xref: /openbmc/linux/fs/btrfs/space-info.c (revision acf50233)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     This will commit the transaction.  Historically we had a lot of logic
137  *     surrounding whether or not we'd commit the transaction, but this waits born
138  *     out of a pre-tickets era where we could end up committing the transaction
139  *     thousands of times in a row without making progress.  Now thanks to our
140  *     ticketing system we know if we're not making progress and can error
141  *     everybody out after a few commits rather than burning the disk hoping for
142  *     a different answer.
143  *
144  * OVERCOMMIT
145  *
146  *   Because we hold so many reservations for metadata we will allow you to
147  *   reserve more space than is currently free in the currently allocate
148  *   metadata space.  This only happens with metadata, data does not allow
149  *   overcommitting.
150  *
151  *   You can see the current logic for when we allow overcommit in
152  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
153  *   is no unallocated space to be had, all reservations are kept within the
154  *   free space in the allocated metadata chunks.
155  *
156  *   Because of overcommitting, you generally want to use the
157  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
158  *   thing with or without extra unallocated space.
159  */
160 
161 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
162 			  bool may_use_included)
163 {
164 	ASSERT(s_info);
165 	return s_info->bytes_used + s_info->bytes_reserved +
166 		s_info->bytes_pinned + s_info->bytes_readonly +
167 		s_info->bytes_zone_unusable +
168 		(may_use_included ? s_info->bytes_may_use : 0);
169 }
170 
171 /*
172  * after adding space to the filesystem, we need to clear the full flags
173  * on all the space infos.
174  */
175 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
176 {
177 	struct list_head *head = &info->space_info;
178 	struct btrfs_space_info *found;
179 
180 	list_for_each_entry(found, head, list)
181 		found->full = 0;
182 }
183 
184 /*
185  * Block groups with more than this value (percents) of unusable space will be
186  * scheduled for background reclaim.
187  */
188 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH			(75)
189 
190 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
191 {
192 
193 	struct btrfs_space_info *space_info;
194 	int i;
195 	int ret;
196 
197 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
198 	if (!space_info)
199 		return -ENOMEM;
200 
201 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
202 		INIT_LIST_HEAD(&space_info->block_groups[i]);
203 	init_rwsem(&space_info->groups_sem);
204 	spin_lock_init(&space_info->lock);
205 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
206 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
207 	INIT_LIST_HEAD(&space_info->ro_bgs);
208 	INIT_LIST_HEAD(&space_info->tickets);
209 	INIT_LIST_HEAD(&space_info->priority_tickets);
210 	space_info->clamp = 1;
211 
212 	if (btrfs_is_zoned(info))
213 		space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
214 
215 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
216 	if (ret)
217 		return ret;
218 
219 	list_add(&space_info->list, &info->space_info);
220 	if (flags & BTRFS_BLOCK_GROUP_DATA)
221 		info->data_sinfo = space_info;
222 
223 	return ret;
224 }
225 
226 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
227 {
228 	struct btrfs_super_block *disk_super;
229 	u64 features;
230 	u64 flags;
231 	int mixed = 0;
232 	int ret;
233 
234 	disk_super = fs_info->super_copy;
235 	if (!btrfs_super_root(disk_super))
236 		return -EINVAL;
237 
238 	features = btrfs_super_incompat_flags(disk_super);
239 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
240 		mixed = 1;
241 
242 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
243 	ret = create_space_info(fs_info, flags);
244 	if (ret)
245 		goto out;
246 
247 	if (mixed) {
248 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
249 		ret = create_space_info(fs_info, flags);
250 	} else {
251 		flags = BTRFS_BLOCK_GROUP_METADATA;
252 		ret = create_space_info(fs_info, flags);
253 		if (ret)
254 			goto out;
255 
256 		flags = BTRFS_BLOCK_GROUP_DATA;
257 		ret = create_space_info(fs_info, flags);
258 	}
259 out:
260 	return ret;
261 }
262 
263 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
264 			     u64 total_bytes, u64 bytes_used,
265 			     u64 bytes_readonly, u64 bytes_zone_unusable,
266 			     struct btrfs_space_info **space_info)
267 {
268 	struct btrfs_space_info *found;
269 	int factor;
270 
271 	factor = btrfs_bg_type_to_factor(flags);
272 
273 	found = btrfs_find_space_info(info, flags);
274 	ASSERT(found);
275 	spin_lock(&found->lock);
276 	found->total_bytes += total_bytes;
277 	found->disk_total += total_bytes * factor;
278 	found->bytes_used += bytes_used;
279 	found->disk_used += bytes_used * factor;
280 	found->bytes_readonly += bytes_readonly;
281 	found->bytes_zone_unusable += bytes_zone_unusable;
282 	if (total_bytes > 0)
283 		found->full = 0;
284 	btrfs_try_granting_tickets(info, found);
285 	spin_unlock(&found->lock);
286 	*space_info = found;
287 }
288 
289 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
290 					       u64 flags)
291 {
292 	struct list_head *head = &info->space_info;
293 	struct btrfs_space_info *found;
294 
295 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
296 
297 	list_for_each_entry(found, head, list) {
298 		if (found->flags & flags)
299 			return found;
300 	}
301 	return NULL;
302 }
303 
304 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
305 			  struct btrfs_space_info *space_info,
306 			  enum btrfs_reserve_flush_enum flush)
307 {
308 	u64 profile;
309 	u64 avail;
310 	int factor;
311 
312 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
313 		profile = btrfs_system_alloc_profile(fs_info);
314 	else
315 		profile = btrfs_metadata_alloc_profile(fs_info);
316 
317 	avail = atomic64_read(&fs_info->free_chunk_space);
318 
319 	/*
320 	 * If we have dup, raid1 or raid10 then only half of the free
321 	 * space is actually usable.  For raid56, the space info used
322 	 * doesn't include the parity drive, so we don't have to
323 	 * change the math
324 	 */
325 	factor = btrfs_bg_type_to_factor(profile);
326 	avail = div_u64(avail, factor);
327 
328 	/*
329 	 * If we aren't flushing all things, let us overcommit up to
330 	 * 1/2th of the space. If we can flush, don't let us overcommit
331 	 * too much, let it overcommit up to 1/8 of the space.
