1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "space-info.h" 6 #include "sysfs.h" 7 #include "volumes.h" 8 #include "free-space-cache.h" 9 #include "ordered-data.h" 10 #include "transaction.h" 11 #include "block-group.h" 12 #include "zoned.h" 13 #include "fs.h" 14 #include "accessors.h" 15 #include "extent-tree.h" 16 17 /* 18 * HOW DOES SPACE RESERVATION WORK 19 * 20 * If you want to know about delalloc specifically, there is a separate comment 21 * for that with the delalloc code. This comment is about how the whole system 22 * works generally. 23 * 24 * BASIC CONCEPTS 25 * 26 * 1) space_info. This is the ultimate arbiter of how much space we can use. 27 * There's a description of the bytes_ fields with the struct declaration, 28 * refer to that for specifics on each field. Suffice it to say that for 29 * reservations we care about total_bytes - SUM(space_info->bytes_) when 30 * determining if there is space to make an allocation. There is a space_info 31 * for METADATA, SYSTEM, and DATA areas. 32 * 33 * 2) block_rsv's. These are basically buckets for every different type of 34 * metadata reservation we have. You can see the comment in the block_rsv 35 * code on the rules for each type, but generally block_rsv->reserved is how 36 * much space is accounted for in space_info->bytes_may_use. 37 * 38 * 3) btrfs_calc*_size. These are the worst case calculations we used based 39 * on the number of items we will want to modify. We have one for changing 40 * items, and one for inserting new items. Generally we use these helpers to 41 * determine the size of the block reserves, and then use the actual bytes 42 * values to adjust the space_info counters. 43 * 44 * MAKING RESERVATIONS, THE NORMAL CASE 45 * 46 * We call into either btrfs_reserve_data_bytes() or 47 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with 48 * num_bytes we want to reserve. 49 * 50 * ->reserve 51 * space_info->bytes_may_reserve += num_bytes 52 * 53 * ->extent allocation 54 * Call btrfs_add_reserved_bytes() which does 55 * space_info->bytes_may_reserve -= num_bytes 56 * space_info->bytes_reserved += extent_bytes 57 * 58 * ->insert reference 59 * Call btrfs_update_block_group() which does 60 * space_info->bytes_reserved -= extent_bytes 61 * space_info->bytes_used += extent_bytes 62 * 63 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) 64 * 65 * Assume we are unable to simply make the reservation because we do not have 66 * enough space 67 * 68 * -> __reserve_bytes 69 * create a reserve_ticket with ->bytes set to our reservation, add it to 70 * the tail of space_info->tickets, kick async flush thread 71 * 72 * ->handle_reserve_ticket 73 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set 74 * on the ticket. 75 * 76 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space 77 * Flushes various things attempting to free up space. 78 * 79 * -> btrfs_try_granting_tickets() 80 * This is called by anything that either subtracts space from 81 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the 82 * space_info->total_bytes. This loops through the ->priority_tickets and 83 * then the ->tickets list checking to see if the reservation can be 84 * completed. If it can the space is added to space_info->bytes_may_use and 85 * the ticket is woken up. 86 * 87 * -> ticket wakeup 88 * Check if ->bytes == 0, if it does we got our reservation and we can carry 89 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we 90 * were interrupted.) 91 * 92 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY 93 * 94 * Same as the above, except we add ourselves to the 95 * space_info->priority_tickets, and we do not use ticket->wait, we simply 96 * call flush_space() ourselves for the states that are safe for us to call 97 * without deadlocking and hope for the best. 98 * 99 * THE FLUSHING STATES 100 * 101 * Generally speaking we will have two cases for each state, a "nice" state 102 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to 103 * reduce the locking over head on the various trees, and even to keep from 104 * doing any work at all in the case of delayed refs. Each of these delayed 105 * things however hold reservations, and so letting them run allows us to 106 * reclaim space so we can make new reservations. 107 * 108 * FLUSH_DELAYED_ITEMS 109 * Every inode has a delayed item to update the inode. Take a simple write 110 * for example, we would update the inode item at write time to update the 111 * mtime, and then again at finish_ordered_io() time in order to update the 112 * isize or bytes. We keep these delayed items to coalesce these operations 113 * into a single operation done on demand. These are an easy way to reclaim 114 * metadata space. 115 * 116 * FLUSH_DELALLOC 117 * Look at the delalloc comment to get an idea of how much space is reserved 118 * for delayed allocation. We can reclaim some of this space simply by 119 * running delalloc, but usually we need to wait for ordered extents to 120 * reclaim the bulk of this space. 121 * 122 * FLUSH_DELAYED_REFS 123 * We have a block reserve for the outstanding delayed refs space, and every 124 * delayed ref operation holds a reservation. Running these is a quick way 125 * to reclaim space, but we want to hold this until the end because COW can 126 * churn a lot and we can avoid making some extent tree modifications if we 127 * are able to delay for as long as possible. 128 * 129 * ALLOC_CHUNK 130 * We will skip this the first time through space reservation, because of 131 * overcommit and we don't want to have a lot of useless metadata space when 132 * our worst case reservations will likely never come true. 133 * 134 * RUN_DELAYED_IPUTS 135 * If we're freeing inodes we're likely freeing checksums, file extent 136 * items, and extent tree items. Loads of space could be freed up by these 137 * operations, however they won't be usable until the transaction commits. 138 * 139 * COMMIT_TRANS 140 * This will commit the transaction. Historically we had a lot of logic 141 * surrounding whether or not we'd commit the transaction, but this waits born 142 * out of a pre-tickets era where we could end up committing the transaction 143 * thousands of times in a row without making progress. Now thanks to our 144 * ticketing system we know if we're not making progress and can error 145 * everybody out after a few commits rather than burning the disk hoping for 146 * a different answer. 147 * 148 * OVERCOMMIT 149 * 150 * Because we hold so many reservations for metadata we will allow you to 151 * reserve more space than is currently free in the currently allocate 152 * metadata space. This only happens with metadata, data does not allow 153 * overcommitting. 154 * 155 * You can see the current logic for when we allow overcommit in 156 * btrfs_can_overcommit(), but it only applies to unallocated space. If there 157 * is no unallocated space to be had, all reservations are kept within the 158 * free space in the allocated metadata chunks. 159 * 160 * Because of overcommitting, you generally want to use the 161 * btrfs_can_overcommit() logic for metadata allocations, as it does the right 162 * thing with or without extra unallocated space. 163 */ 164 165 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info, 166 bool may_use_included) 167 { 168 ASSERT(s_info); 169 return s_info->bytes_used + s_info->bytes_reserved + 170 s_info->bytes_pinned + s_info->bytes_readonly + 171 s_info->bytes_zone_unusable + 172 (may_use_included ? s_info->bytes_may_use : 0); 173 } 174 175 /* 176 * after adding space to the filesystem, we need to clear the full flags 177 * on all the space infos. 178 */ 179 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 180 { 181 struct list_head *head = &info->space_info; 182 struct btrfs_space_info *found; 183 184 list_for_each_entry(found, head, list) 185 found->full = 0; 186 } 187 188 /* 189 * Block groups with more than this value (percents) of unusable space will be 190 * scheduled for background reclaim. 