xref: /openbmc/linux/fs/btrfs/space-info.c (revision ee7da21a)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     This will commit the transaction.  Historically we had a lot of logic
137  *     surrounding whether or not we'd commit the transaction, but this waits born
138  *     out of a pre-tickets era where we could end up committing the transaction
139  *     thousands of times in a row without making progress.  Now thanks to our
140  *     ticketing system we know if we're not making progress and can error
141  *     everybody out after a few commits rather than burning the disk hoping for
142  *     a different answer.
143  *
144  * OVERCOMMIT
145  *
146  *   Because we hold so many reservations for metadata we will allow you to
147  *   reserve more space than is currently free in the currently allocate
148  *   metadata space.  This only happens with metadata, data does not allow
149  *   overcommitting.
150  *
151  *   You can see the current logic for when we allow overcommit in
152  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
153  *   is no unallocated space to be had, all reservations are kept within the
154  *   free space in the allocated metadata chunks.
155  *
156  *   Because of overcommitting, you generally want to use the
157  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
158  *   thing with or without extra unallocated space.
159  */
160 
161 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
162 			  bool may_use_included)
163 {
164 	ASSERT(s_info);
165 	return s_info->bytes_used + s_info->bytes_reserved +
166 		s_info->bytes_pinned + s_info->bytes_readonly +
167 		s_info->bytes_zone_unusable +
168 		(may_use_included ? s_info->bytes_may_use : 0);
169 }
170 
171 /*
172  * after adding space to the filesystem, we need to clear the full flags
173  * on all the space infos.
174  */
175 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
176 {
177 	struct list_head *head = &info->space_info;
178 	struct btrfs_space_info *found;
179 
180 	list_for_each_entry(found, head, list)
181 		found->full = 0;
182 }
183 
184 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
185 {
186 
187 	struct btrfs_space_info *space_info;
188 	int i;
189 	int ret;
190 
191 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
192 	if (!space_info)
193 		return -ENOMEM;
194 
195 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
196 		INIT_LIST_HEAD(&space_info->block_groups[i]);
197 	init_rwsem(&space_info->groups_sem);
198 	spin_lock_init(&space_info->lock);
199 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
200 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
201 	INIT_LIST_HEAD(&space_info->ro_bgs);
202 	INIT_LIST_HEAD(&space_info->tickets);
203 	INIT_LIST_HEAD(&space_info->priority_tickets);
204 	space_info->clamp = 1;
205 
206 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
207 	if (ret)
208 		return ret;
209 
210 	list_add(&space_info->list, &info->space_info);
211 	if (flags & BTRFS_BLOCK_GROUP_DATA)
212 		info->data_sinfo = space_info;
213 
214 	return ret;
215 }
216 
217 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
218 {
219 	struct btrfs_super_block *disk_super;
220 	u64 features;
221 	u64 flags;
222 	int mixed = 0;
223 	int ret;
224 
225 	disk_super = fs_info->super_copy;
226 	if (!btrfs_super_root(disk_super))
227 		return -EINVAL;
228 
229 	features = btrfs_super_incompat_flags(disk_super);
230 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
231 		mixed = 1;
232 
233 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
234 	ret = create_space_info(fs_info, flags);
235 	if (ret)
236 		goto out;
237 
238 	if (mixed) {
239 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
240 		ret = create_space_info(fs_info, flags);
241 	} else {
242 		flags = BTRFS_BLOCK_GROUP_METADATA;
243 		ret = create_space_info(fs_info, flags);
244 		if (ret)
245 			goto out;
246 
247 		flags = BTRFS_BLOCK_GROUP_DATA;
248 		ret = create_space_info(fs_info, flags);
249 	}
250 out:
251 	return ret;
252 }
253 
254 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
255 			     u64 total_bytes, u64 bytes_used,
256 			     u64 bytes_readonly, u64 bytes_zone_unusable,
257 			     struct btrfs_space_info **space_info)
258 {
259 	struct btrfs_space_info *found;
260 	int factor;
261 
262 	factor = btrfs_bg_type_to_factor(flags);
263 
264 	found = btrfs_find_space_info(info, flags);
265 	ASSERT(found);
266 	spin_lock(&found->lock);
267 	found->total_bytes += total_bytes;
268 	found->disk_total += total_bytes * factor;
269 	found->bytes_used += bytes_used;
270 	found->disk_used += bytes_used * factor;
271 	found->bytes_readonly += bytes_readonly;
272 	found->bytes_zone_unusable += bytes_zone_unusable;
273 	if (total_bytes > 0)
274 		found->full = 0;
275 	btrfs_try_granting_tickets(info, found);
276 	spin_unlock(&found->lock);
277 	*space_info = found;
278 }
279 
280 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
281 					       u64 flags)
282 {
283 	struct list_head *head = &info->space_info;
284 	struct btrfs_space_info *found;
285 
286 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
287 
288 	list_for_each_entry(found, head, list) {
289 		if (found->flags & flags)
290 			return found;
291 	}
292 	return NULL;
293 }
294 
295 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
296 			  struct btrfs_space_info *space_info,
297 			  enum btrfs_reserve_flush_enum flush)
298 {
299 	u64 profile;
300 	u64 avail;
301 	int factor;
302 
303 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
304 		profile = btrfs_system_alloc_profile(fs_info);
305 	else
306 		profile = btrfs_metadata_alloc_profile(fs_info);
307 
308 	avail = atomic64_read(&fs_info->free_chunk_space);
309 
310 	/*
311 	 * If we have dup, raid1 or raid10 then only half of the free
312 	 * space is actually usable.  For raid56, the space info used
313 	 * doesn't include the parity drive, so we don't have to
314 	 * change the math
315 	 */
316 	factor = btrfs_bg_type_to_factor(profile);
317 	avail = div_u64(avail, factor);
318 
319 	/*
320 	 * If we aren't flushing all things, let us overcommit up to
321 	 * 1/2th of the space. If we can flush, don't let us overcommit
322 	 * too much, let it overcommit up to 1/8 of the space.