332 	 */
333 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
334 		avail >>= 3;
335 	else
336 		avail >>= 1;
337 	return avail;
338 }
339 
340 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
341 			 struct btrfs_space_info *space_info, u64 bytes,
342 			 enum btrfs_reserve_flush_enum flush)
343 {
344 	u64 avail;
345 	u64 used;
346 
347 	/* Don't overcommit when in mixed mode */
348 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
349 		return 0;
350 
351 	used = btrfs_space_info_used(space_info, true);
352 	avail = calc_available_free_space(fs_info, space_info, flush);
353 
354 	if (used + bytes < space_info->total_bytes + avail)
355 		return 1;
356 	return 0;
357 }
358 
359 static void remove_ticket(struct btrfs_space_info *space_info,
360 			  struct reserve_ticket *ticket)
361 {
362 	if (!list_empty(&ticket->list)) {
363 		list_del_init(&ticket->list);
364 		ASSERT(space_info->reclaim_size >= ticket->bytes);
365 		space_info->reclaim_size -= ticket->bytes;
366 	}
367 }
368 
369 /*
370  * This is for space we already have accounted in space_info->bytes_may_use, so
371  * basically when we're returning space from block_rsv's.
372  */
373 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
374 				struct btrfs_space_info *space_info)
375 {
376 	struct list_head *head;
377 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
378 
379 	lockdep_assert_held(&space_info->lock);
380 
381 	head = &space_info->priority_tickets;
382 again:
383 	while (!list_empty(head)) {
384 		struct reserve_ticket *ticket;
385 		u64 used = btrfs_space_info_used(space_info, true);
386 
387 		ticket = list_first_entry(head, struct reserve_ticket, list);
388 
389 		/* Check and see if our ticket can be satisfied now. */
390 		if ((used + ticket->bytes <= space_info->total_bytes) ||
391 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
392 					 flush)) {
393 			btrfs_space_info_update_bytes_may_use(fs_info,
394 							      space_info,
395 							      ticket->bytes);
396 			remove_ticket(space_info, ticket);
397 			ticket->bytes = 0;
398 			space_info->tickets_id++;
399 			wake_up(&ticket->wait);
400 		} else {
401 			break;
402 		}
403 	}
404 
405 	if (head == &space_info->priority_tickets) {
406 		head = &space_info->tickets;
407 		flush = BTRFS_RESERVE_FLUSH_ALL;
408 		goto again;
409 	}
410 }
411 
412 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
413 do {									\
414 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
415 	spin_lock(&__rsv->lock);					\
416 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
417 		   __rsv->size, __rsv->reserved);			\
418 	spin_unlock(&__rsv->lock);					\
419 } while (0)
420 
421 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
422 				    struct btrfs_space_info *info)
423 {
424 	lockdep_assert_held(&info->lock);
425 
426 	/* The free space could be negative in case of overcommit */
427 	btrfs_info(fs_info, "space_info %llu has %lld free, is %sfull",
428 		   info->flags,
429 		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
430 		   info->full ? "" : "not ");
431 	btrfs_info(fs_info,
432 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
433 		info->total_bytes, info->bytes_used, info->bytes_pinned,
434 		info->bytes_reserved, info->bytes_may_use,
435 		info->bytes_readonly, info->bytes_zone_unusable);
436 
437 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
438 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
439 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
440 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
441 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
442 
443 }
444 
445 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
446 			   struct btrfs_space_info *info, u64 bytes,
447 			   int dump_block_groups)
448 {
449 	struct btrfs_block_group *cache;
450 	int index = 0;
451 
452 	spin_lock(&info->lock);
453 	__btrfs_dump_space_info(fs_info, info);
454 	spin_unlock(&info->lock);
455 
456 	if (!dump_block_groups)
457 		return;
458 
459 	down_read(&info->groups_sem);
460 again:
461 	list_for_each_entry(cache, &info->block_groups[index], list) {
462 		spin_lock(&cache->lock);
463 		btrfs_info(fs_info,
464 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
465 			cache->start, cache->length, cache->used, cache->pinned,
466 			cache->reserved, cache->zone_unusable,
467 			cache->ro ? "[readonly]" : "");
468 		spin_unlock(&cache->lock);
469 		btrfs_dump_free_space(cache, bytes);
470 	}
471 	if (++index < BTRFS_NR_RAID_TYPES)
472 		goto again;
473 	up_read(&info->groups_sem);
474 }
475 
476 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
477 					u64 to_reclaim)
478 {
479 	u64 bytes;
480 	u64 nr;
481 
482 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
483 	nr = div64_u64(to_reclaim, bytes);
484 	if (!nr)
485 		nr = 1;
486 	return nr;
487 }
488 
489 #define EXTENT_SIZE_PER_ITEM	SZ_256K
490 
491 /*
492  * shrink metadata reservation for delalloc
493  */
494 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
495 			    struct btrfs_space_info *space_info,
496 			    u64 to_reclaim, bool wait_ordered,
497 			    bool for_preempt)
498 {
499 	struct btrfs_trans_handle *trans;
500 	u64 delalloc_bytes;
501 	u64 ordered_bytes;
502 	u64 items;
503 	long time_left;
504 	int loops;
505 
506 	delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
507 	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
508 	if (delalloc_bytes == 0 && ordered_bytes == 0)
509 		return;
510 
511 	/* Calc the number of the pages we need flush for space reservation */
512 	if (to_reclaim == U64_MAX) {
513 		items = U64_MAX;
514 	} else {
515 		/*
516 		 * to_reclaim is set to however much metadata we need to
517 		 * reclaim, but reclaiming that much data doesn't really track
518 		 * exactly.  What we really want to do is reclaim full inode's
519 		 * worth of reservations, however that's not available to us
520 		 * here.  We will take a fraction of the delalloc bytes for our
521 		 * flushing loops and hope for the best.  Delalloc will expand
522 		 * the amount we write to cover an entire dirty extent, which
523 		 * will reclaim the metadata reservation for that range.  If
524 		 * it's not enough subsequent flush stages will be more
525 		 * aggressive.
526 		 */
527 		to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
528 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
529 	}
530 
531 	trans = current->journal_info;
532 
533 	/*
534 	 * If we are doing more ordered than delalloc we need to just wait on
535 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
536 	 * that likely won't give us the space back we need.
537 	 */
538 	if (ordered_bytes > delalloc_bytes && !for_preempt)
539 		wait_ordered = true;
540 
541 	loops = 0;
542 	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
543 		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
544 		long nr_pages = min_t(u64, temp, LONG_MAX);
545 		int async_pages;
546 
547 		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
548 
549 		/*
550 		 * We need to make sure any outstanding async pages are now
551 		 * processed before we continue.  This is because things like
552 		 * sync_inode() try to be smart and skip writing if the inode is
553 		 * marked clean.  We don't use filemap_fwrite for flushing
554 		 * because we want to control how many pages we write out at a
555 		 * time, thus this is the only safe way to make sure we've
556 		 * waited for outstanding compressed workers to have started
557 		 * their jobs and thus have ordered extents set up properly.
