xref: /openbmc/linux/fs/btrfs/space-info.c (revision bb86bd3d)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     may_commit_transaction() is the ultimate arbiter on whether we commit the
137  *     transaction or not.  In order to avoid constantly churning we do all the
138  *     above flushing first and then commit the transaction as the last resort.
139  *     However we need to take into account things like pinned space that would
140  *     be freed, plus any delayed work we may not have gotten rid of in the case
141  *     of metadata.
142  *
143  * OVERCOMMIT
144  *
145  *   Because we hold so many reservations for metadata we will allow you to
146  *   reserve more space than is currently free in the currently allocate
147  *   metadata space.  This only happens with metadata, data does not allow
148  *   overcommitting.
149  *
150  *   You can see the current logic for when we allow overcommit in
151  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
152  *   is no unallocated space to be had, all reservations are kept within the
153  *   free space in the allocated metadata chunks.
154  *
155  *   Because of overcommitting, you generally want to use the
156  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
157  *   thing with or without extra unallocated space.
158  */
159 
160 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
161 			  bool may_use_included)
162 {
163 	ASSERT(s_info);
164 	return s_info->bytes_used + s_info->bytes_reserved +
165 		s_info->bytes_pinned + s_info->bytes_readonly +
166 		(may_use_included ? s_info->bytes_may_use : 0);
167 }
168 
169 /*
170  * after adding space to the filesystem, we need to clear the full flags
171  * on all the space infos.
172  */
173 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
174 {
175 	struct list_head *head = &info->space_info;
176 	struct btrfs_space_info *found;
177 
178 	rcu_read_lock();
179 	list_for_each_entry_rcu(found, head, list)
180 		found->full = 0;
181 	rcu_read_unlock();
182 }
183 
184 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
185 {
186 
187 	struct btrfs_space_info *space_info;
188 	int i;
189 	int ret;
190 
191 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
192 	if (!space_info)
193 		return -ENOMEM;
194 
195 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
196 				 GFP_KERNEL);
197 	if (ret) {
198 		kfree(space_info);
199 		return ret;
200 	}
201 
202 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
203 		INIT_LIST_HEAD(&space_info->block_groups[i]);
204 	init_rwsem(&space_info->groups_sem);
205 	spin_lock_init(&space_info->lock);
206 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
207 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
208 	INIT_LIST_HEAD(&space_info->ro_bgs);
209 	INIT_LIST_HEAD(&space_info->tickets);
210 	INIT_LIST_HEAD(&space_info->priority_tickets);
211 
212 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
213 	if (ret)
214 		return ret;
215 
216 	list_add_rcu(&space_info->list, &info->space_info);
217 	if (flags & BTRFS_BLOCK_GROUP_DATA)
218 		info->data_sinfo = space_info;
219 
220 	return ret;
221 }
222 
223 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
224 {
225 	struct btrfs_super_block *disk_super;
226 	u64 features;
227 	u64 flags;
228 	int mixed = 0;
229 	int ret;
230 
231 	disk_super = fs_info->super_copy;
232 	if (!btrfs_super_root(disk_super))
233 		return -EINVAL;
234 
235 	features = btrfs_super_incompat_flags(disk_super);
236 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
237 		mixed = 1;
238 
239 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
240 	ret = create_space_info(fs_info, flags);
241 	if (ret)
242 		goto out;
243 
244 	if (mixed) {
245 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
246 		ret = create_space_info(fs_info, flags);
247 	} else {
248 		flags = BTRFS_BLOCK_GROUP_METADATA;
249 		ret = create_space_info(fs_info, flags);
250 		if (ret)
251 			goto out;
252 
253 		flags = BTRFS_BLOCK_GROUP_DATA;
254 		ret = create_space_info(fs_info, flags);
255 	}
256 out:
257 	return ret;
258 }
259 
260 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
261 			     u64 total_bytes, u64 bytes_used,
262 			     u64 bytes_readonly,
263 			     struct btrfs_space_info **space_info)
264 {
265 	struct btrfs_space_info *found;
266 	int factor;
267 
268 	factor = btrfs_bg_type_to_factor(flags);
269 
270 	found = btrfs_find_space_info(info, flags);
271 	ASSERT(found);
272 	spin_lock(&found->lock);
273 	found->total_bytes += total_bytes;
274 	found->disk_total += total_bytes * factor;
275 	found->bytes_used += bytes_used;
276 	found->disk_used += bytes_used * factor;
277 	found->bytes_readonly += bytes_readonly;
278 	if (total_bytes > 0)
279 		found->full = 0;
280 	btrfs_try_granting_tickets(info, found);
281 	spin_unlock(&found->lock);
282 	*space_info = found;
283 }
284 
285 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
286 					       u64 flags)
287 {
288 	struct list_head *head = &info->space_info;
289 	struct btrfs_space_info *found;
290 
291 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
292 
293 	rcu_read_lock();
294 	list_for_each_entry_rcu(found, head, list) {
295 		if (found->flags & flags) {
296 			rcu_read_unlock();
297 			return found;
298 		}
299 	}
300 	rcu_read_unlock();
301 	return NULL;
302 }
303 
304 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
305 {
306 	return (global->size << 1);
307 }
308 
309 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
310 			  struct btrfs_space_info *space_info,
311 			  enum btrfs_reserve_flush_enum flush)
312 {
313 	u64 profile;
314 	u64 avail;
315 	int factor;
316 
317 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
318 		profile = btrfs_system_alloc_profile(fs_info);
319 	else
320 		profile = btrfs_metadata_alloc_profile(fs_info);
321 
322 	avail = atomic64_read(&fs_info->free_chunk_space);
323 
324 	/*
325 	 * If we have dup, raid1 or raid10 then only half of the free
326 	 * space is actually usable.  For raid56, the space info used
327 	 * doesn't include the parity drive, so we don't have to
328 	 * change the math
329 	 */
330 	factor = btrfs_bg_type_to_factor(profile);
331 	avail = div_u64(avail, factor);
332 
333 	/*
334 	 * If we aren't flushing all things, let us overcommit up to
335 	 * 1/2th of the space. If we can flush, don't let us overcommit
336 	 * too much, let it overcommit up to 1/8 of the space.
