xref: /openbmc/linux/fs/btrfs/space-info.c (revision e2f13b34)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 #include "zoned.h"
13 #include "fs.h"
14 #include "accessors.h"
15 
16 /*
17  * HOW DOES SPACE RESERVATION WORK
18  *
19  * If you want to know about delalloc specifically, there is a separate comment
20  * for that with the delalloc code.  This comment is about how the whole system
21  * works generally.
22  *
23  * BASIC CONCEPTS
24  *
25  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
26  *   There's a description of the bytes_ fields with the struct declaration,
27  *   refer to that for specifics on each field.  Suffice it to say that for
28  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
29  *   determining if there is space to make an allocation.  There is a space_info
30  *   for METADATA, SYSTEM, and DATA areas.
31  *
32  *   2) block_rsv's.  These are basically buckets for every different type of
33  *   metadata reservation we have.  You can see the comment in the block_rsv
34  *   code on the rules for each type, but generally block_rsv->reserved is how
35  *   much space is accounted for in space_info->bytes_may_use.
36  *
37  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
38  *   on the number of items we will want to modify.  We have one for changing
39  *   items, and one for inserting new items.  Generally we use these helpers to
40  *   determine the size of the block reserves, and then use the actual bytes
41  *   values to adjust the space_info counters.
42  *
43  * MAKING RESERVATIONS, THE NORMAL CASE
44  *
45  *   We call into either btrfs_reserve_data_bytes() or
46  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
47  *   num_bytes we want to reserve.
48  *
49  *   ->reserve
50  *     space_info->bytes_may_reserve += num_bytes
51  *
52  *   ->extent allocation
53  *     Call btrfs_add_reserved_bytes() which does
54  *     space_info->bytes_may_reserve -= num_bytes
55  *     space_info->bytes_reserved += extent_bytes
56  *
57  *   ->insert reference
58  *     Call btrfs_update_block_group() which does
59  *     space_info->bytes_reserved -= extent_bytes
60  *     space_info->bytes_used += extent_bytes
61  *
62  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
63  *
64  *   Assume we are unable to simply make the reservation because we do not have
65  *   enough space
66  *
67  *   -> __reserve_bytes
68  *     create a reserve_ticket with ->bytes set to our reservation, add it to
69  *     the tail of space_info->tickets, kick async flush thread
70  *
71  *   ->handle_reserve_ticket
72  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
73  *     on the ticket.
74  *
75  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
76  *     Flushes various things attempting to free up space.
77  *
78  *   -> btrfs_try_granting_tickets()
79  *     This is called by anything that either subtracts space from
80  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
81  *     space_info->total_bytes.  This loops through the ->priority_tickets and
82  *     then the ->tickets list checking to see if the reservation can be
83  *     completed.  If it can the space is added to space_info->bytes_may_use and
84  *     the ticket is woken up.
85  *
86  *   -> ticket wakeup
87  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
88  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
89  *     were interrupted.)
90  *
91  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
92  *
93  *   Same as the above, except we add ourselves to the
94  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
95  *   call flush_space() ourselves for the states that are safe for us to call
96  *   without deadlocking and hope for the best.
97  *
98  * THE FLUSHING STATES
99  *
100  *   Generally speaking we will have two cases for each state, a "nice" state
101  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
102  *   reduce the locking over head on the various trees, and even to keep from
103  *   doing any work at all in the case of delayed refs.  Each of these delayed
104  *   things however hold reservations, and so letting them run allows us to
105  *   reclaim space so we can make new reservations.
106  *
107  *   FLUSH_DELAYED_ITEMS
108  *     Every inode has a delayed item to update the inode.  Take a simple write
109  *     for example, we would update the inode item at write time to update the
110  *     mtime, and then again at finish_ordered_io() time in order to update the
111  *     isize or bytes.  We keep these delayed items to coalesce these operations
112  *     into a single operation done on demand.  These are an easy way to reclaim
113  *     metadata space.
114  *
115  *   FLUSH_DELALLOC
116  *     Look at the delalloc comment to get an idea of how much space is reserved
117  *     for delayed allocation.  We can reclaim some of this space simply by
118  *     running delalloc, but usually we need to wait for ordered extents to
119  *     reclaim the bulk of this space.
120  *
121  *   FLUSH_DELAYED_REFS
122  *     We have a block reserve for the outstanding delayed refs space, and every
123  *     delayed ref operation holds a reservation.  Running these is a quick way
124  *     to reclaim space, but we want to hold this until the end because COW can
125  *     churn a lot and we can avoid making some extent tree modifications if we
126  *     are able to delay for as long as possible.
127  *
128  *   ALLOC_CHUNK
129  *     We will skip this the first time through space reservation, because of
130  *     overcommit and we don't want to have a lot of useless metadata space when
131  *     our worst case reservations will likely never come true.
132  *
133  *   RUN_DELAYED_IPUTS
134  *     If we're freeing inodes we're likely freeing checksums, file extent
135  *     items, and extent tree items.  Loads of space could be freed up by these
136  *     operations, however they won't be usable until the transaction commits.
137  *
138  *   COMMIT_TRANS
139  *     This will commit the transaction.  Historically we had a lot of logic
140  *     surrounding whether or not we'd commit the transaction, but this waits born
141  *     out of a pre-tickets era where we could end up committing the transaction
142  *     thousands of times in a row without making progress.  Now thanks to our
143  *     ticketing system we know if we're not making progress and can error
144  *     everybody out after a few commits rather than burning the disk hoping for
145  *     a different answer.
146  *
147  * OVERCOMMIT
148  *
149  *   Because we hold so many reservations for metadata we will allow you to
150  *   reserve more space than is currently free in the currently allocate
151  *   metadata space.  This only happens with metadata, data does not allow
152  *   overcommitting.
153  *
154  *   You can see the current logic for when we allow overcommit in
155  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
156  *   is no unallocated space to be had, all reservations are kept within the
157  *   free space in the allocated metadata chunks.
158  *
159  *   Because of overcommitting, you generally want to use the
160  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
161  *   thing with or without extra unallocated space.
162  */
163 
164 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
165 			  bool may_use_included)
166 {
167 	ASSERT(s_info);
168 	return s_info->bytes_used + s_info->bytes_reserved +
169 		s_info->bytes_pinned + s_info->bytes_readonly +
170 		s_info->bytes_zone_unusable +
171 		(may_use_included ? s_info->bytes_may_use : 0);
172 }
173 
174 /*
175  * after adding space to the filesystem, we need to clear the full flags
176  * on all the space infos.
177  */
178 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
179 {
180 	struct list_head *head = &info->space_info;
181 	struct btrfs_space_info *found;
182 
183 	list_for_each_entry(found, head, list)
184 		found->full = 0;
185 }
186 
187 /*
188  * Block groups with more than this value (percents) of unusable space will be
189  * scheduled for background reclaim.
190  */
191 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH			(75)
192 
193 /*
194  * Calculate chunk size depending on volume type (regular or zoned).
195  */
196 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
197 {
198 	if (btrfs_is_zoned(fs_info))
199 		return fs_info->zone_size;
200 
201 	ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
202 
203 	if (flags & BTRFS_BLOCK_GROUP_DATA)
204 		return BTRFS_MAX_DATA_CHUNK_SIZE;
205 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
206 		return SZ_32M;
207 
208 	/* Handle BTRFS_BLOCK_GROUP_METADATA */
209 	if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
210 		return SZ_1G;
211 
212 	return SZ_256M;
213 }
214 
215 /*
216  * Update default chunk size.
