1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "space-info.h" 6 #include "sysfs.h" 7 #include "volumes.h" 8 #include "free-space-cache.h" 9 #include "ordered-data.h" 10 #include "transaction.h" 11 #include "block-group.h" 12 #include "zoned.h" 13 14 /* 15 * HOW DOES SPACE RESERVATION WORK 16 * 17 * If you want to know about delalloc specifically, there is a separate comment 18 * for that with the delalloc code. This comment is about how the whole system 19 * works generally. 20 * 21 * BASIC CONCEPTS 22 * 23 * 1) space_info. This is the ultimate arbiter of how much space we can use. 24 * There's a description of the bytes_ fields with the struct declaration, 25 * refer to that for specifics on each field. Suffice it to say that for 26 * reservations we care about total_bytes - SUM(space_info->bytes_) when 27 * determining if there is space to make an allocation. There is a space_info 28 * for METADATA, SYSTEM, and DATA areas. 29 * 30 * 2) block_rsv's. These are basically buckets for every different type of 31 * metadata reservation we have. You can see the comment in the block_rsv 32 * code on the rules for each type, but generally block_rsv->reserved is how 33 * much space is accounted for in space_info->bytes_may_use. 34 * 35 * 3) btrfs_calc*_size. These are the worst case calculations we used based 36 * on the number of items we will want to modify. We have one for changing 37 * items, and one for inserting new items. Generally we use these helpers to 38 * determine the size of the block reserves, and then use the actual bytes 39 * values to adjust the space_info counters. 40 * 41 * MAKING RESERVATIONS, THE NORMAL CASE 42 * 43 * We call into either btrfs_reserve_data_bytes() or 44 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with 45 * num_bytes we want to reserve. 46 * 47 * ->reserve 48 * space_info->bytes_may_reserve += num_bytes 49 * 50 * ->extent allocation 51 * Call btrfs_add_reserved_bytes() which does 52 * space_info->bytes_may_reserve -= num_bytes 53 * space_info->bytes_reserved += extent_bytes 54 * 55 * ->insert reference 56 * Call btrfs_update_block_group() which does 57 * space_info->bytes_reserved -= extent_bytes 58 * space_info->bytes_used += extent_bytes 59 * 60 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) 61 * 62 * Assume we are unable to simply make the reservation because we do not have 63 * enough space 64 * 65 * -> __reserve_bytes 66 * create a reserve_ticket with ->bytes set to our reservation, add it to 67 * the tail of space_info->tickets, kick async flush thread 68 * 69 * ->handle_reserve_ticket 70 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set 71 * on the ticket. 72 * 73 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space 74 * Flushes various things attempting to free up space. 75 * 76 * -> btrfs_try_granting_tickets() 77 * This is called by anything that either subtracts space from 78 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the 79 * space_info->total_bytes. This loops through the ->priority_tickets and 80 * then the ->tickets list checking to see if the reservation can be 81 * completed. If it can the space is added to space_info->bytes_may_use and 82 * the ticket is woken up. 83 * 84 * -> ticket wakeup 85 * Check if ->bytes == 0, if it does we got our reservation and we can carry 86 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we 87 * were interrupted.) 88 * 89 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY 90 * 91 * Same as the above, except we add ourselves to the 92 * space_info->priority_tickets, and we do not use ticket->wait, we simply 93 * call flush_space() ourselves for the states that are safe for us to call 94 * without deadlocking and hope for the best. 95 * 96 * THE FLUSHING STATES 97 * 98 * Generally speaking we will have two cases for each state, a "nice" state 99 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to 100 * reduce the locking over head on the various trees, and even to keep from 101 * doing any work at all in the case of delayed refs. Each of these delayed 102 * things however hold reservations, and so letting them run allows us to 103 * reclaim space so we can make new reservations. 104 * 105 * FLUSH_DELAYED_ITEMS 106 * Every inode has a delayed item to update the inode. Take a simple write 107 * for example, we would update the inode item at write time to update the 108 * mtime, and then again at finish_ordered_io() time in order to update the 109 * isize or bytes. We keep these delayed items to coalesce these operations 110 * into a single operation done on demand. These are an easy way to reclaim 111 * metadata space. 112 * 113 * FLUSH_DELALLOC 114 * Look at the delalloc comment to get an idea of how much space is reserved 115 * for delayed allocation. We can reclaim some of this space simply by 116 * running delalloc, but usually we need to wait for ordered extents to 117 * reclaim the bulk of this space. 118 * 119 * FLUSH_DELAYED_REFS 120 * We have a block reserve for the outstanding delayed refs space, and every 121 * delayed ref operation holds a reservation. Running these is a quick way 122 * to reclaim space, but we want to hold this until the end because COW can 123 * churn a lot and we can avoid making some extent tree modifications if we 124 * are able to delay for as long as possible. 125 * 126 * ALLOC_CHUNK 127 * We will skip this the first time through space reservation, because of 128 * overcommit and we don't want to have a lot of useless metadata space when 129 * our worst case reservations will likely never come true. 130 * 131 * RUN_DELAYED_IPUTS 132 * If we're freeing inodes we're likely freeing checksums, file extent 133 * items, and extent tree items. Loads of space could be freed up by these 134 * operations, however they won't be usable until the transaction commits. 135 * 136 * COMMIT_TRANS 137 * This will commit the transaction. Historically we had a lot of logic 138 * surrounding whether or not we'd commit the transaction, but this waits born 139 * out of a pre-tickets era where we could end up committing the transaction 140 * thousands of times in a row without making progress. Now thanks to our 141 * ticketing system we know if we're not making progress and can error 142 * everybody out after a few commits rather than burning the disk hoping for 143 * a different answer. 144 * 145 * OVERCOMMIT 146 * 147 * Because we hold so many reservations for metadata we will allow you to 148 * reserve more space than is currently free in the currently allocate 149 * metadata space. This only happens with metadata, data does not allow 150 * overcommitting. 151 * 152 * You can see the current logic for when we allow overcommit in 153 * btrfs_can_overcommit(), but it only applies to unallocated space. If there 154 * is no unallocated space to be had, all reservations are kept within the 155 * free space in the allocated metadata chunks. 156 * 157 * Because of overcommitting, you generally want to use the 158 * btrfs_can_overcommit() logic for metadata allocations, as it does the right 159 * thing with or without extra unallocated space. 160 */ 161 162 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info, 163 bool may_use_included) 164 { 165 ASSERT(s_info); 166 return s_info->bytes_used + s_info->bytes_reserved + 167 s_info->bytes_pinned + s_info->bytes_readonly + 168 s_info->bytes_zone_unusable + 169 (may_use_included ? s_info->bytes_may_use : 0); 170 } 171 172 /* 173 * after adding space to the filesystem, we need to clear the full flags 174 * on all the space infos. 