1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "space-info.h" 6 #include "sysfs.h" 7 #include "volumes.h" 8 #include "free-space-cache.h" 9 #include "ordered-data.h" 10 #include "transaction.h" 11 #include "block-group.h" 12 13 /* 14 * HOW DOES SPACE RESERVATION WORK 15 * 16 * If you want to know about delalloc specifically, there is a separate comment 17 * for that with the delalloc code. This comment is about how the whole system 18 * works generally. 19 * 20 * BASIC CONCEPTS 21 * 22 * 1) space_info. This is the ultimate arbiter of how much space we can use. 23 * There's a description of the bytes_ fields with the struct declaration, 24 * refer to that for specifics on each field. Suffice it to say that for 25 * reservations we care about total_bytes - SUM(space_info->bytes_) when 26 * determining if there is space to make an allocation. There is a space_info 27 * for METADATA, SYSTEM, and DATA areas. 28 * 29 * 2) block_rsv's. These are basically buckets for every different type of 30 * metadata reservation we have. You can see the comment in the block_rsv 31 * code on the rules for each type, but generally block_rsv->reserved is how 32 * much space is accounted for in space_info->bytes_may_use. 33 * 34 * 3) btrfs_calc*_size. These are the worst case calculations we used based 35 * on the number of items we will want to modify. We have one for changing 36 * items, and one for inserting new items. Generally we use these helpers to 37 * determine the size of the block reserves, and then use the actual bytes 38 * values to adjust the space_info counters. 39 * 40 * MAKING RESERVATIONS, THE NORMAL CASE 41 * 42 * We call into either btrfs_reserve_data_bytes() or 43 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with 44 * num_bytes we want to reserve. 45 * 46 * ->reserve 47 * space_info->bytes_may_reserve += num_bytes 48 * 49 * ->extent allocation 50 * Call btrfs_add_reserved_bytes() which does 51 * space_info->bytes_may_reserve -= num_bytes 52 * space_info->bytes_reserved += extent_bytes 53 * 54 * ->insert reference 55 * Call btrfs_update_block_group() which does 56 * space_info->bytes_reserved -= extent_bytes 57 * space_info->bytes_used += extent_bytes 58 * 59 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) 60 * 61 * Assume we are unable to simply make the reservation because we do not have 62 * enough space 63 * 64 * -> __reserve_bytes 65 * create a reserve_ticket with ->bytes set to our reservation, add it to 66 * the tail of space_info->tickets, kick async flush thread 67 * 68 * ->handle_reserve_ticket 69 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set 70 * on the ticket. 71 * 72 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space 73 * Flushes various things attempting to free up space. 74 * 75 * -> btrfs_try_granting_tickets() 76 * This is called by anything that either subtracts space from 77 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the 78 * space_info->total_bytes. This loops through the ->priority_tickets and 79 * then the ->tickets list checking to see if the reservation can be 80 * completed. If it can the space is added to space_info->bytes_may_use and 81 * the ticket is woken up. 82 * 83 * -> ticket wakeup 84 * Check if ->bytes == 0, if it does we got our reservation and we can carry 85 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we 86 * were interrupted.) 87 * 88 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY 89 * 90 * Same as the above, except we add ourselves to the 91 * space_info->priority_tickets, and we do not use ticket->wait, we simply 92 * call flush_space() ourselves for the states that are safe for us to call 93 * without deadlocking and hope for the best. 94 * 95 * THE FLUSHING STATES 96 * 97 * Generally speaking we will have two cases for each state, a "nice" state 98 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to 99 * reduce the locking over head on the various trees, and even to keep from 100 * doing any work at all in the case of delayed refs. Each of these delayed 101 * things however hold reservations, and so letting them run allows us to 102 * reclaim space so we can make new reservations. 103 * 104 * FLUSH_DELAYED_ITEMS 105 * Every inode has a delayed item to update the inode. Take a simple write 106 * for example, we would update the inode item at write time to update the 107 * mtime, and then again at finish_ordered_io() time in order to update the 108 * isize or bytes. We keep these delayed items to coalesce these operations 109 * into a single operation done on demand. These are an easy way to reclaim 110 * metadata space. 111 * 112 * FLUSH_DELALLOC 113 * Look at the delalloc comment to get an idea of how much space is reserved 114 * for delayed allocation. We can reclaim some of this space simply by 115 * running delalloc, but usually we need to wait for ordered extents to 116 * reclaim the bulk of this space. 117 * 118 * FLUSH_DELAYED_REFS 119 * We have a block reserve for the outstanding delayed refs space, and every 120 * delayed ref operation holds a reservation. Running these is a quick way 121 * to reclaim space, but we want to hold this until the end because COW can 122 * churn a lot and we can avoid making some extent tree modifications if we 123 * are able to delay for as long as possible. 124 * 125 * ALLOC_CHUNK 126 * We will skip this the first time through space reservation, because of 127 * overcommit and we don't want to have a lot of useless metadata space when 128 * our worst case reservations will likely never come true. 129 * 130 * RUN_DELAYED_IPUTS 131 * If we're freeing inodes we're likely freeing checksums, file extent 132 * items, and extent tree items. Loads of space could be freed up by these 133 * operations, however they won't be usable until the transaction commits. 134 * 135 * COMMIT_TRANS 136 * may_commit_transaction() is the ultimate arbiter on whether we commit the 137 * transaction or not. In order to avoid constantly churning we do all the 138 * above flushing first and then commit the transaction as the last resort. 139 * However we need to take into account things like pinned space that would 140 * be freed, plus any delayed work we may not have gotten rid of in the case 141 * of metadata. 