191 */ 192 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75) 193 194 /* 195 * Calculate chunk size depending on volume type (regular or zoned). 196 */ 197 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags) 198 { 199 if (btrfs_is_zoned(fs_info)) 200 return fs_info->zone_size; 201 202 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 203 204 if (flags & BTRFS_BLOCK_GROUP_DATA) 205 return BTRFS_MAX_DATA_CHUNK_SIZE; 206 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 207 return SZ_32M; 208 209 /* Handle BTRFS_BLOCK_GROUP_METADATA */ 210 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G) 211 return SZ_1G; 212 213 return SZ_256M; 214 } 215 216 /* 217 * Update default chunk size. 218 */ 219 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info, 220 u64 chunk_size) 221 { 222 WRITE_ONCE(space_info->chunk_size, chunk_size); 223 } 224 225 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 226 { 227 228 struct btrfs_space_info *space_info; 229 int i; 230 int ret; 231 232 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 233 if (!space_info) 234 return -ENOMEM; 235 236 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 237 INIT_LIST_HEAD(&space_info->block_groups[i]); 238 init_rwsem(&space_info->groups_sem); 239 spin_lock_init(&space_info->lock); 240 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 241 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 242 INIT_LIST_HEAD(&space_info->ro_bgs); 243 INIT_LIST_HEAD(&space_info->tickets); 244 INIT_LIST_HEAD(&space_info->priority_tickets); 245 space_info->clamp = 1; 246 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags)); 247 248 if (btrfs_is_zoned(info)) 249 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH; 250 251 ret = btrfs_sysfs_add_space_info_type(info, space_info); 252 if (ret) 253 return ret; 254 255 list_add(&space_info->list, &info->space_info); 256 if (flags & BTRFS_BLOCK_GROUP_DATA) 257 info->data_sinfo = space_info; 258 259 return ret; 260 } 261 262 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 263 { 264 struct btrfs_super_block *disk_super; 265 u64 features; 266 u64 flags; 267 int mixed = 0; 268 int ret; 269 270 disk_super = fs_info->super_copy; 271 if (!btrfs_super_root(disk_super)) 272 return -EINVAL; 273 274 features = btrfs_super_incompat_flags(disk_super); 275 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 276 mixed = 1; 277 278 flags = BTRFS_BLOCK_GROUP_SYSTEM; 279 ret = create_space_info(fs_info, flags); 280 if (ret) 281 goto out; 282 283 if (mixed) { 284 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 285 ret = create_space_info(fs_info, flags); 286 } else { 287 flags = BTRFS_BLOCK_GROUP_METADATA; 288 ret = create_space_info(fs_info, flags); 289 if (ret) 290 goto out; 291 292 flags = BTRFS_BLOCK_GROUP_DATA; 293 ret = create_space_info(fs_info, flags); 294 } 295 out: 296 return ret; 297 } 298 299 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info, 300 struct btrfs_block_group *block_group) 301 { 302 struct btrfs_space_info *found; 303 int factor, index; 304 305 factor = btrfs_bg_type_to_factor(block_group->flags); 306 307 found = btrfs_find_space_info(info, block_group->flags); 308 ASSERT(found); 309 spin_lock(&found->lock); 310 found->total_bytes += block_group->length; 311 found->disk_total += block_group->length * factor; 312 found->bytes_used += block_group->used; 313 found->disk_used += block_group->used * factor; 314 found->bytes_readonly += block_group->bytes_super; 315 btrfs_space_info_update_bytes_zone_unusable(info, found, block_group->zone_unusable); 316 if (block_group->length > 0) 317 found->full = 0; 318 btrfs_try_granting_tickets(info, found); 319 spin_unlock(&found->lock); 320 321 block_group->space_info = found; 322 323 index = btrfs_bg_flags_to_raid_index(block_group->flags); 324 down_write(&found->groups_sem); 325 list_add_tail(&block_group->list, &found->block_groups[index]); 326 up_write(&found->groups_sem); 327 } 328 329 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 330 u64 flags) 331 { 332 struct list_head *head = &info->space_info; 333 struct btrfs_space_info *found; 334 335 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 336 337 list_for_each_entry(found, head, list) { 338 if (found->flags & flags) 339 return found; 340 } 341 return NULL; 342 } 343 344 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info, 345 struct btrfs_space_info *space_info, 346 enum btrfs_reserve_flush_enum flush) 347 { 348 u64 profile; 349 u64 avail; 350 int factor; 351 352 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 353 profile = btrfs_system_alloc_profile(fs_info); 354 else 355 profile = btrfs_metadata_alloc_profile(fs_info); 356 357 avail = atomic64_read(&fs_info->free_chunk_space); 358 359 /* 360 * If we have dup, raid1 or raid10 then only half of the free 361 * space is actually usable. For raid56, the space info used 362 * doesn't include the parity drive, so we don't have to 363 * change the math 364 */ 365 factor = btrfs_bg_type_to_factor(profile); 366 avail = div_u64(avail, factor); 367 368 /* 369 * If we aren't flushing all things, let us overcommit up to 370 * 1/2th of the space. If we can flush, don't let us overcommit 371 * too much, let it overcommit up to 1/8 of the space. 372 */ 373 if (flush == BTRFS_RESERVE_FLUSH_ALL) 374 avail >>= 3; 375 else 376 avail >>= 1; 377 return avail; 378 } 379 380 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info, 381 struct btrfs_space_info *space_info, u64 bytes, 382 enum btrfs_reserve_flush_enum flush) 383 { 384 u64 avail; 385 u64 used; 386 387 /* Don't overcommit when in mixed mode */ 388 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 389 return 0; 390 391 used = btrfs_space_info_used(space_info, true); 392 avail = calc_available_free_space(fs_info, space_info, flush); 393 394 if (used + bytes < space_info->total_bytes + avail) 395 return 1; 396 return 0; 397 } 398 399 static void remove_ticket(struct btrfs_space_info *space_info, 400 struct reserve_ticket *ticket) 401 { 402 if (!list_empty(&ticket->list)) { 403 list_del_init(&ticket->list); 404 ASSERT(space_info->reclaim_size >= ticket->bytes); 405 space_info->reclaim_size -= ticket->bytes; 406 } 407 } 408 409 /* 410 * This is for space we already have accounted in space_info->bytes_may_use, so 411 * basically when we're returning space from block_rsv's. 412 */ 413 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info, 414 struct btrfs_space_info *space_info) 415 { 416 struct list_head *head; 417 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 418 419 lockdep_assert_held(&space_info->lock); 420 421 head = &space_info->priority_tickets; 422 again: 423 while (!list_empty(head)) { 424 struct reserve_ticket *ticket; 425 u64 used = btrfs_space_info_used(space_info, true); 426 427 ticket = list_first_entry(head, struct reserve_ticket, list); 428 429 /* Check and see if our ticket can be satisfied now. */ 430 if ((used + ticket->bytes <= space_info->total_bytes) || 431 btrfs_can_overcommit(fs_info, space_info, ticket->bytes, 432 flush)) { 433 btrfs_space_info_update_bytes_may_use(fs_info, 434 space_info, 435 ticket->bytes); 436 remove_ticket(space_info, ticket); 437 ticket->bytes = 0; 438 space_info->tickets_id++; 439 wake_up(&ticket->wait); 440 } else { 441 break; 442 } 443 } 444 445 if (head == &space_info->priority_tickets) { 446 head = &space_info->tickets; 447 flush = BTRFS_RESERVE_FLUSH_ALL; 448 goto again; 449 } 450 } 451 452 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ 453 do { \ 454 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ 455 spin_lock(&__rsv->lock); \ 456 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ 457 __rsv->size, __rsv->reserved); \ 458 spin_unlock(&__rsv->lock); \ 