175 */ 176 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 177 { 178 struct list_head *head = &info->space_info; 179 struct btrfs_space_info *found; 180 181 list_for_each_entry(found, head, list) 182 found->full = 0; 183 } 184 185 /* 186 * Block groups with more than this value (percents) of unusable space will be 187 * scheduled for background reclaim. 188 */ 189 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75) 190 191 /* 192 * Calculate chunk size depending on volume type (regular or zoned). 193 */ 194 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags) 195 { 196 if (btrfs_is_zoned(fs_info)) 197 return fs_info->zone_size; 198 199 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 200 201 if (flags & BTRFS_BLOCK_GROUP_DATA) 202 return BTRFS_MAX_DATA_CHUNK_SIZE; 203 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 204 return SZ_32M; 205 206 /* Handle BTRFS_BLOCK_GROUP_METADATA */ 207 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G) 208 return SZ_1G; 209 210 return SZ_256M; 211 } 212 213 /* 214 * Update default chunk size. 215 */ 216 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info, 217 u64 chunk_size) 218 { 219 WRITE_ONCE(space_info->chunk_size, chunk_size); 220 } 221 222 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 223 { 224 225 struct btrfs_space_info *space_info; 226 int i; 227 int ret; 228 229 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 230 if (!space_info) 231 return -ENOMEM; 232 233 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 234 INIT_LIST_HEAD(&space_info->block_groups[i]); 235 init_rwsem(&space_info->groups_sem); 236 spin_lock_init(&space_info->lock); 237 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 238 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 239 INIT_LIST_HEAD(&space_info->ro_bgs); 240 INIT_LIST_HEAD(&space_info->tickets); 241 INIT_LIST_HEAD(&space_info->priority_tickets); 242 space_info->clamp = 1; 243 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags)); 244 245 if (btrfs_is_zoned(info)) 246 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH; 247 248 ret = btrfs_sysfs_add_space_info_type(info, space_info); 249 if (ret) 250 return ret; 251 252 list_add(&space_info->list, &info->space_info); 253 if (flags & BTRFS_BLOCK_GROUP_DATA) 254 info->data_sinfo = space_info; 255 256 return ret; 257 } 258 259 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 260 { 261 struct btrfs_super_block *disk_super; 262 u64 features; 263 u64 flags; 264 int mixed = 0; 265 int ret; 266 267 disk_super = fs_info->super_copy; 268 if (!btrfs_super_root(disk_super)) 269 return -EINVAL; 270 271 features = btrfs_super_incompat_flags(disk_super); 272 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 273 mixed = 1; 274 275 flags = BTRFS_BLOCK_GROUP_SYSTEM; 276 ret = create_space_info(fs_info, flags); 277 if (ret) 278 goto out; 279 280 if (mixed) { 281 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 282 ret = create_space_info(fs_info, flags); 283 } else { 284 flags = BTRFS_BLOCK_GROUP_METADATA; 285 ret = create_space_info(fs_info, flags); 286 if (ret) 287 goto out; 288 289 flags = BTRFS_BLOCK_GROUP_DATA; 290 ret = create_space_info(fs_info, flags); 291 } 292 out: 293 return ret; 294 } 295 296 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags, 297 u64 total_bytes, u64 bytes_used, 298 u64 bytes_readonly, u64 bytes_zone_unusable, 299 bool active, struct btrfs_space_info **space_info) 300 { 301 struct btrfs_space_info *found; 302 int factor; 303 304 factor = btrfs_bg_type_to_factor(flags); 305 306 found = btrfs_find_space_info(info, flags); 307 ASSERT(found); 308 spin_lock(&found->lock); 309 found->total_bytes += total_bytes; 310 if (active) 311 found->active_total_bytes += total_bytes; 312 found->disk_total += total_bytes * factor; 313 found->bytes_used += bytes_used; 314 found->disk_used += bytes_used * factor; 315 found->bytes_readonly += bytes_readonly; 316 found->bytes_zone_unusable += bytes_zone_unusable; 317 if (total_bytes > 0) 318 found->full = 0; 319 btrfs_try_granting_tickets(info, found); 320 spin_unlock(&found->lock); 321 *space_info = found; 322 } 323 324 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 325 u64 flags) 326 { 327 struct list_head *head = &info->space_info; 328 struct btrfs_space_info *found; 329 330 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 331 332 list_for_each_entry(found, head, list) { 333 if (found->flags & flags) 334 return found; 335 } 336 return NULL; 337 } 338 339 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info, 340 struct btrfs_space_info *space_info, 341 enum btrfs_reserve_flush_enum flush) 342 { 343 u64 profile; 344 u64 avail; 345 int factor; 346 347 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 348 profile = btrfs_system_alloc_profile(fs_info); 349 else 350 profile = btrfs_metadata_alloc_profile(fs_info); 351 352 avail = atomic64_read(&fs_info->free_chunk_space); 353 354 /* 355 * If we have dup, raid1 or raid10 then only half of the free 356 * space is actually usable. For raid56, the space info used 357 * doesn't include the parity drive, so we don't have to 358 * change the math 359 */ 360 factor = btrfs_bg_type_to_factor(profile); 361 avail = div_u64(avail, factor); 362 363 /* 364 * If we aren't flushing all things, let us overcommit up to 365 * 1/2th of the space. If we can flush, don't let us overcommit 366 * too much, let it overcommit up to 1/8 of the space. 367 */ 368 if (flush == BTRFS_RESERVE_FLUSH_ALL) 369 avail >>= 3; 370 else 371 avail >>= 1; 372 return avail; 373 } 374 375 static inline u64 writable_total_bytes(struct btrfs_fs_info *fs_info, 376 struct btrfs_space_info *space_info) 377 { 378 /* 379 * On regular filesystem, all total_bytes are always writable. On zoned 380 * filesystem, there may be a limitation imposed by max_active_zones. 381 * For metadata allocation, we cannot finish an existing active block 382 * group to avoid a deadlock. Thus, we need to consider only the active 383 * groups to be writable for metadata space. 384 */ 385 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA)) 386 return space_info->total_bytes; 387 388 return space_info->active_total_bytes; 389 } 390 391 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info, 392 struct btrfs_space_info *space_info, u64 bytes, 393 enum btrfs_reserve_flush_enum flush) 394 { 395 u64 avail; 396 u64 used; 397 398 /* Don't overcommit when in mixed mode */ 399 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 400 return 0; 401 402 used = btrfs_space_info_used(space_info, true); 403 if (btrfs_is_zoned(fs_info) && (space_info->flags & BTRFS_BLOCK_GROUP_METADATA)) 404 avail = 0; 405 else 406 avail = calc_available_free_space(fs_info, space_info, flush); 407 408 if (used + bytes < writable_total_bytes(fs_info, space_info) + avail) 409 return 1; 410 return 0; 411 } 412 413 static void remove_ticket(struct btrfs_space_info *space_info, 414 struct reserve_ticket *ticket) 415 { 416 if (!list_empty(&ticket->list)) { 417 list_del_init(&ticket->list); 418 ASSERT(space_info->reclaim_size >= ticket->bytes); 419 space_info->reclaim_size -= ticket->bytes; 420 } 421 } 422 423 /* 424 * This is for space we already have accounted in space_info->bytes_may_use, so 425 * basically when we're returning space