142 * 143 * OVERCOMMIT 144 * 145 * Because we hold so many reservations for metadata we will allow you to 146 * reserve more space than is currently free in the currently allocate 147 * metadata space. This only happens with metadata, data does not allow 148 * overcommitting. 149 * 150 * You can see the current logic for when we allow overcommit in 151 * btrfs_can_overcommit(), but it only applies to unallocated space. If there 152 * is no unallocated space to be had, all reservations are kept within the 153 * free space in the allocated metadata chunks. 154 * 155 * Because of overcommitting, you generally want to use the 156 * btrfs_can_overcommit() logic for metadata allocations, as it does the right 157 * thing with or without extra unallocated space. 158 */ 159 160 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info, 161 bool may_use_included) 162 { 163 ASSERT(s_info); 164 return s_info->bytes_used + s_info->bytes_reserved + 165 s_info->bytes_pinned + s_info->bytes_readonly + 166 (may_use_included ? s_info->bytes_may_use : 0); 167 } 168 169 /* 170 * after adding space to the filesystem, we need to clear the full flags 171 * on all the space infos. 172 */ 173 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 174 { 175 struct list_head *head = &info->space_info; 176 struct btrfs_space_info *found; 177 178 list_for_each_entry(found, head, list) 179 found->full = 0; 180 } 181 182 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 183 { 184 185 struct btrfs_space_info *space_info; 186 int i; 187 int ret; 188 189 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 190 if (!space_info) 191 return -ENOMEM; 192 193 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0, 194 GFP_KERNEL); 195 if (ret) { 196 kfree(space_info); 197 return ret; 198 } 199 200 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 201 INIT_LIST_HEAD(&space_info->block_groups[i]); 202 init_rwsem(&space_info->groups_sem); 203 spin_lock_init(&space_info->lock); 204 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 205 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 206 INIT_LIST_HEAD(&space_info->ro_bgs); 207 INIT_LIST_HEAD(&space_info->tickets); 208 INIT_LIST_HEAD(&space_info->priority_tickets); 209 210 ret = btrfs_sysfs_add_space_info_type(info, space_info); 211 if (ret) 212 return ret; 213 214 list_add(&space_info->list, &info->space_info); 215 if (flags & BTRFS_BLOCK_GROUP_DATA) 216 info->data_sinfo = space_info; 217 218 return ret; 219 } 220 221 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 222 { 223 struct btrfs_super_block *disk_super; 224 u64 features; 225 u64 flags; 226 int mixed = 0; 227 int ret; 228 229 disk_super = fs_info->super_copy; 230 if (!btrfs_super_root(disk_super)) 231 return -EINVAL; 232 233 features = btrfs_super_incompat_flags(disk_super); 234 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 235 mixed = 1; 236 237 flags = BTRFS_BLOCK_GROUP_SYSTEM; 238 ret = create_space_info(fs_info, flags); 239 if (ret) 240 goto out; 241 242 if (mixed) { 243 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 244 ret = create_space_info(fs_info, flags); 245 } else { 246 flags = BTRFS_BLOCK_GROUP_METADATA; 247 ret = create_space_info(fs_info, flags); 248 if (ret) 249 goto out; 250 251 flags = BTRFS_BLOCK_GROUP_DATA; 252 ret = create_space_info(fs_info, flags); 253 } 254 out: 255 return ret; 256 } 257 258 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags, 259 u64 total_bytes, u64 bytes_used, 260 u64 bytes_readonly, 261 struct btrfs_space_info **space_info) 262 { 263 struct btrfs_space_info *found; 264 int factor; 265 266 factor = btrfs_bg_type_to_factor(flags); 267 268 found = btrfs_find_space_info(info, flags); 269 ASSERT(found); 270 spin_lock(&found->lock); 271 found->total_bytes += total_bytes; 272 found->disk_total += total_bytes * factor; 273 found->bytes_used += bytes_used; 274 found->disk_used += bytes_used * factor; 275 found->bytes_readonly += bytes_readonly; 276 if (total_bytes > 0) 277 found->full = 0; 278 btrfs_try_granting_tickets(info, found); 279 spin_unlock(&found->lock); 280 *space_info = found; 281 } 282 283 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 284 u64 flags) 285 { 286 struct list_head *head = &info->space_info; 287 struct btrfs_space_info *found; 288 289 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 290 291 list_for_each_entry(found, head, list) { 292 if (found->flags & flags) 293 return found; 294 } 295 return NULL; 296 } 297 298 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info, 299 struct btrfs_space_info *space_info, 300 enum btrfs_reserve_flush_enum flush) 301 { 302 u64 profile; 303 u64 avail; 304 int factor; 305 306 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 307 profile = btrfs_system_alloc_profile(fs_info); 308 else 309 profile = btrfs_metadata_alloc_profile(fs_info); 310 311 avail = atomic64_read(&fs_info->free_chunk_space); 312 313 /* 314 * If we have dup, raid1 or raid10 then only half of the free 315 * space is actually usable. For raid56, the space info used 316 * doesn't include the parity drive, so we don't have to 317 * change the math 318 */ 319 factor = btrfs_bg_type_to_factor(profile); 320 avail = div_u64(avail, factor); 321 322 /* 323 * If we aren't flushing all things, let us overcommit up to 324 * 1/2th of the space. If we can flush, don't let us overcommit 325 * too much, let it overcommit up to 1/8 of the space. 