xref: /openbmc/linux/fs/btrfs/space-info.c (revision a31a5876)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     may_commit_transaction() is the ultimate arbiter on whether we commit the
137  *     transaction or not.  In order to avoid constantly churning we do all the
138  *     above flushing first and then commit the transaction as the last resort.
139  *     However we need to take into account things like pinned space that would
140  *     be freed, plus any delayed work we may not have gotten rid of in the case
141  *     of metadata.
142  *
143  * OVERCOMMIT
144  *
145  *   Because we hold so many reservations for metadata we will allow you to
146  *   reserve more space than is currently free in the currently allocate
147  *   metadata space.  This only happens with metadata, data does not allow
148  *   overcommitting.
149  *
150  *   You can see the current logic for when we allow overcommit in
151  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
152  *   is no unallocated space to be had, all reservations are kept within the
153  *   free space in the allocated metadata chunks.
154  *
155  *   Because of overcommitting, you generally want to use the
156  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
157  *   thing with or without extra unallocated space.
158  */
159 
160 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
161 			  bool may_use_included)
162 {
163 	ASSERT(s_info);
164 	return s_info->bytes_used + s_info->bytes_reserved +
165 		s_info->bytes_pinned + s_info->bytes_readonly +
166 		(may_use_included ? s_info->bytes_may_use : 0);
167 }
168 
169 /*
170  * after adding space to the filesystem, we need to clear the full flags
171  * on all the space infos.
172  */
173 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
174 {
175 	struct list_head *head = &info->space_info;
176 	struct btrfs_space_info *found;
177 
178 	rcu_read_lock();
179 	list_for_each_entry_rcu(found, head, list)
180 		found->full = 0;
181 	rcu_read_unlock();
182 }
183 
184 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
185 {
186 
187 	struct btrfs_space_info *space_info;
188 	int i;
189 	int ret;
190 
191 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
192 	if (!space_info)
193 		return -ENOMEM;
194 
195 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
196 				 GFP_KERNEL);
197 	if (ret) {
198 		kfree(space_info);
199 		return ret;
200 	}
201 
202 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
203 		INIT_LIST_HEAD(&space_info->block_groups[i]);
204 	init_rwsem(&space_info->groups_sem);
205 	spin_lock_init(&space_info->lock);
206 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
207 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
208 	INIT_LIST_HEAD(&space_info->ro_bgs);
209 	INIT_LIST_HEAD(&space_info->tickets);
210 	INIT_LIST_HEAD(&space_info->priority_tickets);
211 
212 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
213 	if (ret)
214 		return ret;
215 
216 	list_add_rcu(&space_info->list, &info->space_info);
217 	if (flags & BTRFS_BLOCK_GROUP_DATA)
218 		info->data_sinfo = space_info;
219 
220 	return ret;
221 }
222 
223 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
224 {
225 	struct btrfs_super_block *disk_super;
226 	u64 features;
227 	u64 flags;
228 	int mixed = 0;
229 	int ret;
230 
231 	disk_super = fs_info->super_copy;
232 	if (!btrfs_super_root(disk_super))
233 		return -EINVAL;
234 
235 	features = btrfs_super_incompat_flags(disk_super);
236 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
237 		mixed = 1;
238 
239 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
240 	ret = create_space_info(fs_info, flags);
241 	if (ret)
242 		goto out;
243 
244 	if (mixed) {
245 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
246 		ret = create_space_info(fs_info, flags);
247 	} else {
248 		flags = BTRFS_BLOCK_GROUP_METADATA;
249 		ret = create_space_info(fs_info, flags);
250 		if (ret)
251 			goto out;
252 
253 		flags = BTRFS_BLOCK_GROUP_DATA;
254 		ret = create_space_info(fs_info, flags);
255 	}
256 out:
257 	return ret;
258 }
259 
260 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
261 			     u64 total_bytes, u64 bytes_used,
262 			     u64 bytes_readonly,
263 			     struct btrfs_space_info **space_info)
264 {
265 	struct btrfs_space_info *found;
266 	int factor;
267 
268 	factor = btrfs_bg_type_to_factor(flags);
269 
270 	found = btrfs_find_space_info(info, flags);
271 	ASSERT(found);
272 	spin_lock(&found->lock);
273 	found->total_bytes += total_bytes;
274 	found->disk_total += total_bytes * factor;
275 	found->bytes_used += bytes_used;
276 	found->disk_used += bytes_used * factor;
277 	found->bytes_readonly += bytes_readonly;
278 	if (total_bytes > 0)
279 		found->full = 0;
280 	btrfs_try_granting_tickets(info, found);
281 	spin_unlock(&found->lock);
282 	*space_info = found;
283 }
284 
285 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
286 					       u64 flags)
287 {
288 	struct list_head *head = &info->space_info;
289 	struct btrfs_space_info *found;
290 
291 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
292 
293 	rcu_read_lock();
294 	list_for_each_entry_rcu(found, head, list) {
295 		if (found->flags & flags) {
296 			rcu_read_unlock();
297 			return found;
298 		}
299 	}
300 	rcu_read_unlock();
301 	return NULL;
302 }
303 
304 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
305 			  struct btrfs_space_info *space_info,
306 			  enum btrfs_reserve_flush_enum flush)
307 {
308 	u64 profile;
309 	u64 avail;
310 	int factor;
311 
312 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
313 		profile = btrfs_system_alloc_profile(fs_info);
314 	else
315 		profile = btrfs_metadata_alloc_profile(fs_info);
316 
317 	avail = atomic64_read(&fs_info->free_chunk_space);
318 
319 	/*
320 	 * If we have dup, raid1 or raid10 then only half of the free
321 	 * space is actually usable.  For raid56, the space info used
322 	 * doesn't include the parity drive, so we don't have to
323 	 * change the math
324 	 */
325 	factor = btrfs_bg_type_to_factor(profile);
326 	avail = div_u64(avail, factor);
327 
328 	/*
329 	 * If we aren't flushing all things, let us overcommit up to
330 	 * 1/2th of the space. If we can flush, don't let us overcommit
331 	 * too much, let it overcommit up to 1/8 of the space.