from block_rsv's. 426 */ 427 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info, 428 struct btrfs_space_info *space_info) 429 { 430 struct list_head *head; 431 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 432 433 lockdep_assert_held(&space_info->lock); 434 435 head = &space_info->priority_tickets; 436 again: 437 while (!list_empty(head)) { 438 struct reserve_ticket *ticket; 439 u64 used = btrfs_space_info_used(space_info, true); 440 441 ticket = list_first_entry(head, struct reserve_ticket, list); 442 443 /* Check and see if our ticket can be satisfied now. */ 444 if ((used + ticket->bytes <= writable_total_bytes(fs_info, space_info)) || 445 btrfs_can_overcommit(fs_info, space_info, ticket->bytes, 446 flush)) { 447 btrfs_space_info_update_bytes_may_use(fs_info, 448 space_info, 449 ticket->bytes); 450 remove_ticket(space_info, ticket); 451 ticket->bytes = 0; 452 space_info->tickets_id++; 453 wake_up(&ticket->wait); 454 } else { 455 break; 456 } 457 } 458 459 if (head == &space_info->priority_tickets) { 460 head = &space_info->tickets; 461 flush = BTRFS_RESERVE_FLUSH_ALL; 462 goto again; 463 } 464 } 465 466 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ 467 do { \ 468 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ 469 spin_lock(&__rsv->lock); \ 470 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ 471 __rsv->size, __rsv->reserved); \ 472 spin_unlock(&__rsv->lock); \ 473 } while (0) 474 475 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 476 struct btrfs_space_info *info) 477 { 478 lockdep_assert_held(&info->lock); 479 480 /* The free space could be negative in case of overcommit */ 481 btrfs_info(fs_info, "space_info %llu has %lld free, is %sfull", 482 info->flags, 483 (s64)(info->total_bytes - btrfs_space_info_used(info, true)), 484 info->full ? "" : "not "); 485 btrfs_info(fs_info, 486 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu", 487 info->total_bytes, info->bytes_used, info->bytes_pinned, 488 info->bytes_reserved, info->bytes_may_use, 489 info->bytes_readonly, info->bytes_zone_unusable); 490 491 DUMP_BLOCK_RSV(fs_info, global_block_rsv); 492 DUMP_BLOCK_RSV(fs_info, trans_block_rsv); 493 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); 494 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); 495 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); 496 497 } 498 499 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 500 struct btrfs_space_info *info, u64 bytes, 501 int dump_block_groups) 502 { 503 struct btrfs_block_group *cache; 504 int index = 0; 505 506 spin_lock(&info->lock); 507 __btrfs_dump_space_info(fs_info, info); 508 spin_unlock(&info->lock); 509 510 if (!dump_block_groups) 511 return; 512 513 down_read(&info->groups_sem); 514 again: 515 list_for_each_entry(cache, &info->block_groups[index], list) { 516 spin_lock(&cache->lock); 517 btrfs_info(fs_info, 518 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s", 519 cache->start, cache->length, cache->used, cache->pinned, 520 cache->reserved, cache->zone_unusable, 521 cache->ro ? "[readonly]" : ""); 522 spin_unlock(&cache->lock); 523 btrfs_dump_free_space(cache, bytes); 524 } 525 if (++index < BTRFS_NR_RAID_TYPES) 526 goto again; 527 up_read(&info->groups_sem); 528 } 529 530 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 531 u64 to_reclaim) 532 { 533 u64 bytes; 534 u64 nr; 535 536 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 537 nr = div64_u64(to_reclaim, bytes); 538 if (!nr) 539 nr = 1; 540 return nr; 541 } 542 543 #define EXTENT_SIZE_PER_ITEM SZ_256K 544 545 /* 546 * shrink metadata reservation for delalloc 547 */ 548 static void shrink_delalloc(struct btrfs_fs_info *fs_info, 549 struct btrfs_space_info *space_info, 550 u64 to_reclaim, bool wait_ordered, 551 bool for_preempt) 552 { 553 struct btrfs_trans_handle *trans; 554 u64 delalloc_bytes; 555 u64 ordered_bytes; 556 u64 items; 557 long time_left; 558 int loops; 559 560 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 561 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes); 562 if (delalloc_bytes == 0 && ordered_bytes == 0) 563 return; 564 565 /* Calc the number of the pages we need flush for space reservation */ 566 if (to_reclaim == U64_MAX) { 567 items = U64_MAX; 568 } else { 569 /* 570 * to_reclaim is set to however much metadata we need to 571 * reclaim, but reclaiming that much data doesn't really track 572 * exactly. What we really want to do is reclaim full inode's 573 * worth of reservations, however that's not available to us 574 * here. We will take a fraction of the delalloc bytes for our 575 * flushing loops and hope for the best. Delalloc will expand 576 * the amount we write to cover an entire dirty extent, which 577 * will reclaim the metadata reservation for that range. If 578 * it's not enough subsequent flush stages will be more 579 * aggressive. 580 */ 581 to_reclaim = max(to_reclaim, delalloc_bytes >> 3); 582 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2; 583 } 584 585 trans = current->journal_info; 586 587 /* 588 * If we are doing more ordered than delalloc we need to just wait on 589 * ordered extents, otherwise we'll waste time trying to flush delalloc 590 * that likely won't give us the space back we need. 591 */ 592 if (ordered_bytes > delalloc_bytes && !for_preempt) 593 wait_ordered = true; 594 595 loops = 0; 596 while ((delalloc_bytes || ordered_bytes) && loops < 3) { 597 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; 598 long nr_pages = min_t(u64, temp, LONG_MAX); 599 int async_pages; 600 601 btrfs_start_delalloc_roots(fs_info, nr_pages, true); 602 603 /* 604 * We need to make sure any outstanding async pages are now 605 * processed before we continue. This is because things like 606 * sync_inode() try to be smart and skip writing if the inode is 607 * marked clean. We don't use filemap_fwrite for flushing 608 * because we want to control how many pages we write out at a 609 * time, thus this is the only safe way to make sure we've 610 * waited for outstanding compressed workers to have started 611 * their jobs and thus have ordered extents set up properly. 612 * 613 * This exists because we do not want to wait for each 614 * individual inode to finish its async work, we simply want to 615 * start the IO on everybody, and then come back here and wait 616 * for all of the async work to catch up. Once we're done with 617 * that we know we'll have ordered extents for everything and we 618 * can decide if we wait for that or not. 619 * 620 * If we choose to replace this in the future, make absolutely 621 * sure that the proper waiting is being done in the async case, 622 * as there have been bugs in that area before. 623 */ 624 async_pages = atomic_read(&fs_info->async_delalloc_pages); 625 if (!async_pages) 626 goto skip_async; 627 628 /* 629 * We don't want to wait forever, if we wrote less pages in this 630 * loop than we have outstanding, only wait for that number of 631 * pages, otherwise we can wait for all async pages to finish 632 * before continuing. 633 */ 634 if (async_pages > nr_pages) 635 async_pages -= nr_pages; 636 else 637 async_pages = 0; 638 wait_event(fs_info->async_submit_wait, 639 atomic_read(&fs_info->async_delalloc_pages) <= 640 async_pages); 641 skip_async: 642 loops++; 643 if (wait_ordered && !trans) { 644 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 645 } else { 646 time_left = schedule_timeout_killable(1); 647 if (time_left) 648 break; 649 } 650 651 /* 652 * If we are for preemption we just want a one-shot of delalloc 653 * flushing so we can stop flushing if we decide we don't need 654 * to anymore. 