xref: /openbmc/linux/fs/btrfs/space-info.c (revision c416a30c)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     This will commit the transaction.  Historically we had a lot of logic
137  *     surrounding whether or not we'd commit the transaction, but this waits born
138  *     out of a pre-tickets era where we could end up committing the transaction
139  *     thousands of times in a row without making progress.  Now thanks to our
140  *     ticketing system we know if we're not making progress and can error
141  *     everybody out after a few commits rather than burning the disk hoping for
142  *     a different answer.
143  *
144  * OVERCOMMIT
145  *
146  *   Because we hold so many reservations for metadata we will allow you to
147  *   reserve more space than is currently free in the currently allocate
148  *   metadata space.  This only happens with metadata, data does not allow
149  *   overcommitting.
150  *
151  *   You can see the current logic for when we allow overcommit in
152  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
153  *   is no unallocated space to be had, all reservations are kept within the
154  *   free space in the allocated metadata chunks.
155  *
156  *   Because of overcommitting, you generally want to use the
157  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
158  *   thing with or without extra unallocated space.
159  */
160 
161 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
162 			  bool may_use_included)
163 {
164 	ASSERT(s_info);
165 	return s_info->bytes_used + s_info->bytes_reserved +
166 		s_info->bytes_pinned + s_info->bytes_readonly +
167 		s_info->bytes_zone_unusable +
168 		(may_use_included ? s_info->bytes_may_use : 0);
169 }
170 
171 /*
172  * after adding space to the filesystem, we need to clear the full flags
173  * on all the space infos.
174  */
175 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
176 {
177 	struct list_head *head = &info->space_info;
178 	struct btrfs_space_info *found;
179 
180 	list_for_each_entry(found, head, list)
181 		found->full = 0;
182 }
183 
184 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
185 {
186 
187 	struct btrfs_space_info *space_info;
188 	int i;
189 	int ret;
190 
191 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
192 	if (!space_info)
193 		return -ENOMEM;
194 
195 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
196 				 GFP_KERNEL);
197 	if (ret) {
198 		kfree(space_info);
199 		return ret;
200 	}
201 
202 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
203 		INIT_LIST_HEAD(&space_info->block_groups[i]);
204 	init_rwsem(&space_info->groups_sem);
205 	spin_lock_init(&space_info->lock);
206 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
207 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
208 	INIT_LIST_HEAD(&space_info->ro_bgs);
209 	INIT_LIST_HEAD(&space_info->tickets);
210 	INIT_LIST_HEAD(&space_info->priority_tickets);
211 	space_info->clamp = 1;
212 
213 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
214 	if (ret)
215 		return ret;
216 
217 	list_add(&space_info->list, &info->space_info);
218 	if (flags & BTRFS_BLOCK_GROUP_DATA)
219 		info->data_sinfo = space_info;
220 
221 	return ret;
222 }
223 
224 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
225 {
226 	struct btrfs_super_block *disk_super;
227 	u64 features;
228 	u64 flags;
229 	int mixed = 0;
230 	int ret;
231 
232 	disk_super = fs_info->super_copy;
233 	if (!btrfs_super_root(disk_super))
234 		return -EINVAL;
235 
236 	features = btrfs_super_incompat_flags(disk_super);
237 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
238 		mixed = 1;
239 
240 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
241 	ret = create_space_info(fs_info, flags);
242 	if (ret)
243 		goto out;
244 
245 	if (mixed) {
246 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
247 		ret = create_space_info(fs_info, flags);
248 	} else {
249 		flags = BTRFS_BLOCK_GROUP_METADATA;
250 		ret = create_space_info(fs_info, flags);
251 		if (ret)
252 			goto out;
253 
254 		flags = BTRFS_BLOCK_GROUP_DATA;
255 		ret = create_space_info(fs_info, flags);
256 	}
257 out:
258 	return ret;
259 }
260 
261 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
262 			     u64 total_bytes, u64 bytes_used,
263 			     u64 bytes_readonly, u64 bytes_zone_unusable,
264 			     struct btrfs_space_info **space_info)
265 {
266 	struct btrfs_space_info *found;
267 	int factor;
268 
269 	factor = btrfs_bg_type_to_factor(flags);
270 
271 	found = btrfs_find_space_info(info, flags);
272 	ASSERT(found);
273 	spin_lock(&found->lock);
274 	found->total_bytes += total_bytes;
275 	found->disk_total += total_bytes * factor;
276 	found->bytes_used += bytes_used;
277 	found->disk_used += bytes_used * factor;
278 	found->bytes_readonly += bytes_readonly;
279 	found->bytes_zone_unusable += bytes_zone_unusable;
280 	if (total_bytes > 0)
281 		found->full = 0;
282 	btrfs_try_granting_tickets(info, found);
283 	spin_unlock(&found->lock);
284 	*space_info = found;
285 }
286 
287 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
288 					       u64 flags)
289 {
290 	struct list_head *head = &info->space_info;
291 	struct btrfs_space_info *found;
292 
293 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
294 
295 	list_for_each_entry(found, head, list) {
296 		if (found->flags & flags)
297 			return found;
298 	}
299 	return NULL;
300 }
301 
302 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
303 			  struct btrfs_space_info *space_info,
304 			  enum btrfs_reserve_flush_enum flush)
305 {
306 	u64 profile;
307 	u64 avail;
308 	int factor;
309 
310 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
311 		profile = btrfs_system_alloc_profile(fs_info);
312 	else
313 		profile = btrfs_metadata_alloc_profile(fs_info);
314 
315 	avail = atomic64_read(&fs_info->free_chunk_space);
316 
317 	/*
318 	 * If we have dup, raid1 or raid10 then only half of the free
319 	 * space is actually usable.  For raid56, the space info used
320 	 * doesn't include the parity drive, so we don't have to
321 	 * change the math
322 	 */
323 	factor = btrfs_bg_type_to_factor(profile);
324 	avail = div_u64(avail, factor);
325 
326 	/*
327 	 * If we aren't flushing all things, let us overcommit up to
328 	 * 1/2th of the space. If we can flush, don't let us overcommit
329 	 * too much, let it overcommit up to 1/8 of the space.