459 } while (0) 460 461 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info) 462 { 463 switch (space_info->flags) { 464 case BTRFS_BLOCK_GROUP_SYSTEM: 465 return "SYSTEM"; 466 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA: 467 return "DATA+METADATA"; 468 case BTRFS_BLOCK_GROUP_DATA: 469 return "DATA"; 470 case BTRFS_BLOCK_GROUP_METADATA: 471 return "METADATA"; 472 default: 473 return "UNKNOWN"; 474 } 475 } 476 477 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info) 478 { 479 DUMP_BLOCK_RSV(fs_info, global_block_rsv); 480 DUMP_BLOCK_RSV(fs_info, trans_block_rsv); 481 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); 482 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); 483 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); 484 } 485 486 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 487 struct btrfs_space_info *info) 488 { 489 const char *flag_str = space_info_flag_to_str(info); 490 lockdep_assert_held(&info->lock); 491 492 /* The free space could be negative in case of overcommit */ 493 btrfs_info(fs_info, "space_info %s has %lld free, is %sfull", 494 flag_str, 495 (s64)(info->total_bytes - btrfs_space_info_used(info, true)), 496 info->full ? "" : "not "); 497 btrfs_info(fs_info, 498 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu", 499 info->total_bytes, info->bytes_used, info->bytes_pinned, 500 info->bytes_reserved, info->bytes_may_use, 501 info->bytes_readonly, info->bytes_zone_unusable); 502 } 503 504 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 505 struct btrfs_space_info *info, u64 bytes, 506 int dump_block_groups) 507 { 508 struct btrfs_block_group *cache; 509 u64 total_avail = 0; 510 int index = 0; 511 512 spin_lock(&info->lock); 513 __btrfs_dump_space_info(fs_info, info); 514 dump_global_block_rsv(fs_info); 515 spin_unlock(&info->lock); 516 517 if (!dump_block_groups) 518 return; 519 520 down_read(&info->groups_sem); 521 again: 522 list_for_each_entry(cache, &info->block_groups[index], list) { 523 u64 avail; 524 525 spin_lock(&cache->lock); 526 avail = cache->length - cache->used - cache->pinned - 527 cache->reserved - cache->bytes_super - cache->zone_unusable; 528 btrfs_info(fs_info, 529 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s", 530 cache->start, cache->length, cache->used, cache->pinned, 531 cache->reserved, cache->delalloc_bytes, 532 cache->bytes_super, cache->zone_unusable, 533 avail, cache->ro ? "[readonly]" : ""); 534 spin_unlock(&cache->lock); 535 btrfs_dump_free_space(cache, bytes); 536 total_avail += avail; 537 } 538 if (++index < BTRFS_NR_RAID_TYPES) 539 goto again; 540 up_read(&info->groups_sem); 541 542 btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail); 543 } 544 545 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info, 546 u64 to_reclaim) 547 { 548 u64 bytes; 549 u64 nr; 550 551 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 552 nr = div64_u64(to_reclaim, bytes); 553 if (!nr) 554 nr = 1; 555 return nr; 556 } 557 558 static inline u64 calc_delayed_refs_nr(const struct btrfs_fs_info *fs_info, 559 u64 to_reclaim) 560 { 561 const u64 bytes = btrfs_calc_delayed_ref_bytes(fs_info, 1); 562 u64 nr; 563 564 nr = div64_u64(to_reclaim, bytes); 565 if (!nr) 566 nr = 1; 567 return nr; 568 } 569 570 #define EXTENT_SIZE_PER_ITEM SZ_256K 571 572 /* 573 * shrink metadata reservation for delalloc 574 */ 575 static void shrink_delalloc(struct btrfs_fs_info *fs_info, 576 struct btrfs_space_info *space_info, 577 u64 to_reclaim, bool wait_ordered, 578 bool for_preempt) 579 { 580 struct btrfs_trans_handle *trans; 581 u64 delalloc_bytes; 582 u64 ordered_bytes; 583 u64 items; 584 long time_left; 585 int loops; 586 587 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 588 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes); 589 if (delalloc_bytes == 0 && ordered_bytes == 0) 590 return; 591 592 /* Calc the number of the pages we need flush for space reservation */ 593 if (to_reclaim == U64_MAX) { 594 items = U64_MAX; 595 } else { 596 /* 597 * to_reclaim is set to however much metadata we need to 598 * reclaim, but reclaiming that much data doesn't really track 599 * exactly. What we really want to do is reclaim full inode's 600 * worth of reservations, however that's not available to us 601 * here. We will take a fraction of the delalloc bytes for our 602 * flushing loops and hope for the best. Delalloc will expand 603 * the amount we write to cover an entire dirty extent, which 604 * will reclaim the metadata reservation for that range. If 605 * it's not enough subsequent flush stages will be more 606 * aggressive. 607 */ 608 to_reclaim = max(to_reclaim, delalloc_bytes >> 3); 609 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2; 610 } 611 612 trans = current->journal_info; 613 614 /* 615 * If we are doing more ordered than delalloc we need to just wait on 616 * ordered extents, otherwise we'll waste time trying to flush delalloc 617 * that likely won't give us the space back we need. 618 */ 619 if (ordered_bytes > delalloc_bytes && !for_preempt) 620 wait_ordered = true; 621 622 loops = 0; 623 while ((delalloc_bytes || ordered_bytes) && loops < 3) { 624 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; 625 long nr_pages = min_t(u64, temp, LONG_MAX); 626 int async_pages; 627 628 btrfs_start_delalloc_roots(fs_info, nr_pages, true); 629 630 /* 631 * We need to make sure any outstanding async pages are now 632 * processed before we continue. This is because things like 633 * sync_inode() try to be smart and skip writing if the inode is 634 * marked clean. We don't use filemap_fwrite for flushing 635 * because we want to control how many pages we write out at a 636 * time, thus this is the only safe way to make sure we've 637 * waited for outstanding compressed workers to have started 638 * their jobs and thus have ordered extents set up properly. 639 * 640 * This exists because we do not want to wait for each 641 * individual inode to finish its async work, we simply want to 642 * start the IO on everybody, and then come back here and wait 643 * for all of the async work to catch up. Once we're done with 644 * that we know we'll have ordered extents for everything and we 645 * can decide if we wait for that or not. 646 * 647 * If we choose to replace this in the future, make absolutely 648 * sure that the proper waiting is being done in the async case, 649 * as there have been bugs in that area before. 650 */ 651 async_pages = atomic_read(&fs_info->async_delalloc_pages); 652 if (!async_pages) 653 goto skip_async; 654 655 /* 656 * We don't want to wait forever, if we wrote less pages in this 657 * loop than we have outstanding, only wait for that number of 658 * pages, otherwise we can wait for all async pages to finish 659 * before continuing. 660 */ 661 if (async_pages > nr_pages) 662 async_pages -= nr_pages; 663 else 664 async_pages = 0; 665 wait_event(fs_info->async_submit_wait, 666 atomic_read(&fs_info->async_delalloc_pages) <= 667 async_pages); 668 skip_async: 669 loops++; 670 if (wait_ordered && !trans) { 671 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 672 } else { 673 time_left = schedule_timeout_killable(1); 674 if (time_left) 675 break; 676 } 677 678 /* 679 * If we are for preemption we just want a one-shot of delalloc 680 * flushing so we can stop flushing if we decide we don't need 681 * to anymore. 682 */ 683 if (for_preempt) 684 break; 685 686 spin_lock(&space_info->lock); 687 if (list_empty(&space_info->tickets) && 688 list_empty(&space_info->priority_tickets)) { 689 spin_unlock(&space_info->lock); 690 break; 691 } 692 spin_unlock(&space_info->lock); 693 694 delalloc_bytes = percpu_counter_sum_positive( 695 &fs_info->delalloc_bytes); 696 ordered_bytes = percpu_counter_sum_positive( 697 &fs_info->ordered_bytes); 698 } 699 } 700 701 /* 702 * Try to flush some data based on policy set by @state. This is only advisory 703 * and may fail for various reasons. The caller is supposed to examine the 704 * state of @space_info to detect the outcome. 