323 	 */
324 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
325 		avail >>= 3;
326 	else
327 		avail >>= 1;
328 	return avail;
329 }
330 
331 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
332 			 struct btrfs_space_info *space_info, u64 bytes,
333 			 enum btrfs_reserve_flush_enum flush)
334 {
335 	u64 avail;
336 	u64 used;
337 
338 	/* Don't overcommit when in mixed mode */
339 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
340 		return 0;
341 
342 	used = btrfs_space_info_used(space_info, true);
343 	avail = calc_available_free_space(fs_info, space_info, flush);
344 
345 	if (used + bytes < space_info->total_bytes + avail)
346 		return 1;
347 	return 0;
348 }
349 
350 static void remove_ticket(struct btrfs_space_info *space_info,
351 			  struct reserve_ticket *ticket)
352 {
353 	if (!list_empty(&ticket->list)) {
354 		list_del_init(&ticket->list);
355 		ASSERT(space_info->reclaim_size >= ticket->bytes);
356 		space_info->reclaim_size -= ticket->bytes;
357 	}
358 }
359 
360 /*
361  * This is for space we already have accounted in space_info->bytes_may_use, so
362  * basically when we're returning space from block_rsv's.
363  */
364 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
365 				struct btrfs_space_info *space_info)
366 {
367 	struct list_head *head;
368 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
369 
370 	lockdep_assert_held(&space_info->lock);
371 
372 	head = &space_info->priority_tickets;
373 again:
374 	while (!list_empty(head)) {
375 		struct reserve_ticket *ticket;
376 		u64 used = btrfs_space_info_used(space_info, true);
377 
378 		ticket = list_first_entry(head, struct reserve_ticket, list);
379 
380 		/* Check and see if our ticket can be satisfied now. */
381 		if ((used + ticket->bytes <= space_info->total_bytes) ||
382 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
383 					 flush)) {
384 			btrfs_space_info_update_bytes_may_use(fs_info,
385 							      space_info,
386 							      ticket->bytes);
387 			remove_ticket(space_info, ticket);
388 			ticket->bytes = 0;
389 			space_info->tickets_id++;
390 			wake_up(&ticket->wait);
391 		} else {
392 			break;
393 		}
394 	}
395 
396 	if (head == &space_info->priority_tickets) {
397 		head = &space_info->tickets;
398 		flush = BTRFS_RESERVE_FLUSH_ALL;
399 		goto again;
400 	}
401 }
402 
403 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
404 do {									\
405 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
406 	spin_lock(&__rsv->lock);					\
407 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
408 		   __rsv->size, __rsv->reserved);			\
409 	spin_unlock(&__rsv->lock);					\
410 } while (0)
411 
412 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
413 				    struct btrfs_space_info *info)
414 {
415 	lockdep_assert_held(&info->lock);
416 
417 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
418 		   info->flags,
419 		   info->total_bytes - btrfs_space_info_used(info, true),
420 		   info->full ? "" : "not ");
421 	btrfs_info(fs_info,
422 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
423 		info->total_bytes, info->bytes_used, info->bytes_pinned,
424 		info->bytes_reserved, info->bytes_may_use,
425 		info->bytes_readonly, info->bytes_zone_unusable);
426 
427 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
428 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
429 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
430 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
431 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
432 
433 }
434 
435 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
436 			   struct btrfs_space_info *info, u64 bytes,
437 			   int dump_block_groups)
438 {
439 	struct btrfs_block_group *cache;
440 	int index = 0;
441 
442 	spin_lock(&info->lock);
443 	__btrfs_dump_space_info(fs_info, info);
444 	spin_unlock(&info->lock);
445 
446 	if (!dump_block_groups)
447 		return;
448 
449 	down_read(&info->groups_sem);
450 again:
451 	list_for_each_entry(cache, &info->block_groups[index], list) {
452 		spin_lock(&cache->lock);
453 		btrfs_info(fs_info,
454 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
455 			cache->start, cache->length, cache->used, cache->pinned,
456 			cache->reserved, cache->zone_unusable,
457 			cache->ro ? "[readonly]" : "");
458 		spin_unlock(&cache->lock);
459 		btrfs_dump_free_space(cache, bytes);
460 	}
461 	if (++index < BTRFS_NR_RAID_TYPES)
462 		goto again;
463 	up_read(&info->groups_sem);
464 }
465 
466 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
467 					u64 to_reclaim)
468 {
469 	u64 bytes;
470 	u64 nr;
471 
472 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
473 	nr = div64_u64(to_reclaim, bytes);
474 	if (!nr)
475 		nr = 1;
476 	return nr;
477 }
478 
479 #define EXTENT_SIZE_PER_ITEM	SZ_256K
480 
481 /*
482  * shrink metadata reservation for delalloc
483  */
484 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
485 			    struct btrfs_space_info *space_info,
486 			    u64 to_reclaim, bool wait_ordered,
487 			    bool for_preempt)
488 {
489 	struct btrfs_trans_handle *trans;
490 	u64 delalloc_bytes;
491 	u64 ordered_bytes;
492 	u64 items;
493 	long time_left;
494 	int loops;
495 
496 	/* Calc the number of the pages we need flush for space reservation */
497 	if (to_reclaim == U64_MAX) {
498 		items = U64_MAX;
499 	} else {
500 		/*
501 		 * to_reclaim is set to however much metadata we need to
502 		 * reclaim, but reclaiming that much data doesn't really track
503 		 * exactly, so increase the amount to reclaim by 2x in order to
504 		 * make sure we're flushing enough delalloc to hopefully reclaim
505 		 * some metadata reservations.
506 		 */
507 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
508 		to_reclaim = items * EXTENT_SIZE_PER_ITEM;
509 	}
510 
511 	trans = (struct btrfs_trans_handle *)current->journal_info;
512 
513 	delalloc_bytes = percpu_counter_sum_positive(
514 						&fs_info->delalloc_bytes);
515 	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
516 	if (delalloc_bytes == 0 && ordered_bytes == 0)
517 		return;
518 
519 	/*
520 	 * If we are doing more ordered than delalloc we need to just wait on
521 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
522 	 * that likely won't give us the space back we need.