558 		 *
559 		 * This exists because we do not want to wait for each
560 		 * individual inode to finish its async work, we simply want to
561 		 * start the IO on everybody, and then come back here and wait
562 		 * for all of the async work to catch up.  Once we're done with
563 		 * that we know we'll have ordered extents for everything and we
564 		 * can decide if we wait for that or not.
565 		 *
566 		 * If we choose to replace this in the future, make absolutely
567 		 * sure that the proper waiting is being done in the async case,
568 		 * as there have been bugs in that area before.
569 		 */
570 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
571 		if (!async_pages)
572 			goto skip_async;
573 
574 		/*
575 		 * We don't want to wait forever, if we wrote less pages in this
576 		 * loop than we have outstanding, only wait for that number of
577 		 * pages, otherwise we can wait for all async pages to finish
578 		 * before continuing.
579 		 */
580 		if (async_pages > nr_pages)
581 			async_pages -= nr_pages;
582 		else
583 			async_pages = 0;
584 		wait_event(fs_info->async_submit_wait,
585 			   atomic_read(&fs_info->async_delalloc_pages) <=
586 			   async_pages);
587 skip_async:
588 		loops++;
589 		if (wait_ordered && !trans) {
590 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
591 		} else {
592 			time_left = schedule_timeout_killable(1);
593 			if (time_left)
594 				break;
595 		}
596 
597 		/*
598 		 * If we are for preemption we just want a one-shot of delalloc
599 		 * flushing so we can stop flushing if we decide we don't need
600 		 * to anymore.
601 		 */
602 		if (for_preempt)
603 			break;
604 
605 		spin_lock(&space_info->lock);
606 		if (list_empty(&space_info->tickets) &&
607 		    list_empty(&space_info->priority_tickets)) {
608 			spin_unlock(&space_info->lock);
609 			break;
610 		}
611 		spin_unlock(&space_info->lock);
612 
613 		delalloc_bytes = percpu_counter_sum_positive(
614 						&fs_info->delalloc_bytes);
615 		ordered_bytes = percpu_counter_sum_positive(
616 						&fs_info->ordered_bytes);
617 	}
618 }
619 
620 /*
621  * Try to flush some data based on policy set by @state. This is only advisory
622  * and may fail for various reasons. The caller is supposed to examine the
623  * state of @space_info to detect the outcome.
624  */
625 static void flush_space(struct btrfs_fs_info *fs_info,
626 		       struct btrfs_space_info *space_info, u64 num_bytes,
627 		       enum btrfs_flush_state state, bool for_preempt)
628 {
629 	struct btrfs_root *root = fs_info->tree_root;
630 	struct btrfs_trans_handle *trans;
631 	int nr;
632 	int ret = 0;
633 
634 	switch (state) {
635 	case FLUSH_DELAYED_ITEMS_NR:
636 	case FLUSH_DELAYED_ITEMS:
637 		if (state == FLUSH_DELAYED_ITEMS_NR)
638 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
639 		else
640 			nr = -1;
641 
642 		trans = btrfs_join_transaction(root);
643 		if (IS_ERR(trans)) {
644 			ret = PTR_ERR(trans);
645 			break;
646 		}
647 		ret = btrfs_run_delayed_items_nr(trans, nr);
648 		btrfs_end_transaction(trans);
649 		break;
650 	case FLUSH_DELALLOC:
651 	case FLUSH_DELALLOC_WAIT:
652 	case FLUSH_DELALLOC_FULL:
653 		if (state == FLUSH_DELALLOC_FULL)
654 			num_bytes = U64_MAX;
655 		shrink_delalloc(fs_info, space_info, num_bytes,
656 				state != FLUSH_DELALLOC, for_preempt);
657 		break;
658 	case FLUSH_DELAYED_REFS_NR:
659 	case FLUSH_DELAYED_REFS:
660 		trans = btrfs_join_transaction(root);
661 		if (IS_ERR(trans)) {
662 			ret = PTR_ERR(trans);
663 			break;
664 		}
665 		if (state == FLUSH_DELAYED_REFS_NR)
666 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
667 		else
668 			nr = 0;
669 		btrfs_run_delayed_refs(trans, nr);
670 		btrfs_end_transaction(trans);
671 		break;
672 	case ALLOC_CHUNK:
673 	case ALLOC_CHUNK_FORCE:
674 		trans = btrfs_join_transaction(root);
675 		if (IS_ERR(trans)) {
676 			ret = PTR_ERR(trans);
677 			break;
678 		}
679 		ret = btrfs_chunk_alloc(trans,
680 				btrfs_get_alloc_profile(fs_info, space_info->flags),
681 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
682 					CHUNK_ALLOC_FORCE);
683 		btrfs_end_transaction(trans);
684 		if (ret > 0 || ret == -ENOSPC)
685 			ret = 0;
686 		break;
687 	case RUN_DELAYED_IPUTS:
688 		/*
689 		 * If we have pending delayed iputs then we could free up a
690 		 * bunch of pinned space, so make sure we run the iputs before
691 		 * we do our pinned bytes check below.
692 		 */
693 		btrfs_run_delayed_iputs(fs_info);
694 		btrfs_wait_on_delayed_iputs(fs_info);
695 		break;
696 	case COMMIT_TRANS:
697 		ASSERT(current->journal_info == NULL);
698 		trans = btrfs_join_transaction(root);
699 		if (IS_ERR(trans)) {
700 			ret = PTR_ERR(trans);
701 			break;
702 		}
703 		ret = btrfs_commit_transaction(trans);
704 		break;
705 	default:
706 		ret = -ENOSPC;
707 		break;
708 	}
709 
710 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
711 				ret, for_preempt);
712 	return;
713 }
714 
715 static inline u64
716 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
717 				 struct btrfs_space_info *space_info)
718 {
719 	u64 used;
720 	u64 avail;
721 	u64 to_reclaim = space_info->reclaim_size;
722 
723 	lockdep_assert_held(&space_info->lock);
724 
725 	avail = calc_available_free_space(fs_info, space_info,
726 					  BTRFS_RESERVE_FLUSH_ALL);
727 	used = btrfs_space_info_used(space_info, true);
728 
729 	/*
730 	 * We may be flushing because suddenly we have less space than we had
731 	 * before, and now we're well over-committed based on our current free
732 	 * space.  If that's the case add in our overage so we make sure to put
733 	 * appropriate pressure on the flushing state machine.