705 */ 706 static void flush_space(struct btrfs_fs_info *fs_info, 707 struct btrfs_space_info *space_info, u64 num_bytes, 708 enum btrfs_flush_state state, bool for_preempt) 709 { 710 struct btrfs_root *root = fs_info->tree_root; 711 struct btrfs_trans_handle *trans; 712 int nr; 713 int ret = 0; 714 715 switch (state) { 716 case FLUSH_DELAYED_ITEMS_NR: 717 case FLUSH_DELAYED_ITEMS: 718 if (state == FLUSH_DELAYED_ITEMS_NR) 719 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 720 else 721 nr = -1; 722 723 trans = btrfs_join_transaction_nostart(root); 724 if (IS_ERR(trans)) { 725 ret = PTR_ERR(trans); 726 if (ret == -ENOENT) 727 ret = 0; 728 break; 729 } 730 ret = btrfs_run_delayed_items_nr(trans, nr); 731 btrfs_end_transaction(trans); 732 break; 733 case FLUSH_DELALLOC: 734 case FLUSH_DELALLOC_WAIT: 735 case FLUSH_DELALLOC_FULL: 736 if (state == FLUSH_DELALLOC_FULL) 737 num_bytes = U64_MAX; 738 shrink_delalloc(fs_info, space_info, num_bytes, 739 state != FLUSH_DELALLOC, for_preempt); 740 break; 741 case FLUSH_DELAYED_REFS_NR: 742 case FLUSH_DELAYED_REFS: 743 trans = btrfs_join_transaction_nostart(root); 744 if (IS_ERR(trans)) { 745 ret = PTR_ERR(trans); 746 if (ret == -ENOENT) 747 ret = 0; 748 break; 749 } 750 if (state == FLUSH_DELAYED_REFS_NR) 751 nr = calc_delayed_refs_nr(fs_info, num_bytes); 752 else 753 nr = 0; 754 btrfs_run_delayed_refs(trans, nr); 755 btrfs_end_transaction(trans); 756 break; 757 case ALLOC_CHUNK: 758 case ALLOC_CHUNK_FORCE: 759 trans = btrfs_join_transaction(root); 760 if (IS_ERR(trans)) { 761 ret = PTR_ERR(trans); 762 break; 763 } 764 ret = btrfs_chunk_alloc(trans, 765 btrfs_get_alloc_profile(fs_info, space_info->flags), 766 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : 767 CHUNK_ALLOC_FORCE); 768 btrfs_end_transaction(trans); 769 770 if (ret > 0 || ret == -ENOSPC) 771 ret = 0; 772 break; 773 case RUN_DELAYED_IPUTS: 774 /* 775 * If we have pending delayed iputs then we could free up a 776 * bunch of pinned space, so make sure we run the iputs before 777 * we do our pinned bytes check below. 778 */ 779 btrfs_run_delayed_iputs(fs_info); 780 btrfs_wait_on_delayed_iputs(fs_info); 781 break; 782 case COMMIT_TRANS: 783 ASSERT(current->journal_info == NULL); 784 /* 785 * We don't want to start a new transaction, just attach to the 786 * current one or wait it fully commits in case its commit is 787 * happening at the moment. Note: we don't use a nostart join 788 * because that does not wait for a transaction to fully commit 789 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED). 790 */ 791 trans = btrfs_attach_transaction_barrier(root); 792 if (IS_ERR(trans)) { 793 ret = PTR_ERR(trans); 794 if (ret == -ENOENT) 795 ret = 0; 796 break; 797 } 798 ret = btrfs_commit_transaction(trans); 799 break; 800 default: 801 ret = -ENOSPC; 802 break; 803 } 804 805 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 806 ret, for_preempt); 807 return; 808 } 809 810 static inline u64 811 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 812 struct btrfs_space_info *space_info) 813 { 814 u64 used; 815 u64 avail; 816 u64 to_reclaim = space_info->reclaim_size; 817 818 lockdep_assert_held(&space_info->lock); 819 820 avail = calc_available_free_space(fs_info, space_info, 821 BTRFS_RESERVE_FLUSH_ALL); 822 used = btrfs_space_info_used(space_info, true); 823 824 /* 825 * We may be flushing because suddenly we have less space than we had 826 * before, and now we're well over-committed based on our current free 827 * space. If that's the case add in our overage so we make sure to put 828 * appropriate pressure on the flushing state machine. 829 */ 830 if (space_info->total_bytes + avail < used) 831 to_reclaim += used - (space_info->total_bytes + avail); 832 833 return to_reclaim; 834 } 835 836 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info, 837 struct btrfs_space_info *space_info) 838 { 839 const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv); 840 u64 ordered, delalloc; 841 u64 thresh; 842 u64 used; 843 844 thresh = mult_perc(space_info->total_bytes, 90); 845 846 lockdep_assert_held(&space_info->lock); 847 848 /* If we're just plain full then async reclaim just slows us down. */ 849 if ((space_info->bytes_used + space_info->bytes_reserved + 850 global_rsv_size) >= thresh) 851 return false; 852 853 used = space_info->bytes_may_use + space_info->bytes_pinned; 854 855 /* The total flushable belongs to the global rsv, don't flush. */ 856 if (global_rsv_size >= used) 857 return false; 858 859 /* 860 * 128MiB is 1/4 of the maximum global rsv size. If we have less than 861 * that devoted to other reservations then there's no sense in flushing, 862 * we don't have a lot of things that need flushing. 863 */ 864 if (used - global_rsv_size <= SZ_128M) 865 return false; 866 867 /* 868 * We have tickets queued, bail so we don't compete with the async 869 * flushers. 870 */ 871 if (space_info->reclaim_size) 872 return false; 873 874 /* 875 * If we have over half of the free space occupied by reservations or 876 * pinned then we want to start flushing. 877 * 878 * We do not do the traditional thing here, which is to say 879 * 880 * if (used >= ((total_bytes + avail) / 2)) 881 * return 1; 882 * 883 * because this doesn't quite work how we want. If we had more than 50% 884 * of the space_info used by bytes_used and we had 0 available we'd just 885 * constantly run the background flusher. Instead we want it to kick in 886 * if our reclaimable space exceeds our clamped free space. 887 * 888 * Our clamping range is 2^1 -> 2^8. Practically speaking that means 889 * the following: 890 * 891 * Amount of RAM Minimum threshold Maximum threshold 892 * 893 * 256GiB 1GiB 128GiB 894 * 128GiB 512MiB 64GiB 895 * 64GiB 256MiB 32GiB 896 * 32GiB 128MiB 16GiB 897 * 16GiB 64MiB 8GiB 898 * 899 * These are the range our thresholds will fall in, corresponding to how 900 * much delalloc we need for the background flusher to kick in. 901 */ 902 903 thresh = calc_available_free_space(fs_info, space_info, 904 BTRFS_RESERVE_FLUSH_ALL); 905 used = space_info->bytes_used + space_info->bytes_reserved + 906 space_info->bytes_readonly + global_rsv_size; 907 if (used < space_info->total_bytes) 908 thresh += space_info->total_bytes - used; 909 thresh >>= space_info->clamp; 910 911 used = space_info->bytes_pinned; 912 913 /* 914 * If we have more ordered bytes than delalloc bytes then we're either 915 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting 916 * around. Preemptive flushing is only useful in that it can free up 917 * space before tickets need to wait for things to finish. In the case 918 * of ordered extents, preemptively waiting on ordered extents gets us 919 * nothing, if our reservations are tied up in ordered extents we'll 920 * simply have to slow down writers by forcing them to wait on ordered 921 * extents. 922 * 923 * In the case that ordered is larger than delalloc, only include the 924 * block reserves that we would actually be able to directly reclaim 925 * from. In this case if we're heavy on metadata operations this will 926 * clearly be heavy enough to warrant preemptive flushing. In the case 927 * of heavy DIO or ordered reservations, preemptive flushing will just 928 * waste time and cause us to slow down. 929 * 930 * We want to make sure we truly are maxed out on ordered however, so 931 * cut ordered in half, and if it's still higher than delalloc then we 932 * can keep flushing. This is to avoid the case where we start 933 * flushing, and now delalloc == ordered and we stop preemptively 934 * flushing when we could still have several gigs of delalloc to flush. 