330 	 */
331 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
332 		avail >>= 3;
333 	else
334 		avail >>= 1;
335 	return avail;
336 }
337 
338 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
339 			 struct btrfs_space_info *space_info, u64 bytes,
340 			 enum btrfs_reserve_flush_enum flush)
341 {
342 	u64 avail;
343 	u64 used;
344 
345 	/* Don't overcommit when in mixed mode */
346 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
347 		return 0;
348 
349 	used = btrfs_space_info_used(space_info, true);
350 	avail = calc_available_free_space(fs_info, space_info, flush);
351 
352 	if (used + bytes < space_info->total_bytes + avail)
353 		return 1;
354 	return 0;
355 }
356 
357 static void remove_ticket(struct btrfs_space_info *space_info,
358 			  struct reserve_ticket *ticket)
359 {
360 	if (!list_empty(&ticket->list)) {
361 		list_del_init(&ticket->list);
362 		ASSERT(space_info->reclaim_size >= ticket->bytes);
363 		space_info->reclaim_size -= ticket->bytes;
364 	}
365 }
366 
367 /*
368  * This is for space we already have accounted in space_info->bytes_may_use, so
369  * basically when we're returning space from block_rsv's.
370  */
371 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
372 				struct btrfs_space_info *space_info)
373 {
374 	struct list_head *head;
375 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
376 
377 	lockdep_assert_held(&space_info->lock);
378 
379 	head = &space_info->priority_tickets;
380 again:
381 	while (!list_empty(head)) {
382 		struct reserve_ticket *ticket;
383 		u64 used = btrfs_space_info_used(space_info, true);
384 
385 		ticket = list_first_entry(head, struct reserve_ticket, list);
386 
387 		/* Check and see if our ticket can be satisfied now. */
388 		if ((used + ticket->bytes <= space_info->total_bytes) ||
389 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
390 					 flush)) {
391 			btrfs_space_info_update_bytes_may_use(fs_info,
392 							      space_info,
393 							      ticket->bytes);
394 			remove_ticket(space_info, ticket);
395 			ticket->bytes = 0;
396 			space_info->tickets_id++;
397 			wake_up(&ticket->wait);
398 		} else {
399 			break;
400 		}
401 	}
402 
403 	if (head == &space_info->priority_tickets) {
404 		head = &space_info->tickets;
405 		flush = BTRFS_RESERVE_FLUSH_ALL;
406 		goto again;
407 	}
408 }
409 
410 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
411 do {									\
412 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
413 	spin_lock(&__rsv->lock);					\
414 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
415 		   __rsv->size, __rsv->reserved);			\
416 	spin_unlock(&__rsv->lock);					\
417 } while (0)
418 
419 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
420 				    struct btrfs_space_info *info)
421 {
422 	lockdep_assert_held(&info->lock);
423 
424 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
425 		   info->flags,
426 		   info->total_bytes - btrfs_space_info_used(info, true),
427 		   info->full ? "" : "not ");
428 	btrfs_info(fs_info,
429 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
430 		info->total_bytes, info->bytes_used, info->bytes_pinned,
431 		info->bytes_reserved, info->bytes_may_use,
432 		info->bytes_readonly, info->bytes_zone_unusable);
433 
434 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
435 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
436 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
437 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
438 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
439 
440 }
441 
442 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
443 			   struct btrfs_space_info *info, u64 bytes,
444 			   int dump_block_groups)
445 {
446 	struct btrfs_block_group *cache;
447 	int index = 0;
448 
449 	spin_lock(&info->lock);
450 	__btrfs_dump_space_info(fs_info, info);
451 	spin_unlock(&info->lock);
452 
453 	if (!dump_block_groups)
454 		return;
455 
456 	down_read(&info->groups_sem);
457 again:
458 	list_for_each_entry(cache, &info->block_groups[index], list) {
459 		spin_lock(&cache->lock);
460 		btrfs_info(fs_info,
461 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
462 			cache->start, cache->length, cache->used, cache->pinned,
463 			cache->reserved, cache->zone_unusable,
464 			cache->ro ? "[readonly]" : "");
465 		spin_unlock(&cache->lock);
466 		btrfs_dump_free_space(cache, bytes);
467 	}
468 	if (++index < BTRFS_NR_RAID_TYPES)
469 		goto again;
470 	up_read(&info->groups_sem);
471 }
472 
473 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
474 					u64 to_reclaim)
475 {
476 	u64 bytes;
477 	u64 nr;
478 
479 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
480 	nr = div64_u64(to_reclaim, bytes);
481 	if (!nr)
482 		nr = 1;
483 	return nr;
484 }
485 
486 #define EXTENT_SIZE_PER_ITEM	SZ_256K
487 
488 /*
489  * shrink metadata reservation for delalloc
490  */
491 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
492 			    struct btrfs_space_info *space_info,
493 			    u64 to_reclaim, bool wait_ordered,
494 			    bool for_preempt)
495 {
496 	struct btrfs_trans_handle *trans;
497 	u64 delalloc_bytes;
498 	u64 ordered_bytes;
499 	u64 items;
500 	long time_left;
501 	int loops;
502 
503 	/* Calc the number of the pages we need flush for space reservation */
504 	if (to_reclaim == U64_MAX) {
505 		items = U64_MAX;
506 	} else {
507 		/*
508 		 * to_reclaim is set to however much metadata we need to
509 		 * reclaim, but reclaiming that much data doesn't really track
510 		 * exactly, so increase the amount to reclaim by 2x in order to
511 		 * make sure we're flushing enough delalloc to hopefully reclaim
512 		 * some metadata reservations.
513 		 */
514 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
515 		to_reclaim = items * EXTENT_SIZE_PER_ITEM;
516 	}
517 
518 	trans = (struct btrfs_trans_handle *)current->journal_info;
519 
520 	delalloc_bytes = percpu_counter_sum_positive(
521 						&fs_info->delalloc_bytes);
522 	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
523 	if (delalloc_bytes == 0 && ordered_bytes == 0)
524 		return;
525 
526 	/*
527 	 * If we are doing more ordered than delalloc we need to just wait on
528 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
529 	 * that likely won't give us the space back we need.
530 	 */
531 	if (ordered_bytes > delalloc_bytes && !for_preempt)
532 		wait_ordered = true;
533 
534 	loops = 0;
535 	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
536 		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
537 		long nr_pages = min_t(u64, temp, LONG_MAX);
538 
539 		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
540 
541 		loops++;
542 		if (wait_ordered && !trans) {
543 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
544 		} else {
545 			time_left = schedule_timeout_killable(1);
546 			if (time_left)
547 				break;
548 		}
549 
550 		/*
551 		 * If we are for preemption we just want a one-shot of delalloc
552 		 * flushing so we can stop flushing if we decide we don't need
553 		 * to anymore.