734 	 */
735 	if (space_info->total_bytes + avail < used)
736 		to_reclaim += used - (space_info->total_bytes + avail);
737 
738 	return to_reclaim;
739 }
740 
741 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
742 				    struct btrfs_space_info *space_info)
743 {
744 	u64 global_rsv_size = fs_info->global_block_rsv.reserved;
745 	u64 ordered, delalloc;
746 	u64 thresh = div_factor_fine(space_info->total_bytes, 90);
747 	u64 used;
748 
749 	lockdep_assert_held(&space_info->lock);
750 
751 	/* If we're just plain full then async reclaim just slows us down. */
752 	if ((space_info->bytes_used + space_info->bytes_reserved +
753 	     global_rsv_size) >= thresh)
754 		return false;
755 
756 	used = space_info->bytes_may_use + space_info->bytes_pinned;
757 
758 	/* The total flushable belongs to the global rsv, don't flush. */
759 	if (global_rsv_size >= used)
760 		return false;
761 
762 	/*
763 	 * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
764 	 * that devoted to other reservations then there's no sense in flushing,
765 	 * we don't have a lot of things that need flushing.
766 	 */
767 	if (used - global_rsv_size <= SZ_128M)
768 		return false;
769 
770 	/*
771 	 * We have tickets queued, bail so we don't compete with the async
772 	 * flushers.
773 	 */
774 	if (space_info->reclaim_size)
775 		return false;
776 
777 	/*
778 	 * If we have over half of the free space occupied by reservations or
779 	 * pinned then we want to start flushing.
780 	 *
781 	 * We do not do the traditional thing here, which is to say
782 	 *
783 	 *   if (used >= ((total_bytes + avail) / 2))
784 	 *     return 1;
785 	 *
786 	 * because this doesn't quite work how we want.  If we had more than 50%
787 	 * of the space_info used by bytes_used and we had 0 available we'd just
788 	 * constantly run the background flusher.  Instead we want it to kick in
789 	 * if our reclaimable space exceeds our clamped free space.
790 	 *
791 	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
792 	 * the following:
793 	 *
794 	 * Amount of RAM        Minimum threshold       Maximum threshold
795 	 *
796 	 *        256GiB                     1GiB                  128GiB
797 	 *        128GiB                   512MiB                   64GiB
798 	 *         64GiB                   256MiB                   32GiB
799 	 *         32GiB                   128MiB                   16GiB
800 	 *         16GiB                    64MiB                    8GiB
801 	 *
802 	 * These are the range our thresholds will fall in, corresponding to how
803 	 * much delalloc we need for the background flusher to kick in.
804 	 */
805 
806 	thresh = calc_available_free_space(fs_info, space_info,
807 					   BTRFS_RESERVE_FLUSH_ALL);
808 	used = space_info->bytes_used + space_info->bytes_reserved +
809 	       space_info->bytes_readonly + global_rsv_size;
810 	if (used < space_info->total_bytes)
811 		thresh += space_info->total_bytes - used;
812 	thresh >>= space_info->clamp;
813 
814 	used = space_info->bytes_pinned;
815 
816 	/*
817 	 * If we have more ordered bytes than delalloc bytes then we're either
818 	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
819 	 * around.  Preemptive flushing is only useful in that it can free up
820 	 * space before tickets need to wait for things to finish.  In the case
821 	 * of ordered extents, preemptively waiting on ordered extents gets us
822 	 * nothing, if our reservations are tied up in ordered extents we'll
823 	 * simply have to slow down writers by forcing them to wait on ordered
824 	 * extents.
825 	 *
826 	 * In the case that ordered is larger than delalloc, only include the
827 	 * block reserves that we would actually be able to directly reclaim
828 	 * from.  In this case if we're heavy on metadata operations this will
829 	 * clearly be heavy enough to warrant preemptive flushing.  In the case
830 	 * of heavy DIO or ordered reservations, preemptive flushing will just
831 	 * waste time and cause us to slow down.
832 	 *
833 	 * We want to make sure we truly are maxed out on ordered however, so
834 	 * cut ordered in half, and if it's still higher than delalloc then we
835 	 * can keep flushing.  This is to avoid the case where we start
836 	 * flushing, and now delalloc == ordered and we stop preemptively
837 	 * flushing when we could still have several gigs of delalloc to flush.
838 	 */
839 	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
840 	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
841 	if (ordered >= delalloc)
842 		used += fs_info->delayed_refs_rsv.reserved +
843 			fs_info->delayed_block_rsv.reserved;
844 	else
845 		used += space_info->bytes_may_use - global_rsv_size;
846 
847 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
848 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
849 }
850 
851 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
852 				  struct btrfs_space_info *space_info,
853 				  struct reserve_ticket *ticket)
854 {
855 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
856 	u64 min_bytes;
857 
858 	if (!ticket->steal)
859 		return false;
860 
861 	if (global_rsv->space_info != space_info)
862 		return false;
863 
864 	spin_lock(&global_rsv->lock);
865 	min_bytes = div_factor(global_rsv->size, 1);
866 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
867 		spin_unlock(&global_rsv->lock);
868 		return false;
869 	}
870 	global_rsv->reserved -= ticket->bytes;
871 	remove_ticket(space_info, ticket);
872 	ticket->bytes = 0;
873 	wake_up(&ticket->wait);
874 	space_info->tickets_id++;
875 	if (global_rsv->reserved < global_rsv->size)
876 		global_rsv->full = 0;
877 	spin_unlock(&global_rsv->lock);
878 
879 	return true;
880 }
881 
882 /*
883  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
884  * @fs_info - fs_info for this fs
885  * @space_info - the space info we were flushing
886  *
887  * We call this when we've exhausted our flushing ability and haven't made
888  * progress in satisfying tickets.  The reservation code handles tickets in
889  * order, so if there is a large ticket first and then smaller ones we could
890  * very well satisfy the smaller tickets.  This will attempt to wake up any
891  * tickets in the list to catch this case.
892  *
893  * This function returns true if it was able to make progress by clearing out
894  * other tickets, or if it stumbles across a ticket that was smaller than the
895  * first ticket.
896  */
897 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
898 				   struct btrfs_space_info *space_info)
899 {
900 	struct reserve_ticket *ticket;
901 	u64 tickets_id = space_info->tickets_id;
902 	const bool aborted = BTRFS_FS_ERROR(fs_info);
903 
904 	trace_btrfs_fail_all_tickets(fs_info, space_info);
905 
906 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
907 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
908 		__btrfs_dump_space_info(fs_info, space_info);
909 	}
910 
911 	while (!list_empty(&space_info->tickets) &&
912 	       tickets_id == space_info->tickets_id) {
913 		ticket = list_first_entry(&space_info->tickets,
914 					  struct reserve_ticket, list);
915 
916 		if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
917 			return true;
918 
919 		if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
920 			btrfs_info(fs_info, "failing ticket with %llu bytes",
921 				   ticket->bytes);
922 
923 		remove_ticket(space_info, ticket);
924 		if (aborted)
925 			ticket->error = -EIO;
926 		else
927 			ticket->error = -ENOSPC;
928 		wake_up(&ticket->wait);
929 
930 		/*
931 		 * We're just throwing tickets away, so more flushing may not
932 		 * trip over btrfs_try_granting_tickets, so we need to call it
933 		 * here to see if we can make progress with the next ticket in
934 		 * the list.