332 	 */
333 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
334 		avail >>= 3;
335 	else
336 		avail >>= 1;
337 	return avail;
338 }
339 
340 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
341 			 struct btrfs_space_info *space_info, u64 bytes,
342 			 enum btrfs_reserve_flush_enum flush)
343 {
344 	u64 avail;
345 	u64 used;
346 
347 	/* Don't overcommit when in mixed mode */
348 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
349 		return 0;
350 
351 	used = btrfs_space_info_used(space_info, true);
352 	avail = calc_available_free_space(fs_info, space_info, flush);
353 
354 	if (used + bytes < space_info->total_bytes + avail)
355 		return 1;
356 	return 0;
357 }
358 
359 static void remove_ticket(struct btrfs_space_info *space_info,
360 			  struct reserve_ticket *ticket)
361 {
362 	if (!list_empty(&ticket->list)) {
363 		list_del_init(&ticket->list);
364 		ASSERT(space_info->reclaim_size >= ticket->bytes);
365 		space_info->reclaim_size -= ticket->bytes;
366 	}
367 }
368 
369 /*
370  * This is for space we already have accounted in space_info->bytes_may_use, so
371  * basically when we're returning space from block_rsv's.
372  */
373 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
374 				struct btrfs_space_info *space_info)
375 {
376 	struct list_head *head;
377 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
378 
379 	lockdep_assert_held(&space_info->lock);
380 
381 	head = &space_info->priority_tickets;
382 again:
383 	while (!list_empty(head)) {
384 		struct reserve_ticket *ticket;
385 		u64 used = btrfs_space_info_used(space_info, true);
386 
387 		ticket = list_first_entry(head, struct reserve_ticket, list);
388 
389 		/* Check and see if our ticket can be satisified now. */
390 		if ((used + ticket->bytes <= space_info->total_bytes) ||
391 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
392 					 flush)) {
393 			btrfs_space_info_update_bytes_may_use(fs_info,
394 							      space_info,
395 							      ticket->bytes);
396 			remove_ticket(space_info, ticket);
397 			ticket->bytes = 0;
398 			space_info->tickets_id++;
399 			wake_up(&ticket->wait);
400 		} else {
401 			break;
402 		}
403 	}
404 
405 	if (head == &space_info->priority_tickets) {
406 		head = &space_info->tickets;
407 		flush = BTRFS_RESERVE_FLUSH_ALL;
408 		goto again;
409 	}
410 }
411 
412 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
413 do {									\
414 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
415 	spin_lock(&__rsv->lock);					\
416 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
417 		   __rsv->size, __rsv->reserved);			\
418 	spin_unlock(&__rsv->lock);					\
419 } while (0)
420 
421 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
422 				    struct btrfs_space_info *info)
423 {
424 	lockdep_assert_held(&info->lock);
425 
426 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
427 		   info->flags,
428 		   info->total_bytes - btrfs_space_info_used(info, true),
429 		   info->full ? "" : "not ");
430 	btrfs_info(fs_info,
431 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
432 		info->total_bytes, info->bytes_used, info->bytes_pinned,
433 		info->bytes_reserved, info->bytes_may_use,
434 		info->bytes_readonly);
435 
436 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
437 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
438 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
439 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
440 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
441 
442 }
443 
444 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
445 			   struct btrfs_space_info *info, u64 bytes,
446 			   int dump_block_groups)
447 {
448 	struct btrfs_block_group *cache;
449 	int index = 0;
450 
451 	spin_lock(&info->lock);
452 	__btrfs_dump_space_info(fs_info, info);
453 	spin_unlock(&info->lock);
454 
455 	if (!dump_block_groups)
456 		return;
457 
458 	down_read(&info->groups_sem);
459 again:
460 	list_for_each_entry(cache, &info->block_groups[index], list) {
461 		spin_lock(&cache->lock);
462 		btrfs_info(fs_info,
463 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
464 			cache->start, cache->length, cache->used, cache->pinned,
465 			cache->reserved, cache->ro ? "[readonly]" : "");
466 		spin_unlock(&cache->lock);
467 		btrfs_dump_free_space(cache, bytes);
468 	}
469 	if (++index < BTRFS_NR_RAID_TYPES)
470 		goto again;
471 	up_read(&info->groups_sem);
472 }
473 
474 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
475 					u64 to_reclaim)
476 {
477 	u64 bytes;
478 	u64 nr;
479 
480 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
481 	nr = div64_u64(to_reclaim, bytes);
482 	if (!nr)
483 		nr = 1;
484 	return nr;
485 }
486 
487 #define EXTENT_SIZE_PER_ITEM	SZ_256K
488 
489 /*
490  * shrink metadata reservation for delalloc
491  */
492 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
493 			    struct btrfs_space_info *space_info,
494 			    u64 to_reclaim, bool wait_ordered)
495 {
496 	struct btrfs_trans_handle *trans;
497 	u64 delalloc_bytes;
498 	u64 dio_bytes;
499 	u64 items;
500 	long time_left;
501 	int loops;
502 
503 	/* Calc the number of the pages we need flush for space reservation */
504 	if (to_reclaim == U64_MAX) {
505 		items = U64_MAX;
506 	} else {
507 		/*
508 		 * to_reclaim is set to however much metadata we need to
509 		 * reclaim, but reclaiming that much data doesn't really track
510 		 * exactly, so increase the amount to reclaim by 2x in order to
511 		 * make sure we're flushing enough delalloc to hopefully reclaim
512 		 * some metadata reservations.