554 		 */
555 		if (for_preempt)
556 			break;
557 
558 		spin_lock(&space_info->lock);
559 		if (list_empty(&space_info->tickets) &&
560 		    list_empty(&space_info->priority_tickets)) {
561 			spin_unlock(&space_info->lock);
562 			break;
563 		}
564 		spin_unlock(&space_info->lock);
565 
566 		delalloc_bytes = percpu_counter_sum_positive(
567 						&fs_info->delalloc_bytes);
568 		ordered_bytes = percpu_counter_sum_positive(
569 						&fs_info->ordered_bytes);
570 	}
571 }
572 
573 /*
574  * Try to flush some data based on policy set by @state. This is only advisory
575  * and may fail for various reasons. The caller is supposed to examine the
576  * state of @space_info to detect the outcome.
577  */
578 static void flush_space(struct btrfs_fs_info *fs_info,
579 		       struct btrfs_space_info *space_info, u64 num_bytes,
580 		       enum btrfs_flush_state state, bool for_preempt)
581 {
582 	struct btrfs_root *root = fs_info->extent_root;
583 	struct btrfs_trans_handle *trans;
584 	int nr;
585 	int ret = 0;
586 
587 	switch (state) {
588 	case FLUSH_DELAYED_ITEMS_NR:
589 	case FLUSH_DELAYED_ITEMS:
590 		if (state == FLUSH_DELAYED_ITEMS_NR)
591 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
592 		else
593 			nr = -1;
594 
595 		trans = btrfs_join_transaction(root);
596 		if (IS_ERR(trans)) {
597 			ret = PTR_ERR(trans);
598 			break;
599 		}
600 		ret = btrfs_run_delayed_items_nr(trans, nr);
601 		btrfs_end_transaction(trans);
602 		break;
603 	case FLUSH_DELALLOC:
604 	case FLUSH_DELALLOC_WAIT:
605 		shrink_delalloc(fs_info, space_info, num_bytes,
606 				state == FLUSH_DELALLOC_WAIT, for_preempt);
607 		break;
608 	case FLUSH_DELAYED_REFS_NR:
609 	case FLUSH_DELAYED_REFS:
610 		trans = btrfs_join_transaction(root);
611 		if (IS_ERR(trans)) {
612 			ret = PTR_ERR(trans);
613 			break;
614 		}
615 		if (state == FLUSH_DELAYED_REFS_NR)
616 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
617 		else
618 			nr = 0;
619 		btrfs_run_delayed_refs(trans, nr);
620 		btrfs_end_transaction(trans);
621 		break;
622 	case ALLOC_CHUNK:
623 	case ALLOC_CHUNK_FORCE:
624 		trans = btrfs_join_transaction(root);
625 		if (IS_ERR(trans)) {
626 			ret = PTR_ERR(trans);
627 			break;
628 		}
629 		ret = btrfs_chunk_alloc(trans,
630 				btrfs_get_alloc_profile(fs_info, space_info->flags),
631 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
632 					CHUNK_ALLOC_FORCE);
633 		btrfs_end_transaction(trans);
634 		if (ret > 0 || ret == -ENOSPC)
635 			ret = 0;
636 		break;
637 	case RUN_DELAYED_IPUTS:
638 		/*
639 		 * If we have pending delayed iputs then we could free up a
640 		 * bunch of pinned space, so make sure we run the iputs before
641 		 * we do our pinned bytes check below.
642 		 */
643 		btrfs_run_delayed_iputs(fs_info);
644 		btrfs_wait_on_delayed_iputs(fs_info);
645 		break;
646 	case COMMIT_TRANS:
647 		ASSERT(current->journal_info == NULL);
648 		trans = btrfs_join_transaction(root);
649 		if (IS_ERR(trans)) {
650 			ret = PTR_ERR(trans);
651 			break;
652 		}
653 		ret = btrfs_commit_transaction(trans);
654 		break;
655 	default:
656 		ret = -ENOSPC;
657 		break;
658 	}
659 
660 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
661 				ret, for_preempt);
662 	return;
663 }
664 
665 static inline u64
666 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
667 				 struct btrfs_space_info *space_info)
668 {
669 	u64 used;
670 	u64 avail;
671 	u64 to_reclaim = space_info->reclaim_size;
672 
673 	lockdep_assert_held(&space_info->lock);
674 
675 	avail = calc_available_free_space(fs_info, space_info,
676 					  BTRFS_RESERVE_FLUSH_ALL);
677 	used = btrfs_space_info_used(space_info, true);
678 
679 	/*
680 	 * We may be flushing because suddenly we have less space than we had
681 	 * before, and now we're well over-committed based on our current free
682 	 * space.  If that's the case add in our overage so we make sure to put
683 	 * appropriate pressure on the flushing state machine.
684 	 */
685 	if (space_info->total_bytes + avail < used)
686 		to_reclaim += used - (space_info->total_bytes + avail);
687 
688 	return to_reclaim;
689 }
690 
691 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
692 				    struct btrfs_space_info *space_info)
693 {
694 	u64 global_rsv_size = fs_info->global_block_rsv.reserved;
695 	u64 ordered, delalloc;
696 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
697 	u64 used;
698 
699 	/* If we're just plain full then async reclaim just slows us down. */
700 	if ((space_info->bytes_used + space_info->bytes_reserved +
701 	     global_rsv_size) >= thresh)
702 		return false;
703 
704 	/*
705 	 * We have tickets queued, bail so we don't compete with the async
706 	 * flushers.
707 	 */
708 	if (space_info->reclaim_size)
709 		return false;
710 
711 	/*
712 	 * If we have over half of the free space occupied by reservations or
713 	 * pinned then we want to start flushing.
714 	 *
715 	 * We do not do the traditional thing here, which is to say
716 	 *
717 	 *   if (used >= ((total_bytes + avail) / 2))
718 	 *     return 1;
719 	 *
720 	 * because this doesn't quite work how we want.  If we had more than 50%
721 	 * of the space_info used by bytes_used and we had 0 available we'd just
722 	 * constantly run the background flusher.  Instead we want it to kick in
723 	 * if our reclaimable space exceeds our clamped free space.