935 		 */
936 		if (!aborted)
937 			btrfs_try_granting_tickets(fs_info, space_info);
938 	}
939 	return (tickets_id != space_info->tickets_id);
940 }
941 
942 /*
943  * This is for normal flushers, we can wait all goddamned day if we want to.  We
944  * will loop and continuously try to flush as long as we are making progress.
945  * We count progress as clearing off tickets each time we have to loop.
946  */
947 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
948 {
949 	struct btrfs_fs_info *fs_info;
950 	struct btrfs_space_info *space_info;
951 	u64 to_reclaim;
952 	enum btrfs_flush_state flush_state;
953 	int commit_cycles = 0;
954 	u64 last_tickets_id;
955 
956 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
957 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
958 
959 	spin_lock(&space_info->lock);
960 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
961 	if (!to_reclaim) {
962 		space_info->flush = 0;
963 		spin_unlock(&space_info->lock);
964 		return;
965 	}
966 	last_tickets_id = space_info->tickets_id;
967 	spin_unlock(&space_info->lock);
968 
969 	flush_state = FLUSH_DELAYED_ITEMS_NR;
970 	do {
971 		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
972 		spin_lock(&space_info->lock);
973 		if (list_empty(&space_info->tickets)) {
974 			space_info->flush = 0;
975 			spin_unlock(&space_info->lock);
976 			return;
977 		}
978 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
979 							      space_info);
980 		if (last_tickets_id == space_info->tickets_id) {
981 			flush_state++;
982 		} else {
983 			last_tickets_id = space_info->tickets_id;
984 			flush_state = FLUSH_DELAYED_ITEMS_NR;
985 			if (commit_cycles)
986 				commit_cycles--;
987 		}
988 
989 		/*
990 		 * We do not want to empty the system of delalloc unless we're
991 		 * under heavy pressure, so allow one trip through the flushing
992 		 * logic before we start doing a FLUSH_DELALLOC_FULL.
993 		 */
994 		if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
995 			flush_state++;
996 
997 		/*
998 		 * We don't want to force a chunk allocation until we've tried
999 		 * pretty hard to reclaim space.  Think of the case where we
1000 		 * freed up a bunch of space and so have a lot of pinned space
1001 		 * to reclaim.  We would rather use that than possibly create a
1002 		 * underutilized metadata chunk.  So if this is our first run
1003 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1004 		 * commit the transaction.  If nothing has changed the next go
1005 		 * around then we can force a chunk allocation.
1006 		 */
1007 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1008 			flush_state++;
1009 
1010 		if (flush_state > COMMIT_TRANS) {
1011 			commit_cycles++;
1012 			if (commit_cycles > 2) {
1013 				if (maybe_fail_all_tickets(fs_info, space_info)) {
1014 					flush_state = FLUSH_DELAYED_ITEMS_NR;
1015 					commit_cycles--;
1016 				} else {
1017 					space_info->flush = 0;
1018 				}
1019 			} else {
1020 				flush_state = FLUSH_DELAYED_ITEMS_NR;
1021 			}
1022 		}
1023 		spin_unlock(&space_info->lock);
1024 	} while (flush_state <= COMMIT_TRANS);
1025 }
1026 
1027 /*
1028  * This handles pre-flushing of metadata space before we get to the point that
1029  * we need to start blocking threads on tickets.  The logic here is different
1030  * from the other flush paths because it doesn't rely on tickets to tell us how
1031  * much we need to flush, instead it attempts to keep us below the 80% full
1032  * watermark of space by flushing whichever reservation pool is currently the
1033  * largest.
1034  */
1035 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1036 {
1037 	struct btrfs_fs_info *fs_info;
1038 	struct btrfs_space_info *space_info;
1039 	struct btrfs_block_rsv *delayed_block_rsv;
1040 	struct btrfs_block_rsv *delayed_refs_rsv;
1041 	struct btrfs_block_rsv *global_rsv;
1042 	struct btrfs_block_rsv *trans_rsv;
1043 	int loops = 0;
1044 
1045 	fs_info = container_of(work, struct btrfs_fs_info,
1046 			       preempt_reclaim_work);
1047 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1048 	delayed_block_rsv = &fs_info->delayed_block_rsv;
1049 	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1050 	global_rsv = &fs_info->global_block_rsv;
1051 	trans_rsv = &fs_info->trans_block_rsv;
1052 
1053 	spin_lock(&space_info->lock);
1054 	while (need_preemptive_reclaim(fs_info, space_info)) {
1055 		enum btrfs_flush_state flush;
1056 		u64 delalloc_size = 0;
1057 		u64 to_reclaim, block_rsv_size;
1058 		u64 global_rsv_size = global_rsv->reserved;
1059 
1060 		loops++;
1061 
1062 		/*
1063 		 * We don't have a precise counter for the metadata being
1064 		 * reserved for delalloc, so we'll approximate it by subtracting
1065 		 * out the block rsv's space from the bytes_may_use.  If that
1066 		 * amount is higher than the individual reserves, then we can
1067 		 * assume it's tied up in delalloc reservations.
1068 		 */
1069 		block_rsv_size = global_rsv_size +
1070 			delayed_block_rsv->reserved +
1071 			delayed_refs_rsv->reserved +
1072 			trans_rsv->reserved;
1073 		if (block_rsv_size < space_info->bytes_may_use)
1074 			delalloc_size = space_info->bytes_may_use - block_rsv_size;
1075 
1076 		/*
1077 		 * We don't want to include the global_rsv in our calculation,
1078 		 * because that's space we can't touch.  Subtract it from the
1079 		 * block_rsv_size for the next checks.
1080 		 */
1081 		block_rsv_size -= global_rsv_size;
1082 
1083 		/*
1084 		 * We really want to avoid flushing delalloc too much, as it
1085 		 * could result in poor allocation patterns, so only flush it if
1086 		 * it's larger than the rest of the pools combined.
