1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "space-info.h" 6 #include "sysfs.h" 7 #include "volumes.h" 8 #include "free-space-cache.h" 9 #include "ordered-data.h" 10 #include "transaction.h" 11 #include "block-group.h" 12 13 /* 14 * HOW DOES SPACE RESERVATION WORK 15 * 16 * If you want to know about delalloc specifically, there is a separate comment 17 * for that with the delalloc code. This comment is about how the whole system 18 * works generally. 19 * 20 * BASIC CONCEPTS 21 * 22 * 1) space_info. This is the ultimate arbiter of how much space we can use. 23 * There's a description of the bytes_ fields with the struct declaration, 24 * refer to that for specifics on each field. Suffice it to say that for 25 * reservations we care about total_bytes - SUM(space_info->bytes_) when 26 * determining if there is space to make an allocation. There is a space_info 27 * for METADATA, SYSTEM, and DATA areas. 28 * 29 * 2) block_rsv's. These are basically buckets for every different type of 30 * metadata reservation we have. You can see the comment in the block_rsv 31 * code on the rules for each type, but generally block_rsv->reserved is how 32 * much space is accounted for in space_info->bytes_may_use. 33 * 34 * 3) btrfs_calc*_size. These are the worst case calculations we used based 35 * on the number of items we will want to modify. We have one for changing 36 * items, and one for inserting new items. Generally we use these helpers to 37 * determine the size of the block reserves, and then use the actual bytes 38 * values to adjust the space_info counters. 39 * 40 * MAKING RESERVATIONS, THE NORMAL CASE 41 * 42 * We call into either btrfs_reserve_data_bytes() or 43 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with 44 * num_bytes we want to reserve. 45 * 46 * ->reserve 47 * space_info->bytes_may_reserve += num_bytes 48 * 49 * ->extent allocation 50 * Call btrfs_add_reserved_bytes() which does 51 * space_info->bytes_may_reserve -= num_bytes 52 * space_info->bytes_reserved += extent_bytes 53 * 54 * ->insert reference 55 * Call btrfs_update_block_group() which does 56 * space_info->bytes_reserved -= extent_bytes 57 * space_info->bytes_used += extent_bytes 58 * 59 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) 60 * 61 * Assume we are unable to simply make the reservation because we do not have 62 * enough space 63 * 64 * -> __reserve_bytes 65 * create a reserve_ticket with ->bytes set to our reservation, add it to 66 * the tail of space_info->tickets, kick async flush thread 67 * 68 * ->handle_reserve_ticket 69 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set 70 * on the ticket. 71 * 72 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space 73 * Flushes various things attempting to free up space. 74 * 75 * -> btrfs_try_granting_tickets() 76 * This is called by anything that either subtracts space from 77 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the 78 * space_info->total_bytes. This loops through the ->priority_tickets and 79 * then the ->tickets list checking to see if the reservation can be 80 * completed. If it can the space is added to space_info->bytes_may_use and 81 * the ticket is woken up. 82 * 83 * -> ticket wakeup 84 * Check if ->bytes == 0, if it does we got our reservation and we can carry 85 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we 86 * were interrupted.) 87 * 88 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY 89 * 90 * Same as the above, except we add ourselves to the 91 * space_info->priority_tickets, and we do not use ticket->wait, we simply 92 * call flush_space() ourselves for the states that are safe for us to call 93 * without deadlocking and hope for the best. 94 * 95 * THE FLUSHING STATES 96 * 97 * Generally speaking we will have two cases for each state, a "nice" state 98 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to 99 * reduce the locking over head on the various trees, and even to keep from 100 * doing any work at all in the case of delayed refs. Each of these delayed 101 * things however hold reservations, and so letting them run allows us to 102 * reclaim space so we can make new reservations. 103 * 104 * FLUSH_DELAYED_ITEMS 105 * Every inode has a delayed item to update the inode. Take a simple write 106 * for example, we would update the inode item at write time to update the 107 * mtime, and then again at finish_ordered_io() time in order to update the 108 * isize or bytes. We keep these delayed items to coalesce these operations 109 * into a single operation done on demand. These are an easy way to reclaim 110 * metadata space. 111 * 112 * FLUSH_DELALLOC 113 * Look at the delalloc comment to get an idea of how much space is reserved 114 * for delayed allocation. We can reclaim some of this space simply by 115 * running delalloc, but usually we need to wait for ordered extents to 116 * reclaim the bulk of this space. 117 * 118 * FLUSH_DELAYED_REFS 119 * We have a block reserve for the outstanding delayed refs space, and every 120 * delayed ref operation holds a reservation. Running these is a quick way 121 * to reclaim space, but we want to hold this until the end because COW can 122 * churn a lot and we can avoid making some extent tree modifications if we 123 * are able to delay for as long as possible. 