217  */
218 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
219 					u64 chunk_size)
220 {
221 	WRITE_ONCE(space_info->chunk_size, chunk_size);
222 }
223 
224 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
225 {
226 
227 	struct btrfs_space_info *space_info;
228 	int i;
229 	int ret;
230 
231 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
232 	if (!space_info)
233 		return -ENOMEM;
234 
235 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
236 		INIT_LIST_HEAD(&space_info->block_groups[i]);
237 	init_rwsem(&space_info->groups_sem);
238 	spin_lock_init(&space_info->lock);
239 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
240 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
241 	INIT_LIST_HEAD(&space_info->ro_bgs);
242 	INIT_LIST_HEAD(&space_info->tickets);
243 	INIT_LIST_HEAD(&space_info->priority_tickets);
244 	space_info->clamp = 1;
245 	btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
246 
247 	if (btrfs_is_zoned(info))
248 		space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
249 
250 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
251 	if (ret)
252 		return ret;
253 
254 	list_add(&space_info->list, &info->space_info);
255 	if (flags & BTRFS_BLOCK_GROUP_DATA)
256 		info->data_sinfo = space_info;
257 
258 	return ret;
259 }
260 
261 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
262 {
263 	struct btrfs_super_block *disk_super;
264 	u64 features;
265 	u64 flags;
266 	int mixed = 0;
267 	int ret;
268 
269 	disk_super = fs_info->super_copy;
270 	if (!btrfs_super_root(disk_super))
271 		return -EINVAL;
272 
273 	features = btrfs_super_incompat_flags(disk_super);
274 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
275 		mixed = 1;
276 
277 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
278 	ret = create_space_info(fs_info, flags);
279 	if (ret)
280 		goto out;
281 
282 	if (mixed) {
283 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
284 		ret = create_space_info(fs_info, flags);
285 	} else {
286 		flags = BTRFS_BLOCK_GROUP_METADATA;
287 		ret = create_space_info(fs_info, flags);
288 		if (ret)
289 			goto out;
290 
291 		flags = BTRFS_BLOCK_GROUP_DATA;
292 		ret = create_space_info(fs_info, flags);
293 	}
294 out:
295 	return ret;
296 }
297 
298 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
299 				struct btrfs_block_group *block_group)
300 {
301 	struct btrfs_space_info *found;
302 	int factor, index;
303 
304 	factor = btrfs_bg_type_to_factor(block_group->flags);
305 
306 	found = btrfs_find_space_info(info, block_group->flags);
307 	ASSERT(found);
308 	spin_lock(&found->lock);
309 	found->total_bytes += block_group->length;
310 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
311 		found->active_total_bytes += block_group->length;
312 	found->disk_total += block_group->length * factor;
313 	found->bytes_used += block_group->used;
314 	found->disk_used += block_group->used * factor;
315 	found->bytes_readonly += block_group->bytes_super;
316 	found->bytes_zone_unusable += block_group->zone_unusable;
317 	if (block_group->length > 0)
318 		found->full = 0;
319 	btrfs_try_granting_tickets(info, found);
320 	spin_unlock(&found->lock);
321 
322 	block_group->space_info = found;
323 
324 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
325 	down_write(&found->groups_sem);
326 	list_add_tail(&block_group->list, &found->block_groups[index]);
327 	up_write(&found->groups_sem);
328 }
329 
330 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
331 					       u64 flags)
332 {
333 	struct list_head *head = &info->space_info;
334 	struct btrfs_space_info *found;
335 
336 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
337 
338 	list_for_each_entry(found, head, list) {
339 		if (found->flags & flags)
340 			return found;
341 	}
342 	return NULL;
343 }
344 
345 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
346 			  struct btrfs_space_info *space_info,
347 			  enum btrfs_reserve_flush_enum flush)
348 {
349 	u64 profile;
350 	u64 avail;
351 	int factor;
352 
353 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
354 		profile = btrfs_system_alloc_profile(fs_info);
355 	else
356 		profile = btrfs_metadata_alloc_profile(fs_info);
357 
358 	avail = atomic64_read(&fs_info->free_chunk_space);
359 
360 	/*
361 	 * If we have dup, raid1 or raid10 then only half of the free
362 	 * space is actually usable.  For raid56, the space info used
363 	 * doesn't include the parity drive, so we don't have to
364 	 * change the math
365 	 */
366 	factor = btrfs_bg_type_to_factor(profile);
367 	avail = div_u64(avail, factor);
368 
369 	/*
370 	 * If we aren't flushing all things, let us overcommit up to
371 	 * 1/2th of the space. If we can flush, don't let us overcommit
372 	 * too much, let it overcommit up to 1/8 of the space.
373 	 */
374 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
375 		avail >>= 3;
376 	else
377 		avail >>= 1;
378 	return avail;
379 }
380 
381 static inline u64 writable_total_bytes(struct btrfs_fs_info *fs_info,
382 				       struct btrfs_space_info *space_info)
383 {
384 	/*
385 	 * On regular filesystem, all total_bytes are always writable. On zoned
386 	 * filesystem, there may be a limitation imposed by max_active_zones.
387 	 * For metadata allocation, we cannot finish an existing active block
388 	 * group to avoid a deadlock. Thus, we need to consider only the active
389 	 * groups to be writable for metadata space.
390 	 */
391 	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
392 		return space_info->total_bytes;
393 
394 	return space_info->active_total_bytes;
395 }
396 
397 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
398 			 struct btrfs_space_info *space_info, u64 bytes,
399 			 enum btrfs_reserve_flush_enum flush)
400 {
401 	u64 avail;
402 	u64 used;
403 
404 	/* Don't overcommit when in mixed mode */
405 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
406 		return 0;
407 
408 	used = btrfs_space_info_used(space_info, true);
409 	if (btrfs_is_zoned(fs_info) && (space_info->flags & BTRFS_BLOCK_GROUP_METADATA))
410 		avail = 0;
411 	else
412 		avail = calc_available_free_space(fs_info, space_info, flush);
413 
414 	if (used + bytes < writable_total_bytes(fs_info, space_info) + avail)
415 		return 1;
416 	return 0;
417 }
418 
419 static void remove_ticket(struct btrfs_space_info *space_info,
420 			  struct reserve_ticket *ticket)
421 {
422 	if (!list_empty(&ticket->list)) {
423 		list_del_init(&ticket->list);
424 		ASSERT(space_info->reclaim_size >= ticket->bytes);
425 		space_info->reclaim_size -= ticket->bytes;
426 	}
427 }
428 
429 /*
430  * This is for space we already have accounted in space_info->bytes_may_use, so
431  * basically when we're returning space from block_rsv's.