326 */ 327 if (flush == BTRFS_RESERVE_FLUSH_ALL) 328 avail >>= 3; 329 else 330 avail >>= 1; 331 return avail; 332 } 333 334 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info, 335 struct btrfs_space_info *space_info, u64 bytes, 336 enum btrfs_reserve_flush_enum flush) 337 { 338 u64 avail; 339 u64 used; 340 341 /* Don't overcommit when in mixed mode */ 342 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 343 return 0; 344 345 used = btrfs_space_info_used(space_info, true); 346 avail = calc_available_free_space(fs_info, space_info, flush); 347 348 if (used + bytes < space_info->total_bytes + avail) 349 return 1; 350 return 0; 351 } 352 353 static void remove_ticket(struct btrfs_space_info *space_info, 354 struct reserve_ticket *ticket) 355 { 356 if (!list_empty(&ticket->list)) { 357 list_del_init(&ticket->list); 358 ASSERT(space_info->reclaim_size >= ticket->bytes); 359 space_info->reclaim_size -= ticket->bytes; 360 } 361 } 362 363 /* 364 * This is for space we already have accounted in space_info->bytes_may_use, so 365 * basically when we're returning space from block_rsv's. 366 */ 367 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info, 368 struct btrfs_space_info *space_info) 369 { 370 struct list_head *head; 371 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 372 373 lockdep_assert_held(&space_info->lock); 374 375 head = &space_info->priority_tickets; 376 again: 377 while (!list_empty(head)) { 378 struct reserve_ticket *ticket; 379 u64 used = btrfs_space_info_used(space_info, true); 380 381 ticket = list_first_entry(head, struct reserve_ticket, list); 382 383 /* Check and see if our ticket can be satisified now. */ 384 if ((used + ticket->bytes <= space_info->total_bytes) || 385 btrfs_can_overcommit(fs_info, space_info, ticket->bytes, 386 flush)) { 387 btrfs_space_info_update_bytes_may_use(fs_info, 388 space_info, 389 ticket->bytes); 390 remove_ticket(space_info, ticket); 391 ticket->bytes = 0; 392 space_info->tickets_id++; 393 wake_up(&ticket->wait); 394 } else { 395 break; 396 } 397 } 398 399 if (head == &space_info->priority_tickets) { 400 head = &space_info->tickets; 401 flush = BTRFS_RESERVE_FLUSH_ALL; 402 goto again; 403 } 404 } 405 406 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ 407 do { \ 408 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ 409 spin_lock(&__rsv->lock); \ 410 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ 411 __rsv->size, __rsv->reserved); \ 412 spin_unlock(&__rsv->lock); \ 413 } while (0) 414 415 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 416 struct btrfs_space_info *info) 417 { 418 lockdep_assert_held(&info->lock); 419 420 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", 421 info->flags, 422 info->total_bytes - btrfs_space_info_used(info, true), 423 info->full ? "" : "not "); 424 btrfs_info(fs_info, 425 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", 426 info->total_bytes, info->bytes_used, info->bytes_pinned, 427 info->bytes_reserved, info->bytes_may_use, 428 info->bytes_readonly); 429 430 DUMP_BLOCK_RSV(fs_info, global_block_rsv); 431 DUMP_BLOCK_RSV(fs_info, trans_block_rsv); 432 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); 433 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); 434 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); 435 436 } 437 438 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 439 struct btrfs_space_info *info, u64 bytes, 440 int dump_block_groups) 441 { 442 struct btrfs_block_group *cache; 443 int index = 0; 444 445 spin_lock(&info->lock); 446 __btrfs_dump_space_info(fs_info, info); 447 spin_unlock(&info->lock); 448 449 if (!dump_block_groups) 450 return; 451 452 down_read(&info->groups_sem); 453 again: 454 list_for_each_entry(cache, &info->block_groups[index], list) { 455 spin_lock(&cache->lock); 456 btrfs_info(fs_info, 457 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", 458 cache->start, cache->length, cache->used, cache->pinned, 459 cache->reserved, cache->ro ? "[readonly]" : ""); 460 spin_unlock(&cache->lock); 461 btrfs_dump_free_space(cache, bytes); 462 } 463 if (++index < BTRFS_NR_RAID_TYPES) 464 goto again; 465 up_read(&info->groups_sem); 466 } 467 468 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 469 u64 to_reclaim) 470 { 471 u64 bytes; 472 u64 nr; 473 474 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 475 nr = div64_u64(to_reclaim, bytes); 476 if (!nr) 477 nr = 1; 478 return nr; 479 } 480 481 #define EXTENT_SIZE_PER_ITEM SZ_256K 482 483 /* 484 * shrink metadata reservation for delalloc 485 */ 486 static void shrink_delalloc(struct btrfs_fs_info *fs_info, 487 struct btrfs_space_info *space_info, 488 u64 to_reclaim, bool wait_ordered) 489 { 490 struct btrfs_trans_handle *trans; 491 u64 delalloc_bytes; 492 u64 dio_bytes; 493 u64 items; 494 long time_left; 495 int loops; 496 497 /* Calc the number of the pages we need flush for space reservation */ 498 if (to_reclaim == U64_MAX) { 499 items = U64_MAX; 500 } else { 501 /* 502 * to_reclaim is set to however much metadata we need to 503 * reclaim, but reclaiming that much data doesn't really track 504 * exactly, so increase the amount to reclaim by 2x in order to 505 * make sure we're flushing enough delalloc to hopefully reclaim 506 * some metadata reservations. 507 */ 508 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2; 509 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 510 } 511 512 trans = (struct btrfs_trans_handle *)current->journal_info; 513 514 delalloc_bytes = percpu_counter_sum_positive( 515 &fs_info->delalloc_bytes); 516 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes); 517 if (delalloc_bytes == 0 && dio_bytes == 0) { 518 if (trans) 519 return; 520 if (wait_ordered) 521 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 522 return; 523 } 524 525 /* 526 * If we are doing more ordered than delalloc we need to just wait on 527 * ordered extents, otherwise we'll waste time trying to flush delalloc 528 * that likely won't give us the space back we need. 529 */ 530 if (dio_bytes > delalloc_bytes) 531 wait_ordered = true; 532 533 loops = 0; 534 while ((delalloc_bytes || dio_bytes) && loops < 3) { 535 btrfs_start_delalloc_roots(fs_info, items); 536 537 loops++; 538 if (wait_ordered && !trans) { 539 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 540 } else { 541 time_left = schedule_timeout_killable(1); 542 if (time_left) 543 break; 544 } 545 546 spin_lock(&space_info->lock); 547 if (list_empty(&space_info->tickets) && 548 list_empty(&space_info->priority_tickets)) { 549 spin_unlock(&space_info->lock); 550 break; 551 } 552 spin_unlock(&space_info->lock); 553 554 delalloc_bytes = percpu_counter_sum_positive( 555 &fs_info->delalloc_bytes); 556 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes); 557 } 558 } 559 560 /** 561 * maybe_commit_transaction - possibly commit the transaction if its ok to 562 * @root - the root we're allocating for 563 * @bytes - the number of bytes we want to reserve 564 * @force - force the commit 565 * 566 * This will check to make sure that committing the transaction will actually 567 * get us somewhere and then commit the transaction if it does. Otherwise it 568 * will return -ENOSPC. 