655 */ 656 if (for_preempt) 657 break; 658 659 spin_lock(&space_info->lock); 660 if (list_empty(&space_info->tickets) && 661 list_empty(&space_info->priority_tickets)) { 662 spin_unlock(&space_info->lock); 663 break; 664 } 665 spin_unlock(&space_info->lock); 666 667 delalloc_bytes = percpu_counter_sum_positive( 668 &fs_info->delalloc_bytes); 669 ordered_bytes = percpu_counter_sum_positive( 670 &fs_info->ordered_bytes); 671 } 672 } 673 674 /* 675 * Try to flush some data based on policy set by @state. This is only advisory 676 * and may fail for various reasons. The caller is supposed to examine the 677 * state of @space_info to detect the outcome. 678 */ 679 static void flush_space(struct btrfs_fs_info *fs_info, 680 struct btrfs_space_info *space_info, u64 num_bytes, 681 enum btrfs_flush_state state, bool for_preempt) 682 { 683 struct btrfs_root *root = fs_info->tree_root; 684 struct btrfs_trans_handle *trans; 685 int nr; 686 int ret = 0; 687 688 switch (state) { 689 case FLUSH_DELAYED_ITEMS_NR: 690 case FLUSH_DELAYED_ITEMS: 691 if (state == FLUSH_DELAYED_ITEMS_NR) 692 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 693 else 694 nr = -1; 695 696 trans = btrfs_join_transaction(root); 697 if (IS_ERR(trans)) { 698 ret = PTR_ERR(trans); 699 break; 700 } 701 ret = btrfs_run_delayed_items_nr(trans, nr); 702 btrfs_end_transaction(trans); 703 break; 704 case FLUSH_DELALLOC: 705 case FLUSH_DELALLOC_WAIT: 706 case FLUSH_DELALLOC_FULL: 707 if (state == FLUSH_DELALLOC_FULL) 708 num_bytes = U64_MAX; 709 shrink_delalloc(fs_info, space_info, num_bytes, 710 state != FLUSH_DELALLOC, for_preempt); 711 break; 712 case FLUSH_DELAYED_REFS_NR: 713 case FLUSH_DELAYED_REFS: 714 trans = btrfs_join_transaction(root); 715 if (IS_ERR(trans)) { 716 ret = PTR_ERR(trans); 717 break; 718 } 719 if (state == FLUSH_DELAYED_REFS_NR) 720 nr = calc_reclaim_items_nr(fs_info, num_bytes); 721 else 722 nr = 0; 723 btrfs_run_delayed_refs(trans, nr); 724 btrfs_end_transaction(trans); 725 break; 726 case ALLOC_CHUNK: 727 case ALLOC_CHUNK_FORCE: 728 /* 729 * For metadata space on zoned filesystem, reaching here means we 730 * don't have enough space left in active_total_bytes. Try to 731 * activate a block group first, because we may have inactive 732 * block group already allocated. 733 */ 734 ret = btrfs_zoned_activate_one_bg(fs_info, space_info, false); 735 if (ret < 0) 736 break; 737 else if (ret == 1) 738 break; 739 740 trans = btrfs_join_transaction(root); 741 if (IS_ERR(trans)) { 742 ret = PTR_ERR(trans); 743 break; 744 } 745 ret = btrfs_chunk_alloc(trans, 746 btrfs_get_alloc_profile(fs_info, space_info->flags), 747 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : 748 CHUNK_ALLOC_FORCE); 749 btrfs_end_transaction(trans); 750 751 /* 752 * For metadata space on zoned filesystem, allocating a new chunk 753 * is not enough. We still need to activate the block * group. 754 * Active the newly allocated block group by (maybe) finishing 755 * a block group. 756 */ 757 if (ret == 1) { 758 ret = btrfs_zoned_activate_one_bg(fs_info, space_info, true); 759 /* 760 * Revert to the original ret regardless we could finish 761 * one block group or not. 762 */ 763 if (ret >= 0) 764 ret = 1; 765 } 766 767 if (ret > 0 || ret == -ENOSPC) 768 ret = 0; 769 break; 770 case RUN_DELAYED_IPUTS: 771 /* 772 * If we have pending delayed iputs then we could free up a 773 * bunch of pinned space, so make sure we run the iputs before 774 * we do our pinned bytes check below. 775 */ 776 btrfs_run_delayed_iputs(fs_info); 777 btrfs_wait_on_delayed_iputs(fs_info); 778 break; 779 case COMMIT_TRANS: 780 ASSERT(current->journal_info == NULL); 781 trans = btrfs_join_transaction(root); 782 if (IS_ERR(trans)) { 783 ret = PTR_ERR(trans); 784 break; 785 } 786 ret = btrfs_commit_transaction(trans); 787 break; 788 default: 789 ret = -ENOSPC; 790 break; 791 } 792 793 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 794 ret, for_preempt); 795 return; 796 } 797 798 static inline u64 799 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 800 struct btrfs_space_info *space_info) 801 { 802 u64 used; 803 u64 avail; 804 u64 total; 805 u64 to_reclaim = space_info->reclaim_size; 806 807 lockdep_assert_held(&space_info->lock); 808 809 avail = calc_available_free_space(fs_info, space_info, 810 BTRFS_RESERVE_FLUSH_ALL); 811 used = btrfs_space_info_used(space_info, true); 812 813 /* 814 * We may be flushing because suddenly we have less space than we had 815 * before, and now we're well over-committed based on our current free 816 * space. If that's the case add in our overage so we make sure to put 817 * appropriate pressure on the flushing state machine. 818 */ 819 total = writable_total_bytes(fs_info, space_info); 820 if (total + avail < used) 821 to_reclaim += used - (total + avail); 822 823 return to_reclaim; 824 } 825 826 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info, 827 struct btrfs_space_info *space_info) 828 { 829 u64 global_rsv_size = fs_info->global_block_rsv.reserved; 830 u64 ordered, delalloc; 831 u64 total = writable_total_bytes(fs_info, space_info); 832 u64 thresh; 833 u64 used; 834 835 thresh = div_factor_fine(total, 90); 836 837 lockdep_assert_held(&space_info->lock); 838 839 /* If we're just plain full then async reclaim just slows us down. */ 840 if ((space_info->bytes_used + space_info->bytes_reserved + 841 global_rsv_size) >= thresh) 842 return false; 843 844 used = space_info->bytes_may_use + space_info->bytes_pinned; 845 846 /* The total flushable belongs to the global rsv, don't flush. */ 847 if (global_rsv_size >= used) 848 return false; 849 850 /* 851 * 128MiB is 1/4 of the maximum global rsv size. If we have less than 852 * that devoted to other reservations then there's no sense in flushing, 853 * we don't have a lot of things that need flushing. 854 */ 855 if (used - global_rsv_size <= SZ_128M) 856 return false; 857 858 /* 859 * We have tickets queued, bail so we don't compete with the async 860 * flushers. 861 */ 862 if (space_info->reclaim_size) 863 return false; 864 865 /* 866 * If we have over half of the free space occupied by reservations or 867 * pinned then we want to start flushing. 868 * 869 * We do not do the traditional thing here, which is to say 870 * 871 * if (used >= ((total_bytes + avail) / 2)) 872 * return 1; 873 * 874 * because this doesn't quite work how we want. If we had more than 50% 875 * of the space_info used by bytes_used and we had 0 available we'd just 876 * constantly run the background flusher. Instead we want it to kick in 877 * if our reclaimable space exceeds our clamped free space. 