xref: /openbmc/linux/fs/btrfs/space-info.c (revision c0c45238)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     This will commit the transaction.  Historically we had a lot of logic
137  *     surrounding whether or not we'd commit the transaction, but this waits born
138  *     out of a pre-tickets era where we could end up committing the transaction
139  *     thousands of times in a row without making progress.  Now thanks to our
140  *     ticketing system we know if we're not making progress and can error
141  *     everybody out after a few commits rather than burning the disk hoping for
142  *     a different answer.
143  *
144  * OVERCOMMIT
145  *
146  *   Because we hold so many reservations for metadata we will allow you to
147  *   reserve more space than is currently free in the currently allocate
148  *   metadata space.  This only happens with metadata, data does not allow
149  *   overcommitting.
150  *
151  *   You can see the current logic for when we allow overcommit in
152  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
153  *   is no unallocated space to be had, all reservations are kept within the
154  *   free space in the allocated metadata chunks.
155  *
156  *   Because of overcommitting, you generally want to use the
157  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
158  *   thing with or without extra unallocated space.
159  */
160 
161 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
162 			  bool may_use_included)
163 {
164 	ASSERT(s_info);
165 	return s_info->bytes_used + s_info->bytes_reserved +
166 		s_info->bytes_pinned + s_info->bytes_readonly +
167 		s_info->bytes_zone_unusable +
168 		(may_use_included ? s_info->bytes_may_use : 0);
169 }
170 
171 /*
172  * after adding space to the filesystem, we need to clear the full flags
173  * on all the space infos.
174  */
175 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
176 {
177 	struct list_head *head = &info->space_info;
178 	struct btrfs_space_info *found;
179 
180 	list_for_each_entry(found, head, list)
181 		found->full = 0;
182 }
183 
184 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
185 {
186 
187 	struct btrfs_space_info *space_info;
188 	int i;
189 	int ret;
190 
191 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
192 	if (!space_info)
193 		return -ENOMEM;
194 
195 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
196 		INIT_LIST_HEAD(&space_info->block_groups[i]);
197 	init_rwsem(&space_info->groups_sem);
198 	spin_lock_init(&space_info->lock);
199 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
200 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
201 	INIT_LIST_HEAD(&space_info->ro_bgs);
202 	INIT_LIST_HEAD(&space_info->tickets);
203 	INIT_LIST_HEAD(&space_info->priority_tickets);
204 	space_info->clamp = 1;
205 
206 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
207 	if (ret)
208 		return ret;
209 
210 	list_add(&space_info->list, &info->space_info);
211 	if (flags & BTRFS_BLOCK_GROUP_DATA)
212 		info->data_sinfo = space_info;
213 
214 	return ret;
215 }
216 
217 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
218 {
219 	struct btrfs_super_block *disk_super;
220 	u64 features;
221 	u64 flags;
222 	int mixed = 0;
223 	int ret;
224 
225 	disk_super = fs_info->super_copy;
226 	if (!btrfs_super_root(disk_super))
227 		return -EINVAL;
228 
229 	features = btrfs_super_incompat_flags(disk_super);
230 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
231 		mixed = 1;
232 
233 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
234 	ret = create_space_info(fs_info, flags);
235 	if (ret)
236 		goto out;
237 
238 	if (mixed) {
239 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
240 		ret = create_space_info(fs_info, flags);
241 	} else {
242 		flags = BTRFS_BLOCK_GROUP_METADATA;
243 		ret = create_space_info(fs_info, flags);
244 		if (ret)
245 			goto out;
246 
247 		flags = BTRFS_BLOCK_GROUP_DATA;
248 		ret = create_space_info(fs_info, flags);
249 	}
250 out:
251 	return ret;
252 }
253 
254 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
255 			     u64 total_bytes, u64 bytes_used,
256 			     u64 bytes_readonly, u64 bytes_zone_unusable,
257 			     struct btrfs_space_info **space_info)
258 {
259 	struct btrfs_space_info *found;
260 	int factor;
261 
262 	factor = btrfs_bg_type_to_factor(flags);
263 
264 	found = btrfs_find_space_info(info, flags);
265 	ASSERT(found);
266 	spin_lock(&found->lock);
267 	found->total_bytes += total_bytes;
268 	found->disk_total += total_bytes * factor;
269 	found->bytes_used += bytes_used;
270 	found->disk_used += bytes_used * factor;
271 	found->bytes_readonly += bytes_readonly;
272 	found->bytes_zone_unusable += bytes_zone_unusable;
273 	if (total_bytes > 0)
274 		found->full = 0;
275 	btrfs_try_granting_tickets(info, found);
276 	spin_unlock(&found->lock);
277 	*space_info = found;
278 }
279 
280 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
281 					       u64 flags)
282 {
283 	struct list_head *head = &info->space_info;
284 	struct btrfs_space_info *found;
285 
286 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
287 
288 	list_for_each_entry(found, head, list) {
289 		if (found->flags & flags)
290 			return found;
291 	}
292 	return NULL;
293 }
294 
295 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
296 			  struct btrfs_space_info *space_info,
297 			  enum btrfs_reserve_flush_enum flush)
298 {
299 	u64 profile;
300 	u64 avail;
301 	int factor;
302 
303 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
304 		profile = btrfs_system_alloc_profile(fs_info);
305 	else
306 		profile = btrfs_metadata_alloc_profile(fs_info);
307 
308 	avail = atomic64_read(&fs_info->free_chunk_space);
309 
310 	/*
311 	 * If we have dup, raid1 or raid10 then only half of the free
312 	 * space is actually usable.  For raid56, the space info used
313 	 * doesn't include the parity drive, so we don't have to
314 	 * change the math
315 	 */
316 	factor = btrfs_bg_type_to_factor(profile);
317 	avail = div_u64(avail, factor);
318 
319 	/*
320 	 * If we aren't flushing all things, let us overcommit up to
321 	 * 1/2th of the space. If we can flush, don't let us overcommit
322 	 * too much, let it overcommit up to 1/8 of the space.
323 	 */
324 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
325 		avail >>= 3;
326 	else
327 		avail >>= 1;
328 	return avail;
329 }
330 
331 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
332 			 struct btrfs_space_info *space_info, u64 bytes,
333 			 enum btrfs_reserve_flush_enum flush)
334 {
335 	u64 avail;
336 	u64 used;
337 
338 	/* Don't overcommit when in mixed mode */
339 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
340 		return 0;
341 
342 	used = btrfs_space_info_used(space_info, true);
343 	avail = calc_available_free_space(fs_info, space_info, flush);
344 
345 	if (used + bytes < space_info->total_bytes + avail)
346 		return 1;
347 	return 0;
348 }
349 
350 static void remove_ticket(struct btrfs_space_info *space_info,
351 			  struct reserve_ticket *ticket)
352 {
353 	if (!list_empty(&ticket->list)) {
354 		list_del_init(&ticket->list);
355 		ASSERT(space_info->reclaim_size >= ticket->bytes);
356 		space_info->reclaim_size -= ticket->bytes;
357 	}
358 }
359 
360 /*
361  * This is for space we already have accounted in space_info->bytes_may_use, so
362  * basically when we're returning space from block_rsv's.