523 	 */
524 	if (ordered_bytes > delalloc_bytes && !for_preempt)
525 		wait_ordered = true;
526 
527 	loops = 0;
528 	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
529 		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
530 		long nr_pages = min_t(u64, temp, LONG_MAX);
531 
532 		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
533 
534 		loops++;
535 		if (wait_ordered && !trans) {
536 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
537 		} else {
538 			time_left = schedule_timeout_killable(1);
539 			if (time_left)
540 				break;
541 		}
542 
543 		/*
544 		 * If we are for preemption we just want a one-shot of delalloc
545 		 * flushing so we can stop flushing if we decide we don't need
546 		 * to anymore.
547 		 */
548 		if (for_preempt)
549 			break;
550 
551 		spin_lock(&space_info->lock);
552 		if (list_empty(&space_info->tickets) &&
553 		    list_empty(&space_info->priority_tickets)) {
554 			spin_unlock(&space_info->lock);
555 			break;
556 		}
557 		spin_unlock(&space_info->lock);
558 
559 		delalloc_bytes = percpu_counter_sum_positive(
560 						&fs_info->delalloc_bytes);
561 		ordered_bytes = percpu_counter_sum_positive(
562 						&fs_info->ordered_bytes);
563 	}
564 }
565 
566 /*
567  * Try to flush some data based on policy set by @state. This is only advisory
568  * and may fail for various reasons. The caller is supposed to examine the
569  * state of @space_info to detect the outcome.
570  */
571 static void flush_space(struct btrfs_fs_info *fs_info,
572 		       struct btrfs_space_info *space_info, u64 num_bytes,
573 		       enum btrfs_flush_state state, bool for_preempt)
574 {
575 	struct btrfs_root *root = fs_info->extent_root;
576 	struct btrfs_trans_handle *trans;
577 	int nr;
578 	int ret = 0;
579 
580 	switch (state) {
581 	case FLUSH_DELAYED_ITEMS_NR:
582 	case FLUSH_DELAYED_ITEMS:
583 		if (state == FLUSH_DELAYED_ITEMS_NR)
584 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
585 		else
586 			nr = -1;
587 
588 		trans = btrfs_join_transaction(root);
589 		if (IS_ERR(trans)) {
590 			ret = PTR_ERR(trans);
591 			break;
592 		}
593 		ret = btrfs_run_delayed_items_nr(trans, nr);
594 		btrfs_end_transaction(trans);
595 		break;
596 	case FLUSH_DELALLOC:
597 	case FLUSH_DELALLOC_WAIT:
598 		shrink_delalloc(fs_info, space_info, num_bytes,
599 				state == FLUSH_DELALLOC_WAIT, for_preempt);
600 		break;
601 	case FLUSH_DELAYED_REFS_NR:
602 	case FLUSH_DELAYED_REFS:
603 		trans = btrfs_join_transaction(root);
604 		if (IS_ERR(trans)) {
605 			ret = PTR_ERR(trans);
606 			break;
607 		}
608 		if (state == FLUSH_DELAYED_REFS_NR)
609 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
610 		else
611 			nr = 0;
612 		btrfs_run_delayed_refs(trans, nr);
613 		btrfs_end_transaction(trans);
614 		break;
615 	case ALLOC_CHUNK:
616 	case ALLOC_CHUNK_FORCE:
617 		trans = btrfs_join_transaction(root);
618 		if (IS_ERR(trans)) {
619 			ret = PTR_ERR(trans);
620 			break;
621 		}
622 		ret = btrfs_chunk_alloc(trans,
623 				btrfs_get_alloc_profile(fs_info, space_info->flags),
624 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
625 					CHUNK_ALLOC_FORCE);
626 		btrfs_end_transaction(trans);
627 		if (ret > 0 || ret == -ENOSPC)
628 			ret = 0;
629 		break;
630 	case RUN_DELAYED_IPUTS:
631 		/*
632 		 * If we have pending delayed iputs then we could free up a
633 		 * bunch of pinned space, so make sure we run the iputs before
634 		 * we do our pinned bytes check below.
635 		 */
636 		btrfs_run_delayed_iputs(fs_info);
637 		btrfs_wait_on_delayed_iputs(fs_info);
638 		break;
639 	case COMMIT_TRANS:
640 		ASSERT(current->journal_info == NULL);
641 		trans = btrfs_join_transaction(root);
642 		if (IS_ERR(trans)) {
643 			ret = PTR_ERR(trans);
644 			break;
645 		}
646 		ret = btrfs_commit_transaction(trans);
647 		break;
648 	default:
649 		ret = -ENOSPC;
650 		break;
651 	}
652 
653 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
654 				ret, for_preempt);
655 	return;
656 }
657 
658 static inline u64
659 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
660 				 struct btrfs_space_info *space_info)
661 {
662 	u64 used;
663 	u64 avail;
664 	u64 to_reclaim = space_info->reclaim_size;
665 
666 	lockdep_assert_held(&space_info->lock);
667 
668 	avail = calc_available_free_space(fs_info, space_info,
669 					  BTRFS_RESERVE_FLUSH_ALL);
670 	used = btrfs_space_info_used(space_info, true);
671 
672 	/*
673 	 * We may be flushing because suddenly we have less space than we had
674 	 * before, and now we're well over-committed based on our current free
675 	 * space.  If that's the case add in our overage so we make sure to put
676 	 * appropriate pressure on the flushing state machine.
677 	 */
678 	if (space_info->total_bytes + avail < used)
679 		to_reclaim += used - (space_info->total_bytes + avail);
680 
681 	return to_reclaim;
682 }
683 
684 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
685 				    struct btrfs_space_info *space_info)
686 {
687 	u64 global_rsv_size = fs_info->global_block_rsv.reserved;
688 	u64 ordered, delalloc;
689 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
690 	u64 used;
691 
692 	/* If we're just plain full then async reclaim just slows us down. */
693 	if ((space_info->bytes_used + space_info->bytes_reserved +
694 	     global_rsv_size) >= thresh)
695 		return false;
696 
697 	/*
698 	 * We have tickets queued, bail so we don't compete with the async
699 	 * flushers.