878 * 879 * Our clamping range is 2^1 -> 2^8. Practically speaking that means 880 * the following: 881 * 882 * Amount of RAM Minimum threshold Maximum threshold 883 * 884 * 256GiB 1GiB 128GiB 885 * 128GiB 512MiB 64GiB 886 * 64GiB 256MiB 32GiB 887 * 32GiB 128MiB 16GiB 888 * 16GiB 64MiB 8GiB 889 * 890 * These are the range our thresholds will fall in, corresponding to how 891 * much delalloc we need for the background flusher to kick in. 892 */ 893 894 thresh = calc_available_free_space(fs_info, space_info, 895 BTRFS_RESERVE_FLUSH_ALL); 896 used = space_info->bytes_used + space_info->bytes_reserved + 897 space_info->bytes_readonly + global_rsv_size; 898 if (used < total) 899 thresh += total - used; 900 thresh >>= space_info->clamp; 901 902 used = space_info->bytes_pinned; 903 904 /* 905 * If we have more ordered bytes than delalloc bytes then we're either 906 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting 907 * around. Preemptive flushing is only useful in that it can free up 908 * space before tickets need to wait for things to finish. In the case 909 * of ordered extents, preemptively waiting on ordered extents gets us 910 * nothing, if our reservations are tied up in ordered extents we'll 911 * simply have to slow down writers by forcing them to wait on ordered 912 * extents. 913 * 914 * In the case that ordered is larger than delalloc, only include the 915 * block reserves that we would actually be able to directly reclaim 916 * from. In this case if we're heavy on metadata operations this will 917 * clearly be heavy enough to warrant preemptive flushing. In the case 918 * of heavy DIO or ordered reservations, preemptive flushing will just 919 * waste time and cause us to slow down. 920 * 921 * We want to make sure we truly are maxed out on ordered however, so 922 * cut ordered in half, and if it's still higher than delalloc then we 923 * can keep flushing. This is to avoid the case where we start 924 * flushing, and now delalloc == ordered and we stop preemptively 925 * flushing when we could still have several gigs of delalloc to flush. 926 */ 927 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1; 928 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes); 929 if (ordered >= delalloc) 930 used += fs_info->delayed_refs_rsv.reserved + 931 fs_info->delayed_block_rsv.reserved; 932 else 933 used += space_info->bytes_may_use - global_rsv_size; 934 935 return (used >= thresh && !btrfs_fs_closing(fs_info) && 936 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 937 } 938 939 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info, 940 struct btrfs_space_info *space_info, 941 struct reserve_ticket *ticket) 942 { 943 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 944 u64 min_bytes; 945 946 if (!ticket->steal) 947 return false; 948 949 if (global_rsv->space_info != space_info) 950 return false; 951 952 spin_lock(&global_rsv->lock); 953 min_bytes = div_factor(global_rsv->size, 1); 954 if (global_rsv->reserved < min_bytes + ticket->bytes) { 955 spin_unlock(&global_rsv->lock); 956 return false; 957 } 958 global_rsv->reserved -= ticket->bytes; 959 remove_ticket(space_info, ticket); 960 ticket->bytes = 0; 961 wake_up(&ticket->wait); 962 space_info->tickets_id++; 963 if (global_rsv->reserved < global_rsv->size) 964 global_rsv->full = 0; 965 spin_unlock(&global_rsv->lock); 966 967 return true; 968 } 969 970 /* 971 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets 972 * @fs_info - fs_info for this fs 973 * @space_info - the space info we were flushing 974 * 975 * We call this when we've exhausted our flushing ability and haven't made 976 * progress in satisfying tickets. The reservation code handles tickets in 977 * order, so if there is a large ticket first and then smaller ones we could 978 * very well satisfy the smaller tickets. This will attempt to wake up any 979 * tickets in the list to catch this case. 980 * 981 * This function returns true if it was able to make progress by clearing out 982 * other tickets, or if it stumbles across a ticket that was smaller than the 983 * first ticket. 984 */ 985 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info, 986 struct btrfs_space_info *space_info) 987 { 988 struct reserve_ticket *ticket; 989 u64 tickets_id = space_info->tickets_id; 990 const bool aborted = BTRFS_FS_ERROR(fs_info); 991 992 trace_btrfs_fail_all_tickets(fs_info, space_info); 993 994 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 995 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); 996 __btrfs_dump_space_info(fs_info, space_info); 997 } 998 999 while (!list_empty(&space_info->tickets) && 1000 tickets_id == space_info->tickets_id) { 1001 ticket = list_first_entry(&space_info->tickets, 1002 struct reserve_ticket, list); 1003 1004 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket)) 1005 return true; 1006 1007 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1008 btrfs_info(fs_info, "failing ticket with %llu bytes", 1009 ticket->bytes); 1010 1011 remove_ticket(space_info, ticket); 1012 if (aborted) 1013 ticket->error = -EIO; 1014 else 1015 ticket->error = -ENOSPC; 1016 wake_up(&ticket->wait); 1017 1018 /* 1019 * We're just throwing tickets away, so more flushing may not 1020 * trip over btrfs_try_granting_tickets, so we need to call it 1021 * here to see if we can make progress with the next ticket in 1022 * the list. 1023 */ 1024 if (!aborted) 1025 btrfs_try_granting_tickets(fs_info, space_info); 1026 } 1027 return (tickets_id != space_info->tickets_id); 1028 } 1029 1030 /* 1031 * This is for normal flushers, we can wait all goddamned day if we want to. We 1032 * will loop and continuously try to flush as long as we are making progress. 1033 * We count progress as clearing off tickets each time we have to loop. 1034 */ 1035 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 1036 { 1037 struct btrfs_fs_info *fs_info; 1038 struct btrfs_space_info *space_info; 1039 u64 to_reclaim; 1040 enum btrfs_flush_state flush_state; 1041 int commit_cycles = 0; 1042 u64 last_tickets_id; 1043 1044 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 1045 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1046 1047 spin_lock(&space_info->lock); 1048 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1049 if (!to_reclaim) { 1050 space_info->flush = 0; 1051 spin_unlock(&space_info->lock); 1052 return; 1053 } 1054 last_tickets_id = space_info->tickets_id; 1055 spin_unlock(&space_info->lock); 1056 1057 flush_state = FLUSH_DELAYED_ITEMS_NR; 1058 do { 1059 flush_space(fs_info, space_info, to_reclaim, flush_state, false); 1060 spin_lock(&space_info->lock); 1061 if (list_empty(&space_info->tickets)) { 1062 space_info->flush = 0; 1063 spin_unlock(&space_info->lock); 1064 return; 1065 } 1066 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 1067 space_info); 1068 if (last_tickets_id == space_info->tickets_id) { 1069 flush_state++; 1070 } else { 1071 last_tickets_id = space_info->tickets_id; 1072 flush_state = FLUSH_DELAYED_ITEMS_NR; 1073 if (commit_cycles) 1074 commit_cycles--; 1075 } 1076 1077 /* 1078 * We do not want to empty the system of delalloc unless we're 1079 * under heavy pressure, so allow one trip through the flushing 1080 * logic before we start doing a FLUSH_DELALLOC_FULL. 1081 */ 1082 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles) 1083 flush_state++; 1084 1085 /* 1086 * We don't want to force a chunk allocation until we've tried 1087 * pretty hard to reclaim space. Think of the case where we 1088 * freed up a bunch of space and so have a lot of pinned space 1089 * to reclaim. We would rather use that than possibly create a 1090 * underutilized metadata chunk. So if this is our first run 1091 * through the flushing state machine skip ALLOC_CHUNK_FORCE and 1092 * commit the transaction. If nothing has changed the next go 1093 * around then we can force a chunk allocation. 