363  */
364 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
365 				struct btrfs_space_info *space_info)
366 {
367 	struct list_head *head;
368 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
369 
370 	lockdep_assert_held(&space_info->lock);
371 
372 	head = &space_info->priority_tickets;
373 again:
374 	while (!list_empty(head)) {
375 		struct reserve_ticket *ticket;
376 		u64 used = btrfs_space_info_used(space_info, true);
377 
378 		ticket = list_first_entry(head, struct reserve_ticket, list);
379 
380 		/* Check and see if our ticket can be satisfied now. */
381 		if ((used + ticket->bytes <= space_info->total_bytes) ||
382 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
383 					 flush)) {
384 			btrfs_space_info_update_bytes_may_use(fs_info,
385 							      space_info,
386 							      ticket->bytes);
387 			remove_ticket(space_info, ticket);
388 			ticket->bytes = 0;
389 			space_info->tickets_id++;
390 			wake_up(&ticket->wait);
391 		} else {
392 			break;
393 		}
394 	}
395 
396 	if (head == &space_info->priority_tickets) {
397 		head = &space_info->tickets;
398 		flush = BTRFS_RESERVE_FLUSH_ALL;
399 		goto again;
400 	}
401 }
402 
403 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
404 do {									\
405 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
406 	spin_lock(&__rsv->lock);					\
407 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
408 		   __rsv->size, __rsv->reserved);			\
409 	spin_unlock(&__rsv->lock);					\
410 } while (0)
411 
412 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
413 				    struct btrfs_space_info *info)
414 {
415 	lockdep_assert_held(&info->lock);
416 
417 	/* The free space could be negative in case of overcommit */
418 	btrfs_info(fs_info, "space_info %llu has %lld free, is %sfull",
419 		   info->flags,
420 		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
421 		   info->full ? "" : "not ");
422 	btrfs_info(fs_info,
423 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
424 		info->total_bytes, info->bytes_used, info->bytes_pinned,
425 		info->bytes_reserved, info->bytes_may_use,
426 		info->bytes_readonly, info->bytes_zone_unusable);
427 
428 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
429 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
430 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
431 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
432 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
433 
434 }
435 
436 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
437 			   struct btrfs_space_info *info, u64 bytes,
438 			   int dump_block_groups)
439 {
440 	struct btrfs_block_group *cache;
441 	int index = 0;
442 
443 	spin_lock(&info->lock);
444 	__btrfs_dump_space_info(fs_info, info);
445 	spin_unlock(&info->lock);
446 
447 	if (!dump_block_groups)
448 		return;
449 
450 	down_read(&info->groups_sem);
451 again:
452 	list_for_each_entry(cache, &info->block_groups[index], list) {
453 		spin_lock(&cache->lock);
454 		btrfs_info(fs_info,
455 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
456 			cache->start, cache->length, cache->used, cache->pinned,
457 			cache->reserved, cache->zone_unusable,
458 			cache->ro ? "[readonly]" : "");
459 		spin_unlock(&cache->lock);
460 		btrfs_dump_free_space(cache, bytes);
461 	}
462 	if (++index < BTRFS_NR_RAID_TYPES)
463 		goto again;
464 	up_read(&info->groups_sem);
465 }
466 
467 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
468 					u64 to_reclaim)
469 {
470 	u64 bytes;
471 	u64 nr;
472 
473 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
474 	nr = div64_u64(to_reclaim, bytes);
475 	if (!nr)
476 		nr = 1;
477 	return nr;
478 }
479 
480 #define EXTENT_SIZE_PER_ITEM	SZ_256K
481 
482 /*
483  * shrink metadata reservation for delalloc
484  */
485 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
486 			    struct btrfs_space_info *space_info,
487 			    u64 to_reclaim, bool wait_ordered,
488 			    bool for_preempt)
489 {
490 	struct btrfs_trans_handle *trans;
491 	u64 delalloc_bytes;
492 	u64 ordered_bytes;
493 	u64 items;
494 	long time_left;
495 	int loops;
496 
497 	delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
498 	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
499 	if (delalloc_bytes == 0 && ordered_bytes == 0)
500 		return;
501 
502 	/* Calc the number of the pages we need flush for space reservation */
503 	if (to_reclaim == U64_MAX) {
504 		items = U64_MAX;
505 	} else {
506 		/*
507 		 * to_reclaim is set to however much metadata we need to
508 		 * reclaim, but reclaiming that much data doesn't really track
509 		 * exactly.  What we really want to do is reclaim full inode's
510 		 * worth of reservations, however that's not available to us
511 		 * here.  We will take a fraction of the delalloc bytes for our
512 		 * flushing loops and hope for the best.  Delalloc will expand
513 		 * the amount we write to cover an entire dirty extent, which
514 		 * will reclaim the metadata reservation for that range.  If
515 		 * it's not enough subsequent flush stages will be more
516 		 * aggressive.
517 		 */
518 		to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
519 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
520 	}
521 
522 	trans = (struct btrfs_trans_handle *)current->journal_info;
523 
524 	/*
525 	 * If we are doing more ordered than delalloc we need to just wait on
526 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
527 	 * that likely won't give us the space back we need.
528 	 */
529 	if (ordered_bytes > delalloc_bytes && !for_preempt)
530 		wait_ordered = true;
531 
532 	loops = 0;
533 	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
534 		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
535 		long nr_pages = min_t(u64, temp, LONG_MAX);
536 		int async_pages;
537 
538 		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
539 
540 		/*
541 		 * We need to make sure any outstanding async pages are now
542 		 * processed before we continue.  This is because things like
543 		 * sync_inode() try to be smart and skip writing if the inode is
544 		 * marked clean.  We don't use filemap_fwrite for flushing
545 		 * because we want to control how many pages we write out at a
546 		 * time, thus this is the only safe way to make sure we've
547 		 * waited for outstanding compressed workers to have started
548 		 * their jobs and thus have ordered extents set up properly.