724 	 *
725 	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
726 	 * the following:
727 	 *
728 	 * Amount of RAM        Minimum threshold       Maximum threshold
729 	 *
730 	 *        256GiB                     1GiB                  128GiB
731 	 *        128GiB                   512MiB                   64GiB
732 	 *         64GiB                   256MiB                   32GiB
733 	 *         32GiB                   128MiB                   16GiB
734 	 *         16GiB                    64MiB                    8GiB
735 	 *
736 	 * These are the range our thresholds will fall in, corresponding to how
737 	 * much delalloc we need for the background flusher to kick in.
738 	 */
739 
740 	thresh = calc_available_free_space(fs_info, space_info,
741 					   BTRFS_RESERVE_FLUSH_ALL);
742 	used = space_info->bytes_used + space_info->bytes_reserved +
743 	       space_info->bytes_readonly + global_rsv_size;
744 	if (used < space_info->total_bytes)
745 		thresh += space_info->total_bytes - used;
746 	thresh >>= space_info->clamp;
747 
748 	used = space_info->bytes_pinned;
749 
750 	/*
751 	 * If we have more ordered bytes than delalloc bytes then we're either
752 	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
753 	 * around.  Preemptive flushing is only useful in that it can free up
754 	 * space before tickets need to wait for things to finish.  In the case
755 	 * of ordered extents, preemptively waiting on ordered extents gets us
756 	 * nothing, if our reservations are tied up in ordered extents we'll
757 	 * simply have to slow down writers by forcing them to wait on ordered
758 	 * extents.
759 	 *
760 	 * In the case that ordered is larger than delalloc, only include the
761 	 * block reserves that we would actually be able to directly reclaim
762 	 * from.  In this case if we're heavy on metadata operations this will
763 	 * clearly be heavy enough to warrant preemptive flushing.  In the case
764 	 * of heavy DIO or ordered reservations, preemptive flushing will just
765 	 * waste time and cause us to slow down.
766 	 *
767 	 * We want to make sure we truly are maxed out on ordered however, so
768 	 * cut ordered in half, and if it's still higher than delalloc then we
769 	 * can keep flushing.  This is to avoid the case where we start
770 	 * flushing, and now delalloc == ordered and we stop preemptively
771 	 * flushing when we could still have several gigs of delalloc to flush.
772 	 */
773 	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
774 	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
775 	if (ordered >= delalloc)
776 		used += fs_info->delayed_refs_rsv.reserved +
777 			fs_info->delayed_block_rsv.reserved;
778 	else
779 		used += space_info->bytes_may_use - global_rsv_size;
780 
781 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
782 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
783 }
784 
785 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
786 				  struct btrfs_space_info *space_info,
787 				  struct reserve_ticket *ticket)
788 {
789 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
790 	u64 min_bytes;
791 
792 	if (global_rsv->space_info != space_info)
793 		return false;
794 
795 	spin_lock(&global_rsv->lock);
796 	min_bytes = div_factor(global_rsv->size, 1);
797 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
798 		spin_unlock(&global_rsv->lock);
799 		return false;
800 	}
801 	global_rsv->reserved -= ticket->bytes;
802 	remove_ticket(space_info, ticket);
803 	ticket->bytes = 0;
804 	wake_up(&ticket->wait);
805 	space_info->tickets_id++;
806 	if (global_rsv->reserved < global_rsv->size)
807 		global_rsv->full = 0;
808 	spin_unlock(&global_rsv->lock);
809 
810 	return true;
811 }
812 
813 /*
814  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
815  * @fs_info - fs_info for this fs
816  * @space_info - the space info we were flushing
817  *
818  * We call this when we've exhausted our flushing ability and haven't made
819  * progress in satisfying tickets.  The reservation code handles tickets in
820  * order, so if there is a large ticket first and then smaller ones we could
821  * very well satisfy the smaller tickets.  This will attempt to wake up any
822  * tickets in the list to catch this case.
823  *
824  * This function returns true if it was able to make progress by clearing out
825  * other tickets, or if it stumbles across a ticket that was smaller than the
826  * first ticket.
827  */
828 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
829 				   struct btrfs_space_info *space_info)
830 {
831 	struct reserve_ticket *ticket;
832 	u64 tickets_id = space_info->tickets_id;
833 	u64 first_ticket_bytes = 0;
834 
835 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
836 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
837 		__btrfs_dump_space_info(fs_info, space_info);
838 	}
839 
840 	while (!list_empty(&space_info->tickets) &&
841 	       tickets_id == space_info->tickets_id) {
842 		ticket = list_first_entry(&space_info->tickets,
843 					  struct reserve_ticket, list);
844 
845 		if (ticket->steal &&
846 		    steal_from_global_rsv(fs_info, space_info, ticket))
847 			return true;
848 
849 		/*
850 		 * may_commit_transaction will avoid committing the transaction
851 		 * if it doesn't feel like the space reclaimed by the commit
852 		 * would result in the ticket succeeding.  However if we have a
853 		 * smaller ticket in the queue it may be small enough to be
854 		 * satisfied by committing the transaction, so if any
855 		 * subsequent ticket is smaller than the first ticket go ahead
856 		 * and send us back for another loop through the enospc flushing
857 		 * code.
858 		 */
859 		if (first_ticket_bytes == 0)
860 			first_ticket_bytes = ticket->bytes;
861 		else if (first_ticket_bytes > ticket->bytes)
862 			return true;
863 
864 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
865 			btrfs_info(fs_info, "failing ticket with %llu bytes",
866 				   ticket->bytes);
867 
868 		remove_ticket(space_info, ticket);
869 		ticket->error = -ENOSPC;
870 		wake_up(&ticket->wait);
871 
872 		/*
873 		 * We're just throwing tickets away, so more flushing may not
874 		 * trip over btrfs_try_granting_tickets, so we need to call it
875 		 * here to see if we can make progress with the next ticket in
876 		 * the list.
877 		 */
878 		btrfs_try_granting_tickets(fs_info, space_info);
879 	}
880 	return (tickets_id != space_info->tickets_id);
881 }
882 
883 /*
884  * This is for normal flushers, we can wait all goddamned day if we want to.  We
885  * will loop and continuously try to flush as long as we are making progress.