337 	 */
338 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
339 		avail >>= 3;
340 	else
341 		avail >>= 1;
342 	return avail;
343 }
344 
345 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
346 			 struct btrfs_space_info *space_info, u64 bytes,
347 			 enum btrfs_reserve_flush_enum flush)
348 {
349 	u64 avail;
350 	u64 used;
351 
352 	/* Don't overcommit when in mixed mode */
353 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
354 		return 0;
355 
356 	used = btrfs_space_info_used(space_info, true);
357 	avail = calc_available_free_space(fs_info, space_info, flush);
358 
359 	if (used + bytes < space_info->total_bytes + avail)
360 		return 1;
361 	return 0;
362 }
363 
364 static void remove_ticket(struct btrfs_space_info *space_info,
365 			  struct reserve_ticket *ticket)
366 {
367 	if (!list_empty(&ticket->list)) {
368 		list_del_init(&ticket->list);
369 		ASSERT(space_info->reclaim_size >= ticket->bytes);
370 		space_info->reclaim_size -= ticket->bytes;
371 	}
372 }
373 
374 /*
375  * This is for space we already have accounted in space_info->bytes_may_use, so
376  * basically when we're returning space from block_rsv's.
377  */
378 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
379 				struct btrfs_space_info *space_info)
380 {
381 	struct list_head *head;
382 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
383 
384 	lockdep_assert_held(&space_info->lock);
385 
386 	head = &space_info->priority_tickets;
387 again:
388 	while (!list_empty(head)) {
389 		struct reserve_ticket *ticket;
390 		u64 used = btrfs_space_info_used(space_info, true);
391 
392 		ticket = list_first_entry(head, struct reserve_ticket, list);
393 
394 		/* Check and see if our ticket can be satisified now. */
395 		if ((used + ticket->bytes <= space_info->total_bytes) ||
396 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
397 					 flush)) {
398 			btrfs_space_info_update_bytes_may_use(fs_info,
399 							      space_info,
400 							      ticket->bytes);
401 			remove_ticket(space_info, ticket);
402 			ticket->bytes = 0;
403 			space_info->tickets_id++;
404 			wake_up(&ticket->wait);
405 		} else {
406 			break;
407 		}
408 	}
409 
410 	if (head == &space_info->priority_tickets) {
411 		head = &space_info->tickets;
412 		flush = BTRFS_RESERVE_FLUSH_ALL;
413 		goto again;
414 	}
415 }
416 
417 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
418 do {									\
419 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
420 	spin_lock(&__rsv->lock);					\
421 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
422 		   __rsv->size, __rsv->reserved);			\
423 	spin_unlock(&__rsv->lock);					\
424 } while (0)
425 
426 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
427 				    struct btrfs_space_info *info)
428 {
429 	lockdep_assert_held(&info->lock);
430 
431 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
432 		   info->flags,
433 		   info->total_bytes - btrfs_space_info_used(info, true),
434 		   info->full ? "" : "not ");
435 	btrfs_info(fs_info,
436 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
437 		info->total_bytes, info->bytes_used, info->bytes_pinned,
438 		info->bytes_reserved, info->bytes_may_use,
439 		info->bytes_readonly);
440 
441 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
442 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
443 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
444 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
445 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
446 
447 }
448 
449 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
450 			   struct btrfs_space_info *info, u64 bytes,
451 			   int dump_block_groups)
452 {
453 	struct btrfs_block_group *cache;
454 	int index = 0;
455 
456 	spin_lock(&info->lock);
457 	__btrfs_dump_space_info(fs_info, info);
458 	spin_unlock(&info->lock);
459 
460 	if (!dump_block_groups)
461 		return;
462 
463 	down_read(&info->groups_sem);
464 again:
465 	list_for_each_entry(cache, &info->block_groups[index], list) {
466 		spin_lock(&cache->lock);
467 		btrfs_info(fs_info,
468 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
469 			cache->start, cache->length, cache->used, cache->pinned,
470 			cache->reserved, cache->ro ? "[readonly]" : "");
471 		spin_unlock(&cache->lock);
472 		btrfs_dump_free_space(cache, bytes);
473 	}
474 	if (++index < BTRFS_NR_RAID_TYPES)
475 		goto again;
476 	up_read(&info->groups_sem);
477 }
478 
479 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
480 					u64 to_reclaim)
481 {
482 	u64 bytes;
483 	u64 nr;
484 
485 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
486 	nr = div64_u64(to_reclaim, bytes);
487 	if (!nr)
488 		nr = 1;
489 	return nr;
490 }
491 
492 #define EXTENT_SIZE_PER_ITEM	SZ_256K
493 
494 /*
495  * shrink metadata reservation for delalloc
496  */
497 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
498 			    struct btrfs_space_info *space_info,
499 			    u64 to_reclaim, bool wait_ordered)
500 {
501 	struct btrfs_trans_handle *trans;
502 	u64 delalloc_bytes;
503 	u64 dio_bytes;
504 	u64 items;
505 	long time_left;
506 	int loops;
507 
508 	/* Calc the number of the pages we need flush for space reservation */
509 	if (to_reclaim == U64_MAX) {
510 		items = U64_MAX;
511 	} else {
512 		/*
513 		 * to_reclaim is set to however much metadata we need to
514 		 * reclaim, but reclaiming that much data doesn't really track
515 		 * exactly, so increase the amount to reclaim by 2x in order to
516 		 * make sure we're flushing enough delalloc to hopefully reclaim
517 		 * some metadata reservations.