513 		 */
514 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
515 		to_reclaim = items * EXTENT_SIZE_PER_ITEM;
516 	}
517 
518 	trans = (struct btrfs_trans_handle *)current->journal_info;
519 
520 	delalloc_bytes = percpu_counter_sum_positive(
521 						&fs_info->delalloc_bytes);
522 	dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
523 	if (delalloc_bytes == 0 && dio_bytes == 0) {
524 		if (trans)
525 			return;
526 		if (wait_ordered)
527 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
528 		return;
529 	}
530 
531 	/*
532 	 * If we are doing more ordered than delalloc we need to just wait on
533 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
534 	 * that likely won't give us the space back we need.
535 	 */
536 	if (dio_bytes > delalloc_bytes)
537 		wait_ordered = true;
538 
539 	loops = 0;
540 	while ((delalloc_bytes || dio_bytes) && loops < 3) {
541 		btrfs_start_delalloc_roots(fs_info, items);
542 
543 		loops++;
544 		if (wait_ordered && !trans) {
545 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
546 		} else {
547 			time_left = schedule_timeout_killable(1);
548 			if (time_left)
549 				break;
550 		}
551 
552 		spin_lock(&space_info->lock);
553 		if (list_empty(&space_info->tickets) &&
554 		    list_empty(&space_info->priority_tickets)) {
555 			spin_unlock(&space_info->lock);
556 			break;
557 		}
558 		spin_unlock(&space_info->lock);
559 
560 		delalloc_bytes = percpu_counter_sum_positive(
561 						&fs_info->delalloc_bytes);
562 		dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
563 	}
564 }
565 
566 /**
567  * maybe_commit_transaction - possibly commit the transaction if its ok to
568  * @root - the root we're allocating for
569  * @bytes - the number of bytes we want to reserve
570  * @force - force the commit
571  *
572  * This will check to make sure that committing the transaction will actually
573  * get us somewhere and then commit the transaction if it does.  Otherwise it
574  * will return -ENOSPC.
575  */
576 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
577 				  struct btrfs_space_info *space_info)
578 {
579 	struct reserve_ticket *ticket = NULL;
580 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
581 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
582 	struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
583 	struct btrfs_trans_handle *trans;
584 	u64 reclaim_bytes = 0;
585 	u64 bytes_needed = 0;
586 	u64 cur_free_bytes = 0;
587 
588 	trans = (struct btrfs_trans_handle *)current->journal_info;
589 	if (trans)
590 		return -EAGAIN;
591 
592 	spin_lock(&space_info->lock);
593 	cur_free_bytes = btrfs_space_info_used(space_info, true);
594 	if (cur_free_bytes < space_info->total_bytes)
595 		cur_free_bytes = space_info->total_bytes - cur_free_bytes;
596 	else
597 		cur_free_bytes = 0;
598 
599 	if (!list_empty(&space_info->priority_tickets))
600 		ticket = list_first_entry(&space_info->priority_tickets,
601 					  struct reserve_ticket, list);
602 	else if (!list_empty(&space_info->tickets))
603 		ticket = list_first_entry(&space_info->tickets,
604 					  struct reserve_ticket, list);
605 	if (ticket)
606 		bytes_needed = ticket->bytes;
607 
608 	if (bytes_needed > cur_free_bytes)
609 		bytes_needed -= cur_free_bytes;
610 	else
611 		bytes_needed = 0;
612 	spin_unlock(&space_info->lock);
613 
614 	if (!bytes_needed)
615 		return 0;
616 
617 	trans = btrfs_join_transaction(fs_info->extent_root);
618 	if (IS_ERR(trans))
619 		return PTR_ERR(trans);
620 
621 	/*
622 	 * See if there is enough pinned space to make this reservation, or if
623 	 * we have block groups that are going to be freed, allowing us to
624 	 * possibly do a chunk allocation the next loop through.
625 	 */
626 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
627 	    __percpu_counter_compare(&space_info->total_bytes_pinned,
628 				     bytes_needed,
629 				     BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
630 		goto commit;
631 
632 	/*
633 	 * See if there is some space in the delayed insertion reserve for this
634 	 * reservation.  If the space_info's don't match (like for DATA or
635 	 * SYSTEM) then just go enospc, reclaiming this space won't recover any
636 	 * space to satisfy those reservations.
637 	 */
638 	if (space_info != delayed_rsv->space_info)
639 		goto enospc;
640 
641 	spin_lock(&delayed_rsv->lock);
642 	reclaim_bytes += delayed_rsv->reserved;
643 	spin_unlock(&delayed_rsv->lock);
644 
645 	spin_lock(&delayed_refs_rsv->lock);
646 	reclaim_bytes += delayed_refs_rsv->reserved;
647 	spin_unlock(&delayed_refs_rsv->lock);
648 
649 	spin_lock(&trans_rsv->lock);
650 	reclaim_bytes += trans_rsv->reserved;
651 	spin_unlock(&trans_rsv->lock);
652 
653 	if (reclaim_bytes >= bytes_needed)
654 		goto commit;
655 	bytes_needed -= reclaim_bytes;
656 
657 	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
658 				   bytes_needed,
659 				   BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
660 		goto enospc;
661 
662 commit:
663 	return btrfs_commit_transaction(trans);
664 enospc:
665 	btrfs_end_transaction(trans);
666 	return -ENOSPC;
667 }
668 
669 /*
670  * Try to flush some data based on policy set by @state. This is only advisory
671  * and may fail for various reasons. The caller is supposed to examine the
672  * state of @space_info to detect the outcome.