886  * We count progress as clearing off tickets each time we have to loop.
887  */
888 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
889 {
890 	struct btrfs_fs_info *fs_info;
891 	struct btrfs_space_info *space_info;
892 	u64 to_reclaim;
893 	enum btrfs_flush_state flush_state;
894 	int commit_cycles = 0;
895 	u64 last_tickets_id;
896 
897 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
898 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
899 
900 	spin_lock(&space_info->lock);
901 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
902 	if (!to_reclaim) {
903 		space_info->flush = 0;
904 		spin_unlock(&space_info->lock);
905 		return;
906 	}
907 	last_tickets_id = space_info->tickets_id;
908 	spin_unlock(&space_info->lock);
909 
910 	flush_state = FLUSH_DELAYED_ITEMS_NR;
911 	do {
912 		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
913 		spin_lock(&space_info->lock);
914 		if (list_empty(&space_info->tickets)) {
915 			space_info->flush = 0;
916 			spin_unlock(&space_info->lock);
917 			return;
918 		}
919 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
920 							      space_info);
921 		if (last_tickets_id == space_info->tickets_id) {
922 			flush_state++;
923 		} else {
924 			last_tickets_id = space_info->tickets_id;
925 			flush_state = FLUSH_DELAYED_ITEMS_NR;
926 			if (commit_cycles)
927 				commit_cycles--;
928 		}
929 
930 		/*
931 		 * We don't want to force a chunk allocation until we've tried
932 		 * pretty hard to reclaim space.  Think of the case where we
933 		 * freed up a bunch of space and so have a lot of pinned space
934 		 * to reclaim.  We would rather use that than possibly create a
935 		 * underutilized metadata chunk.  So if this is our first run
936 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
937 		 * commit the transaction.  If nothing has changed the next go
938 		 * around then we can force a chunk allocation.
939 		 */
940 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
941 			flush_state++;
942 
943 		if (flush_state > COMMIT_TRANS) {
944 			commit_cycles++;
945 			if (commit_cycles > 2) {
946 				if (maybe_fail_all_tickets(fs_info, space_info)) {
947 					flush_state = FLUSH_DELAYED_ITEMS_NR;
948 					commit_cycles--;
949 				} else {
950 					space_info->flush = 0;
951 				}
952 			} else {
953 				flush_state = FLUSH_DELAYED_ITEMS_NR;
954 			}
955 		}
956 		spin_unlock(&space_info->lock);
957 	} while (flush_state <= COMMIT_TRANS);
958 }
959 
960 /*
961  * This handles pre-flushing of metadata space before we get to the point that
962  * we need to start blocking threads on tickets.  The logic here is different
963  * from the other flush paths because it doesn't rely on tickets to tell us how
964  * much we need to flush, instead it attempts to keep us below the 80% full
965  * watermark of space by flushing whichever reservation pool is currently the
966  * largest.
967  */
968 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
969 {
970 	struct btrfs_fs_info *fs_info;
971 	struct btrfs_space_info *space_info;
972 	struct btrfs_block_rsv *delayed_block_rsv;
973 	struct btrfs_block_rsv *delayed_refs_rsv;
974 	struct btrfs_block_rsv *global_rsv;
975 	struct btrfs_block_rsv *trans_rsv;
976 	int loops = 0;
977 
978 	fs_info = container_of(work, struct btrfs_fs_info,
979 			       preempt_reclaim_work);
980 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
981 	delayed_block_rsv = &fs_info->delayed_block_rsv;
982 	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
983 	global_rsv = &fs_info->global_block_rsv;
984 	trans_rsv = &fs_info->trans_block_rsv;
985 
986 	spin_lock(&space_info->lock);
987 	while (need_preemptive_reclaim(fs_info, space_info)) {
988 		enum btrfs_flush_state flush;
989 		u64 delalloc_size = 0;
990 		u64 to_reclaim, block_rsv_size;
991 		u64 global_rsv_size = global_rsv->reserved;
992 
993 		loops++;
994 
995 		/*
996 		 * We don't have a precise counter for the metadata being
997 		 * reserved for delalloc, so we'll approximate it by subtracting
998 		 * out the block rsv's space from the bytes_may_use.  If that
999 		 * amount is higher than the individual reserves, then we can
1000 		 * assume it's tied up in delalloc reservations.
1001 		 */
1002 		block_rsv_size = global_rsv_size +
1003 			delayed_block_rsv->reserved +
1004 			delayed_refs_rsv->reserved +
1005 			trans_rsv->reserved;
1006 		if (block_rsv_size < space_info->bytes_may_use)
1007 			delalloc_size = space_info->bytes_may_use - block_rsv_size;
1008 		spin_unlock(&space_info->lock);
1009 
1010 		/*
1011 		 * We don't want to include the global_rsv in our calculation,
1012 		 * because that's space we can't touch.  Subtract it from the
1013 		 * block_rsv_size for the next checks.
1014 		 */
1015 		block_rsv_size -= global_rsv_size;
1016 
1017 		/*
1018 		 * We really want to avoid flushing delalloc too much, as it
1019 		 * could result in poor allocation patterns, so only flush it if
1020 		 * it's larger than the rest of the pools combined.
1021 		 */
1022 		if (delalloc_size > block_rsv_size) {
1023 			to_reclaim = delalloc_size;
1024 			flush = FLUSH_DELALLOC;
1025 		} else if (space_info->bytes_pinned >
1026 			   (delayed_block_rsv->reserved +
1027 			    delayed_refs_rsv->reserved)) {
1028 			to_reclaim = space_info->bytes_pinned;
1029 			flush = COMMIT_TRANS;
1030 		} else if (delayed_block_rsv->reserved >
1031 			   delayed_refs_rsv->reserved) {
1032 			to_reclaim = delayed_block_rsv->reserved;
1033 			flush = FLUSH_DELAYED_ITEMS_NR;
1034 		} else {
1035 			to_reclaim = delayed_refs_rsv->reserved;
1036 			flush = FLUSH_DELAYED_REFS_NR;
1037 		}
1038 
1039 		/*
1040 		 * We don't want to reclaim everything, just a portion, so scale
1041 		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1042 		 * reclaim 1 items worth.