124 * 125 * ALLOC_CHUNK 126 * We will skip this the first time through space reservation, because of 127 * overcommit and we don't want to have a lot of useless metadata space when 128 * our worst case reservations will likely never come true. 129 * 130 * RUN_DELAYED_IPUTS 131 * If we're freeing inodes we're likely freeing checksums, file extent 132 * items, and extent tree items. Loads of space could be freed up by these 133 * operations, however they won't be usable until the transaction commits. 134 * 135 * COMMIT_TRANS 136 * may_commit_transaction() is the ultimate arbiter on whether we commit the 137 * transaction or not. In order to avoid constantly churning we do all the 138 * above flushing first and then commit the transaction as the last resort. 139 * However we need to take into account things like pinned space that would 140 * be freed, plus any delayed work we may not have gotten rid of in the case 141 * of metadata. 142 * 143 * OVERCOMMIT 144 * 145 * Because we hold so many reservations for metadata we will allow you to 146 * reserve more space than is currently free in the currently allocate 147 * metadata space. This only happens with metadata, data does not allow 148 * overcommitting. 149 * 150 * You can see the current logic for when we allow overcommit in 151 * btrfs_can_overcommit(), but it only applies to unallocated space. If there 152 * is no unallocated space to be had, all reservations are kept within the 153 * free space in the allocated metadata chunks. 154 * 155 * Because of overcommitting, you generally want to use the 156 * btrfs_can_overcommit() logic for metadata allocations, as it does the right 157 * thing with or without extra unallocated space. 158 */ 159 160 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info, 161 bool may_use_included) 162 { 163 ASSERT(s_info); 164 return s_info->bytes_used + s_info->bytes_reserved + 165 s_info->bytes_pinned + s_info->bytes_readonly + 166 (may_use_included ? s_info->bytes_may_use : 0); 167 } 168 169 /* 170 * after adding space to the filesystem, we need to clear the full flags 171 * on all the space infos. 172 */ 173 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 174 { 175 struct list_head *head = &info->space_info; 176 struct btrfs_space_info *found; 177 178 rcu_read_lock(); 179 list_for_each_entry_rcu(found, head, list) 180 found->full = 0; 181 rcu_read_unlock(); 182 } 183 184 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 185 { 186 187 struct btrfs_space_info *space_info; 188 int i; 189 int ret; 190 191 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 192 if (!space_info) 193 return -ENOMEM; 194 195 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0, 196 GFP_KERNEL); 197 if (ret) { 198 kfree(space_info); 199 return ret; 200 } 201 202 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 203 INIT_LIST_HEAD(&space_info->block_groups[i]); 204 init_rwsem(&space_info->groups_sem); 205 spin_lock_init(&space_info->lock); 206 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 207 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 208 INIT_LIST_HEAD(&space_info->ro_bgs); 209 INIT_LIST_HEAD(&space_info->tickets); 210 INIT_LIST_HEAD(&space_info->priority_tickets); 211 212 ret = btrfs_sysfs_add_space_info_type(info, space_info); 213 if (ret) 214 return ret; 215 216 list_add_rcu(&space_info->list, &info->space_info); 217 if (flags & BTRFS_BLOCK_GROUP_DATA) 218 info->data_sinfo = space_info; 219 220 return ret; 221 } 222 223 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 224 { 225 struct btrfs_super_block *disk_super; 226 u64 features; 227 u64 flags; 228 int mixed = 0; 229 int ret; 230 231 disk_super = fs_info->super_copy; 232 if (!btrfs_super_root(disk_super)) 233 return -EINVAL; 234 235 features = btrfs_super_incompat_flags(disk_super); 236 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 237 mixed = 1; 238 239 flags = BTRFS_BLOCK_GROUP_SYSTEM; 240 ret = create_space_info(fs_info, flags); 241 if (ret) 242 goto out; 243 244 if (mixed) { 245 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 246 ret = create_space_info(fs_info, flags); 247 } else { 248 flags = BTRFS_BLOCK_GROUP_METADATA; 249 ret = create_space_info(fs_info, flags); 250 if (ret) 251 goto out; 252 253 flags = BTRFS_BLOCK_GROUP_DATA; 254 ret = create_space_info(fs_info, flags); 255 } 256 out: 257 return ret; 258 } 259 260 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags, 261 u64 total_bytes, u64 bytes_used, 262 u64 bytes_readonly, 263 struct btrfs_space_info **space_info) 264 { 265 struct btrfs_space_info *found; 266 int factor; 267 268 factor = btrfs_bg_type_to_factor(flags); 269 270 found = btrfs_find_space_info(info, flags); 271 ASSERT(found); 272 spin_lock(&found->lock); 273 found->total_bytes += total_bytes; 274 found->disk_total += total_bytes * factor; 275 found->bytes_used += bytes_used; 276 found->disk_used += bytes_used * factor; 277 found->bytes_readonly += bytes_readonly; 278 if (total_bytes > 0) 279 found->full = 0; 280 btrfs_try_granting_tickets(info, found); 281 spin_unlock(&found->lock); 282 *space_info = found; 283 } 284 285 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 286 u64 flags) 287 { 288 struct list_head *head = &info->space_info; 289 struct btrfs_space_info *found; 290 291 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 292 293 rcu_read_lock(); 294 list_for_each_entry_rcu(found, head, list) { 295 if (found->flags & flags) { 296 rcu_read_unlock(); 297 return found; 298 } 299 } 300 rcu_read_unlock(); 301 return NULL; 302 } 303 304 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 305 { 306 return (global->size << 1); 307 } 308 309 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info, 310 struct btrfs_space_info *space_info, 311 enum btrfs_reserve_flush_enum flush) 312 { 313 u64 profile; 314 u64 avail; 315 int factor; 316 317 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 318 profile = btrfs_system_alloc_profile(fs_info); 319 else 320 profile = btrfs_metadata_alloc_profile(fs_info); 321 322 avail = atomic64_read(&fs_info->free_chunk_space); 323 324 /* 325 * If we have dup, raid1 or raid10 then only half of the free 326 * space is actually usable. For raid56, the space info used 327 * doesn't include the parity drive, so we don't have to 328 * change the math 329 */ 330 factor = btrfs_bg_type_to_factor(profile); 331 avail = div_u64(avail, factor); 332 333 /* 334 * If we aren't flushing all things, let us overcommit up to 335 * 1/2th of the space. If we can flush, don't let us overcommit 336 * too much, let it overcommit up to 1/8 of the space. 337 */ 338 if (flush == BTRFS_RESERVE_FLUSH_ALL) 339 avail >>= 3; 340 else 341 avail >>= 1; 342 return avail; 343 } 344 345 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info, 346 struct btrfs_space_info *space_info, u64 bytes, 347 enum btrfs_reserve_flush_enum flush) 348 { 349 u64 avail; 350 u64 used; 351 352 /* Don't overcommit when in mixed mode */ 353 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 354 return 0; 355 356 used = btrfs_space_info_used(space_info, true); 357 avail = calc_available_free_space(fs_info, space_info, flush); 358 359 if (used + bytes < space_info->total_bytes + avail) 360 return 1; 361 return 0; 362 } 363 364 static void remove_ticket(struct btrfs_space_info *space_info, 365 struct reserve_ticket *ticket) 366 { 367 if (!list_empty(&ticket->list)) { 368 list_del_init(&ticket->list); 369 ASSERT(space_info->reclaim_size >= ticket->bytes); 370 space_info->reclaim_size -= ticket->bytes; 371 } 372 } 373 374 /* 375 * This is for space we already have accounted in space_info->bytes_may_use, so 376 * basically when we're returning space from block_rsv's. 377 */ 378 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info, 379 struct btrfs_space_info *space_info) 380 { 381 struct list_head *head; 382 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 383 384 lockdep_assert_held(&space_info->lock); 385 386 head = &space_info->priority_tickets; 387 again: 388 while (!list_empty(head)) { 389 struct reserve_ticket *ticket; 390 u64 used = btrfs_space_info_used(space_info, true); 391 392 ticket = list_first_entry(head, struct reserve_ticket, list); 393 394 /* Check and see if our ticket can be satisified now. */ 395 if ((used + ticket->bytes <= space_info->total_bytes) || 396 btrfs_can_overcommit(fs_info, space_info, ticket->bytes, 397 flush)) { 398 btrfs_space_info_update_bytes_may_use(fs_info, 399 space_info, 400 ticket->bytes); 401 remove_ticket(space_info, ticket); 402 ticket->bytes = 0; 403 space_info->tickets_id++; 404 wake_up(&ticket->wait); 405 } else { 406 break; 407 } 408 } 409 410 if (head == &space_info->priority_tickets) { 411 head = &space_info->tickets; 412 flush = BTRFS_RESERVE_FLUSH_ALL; 413 goto again; 414 } 415 } 416 417 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ 418 do { \ 419 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ 420 spin_lock(&__rsv->lock); \ 421 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ 422 __rsv->size, __rsv->reserved); \ 423 spin_unlock(&__rsv->lock); \ 424 } while (0) 425 426 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 427 struct btrfs_space_info *info) 428 { 429 lockdep_assert_held(&info->lock); 430 431 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", 432 info->flags, 433 info->total_bytes - btrfs_space_info_used(info, true), 434 info->full ? "" : "not "); 435 btrfs_info(fs_info, 436 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", 437 info->total_bytes, info->bytes_used, info->bytes_pinned, 438 info->bytes_reserved, info->bytes_may_use, 439 info->bytes_readonly); 440 441 DUMP_BLOCK_RSV(fs_info, global_block_rsv); 442 DUMP_BLOCK_RSV(fs_info, trans_block_rsv); 443 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); 444 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); 445 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); 446 447 } 448 449 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 450 struct btrfs_space_info *info, u64 bytes, 451 int dump_block_groups) 452 { 453 struct btrfs_block_group *cache; 454 int index = 0; 455 456 spin_lock(&info->lock); 457 __btrfs_dump_space_info(fs_info, info); 458 spin_unlock(&info->lock); 459 460 if (!dump_block_groups) 461 return; 462 463 down_read(&info->groups_sem); 464 again: 465 list_for_each_entry(cache, &info->block_groups[index], list) { 466 spin_lock(&cache->lock); 467 btrfs_info(fs_info, 468 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", 