432  */
433 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
434 				struct btrfs_space_info *space_info)
435 {
436 	struct list_head *head;
437 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
438 
439 	lockdep_assert_held(&space_info->lock);
440 
441 	head = &space_info->priority_tickets;
442 again:
443 	while (!list_empty(head)) {
444 		struct reserve_ticket *ticket;
445 		u64 used = btrfs_space_info_used(space_info, true);
446 
447 		ticket = list_first_entry(head, struct reserve_ticket, list);
448 
449 		/* Check and see if our ticket can be satisfied now. */
450 		if ((used + ticket->bytes <= writable_total_bytes(fs_info, space_info)) ||
451 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
452 					 flush)) {
453 			btrfs_space_info_update_bytes_may_use(fs_info,
454 							      space_info,
455 							      ticket->bytes);
456 			remove_ticket(space_info, ticket);
457 			ticket->bytes = 0;
458 			space_info->tickets_id++;
459 			wake_up(&ticket->wait);
460 		} else {
461 			break;
462 		}
463 	}
464 
465 	if (head == &space_info->priority_tickets) {
466 		head = &space_info->tickets;
467 		flush = BTRFS_RESERVE_FLUSH_ALL;
468 		goto again;
469 	}
470 }
471 
472 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
473 do {									\
474 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
475 	spin_lock(&__rsv->lock);					\
476 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
477 		   __rsv->size, __rsv->reserved);			\
478 	spin_unlock(&__rsv->lock);					\
479 } while (0)
480 
481 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
482 {
483 	switch (space_info->flags) {
484 	case BTRFS_BLOCK_GROUP_SYSTEM:
485 		return "SYSTEM";
486 	case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
487 		return "DATA+METADATA";
488 	case BTRFS_BLOCK_GROUP_DATA:
489 		return "DATA";
490 	case BTRFS_BLOCK_GROUP_METADATA:
491 		return "METADATA";
492 	default:
493 		return "UNKNOWN";
494 	}
495 }
496 
497 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
498 {
499 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
500 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
501 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
502 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
503 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
504 }
505 
506 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
507 				    struct btrfs_space_info *info)
508 {
509 	const char *flag_str = space_info_flag_to_str(info);
510 	lockdep_assert_held(&info->lock);
511 
512 	/* The free space could be negative in case of overcommit */
513 	btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
514 		   flag_str,
515 		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
516 		   info->full ? "" : "not ");
517 	btrfs_info(fs_info,
518 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
519 		info->total_bytes, info->bytes_used, info->bytes_pinned,
520 		info->bytes_reserved, info->bytes_may_use,
521 		info->bytes_readonly, info->bytes_zone_unusable);
522 }
523 
524 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
525 			   struct btrfs_space_info *info, u64 bytes,
526 			   int dump_block_groups)
527 {
528 	struct btrfs_block_group *cache;
529 	int index = 0;
530 
531 	spin_lock(&info->lock);
532 	__btrfs_dump_space_info(fs_info, info);
533 	dump_global_block_rsv(fs_info);
534 	spin_unlock(&info->lock);
535 
536 	if (!dump_block_groups)
537 		return;
538 
539 	down_read(&info->groups_sem);
540 again:
541 	list_for_each_entry(cache, &info->block_groups[index], list) {
542 		spin_lock(&cache->lock);
543 		btrfs_info(fs_info,
544 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
545 			cache->start, cache->length, cache->used, cache->pinned,
546 			cache->reserved, cache->zone_unusable,
547 			cache->ro ? "[readonly]" : "");
548 		spin_unlock(&cache->lock);
549 		btrfs_dump_free_space(cache, bytes);
550 	}
551 	if (++index < BTRFS_NR_RAID_TYPES)
552 		goto again;
553 	up_read(&info->groups_sem);
554 }
555 
556 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
557 					u64 to_reclaim)
558 {
559 	u64 bytes;
560 	u64 nr;
561 
562 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
563 	nr = div64_u64(to_reclaim, bytes);
564 	if (!nr)
565 		nr = 1;
566 	return nr;
567 }
568 
569 #define EXTENT_SIZE_PER_ITEM	SZ_256K
570 
571 /*
572  * shrink metadata reservation for delalloc
573  */
574 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
575 			    struct btrfs_space_info *space_info,
576 			    u64 to_reclaim, bool wait_ordered,
577 			    bool for_preempt)
578 {
579 	struct btrfs_trans_handle *trans;
580 	u64 delalloc_bytes;
581 	u64 ordered_bytes;
582 	u64 items;
583 	long time_left;
584 	int loops;
585 
586 	delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
587 	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
588 	if (delalloc_bytes == 0 && ordered_bytes == 0)
589 		return;
590 
591 	/* Calc the number of the pages we need flush for space reservation */
592 	if (to_reclaim == U64_MAX) {
593 		items = U64_MAX;
594 	} else {
595 		/*
596 		 * to_reclaim is set to however much metadata we need to
597 		 * reclaim, but reclaiming that much data doesn't really track
598 		 * exactly.  What we really want to do is reclaim full inode's
599 		 * worth of reservations, however that's not available to us
600 		 * here.  We will take a fraction of the delalloc bytes for our
601 		 * flushing loops and hope for the best.  Delalloc will expand
602 		 * the amount we write to cover an entire dirty extent, which
603 		 * will reclaim the metadata reservation for that range.  If
604 		 * it's not enough subsequent flush stages will be more
605 		 * aggressive.
606 		 */
607 		to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
608 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
609 	}
610 
611 	trans = current->journal_info;
612 
613 	/*
614 	 * If we are doing more ordered than delalloc we need to just wait on
615 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
616 	 * that likely won't give us the space back we need.
617 	 */
618 	if (ordered_bytes > delalloc_bytes && !for_preempt)
619 		wait_ordered = true;
620 
621 	loops = 0;
622 	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
623 		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
624 		long nr_pages = min_t(u64, temp, LONG_MAX);
625 		int async_pages;
626 
627 		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
628 
629 		/*
630 		 * We need to make sure any outstanding async pages are now
631 		 * processed before we continue.  This is because things like
632 		 * sync_inode() try to be smart and skip writing if the inode is
633 		 * marked clean.  We don't use filemap_fwrite for flushing
634 		 * because we want to control how many pages we write out at a
635 		 * time, thus this is the only safe way to make sure we've
636 		 * waited for outstanding compressed workers to have started
637 		 * their jobs and thus have ordered extents set up properly.
638 		 *
639 		 * This exists because we do not want to wait for each
640 		 * individual inode to finish its async work, we simply want to
641 		 * start the IO on everybody, and then come back here and wait
642 		 * for all of the async work to catch up.  Once we're done with
643 		 * that we know we'll have ordered extents for everything and we
644 		 * can decide if we wait for that or not.
645 		 *
646 		 * If we choose to replace this in the future, make absolutely
647 		 * sure that the proper waiting is being done in the async case,
648 		 * as there have been bugs in that area before.
649 		 */
650 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
651 		if (!async_pages)
652 			goto skip_async;
653 
654 		/*
655 		 * We don't want to wait forever, if we wrote less pages in this
656 		 * loop than we have outstanding, only wait for that number of
657 		 * pages, otherwise we can wait for all async pages to finish
658 		 * before continuing.
659 		 */
660 		if (async_pages > nr_pages)
661 			async_pages -= nr_pages;
662 		else
663 			async_pages = 0;
664 		wait_event(fs_info->async_submit_wait,
665 			   atomic_read(&fs_info->async_delalloc_pages) <=
666 			   async_pages);
667 skip_async:
668 		loops++;
669 		if (wait_ordered && !trans) {
670 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
671 		} else {
672 			time_left = schedule_timeout_killable(1);
673 			if (time_left)
674 				break;
675 		}
676 
677 		/*
678 		 * If we are for preemption we just want a one-shot of delalloc
679 		 * flushing so we can stop flushing if we decide we don't need
680 		 * to anymore.
681 		 */
682 		if (for_preempt)
683 			break;
684 
685 		spin_lock(&space_info->lock);
686 		if (list_empty(&space_info->tickets) &&
687 		    list_empty(&space_info->priority_tickets)) {
688 			spin_unlock(&space_info->lock);
689 			break;
690 		}
691 		spin_unlock(&space_info->lock);
692 
693 		delalloc_bytes = percpu_counter_sum_positive(
694 						&fs_info->delalloc_bytes);
695 		ordered_bytes = percpu_counter_sum_positive(
696 						&fs_info->ordered_bytes);
697 	}
698 }
699 
700 /*
701  * Try to flush some data based on policy set by @state. This is only advisory
702  * and may fail for various reasons. The caller is supposed to examine the
703  * state of @space_info to detect the outcome.
704  */
705 static void flush_space(struct btrfs_fs_info *fs_info,
706 		       struct btrfs_space_info *space_info, u64 num_bytes,
707 		       enum btrfs_flush_state state, bool for_preempt)
708 {
709 	struct btrfs_root *root = fs_info->tree_root;
710 	struct btrfs_trans_handle *trans;
711 	int nr;
712 	int ret = 0;
713 
714 	switch (state) {
715 	case FLUSH_DELAYED_ITEMS_NR:
716 	case FLUSH_DELAYED_ITEMS:
717 		if (state == FLUSH_DELAYED_ITEMS_NR)
718 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
719 		else
720 			nr = -1;
721 
722 		trans = btrfs_join_transaction(root);
723 		if (IS_ERR(trans)) {
724 			ret = PTR_ERR(trans);
725 			break;
726 		}
727 		ret = btrfs_run_delayed_items_nr(trans, nr);
728 		btrfs_end_transaction(trans);
729 		break;
730 	case FLUSH_DELALLOC:
731 	case FLUSH_DELALLOC_WAIT:
732 	case FLUSH_DELALLOC_FULL:
733 		if (state == FLUSH_DELALLOC_FULL)
734 			num_bytes = U64_MAX;
735 		shrink_delalloc(fs_info, space_info, num_bytes,
736 				state != FLUSH_DELALLOC, for_preempt);
737 		break;
738 	case FLUSH_DELAYED_REFS_NR:
739 	case FLUSH_DELAYED_REFS:
740 		trans = btrfs_join_transaction(root);
741 		if (IS_ERR(trans)) {
742 			ret = PTR_ERR(trans);
743 			break;
744 		}
745 		if (state == FLUSH_DELAYED_REFS_NR)
746 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
747 		else
748 			nr = 0;
749 		btrfs_run_delayed_refs(trans, nr);
750 		btrfs_end_transaction(trans);
751 		break;
752 	case ALLOC_CHUNK:
753 	case ALLOC_CHUNK_FORCE:
754 		/*
755 		 * For metadata space on zoned filesystem, reaching here means we
756 		 * don't have enough space left in active_total_bytes. Try to
757 		 * activate a block group first, because we may have inactive
758 		 * block group already allocated.