549 		 *
550 		 * This exists because we do not want to wait for each
551 		 * individual inode to finish its async work, we simply want to
552 		 * start the IO on everybody, and then come back here and wait
553 		 * for all of the async work to catch up.  Once we're done with
554 		 * that we know we'll have ordered extents for everything and we
555 		 * can decide if we wait for that or not.
556 		 *
557 		 * If we choose to replace this in the future, make absolutely
558 		 * sure that the proper waiting is being done in the async case,
559 		 * as there have been bugs in that area before.
560 		 */
561 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
562 		if (!async_pages)
563 			goto skip_async;
564 
565 		/*
566 		 * We don't want to wait forever, if we wrote less pages in this
567 		 * loop than we have outstanding, only wait for that number of
568 		 * pages, otherwise we can wait for all async pages to finish
569 		 * before continuing.
570 		 */
571 		if (async_pages > nr_pages)
572 			async_pages -= nr_pages;
573 		else
574 			async_pages = 0;
575 		wait_event(fs_info->async_submit_wait,
576 			   atomic_read(&fs_info->async_delalloc_pages) <=
577 			   async_pages);
578 skip_async:
579 		loops++;
580 		if (wait_ordered && !trans) {
581 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
582 		} else {
583 			time_left = schedule_timeout_killable(1);
584 			if (time_left)
585 				break;
586 		}
587 
588 		/*
589 		 * If we are for preemption we just want a one-shot of delalloc
590 		 * flushing so we can stop flushing if we decide we don't need
591 		 * to anymore.
592 		 */
593 		if (for_preempt)
594 			break;
595 
596 		spin_lock(&space_info->lock);
597 		if (list_empty(&space_info->tickets) &&
598 		    list_empty(&space_info->priority_tickets)) {
599 			spin_unlock(&space_info->lock);
600 			break;
601 		}
602 		spin_unlock(&space_info->lock);
603 
604 		delalloc_bytes = percpu_counter_sum_positive(
605 						&fs_info->delalloc_bytes);
606 		ordered_bytes = percpu_counter_sum_positive(
607 						&fs_info->ordered_bytes);
608 	}
609 }
610 
611 /*
612  * Try to flush some data based on policy set by @state. This is only advisory
613  * and may fail for various reasons. The caller is supposed to examine the
614  * state of @space_info to detect the outcome.
615  */
616 static void flush_space(struct btrfs_fs_info *fs_info,
617 		       struct btrfs_space_info *space_info, u64 num_bytes,
618 		       enum btrfs_flush_state state, bool for_preempt)
619 {
620 	struct btrfs_root *root = fs_info->tree_root;
621 	struct btrfs_trans_handle *trans;
622 	int nr;
623 	int ret = 0;
624 
625 	switch (state) {
626 	case FLUSH_DELAYED_ITEMS_NR:
627 	case FLUSH_DELAYED_ITEMS:
628 		if (state == FLUSH_DELAYED_ITEMS_NR)
629 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
630 		else
631 			nr = -1;
632 
633 		trans = btrfs_join_transaction(root);
634 		if (IS_ERR(trans)) {
635 			ret = PTR_ERR(trans);
636 			break;
637 		}
638 		ret = btrfs_run_delayed_items_nr(trans, nr);
639 		btrfs_end_transaction(trans);
640 		break;
641 	case FLUSH_DELALLOC:
642 	case FLUSH_DELALLOC_WAIT:
643 	case FLUSH_DELALLOC_FULL:
644 		if (state == FLUSH_DELALLOC_FULL)
645 			num_bytes = U64_MAX;
646 		shrink_delalloc(fs_info, space_info, num_bytes,
647 				state != FLUSH_DELALLOC, for_preempt);
648 		break;
649 	case FLUSH_DELAYED_REFS_NR:
650 	case FLUSH_DELAYED_REFS:
651 		trans = btrfs_join_transaction(root);
652 		if (IS_ERR(trans)) {
653 			ret = PTR_ERR(trans);
654 			break;
655 		}
656 		if (state == FLUSH_DELAYED_REFS_NR)
657 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
658 		else
659 			nr = 0;
660 		btrfs_run_delayed_refs(trans, nr);
661 		btrfs_end_transaction(trans);
662 		break;
663 	case ALLOC_CHUNK:
664 	case ALLOC_CHUNK_FORCE:
665 		trans = btrfs_join_transaction(root);
666 		if (IS_ERR(trans)) {
667 			ret = PTR_ERR(trans);
668 			break;
669 		}
670 		ret = btrfs_chunk_alloc(trans,
671 				btrfs_get_alloc_profile(fs_info, space_info->flags),
672 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
673 					CHUNK_ALLOC_FORCE);
674 		btrfs_end_transaction(trans);
675 		if (ret > 0 || ret == -ENOSPC)
676 			ret = 0;
677 		break;
678 	case RUN_DELAYED_IPUTS:
679 		/*
680 		 * If we have pending delayed iputs then we could free up a
681 		 * bunch of pinned space, so make sure we run the iputs before
682 		 * we do our pinned bytes check below.
683 		 */
684 		btrfs_run_delayed_iputs(fs_info);
685 		btrfs_wait_on_delayed_iputs(fs_info);
686 		break;
687 	case COMMIT_TRANS:
688 		ASSERT(current->journal_info == NULL);
689 		trans = btrfs_join_transaction(root);
690 		if (IS_ERR(trans)) {
691 			ret = PTR_ERR(trans);
692 			break;
693 		}
694 		ret = btrfs_commit_transaction(trans);
695 		break;
696 	default:
697 		ret = -ENOSPC;
698 		break;
699 	}
700 
701 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
702 				ret, for_preempt);
703 	return;
704 }
705 
706 static inline u64
707 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
708 				 struct btrfs_space_info *space_info)
709 {
710 	u64 used;
711 	u64 avail;
712 	u64 to_reclaim = space_info->reclaim_size;
713 
714 	lockdep_assert_held(&space_info->lock);
715 
716 	avail = calc_available_free_space(fs_info, space_info,
717 					  BTRFS_RESERVE_FLUSH_ALL);
718 	used = btrfs_space_info_used(space_info, true);
719 
720 	/*
721 	 * We may be flushing because suddenly we have less space than we had
722 	 * before, and now we're well over-committed based on our current free
723 	 * space.  If that's the case add in our overage so we make sure to put
724 	 * appropriate pressure on the flushing state machine.