469 cache->start, cache->length, cache->used, cache->pinned, 470 cache->reserved, cache->ro ? "[readonly]" : ""); 471 btrfs_dump_free_space(cache, bytes); 472 spin_unlock(&cache->lock); 473 } 474 if (++index < BTRFS_NR_RAID_TYPES) 475 goto again; 476 up_read(&info->groups_sem); 477 } 478 479 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info, 480 unsigned long nr_pages, int nr_items) 481 { 482 struct super_block *sb = fs_info->sb; 483 484 if (down_read_trylock(&sb->s_umount)) { 485 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 486 up_read(&sb->s_umount); 487 } else { 488 /* 489 * We needn't worry the filesystem going from r/w to r/o though 490 * we don't acquire ->s_umount mutex, because the filesystem 491 * should guarantee the delalloc inodes list be empty after 492 * the filesystem is readonly(all dirty pages are written to 493 * the disk). 494 */ 495 btrfs_start_delalloc_roots(fs_info, nr_items); 496 if (!current->journal_info) 497 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1); 498 } 499 } 500 501 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 502 u64 to_reclaim) 503 { 504 u64 bytes; 505 u64 nr; 506 507 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 508 nr = div64_u64(to_reclaim, bytes); 509 if (!nr) 510 nr = 1; 511 return nr; 512 } 513 514 #define EXTENT_SIZE_PER_ITEM SZ_256K 515 516 /* 517 * shrink metadata reservation for delalloc 518 */ 519 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim, 520 u64 orig, bool wait_ordered) 521 { 522 struct btrfs_space_info *space_info; 523 struct btrfs_trans_handle *trans; 524 u64 delalloc_bytes; 525 u64 dio_bytes; 526 u64 async_pages; 527 u64 items; 528 long time_left; 529 unsigned long nr_pages; 530 int loops; 531 532 /* Calc the number of the pages we need flush for space reservation */ 533 items = calc_reclaim_items_nr(fs_info, to_reclaim); 534 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 535 536 trans = (struct btrfs_trans_handle *)current->journal_info; 537 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 538 539 delalloc_bytes = percpu_counter_sum_positive( 540 &fs_info->delalloc_bytes); 541 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes); 542 if (delalloc_bytes == 0 && dio_bytes == 0) { 543 if (trans) 544 return; 545 if (wait_ordered) 546 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 547 return; 548 } 549 550 /* 551 * If we are doing more ordered than delalloc we need to just wait on 552 * ordered extents, otherwise we'll waste time trying to flush delalloc 553 * that likely won't give us the space back we need. 554 */ 555 if (dio_bytes > delalloc_bytes) 556 wait_ordered = true; 557 558 loops = 0; 559 while ((delalloc_bytes || dio_bytes) && loops < 3) { 560 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; 561 562 /* 563 * Triggers inode writeback for up to nr_pages. This will invoke 564 * ->writepages callback and trigger delalloc filling 565 * (btrfs_run_delalloc_range()). 566 */ 567 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items); 568 569 /* 570 * We need to wait for the compressed pages to start before 571 * we continue. 572 */ 573 async_pages = atomic_read(&fs_info->async_delalloc_pages); 574 if (!async_pages) 575 goto skip_async; 576 577 /* 578 * Calculate how many compressed pages we want to be written 579 * before we continue. I.e if there are more async pages than we 580 * require wait_event will wait until nr_pages are written. 581 */ 582 if (async_pages <= nr_pages) 583 async_pages = 0; 584 else 585 async_pages -= nr_pages; 586 587 wait_event(fs_info->async_submit_wait, 588 atomic_read(&fs_info->async_delalloc_pages) <= 589 (int)async_pages); 590 skip_async: 591 spin_lock(&space_info->lock); 592 if (list_empty(&space_info->tickets) && 593 list_empty(&space_info->priority_tickets)) { 594 spin_unlock(&space_info->lock); 595 break; 596 } 597 spin_unlock(&space_info->lock); 598 599 loops++; 600 if (wait_ordered && !trans) { 601 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 602 } else { 603 time_left = schedule_timeout_killable(1); 604 if (time_left) 605 break; 606 } 607 delalloc_bytes = percpu_counter_sum_positive( 608 &fs_info->delalloc_bytes); 609 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes); 610 } 611 } 612 613 /** 614 * maybe_commit_transaction - possibly commit the transaction if its ok to 615 * @root - the root we're allocating for 616 * @bytes - the number of bytes we want to reserve 617 * @force - force the commit 618 * 619 * This will check to make sure that committing the transaction will actually 620 * get us somewhere and then commit the transaction if it does. Otherwise it 621 * will return -ENOSPC. 