569 */ 570 static int may_commit_transaction(struct btrfs_fs_info *fs_info, 571 struct btrfs_space_info *space_info) 572 { 573 struct reserve_ticket *ticket = NULL; 574 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv; 575 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 576 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv; 577 struct btrfs_trans_handle *trans; 578 u64 reclaim_bytes = 0; 579 u64 bytes_needed = 0; 580 u64 cur_free_bytes = 0; 581 582 trans = (struct btrfs_trans_handle *)current->journal_info; 583 if (trans) 584 return -EAGAIN; 585 586 spin_lock(&space_info->lock); 587 cur_free_bytes = btrfs_space_info_used(space_info, true); 588 if (cur_free_bytes < space_info->total_bytes) 589 cur_free_bytes = space_info->total_bytes - cur_free_bytes; 590 else 591 cur_free_bytes = 0; 592 593 if (!list_empty(&space_info->priority_tickets)) 594 ticket = list_first_entry(&space_info->priority_tickets, 595 struct reserve_ticket, list); 596 else if (!list_empty(&space_info->tickets)) 597 ticket = list_first_entry(&space_info->tickets, 598 struct reserve_ticket, list); 599 if (ticket) 600 bytes_needed = ticket->bytes; 601 602 if (bytes_needed > cur_free_bytes) 603 bytes_needed -= cur_free_bytes; 604 else 605 bytes_needed = 0; 606 spin_unlock(&space_info->lock); 607 608 if (!bytes_needed) 609 return 0; 610 611 trans = btrfs_join_transaction(fs_info->extent_root); 612 if (IS_ERR(trans)) 613 return PTR_ERR(trans); 614 615 /* 616 * See if there is enough pinned space to make this reservation, or if 617 * we have block groups that are going to be freed, allowing us to 618 * possibly do a chunk allocation the next loop through. 619 */ 620 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) || 621 __percpu_counter_compare(&space_info->total_bytes_pinned, 622 bytes_needed, 623 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0) 624 goto commit; 625 626 /* 627 * See if there is some space in the delayed insertion reserve for this 628 * reservation. If the space_info's don't match (like for DATA or 629 * SYSTEM) then just go enospc, reclaiming this space won't recover any 630 * space to satisfy those reservations. 631 */ 632 if (space_info != delayed_rsv->space_info) 633 goto enospc; 634 635 spin_lock(&delayed_rsv->lock); 636 reclaim_bytes += delayed_rsv->reserved; 637 spin_unlock(&delayed_rsv->lock); 638 639 spin_lock(&delayed_refs_rsv->lock); 640 reclaim_bytes += delayed_refs_rsv->reserved; 641 spin_unlock(&delayed_refs_rsv->lock); 642 643 spin_lock(&trans_rsv->lock); 644 reclaim_bytes += trans_rsv->reserved; 645 spin_unlock(&trans_rsv->lock); 646 647 if (reclaim_bytes >= bytes_needed) 648 goto commit; 649 bytes_needed -= reclaim_bytes; 650 651 if (__percpu_counter_compare(&space_info->total_bytes_pinned, 652 bytes_needed, 653 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) 654 goto enospc; 655 656 commit: 657 return btrfs_commit_transaction(trans); 658 enospc: 659 btrfs_end_transaction(trans); 660 return -ENOSPC; 661 } 662 663 /* 664 * Try to flush some data based on policy set by @state. This is only advisory 665 * and may fail for various reasons. The caller is supposed to examine the 666 * state of @space_info to detect the outcome. 667 */ 668 static void flush_space(struct btrfs_fs_info *fs_info, 669 struct btrfs_space_info *space_info, u64 num_bytes, 670 int state) 671 { 672 struct btrfs_root *root = fs_info->extent_root; 673 struct btrfs_trans_handle *trans; 674 int nr; 675 int ret = 0; 676 677 switch (state) { 678 case FLUSH_DELAYED_ITEMS_NR: 679 case FLUSH_DELAYED_ITEMS: 680 if (state == FLUSH_DELAYED_ITEMS_NR) 681 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 682 else 683 nr = -1; 684 685 trans = btrfs_join_transaction(root); 686 if (IS_ERR(trans)) { 687 ret = PTR_ERR(trans); 688 break; 689 } 690 ret = btrfs_run_delayed_items_nr(trans, nr); 691 btrfs_end_transaction(trans); 692 break; 693 case FLUSH_DELALLOC: 694 case FLUSH_DELALLOC_WAIT: 695 shrink_delalloc(fs_info, space_info, num_bytes, 696 state == FLUSH_DELALLOC_WAIT); 697 break; 698 case FLUSH_DELAYED_REFS_NR: 699 case FLUSH_DELAYED_REFS: 700 trans = btrfs_join_transaction(root); 701 if (IS_ERR(trans)) { 702 ret = PTR_ERR(trans); 703 break; 704 } 705 if (state == FLUSH_DELAYED_REFS_NR) 706 nr = calc_reclaim_items_nr(fs_info, num_bytes); 707 else 708 nr = 0; 709 btrfs_run_delayed_refs(trans, nr); 710 btrfs_end_transaction(trans); 711 break; 712 case ALLOC_CHUNK: 713 case ALLOC_CHUNK_FORCE: 714 trans = btrfs_join_transaction(root); 715 if (IS_ERR(trans)) { 716 ret = PTR_ERR(trans); 717 break; 718 } 719 ret = btrfs_chunk_alloc(trans, 720 btrfs_get_alloc_profile(fs_info, space_info->flags), 721 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : 722 CHUNK_ALLOC_FORCE); 723 btrfs_end_transaction(trans); 724 if (ret > 0 || ret == -ENOSPC) 725 ret = 0; 726 break; 727 case RUN_DELAYED_IPUTS: 728 /* 729 * If we have pending delayed iputs then we could free up a 730 * bunch of pinned space, so make sure we run the iputs before 731 * we do our pinned bytes check below. 732 */ 733 btrfs_run_delayed_iputs(fs_info); 734 btrfs_wait_on_delayed_iputs(fs_info); 735 break; 736 case COMMIT_TRANS: 737 ret = may_commit_transaction(fs_info, space_info); 738 break; 739 default: 740 ret = -ENOSPC; 741 break; 742 } 743 744 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 745 ret); 746 return; 747 } 748 749 static inline u64 750 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 751 struct btrfs_space_info *space_info) 752 { 753 u64 used; 754 u64 avail; 755 u64 expected; 756 u64 to_reclaim = space_info->reclaim_size; 757 758 lockdep_assert_held(&space_info->lock); 759 760 avail = calc_available_free_space(fs_info, space_info, 761 BTRFS_RESERVE_FLUSH_ALL); 762 used = btrfs_space_info_used(space_info, true); 763 764 /* 765 * We may be flushing because suddenly we have less space than we had 766 * before, and now we're well over-committed based on our current free 767 * space. If that's the case add in our overage so we make sure to put 768 * appropriate pressure on the flushing state machine. 