759 		 */
760 		ret = btrfs_zoned_activate_one_bg(fs_info, space_info, false);
761 		if (ret < 0)
762 			break;
763 		else if (ret == 1)
764 			break;
765 
766 		trans = btrfs_join_transaction(root);
767 		if (IS_ERR(trans)) {
768 			ret = PTR_ERR(trans);
769 			break;
770 		}
771 		ret = btrfs_chunk_alloc(trans,
772 				btrfs_get_alloc_profile(fs_info, space_info->flags),
773 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
774 					CHUNK_ALLOC_FORCE);
775 		btrfs_end_transaction(trans);
776 
777 		/*
778 		 * For metadata space on zoned filesystem, allocating a new chunk
779 		 * is not enough. We still need to activate the block * group.
780 		 * Active the newly allocated block group by (maybe) finishing
781 		 * a block group.
782 		 */
783 		if (ret == 1) {
784 			ret = btrfs_zoned_activate_one_bg(fs_info, space_info, true);
785 			/*
786 			 * Revert to the original ret regardless we could finish
787 			 * one block group or not.
788 			 */
789 			if (ret >= 0)
790 				ret = 1;
791 		}
792 
793 		if (ret > 0 || ret == -ENOSPC)
794 			ret = 0;
795 		break;
796 	case RUN_DELAYED_IPUTS:
797 		/*
798 		 * If we have pending delayed iputs then we could free up a
799 		 * bunch of pinned space, so make sure we run the iputs before
800 		 * we do our pinned bytes check below.
801 		 */
802 		btrfs_run_delayed_iputs(fs_info);
803 		btrfs_wait_on_delayed_iputs(fs_info);
804 		break;
805 	case COMMIT_TRANS:
806 		ASSERT(current->journal_info == NULL);
807 		trans = btrfs_join_transaction(root);
808 		if (IS_ERR(trans)) {
809 			ret = PTR_ERR(trans);
810 			break;
811 		}
812 		ret = btrfs_commit_transaction(trans);
813 		break;
814 	default:
815 		ret = -ENOSPC;
816 		break;
817 	}
818 
819 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
820 				ret, for_preempt);
821 	return;
822 }
823 
824 static inline u64
825 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
826 				 struct btrfs_space_info *space_info)
827 {
828 	u64 used;
829 	u64 avail;
830 	u64 total;
831 	u64 to_reclaim = space_info->reclaim_size;
832 
833 	lockdep_assert_held(&space_info->lock);
834 
835 	avail = calc_available_free_space(fs_info, space_info,
836 					  BTRFS_RESERVE_FLUSH_ALL);
837 	used = btrfs_space_info_used(space_info, true);
838 
839 	/*
840 	 * We may be flushing because suddenly we have less space than we had
841 	 * before, and now we're well over-committed based on our current free
842 	 * space.  If that's the case add in our overage so we make sure to put
843 	 * appropriate pressure on the flushing state machine.
844 	 */
845 	total = writable_total_bytes(fs_info, space_info);
846 	if (total + avail < used)
847 		to_reclaim += used - (total + avail);
848 
849 	return to_reclaim;
850 }
851 
852 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
853 				    struct btrfs_space_info *space_info)
854 {
855 	u64 global_rsv_size = fs_info->global_block_rsv.reserved;
856 	u64 ordered, delalloc;
857 	u64 total = writable_total_bytes(fs_info, space_info);
858 	u64 thresh;
859 	u64 used;
860 
861 	thresh = div_factor_fine(total, 90);
862 
863 	lockdep_assert_held(&space_info->lock);
864 
865 	/* If we're just plain full then async reclaim just slows us down. */
866 	if ((space_info->bytes_used + space_info->bytes_reserved +
867 	     global_rsv_size) >= thresh)
868 		return false;
869 
870 	used = space_info->bytes_may_use + space_info->bytes_pinned;
871 
872 	/* The total flushable belongs to the global rsv, don't flush. */
873 	if (global_rsv_size >= used)
874 		return false;
875 
876 	/*
877 	 * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
878 	 * that devoted to other reservations then there's no sense in flushing,
879 	 * we don't have a lot of things that need flushing.
880 	 */
881 	if (used - global_rsv_size <= SZ_128M)
882 		return false;
883 
884 	/*
885 	 * We have tickets queued, bail so we don't compete with the async
886 	 * flushers.
887 	 */
888 	if (space_info->reclaim_size)
889 		return false;
890 
891 	/*
892 	 * If we have over half of the free space occupied by reservations or
893 	 * pinned then we want to start flushing.
894 	 *
895 	 * We do not do the traditional thing here, which is to say
896 	 *
897 	 *   if (used >= ((total_bytes + avail) / 2))
898 	 *     return 1;
899 	 *
900 	 * because this doesn't quite work how we want.  If we had more than 50%
901 	 * of the space_info used by bytes_used and we had 0 available we'd just
902 	 * constantly run the background flusher.  Instead we want it to kick in
903 	 * if our reclaimable space exceeds our clamped free space.
904 	 *
905 	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
906 	 * the following:
907 	 *
908 	 * Amount of RAM        Minimum threshold       Maximum threshold
909 	 *
910 	 *        256GiB                     1GiB                  128GiB
911 	 *        128GiB                   512MiB                   64GiB
912 	 *         64GiB                   256MiB                   32GiB
913 	 *         32GiB                   128MiB                   16GiB
914 	 *         16GiB                    64MiB                    8GiB
915 	 *
916 	 * These are the range our thresholds will fall in, corresponding to how
917 	 * much delalloc we need for the background flusher to kick in.
918 	 */
919 
920 	thresh = calc_available_free_space(fs_info, space_info,
921 					   BTRFS_RESERVE_FLUSH_ALL);
922 	used = space_info->bytes_used + space_info->bytes_reserved +
923 	       space_info->bytes_readonly + global_rsv_size;
924 	if (used < total)
925 		thresh += total - used;
926 	thresh >>= space_info->clamp;
927 
928 	used = space_info->bytes_pinned;
929 
930 	/*
931 	 * If we have more ordered bytes than delalloc bytes then we're either
932 	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
933 	 * around.  Preemptive flushing is only useful in that it can free up
934 	 * space before tickets need to wait for things to finish.  In the case
935 	 * of ordered extents, preemptively waiting on ordered extents gets us
936 	 * nothing, if our reservations are tied up in ordered extents we'll
937 	 * simply have to slow down writers by forcing them to wait on ordered
938 	 * extents.
939 	 *
940 	 * In the case that ordered is larger than delalloc, only include the
941 	 * block reserves that we would actually be able to directly reclaim
942 	 * from.  In this case if we're heavy on metadata operations this will
943 	 * clearly be heavy enough to warrant preemptive flushing.  In the case
944 	 * of heavy DIO or ordered reservations, preemptive flushing will just
945 	 * waste time and cause us to slow down.