700 	 */
701 	if (space_info->reclaim_size)
702 		return false;
703 
704 	/*
705 	 * If we have over half of the free space occupied by reservations or
706 	 * pinned then we want to start flushing.
707 	 *
708 	 * We do not do the traditional thing here, which is to say
709 	 *
710 	 *   if (used >= ((total_bytes + avail) / 2))
711 	 *     return 1;
712 	 *
713 	 * because this doesn't quite work how we want.  If we had more than 50%
714 	 * of the space_info used by bytes_used and we had 0 available we'd just
715 	 * constantly run the background flusher.  Instead we want it to kick in
716 	 * if our reclaimable space exceeds our clamped free space.
717 	 *
718 	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
719 	 * the following:
720 	 *
721 	 * Amount of RAM        Minimum threshold       Maximum threshold
722 	 *
723 	 *        256GiB                     1GiB                  128GiB
724 	 *        128GiB                   512MiB                   64GiB
725 	 *         64GiB                   256MiB                   32GiB
726 	 *         32GiB                   128MiB                   16GiB
727 	 *         16GiB                    64MiB                    8GiB
728 	 *
729 	 * These are the range our thresholds will fall in, corresponding to how
730 	 * much delalloc we need for the background flusher to kick in.
731 	 */
732 
733 	thresh = calc_available_free_space(fs_info, space_info,
734 					   BTRFS_RESERVE_FLUSH_ALL);
735 	used = space_info->bytes_used + space_info->bytes_reserved +
736 	       space_info->bytes_readonly + global_rsv_size;
737 	if (used < space_info->total_bytes)
738 		thresh += space_info->total_bytes - used;
739 	thresh >>= space_info->clamp;
740 
741 	used = space_info->bytes_pinned;
742 
743 	/*
744 	 * If we have more ordered bytes than delalloc bytes then we're either
745 	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
746 	 * around.  Preemptive flushing is only useful in that it can free up
747 	 * space before tickets need to wait for things to finish.  In the case
748 	 * of ordered extents, preemptively waiting on ordered extents gets us
749 	 * nothing, if our reservations are tied up in ordered extents we'll
750 	 * simply have to slow down writers by forcing them to wait on ordered
751 	 * extents.
752 	 *
753 	 * In the case that ordered is larger than delalloc, only include the
754 	 * block reserves that we would actually be able to directly reclaim
755 	 * from.  In this case if we're heavy on metadata operations this will
756 	 * clearly be heavy enough to warrant preemptive flushing.  In the case
757 	 * of heavy DIO or ordered reservations, preemptive flushing will just
758 	 * waste time and cause us to slow down.
759 	 *
760 	 * We want to make sure we truly are maxed out on ordered however, so
761 	 * cut ordered in half, and if it's still higher than delalloc then we
762 	 * can keep flushing.  This is to avoid the case where we start
763 	 * flushing, and now delalloc == ordered and we stop preemptively
764 	 * flushing when we could still have several gigs of delalloc to flush.
765 	 */
766 	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
767 	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
768 	if (ordered >= delalloc)
769 		used += fs_info->delayed_refs_rsv.reserved +
770 			fs_info->delayed_block_rsv.reserved;
771 	else
772 		used += space_info->bytes_may_use - global_rsv_size;
773 
774 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
775 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
776 }
777 
778 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
779 				  struct btrfs_space_info *space_info,
780 				  struct reserve_ticket *ticket)
781 {
782 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
783 	u64 min_bytes;
784 
785 	if (global_rsv->space_info != space_info)
786 		return false;
787 
788 	spin_lock(&global_rsv->lock);
789 	min_bytes = div_factor(global_rsv->size, 1);
790 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
791 		spin_unlock(&global_rsv->lock);
792 		return false;
793 	}
794 	global_rsv->reserved -= ticket->bytes;
795 	remove_ticket(space_info, ticket);
796 	ticket->bytes = 0;
797 	wake_up(&ticket->wait);
798 	space_info->tickets_id++;
799 	if (global_rsv->reserved < global_rsv->size)
800 		global_rsv->full = 0;
801 	spin_unlock(&global_rsv->lock);
802 
803 	return true;
804 }
805 
806 /*
807  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
808  * @fs_info - fs_info for this fs
809  * @space_info - the space info we were flushing
810  *
811  * We call this when we've exhausted our flushing ability and haven't made
812  * progress in satisfying tickets.  The reservation code handles tickets in
813  * order, so if there is a large ticket first and then smaller ones we could
814  * very well satisfy the smaller tickets.  This will attempt to wake up any
815  * tickets in the list to catch this case.
816  *
817  * This function returns true if it was able to make progress by clearing out
818  * other tickets, or if it stumbles across a ticket that was smaller than the
819  * first ticket.
820  */
821 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
822 				   struct btrfs_space_info *space_info)
823 {
824 	struct reserve_ticket *ticket;
825 	u64 tickets_id = space_info->tickets_id;
826 
827 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
828 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
829 		__btrfs_dump_space_info(fs_info, space_info);
830 	}
831 
832 	while (!list_empty(&space_info->tickets) &&
833 	       tickets_id == space_info->tickets_id) {
834 		ticket = list_first_entry(&space_info->tickets,
835 					  struct reserve_ticket, list);
836 
837 		if (ticket->steal &&
838 		    steal_from_global_rsv(fs_info, space_info, ticket))
839 			return true;
840 
841 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
842 			btrfs_info(fs_info, "failing ticket with %llu bytes",
843 				   ticket->bytes);
844 
845 		remove_ticket(space_info, ticket);
846 		ticket->error = -ENOSPC;
847 		wake_up(&ticket->wait);
848 
849 		/*
850 		 * We're just throwing tickets away, so more flushing may not
851 		 * trip over btrfs_try_granting_tickets, so we need to call it
852 		 * here to see if we can make progress with the next ticket in
853 		 * the list.
854 		 */
855 		btrfs_try_granting_tickets(fs_info, space_info);
856 	}
857 	return (tickets_id != space_info->tickets_id);
858 }
859 
860 /*
861  * This is for normal flushers, we can wait all goddamned day if we want to.  We
862  * will loop and continuously try to flush as long as we are making progress.