673  */
674 static void flush_space(struct btrfs_fs_info *fs_info,
675 		       struct btrfs_space_info *space_info, u64 num_bytes,
676 		       int state)
677 {
678 	struct btrfs_root *root = fs_info->extent_root;
679 	struct btrfs_trans_handle *trans;
680 	int nr;
681 	int ret = 0;
682 
683 	switch (state) {
684 	case FLUSH_DELAYED_ITEMS_NR:
685 	case FLUSH_DELAYED_ITEMS:
686 		if (state == FLUSH_DELAYED_ITEMS_NR)
687 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
688 		else
689 			nr = -1;
690 
691 		trans = btrfs_join_transaction(root);
692 		if (IS_ERR(trans)) {
693 			ret = PTR_ERR(trans);
694 			break;
695 		}
696 		ret = btrfs_run_delayed_items_nr(trans, nr);
697 		btrfs_end_transaction(trans);
698 		break;
699 	case FLUSH_DELALLOC:
700 	case FLUSH_DELALLOC_WAIT:
701 		shrink_delalloc(fs_info, space_info, num_bytes,
702 				state == FLUSH_DELALLOC_WAIT);
703 		break;
704 	case FLUSH_DELAYED_REFS_NR:
705 	case FLUSH_DELAYED_REFS:
706 		trans = btrfs_join_transaction(root);
707 		if (IS_ERR(trans)) {
708 			ret = PTR_ERR(trans);
709 			break;
710 		}
711 		if (state == FLUSH_DELAYED_REFS_NR)
712 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
713 		else
714 			nr = 0;
715 		btrfs_run_delayed_refs(trans, nr);
716 		btrfs_end_transaction(trans);
717 		break;
718 	case ALLOC_CHUNK:
719 	case ALLOC_CHUNK_FORCE:
720 		trans = btrfs_join_transaction(root);
721 		if (IS_ERR(trans)) {
722 			ret = PTR_ERR(trans);
723 			break;
724 		}
725 		ret = btrfs_chunk_alloc(trans,
726 				btrfs_get_alloc_profile(fs_info, space_info->flags),
727 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
728 					CHUNK_ALLOC_FORCE);
729 		btrfs_end_transaction(trans);
730 		if (ret > 0 || ret == -ENOSPC)
731 			ret = 0;
732 		break;
733 	case RUN_DELAYED_IPUTS:
734 		/*
735 		 * If we have pending delayed iputs then we could free up a
736 		 * bunch of pinned space, so make sure we run the iputs before
737 		 * we do our pinned bytes check below.
738 		 */
739 		btrfs_run_delayed_iputs(fs_info);
740 		btrfs_wait_on_delayed_iputs(fs_info);
741 		break;
742 	case COMMIT_TRANS:
743 		ret = may_commit_transaction(fs_info, space_info);
744 		break;
745 	default:
746 		ret = -ENOSPC;
747 		break;
748 	}
749 
750 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
751 				ret);
752 	return;
753 }
754 
755 static inline u64
756 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
757 				 struct btrfs_space_info *space_info)
758 {
759 	u64 used;
760 	u64 avail;
761 	u64 expected;
762 	u64 to_reclaim = space_info->reclaim_size;
763 
764 	lockdep_assert_held(&space_info->lock);
765 
766 	avail = calc_available_free_space(fs_info, space_info,
767 					  BTRFS_RESERVE_FLUSH_ALL);
768 	used = btrfs_space_info_used(space_info, true);
769 
770 	/*
771 	 * We may be flushing because suddenly we have less space than we had
772 	 * before, and now we're well over-committed based on our current free
773 	 * space.  If that's the case add in our overage so we make sure to put
774 	 * appropriate pressure on the flushing state machine.
775 	 */
776 	if (space_info->total_bytes + avail < used)
777 		to_reclaim += used - (space_info->total_bytes + avail);
778 
779 	if (to_reclaim)
780 		return to_reclaim;
781 
782 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
783 	if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
784 				 BTRFS_RESERVE_FLUSH_ALL))
785 		return 0;
786 
787 	used = btrfs_space_info_used(space_info, true);
788 
789 	if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
790 				 BTRFS_RESERVE_FLUSH_ALL))
791 		expected = div_factor_fine(space_info->total_bytes, 95);
792 	else
793 		expected = div_factor_fine(space_info->total_bytes, 90);
794 
795 	if (used > expected)
796 		to_reclaim = used - expected;
797 	else
798 		to_reclaim = 0;
799 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
800 				     space_info->bytes_reserved);
801 	return to_reclaim;
802 }
803 
804 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
805 					struct btrfs_space_info *space_info,
806 					u64 used)
807 {
808 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
809 
810 	/* If we're just plain full then async reclaim just slows us down. */
811 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
812 		return 0;
813 
814 	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
815 		return 0;
816 
817 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
818 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
819 }
820 
821 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
822 				  struct btrfs_space_info *space_info,
823 				  struct reserve_ticket *ticket)
824 {
825 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
826 	u64 min_bytes;
827 
828 	if (global_rsv->space_info != space_info)
829 		return false;
830 
831 	spin_lock(&global_rsv->lock);
832 	min_bytes = div_factor(global_rsv->size, 1);
833 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
834 		spin_unlock(&global_rsv->lock);
835 		return false;
836 	}
837 	global_rsv->reserved -= ticket->bytes;
838 	remove_ticket(space_info, ticket);
839 	ticket->bytes = 0;
840 	wake_up(&ticket->wait);
841 	space_info->tickets_id++;
842 	if (global_rsv->reserved < global_rsv->size)
843 		global_rsv->full = 0;
844 	spin_unlock(&global_rsv->lock);
845 
846 	return true;
847 }
848 
849 /*
850  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
851  * @fs_info - fs_info for this fs
852  * @space_info - the space info we were flushing
853  *
854  * We call this when we've exhausted our flushing ability and haven't made
855  * progress in satisfying tickets.  The reservation code handles tickets in
856  * order, so if there is a large ticket first and then smaller ones we could
857  * very well satisfy the smaller tickets.  This will attempt to wake up any
858  * tickets in the list to catch this case.