946 	 *
947 	 * We want to make sure we truly are maxed out on ordered however, so
948 	 * cut ordered in half, and if it's still higher than delalloc then we
949 	 * can keep flushing.  This is to avoid the case where we start
950 	 * flushing, and now delalloc == ordered and we stop preemptively
951 	 * flushing when we could still have several gigs of delalloc to flush.
952 	 */
953 	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
954 	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
955 	if (ordered >= delalloc)
956 		used += fs_info->delayed_refs_rsv.reserved +
957 			fs_info->delayed_block_rsv.reserved;
958 	else
959 		used += space_info->bytes_may_use - global_rsv_size;
960 
961 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
962 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
963 }
964 
965 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
966 				  struct btrfs_space_info *space_info,
967 				  struct reserve_ticket *ticket)
968 {
969 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
970 	u64 min_bytes;
971 
972 	if (!ticket->steal)
973 		return false;
974 
975 	if (global_rsv->space_info != space_info)
976 		return false;
977 
978 	spin_lock(&global_rsv->lock);
979 	min_bytes = div_factor(global_rsv->size, 1);
980 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
981 		spin_unlock(&global_rsv->lock);
982 		return false;
983 	}
984 	global_rsv->reserved -= ticket->bytes;
985 	remove_ticket(space_info, ticket);
986 	ticket->bytes = 0;
987 	wake_up(&ticket->wait);
988 	space_info->tickets_id++;
989 	if (global_rsv->reserved < global_rsv->size)
990 		global_rsv->full = 0;
991 	spin_unlock(&global_rsv->lock);
992 
993 	return true;
994 }
995 
996 /*
997  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
998  * @fs_info - fs_info for this fs
999  * @space_info - the space info we were flushing
1000  *
1001  * We call this when we've exhausted our flushing ability and haven't made
1002  * progress in satisfying tickets.  The reservation code handles tickets in
1003  * order, so if there is a large ticket first and then smaller ones we could
1004  * very well satisfy the smaller tickets.  This will attempt to wake up any
1005  * tickets in the list to catch this case.
1006  *
1007  * This function returns true if it was able to make progress by clearing out
1008  * other tickets, or if it stumbles across a ticket that was smaller than the
1009  * first ticket.
1010  */
1011 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1012 				   struct btrfs_space_info *space_info)
1013 {
1014 	struct reserve_ticket *ticket;
1015 	u64 tickets_id = space_info->tickets_id;
1016 	const bool aborted = BTRFS_FS_ERROR(fs_info);
1017 
1018 	trace_btrfs_fail_all_tickets(fs_info, space_info);
1019 
1020 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1021 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1022 		__btrfs_dump_space_info(fs_info, space_info);
1023 	}
1024 
1025 	while (!list_empty(&space_info->tickets) &&
1026 	       tickets_id == space_info->tickets_id) {
1027 		ticket = list_first_entry(&space_info->tickets,
1028 					  struct reserve_ticket, list);
1029 
1030 		if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1031 			return true;
1032 
1033 		if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1034 			btrfs_info(fs_info, "failing ticket with %llu bytes",
1035 				   ticket->bytes);
1036 
1037 		remove_ticket(space_info, ticket);
1038 		if (aborted)
1039 			ticket->error = -EIO;
1040 		else
1041 			ticket->error = -ENOSPC;
1042 		wake_up(&ticket->wait);
1043 
1044 		/*
1045 		 * We're just throwing tickets away, so more flushing may not
1046 		 * trip over btrfs_try_granting_tickets, so we need to call it
1047 		 * here to see if we can make progress with the next ticket in
1048 		 * the list.
1049 		 */
1050 		if (!aborted)
1051 			btrfs_try_granting_tickets(fs_info, space_info);
1052 	}
1053 	return (tickets_id != space_info->tickets_id);
1054 }
1055 
1056 /*
1057  * This is for normal flushers, we can wait all goddamned day if we want to.  We
1058  * will loop and continuously try to flush as long as we are making progress.
1059  * We count progress as clearing off tickets each time we have to loop.
1060  */
1061 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1062 {
1063 	struct btrfs_fs_info *fs_info;
1064 	struct btrfs_space_info *space_info;
1065 	u64 to_reclaim;
1066 	enum btrfs_flush_state flush_state;
1067 	int commit_cycles = 0;
1068 	u64 last_tickets_id;
1069 
1070 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1071 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1072 
1073 	spin_lock(&space_info->lock);
1074 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1075 	if (!to_reclaim) {
1076 		space_info->flush = 0;
1077 		spin_unlock(&space_info->lock);
1078 		return;
1079 	}
1080 	last_tickets_id = space_info->tickets_id;
1081 	spin_unlock(&space_info->lock);
1082 
1083 	flush_state = FLUSH_DELAYED_ITEMS_NR;
1084 	do {
1085 		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1086 		spin_lock(&space_info->lock);
1087 		if (list_empty(&space_info->tickets)) {
1088 			space_info->flush = 0;
1089 			spin_unlock(&space_info->lock);
1090 			return;
1091 		}
1092 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1093 							      space_info);
1094 		if (last_tickets_id == space_info->tickets_id) {
1095 			flush_state++;
1096 		} else {
1097 			last_tickets_id = space_info->tickets_id;
1098 			flush_state = FLUSH_DELAYED_ITEMS_NR;
1099 			if (commit_cycles)
1100 				commit_cycles--;
1101 		}
1102 
1103 		/*
1104 		 * We do not want to empty the system of delalloc unless we're
1105 		 * under heavy pressure, so allow one trip through the flushing
1106 		 * logic before we start doing a FLUSH_DELALLOC_FULL.
1107 		 */
1108 		if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1109 			flush_state++;
1110 
1111 		/*
1112 		 * We don't want to force a chunk allocation until we've tried
1113 		 * pretty hard to reclaim space.  Think of the case where we
1114 		 * freed up a bunch of space and so have a lot of pinned space
1115 		 * to reclaim.  We would rather use that than possibly create a
1116 		 * underutilized metadata chunk.  So if this is our first run
1117 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1118 		 * commit the transaction.  If nothing has changed the next go
1119 		 * around then we can force a chunk allocation.
1120 		 */
1121 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1122 			flush_state++;
1123 
1124 		if (flush_state > COMMIT_TRANS) {
1125 			commit_cycles++;
1126 			if (commit_cycles > 2) {
1127 				if (maybe_fail_all_tickets(fs_info, space_info)) {
1128 					flush_state = FLUSH_DELAYED_ITEMS_NR;
1129 					commit_cycles--;
1130 				} else {
1131 					space_info->flush = 0;
1132 				}
1133 			} else {
1134 				flush_state = FLUSH_DELAYED_ITEMS_NR;
1135 			}
1136 		}
1137 		spin_unlock(&space_info->lock);
1138 	} while (flush_state <= COMMIT_TRANS);
1139 }
1140 
1141 /*
1142  * This handles pre-flushing of metadata space before we get to the point that
1143  * we need to start blocking threads on tickets.  The logic here is different
1144  * from the other flush paths because it doesn't rely on tickets to tell us how
1145  * much we need to flush, instead it attempts to keep us below the 80% full
1146  * watermark of space by flushing whichever reservation pool is currently the
1147  * largest.
1148  */
1149 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1150 {
1151 	struct btrfs_fs_info *fs_info;
1152 	struct btrfs_space_info *space_info;
1153 	struct btrfs_block_rsv *delayed_block_rsv;
1154 	struct btrfs_block_rsv *delayed_refs_rsv;
1155 	struct btrfs_block_rsv *global_rsv;
1156 	struct btrfs_block_rsv *trans_rsv;
1157 	int loops = 0;
1158 
1159 	fs_info = container_of(work, struct btrfs_fs_info,
1160 			       preempt_reclaim_work);
1161 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1162 	delayed_block_rsv = &fs_info->delayed_block_rsv;
1163 	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1164 	global_rsv = &fs_info->global_block_rsv;
1165 	trans_rsv = &fs_info->trans_block_rsv;
1166 
1167 	spin_lock(&space_info->lock);
1168 	while (need_preemptive_reclaim(fs_info, space_info)) {
1169 		enum btrfs_flush_state flush;
1170 		u64 delalloc_size = 0;
1171 		u64 to_reclaim, block_rsv_size;
1172 		u64 global_rsv_size = global_rsv->reserved;
1173 
1174 		loops++;
1175 
1176 		/*
1177 		 * We don't have a precise counter for the metadata being
1178 		 * reserved for delalloc, so we'll approximate it by subtracting
1179 		 * out the block rsv's space from the bytes_may_use.  If that
1180 		 * amount is higher than the individual reserves, then we can
1181 		 * assume it's tied up in delalloc reservations.