725 	 */
726 	if (space_info->total_bytes + avail < used)
727 		to_reclaim += used - (space_info->total_bytes + avail);
728 
729 	return to_reclaim;
730 }
731 
732 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
733 				    struct btrfs_space_info *space_info)
734 {
735 	u64 global_rsv_size = fs_info->global_block_rsv.reserved;
736 	u64 ordered, delalloc;
737 	u64 thresh = div_factor_fine(space_info->total_bytes, 90);
738 	u64 used;
739 
740 	lockdep_assert_held(&space_info->lock);
741 
742 	/* If we're just plain full then async reclaim just slows us down. */
743 	if ((space_info->bytes_used + space_info->bytes_reserved +
744 	     global_rsv_size) >= thresh)
745 		return false;
746 
747 	used = space_info->bytes_may_use + space_info->bytes_pinned;
748 
749 	/* The total flushable belongs to the global rsv, don't flush. */
750 	if (global_rsv_size >= used)
751 		return false;
752 
753 	/*
754 	 * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
755 	 * that devoted to other reservations then there's no sense in flushing,
756 	 * we don't have a lot of things that need flushing.
757 	 */
758 	if (used - global_rsv_size <= SZ_128M)
759 		return false;
760 
761 	/*
762 	 * We have tickets queued, bail so we don't compete with the async
763 	 * flushers.
764 	 */
765 	if (space_info->reclaim_size)
766 		return false;
767 
768 	/*
769 	 * If we have over half of the free space occupied by reservations or
770 	 * pinned then we want to start flushing.
771 	 *
772 	 * We do not do the traditional thing here, which is to say
773 	 *
774 	 *   if (used >= ((total_bytes + avail) / 2))
775 	 *     return 1;
776 	 *
777 	 * because this doesn't quite work how we want.  If we had more than 50%
778 	 * of the space_info used by bytes_used and we had 0 available we'd just
779 	 * constantly run the background flusher.  Instead we want it to kick in
780 	 * if our reclaimable space exceeds our clamped free space.
781 	 *
782 	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
783 	 * the following:
784 	 *
785 	 * Amount of RAM        Minimum threshold       Maximum threshold
786 	 *
787 	 *        256GiB                     1GiB                  128GiB
788 	 *        128GiB                   512MiB                   64GiB
789 	 *         64GiB                   256MiB                   32GiB
790 	 *         32GiB                   128MiB                   16GiB
791 	 *         16GiB                    64MiB                    8GiB
792 	 *
793 	 * These are the range our thresholds will fall in, corresponding to how
794 	 * much delalloc we need for the background flusher to kick in.
795 	 */
796 
797 	thresh = calc_available_free_space(fs_info, space_info,
798 					   BTRFS_RESERVE_FLUSH_ALL);
799 	used = space_info->bytes_used + space_info->bytes_reserved +
800 	       space_info->bytes_readonly + global_rsv_size;
801 	if (used < space_info->total_bytes)
802 		thresh += space_info->total_bytes - used;
803 	thresh >>= space_info->clamp;
804 
805 	used = space_info->bytes_pinned;
806 
807 	/*
808 	 * If we have more ordered bytes than delalloc bytes then we're either
809 	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
810 	 * around.  Preemptive flushing is only useful in that it can free up
811 	 * space before tickets need to wait for things to finish.  In the case
812 	 * of ordered extents, preemptively waiting on ordered extents gets us
813 	 * nothing, if our reservations are tied up in ordered extents we'll
814 	 * simply have to slow down writers by forcing them to wait on ordered
815 	 * extents.
816 	 *
817 	 * In the case that ordered is larger than delalloc, only include the
818 	 * block reserves that we would actually be able to directly reclaim
819 	 * from.  In this case if we're heavy on metadata operations this will
820 	 * clearly be heavy enough to warrant preemptive flushing.  In the case
821 	 * of heavy DIO or ordered reservations, preemptive flushing will just
822 	 * waste time and cause us to slow down.
823 	 *
824 	 * We want to make sure we truly are maxed out on ordered however, so
825 	 * cut ordered in half, and if it's still higher than delalloc then we
826 	 * can keep flushing.  This is to avoid the case where we start
827 	 * flushing, and now delalloc == ordered and we stop preemptively
828 	 * flushing when we could still have several gigs of delalloc to flush.
829 	 */
830 	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
831 	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
832 	if (ordered >= delalloc)
833 		used += fs_info->delayed_refs_rsv.reserved +
834 			fs_info->delayed_block_rsv.reserved;
835 	else
836 		used += space_info->bytes_may_use - global_rsv_size;
837 
838 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
839 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
840 }
841 
842 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
843 				  struct btrfs_space_info *space_info,
844 				  struct reserve_ticket *ticket)
845 {
846 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
847 	u64 min_bytes;
848 
849 	if (!ticket->steal)
850 		return false;
851 
852 	if (global_rsv->space_info != space_info)
853 		return false;
854 
855 	spin_lock(&global_rsv->lock);
856 	min_bytes = div_factor(global_rsv->size, 1);
857 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
858 		spin_unlock(&global_rsv->lock);
859 		return false;
860 	}
861 	global_rsv->reserved -= ticket->bytes;
862 	remove_ticket(space_info, ticket);
863 	ticket->bytes = 0;
864 	wake_up(&ticket->wait);
865 	space_info->tickets_id++;
866 	if (global_rsv->reserved < global_rsv->size)
867 		global_rsv->full = 0;
868 	spin_unlock(&global_rsv->lock);
869 
870 	return true;
871 }
872 
873 /*
874  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
875  * @fs_info - fs_info for this fs
876  * @space_info - the space info we were flushing
877  *
878  * We call this when we've exhausted our flushing ability and haven't made
879  * progress in satisfying tickets.  The reservation code handles tickets in
880  * order, so if there is a large ticket first and then smaller ones we could
881  * very well satisfy the smaller tickets.  This will attempt to wake up any
882  * tickets in the list to catch this case.
883  *
884  * This function returns true if it was able to make progress by clearing out
885  * other tickets, or if it stumbles across a ticket that was smaller than the
886  * first ticket.
887  */
888 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
889 				   struct btrfs_space_info *space_info)
890 {
891 	struct reserve_ticket *ticket;
892 	u64 tickets_id = space_info->tickets_id;
893 	const bool aborted = BTRFS_FS_ERROR(fs_info);
894 
895 	trace_btrfs_fail_all_tickets(fs_info, space_info);
896 
897 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
898 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
899 		__btrfs_dump_space_info(fs_info, space_info);
900 	}
901 
902 	while (!list_empty(&space_info->tickets) &&
903 	       tickets_id == space_info->tickets_id) {
904 		ticket = list_first_entry(&space_info->tickets,
905 					  struct reserve_ticket, list);
906 
907 		if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
908 			return true;
909 
910 		if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
911 			btrfs_info(fs_info, "failing ticket with %llu bytes",
912 				   ticket->bytes);
913 
914 		remove_ticket(space_info, ticket);
915 		if (aborted)
916 			ticket->error = -EIO;
917 		else
918 			ticket->error = -ENOSPC;
919 		wake_up(&ticket->wait);
920 
921 		/*
922 		 * We're just throwing tickets away, so more flushing may not
923 		 * trip over btrfs_try_granting_tickets, so we need to call it
924 		 * here to see if we can make progress with the next ticket in
925 		 * the list.