769 */ 770 if (space_info->total_bytes + avail < used) 771 to_reclaim += used - (space_info->total_bytes + avail); 772 773 if (to_reclaim) 774 return to_reclaim; 775 776 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 777 if (btrfs_can_overcommit(fs_info, space_info, to_reclaim, 778 BTRFS_RESERVE_FLUSH_ALL)) 779 return 0; 780 781 used = btrfs_space_info_used(space_info, true); 782 783 if (btrfs_can_overcommit(fs_info, space_info, SZ_1M, 784 BTRFS_RESERVE_FLUSH_ALL)) 785 expected = div_factor_fine(space_info->total_bytes, 95); 786 else 787 expected = div_factor_fine(space_info->total_bytes, 90); 788 789 if (used > expected) 790 to_reclaim = used - expected; 791 else 792 to_reclaim = 0; 793 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 794 space_info->bytes_reserved); 795 return to_reclaim; 796 } 797 798 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info, 799 struct btrfs_space_info *space_info, 800 u64 used) 801 { 802 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 803 804 /* If we're just plain full then async reclaim just slows us down. */ 805 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 806 return 0; 807 808 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info)) 809 return 0; 810 811 return (used >= thresh && !btrfs_fs_closing(fs_info) && 812 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 813 } 814 815 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info, 816 struct btrfs_space_info *space_info, 817 struct reserve_ticket *ticket) 818 { 819 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 820 u64 min_bytes; 821 822 if (global_rsv->space_info != space_info) 823 return false; 824 825 spin_lock(&global_rsv->lock); 826 min_bytes = div_factor(global_rsv->size, 1); 827 if (global_rsv->reserved < min_bytes + ticket->bytes) { 828 spin_unlock(&global_rsv->lock); 829 return false; 830 } 831 global_rsv->reserved -= ticket->bytes; 832 remove_ticket(space_info, ticket); 833 ticket->bytes = 0; 834 wake_up(&ticket->wait); 835 space_info->tickets_id++; 836 if (global_rsv->reserved < global_rsv->size) 837 global_rsv->full = 0; 838 spin_unlock(&global_rsv->lock); 839 840 return true; 841 } 842 843 /* 844 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets 845 * @fs_info - fs_info for this fs 846 * @space_info - the space info we were flushing 847 * 848 * We call this when we've exhausted our flushing ability and haven't made 849 * progress in satisfying tickets. The reservation code handles tickets in 850 * order, so if there is a large ticket first and then smaller ones we could 851 * very well satisfy the smaller tickets. This will attempt to wake up any 852 * tickets in the list to catch this case. 853 * 854 * This function returns true if it was able to make progress by clearing out 855 * other tickets, or if it stumbles across a ticket that was smaller than the 856 * first ticket. 857 */ 858 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info, 859 struct btrfs_space_info *space_info) 860 { 861 struct reserve_ticket *ticket; 862 u64 tickets_id = space_info->tickets_id; 863 u64 first_ticket_bytes = 0; 864 865 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 866 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); 867 __btrfs_dump_space_info(fs_info, space_info); 868 } 869 870 while (!list_empty(&space_info->tickets) && 871 tickets_id == space_info->tickets_id) { 872 ticket = list_first_entry(&space_info->tickets, 873 struct reserve_ticket, list); 874 875 if (ticket->steal && 876 steal_from_global_rsv(fs_info, space_info, ticket)) 877 return true; 878 879 /* 880 * may_commit_transaction will avoid committing the transaction 881 * if it doesn't feel like the space reclaimed by the commit 882 * would result in the ticket succeeding. However if we have a 883 * smaller ticket in the queue it may be small enough to be 884 * satisified by committing the transaction, so if any 885 * subsequent ticket is smaller than the first ticket go ahead 886 * and send us back for another loop through the enospc flushing 887 * code. 888 */ 889 if (first_ticket_bytes == 0) 890 first_ticket_bytes = ticket->bytes; 891 else if (first_ticket_bytes > ticket->bytes) 892 return true; 893 894 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 895 btrfs_info(fs_info, "failing ticket with %llu bytes", 896 ticket->bytes); 897 898 remove_ticket(space_info, ticket); 899 ticket->error = -ENOSPC; 900 wake_up(&ticket->wait); 901 902 /* 903 * We're just throwing tickets away, so more flushing may not 904 * trip over btrfs_try_granting_tickets, so we need to call it 905 * here to see if we can make progress with the next ticket in 906 * the list. 907 */ 908 btrfs_try_granting_tickets(fs_info, space_info); 909 } 910 return (tickets_id != space_info->tickets_id); 911 } 912 913 /* 914 * This is for normal flushers, we can wait all goddamned day if we want to. We 915 * will loop and continuously try to flush as long as we are making progress. 916 * We count progress as clearing off tickets each time we have to loop. 917 */ 918 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 919 { 920 struct btrfs_fs_info *fs_info; 921 struct btrfs_space_info *space_info; 922 u64 to_reclaim; 923 int flush_state; 924 int commit_cycles = 0; 925 u64 last_tickets_id; 926 927 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 928 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 929 930 spin_lock(&space_info->lock); 931 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 932 if (!to_reclaim) { 933 space_info->flush = 0; 934 spin_unlock(&space_info->lock); 935 return; 936 } 937 last_tickets_id = space_info->tickets_id; 938 spin_unlock(&space_info->lock); 939 940 flush_state = FLUSH_DELAYED_ITEMS_NR; 941 do { 942 flush_space(fs_info, space_info, to_reclaim, flush_state); 943 spin_lock(&space_info->lock); 944 if (list_empty(&space_info->tickets)) { 945 space_info->flush = 0; 946 spin_unlock(&space_info->lock); 947 return; 948 } 949 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 950 space_info); 951 if (last_tickets_id == space_info->tickets_id) { 952 flush_state++; 953 } else { 954 last_tickets_id = space_info->tickets_id; 955 flush_state = FLUSH_DELAYED_ITEMS_NR; 956 if (commit_cycles) 957 commit_cycles--; 958 } 959 960 /* 961 * We don't want to force a chunk allocation until we've tried 962 * pretty hard to reclaim space. Think of the case where we 963 * freed up a bunch of space and so have a lot of pinned space 964 * to reclaim. We would rather use that than possibly create a 965 * underutilized metadata chunk. So if this is our first run 966 * through the flushing state machine skip ALLOC_CHUNK_FORCE and 967 * commit the transaction. If nothing has changed the next go 968 * around then we can force a chunk allocation. 