1043 		 */
1044 		to_reclaim >>= 2;
1045 		if (!to_reclaim)
1046 			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1047 		flush_space(fs_info, space_info, to_reclaim, flush, true);
1048 		cond_resched();
1049 		spin_lock(&space_info->lock);
1050 	}
1051 
1052 	/* We only went through once, back off our clamping. */
1053 	if (loops == 1 && !space_info->reclaim_size)
1054 		space_info->clamp = max(1, space_info->clamp - 1);
1055 	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1056 	spin_unlock(&space_info->lock);
1057 }
1058 
1059 /*
1060  * FLUSH_DELALLOC_WAIT:
1061  *   Space is freed from flushing delalloc in one of two ways.
1062  *
1063  *   1) compression is on and we allocate less space than we reserved
1064  *   2) we are overwriting existing space
1065  *
1066  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1067  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1068  *   length to ->bytes_reserved, and subtracts the reserved space from
1069  *   ->bytes_may_use.
1070  *
1071  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1072  *   extent in the range we are overwriting, which creates a delayed ref for
1073  *   that freed extent.  This however is not reclaimed until the transaction
1074  *   commits, thus the next stages.
1075  *
1076  * RUN_DELAYED_IPUTS
1077  *   If we are freeing inodes, we want to make sure all delayed iputs have
1078  *   completed, because they could have been on an inode with i_nlink == 0, and
1079  *   thus have been truncated and freed up space.  But again this space is not
1080  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1081  *   run and then the transaction must be committed.
1082  *
1083  * FLUSH_DELAYED_REFS
1084  *   The above two cases generate delayed refs that will affect
1085  *   ->total_bytes_pinned.  However this counter can be inconsistent with
1086  *   reality if there are outstanding delayed refs.  This is because we adjust
1087  *   the counter based solely on the current set of delayed refs and disregard
1088  *   any on-disk state which might include more refs.  So for example, if we
1089  *   have an extent with 2 references, but we only drop 1, we'll see that there
1090  *   is a negative delayed ref count for the extent and assume that the space
1091  *   will be freed, and thus increase ->total_bytes_pinned.
1092  *
1093  *   Running the delayed refs gives us the actual real view of what will be
1094  *   freed at the transaction commit time.  This stage will not actually free
1095  *   space for us, it just makes sure that may_commit_transaction() has all of
1096  *   the information it needs to make the right decision.
1097  *
1098  * COMMIT_TRANS
1099  *   This is where we reclaim all of the pinned space generated by running the
1100  *   iputs
1101  *
1102  * ALLOC_CHUNK_FORCE
1103  *   For data we start with alloc chunk force, however we could have been full
1104  *   before, and then the transaction commit could have freed new block groups,
1105  *   so if we now have space to allocate do the force chunk allocation.
1106  */
1107 static const enum btrfs_flush_state data_flush_states[] = {
1108 	FLUSH_DELALLOC_WAIT,
1109 	RUN_DELAYED_IPUTS,
1110 	FLUSH_DELAYED_REFS,
1111 	COMMIT_TRANS,
1112 	ALLOC_CHUNK_FORCE,
1113 };
1114 
1115 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1116 {
1117 	struct btrfs_fs_info *fs_info;
1118 	struct btrfs_space_info *space_info;
1119 	u64 last_tickets_id;
1120 	enum btrfs_flush_state flush_state = 0;
1121 
1122 	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1123 	space_info = fs_info->data_sinfo;
1124 
1125 	spin_lock(&space_info->lock);
1126 	if (list_empty(&space_info->tickets)) {
1127 		space_info->flush = 0;
1128 		spin_unlock(&space_info->lock);
1129 		return;
1130 	}
1131 	last_tickets_id = space_info->tickets_id;
1132 	spin_unlock(&space_info->lock);
1133 
1134 	while (!space_info->full) {
1135 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1136 		spin_lock(&space_info->lock);
1137 		if (list_empty(&space_info->tickets)) {
1138 			space_info->flush = 0;
1139 			spin_unlock(&space_info->lock);
1140 			return;
1141 		}
1142 		last_tickets_id = space_info->tickets_id;
1143 		spin_unlock(&space_info->lock);
1144 	}
1145 
1146 	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1147 		flush_space(fs_info, space_info, U64_MAX,
1148 			    data_flush_states[flush_state], false);
1149 		spin_lock(&space_info->lock);
1150 		if (list_empty(&space_info->tickets)) {
1151 			space_info->flush = 0;
1152 			spin_unlock(&space_info->lock);
1153 			return;
1154 		}
1155 
1156 		if (last_tickets_id == space_info->tickets_id) {
1157 			flush_state++;
1158 		} else {
1159 			last_tickets_id = space_info->tickets_id;
1160 			flush_state = 0;
1161 		}
1162 
1163 		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1164 			if (space_info->full) {
1165 				if (maybe_fail_all_tickets(fs_info, space_info))
1166 					flush_state = 0;
1167 				else
1168 					space_info->flush = 0;
1169 			} else {
1170 				flush_state = 0;
1171 			}
1172 		}
1173 		spin_unlock(&space_info->lock);
1174 	}
1175 }
1176 
1177 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1178 {
1179 	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1180 	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1181 	INIT_WORK(&fs_info->preempt_reclaim_work,
1182 		  btrfs_preempt_reclaim_metadata_space);
1183 }
1184 
1185 static const enum btrfs_flush_state priority_flush_states[] = {
1186 	FLUSH_DELAYED_ITEMS_NR,
1187 	FLUSH_DELAYED_ITEMS,
1188 	ALLOC_CHUNK,
1189 };
1190 
1191 static const enum btrfs_flush_state evict_flush_states[] = {
1192 	FLUSH_DELAYED_ITEMS_NR,
1193 	FLUSH_DELAYED_ITEMS,
1194 	FLUSH_DELAYED_REFS_NR,
1195 	FLUSH_DELAYED_REFS,
1196 	FLUSH_DELALLOC,
1197 	FLUSH_DELALLOC_WAIT,
1198 	ALLOC_CHUNK,
1199 	COMMIT_TRANS,
1200 };
1201 
1202 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1203 				struct btrfs_space_info *space_info,
1204 				struct reserve_ticket *ticket,
1205 				const enum btrfs_flush_state *states,
1206 				int states_nr)
1207 {
1208 	u64 to_reclaim;
1209 	int flush_state;
1210 
1211 	spin_lock(&space_info->lock);
1212 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1213 	if (!to_reclaim) {
1214 		spin_unlock(&space_info->lock);
1215 		return;
1216 	}
1217 	spin_unlock(&space_info->lock);
1218 
1219 	flush_state = 0;
1220 	do {
1221 		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1222 			    false);
1223 		flush_state++;
1224 		spin_lock(&space_info->lock);
1225 		if (ticket->bytes == 0) {
1226 			spin_unlock(&space_info->lock);
1227 			return;
1228 		}
1229 		spin_unlock(&space_info->lock);
1230 	} while (flush_state < states_nr);
1231 }
1232 
1233 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1234 					struct btrfs_space_info *space_info,
1235 					struct reserve_ticket *ticket)
1236 {
1237 	while (!space_info->full) {
1238 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1239 		spin_lock(&space_info->lock);
1240 		if (ticket->bytes == 0) {
1241 			spin_unlock(&space_info->lock);
1242 			return;
1243 		}
1244 		spin_unlock(&space_info->lock);
1245 	}
1246 }
1247 
1248 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1249 				struct btrfs_space_info *space_info,
1250 				struct reserve_ticket *ticket)
1251 
1252 {
1253 	DEFINE_WAIT(wait);
1254 	int ret = 0;
1255 
1256 	spin_lock(&space_info->lock);
1257 	while (ticket->bytes > 0 && ticket->error == 0) {
1258 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1259 		if (ret) {
1260 			/*
1261 			 * Delete us from the list. After we unlock the space
1262 			 * info, we don't want the async reclaim job to reserve
1263 			 * space for this ticket. If that would happen, then the
1264 			 * ticket's task would not known that space was reserved
1265 			 * despite getting an error, resulting in a space leak
1266 			 * (bytes_may_use counter of our space_info).