926 		 */
927 		if (!aborted)
928 			btrfs_try_granting_tickets(fs_info, space_info);
929 	}
930 	return (tickets_id != space_info->tickets_id);
931 }
932 
933 /*
934  * This is for normal flushers, we can wait all goddamned day if we want to.  We
935  * will loop and continuously try to flush as long as we are making progress.
936  * We count progress as clearing off tickets each time we have to loop.
937  */
938 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
939 {
940 	struct btrfs_fs_info *fs_info;
941 	struct btrfs_space_info *space_info;
942 	u64 to_reclaim;
943 	enum btrfs_flush_state flush_state;
944 	int commit_cycles = 0;
945 	u64 last_tickets_id;
946 
947 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
948 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
949 
950 	spin_lock(&space_info->lock);
951 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
952 	if (!to_reclaim) {
953 		space_info->flush = 0;
954 		spin_unlock(&space_info->lock);
955 		return;
956 	}
957 	last_tickets_id = space_info->tickets_id;
958 	spin_unlock(&space_info->lock);
959 
960 	flush_state = FLUSH_DELAYED_ITEMS_NR;
961 	do {
962 		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
963 		spin_lock(&space_info->lock);
964 		if (list_empty(&space_info->tickets)) {
965 			space_info->flush = 0;
966 			spin_unlock(&space_info->lock);
967 			return;
968 		}
969 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
970 							      space_info);
971 		if (last_tickets_id == space_info->tickets_id) {
972 			flush_state++;
973 		} else {
974 			last_tickets_id = space_info->tickets_id;
975 			flush_state = FLUSH_DELAYED_ITEMS_NR;
976 			if (commit_cycles)
977 				commit_cycles--;
978 		}
979 
980 		/*
981 		 * We do not want to empty the system of delalloc unless we're
982 		 * under heavy pressure, so allow one trip through the flushing
983 		 * logic before we start doing a FLUSH_DELALLOC_FULL.
984 		 */
985 		if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
986 			flush_state++;
987 
988 		/*
989 		 * We don't want to force a chunk allocation until we've tried
990 		 * pretty hard to reclaim space.  Think of the case where we
991 		 * freed up a bunch of space and so have a lot of pinned space
992 		 * to reclaim.  We would rather use that than possibly create a
993 		 * underutilized metadata chunk.  So if this is our first run
994 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
995 		 * commit the transaction.  If nothing has changed the next go
996 		 * around then we can force a chunk allocation.
997 		 */
998 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
999 			flush_state++;
1000 
1001 		if (flush_state > COMMIT_TRANS) {
1002 			commit_cycles++;
1003 			if (commit_cycles > 2) {
1004 				if (maybe_fail_all_tickets(fs_info, space_info)) {
1005 					flush_state = FLUSH_DELAYED_ITEMS_NR;
1006 					commit_cycles--;
1007 				} else {
1008 					space_info->flush = 0;
1009 				}
1010 			} else {
1011 				flush_state = FLUSH_DELAYED_ITEMS_NR;
1012 			}
1013 		}
1014 		spin_unlock(&space_info->lock);
1015 	} while (flush_state <= COMMIT_TRANS);
1016 }
1017 
1018 /*
1019  * This handles pre-flushing of metadata space before we get to the point that
1020  * we need to start blocking threads on tickets.  The logic here is different
1021  * from the other flush paths because it doesn't rely on tickets to tell us how
1022  * much we need to flush, instead it attempts to keep us below the 80% full
1023  * watermark of space by flushing whichever reservation pool is currently the
1024  * largest.
1025  */
1026 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1027 {
1028 	struct btrfs_fs_info *fs_info;
1029 	struct btrfs_space_info *space_info;
1030 	struct btrfs_block_rsv *delayed_block_rsv;
1031 	struct btrfs_block_rsv *delayed_refs_rsv;
1032 	struct btrfs_block_rsv *global_rsv;
1033 	struct btrfs_block_rsv *trans_rsv;
1034 	int loops = 0;
1035 
1036 	fs_info = container_of(work, struct btrfs_fs_info,
1037 			       preempt_reclaim_work);
1038 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1039 	delayed_block_rsv = &fs_info->delayed_block_rsv;
1040 	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1041 	global_rsv = &fs_info->global_block_rsv;
1042 	trans_rsv = &fs_info->trans_block_rsv;
1043 
1044 	spin_lock(&space_info->lock);
1045 	while (need_preemptive_reclaim(fs_info, space_info)) {
1046 		enum btrfs_flush_state flush;
1047 		u64 delalloc_size = 0;
1048 		u64 to_reclaim, block_rsv_size;
1049 		u64 global_rsv_size = global_rsv->reserved;
1050 
1051 		loops++;
1052 
1053 		/*
1054 		 * We don't have a precise counter for the metadata being
1055 		 * reserved for delalloc, so we'll approximate it by subtracting
1056 		 * out the block rsv's space from the bytes_may_use.  If that
1057 		 * amount is higher than the individual reserves, then we can
1058 		 * assume it's tied up in delalloc reservations.
1059 		 */
1060 		block_rsv_size = global_rsv_size +
1061 			delayed_block_rsv->reserved +
1062 			delayed_refs_rsv->reserved +
1063 			trans_rsv->reserved;
1064 		if (block_rsv_size < space_info->bytes_may_use)
1065 			delalloc_size = space_info->bytes_may_use - block_rsv_size;
1066 
1067 		/*
1068 		 * We don't want to include the global_rsv in our calculation,
1069 		 * because that's space we can't touch.  Subtract it from the
1070 		 * block_rsv_size for the next checks.
1071 		 */
1072 		block_rsv_size -= global_rsv_size;
1073 
1074 		/*
1075 		 * We really want to avoid flushing delalloc too much, as it
1076 		 * could result in poor allocation patterns, so only flush it if
1077 		 * it's larger than the rest of the pools combined.