935 */ 936 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1; 937 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes); 938 if (ordered >= delalloc) 939 used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) + 940 btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv); 941 else 942 used += space_info->bytes_may_use - global_rsv_size; 943 944 return (used >= thresh && !btrfs_fs_closing(fs_info) && 945 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 946 } 947 948 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info, 949 struct btrfs_space_info *space_info, 950 struct reserve_ticket *ticket) 951 { 952 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 953 u64 min_bytes; 954 955 if (!ticket->steal) 956 return false; 957 958 if (global_rsv->space_info != space_info) 959 return false; 960 961 spin_lock(&global_rsv->lock); 962 min_bytes = mult_perc(global_rsv->size, 10); 963 if (global_rsv->reserved < min_bytes + ticket->bytes) { 964 spin_unlock(&global_rsv->lock); 965 return false; 966 } 967 global_rsv->reserved -= ticket->bytes; 968 remove_ticket(space_info, ticket); 969 ticket->bytes = 0; 970 wake_up(&ticket->wait); 971 space_info->tickets_id++; 972 if (global_rsv->reserved < global_rsv->size) 973 global_rsv->full = 0; 974 spin_unlock(&global_rsv->lock); 975 976 return true; 977 } 978 979 /* 980 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets 981 * @fs_info - fs_info for this fs 982 * @space_info - the space info we were flushing 983 * 984 * We call this when we've exhausted our flushing ability and haven't made 985 * progress in satisfying tickets. The reservation code handles tickets in 986 * order, so if there is a large ticket first and then smaller ones we could 987 * very well satisfy the smaller tickets. This will attempt to wake up any 988 * tickets in the list to catch this case. 989 * 990 * This function returns true if it was able to make progress by clearing out 991 * other tickets, or if it stumbles across a ticket that was smaller than the 992 * first ticket. 993 */ 994 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info, 995 struct btrfs_space_info *space_info) 996 { 997 struct reserve_ticket *ticket; 998 u64 tickets_id = space_info->tickets_id; 999 const bool aborted = BTRFS_FS_ERROR(fs_info); 1000 1001 trace_btrfs_fail_all_tickets(fs_info, space_info); 1002 1003 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1004 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); 1005 __btrfs_dump_space_info(fs_info, space_info); 1006 } 1007 1008 while (!list_empty(&space_info->tickets) && 1009 tickets_id == space_info->tickets_id) { 1010 ticket = list_first_entry(&space_info->tickets, 1011 struct reserve_ticket, list); 1012 1013 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket)) 1014 return true; 1015 1016 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1017 btrfs_info(fs_info, "failing ticket with %llu bytes", 1018 ticket->bytes); 1019 1020 remove_ticket(space_info, ticket); 1021 if (aborted) 1022 ticket->error = -EIO; 1023 else 1024 ticket->error = -ENOSPC; 1025 wake_up(&ticket->wait); 1026 1027 /* 1028 * We're just throwing tickets away, so more flushing may not 1029 * trip over btrfs_try_granting_tickets, so we need to call it 1030 * here to see if we can make progress with the next ticket in 1031 * the list. 1032 */ 1033 if (!aborted) 1034 btrfs_try_granting_tickets(fs_info, space_info); 1035 } 1036 return (tickets_id != space_info->tickets_id); 1037 } 1038 1039 /* 1040 * This is for normal flushers, we can wait all goddamned day if we want to. We 1041 * will loop and continuously try to flush as long as we are making progress. 1042 * We count progress as clearing off tickets each time we have to loop. 1043 */ 1044 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 1045 { 1046 struct btrfs_fs_info *fs_info; 1047 struct btrfs_space_info *space_info; 1048 u64 to_reclaim; 1049 enum btrfs_flush_state flush_state; 1050 int commit_cycles = 0; 1051 u64 last_tickets_id; 1052 1053 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 1054 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1055 1056 spin_lock(&space_info->lock); 1057 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1058 if (!to_reclaim) { 1059 space_info->flush = 0; 1060 spin_unlock(&space_info->lock); 1061 return; 1062 } 1063 last_tickets_id = space_info->tickets_id; 1064 spin_unlock(&space_info->lock); 1065 1066 flush_state = FLUSH_DELAYED_ITEMS_NR; 1067 do { 1068 flush_space(fs_info, space_info, to_reclaim, flush_state, false); 1069 spin_lock(&space_info->lock); 1070 if (list_empty(&space_info->tickets)) { 1071 space_info->flush = 0; 1072 spin_unlock(&space_info->lock); 1073 return; 1074 } 1075 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 1076 space_info); 1077 if (last_tickets_id == space_info->tickets_id) { 1078 flush_state++; 1079 } else { 1080 last_tickets_id = space_info->tickets_id; 1081 flush_state = FLUSH_DELAYED_ITEMS_NR; 1082 if (commit_cycles) 1083 commit_cycles--; 1084 } 1085 1086 /* 1087 * We do not want to empty the system of delalloc unless we're 1088 * under heavy pressure, so allow one trip through the flushing 1089 * logic before we start doing a FLUSH_DELALLOC_FULL. 1090 */ 1091 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles) 1092 flush_state++; 1093 1094 /* 1095 * We don't want to force a chunk allocation until we've tried 1096 * pretty hard to reclaim space. Think of the case where we 1097 * freed up a bunch of space and so have a lot of pinned space 1098 * to reclaim. We would rather use that than possibly create a 1099 * underutilized metadata chunk. So if this is our first run 1100 * through the flushing state machine skip ALLOC_CHUNK_FORCE and 1101 * commit the transaction. If nothing has changed the next go 1102 * around then we can force a chunk allocation. 1103 */ 1104 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) 1105 flush_state++; 1106 1107 if (flush_state > COMMIT_TRANS) { 1108 commit_cycles++; 1109 if (commit_cycles > 2) { 1110 if (maybe_fail_all_tickets(fs_info, space_info)) { 1111 flush_state = FLUSH_DELAYED_ITEMS_NR; 1112 commit_cycles--; 1113 } else { 1114 space_info->flush = 0; 1115 } 1116 } else { 1117 flush_state = FLUSH_DELAYED_ITEMS_NR; 1118 } 1119 } 1120 spin_unlock(&space_info->lock); 1121 } while (flush_state <= COMMIT_TRANS); 1122 } 1123 1124 /* 1125 * This handles pre-flushing of metadata space before we get to the point that 1126 * we need to start blocking threads on tickets. The logic here is different 1127 * from the other flush paths because it doesn't rely on tickets to tell us how 1128 * much we need to flush, instead it attempts to keep us below the 80% full 1129 * watermark of space by flushing whichever reservation pool is currently the 1130 * largest. 1131 */ 1132 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work) 1133 { 1134 struct btrfs_fs_info *fs_info; 1135 struct btrfs_space_info *space_info; 1136 struct btrfs_block_rsv *delayed_block_rsv; 1137 struct btrfs_block_rsv *delayed_refs_rsv; 1138 struct btrfs_block_rsv *global_rsv; 1139 struct btrfs_block_rsv *trans_rsv; 1140 int loops = 0; 1141 1142 fs_info = container_of(work, struct btrfs_fs_info, 1143 preempt_reclaim_work); 1144 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1145 delayed_block_rsv = &fs_info->delayed_block_rsv; 1146 delayed_refs_rsv = &fs_info->delayed_refs_rsv; 1147 global_rsv = &fs_info->global_block_rsv; 1148 trans_rsv = &fs_info->trans_block_rsv; 1149 1150 spin_lock(&space_info->lock); 1151 while (need_preemptive_reclaim(fs_info, space_info)) { 1152 enum btrfs_flush_state flush; 1153 u64 delalloc_size = 0; 1154 u64 to_reclaim, block_rsv_size; 1155 const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv); 1156 1157 loops++; 1158 1159 /* 1160 * We don't have a precise counter for the metadata being 1161 * reserved for delalloc, so we'll approximate it by subtracting 1162 * out the block rsv's space from the bytes_may_use. If that 1163 * amount is higher than the individual reserves, then we can 1164 * assume it's tied up in delalloc reservations. 