518 		 */
519 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
520 		to_reclaim = items * EXTENT_SIZE_PER_ITEM;
521 	}
522 
523 	trans = (struct btrfs_trans_handle *)current->journal_info;
524 
525 	delalloc_bytes = percpu_counter_sum_positive(
526 						&fs_info->delalloc_bytes);
527 	dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
528 	if (delalloc_bytes == 0 && dio_bytes == 0) {
529 		if (trans)
530 			return;
531 		if (wait_ordered)
532 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
533 		return;
534 	}
535 
536 	/*
537 	 * If we are doing more ordered than delalloc we need to just wait on
538 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
539 	 * that likely won't give us the space back we need.
540 	 */
541 	if (dio_bytes > delalloc_bytes)
542 		wait_ordered = true;
543 
544 	loops = 0;
545 	while ((delalloc_bytes || dio_bytes) && loops < 3) {
546 		btrfs_start_delalloc_roots(fs_info, items);
547 
548 		loops++;
549 		if (wait_ordered && !trans) {
550 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
551 		} else {
552 			time_left = schedule_timeout_killable(1);
553 			if (time_left)
554 				break;
555 		}
556 
557 		spin_lock(&space_info->lock);
558 		if (list_empty(&space_info->tickets) &&
559 		    list_empty(&space_info->priority_tickets)) {
560 			spin_unlock(&space_info->lock);
561 			break;
562 		}
563 		spin_unlock(&space_info->lock);
564 
565 		delalloc_bytes = percpu_counter_sum_positive(
566 						&fs_info->delalloc_bytes);
567 		dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
568 	}
569 }
570 
571 /**
572  * maybe_commit_transaction - possibly commit the transaction if its ok to
573  * @root - the root we're allocating for
574  * @bytes - the number of bytes we want to reserve
575  * @force - force the commit
576  *
577  * This will check to make sure that committing the transaction will actually
578  * get us somewhere and then commit the transaction if it does.  Otherwise it
579  * will return -ENOSPC.
580  */
581 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
582 				  struct btrfs_space_info *space_info)
583 {
584 	struct reserve_ticket *ticket = NULL;
585 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
586 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
587 	struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
588 	struct btrfs_trans_handle *trans;
589 	u64 reclaim_bytes = 0;
590 	u64 bytes_needed = 0;
591 	u64 cur_free_bytes = 0;
592 
593 	trans = (struct btrfs_trans_handle *)current->journal_info;
594 	if (trans)
595 		return -EAGAIN;
596 
597 	spin_lock(&space_info->lock);
598 	cur_free_bytes = btrfs_space_info_used(space_info, true);
599 	if (cur_free_bytes < space_info->total_bytes)
600 		cur_free_bytes = space_info->total_bytes - cur_free_bytes;
601 	else
602 		cur_free_bytes = 0;
603 
604 	if (!list_empty(&space_info->priority_tickets))
605 		ticket = list_first_entry(&space_info->priority_tickets,
606 					  struct reserve_ticket, list);
607 	else if (!list_empty(&space_info->tickets))
608 		ticket = list_first_entry(&space_info->tickets,
609 					  struct reserve_ticket, list);
610 	if (ticket)
611 		bytes_needed = ticket->bytes;
612 
613 	if (bytes_needed > cur_free_bytes)
614 		bytes_needed -= cur_free_bytes;
615 	else
616 		bytes_needed = 0;
617 	spin_unlock(&space_info->lock);
618 
619 	if (!bytes_needed)
620 		return 0;
621 
622 	trans = btrfs_join_transaction(fs_info->extent_root);
623 	if (IS_ERR(trans))
624 		return PTR_ERR(trans);
625 
626 	/*
627 	 * See if there is enough pinned space to make this reservation, or if
628 	 * we have block groups that are going to be freed, allowing us to
629 	 * possibly do a chunk allocation the next loop through.