1078 		 */
1079 		if (delalloc_size > block_rsv_size) {
1080 			to_reclaim = delalloc_size;
1081 			flush = FLUSH_DELALLOC;
1082 		} else if (space_info->bytes_pinned >
1083 			   (delayed_block_rsv->reserved +
1084 			    delayed_refs_rsv->reserved)) {
1085 			to_reclaim = space_info->bytes_pinned;
1086 			flush = COMMIT_TRANS;
1087 		} else if (delayed_block_rsv->reserved >
1088 			   delayed_refs_rsv->reserved) {
1089 			to_reclaim = delayed_block_rsv->reserved;
1090 			flush = FLUSH_DELAYED_ITEMS_NR;
1091 		} else {
1092 			to_reclaim = delayed_refs_rsv->reserved;
1093 			flush = FLUSH_DELAYED_REFS_NR;
1094 		}
1095 
1096 		spin_unlock(&space_info->lock);
1097 
1098 		/*
1099 		 * We don't want to reclaim everything, just a portion, so scale
1100 		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1101 		 * reclaim 1 items worth.
1102 		 */
1103 		to_reclaim >>= 2;
1104 		if (!to_reclaim)
1105 			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1106 		flush_space(fs_info, space_info, to_reclaim, flush, true);
1107 		cond_resched();
1108 		spin_lock(&space_info->lock);
1109 	}
1110 
1111 	/* We only went through once, back off our clamping. */
1112 	if (loops == 1 && !space_info->reclaim_size)
1113 		space_info->clamp = max(1, space_info->clamp - 1);
1114 	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1115 	spin_unlock(&space_info->lock);
1116 }
1117 
1118 /*
1119  * FLUSH_DELALLOC_WAIT:
1120  *   Space is freed from flushing delalloc in one of two ways.
1121  *
1122  *   1) compression is on and we allocate less space than we reserved
1123  *   2) we are overwriting existing space
1124  *
1125  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1126  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1127  *   length to ->bytes_reserved, and subtracts the reserved space from
1128  *   ->bytes_may_use.
1129  *
1130  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1131  *   extent in the range we are overwriting, which creates a delayed ref for
1132  *   that freed extent.  This however is not reclaimed until the transaction
1133  *   commits, thus the next stages.
1134  *
1135  * RUN_DELAYED_IPUTS
1136  *   If we are freeing inodes, we want to make sure all delayed iputs have
1137  *   completed, because they could have been on an inode with i_nlink == 0, and
1138  *   thus have been truncated and freed up space.  But again this space is not
1139  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1140  *   run and then the transaction must be committed.
1141  *
1142  * COMMIT_TRANS
1143  *   This is where we reclaim all of the pinned space generated by running the
1144  *   iputs
1145  *
1146  * ALLOC_CHUNK_FORCE
1147  *   For data we start with alloc chunk force, however we could have been full
1148  *   before, and then the transaction commit could have freed new block groups,
1149  *   so if we now have space to allocate do the force chunk allocation.
1150  */
1151 static const enum btrfs_flush_state data_flush_states[] = {
1152 	FLUSH_DELALLOC_FULL,
1153 	RUN_DELAYED_IPUTS,
1154 	COMMIT_TRANS,
1155 	ALLOC_CHUNK_FORCE,
1156 };
1157 
1158 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1159 {
1160 	struct btrfs_fs_info *fs_info;
1161 	struct btrfs_space_info *space_info;
1162 	u64 last_tickets_id;
1163 	enum btrfs_flush_state flush_state = 0;
1164 
1165 	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1166 	space_info = fs_info->data_sinfo;
1167 
1168 	spin_lock(&space_info->lock);
1169 	if (list_empty(&space_info->tickets)) {
1170 		space_info->flush = 0;
1171 		spin_unlock(&space_info->lock);
1172 		return;
1173 	}
1174 	last_tickets_id = space_info->tickets_id;
1175 	spin_unlock(&space_info->lock);
1176 
1177 	while (!space_info->full) {
1178 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1179 		spin_lock(&space_info->lock);
1180 		if (list_empty(&space_info->tickets)) {
1181 			space_info->flush = 0;
1182 			spin_unlock(&space_info->lock);
1183 			return;
1184 		}
1185 
1186 		/* Something happened, fail everything and bail. */
1187 		if (BTRFS_FS_ERROR(fs_info))
1188 			goto aborted_fs;
1189 		last_tickets_id = space_info->tickets_id;
1190 		spin_unlock(&space_info->lock);
1191 	}
1192 
1193 	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1194 		flush_space(fs_info, space_info, U64_MAX,
1195 			    data_flush_states[flush_state], false);
1196 		spin_lock(&space_info->lock);
1197 		if (list_empty(&space_info->tickets)) {
1198 			space_info->flush = 0;
1199 			spin_unlock(&space_info->lock);
1200 			return;
1201 		}
1202 
1203 		if (last_tickets_id == space_info->tickets_id) {
1204 			flush_state++;
1205 		} else {
1206 			last_tickets_id = space_info->tickets_id;
1207 			flush_state = 0;
1208 		}
1209 
1210 		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1211 			if (space_info->full) {
1212 				if (maybe_fail_all_tickets(fs_info, space_info))
1213 					flush_state = 0;
1214 				else
1215 					space_info->flush = 0;
1216 			} else {
1217 				flush_state = 0;
1218 			}
1219 
1220 			/* Something happened, fail everything and bail. */
1221 			if (BTRFS_FS_ERROR(fs_info))
1222 				goto aborted_fs;
1223 
1224 		}
1225 		spin_unlock(&space_info->lock);
1226 	}
1227 	return;
1228 
1229 aborted_fs:
1230 	maybe_fail_all_tickets(fs_info, space_info);
1231 	space_info->flush = 0;
1232 	spin_unlock(&space_info->lock);
1233 }
1234 
1235 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1236 {
1237 	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1238 	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1239 	INIT_WORK(&fs_info->preempt_reclaim_work,
1240 		  btrfs_preempt_reclaim_metadata_space);
1241 }
1242 
1243 static const enum btrfs_flush_state priority_flush_states[] = {
1244 	FLUSH_DELAYED_ITEMS_NR,
1245 	FLUSH_DELAYED_ITEMS,
1246 	ALLOC_CHUNK,
1247 };
1248 
1249 static const enum btrfs_flush_state evict_flush_states[] = {
1250 	FLUSH_DELAYED_ITEMS_NR,
1251 	FLUSH_DELAYED_ITEMS,
1252 	FLUSH_DELAYED_REFS_NR,
1253 	FLUSH_DELAYED_REFS,
1254 	FLUSH_DELALLOC,
1255 	FLUSH_DELALLOC_WAIT,
1256 	FLUSH_DELALLOC_FULL,
1257 	ALLOC_CHUNK,
1258 	COMMIT_TRANS,
1259 };
1260 
1261 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1262 				struct btrfs_space_info *space_info,
1263 				struct reserve_ticket *ticket,
1264 				const enum btrfs_flush_state *states,
1265 				int states_nr)
1266 {
1267 	u64 to_reclaim;
1268 	int flush_state = 0;
1269 
1270 	spin_lock(&space_info->lock);
1271 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1272 	/*
1273 	 * This is the priority reclaim path, so to_reclaim could be >0 still
1274 	 * because we may have only satisified the priority tickets and still
1275 	 * left non priority tickets on the list.  We would then have
1276 	 * to_reclaim but ->bytes == 0.