859  *
860  * This function returns true if it was able to make progress by clearing out
861  * other tickets, or if it stumbles across a ticket that was smaller than the
862  * first ticket.
863  */
864 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
865 				   struct btrfs_space_info *space_info)
866 {
867 	struct reserve_ticket *ticket;
868 	u64 tickets_id = space_info->tickets_id;
869 	u64 first_ticket_bytes = 0;
870 
871 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
872 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
873 		__btrfs_dump_space_info(fs_info, space_info);
874 	}
875 
876 	while (!list_empty(&space_info->tickets) &&
877 	       tickets_id == space_info->tickets_id) {
878 		ticket = list_first_entry(&space_info->tickets,
879 					  struct reserve_ticket, list);
880 
881 		if (ticket->steal &&
882 		    steal_from_global_rsv(fs_info, space_info, ticket))
883 			return true;
884 
885 		/*
886 		 * may_commit_transaction will avoid committing the transaction
887 		 * if it doesn't feel like the space reclaimed by the commit
888 		 * would result in the ticket succeeding.  However if we have a
889 		 * smaller ticket in the queue it may be small enough to be
890 		 * satisified by committing the transaction, so if any
891 		 * subsequent ticket is smaller than the first ticket go ahead
892 		 * and send us back for another loop through the enospc flushing
893 		 * code.
894 		 */
895 		if (first_ticket_bytes == 0)
896 			first_ticket_bytes = ticket->bytes;
897 		else if (first_ticket_bytes > ticket->bytes)
898 			return true;
899 
900 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
901 			btrfs_info(fs_info, "failing ticket with %llu bytes",
902 				   ticket->bytes);
903 
904 		remove_ticket(space_info, ticket);
905 		ticket->error = -ENOSPC;
906 		wake_up(&ticket->wait);
907 
908 		/*
909 		 * We're just throwing tickets away, so more flushing may not
910 		 * trip over btrfs_try_granting_tickets, so we need to call it
911 		 * here to see if we can make progress with the next ticket in
912 		 * the list.
913 		 */
914 		btrfs_try_granting_tickets(fs_info, space_info);
915 	}
916 	return (tickets_id != space_info->tickets_id);
917 }
918 
919 /*
920  * This is for normal flushers, we can wait all goddamned day if we want to.  We
921  * will loop and continuously try to flush as long as we are making progress.
922  * We count progress as clearing off tickets each time we have to loop.
923  */
924 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
925 {
926 	struct btrfs_fs_info *fs_info;
927 	struct btrfs_space_info *space_info;
928 	u64 to_reclaim;
929 	int flush_state;
930 	int commit_cycles = 0;
931 	u64 last_tickets_id;
932 
933 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
934 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
935 
936 	spin_lock(&space_info->lock);
937 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
938 	if (!to_reclaim) {
939 		space_info->flush = 0;
940 		spin_unlock(&space_info->lock);
941 		return;
942 	}
943 	last_tickets_id = space_info->tickets_id;
944 	spin_unlock(&space_info->lock);
945 
946 	flush_state = FLUSH_DELAYED_ITEMS_NR;
947 	do {
948 		flush_space(fs_info, space_info, to_reclaim, flush_state);
949 		spin_lock(&space_info->lock);
950 		if (list_empty(&space_info->tickets)) {
951 			space_info->flush = 0;
952 			spin_unlock(&space_info->lock);
953 			return;
954 		}
955 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
956 							      space_info);
957 		if (last_tickets_id == space_info->tickets_id) {
958 			flush_state++;
959 		} else {
960 			last_tickets_id = space_info->tickets_id;
961 			flush_state = FLUSH_DELAYED_ITEMS_NR;
962 			if (commit_cycles)
963 				commit_cycles--;
964 		}
965 
966 		/*
967 		 * We don't want to force a chunk allocation until we've tried
968 		 * pretty hard to reclaim space.  Think of the case where we
969 		 * freed up a bunch of space and so have a lot of pinned space
970 		 * to reclaim.  We would rather use that than possibly create a
971 		 * underutilized metadata chunk.  So if this is our first run
972 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
973 		 * commit the transaction.  If nothing has changed the next go
974 		 * around then we can force a chunk allocation.
975 		 */
976 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
977 			flush_state++;
978 
979 		if (flush_state > COMMIT_TRANS) {
980 			commit_cycles++;
981 			if (commit_cycles > 2) {
982 				if (maybe_fail_all_tickets(fs_info, space_info)) {
983 					flush_state = FLUSH_DELAYED_ITEMS_NR;
984 					commit_cycles--;
985 				} else {
986 					space_info->flush = 0;
987 				}
988 			} else {
989 				flush_state = FLUSH_DELAYED_ITEMS_NR;
990 			}
991 		}
992 		spin_unlock(&space_info->lock);
993 	} while (flush_state <= COMMIT_TRANS);
994 }
995 
996 /*
997  * FLUSH_DELALLOC_WAIT:
998  *   Space is freed from flushing delalloc in one of two ways.