969 */ 970 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) 971 flush_state++; 972 973 if (flush_state > COMMIT_TRANS) { 974 commit_cycles++; 975 if (commit_cycles > 2) { 976 if (maybe_fail_all_tickets(fs_info, space_info)) { 977 flush_state = FLUSH_DELAYED_ITEMS_NR; 978 commit_cycles--; 979 } else { 980 space_info->flush = 0; 981 } 982 } else { 983 flush_state = FLUSH_DELAYED_ITEMS_NR; 984 } 985 } 986 spin_unlock(&space_info->lock); 987 } while (flush_state <= COMMIT_TRANS); 988 } 989 990 /* 991 * FLUSH_DELALLOC_WAIT: 992 * Space is freed from flushing delalloc in one of two ways. 993 * 994 * 1) compression is on and we allocate less space than we reserved 995 * 2) we are overwriting existing space 996 * 997 * For #1 that extra space is reclaimed as soon as the delalloc pages are 998 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent 999 * length to ->bytes_reserved, and subtracts the reserved space from 1000 * ->bytes_may_use. 1001 * 1002 * For #2 this is trickier. Once the ordered extent runs we will drop the 1003 * extent in the range we are overwriting, which creates a delayed ref for 1004 * that freed extent. This however is not reclaimed until the transaction 1005 * commits, thus the next stages. 1006 * 1007 * RUN_DELAYED_IPUTS 1008 * If we are freeing inodes, we want to make sure all delayed iputs have 1009 * completed, because they could have been on an inode with i_nlink == 0, and 1010 * thus have been truncated and freed up space. But again this space is not 1011 * immediately re-usable, it comes in the form of a delayed ref, which must be 1012 * run and then the transaction must be committed. 1013 * 1014 * FLUSH_DELAYED_REFS 1015 * The above two cases generate delayed refs that will affect 1016 * ->total_bytes_pinned. However this counter can be inconsistent with 1017 * reality if there are outstanding delayed refs. This is because we adjust 1018 * the counter based solely on the current set of delayed refs and disregard 1019 * any on-disk state which might include more refs. So for example, if we 1020 * have an extent with 2 references, but we only drop 1, we'll see that there 1021 * is a negative delayed ref count for the extent and assume that the space 1022 * will be freed, and thus increase ->total_bytes_pinned. 1023 * 1024 * Running the delayed refs gives us the actual real view of what will be 1025 * freed at the transaction commit time. This stage will not actually free 1026 * space for us, it just makes sure that may_commit_transaction() has all of 1027 * the information it needs to make the right decision. 1028 * 1029 * COMMIT_TRANS 1030 * This is where we reclaim all of the pinned space generated by the previous 1031 * two stages. We will not commit the transaction if we don't think we're 1032 * likely to satisfy our request, which means if our current free space + 1033 * total_bytes_pinned < reservation we will not commit. This is why the 1034 * previous states are actually important, to make sure we know for sure 1035 * whether committing the transaction will allow us to make progress. 1036 * 1037 * ALLOC_CHUNK_FORCE 1038 * For data we start with alloc chunk force, however we could have been full 1039 * before, and then the transaction commit could have freed new block groups, 1040 * so if we now have space to allocate do the force chunk allocation. 1041 */ 1042 static const enum btrfs_flush_state data_flush_states[] = { 1043 FLUSH_DELALLOC_WAIT, 1044 RUN_DELAYED_IPUTS, 1045 FLUSH_DELAYED_REFS, 1046 COMMIT_TRANS, 1047 ALLOC_CHUNK_FORCE, 1048 }; 1049 1050 static void btrfs_async_reclaim_data_space(struct work_struct *work) 1051 { 1052 struct btrfs_fs_info *fs_info; 1053 struct btrfs_space_info *space_info; 1054 u64 last_tickets_id; 1055 int flush_state = 0; 1056 1057 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work); 1058 space_info = fs_info->data_sinfo; 1059 1060 spin_lock(&space_info->lock); 1061 if (list_empty(&space_info->tickets)) { 1062 space_info->flush = 0; 1063 spin_unlock(&space_info->lock); 1064 return; 1065 } 1066 last_tickets_id = space_info->tickets_id; 1067 spin_unlock(&space_info->lock); 1068 1069 while (!space_info->full) { 1070 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE); 1071 spin_lock(&space_info->lock); 1072 if (list_empty(&space_info->tickets)) { 1073 space_info->flush = 0; 1074 spin_unlock(&space_info->lock); 1075 return; 1076 } 1077 last_tickets_id = space_info->tickets_id; 1078 spin_unlock(&space_info->lock); 1079 } 1080 1081 while (flush_state < ARRAY_SIZE(data_flush_states)) { 1082 flush_space(fs_info, space_info, U64_MAX, 1083 data_flush_states[flush_state]); 1084 spin_lock(&space_info->lock); 1085 if (list_empty(&space_info->tickets)) { 1086 space_info->flush = 0; 1087 spin_unlock(&space_info->lock); 1088 return; 1089 } 1090 1091 if (last_tickets_id == space_info->tickets_id) { 1092 flush_state++; 1093 } else { 1094 last_tickets_id = space_info->tickets_id; 1095 flush_state = 0; 1096 } 1097 1098 if (flush_state >= ARRAY_SIZE(data_flush_states)) { 1099 if (space_info->full) { 1100 if (maybe_fail_all_tickets(fs_info, space_info)) 1101 flush_state = 0; 1102 else 1103 space_info->flush = 0; 1104 } else { 1105 flush_state = 0; 1106 } 1107 } 1108 spin_unlock(&space_info->lock); 1109 } 1110 } 1111 1112 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info) 1113 { 1114 