1182 		 */
1183 		block_rsv_size = global_rsv_size +
1184 			delayed_block_rsv->reserved +
1185 			delayed_refs_rsv->reserved +
1186 			trans_rsv->reserved;
1187 		if (block_rsv_size < space_info->bytes_may_use)
1188 			delalloc_size = space_info->bytes_may_use - block_rsv_size;
1189 
1190 		/*
1191 		 * We don't want to include the global_rsv in our calculation,
1192 		 * because that's space we can't touch.  Subtract it from the
1193 		 * block_rsv_size for the next checks.
1194 		 */
1195 		block_rsv_size -= global_rsv_size;
1196 
1197 		/*
1198 		 * We really want to avoid flushing delalloc too much, as it
1199 		 * could result in poor allocation patterns, so only flush it if
1200 		 * it's larger than the rest of the pools combined.
1201 		 */
1202 		if (delalloc_size > block_rsv_size) {
1203 			to_reclaim = delalloc_size;
1204 			flush = FLUSH_DELALLOC;
1205 		} else if (space_info->bytes_pinned >
1206 			   (delayed_block_rsv->reserved +
1207 			    delayed_refs_rsv->reserved)) {
1208 			to_reclaim = space_info->bytes_pinned;
1209 			flush = COMMIT_TRANS;
1210 		} else if (delayed_block_rsv->reserved >
1211 			   delayed_refs_rsv->reserved) {
1212 			to_reclaim = delayed_block_rsv->reserved;
1213 			flush = FLUSH_DELAYED_ITEMS_NR;
1214 		} else {
1215 			to_reclaim = delayed_refs_rsv->reserved;
1216 			flush = FLUSH_DELAYED_REFS_NR;
1217 		}
1218 
1219 		spin_unlock(&space_info->lock);
1220 
1221 		/*
1222 		 * We don't want to reclaim everything, just a portion, so scale
1223 		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1224 		 * reclaim 1 items worth.
1225 		 */
1226 		to_reclaim >>= 2;
1227 		if (!to_reclaim)
1228 			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1229 		flush_space(fs_info, space_info, to_reclaim, flush, true);
1230 		cond_resched();
1231 		spin_lock(&space_info->lock);
1232 	}
1233 
1234 	/* We only went through once, back off our clamping. */
1235 	if (loops == 1 && !space_info->reclaim_size)
1236 		space_info->clamp = max(1, space_info->clamp - 1);
1237 	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1238 	spin_unlock(&space_info->lock);
1239 }
1240 
1241 /*
1242  * FLUSH_DELALLOC_WAIT:
1243  *   Space is freed from flushing delalloc in one of two ways.
1244  *
1245  *   1) compression is on and we allocate less space than we reserved
1246  *   2) we are overwriting existing space
1247  *
1248  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1249  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1250  *   length to ->bytes_reserved, and subtracts the reserved space from
1251  *   ->bytes_may_use.
1252  *
1253  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1254  *   extent in the range we are overwriting, which creates a delayed ref for
1255  *   that freed extent.  This however is not reclaimed until the transaction
1256  *   commits, thus the next stages.
1257  *
1258  * RUN_DELAYED_IPUTS
1259  *   If we are freeing inodes, we want to make sure all delayed iputs have
1260  *   completed, because they could have been on an inode with i_nlink == 0, and
1261  *   thus have been truncated and freed up space.  But again this space is not
1262  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1263  *   run and then the transaction must be committed.
1264  *
1265  * COMMIT_TRANS
1266  *   This is where we reclaim all of the pinned space generated by running the
1267  *   iputs
1268  *
1269  * ALLOC_CHUNK_FORCE
1270  *   For data we start with alloc chunk force, however we could have been full
1271  *   before, and then the transaction commit could have freed new block groups,
1272  *   so if we now have space to allocate do the force chunk allocation.
1273  */
1274 static const enum btrfs_flush_state data_flush_states[] = {
1275 	FLUSH_DELALLOC_FULL,
1276 	RUN_DELAYED_IPUTS,
1277 	COMMIT_TRANS,
1278 	ALLOC_CHUNK_FORCE,
1279 };
1280 
1281 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1282 {
1283 	struct btrfs_fs_info *fs_info;
1284 	struct btrfs_space_info *space_info;
1285 	u64 last_tickets_id;
1286 	enum btrfs_flush_state flush_state = 0;
1287 
1288 	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1289 	space_info = fs_info->data_sinfo;
1290 
1291 	spin_lock(&space_info->lock);
1292 	if (list_empty(&space_info->tickets)) {
1293 		space_info->flush = 0;
1294 		spin_unlock(&space_info->lock);
1295 		return;
1296 	}
1297 	last_tickets_id = space_info->tickets_id;
1298 	spin_unlock(&space_info->lock);
1299 
1300 	while (!space_info->full) {
1301 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1302 		spin_lock(&space_info->lock);
1303 		if (list_empty(&space_info->tickets)) {
1304 			space_info->flush = 0;
1305 			spin_unlock(&space_info->lock);
1306 			return;
1307 		}
1308 
1309 		/* Something happened, fail everything and bail. */
1310 		if (BTRFS_FS_ERROR(fs_info))
1311 			goto aborted_fs;
1312 		last_tickets_id = space_info->tickets_id;
1313 		spin_unlock(&space_info->lock);
1314 	}
1315 
1316 	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1317 		flush_space(fs_info, space_info, U64_MAX,
1318 			    data_flush_states[flush_state], false);
1319 		spin_lock(&space_info->lock);
1320 		if (list_empty(&space_info->tickets)) {
1321 			space_info->flush = 0;
1322 			spin_unlock(&space_info->lock);
1323 			return;
1324 		}
1325 
1326 		if (last_tickets_id == space_info->tickets_id) {
1327 			flush_state++;
1328 		} else {
1329 			last_tickets_id = space_info->tickets_id;
1330 			flush_state = 0;
1331 		}
1332 
1333 		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1334 			if (space_info->full) {
1335 				if (maybe_fail_all_tickets(fs_info, space_info))
1336 					flush_state = 0;
1337 				else
1338 					space_info->flush = 0;
1339 			} else {
1340 				flush_state = 0;
1341 			}
1342 
1343 			/* Something happened, fail everything and bail. */
1344 			if (BTRFS_FS_ERROR(fs_info))
1345 				goto aborted_fs;
1346 
1347 		}
1348 		spin_unlock(&space_info->lock);
1349 	}
1350 	return;
1351 
1352 aborted_fs:
1353 	maybe_fail_all_tickets(fs_info, space_info);
1354 	space_info->flush = 0;
1355 	spin_unlock(&space_info->lock);
1356 }
1357 
1358 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1359 {
1360 	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1361 	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1362 	INIT_WORK(&fs_info->preempt_reclaim_work,
1363 		  btrfs_preempt_reclaim_metadata_space);
1364 }
1365 
1366 static const enum btrfs_flush_state priority_flush_states[] = {
1367 	FLUSH_DELAYED_ITEMS_NR,
1368 	FLUSH_DELAYED_ITEMS,
1369 	ALLOC_CHUNK,
1370 };
1371 
1372 static const enum btrfs_flush_state evict_flush_states[] = {
1373 	FLUSH_DELAYED_ITEMS_NR,
1374 	FLUSH_DELAYED_ITEMS,
1375 	FLUSH_DELAYED_REFS_NR,
1376 	FLUSH_DELAYED_REFS,
1377 	FLUSH_DELALLOC,
1378 	FLUSH_DELALLOC_WAIT,
1379 	FLUSH_DELALLOC_FULL,
1380 	ALLOC_CHUNK,
1381 	COMMIT_TRANS,
1382 };
1383 
1384 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1385 				struct btrfs_space_info *space_info,
1386 				struct reserve_ticket *ticket,
1387 				const enum btrfs_flush_state *states,
1388 				int states_nr)
1389 {
1390 	u64 to_reclaim;
1391 	int flush_state = 0;
1392 
1393 	spin_lock(&space_info->lock);
1394 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1395 	/*
1396 	 * This is the priority reclaim path, so to_reclaim could be >0 still
1397 	 * because we may have only satisfied the priority tickets and still
1398 	 * left non priority tickets on the list.  We would then have
1399 	 * to_reclaim but ->bytes == 0.