863  * We count progress as clearing off tickets each time we have to loop.
864  */
865 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
866 {
867 	struct btrfs_fs_info *fs_info;
868 	struct btrfs_space_info *space_info;
869 	u64 to_reclaim;
870 	enum btrfs_flush_state flush_state;
871 	int commit_cycles = 0;
872 	u64 last_tickets_id;
873 
874 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
875 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
876 
877 	spin_lock(&space_info->lock);
878 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
879 	if (!to_reclaim) {
880 		space_info->flush = 0;
881 		spin_unlock(&space_info->lock);
882 		return;
883 	}
884 	last_tickets_id = space_info->tickets_id;
885 	spin_unlock(&space_info->lock);
886 
887 	flush_state = FLUSH_DELAYED_ITEMS_NR;
888 	do {
889 		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
890 		spin_lock(&space_info->lock);
891 		if (list_empty(&space_info->tickets)) {
892 			space_info->flush = 0;
893 			spin_unlock(&space_info->lock);
894 			return;
895 		}
896 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
897 							      space_info);
898 		if (last_tickets_id == space_info->tickets_id) {
899 			flush_state++;
900 		} else {
901 			last_tickets_id = space_info->tickets_id;
902 			flush_state = FLUSH_DELAYED_ITEMS_NR;
903 			if (commit_cycles)
904 				commit_cycles--;
905 		}
906 
907 		/*
908 		 * We don't want to force a chunk allocation until we've tried
909 		 * pretty hard to reclaim space.  Think of the case where we
910 		 * freed up a bunch of space and so have a lot of pinned space
911 		 * to reclaim.  We would rather use that than possibly create a
912 		 * underutilized metadata chunk.  So if this is our first run
913 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
914 		 * commit the transaction.  If nothing has changed the next go
915 		 * around then we can force a chunk allocation.
916 		 */
917 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
918 			flush_state++;
919 
920 		if (flush_state > COMMIT_TRANS) {
921 			commit_cycles++;
922 			if (commit_cycles > 2) {
923 				if (maybe_fail_all_tickets(fs_info, space_info)) {
924 					flush_state = FLUSH_DELAYED_ITEMS_NR;
925 					commit_cycles--;
926 				} else {
927 					space_info->flush = 0;
928 				}
929 			} else {
930 				flush_state = FLUSH_DELAYED_ITEMS_NR;
931 			}
932 		}
933 		spin_unlock(&space_info->lock);
934 	} while (flush_state <= COMMIT_TRANS);
935 }
936 
937 /*
938  * This handles pre-flushing of metadata space before we get to the point that
939  * we need to start blocking threads on tickets.  The logic here is different
940  * from the other flush paths because it doesn't rely on tickets to tell us how
941  * much we need to flush, instead it attempts to keep us below the 80% full
942  * watermark of space by flushing whichever reservation pool is currently the
943  * largest.
944  */
945 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
946 {
947 	struct btrfs_fs_info *fs_info;
948 	struct btrfs_space_info *space_info;
949 	struct btrfs_block_rsv *delayed_block_rsv;
950 	struct btrfs_block_rsv *delayed_refs_rsv;
951 	struct btrfs_block_rsv *global_rsv;
952 	struct btrfs_block_rsv *trans_rsv;
953 	int loops = 0;
954 
955 	fs_info = container_of(work, struct btrfs_fs_info,
956 			       preempt_reclaim_work);
957 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
958 	delayed_block_rsv = &fs_info->delayed_block_rsv;
959 	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
960 	global_rsv = &fs_info->global_block_rsv;
961 	trans_rsv = &fs_info->trans_block_rsv;
962 
963 	spin_lock(&space_info->lock);
964 	while (need_preemptive_reclaim(fs_info, space_info)) {
965 		enum btrfs_flush_state flush;
966 		u64 delalloc_size = 0;
967 		u64 to_reclaim, block_rsv_size;
968 		u64 global_rsv_size = global_rsv->reserved;
969 
970 		loops++;
971 
972 		/*
973 		 * We don't have a precise counter for the metadata being
974 		 * reserved for delalloc, so we'll approximate it by subtracting
975 		 * out the block rsv's space from the bytes_may_use.  If that
976 		 * amount is higher than the individual reserves, then we can
977 		 * assume it's tied up in delalloc reservations.
978 		 */
979 		block_rsv_size = global_rsv_size +
980 			delayed_block_rsv->reserved +
981 			delayed_refs_rsv->reserved +
982 			trans_rsv->reserved;
983 		if (block_rsv_size < space_info->bytes_may_use)
984 			delalloc_size = space_info->bytes_may_use - block_rsv_size;
985 		spin_unlock(&space_info->lock);
986 
987 		/*
988 		 * We don't want to include the global_rsv in our calculation,
989 		 * because that's space we can't touch.  Subtract it from the
990 		 * block_rsv_size for the next checks.
991 		 */
992 		block_rsv_size -= global_rsv_size;
993 
994 		/*
995 		 * We really want to avoid flushing delalloc too much, as it
996 		 * could result in poor allocation patterns, so only flush it if
997 		 * it's larger than the rest of the pools combined.
998 		 */
999 		if (delalloc_size > block_rsv_size) {
1000 			to_reclaim = delalloc_size;
1001 			flush = FLUSH_DELALLOC;
1002 		} else if (space_info->bytes_pinned >
1003 			   (delayed_block_rsv->reserved +
1004 			    delayed_refs_rsv->reserved)) {
1005 			to_reclaim = space_info->bytes_pinned;
1006 			flush = COMMIT_TRANS;
1007 		} else if (delayed_block_rsv->reserved >
1008 			   delayed_refs_rsv->reserved) {
1009 			to_reclaim = delayed_block_rsv->reserved;
1010 			flush = FLUSH_DELAYED_ITEMS_NR;
1011 		} else {
1012 			to_reclaim = delayed_refs_rsv->reserved;
1013 			flush = FLUSH_DELAYED_REFS_NR;
1014 		}
1015 
1016 		/*
1017 		 * We don't want to reclaim everything, just a portion, so scale
1018 		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1019 		 * reclaim 1 items worth.