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space); 1115 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space); 1116 } 1117 1118 static const enum btrfs_flush_state priority_flush_states[] = { 1119 FLUSH_DELAYED_ITEMS_NR, 1120 FLUSH_DELAYED_ITEMS, 1121 ALLOC_CHUNK, 1122 }; 1123 1124 static const enum btrfs_flush_state evict_flush_states[] = { 1125 FLUSH_DELAYED_ITEMS_NR, 1126 FLUSH_DELAYED_ITEMS, 1127 FLUSH_DELAYED_REFS_NR, 1128 FLUSH_DELAYED_REFS, 1129 FLUSH_DELALLOC, 1130 FLUSH_DELALLOC_WAIT, 1131 ALLOC_CHUNK, 1132 COMMIT_TRANS, 1133 }; 1134 1135 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 1136 struct btrfs_space_info *space_info, 1137 struct reserve_ticket *ticket, 1138 const enum btrfs_flush_state *states, 1139 int states_nr) 1140 { 1141 u64 to_reclaim; 1142 int flush_state; 1143 1144 spin_lock(&space_info->lock); 1145 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1146 if (!to_reclaim) { 1147 spin_unlock(&space_info->lock); 1148 return; 1149 } 1150 spin_unlock(&space_info->lock); 1151 1152 flush_state = 0; 1153 do { 1154 flush_space(fs_info, space_info, to_reclaim, states[flush_state]); 1155 flush_state++; 1156 spin_lock(&space_info->lock); 1157 if (ticket->bytes == 0) { 1158 spin_unlock(&space_info->lock); 1159 return; 1160 } 1161 spin_unlock(&space_info->lock); 1162 } while (flush_state < states_nr); 1163 } 1164 1165 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info, 1166 struct btrfs_space_info *space_info, 1167 struct reserve_ticket *ticket) 1168 { 1169 while (!space_info->full) { 1170 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE); 1171 spin_lock(&space_info->lock); 1172 if (ticket->bytes == 0) { 1173 spin_unlock(&space_info->lock); 1174 return; 1175 } 1176 spin_unlock(&space_info->lock); 1177 } 1178 } 1179 1180 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info, 1181 struct btrfs_space_info *space_info, 1182 struct reserve_ticket *ticket) 1183 1184 { 1185 DEFINE_WAIT(wait); 1186 int ret = 0; 1187 1188 spin_lock(&space_info->lock); 1189 while (ticket->bytes > 0 && ticket->error == 0) { 1190 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 1191 if (ret) { 1192 /* 1193 * Delete us from the list. After we unlock the space 1194 * info, we don't want the async reclaim job to reserve 1195 * space for this ticket. If that would happen, then the 1196 * ticket's task would not known that space was reserved 1197 * despite getting an error, resulting in a space leak 1198 * (bytes_may_use counter of our space_info). 1199 */ 1200 remove_ticket(space_info, ticket); 1201 ticket->error = -EINTR; 1202 break; 1203 } 1204 spin_unlock(&space_info->lock); 1205 1206 schedule(); 1207 1208 finish_wait(&ticket->wait, &wait); 1209 spin_lock(&space_info->lock); 1210 } 1211 spin_unlock(&space_info->lock); 1212 } 1213 1214 /** 1215 * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket 1216 * @fs_info - the fs 1217 * @space_info - the space_info for the reservation 1218 * @ticket - the ticket for the reservation 1219 * @flush - how much we can flush 1220 * 1221 * This does the work of figuring out how to flush for the ticket, waiting for 1222 * the reservation, and returning the appropriate error if there is one. 1223 */ 1224 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info, 1225 struct btrfs_space_info *space_info, 1226 struct reserve_ticket *ticket, 1227 enum btrfs_reserve_flush_enum flush) 1228 { 1229 int ret; 1230 1231 switch (flush) { 1232 case BTRFS_RESERVE_FLUSH_DATA: 1233 case BTRFS_RESERVE_FLUSH_ALL: 1234 case BTRFS_RESERVE_FLUSH_ALL_STEAL: 1235 wait_reserve_ticket(fs_info, space_info, ticket); 1236 break; 1237 case BTRFS_RESERVE_FLUSH_LIMIT: 1238 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1239 priority_flush_states, 1240 ARRAY_SIZE(priority_flush_states)); 1241 break; 1242 case BTRFS_RESERVE_FLUSH_EVICT: 1243 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1244 evict_flush_states, 1245 ARRAY_SIZE(evict_flush_states)); 1246 break; 1247 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE: 1248 priority_reclaim_data_space(fs_info, space_info, ticket); 1249 break; 1250 default: 1251 ASSERT(0); 1252 break; 1253 } 1254 1255 spin_lock(&space_info->lock); 1256 ret = ticket->error; 1257 if (ticket->bytes || ticket->error) { 1258 /* 1259 * We were a priority ticket, so we need to delete ourselves 1260 * from the list. Because we could have other priority tickets 1261 * behind us that require less space, run 1262 * btrfs_try_granting_tickets() to see if their reservations can 1263 * now be made. 1264 */ 1265 if (!list_empty(&ticket->list)) { 1266 remove_ticket(space_info, ticket); 1267 btrfs_try_granting_tickets(fs_info, space_info); 1268 } 1269 1270 if (!ret) 1271 ret = -ENOSPC; 1272 } 1273 spin_unlock(&space_info->lock); 1274 ASSERT(list_empty(&ticket->list)); 1275 /* 1276 * Check that we can't have an error set if the reservation succeeded, 1277 * as that would confuse tasks and lead them to error out without 1278 * releasing reserved space (if an error happens the expectation is that 1279 * space wasn't reserved at all). 1280 */ 1281 ASSERT(!(ticket->bytes == 0 && ticket->error)); 1282 return ret; 1283 } 1284 1285 /* 1286 * This returns true if this flush state will go through the ordinary flushing 1287 * code. 1288 */ 1289 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush) 1290 { 1291 return (flush == BTRFS_RESERVE_FLUSH_ALL) || 1292 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1293 } 1294 1295 /** 1296 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 1297 * @root - the root we're allocating for 1298 * @space_info - the space info we want to allocate from 1299 * @orig_bytes - the number of bytes we want 1300 * @flush - whether or not we can flush to make our reservation 1301 * 1302 * This will reserve orig_bytes number of bytes from the space info associated 1303 * with the block_rsv. If there is not enough space it will make an attempt to 1304 * flush out space to make room. It will do this by flushing delalloc if 1305 * possible or committing the transaction. If flush is 0 then no attempts to 1306 * regain reservations will be made and this will fail if there is not enough 1307 * space already. 