622 */ 623 static int may_commit_transaction(struct btrfs_fs_info *fs_info, 624 struct btrfs_space_info *space_info) 625 { 626 struct reserve_ticket *ticket = NULL; 627 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv; 628 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 629 struct btrfs_trans_handle *trans; 630 u64 bytes_needed; 631 u64 reclaim_bytes = 0; 632 u64 cur_free_bytes = 0; 633 634 trans = (struct btrfs_trans_handle *)current->journal_info; 635 if (trans) 636 return -EAGAIN; 637 638 spin_lock(&space_info->lock); 639 cur_free_bytes = btrfs_space_info_used(space_info, true); 640 if (cur_free_bytes < space_info->total_bytes) 641 cur_free_bytes = space_info->total_bytes - cur_free_bytes; 642 else 643 cur_free_bytes = 0; 644 645 if (!list_empty(&space_info->priority_tickets)) 646 ticket = list_first_entry(&space_info->priority_tickets, 647 struct reserve_ticket, list); 648 else if (!list_empty(&space_info->tickets)) 649 ticket = list_first_entry(&space_info->tickets, 650 struct reserve_ticket, list); 651 bytes_needed = (ticket) ? ticket->bytes : 0; 652 653 if (bytes_needed > cur_free_bytes) 654 bytes_needed -= cur_free_bytes; 655 else 656 bytes_needed = 0; 657 spin_unlock(&space_info->lock); 658 659 if (!bytes_needed) 660 return 0; 661 662 trans = btrfs_join_transaction(fs_info->extent_root); 663 if (IS_ERR(trans)) 664 return PTR_ERR(trans); 665 666 /* 667 * See if there is enough pinned space to make this reservation, or if 668 * we have block groups that are going to be freed, allowing us to 669 * possibly do a chunk allocation the next loop through. 670 */ 671 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) || 672 __percpu_counter_compare(&space_info->total_bytes_pinned, 673 bytes_needed, 674 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0) 675 goto commit; 676 677 /* 678 * See if there is some space in the delayed insertion reservation for 679 * this reservation. 680 */ 681 if (space_info != delayed_rsv->space_info) 682 goto enospc; 683 684 spin_lock(&delayed_rsv->lock); 685 reclaim_bytes += delayed_rsv->reserved; 686 spin_unlock(&delayed_rsv->lock); 687 688 spin_lock(&delayed_refs_rsv->lock); 689 reclaim_bytes += delayed_refs_rsv->reserved; 690 spin_unlock(&delayed_refs_rsv->lock); 691 if (reclaim_bytes >= bytes_needed) 692 goto commit; 693 bytes_needed -= reclaim_bytes; 694 695 if (__percpu_counter_compare(&space_info->total_bytes_pinned, 696 bytes_needed, 697 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) 698 goto enospc; 699 700 commit: 701 return btrfs_commit_transaction(trans); 702 enospc: 703 btrfs_end_transaction(trans); 704 return -ENOSPC; 705 } 706 707 /* 708 * Try to flush some data based on policy set by @state. This is only advisory 709 * and may fail for various reasons. The caller is supposed to examine the 710 * state of @space_info to detect the outcome. 711 */ 712 static void flush_space(struct btrfs_fs_info *fs_info, 713 struct btrfs_space_info *space_info, u64 num_bytes, 714 int state) 715 { 716 struct btrfs_root *root = fs_info->extent_root; 717 struct btrfs_trans_handle *trans; 718 int nr; 719 int ret = 0; 720 721 switch (state) { 722 case FLUSH_DELAYED_ITEMS_NR: 723 case FLUSH_DELAYED_ITEMS: 724 if (state == FLUSH_DELAYED_ITEMS_NR) 725 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 726 else 727 nr = -1; 728 729 trans = btrfs_join_transaction(root); 730 if (IS_ERR(trans)) { 731 ret = PTR_ERR(trans); 732 break; 733 } 734 ret = btrfs_run_delayed_items_nr(trans, nr); 735 btrfs_end_transaction(trans); 736 break; 737 case FLUSH_DELALLOC: 738 case FLUSH_DELALLOC_WAIT: 739 shrink_delalloc(fs_info, num_bytes * 2, num_bytes, 740 state == FLUSH_DELALLOC_WAIT); 741 break; 742 case FLUSH_DELAYED_REFS_NR: 743 case FLUSH_DELAYED_REFS: 744 trans = btrfs_join_transaction(root); 745 if (IS_ERR(trans)) { 746 ret = PTR_ERR(trans); 747 break; 748 } 749 if (state == FLUSH_DELAYED_REFS_NR) 750 nr = calc_reclaim_items_nr(fs_info, num_bytes); 751 else 752 nr = 0; 753 btrfs_run_delayed_refs(trans, nr); 754 btrfs_end_transaction(trans); 755 break; 756 case ALLOC_CHUNK: 757 case ALLOC_CHUNK_FORCE: 758 trans = btrfs_join_transaction(root); 759 if (IS_ERR(trans)) { 760 ret = PTR_ERR(trans); 761 break; 762 } 763 ret = btrfs_chunk_alloc(trans, 764 btrfs_metadata_alloc_profile(fs_info), 765 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : 766 CHUNK_ALLOC_FORCE); 767 btrfs_end_transaction(trans); 768 if (ret > 0 || ret == -ENOSPC) 769 ret = 0; 770 break; 771 case RUN_DELAYED_IPUTS: 772 /* 773 * If we have pending delayed iputs then we could free up a 774 * bunch of pinned space, so make sure we run the iputs before 775 * we do our pinned bytes check below. 776 */ 777 btrfs_run_delayed_iputs(fs_info); 778 btrfs_wait_on_delayed_iputs(fs_info); 779 break; 780 case COMMIT_TRANS: 781 ret = may_commit_transaction(fs_info, space_info); 782 break; 783 default: 784 ret = -ENOSPC; 785 break; 786 } 787 788 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 789 ret); 790 return; 791 } 792 793 static inline u64 794 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 795 struct btrfs_space_info *space_info) 796 { 797 u64 used; 798 u64 avail; 799 u64 expected; 800 u64 to_reclaim = space_info->reclaim_size; 801 802 lockdep_assert_held(&space_info->lock); 803 804 avail = calc_available_free_space(fs_info, space_info, 805 BTRFS_RESERVE_FLUSH_ALL); 806 used = btrfs_space_info_used(space_info, true); 807 808 /* 809 * We may be flushing because suddenly we have less space than we had 810 * before, and now we're well over-committed based on our current free 811 * space. If that's the case add in our overage so we make sure to put 812 * appropriate pressure on the flushing state machine. 