1165 */ 1166 block_rsv_size = global_rsv_size + 1167 btrfs_block_rsv_reserved(delayed_block_rsv) + 1168 btrfs_block_rsv_reserved(delayed_refs_rsv) + 1169 btrfs_block_rsv_reserved(trans_rsv); 1170 if (block_rsv_size < space_info->bytes_may_use) 1171 delalloc_size = space_info->bytes_may_use - block_rsv_size; 1172 1173 /* 1174 * We don't want to include the global_rsv in our calculation, 1175 * because that's space we can't touch. Subtract it from the 1176 * block_rsv_size for the next checks. 1177 */ 1178 block_rsv_size -= global_rsv_size; 1179 1180 /* 1181 * We really want to avoid flushing delalloc too much, as it 1182 * could result in poor allocation patterns, so only flush it if 1183 * it's larger than the rest of the pools combined. 1184 */ 1185 if (delalloc_size > block_rsv_size) { 1186 to_reclaim = delalloc_size; 1187 flush = FLUSH_DELALLOC; 1188 } else if (space_info->bytes_pinned > 1189 (btrfs_block_rsv_reserved(delayed_block_rsv) + 1190 btrfs_block_rsv_reserved(delayed_refs_rsv))) { 1191 to_reclaim = space_info->bytes_pinned; 1192 flush = COMMIT_TRANS; 1193 } else if (btrfs_block_rsv_reserved(delayed_block_rsv) > 1194 btrfs_block_rsv_reserved(delayed_refs_rsv)) { 1195 to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv); 1196 flush = FLUSH_DELAYED_ITEMS_NR; 1197 } else { 1198 to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv); 1199 flush = FLUSH_DELAYED_REFS_NR; 1200 } 1201 1202 spin_unlock(&space_info->lock); 1203 1204 /* 1205 * We don't want to reclaim everything, just a portion, so scale 1206 * down the to_reclaim by 1/4. If it takes us down to 0, 1207 * reclaim 1 items worth. 1208 */ 1209 to_reclaim >>= 2; 1210 if (!to_reclaim) 1211 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1); 1212 flush_space(fs_info, space_info, to_reclaim, flush, true); 1213 cond_resched(); 1214 spin_lock(&space_info->lock); 1215 } 1216 1217 /* We only went through once, back off our clamping. */ 1218 if (loops == 1 && !space_info->reclaim_size) 1219 space_info->clamp = max(1, space_info->clamp - 1); 1220 trace_btrfs_done_preemptive_reclaim(fs_info, space_info); 1221 spin_unlock(&space_info->lock); 1222 } 1223 1224 /* 1225 * FLUSH_DELALLOC_WAIT: 1226 * Space is freed from flushing delalloc in one of two ways. 1227 * 1228 * 1) compression is on and we allocate less space than we reserved 1229 * 2) we are overwriting existing space 1230 * 1231 * For #1 that extra space is reclaimed as soon as the delalloc pages are 1232 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent 1233 * length to ->bytes_reserved, and subtracts the reserved space from 1234 * ->bytes_may_use. 1235 * 1236 * For #2 this is trickier. Once the ordered extent runs we will drop the 1237 * extent in the range we are overwriting, which creates a delayed ref for 1238 * that freed extent. This however is not reclaimed until the transaction 1239 * commits, thus the next stages. 1240 * 1241 * RUN_DELAYED_IPUTS 1242 * If we are freeing inodes, we want to make sure all delayed iputs have 1243 * completed, because they could have been on an inode with i_nlink == 0, and 1244 * thus have been truncated and freed up space. But again this space is not 1245 * immediately re-usable, it comes in the form of a delayed ref, which must be 1246 * run and then the transaction must be committed. 1247 * 1248 * COMMIT_TRANS 1249 * This is where we reclaim all of the pinned space generated by running the 1250 * iputs 1251 * 1252 * ALLOC_CHUNK_FORCE 1253 * For data we start with alloc chunk force, however we could have been full 1254 * before, and then the transaction commit could have freed new block groups, 1255 * so if we now have space to allocate do the force chunk allocation. 1256 */ 1257 static const enum btrfs_flush_state data_flush_states[] = { 1258 FLUSH_DELALLOC_FULL, 1259 RUN_DELAYED_IPUTS, 1260 COMMIT_TRANS, 1261 ALLOC_CHUNK_FORCE, 1262 }; 1263 1264 static void btrfs_async_reclaim_data_space(struct work_struct *work) 1265 { 1266 struct btrfs_fs_info *fs_info; 1267 struct btrfs_space_info *space_info; 1268 u64 last_tickets_id; 1269 enum btrfs_flush_state flush_state = 0; 1270 1271 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work); 1272 space_info = fs_info->data_sinfo; 1273 1274 spin_lock(&space_info->lock); 1275 if (list_empty(&space_info->tickets)) { 1276 space_info->flush = 0; 1277 spin_unlock(&space_info->lock); 1278 return; 1279 } 1280 last_tickets_id = space_info->tickets_id; 1281 spin_unlock(&space_info->lock); 1282 1283 while (!space_info->full) { 1284 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1285 spin_lock(&space_info->lock); 1286 if (list_empty(&space_info->tickets)) { 1287 space_info->flush = 0; 1288 spin_unlock(&space_info->lock); 1289 return; 1290 } 1291 1292 /* Something happened, fail everything and bail. */ 1293 if (BTRFS_FS_ERROR(fs_info)) 1294 goto aborted_fs; 1295 last_tickets_id = space_info->tickets_id; 1296 spin_unlock(&space_info->lock); 1297 } 1298 1299 while (flush_state < ARRAY_SIZE(data_flush_states)) { 1300 flush_space(fs_info, space_info, U64_MAX, 1301 data_flush_states[flush_state], false); 1302 spin_lock(&space_info->lock); 1303 if (list_empty(&space_info->tickets)) { 1304 space_info->flush = 0; 1305 spin_unlock(&space_info->lock); 1306 return; 1307 } 1308 1309 if (last_tickets_id == space_info->tickets_id) { 1310 flush_state++; 1311 } else { 1312 last_tickets_id = space_info->tickets_id; 1313 flush_state = 0; 1314 } 1315 1316 if (flush_state >= ARRAY_SIZE(data_flush_states)) { 1317 if (space_info->full) { 1318 if (maybe_fail_all_tickets(fs_info, space_info)) 1319 flush_state = 0; 1320 else 1321 space_info->flush = 0; 1322 } else { 1323 flush_state = 0; 1324 } 1325 1326 /* Something happened, fail everything and bail. */ 1327 if (BTRFS_FS_ERROR(fs_info)) 1328 goto aborted_fs; 1329 1330 } 1331 spin_unlock(&space_info->lock); 1332 } 1333 return; 1334 1335 aborted_fs: 1336 maybe_fail_all_tickets(fs_info, space_info); 1337 space_info->flush = 0; 1338 spin_unlock(&space_info->lock); 1339 } 1340 1341 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info) 1342 { 1343 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space); 1344 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space); 1345 INIT_WORK(&fs_info->preempt_reclaim_work, 1346 btrfs_preempt_reclaim_metadata_space); 1347 } 1348 1349 static const enum btrfs_flush_state priority_flush_states[] = { 1350 FLUSH_DELAYED_ITEMS_NR, 1351 FLUSH_DELAYED_ITEMS, 1352 ALLOC_CHUNK, 1353 }; 1354 1355 static const enum btrfs_flush_state evict_flush_states[] = { 1356 FLUSH_DELAYED_ITEMS_NR, 1357 FLUSH_DELAYED_ITEMS, 1358 FLUSH_DELAYED_REFS_NR, 1359 FLUSH_DELAYED_REFS, 1360 FLUSH_DELALLOC, 1361 FLUSH_DELALLOC_WAIT, 1362 FLUSH_DELALLOC_FULL, 1363 ALLOC_CHUNK, 1364 COMMIT_TRANS, 1365 }; 1366 1367 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 1368 struct btrfs_space_info *space_info, 1369 struct reserve_ticket *ticket, 1370 const enum btrfs_flush_state *states, 1371 int states_nr) 1372 { 1373 u64 to_reclaim; 1374 int flush_state = 0; 1375 1376 spin_lock(&space_info->lock); 1377 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1378 /* 1379 * This is the priority reclaim path, so to_reclaim could be >0 still 1380 * because we may have only satisfied the priority tickets and still 1381 * left non priority tickets on the list. We would then have 1382 * to_reclaim but ->bytes == 0. 