1277 	 */
1278 	if (ticket->bytes == 0) {
1279 		spin_unlock(&space_info->lock);
1280 		return;
1281 	}
1282 
1283 	while (flush_state < states_nr) {
1284 		spin_unlock(&space_info->lock);
1285 		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1286 			    false);
1287 		flush_state++;
1288 		spin_lock(&space_info->lock);
1289 		if (ticket->bytes == 0) {
1290 			spin_unlock(&space_info->lock);
1291 			return;
1292 		}
1293 	}
1294 
1295 	/* Attempt to steal from the global rsv if we can. */
1296 	if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1297 		ticket->error = -ENOSPC;
1298 		remove_ticket(space_info, ticket);
1299 	}
1300 
1301 	/*
1302 	 * We must run try_granting_tickets here because we could be a large
1303 	 * ticket in front of a smaller ticket that can now be satisfied with
1304 	 * the available space.
1305 	 */
1306 	btrfs_try_granting_tickets(fs_info, space_info);
1307 	spin_unlock(&space_info->lock);
1308 }
1309 
1310 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1311 					struct btrfs_space_info *space_info,
1312 					struct reserve_ticket *ticket)
1313 {
1314 	spin_lock(&space_info->lock);
1315 
1316 	/* We could have been granted before we got here. */
1317 	if (ticket->bytes == 0) {
1318 		spin_unlock(&space_info->lock);
1319 		return;
1320 	}
1321 
1322 	while (!space_info->full) {
1323 		spin_unlock(&space_info->lock);
1324 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1325 		spin_lock(&space_info->lock);
1326 		if (ticket->bytes == 0) {
1327 			spin_unlock(&space_info->lock);
1328 			return;
1329 		}
1330 	}
1331 
1332 	ticket->error = -ENOSPC;
1333 	remove_ticket(space_info, ticket);
1334 	btrfs_try_granting_tickets(fs_info, space_info);
1335 	spin_unlock(&space_info->lock);
1336 }
1337 
1338 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1339 				struct btrfs_space_info *space_info,
1340 				struct reserve_ticket *ticket)
1341 
1342 {
1343 	DEFINE_WAIT(wait);
1344 	int ret = 0;
1345 
1346 	spin_lock(&space_info->lock);
1347 	while (ticket->bytes > 0 && ticket->error == 0) {
1348 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1349 		if (ret) {
1350 			/*
1351 			 * Delete us from the list. After we unlock the space
1352 			 * info, we don't want the async reclaim job to reserve
1353 			 * space for this ticket. If that would happen, then the
1354 			 * ticket's task would not known that space was reserved
1355 			 * despite getting an error, resulting in a space leak
1356 			 * (bytes_may_use counter of our space_info).
1357 			 */
1358 			remove_ticket(space_info, ticket);
1359 			ticket->error = -EINTR;
1360 			break;
1361 		}
1362 		spin_unlock(&space_info->lock);
1363 
1364 		schedule();
1365 
1366 		finish_wait(&ticket->wait, &wait);
1367 		spin_lock(&space_info->lock);
1368 	}
1369 	spin_unlock(&space_info->lock);
1370 }
1371 
1372 /**
1373  * Do the appropriate flushing and waiting for a ticket
1374  *
1375  * @fs_info:    the filesystem
1376  * @space_info: space info for the reservation
1377  * @ticket:     ticket for the reservation
1378  * @start_ns:   timestamp when the reservation started
1379  * @orig_bytes: amount of bytes originally reserved
1380  * @flush:      how much we can flush
1381  *
1382  * This does the work of figuring out how to flush for the ticket, waiting for
1383  * the reservation, and returning the appropriate error if there is one.
1384  */
1385 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1386 				 struct btrfs_space_info *space_info,
1387 				 struct reserve_ticket *ticket,
1388 				 u64 start_ns, u64 orig_bytes,
1389 				 enum btrfs_reserve_flush_enum flush)
1390 {
1391 	int ret;
1392 
1393 	switch (flush) {
1394 	case BTRFS_RESERVE_FLUSH_DATA:
1395 	case BTRFS_RESERVE_FLUSH_ALL:
1396 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1397 		wait_reserve_ticket(fs_info, space_info, ticket);
1398 		break;
1399 	case BTRFS_RESERVE_FLUSH_LIMIT:
1400 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1401 						priority_flush_states,
1402 						ARRAY_SIZE(priority_flush_states));
1403 		break;
1404 	case BTRFS_RESERVE_FLUSH_EVICT:
1405 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1406 						evict_flush_states,
1407 						ARRAY_SIZE(evict_flush_states));
1408 		break;
1409 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1410 		priority_reclaim_data_space(fs_info, space_info, ticket);
1411 		break;
1412 	default:
1413 		ASSERT(0);
1414 		break;
1415 	}
1416 
1417 	ret = ticket->error;
1418 	ASSERT(list_empty(&ticket->list));
1419 	/*
1420 	 * Check that we can't have an error set if the reservation succeeded,
1421 	 * as that would confuse tasks and lead them to error out without
1422 	 * releasing reserved space (if an error happens the expectation is that
1423 	 * space wasn't reserved at all).
1424 	 */
1425 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1426 	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1427 				   start_ns, flush, ticket->error);
1428 	return ret;
1429 }
1430 
1431 /*
1432  * This returns true if this flush state will go through the ordinary flushing
1433  * code.
1434  */
1435 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1436 {
1437 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1438 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1439 }
1440 
1441 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1442 				       struct btrfs_space_info *space_info)
1443 {
1444 	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1445 	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1446 
1447 	/*
1448 	 * If we're heavy on ordered operations then clamping won't help us.  We
1449 	 * need to clamp specifically to keep up with dirty'ing buffered
1450 	 * writers, because there's not a 1:1 correlation of writing delalloc
1451 	 * and freeing space, like there is with flushing delayed refs or
1452 	 * delayed nodes.  If we're already more ordered than delalloc then
1453 	 * we're keeping up, otherwise we aren't and should probably clamp.
