xref: /openbmc/linux/fs/btrfs/space-info.c (revision 9f246926)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 
13 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
14 			  bool may_use_included)
15 {
16 	ASSERT(s_info);
17 	return s_info->bytes_used + s_info->bytes_reserved +
18 		s_info->bytes_pinned + s_info->bytes_readonly +
19 		(may_use_included ? s_info->bytes_may_use : 0);
20 }
21 
22 /*
23  * after adding space to the filesystem, we need to clear the full flags
24  * on all the space infos.
25  */
26 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
27 {
28 	struct list_head *head = &info->space_info;
29 	struct btrfs_space_info *found;
30 
31 	rcu_read_lock();
32 	list_for_each_entry_rcu(found, head, list)
33 		found->full = 0;
34 	rcu_read_unlock();
35 }
36 
37 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
38 {
39 
40 	struct btrfs_space_info *space_info;
41 	int i;
42 	int ret;
43 
44 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
45 	if (!space_info)
46 		return -ENOMEM;
47 
48 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
49 				 GFP_KERNEL);
50 	if (ret) {
51 		kfree(space_info);
52 		return ret;
53 	}
54 
55 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
56 		INIT_LIST_HEAD(&space_info->block_groups[i]);
57 	init_rwsem(&space_info->groups_sem);
58 	spin_lock_init(&space_info->lock);
59 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
60 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
61 	INIT_LIST_HEAD(&space_info->ro_bgs);
62 	INIT_LIST_HEAD(&space_info->tickets);
63 	INIT_LIST_HEAD(&space_info->priority_tickets);
64 
65 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
66 	if (ret)
67 		return ret;
68 
69 	list_add_rcu(&space_info->list, &info->space_info);
70 	if (flags & BTRFS_BLOCK_GROUP_DATA)
71 		info->data_sinfo = space_info;
72 
73 	return ret;
74 }
75 
76 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
77 {
78 	struct btrfs_super_block *disk_super;
79 	u64 features;
80 	u64 flags;
81 	int mixed = 0;
82 	int ret;
83 
84 	disk_super = fs_info->super_copy;
85 	if (!btrfs_super_root(disk_super))
86 		return -EINVAL;
87 
88 	features = btrfs_super_incompat_flags(disk_super);
89 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
90 		mixed = 1;
91 
92 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
93 	ret = create_space_info(fs_info, flags);
94 	if (ret)
95 		goto out;
96 
97 	if (mixed) {
98 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
99 		ret = create_space_info(fs_info, flags);
100 	} else {
101 		flags = BTRFS_BLOCK_GROUP_METADATA;
102 		ret = create_space_info(fs_info, flags);
103 		if (ret)
104 			goto out;
105 
106 		flags = BTRFS_BLOCK_GROUP_DATA;
107 		ret = create_space_info(fs_info, flags);
108 	}
109 out:
110 	return ret;
111 }
112 
113 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
114 			     u64 total_bytes, u64 bytes_used,
115 			     u64 bytes_readonly,
116 			     struct btrfs_space_info **space_info)
117 {
118 	struct btrfs_space_info *found;
119 	int factor;
120 
121 	factor = btrfs_bg_type_to_factor(flags);
122 
123 	found = btrfs_find_space_info(info, flags);
124 	ASSERT(found);
125 	spin_lock(&found->lock);
126 	found->total_bytes += total_bytes;
127 	found->disk_total += total_bytes * factor;
128 	found->bytes_used += bytes_used;
129 	found->disk_used += bytes_used * factor;
130 	found->bytes_readonly += bytes_readonly;
131 	if (total_bytes > 0)
132 		found->full = 0;
133 	btrfs_try_granting_tickets(info, found);
134 	spin_unlock(&found->lock);
135 	*space_info = found;
136 }
137 
138 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
139 					       u64 flags)
140 {
141 	struct list_head *head = &info->space_info;
142 	struct btrfs_space_info *found;
143 
144 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
145 
146 	rcu_read_lock();
147 	list_for_each_entry_rcu(found, head, list) {
148 		if (found->flags & flags) {
149 			rcu_read_unlock();
150 			return found;
151 		}
152 	}
153 	rcu_read_unlock();
154 	return NULL;
155 }
156 
157 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
158 {
159 	return (global->size << 1);
160 }
161 
162 static int can_overcommit(struct btrfs_fs_info *fs_info,
163 			  struct btrfs_space_info *space_info, u64 bytes,
164 			  enum btrfs_reserve_flush_enum flush)
165 {
166 	u64 profile;
167 	u64 avail;
168 	u64 used;
169 	int factor;
170 
171 	/* Don't overcommit when in mixed mode. */
172 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
173 		return 0;
174 
175 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
176 		profile = btrfs_system_alloc_profile(fs_info);
177 	else
178 		profile = btrfs_metadata_alloc_profile(fs_info);
179 
180 	used = btrfs_space_info_used(space_info, true);
181 	avail = atomic64_read(&fs_info->free_chunk_space);
182 
183 	/*
184 	 * If we have dup, raid1 or raid10 then only half of the free
185 	 * space is actually usable.  For raid56, the space info used
186 	 * doesn't include the parity drive, so we don't have to
187 	 * change the math
188 	 */
189 	factor = btrfs_bg_type_to_factor(profile);
190 	avail = div_u64(avail, factor);
191 
192 	/*
193 	 * If we aren't flushing all things, let us overcommit up to
194 	 * 1/2th of the space. If we can flush, don't let us overcommit
195 	 * too much, let it overcommit up to 1/8 of the space.