1383 */ 1384 if (ticket->bytes == 0) { 1385 spin_unlock(&space_info->lock); 1386 return; 1387 } 1388 1389 while (flush_state < states_nr) { 1390 spin_unlock(&space_info->lock); 1391 flush_space(fs_info, space_info, to_reclaim, states[flush_state], 1392 false); 1393 flush_state++; 1394 spin_lock(&space_info->lock); 1395 if (ticket->bytes == 0) { 1396 spin_unlock(&space_info->lock); 1397 return; 1398 } 1399 } 1400 1401 /* 1402 * Attempt to steal from the global rsv if we can, except if the fs was 1403 * turned into error mode due to a transaction abort when flushing space 1404 * above, in that case fail with the abort error instead of returning 1405 * success to the caller if we can steal from the global rsv - this is 1406 * just to have caller fail immeditelly instead of later when trying to 1407 * modify the fs, making it easier to debug -ENOSPC problems. 1408 */ 1409 if (BTRFS_FS_ERROR(fs_info)) { 1410 ticket->error = BTRFS_FS_ERROR(fs_info); 1411 remove_ticket(space_info, ticket); 1412 } else if (!steal_from_global_rsv(fs_info, space_info, ticket)) { 1413 ticket->error = -ENOSPC; 1414 remove_ticket(space_info, ticket); 1415 } 1416 1417 /* 1418 * We must run try_granting_tickets here because we could be a large 1419 * ticket in front of a smaller ticket that can now be satisfied with 1420 * the available space. 1421 */ 1422 btrfs_try_granting_tickets(fs_info, space_info); 1423 spin_unlock(&space_info->lock); 1424 } 1425 1426 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info, 1427 struct btrfs_space_info *space_info, 1428 struct reserve_ticket *ticket) 1429 { 1430 spin_lock(&space_info->lock); 1431 1432 /* We could have been granted before we got here. */ 1433 if (ticket->bytes == 0) { 1434 spin_unlock(&space_info->lock); 1435 return; 1436 } 1437 1438 while (!space_info->full) { 1439 spin_unlock(&space_info->lock); 1440 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1441 spin_lock(&space_info->lock); 1442 if (ticket->bytes == 0) { 1443 spin_unlock(&space_info->lock); 1444 return; 1445 } 1446 } 1447 1448 ticket->error = -ENOSPC; 1449 remove_ticket(space_info, ticket); 1450 btrfs_try_granting_tickets(fs_info, space_info); 1451 spin_unlock(&space_info->lock); 1452 } 1453 1454 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info, 1455 struct btrfs_space_info *space_info, 1456 struct reserve_ticket *ticket) 1457 1458 { 1459 DEFINE_WAIT(wait); 1460 int ret = 0; 1461 1462 spin_lock(&space_info->lock); 1463 while (ticket->bytes > 0 && ticket->error == 0) { 1464 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 1465 if (ret) { 1466 /* 1467 * Delete us from the list. After we unlock the space 1468 * info, we don't want the async reclaim job to reserve 1469 * space for this ticket. If that would happen, then the 1470 * ticket's task would not known that space was reserved 1471 * despite getting an error, resulting in a space leak 1472 * (bytes_may_use counter of our space_info). 1473 */ 1474 remove_ticket(space_info, ticket); 1475 ticket->error = -EINTR; 1476 break; 1477 } 1478 spin_unlock(&space_info->lock); 1479 1480 schedule(); 1481 1482 finish_wait(&ticket->wait, &wait); 1483 spin_lock(&space_info->lock); 1484 } 1485 spin_unlock(&space_info->lock); 1486 } 1487 1488 /* 1489 * Do the appropriate flushing and waiting for a ticket. 1490 * 1491 * @fs_info: the filesystem 1492 * @space_info: space info for the reservation 1493 * @ticket: ticket for the reservation 1494 * @start_ns: timestamp when the reservation started 1495 * @orig_bytes: amount of bytes originally reserved 1496 * @flush: how much we can flush 1497 * 1498 * This does the work of figuring out how to flush for the ticket, waiting for 1499 * the reservation, and returning the appropriate error if there is one. 1500 */ 1501 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info, 1502 struct btrfs_space_info *space_info, 1503 struct reserve_ticket *ticket, 1504 u64 start_ns, u64 orig_bytes, 1505 enum btrfs_reserve_flush_enum flush) 1506 { 1507 int ret; 1508 1509 switch (flush) { 1510 case BTRFS_RESERVE_FLUSH_DATA: 1511 case BTRFS_RESERVE_FLUSH_ALL: 1512 case BTRFS_RESERVE_FLUSH_ALL_STEAL: 1513 wait_reserve_ticket(fs_info, space_info, ticket); 1514 break; 1515 case BTRFS_RESERVE_FLUSH_LIMIT: 1516 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1517 priority_flush_states, 1518 ARRAY_SIZE(priority_flush_states)); 1519 break; 1520 case BTRFS_RESERVE_FLUSH_EVICT: 1521 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1522 evict_flush_states, 1523 ARRAY_SIZE(evict_flush_states)); 1524 break; 1525 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE: 1526 priority_reclaim_data_space(fs_info, space_info, ticket); 1527 break; 1528 default: 1529 ASSERT(0); 1530 break; 1531 } 1532 1533 ret = ticket->error; 1534 ASSERT(list_empty(&ticket->list)); 1535 /* 1536 * Check that we can't have an error set if the reservation succeeded, 1537 * as that would confuse tasks and lead them to error out without 1538 * releasing reserved space (if an error happens the expectation is that 1539 * space wasn't reserved at all). 1540 */ 1541 ASSERT(!(ticket->bytes == 0 && ticket->error)); 1542 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes, 1543 start_ns, flush, ticket->error); 1544 return ret; 1545 } 1546 1547 /* 1548 * This returns true if this flush state will go through the ordinary flushing 1549 * code. 1550 */ 1551 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush) 1552 { 1553 return (flush == BTRFS_RESERVE_FLUSH_ALL) || 1554 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1555 } 1556 1557 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info, 1558 struct btrfs_space_info *space_info) 1559 { 1560 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes); 1561 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 1562 1563 /* 1564 * If we're heavy on ordered operations then clamping won't help us. We 1565 * need to clamp specifically to keep up with dirty'ing buffered 1566 * writers, because there's not a 1:1 correlation of writing delalloc 1567 * and freeing space, like there is with flushing delayed refs or 1568 * delayed nodes. If we're already more ordered than delalloc then 1569 * we're keeping up, otherwise we aren't and should probably clamp. 1570 */ 1571 if (ordered < delalloc) 1572 space_info->clamp = min(space_info->clamp + 1, 8); 1573 } 1574 1575 static inline bool can_steal(enum btrfs_reserve_flush_enum flush) 1576 { 1577 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1578 flush == BTRFS_RESERVE_FLUSH_EVICT); 1579 } 1580 1581 /* 1582 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to 1583 * fail as quickly as possible. 1584 */ 1585 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush) 1586 { 1587 return (flush != BTRFS_RESERVE_NO_FLUSH && 1588 flush != BTRFS_RESERVE_FLUSH_EMERGENCY); 1589 } 1590 1591 /* 1592 * Try to reserve bytes from the block_rsv's space. 1593 * 1594 * @fs_info: the filesystem 1595 * @space_info: space info we want to allocate from 1596 * @orig_bytes: number of bytes we want 1597 * @flush: whether or not we can flush to make our reservation 1598 * 1599 * This will reserve orig_bytes number of bytes from the space info associated 1600 * with the block_rsv. If there is not enough space it will make an attempt to 1601 * flush out space to make room. It will do this by flushing delalloc if 1602 * possible or committing the transaction. If flush is 0 then no attempts to 1603 * regain reservations will be made and this will fail if there is not enough 1604 * space already. 1605 */ 1606 static int __reserve_bytes(struct btrfs_fs_info *fs_info, 1607 struct btrfs_space_info *space_info, u64 orig_bytes, 1608 enum btrfs_reserve_flush_enum flush) 1609 { 1610 struct work_struct *async_work; 1611 struct reserve_ticket ticket; 1612 u64 start_ns = 0; 1613 u64 used; 1614 int ret = -ENOSPC; 1615 bool pending_tickets; 1616 1617 ASSERT(orig_bytes); 1618 /* 1619 * If have a transaction handle (current->journal_info != NULL), then 1620 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor 1621 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those 1622 * flushing methods can trigger transaction commits. 