630 	 */
631 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
632 	    __percpu_counter_compare(&space_info->total_bytes_pinned,
633 				     bytes_needed,
634 				     BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
635 		goto commit;
636 
637 	/*
638 	 * See if there is some space in the delayed insertion reserve for this
639 	 * reservation.  If the space_info's don't match (like for DATA or
640 	 * SYSTEM) then just go enospc, reclaiming this space won't recover any
641 	 * space to satisfy those reservations.
642 	 */
643 	if (space_info != delayed_rsv->space_info)
644 		goto enospc;
645 
646 	spin_lock(&delayed_rsv->lock);
647 	reclaim_bytes += delayed_rsv->reserved;
648 	spin_unlock(&delayed_rsv->lock);
649 
650 	spin_lock(&delayed_refs_rsv->lock);
651 	reclaim_bytes += delayed_refs_rsv->reserved;
652 	spin_unlock(&delayed_refs_rsv->lock);
653 
654 	spin_lock(&trans_rsv->lock);
655 	reclaim_bytes += trans_rsv->reserved;
656 	spin_unlock(&trans_rsv->lock);
657 
658 	if (reclaim_bytes >= bytes_needed)
659 		goto commit;
660 	bytes_needed -= reclaim_bytes;
661 
662 	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
663 				   bytes_needed,
664 				   BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
665 		goto enospc;
666 
667 commit:
668 	return btrfs_commit_transaction(trans);
669 enospc:
670 	btrfs_end_transaction(trans);
671 	return -ENOSPC;
672 }
673 
674 /*
675  * Try to flush some data based on policy set by @state. This is only advisory
676  * and may fail for various reasons. The caller is supposed to examine the
677  * state of @space_info to detect the outcome.
678  */
679 static void flush_space(struct btrfs_fs_info *fs_info,
680 		       struct btrfs_space_info *space_info, u64 num_bytes,
681 		       int state)
682 {
683 	struct btrfs_root *root = fs_info->extent_root;
684 	struct btrfs_trans_handle *trans;
685 	int nr;
686 	int ret = 0;
687 
688 	switch (state) {
689 	case FLUSH_DELAYED_ITEMS_NR:
690 	case FLUSH_DELAYED_ITEMS:
691 		if (state == FLUSH_DELAYED_ITEMS_NR)
692 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
693 		else
694 			nr = -1;
695 
696 		trans = btrfs_join_transaction(root);
697 		if (IS_ERR(trans)) {
698 			ret = PTR_ERR(trans);
699 			break;
700 		}
701 		ret = btrfs_run_delayed_items_nr(trans, nr);
702 		btrfs_end_transaction(trans);
703 		break;
704 	case FLUSH_DELALLOC:
705 	case FLUSH_DELALLOC_WAIT:
706 		shrink_delalloc(fs_info, space_info, num_bytes,
707 				state == FLUSH_DELALLOC_WAIT);
708 		break;
709 	case FLUSH_DELAYED_REFS_NR:
710 	case FLUSH_DELAYED_REFS:
711 		trans = btrfs_join_transaction(root);
712 		if (IS_ERR(trans)) {
713 			ret = PTR_ERR(trans);
714 			break;
715 		}
716 		if (state == FLUSH_DELAYED_REFS_NR)
717 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
718 		else
719 			nr = 0;
720 		btrfs_run_delayed_refs(trans, nr);
721 		btrfs_end_transaction(trans);
722 		break;
723 	case ALLOC_CHUNK:
724 	case ALLOC_CHUNK_FORCE:
725 		trans = btrfs_join_transaction(root);
726 		if (IS_ERR(trans)) {
727 			ret = PTR_ERR(trans);
728 			break;
729 		}
730 		ret = btrfs_chunk_alloc(trans,
731 				btrfs_get_alloc_profile(fs_info, space_info->flags),
732 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
733 					CHUNK_ALLOC_FORCE);
734 		btrfs_end_transaction(trans);
735 		if (ret > 0 || ret == -ENOSPC)
736 			ret = 0;
737 		break;
738 	case RUN_DELAYED_IPUTS:
739 		/*
740 		 * If we have pending delayed iputs then we could free up a
741 		 * bunch of pinned space, so make sure we run the iputs before
742 		 * we do our pinned bytes check below.
743 		 */
744 		btrfs_run_delayed_iputs(fs_info);
745 		btrfs_wait_on_delayed_iputs(fs_info);
746 		break;
747 	case COMMIT_TRANS:
748 		ret = may_commit_transaction(fs_info, space_info);
749 		break;
750 	default:
751 		ret = -ENOSPC;
752 		break;
753 	}
754 
755 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
756 				ret);
757 	return;
758 }
759 
760 static inline u64
761 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
762 				 struct btrfs_space_info *space_info)
763 {
764 	u64 used;
765 	u64 avail;
766 	u64 expected;
767 	u64 to_reclaim = space_info->reclaim_size;
768 
769 	lockdep_assert_held(&space_info->lock);
770 
771 	avail = calc_available_free_space(fs_info, space_info,
772 					  BTRFS_RESERVE_FLUSH_ALL);
773 	used = btrfs_space_info_used(space_info, true);
774 
775 	/*
776 	 * We may be flushing because suddenly we have less space than we had
777 	 * before, and now we're well over-committed based on our current free
778 	 * space.  If that's the case add in our overage so we make sure to put
779 	 * appropriate pressure on the flushing state machine.