813 */ 814 if (space_info->total_bytes + avail < used) 815 to_reclaim += used - (space_info->total_bytes + avail); 816 817 if (to_reclaim) 818 return to_reclaim; 819 820 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 821 if (btrfs_can_overcommit(fs_info, space_info, to_reclaim, 822 BTRFS_RESERVE_FLUSH_ALL)) 823 return 0; 824 825 used = btrfs_space_info_used(space_info, true); 826 827 if (btrfs_can_overcommit(fs_info, space_info, SZ_1M, 828 BTRFS_RESERVE_FLUSH_ALL)) 829 expected = div_factor_fine(space_info->total_bytes, 95); 830 else 831 expected = div_factor_fine(space_info->total_bytes, 90); 832 833 if (used > expected) 834 to_reclaim = used - expected; 835 else 836 to_reclaim = 0; 837 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 838 space_info->bytes_reserved); 839 return to_reclaim; 840 } 841 842 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info, 843 struct btrfs_space_info *space_info, 844 u64 used) 845 { 846 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 847 848 /* If we're just plain full then async reclaim just slows us down. */ 849 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 850 return 0; 851 852 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info)) 853 return 0; 854 855 return (used >= thresh && !btrfs_fs_closing(fs_info) && 856 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 857 } 858 859 /* 860 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets 861 * @fs_info - fs_info for this fs 862 * @space_info - the space info we were flushing 863 * 864 * We call this when we've exhausted our flushing ability and haven't made 865 * progress in satisfying tickets. The reservation code handles tickets in 866 * order, so if there is a large ticket first and then smaller ones we could 867 * very well satisfy the smaller tickets. This will attempt to wake up any 868 * tickets in the list to catch this case. 869 * 870 * This function returns true if it was able to make progress by clearing out 871 * other tickets, or if it stumbles across a ticket that was smaller than the 872 * first ticket. 873 */ 874 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info, 875 struct btrfs_space_info *space_info) 876 { 877 struct reserve_ticket *ticket; 878 u64 tickets_id = space_info->tickets_id; 879 u64 first_ticket_bytes = 0; 880 881 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 882 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); 883 __btrfs_dump_space_info(fs_info, space_info); 884 } 885 886 while (!list_empty(&space_info->tickets) && 887 tickets_id == space_info->tickets_id) { 888 ticket = list_first_entry(&space_info->tickets, 889 struct reserve_ticket, list); 890 891 /* 892 * may_commit_transaction will avoid committing the transaction 893 * if it doesn't feel like the space reclaimed by the commit 894 * would result in the ticket succeeding. However if we have a 895 * smaller ticket in the queue it may be small enough to be 896 * satisified by committing the transaction, so if any 897 * subsequent ticket is smaller than the first ticket go ahead 898 * and send us back for another loop through the enospc flushing 899 * code. 900 */ 901 if (first_ticket_bytes == 0) 902 first_ticket_bytes = ticket->bytes; 903 else if (first_ticket_bytes > ticket->bytes) 904 return true; 905 906 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 907 btrfs_info(fs_info, "failing ticket with %llu bytes", 908 ticket->bytes); 909 910 remove_ticket(space_info, ticket); 911 ticket->error = -ENOSPC; 912 wake_up(&ticket->wait); 913 914 /* 915 * We're just throwing tickets away, so more flushing may not 916 * trip over btrfs_try_granting_tickets, so we need to call it 917 * here to see if we can make progress with the next ticket in 918 * the list. 919 */ 920 btrfs_try_granting_tickets(fs_info, space_info); 921 } 922 return (tickets_id != space_info->tickets_id); 923 } 924 925 /* 926 * This is for normal flushers, we can wait all goddamned day if we want to. We 927 * will loop and continuously try to flush as long as we are making progress. 928 * We count progress as clearing off tickets each time we have to loop. 929 */ 930 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 931 { 932 struct btrfs_fs_info *fs_info; 933 struct btrfs_space_info *space_info; 934 u64 to_reclaim; 935 int flush_state; 936 int commit_cycles = 0; 937 u64 last_tickets_id; 938 939 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 940 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 941 942 spin_lock(&space_info->lock); 943 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 944 if (!to_reclaim) { 945 space_info->flush = 0; 946 spin_unlock(&space_info->lock); 947 return; 948 } 949 last_tickets_id = space_info->tickets_id; 950 spin_unlock(&space_info->lock); 951 952 flush_state = FLUSH_DELAYED_ITEMS_NR; 953 do { 954 flush_space(fs_info, space_info, to_reclaim, flush_state); 955 spin_lock(&space_info->lock); 956 if (list_empty(&space_info->tickets)) { 957 space_info->flush = 0; 958 spin_unlock(&space_info->lock); 959 return; 960 } 961 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 962 space_info); 963 if (last_tickets_id == space_info->tickets_id) { 964 flush_state++; 965 } else { 966 last_tickets_id = space_info->tickets_id; 967 flush_state = FLUSH_DELAYED_ITEMS_NR; 968 if (commit_cycles) 969 commit_cycles--; 970 } 971 972 /* 973 * We don't want to force a chunk allocation until we've tried 974 * pretty hard to reclaim space. Think of the case where we 975 * freed up a bunch of space and so have a lot of pinned space 976 * to reclaim. We would rather use that than possibly create a 977 * underutilized metadata chunk. So if this is our first run 978 * through the flushing state machine skip ALLOC_CHUNK_FORCE and 979 * commit the transaction. If nothing has changed the next go 980 * around then we can force a chunk allocation. 