket,
1095 				 enum btrfs_reserve_flush_enum flush)
1096 {
1097 	int ret;
1098 
1099 	switch (flush) {
1100 	case BTRFS_RESERVE_FLUSH_ALL:
1101 		wait_reserve_ticket(fs_info, space_info, ticket);
1102 		break;
1103 	case BTRFS_RESERVE_FLUSH_LIMIT:
1104 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1105 						priority_flush_states,
1106 						ARRAY_SIZE(priority_flush_states));
1107 		break;
1108 	case BTRFS_RESERVE_FLUSH_EVICT:
1109 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1110 						evict_flush_states,
1111 						ARRAY_SIZE(evict_flush_states));
1112 		break;
1113 	default:
1114 		ASSERT(0);
1115 		break;
1116 	}
1117 
1118 	spin_lock(&space_info->lock);
1119 	ret = ticket->error;
1120 	if (ticket->bytes || ticket->error) {
1121 		/*
1122 		 * Need to delete here for priority tickets. For regular tickets
1123 		 * either the async reclaim job deletes the ticket from the list
1124 		 * or we delete it ourselves at wait_reserve_ticket().
1125 		 */
1126 		list_del_init(&ticket->list);
1127 		if (!ret)
1128 			ret = -ENOSPC;
1129 	}
1130 	spin_unlock(&space_info->lock);
1131 	ASSERT(list_empty(&ticket->list));
1132 	/*
1133 	 * Check that we can't have an error set if the reservation succeeded,
1134 	 * as that would confuse tasks and lead them to error out without
1135 	 * releasing reserved space (if an error happens the expectation is that
1136 	 * space wasn't reserved at all).
1137 	 */
1138 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1139 	return ret;
1140 }
1141 
1142 /**
1143  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1144  * @root - the root we're allocating for
1145  * @space_info - the space info we want to allocate from
1146  * @orig_bytes - the number of bytes we want
1147  * @flush - whether or not we can flush to make our reservation
1148  *
1149  * This will reserve orig_bytes number of bytes from the space info associated
1150  * with the block_rsv.  If there is not enough space it will make an attempt to
1151  * flush out space to make room.  It will do this by flushing delalloc if
1152  * possible or committing the transaction.  If flush is 0 then no attempts to
1153  * regain reservations will be made and this will fail if there is not enough
1154  * space already.
1155  */
1156 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1157 				    struct btrfs_space_info *space_info,
1158 				    u64 orig_bytes,
1159 				    enum btrfs_reserve_flush_enum flush)
1160 {
1161 	struct reserve_ticket ticket;
1162 	u64 used;
1163 	int ret = 0;
1164 	bool pending_tickets;
1165 
1166 	ASSERT(orig_bytes);
1167 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1168 
1169 	spin_lock(&space_info->lock);
1170 	ret = -ENOSPC;
1171 	used = btrfs_space_info_used(space_info, true);
1172 	pending_tickets = !list_empty(&space_info->tickets) ||
1173 		!list_empty(&space_info->priority_tickets);
1174 
1175 	/*
1176 	 * Carry on if we have enough space (short-circuit) OR call
1177 	 * can_overcommit() to ensure we can overcommit to continue.
1178 	 */
1179 	if (!pending_tickets &&
1180 	    ((used + orig_bytes <= space_info->total_bytes) ||
1181 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1182 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1183 						      orig_bytes);
1184 		ret = 0;
1185 	}
1186 
1187 	/*
1188 	 * If we couldn't make a reservation then setup our reservation ticket
1189 	 * and kick the async worker if it's not already running.
1190 	 *
1191 	 * If we are a priority flusher then we just need to add our ticket to
1192 	 * the list and we will do our own flushing further down.
1193 	 */
1194 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1195 		ticket.bytes = orig_bytes;
1196 		ticket.error = 0;
1197 		init_waitqueue_head(&ticket.wait);
1198 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
1199 			list_add_tail(&ticket.list, &space_info->tickets);
1200 			if (!space_info->flush) {
1201 				space_info->flush = 1;
1202 				trace_btrfs_trigger_flush(fs_info,
1203 							  space_info->flags,
1204 							  orig_bytes, flush,
1205 							  "enospc");
1206 				queue_work(system_unbound_wq,
1207 					   &fs_info->async_reclaim_work);
1208 			}
1209 		} else {
1210 			list_add_tail(&ticket.list,
1211 				      &space_info->priority_tickets);
1212 		}
1213 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1214 		used += orig_bytes;
1215 		/*
1216 		 * We will do the space reservation dance during log replay,
1217 		 * which means we won't have fs_info->fs_root set, so don't do
1218 		 * the async reclaim as we will panic.
1219 		 */
1220 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1221 		    need_do_async_reclaim(fs_info, space_info, used) &&
1222 		    !work_busy(&fs_info->async_reclaim_work)) {
1223 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1224 						  orig_bytes, flush, "preempt");
1225 			queue_work(system_unbound_wq,
1226 				   &fs_info->async_reclaim_work);
1227 		}
1228 	}
1229 	spin_unlock(&space_info->lock);
1230 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1231 		return ret;
1232 
1233 	return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1234 }
1235 
1236 /**
1237  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1238  * @root - the root we're allocating for
1239  * @block_rsv - the block_rsv we're allocating for
1240  * @orig_bytes - the number of bytes we want
1241  * @flush - whether or not we can flush to make our reservation
1242  *
1243  * This will reserve orig_bytes number of bytes from the space info associated
1244  * with the block_rsv.  If there is not enough space it will make an attempt to
1245  * flush out space to make room.  It will do this by flushing delalloc if
1246  * possible or committing the transaction.  If flush is 0 then no attempts to
1247  * regain reservations will be made and this will fail if there is not enough
1248  * space already.
1249  */
1250 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1251 				 struct btrfs_block_rsv *block_rsv,
1252 				 u64 orig_bytes,
1253 				 enum btrfs_reserve_flush_enum flush)
1254 {
1255 	struct btrfs_fs_info *fs_info = root->fs_info;
1256 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1257 	int ret;
1258 
1259 	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
1260 				       orig_bytes, flush);
1261 	if (ret == -ENOSPC &&
1262 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1263 		if (block_rsv != global_rsv &&
1264 		    !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1265 			ret = 0;
1266 	}
1267 	if (ret == -ENOSPC) {
1268 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1269 					      block_rsv->space_info->flags,
1270 					      orig_bytes, 1);
1271 
1272 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1273 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1274 					      orig_bytes, 0);
1275 	}
1276 	return ret;
1277 }
1278