196 	 */
197 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
198 		avail >>= 3;
199 	else
200 		avail >>= 1;
201 
202 	if (used + bytes < space_info->total_bytes + avail)
203 		return 1;
204 	return 0;
205 }
206 
207 /*
208  * This is for space we already have accounted in space_info->bytes_may_use, so
209  * basically when we're returning space from block_rsv's.
210  */
211 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
212 				struct btrfs_space_info *space_info)
213 {
214 	struct list_head *head;
215 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
216 
217 	lockdep_assert_held(&space_info->lock);
218 
219 	head = &space_info->priority_tickets;
220 again:
221 	while (!list_empty(head)) {
222 		struct reserve_ticket *ticket;
223 		u64 used = btrfs_space_info_used(space_info, true);
224 
225 		ticket = list_first_entry(head, struct reserve_ticket, list);
226 
227 		/* Check and see if our ticket can be satisified now. */
228 		if ((used + ticket->bytes <= space_info->total_bytes) ||
229 		    can_overcommit(fs_info, space_info, ticket->bytes, flush)) {
230 			btrfs_space_info_update_bytes_may_use(fs_info,
231 							      space_info,
232 							      ticket->bytes);
233 			list_del_init(&ticket->list);
234 			ticket->bytes = 0;
235 			space_info->tickets_id++;
236 			wake_up(&ticket->wait);
237 		} else {
238 			break;
239 		}
240 	}
241 
242 	if (head == &space_info->priority_tickets) {
243 		head = &space_info->tickets;
244 		flush = BTRFS_RESERVE_FLUSH_ALL;
245 		goto again;
246 	}
247 }
248 
249 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
250 do {									\
251 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
252 	spin_lock(&__rsv->lock);					\
253 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
254 		   __rsv->size, __rsv->reserved);			\
255 	spin_unlock(&__rsv->lock);					\
256 } while (0)
257 
258 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
259 				    struct btrfs_space_info *info)
260 {
261 	lockdep_assert_held(&info->lock);
262 
263 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
264 		   info->flags,
265 		   info->total_bytes - btrfs_space_info_used(info, true),
266 		   info->full ? "" : "not ");
267 	btrfs_info(fs_info,
268 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
269 		info->total_bytes, info->bytes_used, info->bytes_pinned,
270 		info->bytes_reserved, info->bytes_may_use,
271 		info->bytes_readonly);
272 
273 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
274 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
275 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
276 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
277 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
278 
279 }
280 
281 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
282 			   struct btrfs_space_info *info, u64 bytes,
283 			   int dump_block_groups)
284 {
285 	struct btrfs_block_group *cache;
286 	int index = 0;
287 
288 	spin_lock(&info->lock);
289 	__btrfs_dump_space_info(fs_info, info);
290 	spin_unlock(&info->lock);
291 
292 	if (!dump_block_groups)
293 		return;
294 
295 	down_read(&info->groups_sem);
296 again:
297 	list_for_each_entry(cache, &info->block_groups[index], list) {
298 		spin_lock(&cache->lock);
299 		btrfs_info(fs_info,
300 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
301 			cache->start, cache->length, cache->used, cache->pinned,
302 			cache->reserved, cache->ro ? "[readonly]" : "");
303 		btrfs_dump_free_space(cache, bytes);
304 		spin_unlock(&cache->lock);
305 	}
306 	if (++index < BTRFS_NR_RAID_TYPES)
307 		goto again;
308 	up_read(&info->groups_sem);
309 }
310 
311 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
312 					 unsigned long nr_pages, int nr_items)
313 {
314 	struct super_block *sb = fs_info->sb;
315 
316 	if (down_read_trylock(&sb->s_umount)) {
317 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
318 		up_read(&sb->s_umount);
319 	} else {
320 		/*
321 		 * We needn't worry the filesystem going from r/w to r/o though
322 		 * we don't acquire ->s_umount mutex, because the filesystem
323 		 * should guarantee the delalloc inodes list be empty after
324 		 * the filesystem is readonly(all dirty pages are written to
325 		 * the disk).