1087 		 */
1088 		if (delalloc_size > block_rsv_size) {
1089 			to_reclaim = delalloc_size;
1090 			flush = FLUSH_DELALLOC;
1091 		} else if (space_info->bytes_pinned >
1092 			   (delayed_block_rsv->reserved +
1093 			    delayed_refs_rsv->reserved)) {
1094 			to_reclaim = space_info->bytes_pinned;
1095 			flush = COMMIT_TRANS;
1096 		} else if (delayed_block_rsv->reserved >
1097 			   delayed_refs_rsv->reserved) {
1098 			to_reclaim = delayed_block_rsv->reserved;
1099 			flush = FLUSH_DELAYED_ITEMS_NR;
1100 		} else {
1101 			to_reclaim = delayed_refs_rsv->reserved;
1102 			flush = FLUSH_DELAYED_REFS_NR;
1103 		}
1104 
1105 		spin_unlock(&space_info->lock);
1106 
1107 		/*
1108 		 * We don't want to reclaim everything, just a portion, so scale
1109 		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1110 		 * reclaim 1 items worth.
1111 		 */
1112 		to_reclaim >>= 2;
1113 		if (!to_reclaim)
1114 			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1115 		flush_space(fs_info, space_info, to_reclaim, flush, true);
1116 		cond_resched();
1117 		spin_lock(&space_info->lock);
1118 	}
1119 
1120 	/* We only went through once, back off our clamping. */
1121 	if (loops == 1 && !space_info->reclaim_size)
1122 		space_info->clamp = max(1, space_info->clamp - 1);
1123 	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1124 	spin_unlock(&space_info->lock);
1125 }
1126 
1127 /*
1128  * FLUSH_DELALLOC_WAIT:
1129  *   Space is freed from flushing delalloc in one of two ways.
1130  *
1131  *   1) compression is on and we allocate less space than we reserved
1132  *   2) we are overwriting existing space
1133  *
1134  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1135  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1136  *   length to ->bytes_reserved, and subtracts the reserved space from
1137  *   ->bytes_may_use.
1138  *
1139  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1140  *   extent in the range we are overwriting, which creates a delayed ref for
1141  *   that freed extent.  This however is not reclaimed until the transaction
1142  *   commits, thus the next stages.
1143  *
1144  * RUN_DELAYED_IPUTS
1145  *   If we are freeing inodes, we want to make sure all delayed iputs have
1146  *   completed, because they could have been on an inode with i_nlink == 0, and
1147  *   thus have been truncated and freed up space.  But again this space is not
1148  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1149  *   run and then the transaction must be committed.
1150  *
1151  * COMMIT_TRANS
1152  *   This is where we reclaim all of the pinned space generated by running the
1153  *   iputs
1154  *
1155  * ALLOC_CHUNK_FORCE
1156  *   For data we start with alloc chunk force, however we could have been full
1157  *   before, and then the transaction commit could have freed new block groups,
1158  *   so if we now have space to allocate do the force chunk allocation.
1159  */
1160 static const enum btrfs_flush_state data_flush_states[] = {
1161 	FLUSH_DELALLOC_FULL,
1162 	RUN_DELAYED_IPUTS,
1163 	COMMIT_TRANS,
1164 	ALLOC_CHUNK_FORCE,
1165 };
1166 
1167 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1168 {
1169 	struct btrfs_fs_info *fs_info;
1170 	struct btrfs_space_info *space_info;
1171 	u64 last_tickets_id;
1172 	enum btrfs_flush_state flush_state = 0;
1173 
1174 	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1175 	space_info = fs_info->data_sinfo;
1176 
1177 	spin_lock(&space_info->lock);
1178 	if (list_empty(&space_info->tickets)) {
1179 		space_info->flush = 0;
1180 		spin_unlock(&space_info->lock);
1181 		return;
1182 	}
1183 	last_tickets_id = space_info->tickets_id;
1184 	spin_unlock(&space_info->lock);
1185 
1186 	while (!space_info->full) {
1187 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1188 		spin_lock(&space_info->lock);
1189 		if (list_empty(&space_info->tickets)) {
1190 			space_info->flush = 0;
1191 			spin_unlock(&space_info->lock);
1192 			return;
1193 		}
1194 
1195 		/* Something happened, fail everything and bail. */
1196 		if (BTRFS_FS_ERROR(fs_info))
1197 			goto aborted_fs;
1198 		last_tickets_id = space_info->tickets_id;
1199 		spin_unlock(&space_info->lock);
1200 	}
1201 
1202 	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1203 		flush_space(fs_info, space_info, U64_MAX,
1204 			    data_flush_states[flush_state], false);
1205 		spin_lock(&space_info->lock);
1206 		if (list_empty(&space_info->tickets)) {
1207 			space_info->flush = 0;
1208 			spin_unlock(&space_info->lock);
1209 			return;
1210 		}
1211 
1212 		if (last_tickets_id == space_info->tickets_id) {
1213 			flush_state++;
1214 		} else {
1215 			last_tickets_id = space_info->tickets_id;
1216 			flush_state = 0;
1217 		}
1218 
1219 		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1220 			if (space_info->full) {
1221 				if (maybe_fail_all_tickets(fs_info, space_info))
1222 					flush_state = 0;
1223 				else
1224 					space_info->flush = 0;
1225 			} else {
1226 				flush_state = 0;
1227 			}
1228 
1229 			/* Something happened, fail everything and bail. */
1230 			if (BTRFS_FS_ERROR(fs_info))
1231 				goto aborted_fs;
1232 
1233 		}
1234 		spin_unlock(&space_info->lock);
1235 	}
1236 	return;
1237 
1238 aborted_fs:
1239 	maybe_fail_all_tickets(fs_info, space_info);
1240 	space_info->flush = 0;
1241 	spin_unlock(&space_info->lock);
1242 }
1243 
1244 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1245 {
1246 	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1247 	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1248 	INIT_WORK(&fs_info->preempt_reclaim_work,
1249 		  btrfs_preempt_reclaim_metadata_space);
1250 }
1251 
1252 static const enum btrfs_flush_state priority_flush_states[] = {
1253 	FLUSH_DELAYED_ITEMS_NR,
1254 	FLUSH_DELAYED_ITEMS,
1255 	ALLOC_CHUNK,
1256 };
1257 
1258 static const enum btrfs_flush_state evict_flush_states[] = {
1259 	FLUSH_DELAYED_ITEMS_NR,
1260 	FLUSH_DELAYED_ITEMS,
1261 	FLUSH_DELAYED_REFS_NR,
1262 	FLUSH_DELAYED_REFS,
1263 	FLUSH_DELALLOC,
1264 	FLUSH_DELALLOC_WAIT,
1265 	FLUSH_DELALLOC_FULL,
1266 	ALLOC_CHUNK,
1267 	COMMIT_TRANS,
1268 };
1269 
1270 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1271 				struct btrfs_space_info *space_info,
1272 				struct reserve_ticket *ticket,
1273 				const enum btrfs_flush_state *states,
1274 				int states_nr)
1275 {
1276 	u64 to_reclaim;
1277 	int flush_state = 0;
1278 
1279 	spin_lock(&space_info->lock);
1280 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1281 	/*
1282 	 * This is the priority reclaim path, so to_reclaim could be >0 still
1283 	 * because we may have only satisified the priority tickets and still
1284 	 * left non priority tickets on the list.  We would then have
1285 	 * to_reclaim but ->bytes == 0.