1623 */ 1624 if (current->journal_info) { 1625 /* One assert per line for easier debugging. */ 1626 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL); 1627 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL); 1628 ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT); 1629 } 1630 1631 if (flush == BTRFS_RESERVE_FLUSH_DATA) 1632 async_work = &fs_info->async_data_reclaim_work; 1633 else 1634 async_work = &fs_info->async_reclaim_work; 1635 1636 spin_lock(&space_info->lock); 1637 used = btrfs_space_info_used(space_info, true); 1638 1639 /* 1640 * We don't want NO_FLUSH allocations to jump everybody, they can 1641 * generally handle ENOSPC in a different way, so treat them the same as 1642 * normal flushers when it comes to skipping pending tickets. 1643 */ 1644 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH)) 1645 pending_tickets = !list_empty(&space_info->tickets) || 1646 !list_empty(&space_info->priority_tickets); 1647 else 1648 pending_tickets = !list_empty(&space_info->priority_tickets); 1649 1650 /* 1651 * Carry on if we have enough space (short-circuit) OR call 1652 * can_overcommit() to ensure we can overcommit to continue. 1653 */ 1654 if (!pending_tickets && 1655 ((used + orig_bytes <= space_info->total_bytes) || 1656 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) { 1657 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1658 orig_bytes); 1659 ret = 0; 1660 } 1661 1662 /* 1663 * Things are dire, we need to make a reservation so we don't abort. We 1664 * will let this reservation go through as long as we have actual space 1665 * left to allocate for the block. 1666 */ 1667 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) { 1668 used = btrfs_space_info_used(space_info, false); 1669 if (used + orig_bytes <= space_info->total_bytes) { 1670 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1671 orig_bytes); 1672 ret = 0; 1673 } 1674 } 1675 1676 /* 1677 * If we couldn't make a reservation then setup our reservation ticket 1678 * and kick the async worker if it's not already running. 1679 * 1680 * If we are a priority flusher then we just need to add our ticket to 1681 * the list and we will do our own flushing further down. 1682 */ 1683 if (ret && can_ticket(flush)) { 1684 ticket.bytes = orig_bytes; 1685 ticket.error = 0; 1686 space_info->reclaim_size += ticket.bytes; 1687 init_waitqueue_head(&ticket.wait); 1688 ticket.steal = can_steal(flush); 1689 if (trace_btrfs_reserve_ticket_enabled()) 1690 start_ns = ktime_get_ns(); 1691 1692 if (flush == BTRFS_RESERVE_FLUSH_ALL || 1693 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1694 flush == BTRFS_RESERVE_FLUSH_DATA) { 1695 list_add_tail(&ticket.list, &space_info->tickets); 1696 if (!space_info->flush) { 1697 /* 1698 * We were forced to add a reserve ticket, so 1699 * our preemptive flushing is unable to keep 1700 * up. Clamp down on the threshold for the 1701 * preemptive flushing in order to keep up with 1702 * the workload. 1703 */ 1704 maybe_clamp_preempt(fs_info, space_info); 1705 1706 space_info->flush = 1; 1707 trace_btrfs_trigger_flush(fs_info, 1708 space_info->flags, 1709 orig_bytes, flush, 1710 "enospc"); 1711 queue_work(system_unbound_wq, async_work); 1712 } 1713 } else { 1714 list_add_tail(&ticket.list, 1715 &space_info->priority_tickets); 1716 } 1717 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 1718 /* 1719 * We will do the space reservation dance during log replay, 1720 * which means we won't have fs_info->fs_root set, so don't do 1721 * the async reclaim as we will panic. 1722 */ 1723 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 1724 !work_busy(&fs_info->preempt_reclaim_work) && 1725 need_preemptive_reclaim(fs_info, space_info)) { 1726 trace_btrfs_trigger_flush(fs_info, space_info->flags, 1727 orig_bytes, flush, "preempt"); 1728 queue_work(system_unbound_wq, 1729 &fs_info->preempt_reclaim_work); 1730 } 1731 } 1732 spin_unlock(&space_info->lock); 1733 if (!ret || !can_ticket(flush)) 1734 return ret; 1735 1736 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns, 1737 orig_bytes, flush); 1738 } 1739 1740 /* 1741 * Try to reserve metadata bytes from the block_rsv's space. 1742 * 1743 * @fs_info: the filesystem 1744 * @block_rsv: block_rsv we're allocating for 1745 * @orig_bytes: number of bytes we want 1746 * @flush: whether or not we can flush to make our reservation 1747 * 1748 * This will reserve orig_bytes number of bytes from the space info associated 1749 * with the block_rsv. If there is not enough space it will make an attempt to 1750 * flush out space to make room. It will do this by flushing delalloc if 1751 * possible or committing the transaction. If flush is 0 then no attempts to 1752 * regain reservations will be made and this will fail if there is not enough 1753 * space already. 1754 */ 1755 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 1756 struct btrfs_block_rsv *block_rsv, 1757 u64 orig_bytes, 1758 enum btrfs_reserve_flush_enum flush) 1759 { 1760 int ret; 1761 1762 ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush); 1763 if (ret == -ENOSPC) { 1764 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1765 block_rsv->space_info->flags, 1766 orig_bytes, 1); 1767 1768 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1769 btrfs_dump_space_info(fs_info, block_rsv->space_info, 1770 orig_bytes, 0); 1771 } 1772 return ret; 1773 } 1774 1775 /* 1776 * Try to reserve data bytes for an allocation. 1777 * 1778 * @fs_info: the filesystem 1779 * @bytes: number of bytes we need 1780 * @flush: how we are allowed to flush 1781 * 1782 * This will reserve bytes from the data space info. If there is not enough 1783 * space then we will attempt to flush space as specified by flush. 1784 */ 1785 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes, 1786 enum btrfs_reserve_flush_enum flush) 1787 { 1788 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 1789 int ret; 1790 1791 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA || 1792 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE || 1793 flush == BTRFS_RESERVE_NO_FLUSH); 1794 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA); 1795 1796 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush); 1797 if (ret == -ENOSPC) { 1798 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1799 data_sinfo->flags, bytes, 1); 1800 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1801 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0); 1802 } 1803 return ret; 1804 } 1805 1806 /* Dump all the space infos when we abort a transaction due to ENOSPC. */ 1807 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info) 1808 { 1809 struct btrfs_space_info *space_info; 1810 1811 btrfs_info(fs_info, "dumping space info:"); 1812 list_for_each_entry(space_info, &fs_info->space_info, list) { 1813 spin_lock(&space_info->lock); 1814 __btrfs_dump_space_info(fs_info, space_info); 1815 spin_unlock(&space_info->lock); 1816 } 1817 dump_global_block_rsv(fs_info); 1818 } 1819 1820 /* 1821 * Account the unused space of all the readonly block group in the space_info. 1822 * takes mirrors into account. 1823 */ 1824 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 1825 { 1826 struct btrfs_block_group *block_group; 1827 u64 free_bytes = 0; 1828 int factor; 1829 1830 /* It's df, we don't care if it's racy */ 1831 if (list_empty(&sinfo->ro_bgs)) 1832 return 0; 1833 1834 spin_lock(&sinfo->lock); 1835 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 1836 spin_lock(&block_group->lock); 1837 1838 if (!block_group->ro) { 1839 spin_unlock(&block_group->lock); 1840 continue; 1841 } 1842 1843 factor = btrfs_bg_type_to_factor(block_group->flags); 1844 free_bytes += (block_group->length - 1845 block_group->used) * factor; 1846 1847 spin_unlock(&block_group->lock); 1848 } 1849 spin_unlock(&sinfo->lock); 1850 1851 return free_bytes; 1852 } 1853