780 	 */
781 	if (space_info->total_bytes + avail < used)
782 		to_reclaim += used - (space_info->total_bytes + avail);
783 
784 	if (to_reclaim)
785 		return to_reclaim;
786 
787 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
788 	if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
789 				 BTRFS_RESERVE_FLUSH_ALL))
790 		return 0;
791 
792 	used = btrfs_space_info_used(space_info, true);
793 
794 	if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
795 				 BTRFS_RESERVE_FLUSH_ALL))
796 		expected = div_factor_fine(space_info->total_bytes, 95);
797 	else
798 		expected = div_factor_fine(space_info->total_bytes, 90);
799 
800 	if (used > expected)
801 		to_reclaim = used - expected;
802 	else
803 		to_reclaim = 0;
804 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
805 				     space_info->bytes_reserved);
806 	return to_reclaim;
807 }
808 
809 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
810 					struct btrfs_space_info *space_info,
811 					u64 used)
812 {
813 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
814 
815 	/* If we're just plain full then async reclaim just slows us down. */
816 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
817 		return 0;
818 
819 	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
820 		return 0;
821 
822 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
823 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
824 }
825 
826 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
827 				  struct btrfs_space_info *space_info,
828 				  struct reserve_ticket *ticket)
829 {
830 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
831 	u64 min_bytes;
832 
833 	if (global_rsv->space_info != space_info)
834 		return false;
835 
836 	spin_lock(&global_rsv->lock);
837 	min_bytes = div_factor(global_rsv->size, 1);
838 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
839 		spin_unlock(&global_rsv->lock);
840 		return false;
841 	}
842 	global_rsv->reserved -= ticket->bytes;
843 	remove_ticket(space_info, ticket);
844 	ticket->bytes = 0;
845 	wake_up(&ticket->wait);
846 	space_info->tickets_id++;
847 	if (global_rsv->reserved < global_rsv->size)
848 		global_rsv->full = 0;
849 	spin_unlock(&global_rsv->lock);
850 
851 	return true;
852 }
853 
854 /*
855  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
856  * @fs_info - fs_info for this fs
857  * @space_info - the space info we were flushing
858  *
859  * We call this when we've exhausted our flushing ability and haven't made
860  * progress in satisfying tickets.  The reservation code handles tickets in
861  * order, so if there is a large ticket first and then smaller ones we could
862  * very well satisfy the smaller tickets.  This will attempt to wake up any
863  * tickets in the list to catch this case.
864  *
865  * This function returns true if it was able to make progress by clearing out
866  * other tickets, or if it stumbles across a ticket that was smaller than the
867  * first ticket.
868  */
869 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
870 				   struct btrfs_space_info *space_info)
871 {
872 	struct reserve_ticket *ticket;
873 	u64 tickets_id = space_info->tickets_id;
874 	u64 first_ticket_bytes = 0;
875 
876 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
877 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
878 		__btrfs_dump_space_info(fs_info, space_info);
879 	}
880 
881 	while (!list_empty(&space_info->tickets) &&
882 	       tickets_id == space_info->tickets_id) {
883 		ticket = list_first_entry(&space_info->tickets,
884 					  struct reserve_ticket, list);
885 
886 		if (ticket->steal &&
887 		    steal_from_global_rsv(fs_info, space_info, ticket))
888 			return true;
889 
890 		/*
891 		 * may_commit_transaction will avoid committing the transaction
892 		 * if it doesn't feel like the space reclaimed by the commit
893 		 * would result in the ticket succeeding.  However if we have a
894 		 * smaller ticket in the queue it may be small enough to be
895 		 * satisified by committing the transaction, so if any
896 		 * subsequent ticket is smaller than the first ticket go ahead
897 		 * and send us back for another loop through the enospc flushing
898 		 * code.
899 		 */
900 		if (first_ticket_bytes == 0)
901 			first_ticket_bytes = ticket->bytes;
902 		else if (first_ticket_bytes > ticket->bytes)
903 			return true;
904 
905 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
906 			btrfs_info(fs_info, "failing ticket with %llu bytes",
907 				   ticket->bytes);
908 
909 		remove_ticket(space_info, ticket);
910 		ticket->error = -ENOSPC;
911 		wake_up(&ticket->wait);
912 
913 		/*
914 		 * We're just throwing tickets away, so more flushing may not
915 		 * trip over btrfs_try_granting_tickets, so we need to call it
916 		 * here to see if we can make progress with the next ticket in
917 		 * the list.
918 		 */
919 		btrfs_try_granting_tickets(fs_info, space_info);
920 	}
921 	return (tickets_id != space_info->tickets_id);
922 }
923 
924 /*
925  * This is for normal flushers, we can wait all goddamned day if we want to.  We
926  * will loop and continuously try to flush as long as we are making progress.
927  * We count progress as clearing off tickets each time we have to loop.