1020 		 */
1021 		to_reclaim >>= 2;
1022 		if (!to_reclaim)
1023 			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1024 		flush_space(fs_info, space_info, to_reclaim, flush, true);
1025 		cond_resched();
1026 		spin_lock(&space_info->lock);
1027 	}
1028 
1029 	/* We only went through once, back off our clamping. */
1030 	if (loops == 1 && !space_info->reclaim_size)
1031 		space_info->clamp = max(1, space_info->clamp - 1);
1032 	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1033 	spin_unlock(&space_info->lock);
1034 }
1035 
1036 /*
1037  * FLUSH_DELALLOC_WAIT:
1038  *   Space is freed from flushing delalloc in one of two ways.
1039  *
1040  *   1) compression is on and we allocate less space than we reserved
1041  *   2) we are overwriting existing space
1042  *
1043  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1044  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1045  *   length to ->bytes_reserved, and subtracts the reserved space from
1046  *   ->bytes_may_use.
1047  *
1048  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1049  *   extent in the range we are overwriting, which creates a delayed ref for
1050  *   that freed extent.  This however is not reclaimed until the transaction
1051  *   commits, thus the next stages.
1052  *
1053  * RUN_DELAYED_IPUTS
1054  *   If we are freeing inodes, we want to make sure all delayed iputs have
1055  *   completed, because they could have been on an inode with i_nlink == 0, and
1056  *   thus have been truncated and freed up space.  But again this space is not
1057  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1058  *   run and then the transaction must be committed.
1059  *
1060  * COMMIT_TRANS
1061  *   This is where we reclaim all of the pinned space generated by running the
1062  *   iputs
1063  *
1064  * ALLOC_CHUNK_FORCE
1065  *   For data we start with alloc chunk force, however we could have been full
1066  *   before, and then the transaction commit could have freed new block groups,
1067  *   so if we now have space to allocate do the force chunk allocation.
1068  */
1069 static const enum btrfs_flush_state data_flush_states[] = {
1070 	FLUSH_DELALLOC_WAIT,
1071 	RUN_DELAYED_IPUTS,
1072 	COMMIT_TRANS,
1073 	ALLOC_CHUNK_FORCE,
1074 };
1075 
1076 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1077 {
1078 	struct btrfs_fs_info *fs_info;
1079 	struct btrfs_space_info *space_info;
1080 	u64 last_tickets_id;
1081 	enum btrfs_flush_state flush_state = 0;
1082 
1083 	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1084 	space_info = fs_info->data_sinfo;
1085 
1086 	spin_lock(&space_info->lock);
1087 	if (list_empty(&space_info->tickets)) {
1088 		space_info->flush = 0;
1089 		spin_unlock(&space_info->lock);
1090 		return;
1091 	}
1092 	last_tickets_id = space_info->tickets_id;
1093 	spin_unlock(&space_info->lock);
1094 
1095 	while (!space_info->full) {
1096 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1097 		spin_lock(&space_info->lock);
1098 		if (list_empty(&space_info->tickets)) {
1099 			space_info->flush = 0;
1100 			spin_unlock(&space_info->lock);
1101 			return;
1102 		}
1103 		last_tickets_id = space_info->tickets_id;
1104 		spin_unlock(&space_info->lock);
1105 	}
1106 
1107 	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1108 		flush_space(fs_info, space_info, U64_MAX,
1109 			    data_flush_states[flush_state], false);
1110 		spin_lock(&space_info->lock);
1111 		if (list_empty(&space_info->tickets)) {
1112 			space_info->flush = 0;
1113 			spin_unlock(&space_info->lock);
1114 			return;
1115 		}
1116 
1117 		if (last_tickets_id == space_info->tickets_id) {
1118 			flush_state++;
1119 		} else {
1120 			last_tickets_id = space_info->tickets_id;
1121 			flush_state = 0;
1122 		}
1123 
1124 		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1125 			if (space_info->full) {
1126 				if (maybe_fail_all_tickets(fs_info, space_info))
1127 					flush_state = 0;
1128 				else
1129 					space_info->flush = 0;
1130 			} else {
1131 				flush_state = 0;
1132 			}
1133 		}
1134 		spin_unlock(&space_info->lock);
1135 	}
1136 }
1137 
1138 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1139 {
1140 	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1141 	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1142 	INIT_WORK(&fs_info->preempt_reclaim_work,
1143 		  btrfs_preempt_reclaim_metadata_space);
1144 }
1145 
1146 static const enum btrfs_flush_state priority_flush_states[] = {
1147 	FLUSH_DELAYED_ITEMS_NR,
1148 	FLUSH_DELAYED_ITEMS,
1149 	ALLOC_CHUNK,
1150 };
1151 
1152 static const enum btrfs_flush_state evict_flush_states[] = {
1153 	FLUSH_DELAYED_ITEMS_NR,
1154 	FLUSH_DELAYED_ITEMS,
1155 	FLUSH_DELAYED_REFS_NR,
1156 	FLUSH_DELAYED_REFS,
1157 	FLUSH_DELALLOC,
1158 	FLUSH_DELALLOC_WAIT,
1159 	ALLOC_CHUNK,
1160 	COMMIT_TRANS,
1161 };
1162 
1163 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1164 				struct btrfs_space_info *space_info,
1165 				struct reserve_ticket *ticket,
1166 				const enum btrfs_flush_state *states,
1167 				int states_nr)
1168 {
1169 	u64 to_reclaim;
1170 	int flush_state;
1171 
1172 	spin_lock(&space_info->lock);
1173 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1174 	if (!to_reclaim) {
1175 		spin_unlock(&space_info->lock);
1176 		return;
1177 	}
1178 	spin_unlock(&space_info->lock);
1179 
1180 	flush_state = 0;
1181 	do {
1182 		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1183 			    false);
1184 		flush_state++;
1185 		spin_lock(&space_info->lock);
1186 		if (ticket->bytes == 0) {
1187 			spin_unlock(&space_info->lock);
1188 			return;
1189 		}
1190 		spin_unlock(&space_info->lock);
1191 	} while (flush_state < states_nr);
1192 }
1193 
1194 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1195 					struct btrfs_space_info *space_info,
1196 					struct reserve_ticket *ticket)
1197 {
1198 	while (!space_info->full) {
1199 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1200 		spin_lock(&space_info->lock);
1201 		if (ticket->bytes == 0) {
1202 			spin_unlock(&space_info->lock);
1203 			return;
1204 		}
1205 		spin_unlock(&space_info->lock);
1206 	}
1207 }
1208 
1209 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1210 				struct btrfs_space_info *space_info,
1211 				struct reserve_ticket *ticket)
1212 
1213 {
1214 	DEFINE_WAIT(wait);
1215 	int ret = 0;
1216 
1217 	spin_lock(&space_info->lock);
1218 	while (ticket->bytes > 0 && ticket->error == 0) {
1219 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1220 		if (ret) {
1221 			/*
1222 			 * Delete us from the list. After we unlock the space
1223 			 * info, we don't want the async reclaim job to reserve
1224 			 * space for this ticket. If that would happen, then the
1225 			 * ticket's task would not known that space was reserved
1226 			 * despite getting an error, resulting in a space leak
1227 			 * (bytes_may_use counter of our space_info).