1286 	 */
1287 	if (ticket->bytes == 0) {
1288 		spin_unlock(&space_info->lock);
1289 		return;
1290 	}
1291 
1292 	while (flush_state < states_nr) {
1293 		spin_unlock(&space_info->lock);
1294 		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1295 			    false);
1296 		flush_state++;
1297 		spin_lock(&space_info->lock);
1298 		if (ticket->bytes == 0) {
1299 			spin_unlock(&space_info->lock);
1300 			return;
1301 		}
1302 	}
1303 
1304 	/* Attempt to steal from the global rsv if we can. */
1305 	if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1306 		ticket->error = -ENOSPC;
1307 		remove_ticket(space_info, ticket);
1308 	}
1309 
1310 	/*
1311 	 * We must run try_granting_tickets here because we could be a large
1312 	 * ticket in front of a smaller ticket that can now be satisfied with
1313 	 * the available space.
1314 	 */
1315 	btrfs_try_granting_tickets(fs_info, space_info);
1316 	spin_unlock(&space_info->lock);
1317 }
1318 
1319 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1320 					struct btrfs_space_info *space_info,
1321 					struct reserve_ticket *ticket)
1322 {
1323 	spin_lock(&space_info->lock);
1324 
1325 	/* We could have been granted before we got here. */
1326 	if (ticket->bytes == 0) {
1327 		spin_unlock(&space_info->lock);
1328 		return;
1329 	}
1330 
1331 	while (!space_info->full) {
1332 		spin_unlock(&space_info->lock);
1333 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1334 		spin_lock(&space_info->lock);
1335 		if (ticket->bytes == 0) {
1336 			spin_unlock(&space_info->lock);
1337 			return;
1338 		}
1339 	}
1340 
1341 	ticket->error = -ENOSPC;
1342 	remove_ticket(space_info, ticket);
1343 	btrfs_try_granting_tickets(fs_info, space_info);
1344 	spin_unlock(&space_info->lock);
1345 }
1346 
1347 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1348 				struct btrfs_space_info *space_info,
1349 				struct reserve_ticket *ticket)
1350 
1351 {
1352 	DEFINE_WAIT(wait);
1353 	int ret = 0;
1354 
1355 	spin_lock(&space_info->lock);
1356 	while (ticket->bytes > 0 && ticket->error == 0) {
1357 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1358 		if (ret) {
1359 			/*
1360 			 * Delete us from the list. After we unlock the space
1361 			 * info, we don't want the async reclaim job to reserve
1362 			 * space for this ticket. If that would happen, then the
1363 			 * ticket's task would not known that space was reserved
1364 			 * despite getting an error, resulting in a space leak
1365 			 * (bytes_may_use counter of our space_info).
1366 			 */
1367 			remove_ticket(space_info, ticket);
1368 			ticket->error = -EINTR;
1369 			break;
1370 		}
1371 		spin_unlock(&space_info->lock);
1372 
1373 		schedule();
1374 
1375 		finish_wait(&ticket->wait, &wait);
1376 		spin_lock(&space_info->lock);
1377 	}
1378 	spin_unlock(&space_info->lock);
1379 }
1380 
1381 /**
1382  * Do the appropriate flushing and waiting for a ticket
1383  *
1384  * @fs_info:    the filesystem
1385  * @space_info: space info for the reservation
1386  * @ticket:     ticket for the reservation
1387  * @start_ns:   timestamp when the reservation started
1388  * @orig_bytes: amount of bytes originally reserved
1389  * @flush:      how much we can flush
1390  *
1391  * This does the work of figuring out how to flush for the ticket, waiting for
1392  * the reservation, and returning the appropriate error if there is one.
1393  */
1394 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1395 				 struct btrfs_space_info *space_info,
1396 				 struct reserve_ticket *ticket,
1397 				 u64 start_ns, u64 orig_bytes,
1398 				 enum btrfs_reserve_flush_enum flush)
1399 {
1400 	int ret;
1401 
1402 	switch (flush) {
1403 	case BTRFS_RESERVE_FLUSH_DATA:
1404 	case BTRFS_RESERVE_FLUSH_ALL:
1405 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1406 		wait_reserve_ticket(fs_info, space_info, ticket);
1407 		break;
1408 	case BTRFS_RESERVE_FLUSH_LIMIT:
1409 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1410 						priority_flush_states,
1411 						ARRAY_SIZE(priority_flush_states));
1412 		break;
1413 	case BTRFS_RESERVE_FLUSH_EVICT:
1414 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1415 						evict_flush_states,
1416 						ARRAY_SIZE(evict_flush_states));
1417 		break;
1418 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1419 		priority_reclaim_data_space(fs_info, space_info, ticket);
1420 		break;
1421 	default:
1422 		ASSERT(0);
1423 		break;
1424 	}
1425 
1426 	ret = ticket->error;
1427 	ASSERT(list_empty(&ticket->list));
1428 	/*
1429 	 * Check that we can't have an error set if the reservation succeeded,
1430 	 * as that would confuse tasks and lead them to error out without
1431 	 * releasing reserved space (if an error happens the expectation is that
1432 	 * space wasn't reserved at all).
1433 	 */
1434 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1435 	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1436 				   start_ns, flush, ticket->error);
1437 	return ret;
1438 }
1439 
1440 /*
1441  * This returns true if this flush state will go through the ordinary flushing
1442  * code.
1443  */
1444 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1445 {
1446 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1447 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1448 }
1449 
1450 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1451 				       struct btrfs_space_info *space_info)
1452 {
1453 	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1454 	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1455 
1456 	/*
1457 	 * If we're heavy on ordered operations then clamping won't help us.  We
1458 	 * need to clamp specifically to keep up with dirty'ing buffered
1459 	 * writers, because there's not a 1:1 correlation of writing delalloc
1460 	 * and freeing space, like there is with flushing delayed refs or
1461 	 * delayed nodes.  If we're already more ordered than delalloc then
1462 	 * we're keeping up, otherwise we aren't and should probably clamp.