981 */ 982 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) 983 flush_state++; 984 985 if (flush_state > COMMIT_TRANS) { 986 commit_cycles++; 987 if (commit_cycles > 2) { 988 if (maybe_fail_all_tickets(fs_info, space_info)) { 989 flush_state = FLUSH_DELAYED_ITEMS_NR; 990 commit_cycles--; 991 } else { 992 space_info->flush = 0; 993 } 994 } else { 995 flush_state = FLUSH_DELAYED_ITEMS_NR; 996 } 997 } 998 spin_unlock(&space_info->lock); 999 } while (flush_state <= COMMIT_TRANS); 1000 } 1001 1002 void btrfs_init_async_reclaim_work(struct work_struct *work) 1003 { 1004 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 1005 } 1006 1007 static const enum btrfs_flush_state priority_flush_states[] = { 1008 FLUSH_DELAYED_ITEMS_NR, 1009 FLUSH_DELAYED_ITEMS, 1010 ALLOC_CHUNK, 1011 }; 1012 1013 static const enum btrfs_flush_state evict_flush_states[] = { 1014 FLUSH_DELAYED_ITEMS_NR, 1015 FLUSH_DELAYED_ITEMS, 1016 FLUSH_DELAYED_REFS_NR, 1017 FLUSH_DELAYED_REFS, 1018 FLUSH_DELALLOC, 1019 FLUSH_DELALLOC_WAIT, 1020 ALLOC_CHUNK, 1021 COMMIT_TRANS, 1022 }; 1023 1024 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 1025 struct btrfs_space_info *space_info, 1026 struct reserve_ticket *ticket, 1027 const enum btrfs_flush_state *states, 1028 int states_nr) 1029 { 1030 u64 to_reclaim; 1031 int flush_state; 1032 1033 spin_lock(&space_info->lock); 1034 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1035 if (!to_reclaim) { 1036 spin_unlock(&space_info->lock); 1037 return; 1038 } 1039 spin_unlock(&space_info->lock); 1040 1041 flush_state = 0; 1042 do { 1043 flush_space(fs_info, space_info, to_reclaim, states[flush_state]); 1044 flush_state++; 1045 spin_lock(&space_info->lock); 1046 if (ticket->bytes == 0) { 1047 spin_unlock(&space_info->lock); 1048 return; 1049 } 1050 spin_unlock(&space_info->lock); 1051 } while (flush_state < states_nr); 1052 } 1053 1054 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info, 1055 struct btrfs_space_info *space_info, 1056 struct reserve_ticket *ticket) 1057 1058 { 1059 DEFINE_WAIT(wait); 1060 int ret = 0; 1061 1062 spin_lock(&space_info->lock); 1063 while (ticket->bytes > 0 && ticket->error == 0) { 1064 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 1065 if (ret) { 1066 /* 1067 * Delete us from the list. After we unlock the space 1068 * info, we don't want the async reclaim job to reserve 1069 * space for this ticket. If that would happen, then the 1070 * ticket's task would not known that space was reserved 1071 * despite getting an error, resulting in a space leak 1072 * (bytes_may_use counter of our space_info). 1073 */ 1074 remove_ticket(space_info, ticket); 1075 ticket->error = -EINTR; 1076 break; 1077 } 1078 spin_unlock(&space_info->lock); 1079 1080 schedule(); 1081 1082 finish_wait(&ticket->wait, &wait); 1083 spin_lock(&space_info->lock); 1084 } 1085 spin_unlock(&space_info->lock); 1086 } 1087 1088 /** 1089 * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket 1090 * @fs_info - the fs 1091 * @space_info - the space_info for the reservation 1092 * @ticket - the ticket for the reservation 1093 * @flush - how much we can flush 1094 * 1095 * This does the work of figuring out how to flush for the ticket, waiting for 1096 * the reservation, and returning the appropriate error if there is one. 1097 */ 1098 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info, 1099 struct btrfs_space_info *space_info, 1100 struct reserve_ticket *ticket, 1101 enum btrfs_reserve_flush_enum flush) 1102 { 1103 int ret; 1104 1105 switch (flush) { 1106 case BTRFS_RESERVE_FLUSH_ALL: 1107 wait_reserve_ticket(fs_info, space_info, ticket); 1108 break; 1109 case BTRFS_RESERVE_FLUSH_LIMIT: 1110 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1111 priority_flush_states, 1112 ARRAY_SIZE(priority_flush_states)); 1113 break; 1114 case BTRFS_RESERVE_FLUSH_EVICT: 1115 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1116 evict_flush_states, 1117 ARRAY_SIZE(evict_flush_states)); 1118 break; 1119 default: 1120 ASSERT(0); 1121 break; 1122 } 1123 1124 spin_lock(&space_info->lock); 1125 ret = ticket->error; 1126 if (ticket->bytes || ticket->error) { 1127 /* 1128 * Need to delete here for priority tickets. For regular tickets 1129 * either the async reclaim job deletes the ticket from the list 1130 * or we delete it ourselves at wait_reserve_ticket(). 1131 */ 1132 remove_ticket(space_info, ticket); 1133 if (!ret) 1134 ret = -ENOSPC; 1135 } 1136 spin_unlock(&space_info->lock); 1137 ASSERT(list_empty(&ticket->list)); 1138 /* 1139 * Check that we can't have an error set if the reservation succeeded, 1140 * as that would confuse tasks and lead them to error out without 1141 * releasing reserved space (if an error happens the expectation is that 1142 * space wasn't reserved at all). 