1094 */ 1095 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) 1096 flush_state++; 1097 1098 if (flush_state > COMMIT_TRANS) { 1099 commit_cycles++; 1100 if (commit_cycles > 2) { 1101 if (maybe_fail_all_tickets(fs_info, space_info)) { 1102 flush_state = FLUSH_DELAYED_ITEMS_NR; 1103 commit_cycles--; 1104 } else { 1105 space_info->flush = 0; 1106 } 1107 } else { 1108 flush_state = FLUSH_DELAYED_ITEMS_NR; 1109 } 1110 } 1111 spin_unlock(&space_info->lock); 1112 } while (flush_state <= COMMIT_TRANS); 1113 } 1114 1115 /* 1116 * This handles pre-flushing of metadata space before we get to the point that 1117 * we need to start blocking threads on tickets. The logic here is different 1118 * from the other flush paths because it doesn't rely on tickets to tell us how 1119 * much we need to flush, instead it attempts to keep us below the 80% full 1120 * watermark of space by flushing whichever reservation pool is currently the 1121 * largest. 1122 */ 1123 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work) 1124 { 1125 struct btrfs_fs_info *fs_info; 1126 struct btrfs_space_info *space_info; 1127 struct btrfs_block_rsv *delayed_block_rsv; 1128 struct btrfs_block_rsv *delayed_refs_rsv; 1129 struct btrfs_block_rsv *global_rsv; 1130 struct btrfs_block_rsv *trans_rsv; 1131 int loops = 0; 1132 1133 fs_info = container_of(work, struct btrfs_fs_info, 1134 preempt_reclaim_work); 1135 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1136 delayed_block_rsv = &fs_info->delayed_block_rsv; 1137 delayed_refs_rsv = &fs_info->delayed_refs_rsv; 1138 global_rsv = &fs_info->global_block_rsv; 1139 trans_rsv = &fs_info->trans_block_rsv; 1140 1141 spin_lock(&space_info->lock); 1142 while (need_preemptive_reclaim(fs_info, space_info)) { 1143 enum btrfs_flush_state flush; 1144 u64 delalloc_size = 0; 1145 u64 to_reclaim, block_rsv_size; 1146 u64 global_rsv_size = global_rsv->reserved; 1147 1148 loops++; 1149 1150 /* 1151 * We don't have a precise counter for the metadata being 1152 * reserved for delalloc, so we'll approximate it by subtracting 1153 * out the block rsv's space from the bytes_may_use. If that 1154 * amount is higher than the individual reserves, then we can 1155 * assume it's tied up in delalloc reservations. 1156 */ 1157 block_rsv_size = global_rsv_size + 1158 delayed_block_rsv->reserved + 1159 delayed_refs_rsv->reserved + 1160 trans_rsv->reserved; 1161 if (block_rsv_size < space_info->bytes_may_use) 1162 delalloc_size = space_info->bytes_may_use - block_rsv_size; 1163 1164 /* 1165 * We don't want to include the global_rsv in our calculation, 1166 * because that's space we can't touch. Subtract it from the 1167 * block_rsv_size for the next checks. 1168 */ 1169 block_rsv_size -= global_rsv_size; 1170 1171 /* 1172 * We really want to avoid flushing delalloc too much, as it 1173 * could result in poor allocation patterns, so only flush it if 1174 * it's larger than the rest of the pools combined. 1175 */ 1176 if (delalloc_size > block_rsv_size) { 1177 to_reclaim = delalloc_size; 1178 flush = FLUSH_DELALLOC; 1179 } else if (space_info->bytes_pinned > 1180 (delayed_block_rsv->reserved + 1181 delayed_refs_rsv->reserved)) { 1182 to_reclaim = space_info->bytes_pinned; 1183 flush = COMMIT_TRANS; 1184 } else if (delayed_block_rsv->reserved > 1185 delayed_refs_rsv->reserved) { 1186 to_reclaim = delayed_block_rsv->reserved; 1187 flush = FLUSH_DELAYED_ITEMS_NR; 1188 } else { 1189 to_reclaim = delayed_refs_rsv->reserved; 1190 flush = FLUSH_DELAYED_REFS_NR; 1191 } 1192 1193 spin_unlock(&space_info->lock); 1194 1195 /* 1196 * We don't want to reclaim everything, just a portion, so scale 1197 * down the to_reclaim by 1/4. If it takes us down to 0, 1198 * reclaim 1 items worth. 1199 */ 1200 to_reclaim >>= 2; 1201 if (!to_reclaim) 1202 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1); 1203 flush_space(fs_info, space_info, to_reclaim, flush, true); 1204 cond_resched(); 1205 spin_lock(&space_info->lock); 1206 } 1207 1208 /* We only went through once, back off our clamping. */ 1209 if (loops == 1 && !space_info->reclaim_size) 1210 space_info->clamp = max(1, space_info->clamp - 1); 1211 trace_btrfs_done_preemptive_reclaim(fs_info, space_info); 1212 spin_unlock(&space_info->lock); 1213 } 1214 1215 /* 1216 * FLUSH_DELALLOC_WAIT: 1217 * Space is freed from flushing delalloc in one of two ways. 1218 * 1219 * 1) compression is on and we allocate less space than we reserved 1220 * 2) we are overwriting existing space 1221 * 1222 * For #1 that extra space is reclaimed as soon as the delalloc pages are 1223 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent 1224 * length to ->bytes_reserved, and subtracts the reserved space from 1225 * ->bytes_may_use. 1226 * 1227 * For #2 this is trickier. Once the ordered extent runs we will drop the 1228 * extent in the range we are overwriting, which creates a delayed ref for 1229 * that freed extent. This however is not reclaimed until the transaction 1230 * commits, thus the next stages. 1231 * 1232 * RUN_DELAYED_IPUTS 1233 * If we are freeing inodes, we want to make sure all delayed iputs have 1234 * completed, because they could have been on an inode with i_nlink == 0, and 1235 * thus have been truncated and freed up space. But again this space is not 1236 * immediately re-usable, it comes in the form of a delayed ref, which must be 1237 * run and then the transaction must be committed. 1238 * 1239 * COMMIT_TRANS 1240 * This is where we reclaim all of the pinned space generated by running the 1241 * iputs 1242 * 1243 * ALLOC_CHUNK_FORCE 1244 * For data we start with alloc chunk force, however we could have been full 1245 * before, and then the transaction commit could have freed new block groups, 1246 * so if we now have space to allocate do the force chunk allocation. 1247 */ 1248 static const enum btrfs_flush_state data_flush_states[] = { 1249 FLUSH_DELALLOC_FULL, 1250 RUN_DELAYED_IPUTS, 1251 COMMIT_TRANS, 1252 ALLOC_CHUNK_FORCE, 1253 }; 1254 1255 static void btrfs_async_reclaim_data_space(struct work_struct *work) 1256 { 1257 struct btrfs_fs_info *fs_info; 1258 struct btrfs_space_info *space_info; 1259 u64 last_tickets_id; 1260 enum btrfs_flush_state flush_state = 0; 1261 1262 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work); 1263 space_info = fs_info->data_sinfo; 1264 1265 spin_lock(&space_info->lock); 1266 if (list_empty(&space_info->tickets)) { 1267 space_info->flush = 0; 1268 spin_unlock(&space_info->lock); 1269 return; 1270 } 1271 last_tickets_id = space_info->tickets_id; 1272 spin_unlock(&space_info->lock); 1273 1274 while (!space_info->full) { 1275 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1276 spin_lock(&space_info->lock); 1277 if (list_empty(&space_info->tickets)) { 1278 space_info->flush = 0; 1279 spin_unlock(&space_info->lock); 1280 return; 1281 } 1282 1283 /* Something happened, fail everything and bail. */ 1284 if (BTRFS_FS_ERROR(fs_info)) 1285 goto aborted_fs; 1286 last_tickets_id = space_info->tickets_id; 1287 spin_unlock(&space_info->lock); 1288 } 1289 1290 while (flush_state < ARRAY_SIZE(data_flush_states)) { 1291 flush_space(fs_info, space_info, U64_MAX, 1292 data_flush_states[flush_state], false); 1293 spin_lock(&space_info->lock); 1294 if (list_empty(&space_info->tickets)) { 1295 space_info->flush = 0; 1296 spin_unlock(&space_info->lock); 1297 return; 1298 } 1299 1300 if (last_tickets_id == space_info->tickets_id) { 1301 flush_state++; 1302 } else { 1303 last_tickets_id = space_info->tickets_id; 1304 flush_state = 0; 1305 } 1306 1307 if (flush_state >= ARRAY_SIZE(data_flush_states)) { 1308 if (space_info->full) { 1309 if (maybe_fail_all_tickets(fs_info, space_info)) 1310 flush_state = 0; 1311 else 1312 space_info->flush = 0; 1313 } else { 1314 flush_state = 0; 1315 } 1316 1317 /* Something happened, fail everything and bail. */ 1318 if (BTRFS_FS_ERROR(fs_info)) 1319 goto aborted_fs; 1320 1321 } 1322 spin_unlock(&space_info->lock); 1323 } 1324 return; 1325 1326 aborted_fs: 1327 maybe_fail_all_tickets(fs_info, space_info); 1328 space_info->flush = 0; 1329 spin_unlock(&space_info->lock); 1330 } 1331 1332 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info) 1333 { 1334 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space); 1335 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space); 1336 INIT_WORK(&fs_info->preempt_reclaim_work, 1337 btrfs_preempt_reclaim_metadata_space); 1338 } 1339 1340 static const enum btrfs_flush_state priority_flush_states[] = { 1341 FLUSH_DELAYED_ITEMS_NR, 1342 FLUSH_DELAYED_ITEMS, 1343 ALLOC_CHUNK, 1344 }; 1345 1346 static const enum btrfs_flush_state evict_flush_states[] = { 1347 FLUSH_DELAYED_ITEMS_NR, 1348 FLUSH_DELAYED_ITEMS, 1349 FLUSH_DELAYED_REFS_NR, 1350 FLUSH_DELAYED_REFS, 1351 FLUSH_DELALLOC, 1352 FLUSH_DELALLOC_WAIT, 1353 FLUSH_DELALLOC_FULL, 1354 ALLOC_CHUNK, 1355 COMMIT_TRANS, 1356 }; 1357 1358 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 1359 struct btrfs_space_info *space_info, 1360 struct reserve_ticket *ticket, 1361 const enum btrfs_flush_state *states, 1362 int states_nr) 1363 { 1364 u64 to_reclaim; 1365 int flush_state = 0; 1366 1367 spin_lock(&space_info->lock); 1368 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1369 /* 1370 * This is the priority reclaim path, so to_reclaim could be >0 still 1371 * because we may have only satisfied the priority tickets and still 1372 * left non priority tickets on the list. We would then have 1373 * to_reclaim but ->bytes == 0. 1374 */ 1375 if (ticket->bytes == 0) { 1376 spin_unlock(&space_info->lock); 1377 return; 1378 } 1379 1380 while (flush_state < states_nr) { 1381 spin_unlock(&space_info->lock); 1382 flush_space(fs_info, space_info, to_reclaim, states[flush_state], 1383 false); 1384 flush_state++; 1385 spin_lock(&space_info->lock); 1386 if (ticket->bytes == 0) { 1387 spin_unlock(&space_info->lock); 1388 return; 1389 } 1390 } 1391 1392 /* Attempt to steal from the global rsv if we can. */ 1393 if (!steal_from_global_rsv(fs_info, space_info, ticket)) { 1394 ticket->error = -ENOSPC; 1395 remove_ticket(space_info, ticket); 1396 } 1397 1398 /* 1399 * We must run try_granting_tickets here because we could be a large 1400 * ticket in front of a smaller ticket that can now be satisfied with 1401 * the available space. 1402 */ 1403 btrfs_try_granting_tickets(fs_info, space_info); 1404 spin_unlock(&space_info->lock); 1405 } 1406 1407 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info, 1408 struct btrfs_space_info *space_info, 1409 struct reserve_ticket *ticket) 1410 { 1411 spin_lock(&space_info->lock); 1412 1413 /* We could have been granted before we got here. */ 1414 if (ticket->bytes == 0) { 1415 spin_unlock(&space_info->lock); 1416 return; 1417 } 1418 1419 while (!space_info->full) { 1420 spin_unlock(&space_info->lock); 1421 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1422 spin_lock(&space_info->lock); 1423 if (ticket->bytes == 0) { 1424 spin_unlock(&space_info->lock); 1425 return; 1426 } 1427 } 1428 1429 ticket->error = -ENOSPC; 1430 remove_ticket(space_info, ticket); 1431 btrfs_try_granting_tickets(fs_info, space_info); 1432 spin_unlock(&space_info->lock); 1433 } 1434 1435 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info, 1436 struct btrfs_space_info *space_info, 1437 struct reserve_ticket *ticket) 1438 1439 { 1440 DEFINE_WAIT(wait); 1441 int ret = 0; 1442 1443 spin_lock(&space_info->lock); 1444 while (ticket->bytes > 0 && ticket->error == 0) { 1445 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 1446 if (ret) { 1447 /* 1448 * Delete us from the list. After we unlock the space 1449 * info, we don't want the async reclaim job to reserve 1450 * space for this ticket. If that would happen, then the 1451 * ticket's task would not known that space was reserved 1452 * despite getting an error, resulting in a space leak 1453 * (bytes_may_use counter of our space_info). 1454 */ 1455 remove_ticket(space_info, ticket); 1456 ticket->error = -EINTR; 1457 break; 1458 } 1459 spin_unlock(&space_info->lock); 1460 1461 schedule(); 1462 1463 finish_wait(&ticket->wait, &wait); 1464 spin_lock(&space_info->lock); 1465 } 1466 spin_unlock(&space_info->lock); 1467 } 1468 1469 /** 1470 * Do the appropriate flushing and waiting for a ticket 1471 * 1472 * @fs_info: the filesystem 1473 * @space_info: space info for the reservation 1474 * @ticket: ticket for the reservation 1475 * @start_ns: timestamp when the reservation started 1476 * @orig_bytes: amount of bytes originally reserved 1477 * @flush: how much we can flush 1478 * 1479 * This does the work of figuring out how to flush for the ticket, waiting for 1480 * the reservation, and returning the appropriate error if there is one. 1481 */ 1482 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info, 1483 struct btrfs_space_info *space_info, 1484 struct reserve_ticket *ticket, 1485 u64 start_ns, u64 orig_bytes, 1486 enum btrfs_reserve_flush_enum flush) 1487 { 1488 int ret; 1489 1490 switch (flush) { 1491 case BTRFS_RESERVE_FLUSH_DATA: 1492 case BTRFS_RESERVE_FLUSH_ALL: 1493 case BTRFS_RESERVE_FLUSH_ALL_STEAL: 1494 wait_reserve_ticket(fs_info, space_info, ticket); 1495 break; 1496 case BTRFS_RESERVE_FLUSH_LIMIT: 1497 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1498 priority_flush_states, 1499 ARRAY_SIZE(priority_flush_states)); 1500 break; 1501 case BTRFS_RESERVE_FLUSH_EVICT: 1502 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1503 evict_flush_states, 1504 ARRAY_SIZE(evict_flush_states)); 1505 break; 1506 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE: 1507 priority_reclaim_data_space(fs_info, space_info, ticket); 1508 break; 1509 default: 1510 ASSERT(0); 1511 break; 1512 } 1513 1514 ret = ticket->error; 1515 ASSERT(list_empty(&ticket->list)); 1516 /* 1517 * Check that we can't have an error set if the reservation succeeded, 1518 * as that would confuse tasks and lead them to error out without 1519 * releasing reserved space (if an error happens the expectation is that 1520 * space wasn't reserved at all). 1521 */ 1522 ASSERT(!(ticket->bytes == 0 && ticket->error)); 1523 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes, 1524 start_ns, flush, ticket->error); 1525 return ret; 1526 } 1527 1528 /* 1529 * This returns true if this flush state will go through the ordinary flushing 1530 * code. 1531 */ 1532 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush) 1533 { 1534 return (flush == BTRFS_RESERVE_FLUSH_ALL) || 1535 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1536 } 1537 1538 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info, 1539 struct btrfs_space_info *space_info) 1540 { 1541 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes); 1542 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 1543 1544 /* 1545 * If we're heavy on ordered operations then clamping won't help us. We 1546 * need to clamp specifically to keep up with dirty'ing buffered 1547 * writers, because there's not a 1:1 correlation of writing delalloc 1548 * and freeing space, like there is with flushing delayed refs or 1549 * delayed nodes. If we're already more ordered than delalloc then 1550 * we're keeping up, otherwise we aren't and should probably clamp. 