999  *
1000  *   1) compression is on and we allocate less space than we reserved
1001  *   2) we are overwriting existing space
1002  *
1003  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1004  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1005  *   length to ->bytes_reserved, and subtracts the reserved space from
1006  *   ->bytes_may_use.
1007  *
1008  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1009  *   extent in the range we are overwriting, which creates a delayed ref for
1010  *   that freed extent.  This however is not reclaimed until the transaction
1011  *   commits, thus the next stages.
1012  *
1013  * RUN_DELAYED_IPUTS
1014  *   If we are freeing inodes, we want to make sure all delayed iputs have
1015  *   completed, because they could have been on an inode with i_nlink == 0, and
1016  *   thus have been truncated and freed up space.  But again this space is not
1017  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1018  *   run and then the transaction must be committed.
1019  *
1020  * FLUSH_DELAYED_REFS
1021  *   The above two cases generate delayed refs that will affect
1022  *   ->total_bytes_pinned.  However this counter can be inconsistent with
1023  *   reality if there are outstanding delayed refs.  This is because we adjust
1024  *   the counter based solely on the current set of delayed refs and disregard
1025  *   any on-disk state which might include more refs.  So for example, if we
1026  *   have an extent with 2 references, but we only drop 1, we'll see that there
1027  *   is a negative delayed ref count for the extent and assume that the space
1028  *   will be freed, and thus increase ->total_bytes_pinned.
1029  *
1030  *   Running the delayed refs gives us the actual real view of what will be
1031  *   freed at the transaction commit time.  This stage will not actually free
1032  *   space for us, it just makes sure that may_commit_transaction() has all of
1033  *   the information it needs to make the right decision.
1034  *
1035  * COMMIT_TRANS
1036  *   This is where we reclaim all of the pinned space generated by the previous
1037  *   two stages.  We will not commit the transaction if we don't think we're
1038  *   likely to satisfy our request, which means if our current free space +
1039  *   total_bytes_pinned < reservation we will not commit.  This is why the
1040  *   previous states are actually important, to make sure we know for sure
1041  *   whether committing the transaction will allow us to make progress.
1042  *
1043  * ALLOC_CHUNK_FORCE
1044  *   For data we start with alloc chunk force, however we could have been full
1045  *   before, and then the transaction commit could have freed new block groups,
1046  *   so if we now have space to allocate do the force chunk allocation.
1047  */
1048 static const enum btrfs_flush_state data_flush_states[] = {
1049 	FLUSH_DELALLOC_WAIT,
1050 	RUN_DELAYED_IPUTS,
1051 	FLUSH_DELAYED_REFS,
1052 	COMMIT_TRANS,
1053 	ALLOC_CHUNK_FORCE,
1054 };
1055 
1056 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1057 {
1058 	struct btrfs_fs_info *fs_info;
1059 	struct btrfs_space_info *space_info;
1060 	u64 last_tickets_id;
1061 	int flush_state = 0;
1062 
1063 	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1064 	space_info = fs_info->data_sinfo;
1065 
1066 	spin_lock(&space_info->lock);
1067 	if (list_empty(&space_info->tickets)) {
1068 		space_info->flush = 0;
1069 		spin_unlock(&space_info->lock);
1070 		return;
1071 	}
1072 	last_tickets_id = space_info->tickets_id;
1073 	spin_unlock(&space_info->lock);
1074 
1075 	while (!space_info->full) {
1076 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1077 		spin_lock(&space_info->lock);
1078 		if (list_empty(&space_info->tickets)) {
1079 			space_info->flush = 0;
1080 			spin_unlock(&space_info->lock);
1081 			return;
1082 		}
1083 		last_tickets_id = space_info->tickets_id;
1084 		spin_unlock(&space_info->lock);
1085 	}
1086 
1087 	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1088 		flush_space(fs_info, space_info, U64_MAX,
1089 			    data_flush_states[flush_state]);
1090 		spin_lock(&space_info->lock);
1091 		if (list_empty(&space_info->tickets)) {
1092 			space_info->flush = 0;
1093 			spin_unlock(&space_info->lock);
1094 			return;
1095 		}
1096 
1097 		if (last_tickets_id == space_info->tickets_id) {
1098 			flush_state++;
1099 		} else {
1100 			last_tickets_id = space_info->tickets_id;
1101 			flush_state = 0;
1102 		}
1103 
1104 		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1105 			if (space_info->full) {
1106 				if (maybe_fail_all_tickets(fs_info, space_info))
1107 					flush_state = 0;
1108 				else
1109 					space_info->flush = 0;
1110 			} else {
1111 				flush_state = 0;
1112 			}
1113 		}
1114 		spin_unlock(&space_info->lock);
1115 	}
1116 }
1117 
1118 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1119 {
1120 	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1121 	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1122 }
1123 
1124 static const enum btrfs_flush_state priority_flush_states[] = {
1125 	FLUSH_DELAYED_ITEMS_NR,
1126 	FLUSH_DELAYED_ITEMS,
1127 	ALLOC_CHUNK,
1128 };
1129 
1130 static const enum btrfs_flush_state evict_flush_states[] = {
1131 	FLUSH_DELAYED_ITEMS_NR,
1132 	FLUSH_DELAYED_ITEMS,
1133 	FLUSH_DELAYED_REFS_NR,
1134 	FLUSH_DELAYED_REFS,
1135 	FLUSH_DELALLOC,
1136 	FLUSH_DELALLOC_WAIT,
1137 	ALLOC_CHUNK,
1138 	COMMIT_TRANS,
1139 };
1140 
1141 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1142 				struct btrfs_space_info *space_info,
1143 				struct reserve_ticket *ticket,
1144 				const enum btrfs_flush_state *states,
1145 				int states_nr)
1146 {