1228 			 */
1229 			remove_ticket(space_info, ticket);
1230 			ticket->error = -EINTR;
1231 			break;
1232 		}
1233 		spin_unlock(&space_info->lock);
1234 
1235 		schedule();
1236 
1237 		finish_wait(&ticket->wait, &wait);
1238 		spin_lock(&space_info->lock);
1239 	}
1240 	spin_unlock(&space_info->lock);
1241 }
1242 
1243 /**
1244  * Do the appropriate flushing and waiting for a ticket
1245  *
1246  * @fs_info:    the filesystem
1247  * @space_info: space info for the reservation
1248  * @ticket:     ticket for the reservation
1249  * @start_ns:   timestamp when the reservation started
1250  * @orig_bytes: amount of bytes originally reserved
1251  * @flush:      how much we can flush
1252  *
1253  * This does the work of figuring out how to flush for the ticket, waiting for
1254  * the reservation, and returning the appropriate error if there is one.
1255  */
1256 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1257 				 struct btrfs_space_info *space_info,
1258 				 struct reserve_ticket *ticket,
1259 				 u64 start_ns, u64 orig_bytes,
1260 				 enum btrfs_reserve_flush_enum flush)
1261 {
1262 	int ret;
1263 
1264 	switch (flush) {
1265 	case BTRFS_RESERVE_FLUSH_DATA:
1266 	case BTRFS_RESERVE_FLUSH_ALL:
1267 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1268 		wait_reserve_ticket(fs_info, space_info, ticket);
1269 		break;
1270 	case BTRFS_RESERVE_FLUSH_LIMIT:
1271 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1272 						priority_flush_states,
1273 						ARRAY_SIZE(priority_flush_states));
1274 		break;
1275 	case BTRFS_RESERVE_FLUSH_EVICT:
1276 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1277 						evict_flush_states,
1278 						ARRAY_SIZE(evict_flush_states));
1279 		break;
1280 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1281 		priority_reclaim_data_space(fs_info, space_info, ticket);
1282 		break;
1283 	default:
1284 		ASSERT(0);
1285 		break;
1286 	}
1287 
1288 	spin_lock(&space_info->lock);
1289 	ret = ticket->error;
1290 	if (ticket->bytes || ticket->error) {
1291 		/*
1292 		 * We were a priority ticket, so we need to delete ourselves
1293 		 * from the list.  Because we could have other priority tickets
1294 		 * behind us that require less space, run
1295 		 * btrfs_try_granting_tickets() to see if their reservations can
1296 		 * now be made.
1297 		 */
1298 		if (!list_empty(&ticket->list)) {
1299 			remove_ticket(space_info, ticket);
1300 			btrfs_try_granting_tickets(fs_info, space_info);
1301 		}
1302 
1303 		if (!ret)
1304 			ret = -ENOSPC;
1305 	}
1306 	spin_unlock(&space_info->lock);
1307 	ASSERT(list_empty(&ticket->list));
1308 	/*
1309 	 * Check that we can't have an error set if the reservation succeeded,
1310 	 * as that would confuse tasks and lead them to error out without
1311 	 * releasing reserved space (if an error happens the expectation is that
1312 	 * space wasn't reserved at all).
1313 	 */
1314 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1315 	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1316 				   start_ns, flush, ticket->error);
1317 	return ret;
1318 }
1319 
1320 /*
1321  * This returns true if this flush state will go through the ordinary flushing
1322  * code.
1323  */
1324 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1325 {
1326 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1327 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1328 }
1329 
1330 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1331 				       struct btrfs_space_info *space_info)
1332 {
1333 	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1334 	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1335 
1336 	/*
1337 	 * If we're heavy on ordered operations then clamping won't help us.  We
1338 	 * need to clamp specifically to keep up with dirty'ing buffered
1339 	 * writers, because there's not a 1:1 correlation of writing delalloc
1340 	 * and freeing space, like there is with flushing delayed refs or
1341 	 * delayed nodes.  If we're already more ordered than delalloc then
1342 	 * we're keeping up, otherwise we aren't and should probably clamp.
1343 	 */
1344 	if (ordered < delalloc)
1345 		space_info->clamp = min(space_info->clamp + 1, 8);
1346 }
1347 
1348 /**
1349  * Try to reserve bytes from the block_rsv's space
1350  *
1351  * @fs_info:    the filesystem
1352  * @space_info: space info we want to allocate from
1353  * @orig_bytes: number of bytes we want
1354  * @flush:      whether or not we can flush to make our reservation
1355  *
1356  * This will reserve orig_bytes number of bytes from the space info associated
1357  * with the block_rsv.  If there is not enough space it will make an attempt to
1358  * flush out space to make room.  It will do this by flushing delalloc if
1359  * possible or committing the transaction.  If flush is 0 then no attempts to
1360  * regain reservations will be made and this will fail if there is not enough
1361  * space already.