1400 	 */
1401 	if (ticket->bytes == 0) {
1402 		spin_unlock(&space_info->lock);
1403 		return;
1404 	}
1405 
1406 	while (flush_state < states_nr) {
1407 		spin_unlock(&space_info->lock);
1408 		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1409 			    false);
1410 		flush_state++;
1411 		spin_lock(&space_info->lock);
1412 		if (ticket->bytes == 0) {
1413 			spin_unlock(&space_info->lock);
1414 			return;
1415 		}
1416 	}
1417 
1418 	/* Attempt to steal from the global rsv if we can. */
1419 	if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1420 		ticket->error = -ENOSPC;
1421 		remove_ticket(space_info, ticket);
1422 	}
1423 
1424 	/*
1425 	 * We must run try_granting_tickets here because we could be a large
1426 	 * ticket in front of a smaller ticket that can now be satisfied with
1427 	 * the available space.
1428 	 */
1429 	btrfs_try_granting_tickets(fs_info, space_info);
1430 	spin_unlock(&space_info->lock);
1431 }
1432 
1433 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1434 					struct btrfs_space_info *space_info,
1435 					struct reserve_ticket *ticket)
1436 {
1437 	spin_lock(&space_info->lock);
1438 
1439 	/* We could have been granted before we got here. */
1440 	if (ticket->bytes == 0) {
1441 		spin_unlock(&space_info->lock);
1442 		return;
1443 	}
1444 
1445 	while (!space_info->full) {
1446 		spin_unlock(&space_info->lock);
1447 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1448 		spin_lock(&space_info->lock);
1449 		if (ticket->bytes == 0) {
1450 			spin_unlock(&space_info->lock);
1451 			return;
1452 		}
1453 	}
1454 
1455 	ticket->error = -ENOSPC;
1456 	remove_ticket(space_info, ticket);
1457 	btrfs_try_granting_tickets(fs_info, space_info);
1458 	spin_unlock(&space_info->lock);
1459 }
1460 
1461 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1462 				struct btrfs_space_info *space_info,
1463 				struct reserve_ticket *ticket)
1464 
1465 {
1466 	DEFINE_WAIT(wait);
1467 	int ret = 0;
1468 
1469 	spin_lock(&space_info->lock);
1470 	while (ticket->bytes > 0 && ticket->error == 0) {
1471 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1472 		if (ret) {
1473 			/*
1474 			 * Delete us from the list. After we unlock the space
1475 			 * info, we don't want the async reclaim job to reserve
1476 			 * space for this ticket. If that would happen, then the
1477 			 * ticket's task would not known that space was reserved
1478 			 * despite getting an error, resulting in a space leak
1479 			 * (bytes_may_use counter of our space_info).
1480 			 */
1481 			remove_ticket(space_info, ticket);
1482 			ticket->error = -EINTR;
1483 			break;
1484 		}
1485 		spin_unlock(&space_info->lock);
1486 
1487 		schedule();
1488 
1489 		finish_wait(&ticket->wait, &wait);
1490 		spin_lock(&space_info->lock);
1491 	}
1492 	spin_unlock(&space_info->lock);
1493 }
1494 
1495 /**
1496  * Do the appropriate flushing and waiting for a ticket
1497  *
1498  * @fs_info:    the filesystem
1499  * @space_info: space info for the reservation
1500  * @ticket:     ticket for the reservation
1501  * @start_ns:   timestamp when the reservation started
1502  * @orig_bytes: amount of bytes originally reserved
1503  * @flush:      how much we can flush
1504  *
1505  * This does the work of figuring out how to flush for the ticket, waiting for
1506  * the reservation, and returning the appropriate error if there is one.
1507  */
1508 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1509 				 struct btrfs_space_info *space_info,
1510 				 struct reserve_ticket *ticket,
1511 				 u64 start_ns, u64 orig_bytes,
1512 				 enum btrfs_reserve_flush_enum flush)
1513 {
1514 	int ret;
1515 
1516 	switch (flush) {
1517 	case BTRFS_RESERVE_FLUSH_DATA:
1518 	case BTRFS_RESERVE_FLUSH_ALL:
1519 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1520 		wait_reserve_ticket(fs_info, space_info, ticket);
1521 		break;
1522 	case BTRFS_RESERVE_FLUSH_LIMIT:
1523 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1524 						priority_flush_states,
1525 						ARRAY_SIZE(priority_flush_states));
1526 		break;
1527 	case BTRFS_RESERVE_FLUSH_EVICT:
1528 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1529 						evict_flush_states,
1530 						ARRAY_SIZE(evict_flush_states));
1531 		break;
1532 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1533 		priority_reclaim_data_space(fs_info, space_info, ticket);
1534 		break;
1535 	default:
1536 		ASSERT(0);
1537 		break;
1538 	}
1539 
1540 	ret = ticket->error;
1541 	ASSERT(list_empty(&ticket->list));
1542 	/*
1543 	 * Check that we can't have an error set if the reservation succeeded,
1544 	 * as that would confuse tasks and lead them to error out without
1545 	 * releasing reserved space (if an error happens the expectation is that
1546 	 * space wasn't reserved at all).
1547 	 */
1548 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1549 	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1550 				   start_ns, flush, ticket->error);
1551 	return ret;
1552 }
1553 
1554 /*
1555  * This returns true if this flush state will go through the ordinary flushing
1556  * code.
1557  */
1558 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1559 {
1560 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1561 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1562 }
1563 
1564 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1565 				       struct btrfs_space_info *space_info)
1566 {
1567 	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1568 	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1569 
1570 	/*
1571 	 * If we're heavy on ordered operations then clamping won't help us.  We
1572 	 * need to clamp specifically to keep up with dirty'ing buffered
1573 	 * writers, because there's not a 1:1 correlation of writing delalloc
1574 	 * and freeing space, like there is with flushing delayed refs or
1575 	 * delayed nodes.  If we're already more ordered than delalloc then
1576 	 * we're keeping up, otherwise we aren't and should probably clamp.
1577 	 */
1578 	if (ordered < delalloc)
1579 		space_info->clamp = min(space_info->clamp + 1, 8);
1580 }
1581 
1582 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1583 {
1584 	return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1585 		flush == BTRFS_RESERVE_FLUSH_EVICT);
1586 }
1587 
1588 /*
1589  * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1590  * fail as quickly as possible.
1591  */
1592 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1593 {
1594 	return (flush != BTRFS_RESERVE_NO_FLUSH &&
1595 		flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1596 }
1597 
1598 /**
1599  * Try to reserve bytes from the block_rsv's space
1600  *
1601  * @fs_info:    the filesystem
1602  * @space_info: space info we want to allocate from
1603  * @orig_bytes: number of bytes we want
1604  * @flush:      whether or not we can flush to make our reservation
1605  *
1606  * This will reserve orig_bytes number of bytes from the space info associated
1607  * with the block_rsv.  If there is not enough space it will make an attempt to
1608  * flush out space to make room.  It will do this by flushing delalloc if
1609  * possible or committing the transaction.  If flush is 0 then no attempts to
1610  * regain reservations will be made and this will fail if there is not enough
1611  * space already.