1463 	 */
1464 	if (ordered < delalloc)
1465 		space_info->clamp = min(space_info->clamp + 1, 8);
1466 }
1467 
1468 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1469 {
1470 	return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1471 		flush == BTRFS_RESERVE_FLUSH_EVICT);
1472 }
1473 
1474 /**
1475  * Try to reserve bytes from the block_rsv's space
1476  *
1477  * @fs_info:    the filesystem
1478  * @space_info: space info we want to allocate from
1479  * @orig_bytes: number of bytes we want
1480  * @flush:      whether or not we can flush to make our reservation
1481  *
1482  * This will reserve orig_bytes number of bytes from the space info associated
1483  * with the block_rsv.  If there is not enough space it will make an attempt to
1484  * flush out space to make room.  It will do this by flushing delalloc if
1485  * possible or committing the transaction.  If flush is 0 then no attempts to
1486  * regain reservations will be made and this will fail if there is not enough
1487  * space already.
1488  */
1489 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1490 			   struct btrfs_space_info *space_info, u64 orig_bytes,
1491 			   enum btrfs_reserve_flush_enum flush)
1492 {
1493 	struct work_struct *async_work;
1494 	struct reserve_ticket ticket;
1495 	u64 start_ns = 0;
1496 	u64 used;
1497 	int ret = 0;
1498 	bool pending_tickets;
1499 
1500 	ASSERT(orig_bytes);
1501 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1502 
1503 	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1504 		async_work = &fs_info->async_data_reclaim_work;
1505 	else
1506 		async_work = &fs_info->async_reclaim_work;
1507 
1508 	spin_lock(&space_info->lock);
1509 	ret = -ENOSPC;
1510 	used = btrfs_space_info_used(space_info, true);
1511 
1512 	/*
1513 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1514 	 * generally handle ENOSPC in a different way, so treat them the same as
1515 	 * normal flushers when it comes to skipping pending tickets.
1516 	 */
1517 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1518 		pending_tickets = !list_empty(&space_info->tickets) ||
1519 			!list_empty(&space_info->priority_tickets);
1520 	else
1521 		pending_tickets = !list_empty(&space_info->priority_tickets);
1522 
1523 	/*
1524 	 * Carry on if we have enough space (short-circuit) OR call
1525 	 * can_overcommit() to ensure we can overcommit to continue.
1526 	 */
1527 	if (!pending_tickets &&
1528 	    ((used + orig_bytes <= space_info->total_bytes) ||
1529 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1530 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1531 						      orig_bytes);
1532 		ret = 0;
1533 	}
1534 
1535 	/*
1536 	 * If we couldn't make a reservation then setup our reservation ticket
1537 	 * and kick the async worker if it's not already running.
1538 	 *
1539 	 * If we are a priority flusher then we just need to add our ticket to
1540 	 * the list and we will do our own flushing further down.
1541 	 */
1542 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1543 		ticket.bytes = orig_bytes;
1544 		ticket.error = 0;
1545 		space_info->reclaim_size += ticket.bytes;
1546 		init_waitqueue_head(&ticket.wait);
1547 		ticket.steal = can_steal(flush);
1548 		if (trace_btrfs_reserve_ticket_enabled())
1549 			start_ns = ktime_get_ns();
1550 
1551 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1552 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1553 		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1554 			list_add_tail(&ticket.list, &space_info->tickets);
1555 			if (!space_info->flush) {
1556 				/*
1557 				 * We were forced to add a reserve ticket, so
1558 				 * our preemptive flushing is unable to keep
1559 				 * up.  Clamp down on the threshold for the
1560 				 * preemptive flushing in order to keep up with
1561 				 * the workload.
1562 				 */
1563 				maybe_clamp_preempt(fs_info, space_info);
1564 
1565 				space_info->flush = 1;
1566 				trace_btrfs_trigger_flush(fs_info,
1567 							  space_info->flags,
1568 							  orig_bytes, flush,
1569 							  "enospc");
1570 				queue_work(system_unbound_wq, async_work);
1571 			}
1572 		} else {
1573 			list_add_tail(&ticket.list,
1574 				      &space_info->priority_tickets);
1575 		}
1576 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1577 		used += orig_bytes;
1578 		/*
1579 		 * We will do the space reservation dance during log replay,
1580 		 * which means we won't have fs_info->fs_root set, so don't do
1581 		 * the async reclaim as we will panic.
1582 		 */
1583 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1584 		    !work_busy(&fs_info->preempt_reclaim_work) &&
1585 		    need_preemptive_reclaim(fs_info, space_info)) {
1586 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1587 						  orig_bytes, flush, "preempt");
1588 			queue_work(system_unbound_wq,
1589 				   &fs_info->preempt_reclaim_work);
1590 		}
1591 	}
1592 	spin_unlock(&space_info->lock);
1593 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1594 		return ret;
1595 
1596 	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1597 				     orig_bytes, flush);
1598 }
1599 
1600 /**
1601  * Trye to reserve metadata bytes from the block_rsv's space
1602  *
1603  * @fs_info:    the filesystem
1604  * @block_rsv:  block_rsv we're allocating for
1605  * @orig_bytes: number of bytes we want
1606  * @flush:      whether or not we can flush to make our reservation
1607  *
1608  * This will reserve orig_bytes number of bytes from the space info associated
1609  * with the block_rsv.  If there is not enough space it will make an attempt to
1610  * flush out space to make room.  It will do this by flushing delalloc if
1611  * possible or committing the transaction.  If flush is 0 then no attempts to
1612  * regain reservations will be made and this will fail if there is not enough
1613  * space already.
1614  */
1615 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1616 				 struct btrfs_block_rsv *block_rsv,
1617 				 u64 orig_bytes,
1618 				 enum btrfs_reserve_flush_enum flush)
1619 {
1620 	int ret;
1621 
1622 	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1623 	if (ret == -ENOSPC) {
1624 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1625 					      block_rsv->space_info->flags,
1626 					      orig_bytes, 1);
1627 
1628 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1629 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1630 					      orig_bytes, 0);
1631 	}
1632 	return ret;
1633 }
1634 
1635 /**
1636  * Try to reserve data bytes for an allocation
1637  *
1638  * @fs_info: the filesystem
1639  * @bytes:   number of bytes we need
1640  * @flush:   how we are allowed to flush
1641  *
1642  * This will reserve bytes from the data space info.  If there is not enough
1643  * space then we will attempt to flush space as specified by flush.
1644  */
1645 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1646 			     enum btrfs_reserve_flush_enum flush)
1647 {
1648 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1649 	int ret;
1650 
1651 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1652 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1653 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1654 
1655 	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1656 	if (ret == -ENOSPC) {
1657 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1658 					      data_sinfo->flags, bytes, 1);
1659 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1660 			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1661 	}
1662 	return ret;
1663 }
1664