1143 */ 1144 ASSERT(!(ticket->bytes == 0 && ticket->error)); 1145 return ret; 1146 } 1147 1148 /** 1149 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 1150 * @root - the root we're allocating for 1151 * @space_info - the space info we want to allocate from 1152 * @orig_bytes - the number of bytes we want 1153 * @flush - whether or not we can flush to make our reservation 1154 * 1155 * This will reserve orig_bytes number of bytes from the space info associated 1156 * with the block_rsv. If there is not enough space it will make an attempt to 1157 * flush out space to make room. It will do this by flushing delalloc if 1158 * possible or committing the transaction. If flush is 0 then no attempts to 1159 * regain reservations will be made and this will fail if there is not enough 1160 * space already. 1161 */ 1162 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 1163 struct btrfs_space_info *space_info, 1164 u64 orig_bytes, 1165 enum btrfs_reserve_flush_enum flush) 1166 { 1167 struct reserve_ticket ticket; 1168 u64 used; 1169 int ret = 0; 1170 bool pending_tickets; 1171 1172 ASSERT(orig_bytes); 1173 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 1174 1175 spin_lock(&space_info->lock); 1176 ret = -ENOSPC; 1177 used = btrfs_space_info_used(space_info, true); 1178 pending_tickets = !list_empty(&space_info->tickets) || 1179 !list_empty(&space_info->priority_tickets); 1180 1181 /* 1182 * Carry on if we have enough space (short-circuit) OR call 1183 * can_overcommit() to ensure we can overcommit to continue. 1184 */ 1185 if (!pending_tickets && 1186 ((used + orig_bytes <= space_info->total_bytes) || 1187 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) { 1188 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1189 orig_bytes); 1190 ret = 0; 1191 } 1192 1193 /* 1194 * If we couldn't make a reservation then setup our reservation ticket 1195 * and kick the async worker if it's not already running. 1196 * 1197 * If we are a priority flusher then we just need to add our ticket to 1198 * the list and we will do our own flushing further down. 1199 */ 1200 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 1201 ASSERT(space_info->reclaim_size >= 0); 1202 ticket.bytes = orig_bytes; 1203 ticket.error = 0; 1204 space_info->reclaim_size += ticket.bytes; 1205 init_waitqueue_head(&ticket.wait); 1206 if (flush == BTRFS_RESERVE_FLUSH_ALL) { 1207 list_add_tail(&ticket.list, &space_info->tickets); 1208 if (!space_info->flush) { 1209 space_info->flush = 1; 1210 trace_btrfs_trigger_flush(fs_info, 1211 space_info->flags, 1212 orig_bytes, flush, 1213 "enospc"); 1214 queue_work(system_unbound_wq, 1215 &fs_info->async_reclaim_work); 1216 } 1217 } else { 1218 list_add_tail(&ticket.list, 1219 &space_info->priority_tickets); 1220 } 1221 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 1222 used += orig_bytes; 1223 /* 1224 * We will do the space reservation dance during log replay, 1225 * which means we won't have fs_info->fs_root set, so don't do 1226 * the async reclaim as we will panic. 1227 */ 1228 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 1229 need_do_async_reclaim(fs_info, space_info, used) && 1230 !work_busy(&fs_info->async_reclaim_work)) { 1231 trace_btrfs_trigger_flush(fs_info, space_info->flags, 1232 orig_bytes, flush, "preempt"); 1233 queue_work(system_unbound_wq, 1234 &fs_info->async_reclaim_work); 1235 } 1236 } 1237 spin_unlock(&space_info->lock); 1238 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 1239 return ret; 1240 1241 return handle_reserve_ticket(fs_info, space_info, &ticket, flush); 1242 } 1243 1244 /** 1245 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 1246 * @root - the root we're allocating for 1247 * @block_rsv - the block_rsv we're allocating for 1248 * @orig_bytes - the number of bytes we want 1249 * @flush - whether or not we can flush to make our reservation 1250 * 1251 * This will reserve orig_bytes number of bytes from the space info associated 1252 * with the block_rsv. If there is not enough space it will make an attempt to 1253 * flush out space to make room. It will do this by flushing delalloc if 1254 * possible or committing the transaction. If flush is 0 then no attempts to 1255 * regain reservations will be made and this will fail if there is not enough 1256 * space already. 1257 */ 1258 int btrfs_reserve_metadata_bytes(struct btrfs_root *root, 1259 struct btrfs_block_rsv *block_rsv, 1260 u64 orig_bytes, 1261 enum btrfs_reserve_flush_enum flush) 1262 { 1263 struct btrfs_fs_info *fs_info = root->fs_info; 1264 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 1265 int ret; 1266 1267 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info, 1268 orig_bytes, flush); 1269 if (ret == -ENOSPC && 1270 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 1271 if (block_rsv != global_rsv && 1272 !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes)) 1273 ret = 0; 1274 } 1275 if (ret == -ENOSPC) { 1276 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1277 block_rsv->space_info->flags, 1278 orig_bytes, 1); 1279 1280 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1281 btrfs_dump_space_info(fs_info, block_rsv->space_info, 1282 orig_bytes, 0); 1283 } 1284 return ret; 1285 } 1286