1267 			 */
1268 			remove_ticket(space_info, ticket);
1269 			ticket->error = -EINTR;
1270 			break;
1271 		}
1272 		spin_unlock(&space_info->lock);
1273 
1274 		schedule();
1275 
1276 		finish_wait(&ticket->wait, &wait);
1277 		spin_lock(&space_info->lock);
1278 	}
1279 	spin_unlock(&space_info->lock);
1280 }
1281 
1282 /**
1283  * Do the appropriate flushing and waiting for a ticket
1284  *
1285  * @fs_info:    the filesystem
1286  * @space_info: space info for the reservation
1287  * @ticket:     ticket for the reservation
1288  * @start_ns:   timestamp when the reservation started
1289  * @orig_bytes: amount of bytes originally reserved
1290  * @flush:      how much we can flush
1291  *
1292  * This does the work of figuring out how to flush for the ticket, waiting for
1293  * the reservation, and returning the appropriate error if there is one.
1294  */
1295 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1296 				 struct btrfs_space_info *space_info,
1297 				 struct reserve_ticket *ticket,
1298 				 u64 start_ns, u64 orig_bytes,
1299 				 enum btrfs_reserve_flush_enum flush)
1300 {
1301 	int ret;
1302 
1303 	switch (flush) {
1304 	case BTRFS_RESERVE_FLUSH_DATA:
1305 	case BTRFS_RESERVE_FLUSH_ALL:
1306 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1307 		wait_reserve_ticket(fs_info, space_info, ticket);
1308 		break;
1309 	case BTRFS_RESERVE_FLUSH_LIMIT:
1310 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1311 						priority_flush_states,
1312 						ARRAY_SIZE(priority_flush_states));
1313 		break;
1314 	case BTRFS_RESERVE_FLUSH_EVICT:
1315 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1316 						evict_flush_states,
1317 						ARRAY_SIZE(evict_flush_states));
1318 		break;
1319 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1320 		priority_reclaim_data_space(fs_info, space_info, ticket);
1321 		break;
1322 	default:
1323 		ASSERT(0);
1324 		break;
1325 	}
1326 
1327 	spin_lock(&space_info->lock);
1328 	ret = ticket->error;
1329 	if (ticket->bytes || ticket->error) {
1330 		/*
1331 		 * We were a priority ticket, so we need to delete ourselves
1332 		 * from the list.  Because we could have other priority tickets
1333 		 * behind us that require less space, run
1334 		 * btrfs_try_granting_tickets() to see if their reservations can
1335 		 * now be made.
1336 		 */
1337 		if (!list_empty(&ticket->list)) {
1338 			remove_ticket(space_info, ticket);
1339 			btrfs_try_granting_tickets(fs_info, space_info);
1340 		}
1341 
1342 		if (!ret)
1343 			ret = -ENOSPC;
1344 	}
1345 	spin_unlock(&space_info->lock);
1346 	ASSERT(list_empty(&ticket->list));
1347 	/*
1348 	 * Check that we can't have an error set if the reservation succeeded,
1349 	 * as that would confuse tasks and lead them to error out without
1350 	 * releasing reserved space (if an error happens the expectation is that
1351 	 * space wasn't reserved at all).
1352 	 */
1353 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1354 	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1355 				   start_ns, flush, ticket->error);
1356 	return ret;
1357 }
1358 
1359 /*
1360  * This returns true if this flush state will go through the ordinary flushing
1361  * code.
1362  */
1363 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1364 {
1365 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1366 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1367 }
1368 
1369 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1370 				       struct btrfs_space_info *space_info)
1371 {
1372 	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1373 	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1374 
1375 	/*
1376 	 * If we're heavy on ordered operations then clamping won't help us.  We
1377 	 * need to clamp specifically to keep up with dirty'ing buffered
1378 	 * writers, because there's not a 1:1 correlation of writing delalloc
1379 	 * and freeing space, like there is with flushing delayed refs or
1380 	 * delayed nodes.  If we're already more ordered than delalloc then
1381 	 * we're keeping up, otherwise we aren't and should probably clamp.
1382 	 */
1383 	if (ordered < delalloc)
1384 		space_info->clamp = min(space_info->clamp + 1, 8);
1385 }
1386 
1387 /**
1388  * Try to reserve bytes from the block_rsv's space
1389  *
1390  * @fs_info:    the filesystem
1391  * @space_info: space info we want to allocate from
1392  * @orig_bytes: number of bytes we want
1393  * @flush:      whether or not we can flush to make our reservation
1394  *
1395  * This will reserve orig_bytes number of bytes from the space info associated
1396  * with the block_rsv.  If there is not enough space it will make an attempt to
1397  * flush out space to make room.  It will do this by flushing delalloc if
1398  * possible or committing the transaction.  If flush is 0 then no attempts to
1399  * regain reservations will be made and this will fail if there is not enough
1400  * space already.