1308 */ 1309 static int __reserve_bytes(struct btrfs_fs_info *fs_info, 1310 struct btrfs_space_info *space_info, u64 orig_bytes, 1311 enum btrfs_reserve_flush_enum flush) 1312 { 1313 struct work_struct *async_work; 1314 struct reserve_ticket ticket; 1315 u64 used; 1316 int ret = 0; 1317 bool pending_tickets; 1318 1319 ASSERT(orig_bytes); 1320 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 1321 1322 if (flush == BTRFS_RESERVE_FLUSH_DATA) 1323 async_work = &fs_info->async_data_reclaim_work; 1324 else 1325 async_work = &fs_info->async_reclaim_work; 1326 1327 spin_lock(&space_info->lock); 1328 ret = -ENOSPC; 1329 used = btrfs_space_info_used(space_info, true); 1330 1331 /* 1332 * We don't want NO_FLUSH allocations to jump everybody, they can 1333 * generally handle ENOSPC in a different way, so treat them the same as 1334 * normal flushers when it comes to skipping pending tickets. 1335 */ 1336 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH)) 1337 pending_tickets = !list_empty(&space_info->tickets) || 1338 !list_empty(&space_info->priority_tickets); 1339 else 1340 pending_tickets = !list_empty(&space_info->priority_tickets); 1341 1342 /* 1343 * Carry on if we have enough space (short-circuit) OR call 1344 * can_overcommit() to ensure we can overcommit to continue. 1345 */ 1346 if (!pending_tickets && 1347 ((used + orig_bytes <= space_info->total_bytes) || 1348 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) { 1349 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1350 orig_bytes); 1351 ret = 0; 1352 } 1353 1354 /* 1355 * If we couldn't make a reservation then setup our reservation ticket 1356 * and kick the async worker if it's not already running. 1357 * 1358 * If we are a priority flusher then we just need to add our ticket to 1359 * the list and we will do our own flushing further down. 1360 */ 1361 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 1362 ticket.bytes = orig_bytes; 1363 ticket.error = 0; 1364 space_info->reclaim_size += ticket.bytes; 1365 init_waitqueue_head(&ticket.wait); 1366 ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1367 if (flush == BTRFS_RESERVE_FLUSH_ALL || 1368 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1369 flush == BTRFS_RESERVE_FLUSH_DATA) { 1370 list_add_tail(&ticket.list, &space_info->tickets); 1371 if (!space_info->flush) { 1372 space_info->flush = 1; 1373 trace_btrfs_trigger_flush(fs_info, 1374 space_info->flags, 1375 orig_bytes, flush, 1376 "enospc"); 1377 queue_work(system_unbound_wq, async_work); 1378 } 1379 } else { 1380 list_add_tail(&ticket.list, 1381 &space_info->priority_tickets); 1382 } 1383 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 1384 used += orig_bytes; 1385 /* 1386 * We will do the space reservation dance during log replay, 1387 * which means we won't have fs_info->fs_root set, so don't do 1388 * the async reclaim as we will panic. 1389 */ 1390 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 1391 need_do_async_reclaim(fs_info, space_info, used) && 1392 !work_busy(&fs_info->async_reclaim_work)) { 1393 trace_btrfs_trigger_flush(fs_info, space_info->flags, 1394 orig_bytes, flush, "preempt"); 1395 queue_work(system_unbound_wq, 1396 &fs_info->async_reclaim_work); 1397 } 1398 } 1399 spin_unlock(&space_info->lock); 1400 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 1401 return ret; 1402 1403 return handle_reserve_ticket(fs_info, space_info, &ticket, flush); 1404 } 1405 1406 /** 1407 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 1408 * @root - the root we're allocating for 1409 * @block_rsv - the block_rsv we're allocating for 1410 * @orig_bytes - the number of bytes we want 1411 * @flush - whether or not we can flush to make our reservation 1412 * 1413 * This will reserve orig_bytes number of bytes from the space info associated 1414 * with the block_rsv. If there is not enough space it will make an attempt to 1415 * flush out space to make room. It will do this by flushing delalloc if 1416 * possible or committing the transaction. If flush is 0 then no attempts to 1417 * regain reservations will be made and this will fail if there is not enough 1418 * space already. 1419 */ 1420 int btrfs_reserve_metadata_bytes(struct btrfs_root *root, 1421 struct btrfs_block_rsv *block_rsv, 1422 u64 orig_bytes, 1423 enum btrfs_reserve_flush_enum flush) 1424 { 1425 struct btrfs_fs_info *fs_info = root->fs_info; 1426 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 1427 int ret; 1428 1429 ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush); 1430 if (ret == -ENOSPC && 1431 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 1432 if (block_rsv != global_rsv && 1433 !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes)) 1434 ret = 0; 1435 } 1436 if (ret == -ENOSPC) { 1437 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1438 block_rsv->space_info->flags, 1439 orig_bytes, 1); 1440 1441 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1442 btrfs_dump_space_info(fs_info, block_rsv->space_info, 1443 orig_bytes, 0); 1444 } 1445 return ret; 1446 } 1447 1448 /** 1449 * btrfs_reserve_data_bytes - try to reserve data bytes for an allocation 1450 * @fs_info - the filesystem 1451 * @bytes - the number of bytes we need 1452 * @flush - how we are allowed to flush 1453 * 1454 * This will reserve bytes from the data space info. If there is not enough 1455 * space then we will attempt to flush space as specified by flush. 1456 */ 1457 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes, 1458 enum btrfs_reserve_flush_enum flush) 1459 { 1460 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 1461 int ret; 1462 1463 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA || 1464 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE); 1465 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA); 1466 1467 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush); 1468 if (ret == -ENOSPC) { 1469 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1470 data_sinfo->flags, bytes, 1); 1471 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1472 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0); 1473 } 1474 return ret; 1475 } 1476