928  */
929 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
930 {
931 	struct btrfs_fs_info *fs_info;
932 	struct btrfs_space_info *space_info;
933 	u64 to_reclaim;
934 	int flush_state;
935 	int commit_cycles = 0;
936 	u64 last_tickets_id;
937 
938 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
939 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
940 
941 	spin_lock(&space_info->lock);
942 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
943 	if (!to_reclaim) {
944 		space_info->flush = 0;
945 		spin_unlock(&space_info->lock);
946 		return;
947 	}
948 	last_tickets_id = space_info->tickets_id;
949 	spin_unlock(&space_info->lock);
950 
951 	flush_state = FLUSH_DELAYED_ITEMS_NR;
952 	do {
953 		flush_space(fs_info, space_info, to_reclaim, flush_state);
954 		spin_lock(&space_info->lock);
955 		if (list_empty(&space_info->tickets)) {
956 			space_info->flush = 0;
957 			spin_unlock(&space_info->lock);
958 			return;
959 		}
960 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
961 							      space_info);
962 		if (last_tickets_id == space_info->tickets_id) {
963 			flush_state++;
964 		} else {
965 			last_tickets_id = space_info->tickets_id;
966 			flush_state = FLUSH_DELAYED_ITEMS_NR;
967 			if (commit_cycles)
968 				commit_cycles--;
969 		}
970 
971 		/*
972 		 * We don't want to force a chunk allocation until we've tried
973 		 * pretty hard to reclaim space.  Think of the case where we
974 		 * freed up a bunch of space and so have a lot of pinned space
975 		 * to reclaim.  We would rather use that than possibly create a
976 		 * underutilized metadata chunk.  So if this is our first run
977 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
978 		 * commit the transaction.  If nothing has changed the next go
979 		 * around then we can force a chunk allocation.
980 		 */
981 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
982 			flush_state++;
983 
984 		if (flush_state > COMMIT_TRANS) {
985 			commit_cycles++;
986 			if (commit_cycles > 2) {
987 				if (maybe_fail_all_tickets(fs_info, space_info)) {
988 					flush_state = FLUSH_DELAYED_ITEMS_NR;
989 					commit_cycles--;
990 				} else {
991 					space_info->flush = 0;
992 				}
993 			} else {
994 				flush_state = FLUSH_DELAYED_ITEMS_NR;
995 			}
996 		}
997 		spin_unlock(&space_info->lock);
998 	} while (flush_state <= COMMIT_TRANS);
999 }
1000 
1001 void btrfs_init_async_reclaim_work(struct work_struct *work)
1002 {
1003 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
1004 }
1005 
1006 static const enum btrfs_flush_state priority_flush_states[] = {
1007 	FLUSH_DELAYED_ITEMS_NR,
1008 	FLUSH_DELAYED_ITEMS,
1009 	ALLOC_CHUNK,
1010 };
1011 
1012 static const enum btrfs_flush_state evict_flush_states[] = {
1013 	FLUSH_DELAYED_ITEMS_NR,
1014 	FLUSH_DELAYED_ITEMS,
1015 	FLUSH_DELAYED_REFS_NR,
1016 	FLUSH_DELAYED_REFS,
1017 	FLUSH_DELALLOC,
1018 	FLUSH_DELALLOC_WAIT,
1019 	ALLOC_CHUNK,
1020 	COMMIT_TRANS,
1021 };
1022 
1023 static const enum btrfs_flush_state data_flush_states[] = {
1024 	FLUSH_DELALLOC_WAIT,
1025 	COMMIT_TRANS,
1026 	RUN_DELAYED_IPUTS,
1027 };
1028 
1029 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1030 				struct btrfs_space_info *space_info,
1031 				struct reserve_ticket *ticket,
1032 				const enum btrfs_flush_state *states,
1033 				int states_nr)
1034 {
1035 	u64 to_reclaim;
1036 	int flush_state;
1037 
1038 	spin_lock(&space_info->lock);
1039 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1040 	if (!to_reclaim) {
1041 		spin_unlock(&space_info->lock);
1042 		return;
1043 	}
1044 	spin_unlock(&space_info->lock);
1045 
1046 	flush_state = 0;
1047 	do {
1048 		flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
1049 		flush_state++;
1050 		spin_lock(&space_info->lock);
1051 		if (ticket->bytes == 0) {
1052 			spin_unlock(&space_info->lock);
1053 			return;
1054 		}
1055 		spin_unlock(&space_info->lock);
1056 	} while (flush_state < states_nr);
1057 }
1058 
1059 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1060 					struct btrfs_space_info *space_info,
1061 					struct reserve_ticket *ticket,
1062 					const enum btrfs_flush_state *states,
1063 					int states_nr)
1064 {
1065 	int flush_state = 0;
1066 
1067 	while (!space_info->full) {
1068 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1069 		spin_lock(&space_info->lock);
1070 		if (ticket->bytes == 0) {
1071 			spin_unlock(&space_info->lock);
1072 			return;
1073 		}
1074 		spin_unlock(&space_info->lock);
1075 	}
1076 
1077 	while (flush_state < states_nr) {
1078 		flush_space(fs_info, space_info, U64_MAX, states[flush_state]);
1079 		spin_lock(&space_info->lock);
1080 		if (ticket->bytes == 0) {
1081 			spin_unlock(&space_info->lock);
1082 			return;
1083 		}
1084 		spin_unlock(&space_info->lock);
1085 		flush_state++;
1086 	}
1087 }
1088 
1089 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1090 				struct btrfs_space_info *space_info,
1091 				struct reserve_ticket *ticket)
1092 
1093 {
1094 	DEFINE_WAIT(wait);
1095 	int ret = 0;
1096 
1097 	spin_lock(&space_info->lock);
1098 	while (ticket->bytes > 0 && ticket->error == 0) {
1099 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1100 		if (ret) {
1101 			/*
1102 			 * Delete us from the list. After we unlock the space
1103 			 * info, we don't want the async reclaim job to reserve
1104 			 * space for this ticket. If that would happen, then the
1105 			 * ticket's task would not known that space was reserved
1106 			 * despite getting an error, resulting in a space leak
1107 			 * (bytes_may_use counter of our space_info).