1612  */
1613 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1614 			   struct btrfs_space_info *space_info, u64 orig_bytes,
1615 			   enum btrfs_reserve_flush_enum flush)
1616 {
1617 	struct work_struct *async_work;
1618 	struct reserve_ticket ticket;
1619 	u64 start_ns = 0;
1620 	u64 used;
1621 	int ret = 0;
1622 	bool pending_tickets;
1623 
1624 	ASSERT(orig_bytes);
1625 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1626 
1627 	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1628 		async_work = &fs_info->async_data_reclaim_work;
1629 	else
1630 		async_work = &fs_info->async_reclaim_work;
1631 
1632 	spin_lock(&space_info->lock);
1633 	ret = -ENOSPC;
1634 	used = btrfs_space_info_used(space_info, true);
1635 
1636 	/*
1637 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1638 	 * generally handle ENOSPC in a different way, so treat them the same as
1639 	 * normal flushers when it comes to skipping pending tickets.
1640 	 */
1641 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1642 		pending_tickets = !list_empty(&space_info->tickets) ||
1643 			!list_empty(&space_info->priority_tickets);
1644 	else
1645 		pending_tickets = !list_empty(&space_info->priority_tickets);
1646 
1647 	/*
1648 	 * Carry on if we have enough space (short-circuit) OR call
1649 	 * can_overcommit() to ensure we can overcommit to continue.
1650 	 */
1651 	if (!pending_tickets &&
1652 	    ((used + orig_bytes <= writable_total_bytes(fs_info, space_info)) ||
1653 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1654 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1655 						      orig_bytes);
1656 		ret = 0;
1657 	}
1658 
1659 	/*
1660 	 * Things are dire, we need to make a reservation so we don't abort.  We
1661 	 * will let this reservation go through as long as we have actual space
1662 	 * left to allocate for the block.
1663 	 */
1664 	if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1665 		used = btrfs_space_info_used(space_info, false);
1666 		if (used + orig_bytes <=
1667 		    writable_total_bytes(fs_info, space_info)) {
1668 			btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1669 							      orig_bytes);
1670 			ret = 0;
1671 		}
1672 	}
1673 
1674 	/*
1675 	 * If we couldn't make a reservation then setup our reservation ticket
1676 	 * and kick the async worker if it's not already running.
1677 	 *
1678 	 * If we are a priority flusher then we just need to add our ticket to
1679 	 * the list and we will do our own flushing further down.
1680 	 */
1681 	if (ret && can_ticket(flush)) {
1682 		ticket.bytes = orig_bytes;
1683 		ticket.error = 0;
1684 		space_info->reclaim_size += ticket.bytes;
1685 		init_waitqueue_head(&ticket.wait);
1686 		ticket.steal = can_steal(flush);
1687 		if (trace_btrfs_reserve_ticket_enabled())
1688 			start_ns = ktime_get_ns();
1689 
1690 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1691 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1692 		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1693 			list_add_tail(&ticket.list, &space_info->tickets);
1694 			if (!space_info->flush) {
1695 				/*
1696 				 * We were forced to add a reserve ticket, so
1697 				 * our preemptive flushing is unable to keep
1698 				 * up.  Clamp down on the threshold for the
1699 				 * preemptive flushing in order to keep up with
1700 				 * the workload.
1701 				 */
1702 				maybe_clamp_preempt(fs_info, space_info);
1703 
1704 				space_info->flush = 1;
1705 				trace_btrfs_trigger_flush(fs_info,
1706 							  space_info->flags,
1707 							  orig_bytes, flush,
1708 							  "enospc");
1709 				queue_work(system_unbound_wq, async_work);
1710 			}
1711 		} else {
1712 			list_add_tail(&ticket.list,
1713 				      &space_info->priority_tickets);
1714 		}
1715 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1716 		/*
1717 		 * We will do the space reservation dance during log replay,
1718 		 * which means we won't have fs_info->fs_root set, so don't do
1719 		 * the async reclaim as we will panic.
1720 		 */
1721 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1722 		    !work_busy(&fs_info->preempt_reclaim_work) &&
1723 		    need_preemptive_reclaim(fs_info, space_info)) {
1724 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1725 						  orig_bytes, flush, "preempt");
1726 			queue_work(system_unbound_wq,
1727 				   &fs_info->preempt_reclaim_work);
1728 		}
1729 	}
1730 	spin_unlock(&space_info->lock);
1731 	if (!ret || !can_ticket(flush))
1732 		return ret;
1733 
1734 	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1735 				     orig_bytes, flush);
1736 }
1737 
1738 /**
1739  * Trye to reserve metadata bytes from the block_rsv's space
1740  *
1741  * @fs_info:    the filesystem
1742  * @block_rsv:  block_rsv we're allocating for
1743  * @orig_bytes: number of bytes we want
1744  * @flush:      whether or not we can flush to make our reservation
1745  *
1746  * This will reserve orig_bytes number of bytes from the space info associated
1747  * with the block_rsv.  If there is not enough space it will make an attempt to
1748  * flush out space to make room.  It will do this by flushing delalloc if
1749  * possible or committing the transaction.  If flush is 0 then no attempts to
1750  * regain reservations will be made and this will fail if there is not enough
1751  * space already.
1752  */
1753 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1754 				 struct btrfs_block_rsv *block_rsv,
1755 				 u64 orig_bytes,
1756 				 enum btrfs_reserve_flush_enum flush)
1757 {
1758 	int ret;
1759 
1760 	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1761 	if (ret == -ENOSPC) {
1762 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1763 					      block_rsv->space_info->flags,
1764 					      orig_bytes, 1);
1765 
1766 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1767 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1768 					      orig_bytes, 0);
1769 	}
1770 	return ret;
1771 }
1772 
1773 /**
1774  * Try to reserve data bytes for an allocation
1775  *
1776  * @fs_info: the filesystem
1777  * @bytes:   number of bytes we need
1778  * @flush:   how we are allowed to flush
1779  *
1780  * This will reserve bytes from the data space info.  If there is not enough
1781  * space then we will attempt to flush space as specified by flush.
1782  */
1783 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1784 			     enum btrfs_reserve_flush_enum flush)
1785 {
1786 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1787 	int ret;
1788 
1789 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1790 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1791 	       flush == BTRFS_RESERVE_NO_FLUSH);
1792 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1793 
1794 	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1795 	if (ret == -ENOSPC) {
1796 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1797 					      data_sinfo->flags, bytes, 1);
1798 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1799 			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1800 	}
1801 	return ret;
1802 }
1803 
1804 /* Dump all the space infos when we abort a transaction due to ENOSPC. */
1805 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1806 {
1807 	struct btrfs_space_info *space_info;
1808 
1809 	btrfs_info(fs_info, "dumping space info:");
1810 	list_for_each_entry(space_info, &fs_info->space_info, list) {
1811 		spin_lock(&space_info->lock);
1812 		__btrfs_dump_space_info(fs_info, space_info);
1813 		spin_unlock(&space_info->lock);
1814 	}
1815 	dump_global_block_rsv(fs_info);
1816 }
1817 
1818 /*
1819  * Account the unused space of all the readonly block group in the space_info.
1820  * takes mirrors into account.
1821  */
1822 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1823 {
1824 	struct btrfs_block_group *block_group;
1825 	u64 free_bytes = 0;
1826 	int factor;
1827 
1828 	/* It's df, we don't care if it's racy */
1829 	if (list_empty(&sinfo->ro_bgs))
1830 		return 0;
1831 
1832 	spin_lock(&sinfo->lock);
1833 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1834 		spin_lock(&block_group->lock);
1835 
1836 		if (!block_group->ro) {
1837 			spin_unlock(&block_group->lock);
1838 			continue;
1839 		}
1840 
1841 		factor = btrfs_bg_type_to_factor(block_group->flags);
1842 		free_bytes += (block_group->length -
1843 			       block_group->used) * factor;
1844 
1845 		spin_unlock(&block_group->lock);
1846 	}
1847 	spin_unlock(&sinfo->lock);
1848 
1849 	return free_bytes;
1850 }
1851