1401  */
1402 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1403 			   struct btrfs_space_info *space_info, u64 orig_bytes,
1404 			   enum btrfs_reserve_flush_enum flush)
1405 {
1406 	struct work_struct *async_work;
1407 	struct reserve_ticket ticket;
1408 	u64 start_ns = 0;
1409 	u64 used;
1410 	int ret = 0;
1411 	bool pending_tickets;
1412 
1413 	ASSERT(orig_bytes);
1414 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1415 
1416 	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1417 		async_work = &fs_info->async_data_reclaim_work;
1418 	else
1419 		async_work = &fs_info->async_reclaim_work;
1420 
1421 	spin_lock(&space_info->lock);
1422 	ret = -ENOSPC;
1423 	used = btrfs_space_info_used(space_info, true);
1424 
1425 	/*
1426 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1427 	 * generally handle ENOSPC in a different way, so treat them the same as
1428 	 * normal flushers when it comes to skipping pending tickets.
1429 	 */
1430 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1431 		pending_tickets = !list_empty(&space_info->tickets) ||
1432 			!list_empty(&space_info->priority_tickets);
1433 	else
1434 		pending_tickets = !list_empty(&space_info->priority_tickets);
1435 
1436 	/*
1437 	 * Carry on if we have enough space (short-circuit) OR call
1438 	 * can_overcommit() to ensure we can overcommit to continue.
1439 	 */
1440 	if (!pending_tickets &&
1441 	    ((used + orig_bytes <= space_info->total_bytes) ||
1442 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1443 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1444 						      orig_bytes);
1445 		ret = 0;
1446 	}
1447 
1448 	/*
1449 	 * If we couldn't make a reservation then setup our reservation ticket
1450 	 * and kick the async worker if it's not already running.
1451 	 *
1452 	 * If we are a priority flusher then we just need to add our ticket to
1453 	 * the list and we will do our own flushing further down.
1454 	 */
1455 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1456 		ticket.bytes = orig_bytes;
1457 		ticket.error = 0;
1458 		space_info->reclaim_size += ticket.bytes;
1459 		init_waitqueue_head(&ticket.wait);
1460 		ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1461 		if (trace_btrfs_reserve_ticket_enabled())
1462 			start_ns = ktime_get_ns();
1463 
1464 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1465 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1466 		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1467 			list_add_tail(&ticket.list, &space_info->tickets);
1468 			if (!space_info->flush) {
1469 				/*
1470 				 * We were forced to add a reserve ticket, so
1471 				 * our preemptive flushing is unable to keep
1472 				 * up.  Clamp down on the threshold for the
1473 				 * preemptive flushing in order to keep up with
1474 				 * the workload.
1475 				 */
1476 				maybe_clamp_preempt(fs_info, space_info);
1477 
1478 				space_info->flush = 1;
1479 				trace_btrfs_trigger_flush(fs_info,
1480 							  space_info->flags,
1481 							  orig_bytes, flush,
1482 							  "enospc");
1483 				queue_work(system_unbound_wq, async_work);
1484 			}
1485 		} else {
1486 			list_add_tail(&ticket.list,
1487 				      &space_info->priority_tickets);
1488 		}
1489 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1490 		used += orig_bytes;
1491 		/*
1492 		 * We will do the space reservation dance during log replay,
1493 		 * which means we won't have fs_info->fs_root set, so don't do
1494 		 * the async reclaim as we will panic.
1495 		 */
1496 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1497 		    !work_busy(&fs_info->preempt_reclaim_work) &&
1498 		    need_preemptive_reclaim(fs_info, space_info)) {
1499 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1500 						  orig_bytes, flush, "preempt");
1501 			queue_work(system_unbound_wq,
1502 				   &fs_info->preempt_reclaim_work);
1503 		}
1504 	}
1505 	spin_unlock(&space_info->lock);
1506 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1507 		return ret;
1508 
1509 	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1510 				     orig_bytes, flush);
1511 }
1512 
1513 /**
1514  * Trye to reserve metadata bytes from the block_rsv's space
1515  *
1516  * @root:       the root we're allocating for
1517  * @block_rsv:  block_rsv we're allocating for
1518  * @orig_bytes: number of bytes we want
1519  * @flush:      whether or not we can flush to make our reservation
1520  *
1521  * This will reserve orig_bytes number of bytes from the space info associated
1522  * with the block_rsv.  If there is not enough space it will make an attempt to
1523  * flush out space to make room.  It will do this by flushing delalloc if
1524  * possible or committing the transaction.  If flush is 0 then no attempts to
1525  * regain reservations will be made and this will fail if there is not enough
1526  * space already.
1527  */
1528 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1529 				 struct btrfs_block_rsv *block_rsv,
1530 				 u64 orig_bytes,
1531 				 enum btrfs_reserve_flush_enum flush)
1532 {
1533 	struct btrfs_fs_info *fs_info = root->fs_info;
1534 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1535 	int ret;
1536 
1537 	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1538 	if (ret == -ENOSPC &&
1539 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1540 		if (block_rsv != global_rsv &&
1541 		    !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1542 			ret = 0;
1543 	}
1544 	if (ret == -ENOSPC) {
1545 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1546 					      block_rsv->space_info->flags,
1547 					      orig_bytes, 1);
1548 
1549 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1550 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1551 					      orig_bytes, 0);
1552 	}
1553 	return ret;
1554 }
1555 
1556 /**
1557  * Try to reserve data bytes for an allocation
1558  *
1559  * @fs_info: the filesystem
1560  * @bytes:   number of bytes we need
1561  * @flush:   how we are allowed to flush
1562  *
1563  * This will reserve bytes from the data space info.  If there is not enough
1564  * space then we will attempt to flush space as specified by flush.
1565  */
1566 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1567 			     enum btrfs_reserve_flush_enum flush)
1568 {
1569 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1570 	int ret;
1571 
1572 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1573 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1574 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1575 
1576 	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1577 	if (ret == -ENOSPC) {
1578 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1579 					      data_sinfo->flags, bytes, 1);
1580 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1581 			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1582 	}
1583 	return ret;
1584 }
1585