1108 			 */
1109 			remove_ticket(space_info, ticket);
1110 			ticket->error = -EINTR;
1111 			break;
1112 		}
1113 		spin_unlock(&space_info->lock);
1114 
1115 		schedule();
1116 
1117 		finish_wait(&ticket->wait, &wait);
1118 		spin_lock(&space_info->lock);
1119 	}
1120 	spin_unlock(&space_info->lock);
1121 }
1122 
1123 /**
1124  * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
1125  * @fs_info - the fs
1126  * @space_info - the space_info for the reservation
1127  * @ticket - the ticket for the reservation
1128  * @flush - how much we can flush
1129  *
1130  * This does the work of figuring out how to flush for the ticket, waiting for
1131  * the reservation, and returning the appropriate error if there is one.
1132  */
1133 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1134 				 struct btrfs_space_info *space_info,
1135 				 struct reserve_ticket *ticket,
1136 				 enum btrfs_reserve_flush_enum flush)
1137 {
1138 	int ret;
1139 
1140 	switch (flush) {
1141 	case BTRFS_RESERVE_FLUSH_ALL:
1142 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1143 		wait_reserve_ticket(fs_info, space_info, ticket);
1144 		break;
1145 	case BTRFS_RESERVE_FLUSH_LIMIT:
1146 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1147 						priority_flush_states,
1148 						ARRAY_SIZE(priority_flush_states));
1149 		break;
1150 	case BTRFS_RESERVE_FLUSH_EVICT:
1151 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1152 						evict_flush_states,
1153 						ARRAY_SIZE(evict_flush_states));
1154 		break;
1155 	case BTRFS_RESERVE_FLUSH_DATA:
1156 		priority_reclaim_data_space(fs_info, space_info, ticket,
1157 				data_flush_states, ARRAY_SIZE(data_flush_states));
1158 		break;
1159 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1160 		priority_reclaim_data_space(fs_info, space_info, ticket, NULL, 0);
1161 		break;
1162 	default:
1163 		ASSERT(0);
1164 		break;
1165 	}
1166 
1167 	spin_lock(&space_info->lock);
1168 	ret = ticket->error;
1169 	if (ticket->bytes || ticket->error) {
1170 		/*
1171 		 * We were a priority ticket, so we need to delete ourselves
1172 		 * from the list.  Because we could have other priority tickets
1173 		 * behind us that require less space, run
1174 		 * btrfs_try_granting_tickets() to see if their reservations can
1175 		 * now be made.
1176 		 */
1177 		if (!list_empty(&ticket->list)) {
1178 			remove_ticket(space_info, ticket);
1179 			btrfs_try_granting_tickets(fs_info, space_info);
1180 		}
1181 
1182 		if (!ret)
1183 			ret = -ENOSPC;
1184 	}
1185 	spin_unlock(&space_info->lock);
1186 	ASSERT(list_empty(&ticket->list));
1187 	/*
1188 	 * Check that we can't have an error set if the reservation succeeded,
1189 	 * as that would confuse tasks and lead them to error out without
1190 	 * releasing reserved space (if an error happens the expectation is that
1191 	 * space wasn't reserved at all).
1192 	 */
1193 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1194 	return ret;
1195 }
1196 
1197 /*
1198  * This returns true if this flush state will go through the ordinary flushing
1199  * code.
1200  */
1201 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1202 {
1203 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1204 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1205 }
1206 
1207 /**
1208  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1209  * @root - the root we're allocating for
1210  * @space_info - the space info we want to allocate from
1211  * @orig_bytes - the number of bytes we want
1212  * @flush - whether or not we can flush to make our reservation
1213  *
1214  * This will reserve orig_bytes number of bytes from the space info associated
1215  * with the block_rsv.  If there is not enough space it will make an attempt to
1216  * flush out space to make room.  It will do this by flushing delalloc if
1217  * possible or committing the transaction.  If flush is 0 then no attempts to
1218  * regain reservations will be made and this will fail if there is not enough
1219  * space already.