1147 	u64 to_reclaim;
1148 	int flush_state;
1149 
1150 	spin_lock(&space_info->lock);
1151 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1152 	if (!to_reclaim) {
1153 		spin_unlock(&space_info->lock);
1154 		return;
1155 	}
1156 	spin_unlock(&space_info->lock);
1157 
1158 	flush_state = 0;
1159 	do {
1160 		flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
1161 		flush_state++;
1162 		spin_lock(&space_info->lock);
1163 		if (ticket->bytes == 0) {
1164 			spin_unlock(&space_info->lock);
1165 			return;
1166 		}
1167 		spin_unlock(&space_info->lock);
1168 	} while (flush_state < states_nr);
1169 }
1170 
1171 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1172 					struct btrfs_space_info *space_info,
1173 					struct reserve_ticket *ticket)
1174 {
1175 	while (!space_info->full) {
1176 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1177 		spin_lock(&space_info->lock);
1178 		if (ticket->bytes == 0) {
1179 			spin_unlock(&space_info->lock);
1180 			return;
1181 		}
1182 		spin_unlock(&space_info->lock);
1183 	}
1184 }
1185 
1186 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1187 				struct btrfs_space_info *space_info,
1188 				struct reserve_ticket *ticket)
1189 
1190 {
1191 	DEFINE_WAIT(wait);
1192 	int ret = 0;
1193 
1194 	spin_lock(&space_info->lock);
1195 	while (ticket->bytes > 0 && ticket->error == 0) {
1196 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1197 		if (ret) {
1198 			/*
1199 			 * Delete us from the list. After we unlock the space
1200 			 * info, we don't want the async reclaim job to reserve
1201 			 * space for this ticket. If that would happen, then the
1202 			 * ticket's task would not known that space was reserved
1203 			 * despite getting an error, resulting in a space leak
1204 			 * (bytes_may_use counter of our space_info).
1205 			 */
1206 			remove_ticket(space_info, ticket);
1207 			ticket->error = -EINTR;
1208 			break;
1209 		}
1210 		spin_unlock(&space_info->lock);
1211 
1212 		schedule();
1213 
1214 		finish_wait(&ticket->wait, &wait);
1215 		spin_lock(&space_info->lock);
1216 	}
1217 	spin_unlock(&space_info->lock);
1218 }
1219 
1220 /**
1221  * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
1222  * @fs_info - the fs
1223  * @space_info - the space_info for the reservation
1224  * @ticket - the ticket for the reservation
1225  * @flush - how much we can flush
1226  *
1227  * This does the work of figuring out how to flush for the ticket, waiting for
1228  * the reservation, and returning the appropriate error if there is one.
1229  */
1230 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1231 				 struct btrfs_space_info *space_info,
1232 				 struct reserve_ticket *ticket,
1233 				 enum btrfs_reserve_flush_enum flush)
1234 {
1235 	int ret;
1236 
1237 	switch (flush) {
1238 	case BTRFS_RESERVE_FLUSH_DATA:
1239 	case BTRFS_RESERVE_FLUSH_ALL:
1240 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1241 		wait_reserve_ticket(fs_info, space_info, ticket);
1242 		break;
1243 	case BTRFS_RESERVE_FLUSH_LIMIT:
1244 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1245 						priority_flush_states,
1246 						ARRAY_SIZE(priority_flush_states));
1247 		break;
1248 	case BTRFS_RESERVE_FLUSH_EVICT:
1249 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1250 						evict_flush_states,
1251 						ARRAY_SIZE(evict_flush_states));
1252 		break;
1253 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1254 		priority_reclaim_data_space(fs_info, space_info, ticket);
1255 		break;
1256 	default:
1257 		ASSERT(0);
1258 		break;
1259 	}
1260 
1261 	spin_lock(&space_info->lock);
1262 	ret = ticket->error;
1263 	if (ticket->bytes || ticket->error) {
1264 		/*
1265 		 * We were a priority ticket, so we need to delete ourselves
1266 		 * from the list.  Because we could have other priority tickets
1267 		 * behind us that require less space, run
1268 		 * btrfs_try_granting_tickets() to see if their reservations can
1269 		 * now be made.
1270 		 */
1271 		if (!list_empty(&ticket->list)) {
1272 			remove_ticket(space_info, ticket);
1273 			btrfs_try_granting_tickets(fs_info, space_info);
1274 		}
1275 
1276 		if (!ret)
1277 			ret = -ENOSPC;
1278 	}
1279 	spin_unlock(&space_info->lock);
1280 	ASSERT(list_empty(&ticket->list));
1281 	/*
1282 	 * Check that we can't have an error set if the reservation succeeded,
1283 	 * as that would confuse tasks and lead them to error out without
1284 	 * releasing reserved space (if an error happens the expectation is that
1285 	 * space wasn't reserved at all).
1286 	 */
1287 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1288 	return ret;
1289 }
1290 
1291 /*
1292  * This returns true if this flush state will go through the ordinary flushing
1293  * code.
1294  */
1295 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1296 {
1297 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1298 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1299 }
1300 
1301 /**
1302  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1303  * @root - the root we're allocating for
1304  * @space_info - the space info we want to allocate from
1305  * @orig_bytes - the number of bytes we want
1306  * @flush - whether or not we can flush to make our reservation
1307  *
1308  * This will reserve orig_bytes number of bytes from the space info associated
1309  * with the block_rsv.  If there is not enough space it will make an attempt to
1310  * flush out space to make room.  It will do this by flushing delalloc if
1311  * possible or committing the transaction.  If flush is 0 then no attempts to
1312  * regain reservations will be made and this will fail if there is not enough
1313  * space already.