1362  */
1363 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1364 			   struct btrfs_space_info *space_info, u64 orig_bytes,
1365 			   enum btrfs_reserve_flush_enum flush)
1366 {
1367 	struct work_struct *async_work;
1368 	struct reserve_ticket ticket;
1369 	u64 start_ns = 0;
1370 	u64 used;
1371 	int ret = 0;
1372 	bool pending_tickets;
1373 
1374 	ASSERT(orig_bytes);
1375 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1376 
1377 	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1378 		async_work = &fs_info->async_data_reclaim_work;
1379 	else
1380 		async_work = &fs_info->async_reclaim_work;
1381 
1382 	spin_lock(&space_info->lock);
1383 	ret = -ENOSPC;
1384 	used = btrfs_space_info_used(space_info, true);
1385 
1386 	/*
1387 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1388 	 * generally handle ENOSPC in a different way, so treat them the same as
1389 	 * normal flushers when it comes to skipping pending tickets.
1390 	 */
1391 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1392 		pending_tickets = !list_empty(&space_info->tickets) ||
1393 			!list_empty(&space_info->priority_tickets);
1394 	else
1395 		pending_tickets = !list_empty(&space_info->priority_tickets);
1396 
1397 	/*
1398 	 * Carry on if we have enough space (short-circuit) OR call
1399 	 * can_overcommit() to ensure we can overcommit to continue.
1400 	 */
1401 	if (!pending_tickets &&
1402 	    ((used + orig_bytes <= space_info->total_bytes) ||
1403 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1404 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1405 						      orig_bytes);
1406 		ret = 0;
1407 	}
1408 
1409 	/*
1410 	 * If we couldn't make a reservation then setup our reservation ticket
1411 	 * and kick the async worker if it's not already running.
1412 	 *
1413 	 * If we are a priority flusher then we just need to add our ticket to
1414 	 * the list and we will do our own flushing further down.
1415 	 */
1416 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1417 		ticket.bytes = orig_bytes;
1418 		ticket.error = 0;
1419 		space_info->reclaim_size += ticket.bytes;
1420 		init_waitqueue_head(&ticket.wait);
1421 		ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1422 		if (trace_btrfs_reserve_ticket_enabled())
1423 			start_ns = ktime_get_ns();
1424 
1425 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1426 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1427 		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1428 			list_add_tail(&ticket.list, &space_info->tickets);
1429 			if (!space_info->flush) {
1430 				/*
1431 				 * We were forced to add a reserve ticket, so
1432 				 * our preemptive flushing is unable to keep
1433 				 * up.  Clamp down on the threshold for the
1434 				 * preemptive flushing in order to keep up with
1435 				 * the workload.
1436 				 */
1437 				maybe_clamp_preempt(fs_info, space_info);
1438 
1439 				space_info->flush = 1;
1440 				trace_btrfs_trigger_flush(fs_info,
1441 							  space_info->flags,
1442 							  orig_bytes, flush,
1443 							  "enospc");
1444 				queue_work(system_unbound_wq, async_work);
1445 			}
1446 		} else {
1447 			list_add_tail(&ticket.list,
1448 				      &space_info->priority_tickets);
1449 		}
1450 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1451 		used += orig_bytes;
1452 		/*
1453 		 * We will do the space reservation dance during log replay,
1454 		 * which means we won't have fs_info->fs_root set, so don't do
1455 		 * the async reclaim as we will panic.
1456 		 */
1457 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1458 		    !work_busy(&fs_info->preempt_reclaim_work) &&
1459 		    need_preemptive_reclaim(fs_info, space_info)) {
1460 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1461 						  orig_bytes, flush, "preempt");
1462 			queue_work(system_unbound_wq,
1463 				   &fs_info->preempt_reclaim_work);
1464 		}
1465 	}
1466 	spin_unlock(&space_info->lock);
1467 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1468 		return ret;
1469 
1470 	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1471 				     orig_bytes, flush);
1472 }
1473 
1474 /**
1475  * Trye to reserve metadata bytes from the block_rsv's space
1476  *
1477  * @root:       the root we're allocating for
1478  * @block_rsv:  block_rsv we're allocating for
1479  * @orig_bytes: number of bytes we want
1480  * @flush:      whether or not we can flush to make our reservation
1481  *
1482  * This will reserve orig_bytes number of bytes from the space info associated
1483  * with the block_rsv.  If there is not enough space it will make an attempt to
1484  * flush out space to make room.  It will do this by flushing delalloc if
1485  * possible or committing the transaction.  If flush is 0 then no attempts to
1486  * regain reservations will be made and this will fail if there is not enough
1487  * space already.
1488  */
1489 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1490 				 struct btrfs_block_rsv *block_rsv,
1491 				 u64 orig_bytes,
1492 				 enum btrfs_reserve_flush_enum flush)
1493 {
1494 	struct btrfs_fs_info *fs_info = root->fs_info;
1495 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1496 	int ret;
1497 
1498 	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1499 	if (ret == -ENOSPC &&
1500 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1501 		if (block_rsv != global_rsv &&
1502 		    !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1503 			ret = 0;
1504 	}
1505 	if (ret == -ENOSPC) {
1506 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1507 					      block_rsv->space_info->flags,
1508 					      orig_bytes, 1);
1509 
1510 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1511 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1512 					      orig_bytes, 0);
1513 	}
1514 	return ret;
1515 }
1516 
1517 /**
1518  * Try to reserve data bytes for an allocation
1519  *
1520  * @fs_info: the filesystem
1521  * @bytes:   number of bytes we need
1522  * @flush:   how we are allowed to flush
1523  *
1524  * This will reserve bytes from the data space info.  If there is not enough
1525  * space then we will attempt to flush space as specified by flush.
1526  */
1527 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1528 			     enum btrfs_reserve_flush_enum flush)
1529 {
1530 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1531 	int ret;
1532 
1533 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1534 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1535 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1536 
1537 	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1538 	if (ret == -ENOSPC) {
1539 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1540 					      data_sinfo->flags, bytes, 1);
1541 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1542 			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1543 	}
1544 	return ret;
1545 }
1546