1220  */
1221 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1222 			   struct btrfs_space_info *space_info, u64 orig_bytes,
1223 			   enum btrfs_reserve_flush_enum flush)
1224 {
1225 	struct reserve_ticket ticket;
1226 	u64 used;
1227 	int ret = 0;
1228 	bool pending_tickets;
1229 
1230 	ASSERT(orig_bytes);
1231 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1232 
1233 	spin_lock(&space_info->lock);
1234 	ret = -ENOSPC;
1235 	used = btrfs_space_info_used(space_info, true);
1236 
1237 	/*
1238 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1239 	 * generally handle ENOSPC in a different way, so treat them the same as
1240 	 * normal flushers when it comes to skipping pending tickets.
1241 	 */
1242 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1243 		pending_tickets = !list_empty(&space_info->tickets) ||
1244 			!list_empty(&space_info->priority_tickets);
1245 	else
1246 		pending_tickets = !list_empty(&space_info->priority_tickets);
1247 
1248 	/*
1249 	 * Carry on if we have enough space (short-circuit) OR call
1250 	 * can_overcommit() to ensure we can overcommit to continue.
1251 	 */
1252 	if (!pending_tickets &&
1253 	    ((used + orig_bytes <= space_info->total_bytes) ||
1254 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1255 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1256 						      orig_bytes);
1257 		ret = 0;
1258 	}
1259 
1260 	/*
1261 	 * If we couldn't make a reservation then setup our reservation ticket
1262 	 * and kick the async worker if it's not already running.
1263 	 *
1264 	 * If we are a priority flusher then we just need to add our ticket to
1265 	 * the list and we will do our own flushing further down.
1266 	 */
1267 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1268 		ticket.bytes = orig_bytes;
1269 		ticket.error = 0;
1270 		space_info->reclaim_size += ticket.bytes;
1271 		init_waitqueue_head(&ticket.wait);
1272 		ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1273 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1274 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
1275 			list_add_tail(&ticket.list, &space_info->tickets);
1276 			if (!space_info->flush) {
1277 				space_info->flush = 1;
1278 				trace_btrfs_trigger_flush(fs_info,
1279 							  space_info->flags,
1280 							  orig_bytes, flush,
1281 							  "enospc");
1282 				queue_work(system_unbound_wq,
1283 					   &fs_info->async_reclaim_work);
1284 			}
1285 		} else {
1286 			list_add_tail(&ticket.list,
1287 				      &space_info->priority_tickets);
1288 		}
1289 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1290 		used += orig_bytes;
1291 		/*
1292 		 * We will do the space reservation dance during log replay,
1293 		 * which means we won't have fs_info->fs_root set, so don't do
1294 		 * the async reclaim as we will panic.
1295 		 */
1296 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1297 		    need_do_async_reclaim(fs_info, space_info, used) &&
1298 		    !work_busy(&fs_info->async_reclaim_work)) {
1299 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1300 						  orig_bytes, flush, "preempt");
1301 			queue_work(system_unbound_wq,
1302 				   &fs_info->async_reclaim_work);
1303 		}
1304 	}
1305 	spin_unlock(&space_info->lock);
1306 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1307 		return ret;
1308 
1309 	return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1310 }
1311 
1312 /**
1313  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1314  * @root - the root we're allocating for
1315  * @block_rsv - the block_rsv we're allocating for
1316  * @orig_bytes - the number of bytes we want
1317  * @flush - whether or not we can flush to make our reservation
1318  *
1319  * This will reserve orig_bytes number of bytes from the space info associated
1320  * with the block_rsv.  If there is not enough space it will make an attempt to
1321  * flush out space to make room.  It will do this by flushing delalloc if
1322  * possible or committing the transaction.  If flush is 0 then no attempts to
1323  * regain reservations will be made and this will fail if there is not enough
1324  * space already.
1325  */
1326 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1327 				 struct btrfs_block_rsv *block_rsv,
1328 				 u64 orig_bytes,
1329 				 enum btrfs_reserve_flush_enum flush)
1330 {
1331 	struct btrfs_fs_info *fs_info = root->fs_info;
1332 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1333 	int ret;
1334 
1335 	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1336 	if (ret == -ENOSPC &&
1337 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1338 		if (block_rsv != global_rsv &&
1339 		    !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1340 			ret = 0;
1341 	}
1342 	if (ret == -ENOSPC) {
1343 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1344 					      block_rsv->space_info->flags,
1345 					      orig_bytes, 1);
1346 
1347 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1348 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1349 					      orig_bytes, 0);
1350 	}
1351 	return ret;
1352 }
1353 
1354 /**
1355  * btrfs_reserve_data_bytes - try to reserve data bytes for an allocation
1356  * @fs_info - the filesystem
1357  * @bytes - the number of bytes we need
1358  * @flush - how we are allowed to flush
1359  *
1360  * This will reserve bytes from the data space info.  If there is not enough
1361  * space then we will attempt to flush space as specified by flush.
1362  */
1363 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1364 			     enum btrfs_reserve_flush_enum flush)
1365 {
1366 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1367 	int ret;
1368 
1369 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1370 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1371 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1372 
1373 	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1374 	if (ret == -ENOSPC) {
1375 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1376 					      data_sinfo->flags, bytes, 1);
1377 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1378 			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1379 	}
1380 	return ret;
1381 }
1382