1314  */
1315 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1316 			   struct btrfs_space_info *space_info, u64 orig_bytes,
1317 			   enum btrfs_reserve_flush_enum flush)
1318 {
1319 	struct work_struct *async_work;
1320 	struct reserve_ticket ticket;
1321 	u64 used;
1322 	int ret = 0;
1323 	bool pending_tickets;
1324 
1325 	ASSERT(orig_bytes);
1326 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1327 
1328 	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1329 		async_work = &fs_info->async_data_reclaim_work;
1330 	else
1331 		async_work = &fs_info->async_reclaim_work;
1332 
1333 	spin_lock(&space_info->lock);
1334 	ret = -ENOSPC;
1335 	used = btrfs_space_info_used(space_info, true);
1336 
1337 	/*
1338 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1339 	 * generally handle ENOSPC in a different way, so treat them the same as
1340 	 * normal flushers when it comes to skipping pending tickets.
1341 	 */
1342 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1343 		pending_tickets = !list_empty(&space_info->tickets) ||
1344 			!list_empty(&space_info->priority_tickets);
1345 	else
1346 		pending_tickets = !list_empty(&space_info->priority_tickets);
1347 
1348 	/*
1349 	 * Carry on if we have enough space (short-circuit) OR call
1350 	 * can_overcommit() to ensure we can overcommit to continue.
1351 	 */
1352 	if (!pending_tickets &&
1353 	    ((used + orig_bytes <= space_info->total_bytes) ||
1354 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1355 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1356 						      orig_bytes);
1357 		ret = 0;
1358 	}
1359 
1360 	/*
1361 	 * If we couldn't make a reservation then setup our reservation ticket
1362 	 * and kick the async worker if it's not already running.
1363 	 *
1364 	 * If we are a priority flusher then we just need to add our ticket to
1365 	 * the list and we will do our own flushing further down.
1366 	 */
1367 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1368 		ticket.bytes = orig_bytes;
1369 		ticket.error = 0;
1370 		space_info->reclaim_size += ticket.bytes;
1371 		init_waitqueue_head(&ticket.wait);
1372 		ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1373 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1374 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1375 		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1376 			list_add_tail(&ticket.list, &space_info->tickets);
1377 			if (!space_info->flush) {
1378 				space_info->flush = 1;
1379 				trace_btrfs_trigger_flush(fs_info,
1380 							  space_info->flags,
1381 							  orig_bytes, flush,
1382 							  "enospc");
1383 				queue_work(system_unbound_wq, async_work);
1384 			}
1385 		} else {
1386 			list_add_tail(&ticket.list,
1387 				      &space_info->priority_tickets);
1388 		}
1389 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1390 		used += orig_bytes;
1391 		/*
1392 		 * We will do the space reservation dance during log replay,
1393 		 * which means we won't have fs_info->fs_root set, so don't do
1394 		 * the async reclaim as we will panic.
1395 		 */
1396 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1397 		    need_do_async_reclaim(fs_info, space_info, used) &&
1398 		    !work_busy(&fs_info->async_reclaim_work)) {
1399 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1400 						  orig_bytes, flush, "preempt");
1401 			queue_work(system_unbound_wq,
1402 				   &fs_info->async_reclaim_work);
1403 		}
1404 	}
1405 	spin_unlock(&space_info->lock);
1406 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1407 		return ret;
1408 
1409 	return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1410 }
1411 
1412 /**
1413  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1414  * @root - the root we're allocating for
1415  * @block_rsv - the block_rsv we're allocating for
1416  * @orig_bytes - the number of bytes we want
1417  * @flush - whether or not we can flush to make our reservation
1418  *
1419  * This will reserve orig_bytes number of bytes from the space info associated
1420  * with the block_rsv.  If there is not enough space it will make an attempt to
1421  * flush out space to make room.  It will do this by flushing delalloc if
1422  * possible or committing the transaction.  If flush is 0 then no attempts to
1423  * regain reservations will be made and this will fail if there is not enough
1424  * space already.
1425  */
1426 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1427 				 struct btrfs_block_rsv *block_rsv,
1428 				 u64 orig_bytes,
1429 				 enum btrfs_reserve_flush_enum flush)
1430 {
1431 	struct btrfs_fs_info *fs_info = root->fs_info;
1432 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1433 	int ret;
1434 
1435 	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1436 	if (ret == -ENOSPC &&
1437 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1438 		if (block_rsv != global_rsv &&
1439 		    !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1440 			ret = 0;
1441 	}
1442 	if (ret == -ENOSPC) {
1443 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1444 					      block_rsv->space_info->flags,
1445 					      orig_bytes, 1);
1446 
1447 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1448 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1449 					      orig_bytes, 0);
1450 	}
1451 	return ret;
1452 }
1453 
1454 /**
1455  * btrfs_reserve_data_bytes - try to reserve data bytes for an allocation
1456  * @fs_info - the filesystem
1457  * @bytes - the number of bytes we need
1458  * @flush - how we are allowed to flush
1459  *
1460  * This will reserve bytes from the data space info.  If there is not enough
1461  * space then we will attempt to flush space as specified by flush.
1462  */
1463 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1464 			     enum btrfs_reserve_flush_enum flush)
1465 {
1466 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1467 	int ret;
1468 
1469 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1470 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1471 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1472 
1473 	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1474 	if (ret == -ENOSPC) {
1475 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1476 					      data_sinfo->flags, bytes, 1);
1477 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1478 			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1479 	}
1480 	return ret;
1481 }
1482