1551 */ 1552 if (ordered < delalloc) 1553 space_info->clamp = min(space_info->clamp + 1, 8); 1554 } 1555 1556 static inline bool can_steal(enum btrfs_reserve_flush_enum flush) 1557 { 1558 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1559 flush == BTRFS_RESERVE_FLUSH_EVICT); 1560 } 1561 1562 /** 1563 * Try to reserve bytes from the block_rsv's space 1564 * 1565 * @fs_info: the filesystem 1566 * @space_info: space info we want to allocate from 1567 * @orig_bytes: number of bytes we want 1568 * @flush: whether or not we can flush to make our reservation 1569 * 1570 * This will reserve orig_bytes number of bytes from the space info associated 1571 * with the block_rsv. If there is not enough space it will make an attempt to 1572 * flush out space to make room. It will do this by flushing delalloc if 1573 * possible or committing the transaction. If flush is 0 then no attempts to 1574 * regain reservations will be made and this will fail if there is not enough 1575 * space already. 1576 */ 1577 static int __reserve_bytes(struct btrfs_fs_info *fs_info, 1578 struct btrfs_space_info *space_info, u64 orig_bytes, 1579 enum btrfs_reserve_flush_enum flush) 1580 { 1581 struct work_struct *async_work; 1582 struct reserve_ticket ticket; 1583 u64 start_ns = 0; 1584 u64 used; 1585 int ret = 0; 1586 bool pending_tickets; 1587 1588 ASSERT(orig_bytes); 1589 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 1590 1591 if (flush == BTRFS_RESERVE_FLUSH_DATA) 1592 async_work = &fs_info->async_data_reclaim_work; 1593 else 1594 async_work = &fs_info->async_reclaim_work; 1595 1596 spin_lock(&space_info->lock); 1597 ret = -ENOSPC; 1598 used = btrfs_space_info_used(space_info, true); 1599 1600 /* 1601 * We don't want NO_FLUSH allocations to jump everybody, they can 1602 * generally handle ENOSPC in a different way, so treat them the same as 1603 * normal flushers when it comes to skipping pending tickets. 1604 */ 1605 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH)) 1606 pending_tickets = !list_empty(&space_info->tickets) || 1607 !list_empty(&space_info->priority_tickets); 1608 else 1609 pending_tickets = !list_empty(&space_info->priority_tickets); 1610 1611 /* 1612 * Carry on if we have enough space (short-circuit) OR call 1613 * can_overcommit() to ensure we can overcommit to continue. 1614 */ 1615 if (!pending_tickets && 1616 ((used + orig_bytes <= writable_total_bytes(fs_info, space_info)) || 1617 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) { 1618 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1619 orig_bytes); 1620 ret = 0; 1621 } 1622 1623 /* 1624 * If we couldn't make a reservation then setup our reservation ticket 1625 * and kick the async worker if it's not already running. 1626 * 1627 * If we are a priority flusher then we just need to add our ticket to 1628 * the list and we will do our own flushing further down. 1629 */ 1630 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 1631 ticket.bytes = orig_bytes; 1632 ticket.error = 0; 1633 space_info->reclaim_size += ticket.bytes; 1634 init_waitqueue_head(&ticket.wait); 1635 ticket.steal = can_steal(flush); 1636 if (trace_btrfs_reserve_ticket_enabled()) 1637 start_ns = ktime_get_ns(); 1638 1639 if (flush == BTRFS_RESERVE_FLUSH_ALL || 1640 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1641 flush == BTRFS_RESERVE_FLUSH_DATA) { 1642 list_add_tail(&ticket.list, &space_info->tickets); 1643 if (!space_info->flush) { 1644 /* 1645 * We were forced to add a reserve ticket, so 1646 * our preemptive flushing is unable to keep 1647 * up. Clamp down on the threshold for the 1648 * preemptive flushing in order to keep up with 1649 * the workload. 1650 */ 1651 maybe_clamp_preempt(fs_info, space_info); 1652 1653 space_info->flush = 1; 1654 trace_btrfs_trigger_flush(fs_info, 1655 space_info->flags, 1656 orig_bytes, flush, 1657 "enospc"); 1658 queue_work(system_unbound_wq, async_work); 1659 } 1660 } else { 1661 list_add_tail(&ticket.list, 1662 &space_info->priority_tickets); 1663 } 1664 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 1665 used += orig_bytes; 1666 /* 1667 * We will do the space reservation dance during log replay, 1668 * which means we won't have fs_info->fs_root set, so don't do 1669 * the async reclaim as we will panic. 1670 */ 1671 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 1672 !work_busy(&fs_info->preempt_reclaim_work) && 1673 need_preemptive_reclaim(fs_info, space_info)) { 1674 trace_btrfs_trigger_flush(fs_info, space_info->flags, 1675 orig_bytes, flush, "preempt"); 1676 queue_work(system_unbound_wq, 1677 &fs_info->preempt_reclaim_work); 1678 } 1679 } 1680 spin_unlock(&space_info->lock); 1681 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 1682 return ret; 1683 1684 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns, 1685 orig_bytes, flush); 1686 } 1687 1688 /** 1689 * Trye to reserve metadata bytes from the block_rsv's space 1690 * 1691 * @fs_info: the filesystem 1692 * @block_rsv: block_rsv we're allocating for 1693 * @orig_bytes: number of bytes we want 1694 * @flush: whether or not we can flush to make our reservation 1695 * 1696 * This will reserve orig_bytes number of bytes from the space info associated 1697 * with the block_rsv. If there is not enough space it will make an attempt to 1698 * flush out space to make room. It will do this by flushing delalloc if 1699 * possible or committing the transaction. If flush is 0 then no attempts to 1700 * regain reservations will be made and this will fail if there is not enough 1701 * space already. 1702 */ 1703 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 1704 struct btrfs_block_rsv *block_rsv, 1705 u64 orig_bytes, 1706 enum btrfs_reserve_flush_enum flush) 1707 { 1708 int ret; 1709 1710 ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush); 1711 if (ret == -ENOSPC) { 1712 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1713 block_rsv->space_info->flags, 1714 orig_bytes, 1); 1715 1716 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1717 btrfs_dump_space_info(fs_info, block_rsv->space_info, 1718 orig_bytes, 0); 1719 } 1720 return ret; 1721 } 1722 1723 /** 1724 * Try to reserve data bytes for an allocation 1725 * 1726 * @fs_info: the filesystem 1727 * @bytes: number of bytes we need 1728 * @flush: how we are allowed to flush 1729 * 1730 * This will reserve bytes from the data space info. If there is not enough 1731 * space then we will attempt to flush space as specified by flush. 1732 */ 1733 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes, 1734 enum btrfs_reserve_flush_enum flush) 1735 { 1736 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 1737 int ret; 1738 1739 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA || 1740 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE); 1741 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA); 1742 1743 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush); 1744 if (ret == -ENOSPC) { 1745 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1746 data_sinfo->flags, bytes, 1); 1747 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1748 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0); 1749 } 1750 return ret; 1751 } 1752