1454 	 */
1455 	if (ordered < delalloc)
1456 		space_info->clamp = min(space_info->clamp + 1, 8);
1457 }
1458 
1459 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1460 {
1461 	return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1462 		flush == BTRFS_RESERVE_FLUSH_EVICT);
1463 }
1464 
1465 /**
1466  * Try to reserve bytes from the block_rsv's space
1467  *
1468  * @fs_info:    the filesystem
1469  * @space_info: space info we want to allocate from
1470  * @orig_bytes: number of bytes we want
1471  * @flush:      whether or not we can flush to make our reservation
1472  *
1473  * This will reserve orig_bytes number of bytes from the space info associated
1474  * with the block_rsv.  If there is not enough space it will make an attempt to
1475  * flush out space to make room.  It will do this by flushing delalloc if
1476  * possible or committing the transaction.  If flush is 0 then no attempts to
1477  * regain reservations will be made and this will fail if there is not enough
1478  * space already.
1479  */
1480 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1481 			   struct btrfs_space_info *space_info, u64 orig_bytes,
1482 			   enum btrfs_reserve_flush_enum flush)
1483 {
1484 	struct work_struct *async_work;
1485 	struct reserve_ticket ticket;
1486 	u64 start_ns = 0;
1487 	u64 used;
1488 	int ret = 0;
1489 	bool pending_tickets;
1490 
1491 	ASSERT(orig_bytes);
1492 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1493 
1494 	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1495 		async_work = &fs_info->async_data_reclaim_work;
1496 	else
1497 		async_work = &fs_info->async_reclaim_work;
1498 
1499 	spin_lock(&space_info->lock);
1500 	ret = -ENOSPC;
1501 	used = btrfs_space_info_used(space_info, true);
1502 
1503 	/*
1504 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1505 	 * generally handle ENOSPC in a different way, so treat them the same as
1506 	 * normal flushers when it comes to skipping pending tickets.
1507 	 */
1508 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1509 		pending_tickets = !list_empty(&space_info->tickets) ||
1510 			!list_empty(&space_info->priority_tickets);
1511 	else
1512 		pending_tickets = !list_empty(&space_info->priority_tickets);
1513 
1514 	/*
1515 	 * Carry on if we have enough space (short-circuit) OR call
1516 	 * can_overcommit() to ensure we can overcommit to continue.
1517 	 */
1518 	if (!pending_tickets &&
1519 	    ((used + orig_bytes <= space_info->total_bytes) ||
1520 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1521 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1522 						      orig_bytes);
1523 		ret = 0;
1524 	}
1525 
1526 	/*
1527 	 * If we couldn't make a reservation then setup our reservation ticket
1528 	 * and kick the async worker if it's not already running.
1529 	 *
1530 	 * If we are a priority flusher then we just need to add our ticket to
1531 	 * the list and we will do our own flushing further down.
1532 	 */
1533 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1534 		ticket.bytes = orig_bytes;
1535 		ticket.error = 0;
1536 		space_info->reclaim_size += ticket.bytes;
1537 		init_waitqueue_head(&ticket.wait);
1538 		ticket.steal = can_steal(flush);
1539 		if (trace_btrfs_reserve_ticket_enabled())
1540 			start_ns = ktime_get_ns();
1541 
1542 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1543 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1544 		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1545 			list_add_tail(&ticket.list, &space_info->tickets);
1546 			if (!space_info->flush) {
1547 				/*
1548 				 * We were forced to add a reserve ticket, so
1549 				 * our preemptive flushing is unable to keep
1550 				 * up.  Clamp down on the threshold for the
1551 				 * preemptive flushing in order to keep up with
1552 				 * the workload.
1553 				 */
1554 				maybe_clamp_preempt(fs_info, space_info);
1555 
1556 				space_info->flush = 1;
1557 				trace_btrfs_trigger_flush(fs_info,
1558 							  space_info->flags,
1559 							  orig_bytes, flush,
1560 							  "enospc");
1561 				queue_work(system_unbound_wq, async_work);
1562 			}
1563 		} else {
1564 			list_add_tail(&ticket.list,
1565 				      &space_info->priority_tickets);
1566 		}
1567 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1568 		used += orig_bytes;
1569 		/*
1570 		 * We will do the space reservation dance during log replay,
1571 		 * which means we won't have fs_info->fs_root set, so don't do
1572 		 * the async reclaim as we will panic.
1573 		 */
1574 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1575 		    !work_busy(&fs_info->preempt_reclaim_work) &&
1576 		    need_preemptive_reclaim(fs_info, space_info)) {
1577 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1578 						  orig_bytes, flush, "preempt");
1579 			queue_work(system_unbound_wq,
1580 				   &fs_info->preempt_reclaim_work);
1581 		}
1582 	}
1583 	spin_unlock(&space_info->lock);
1584 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1585 		return ret;
1586 
1587 	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1588 				     orig_bytes, flush);
1589 }
1590 
1591 /**
1592  * Trye to reserve metadata bytes from the block_rsv's space
1593  *
1594  * @fs_info:    the filesystem
1595  * @block_rsv:  block_rsv we're allocating for
1596  * @orig_bytes: number of bytes we want
1597  * @flush:      whether or not we can flush to make our reservation
1598  *
1599  * This will reserve orig_bytes number of bytes from the space info associated
1600  * with the block_rsv.  If there is not enough space it will make an attempt to
1601  * flush out space to make room.  It will do this by flushing delalloc if
1602  * possible or committing the transaction.  If flush is 0 then no attempts to
1603  * regain reservations will be made and this will fail if there is not enough
1604  * space already.
1605  */
1606 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1607 				 struct btrfs_block_rsv *block_rsv,
1608 				 u64 orig_bytes,
1609 				 enum btrfs_reserve_flush_enum flush)
1610 {
1611 	int ret;
1612 
1613 	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1614 	if (ret == -ENOSPC) {
1615 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1616 					      block_rsv->space_info->flags,
1617 					      orig_bytes, 1);
1618 
1619 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1620 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1621 					      orig_bytes, 0);
1622 	}
1623 	return ret;
1624 }
1625 
1626 /**
1627  * Try to reserve data bytes for an allocation
1628  *
1629  * @fs_info: the filesystem
1630  * @bytes:   number of bytes we need
1631  * @flush:   how we are allowed to flush
1632  *
1633  * This will reserve bytes from the data space info.  If there is not enough
1634  * space then we will attempt to flush space as specified by flush.
1635  */
1636 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1637 			     enum btrfs_reserve_flush_enum flush)
1638 {
1639 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1640 	int ret;
1641 
1642 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1643 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1644 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1645 
1646 	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1647 	if (ret == -ENOSPC) {
1648 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1649 					      data_sinfo->flags, bytes, 1);
1650 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1651 			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1652 	}
1653 	return ret;
1654 }
1655