326 		 */
327 		btrfs_start_delalloc_roots(fs_info, nr_items);
328 		if (!current->journal_info)
329 			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
330 	}
331 }
332 
333 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
334 					u64 to_reclaim)
335 {
336 	u64 bytes;
337 	u64 nr;
338 
339 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
340 	nr = div64_u64(to_reclaim, bytes);
341 	if (!nr)
342 		nr = 1;
343 	return nr;
344 }
345 
346 #define EXTENT_SIZE_PER_ITEM	SZ_256K
347 
348 /*
349  * shrink metadata reservation for delalloc
350  */
351 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
352 			    u64 orig, bool wait_ordered)
353 {
354 	struct btrfs_space_info *space_info;
355 	struct btrfs_trans_handle *trans;
356 	u64 delalloc_bytes;
357 	u64 dio_bytes;
358 	u64 async_pages;
359 	u64 items;
360 	long time_left;
361 	unsigned long nr_pages;
362 	int loops;
363 
364 	/* Calc the number of the pages we need flush for space reservation */
365 	items = calc_reclaim_items_nr(fs_info, to_reclaim);
366 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
367 
368 	trans = (struct btrfs_trans_handle *)current->journal_info;
369 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
370 
371 	delalloc_bytes = percpu_counter_sum_positive(
372 						&fs_info->delalloc_bytes);
373 	dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
374 	if (delalloc_bytes == 0 && dio_bytes == 0) {
375 		if (trans)
376 			return;
377 		if (wait_ordered)
378 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
379 		return;
380 	}
381 
382 	/*
383 	 * If we are doing more ordered than delalloc we need to just wait on
384 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
385 	 * that likely won't give us the space back we need.
386 	 */
387 	if (dio_bytes > delalloc_bytes)
388 		wait_ordered = true;
389 
390 	loops = 0;
391 	while ((delalloc_bytes || dio_bytes) && loops < 3) {
392 		nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
393 
394 		/*
395 		 * Triggers inode writeback for up to nr_pages. This will invoke
396 		 * ->writepages callback and trigger delalloc filling
397 		 *  (btrfs_run_delalloc_range()).
398 		 */
399 		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
400 
401 		/*
402 		 * We need to wait for the compressed pages to start before
403 		 * we continue.
404 		 */
405 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
406 		if (!async_pages)
407 			goto skip_async;
408 
409 		/*
410 		 * Calculate how many compressed pages we want to be written
411 		 * before we continue. I.e if there are more async pages than we
412 		 * require wait_event will wait until nr_pages are written.
413 		 */
414 		if (async_pages <= nr_pages)
415 			async_pages = 0;
416 		else
417 			async_pages -= nr_pages;
418 
419 		wait_event(fs_info->async_submit_wait,
420 			   atomic_read(&fs_info->async_delalloc_pages) <=
421 			   (int)async_pages);
422 skip_async:
423 		spin_lock(&space_info->lock);
424 		if (list_empty(&space_info->tickets) &&
425 		    list_empty(&space_info->priority_tickets)) {
426 			spin_unlock(&space_info->lock);
427 			break;
428 		}
429 		spin_unlock(&space_info->lock);
430 
431 		loops++;
432 		if (wait_ordered && !trans) {
433 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
434 		} else {
435 			time_left = schedule_timeout_killable(1);
436 			if (time_left)
437 				break;
438 		}
439 		delalloc_bytes = percpu_counter_sum_positive(
440 						&fs_info->delalloc_bytes);
441 		dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
442 	}
443 }
444 
445 /**
446  * maybe_commit_transaction - possibly commit the transaction if its ok to
447  * @root - the root we're allocating for
448  * @bytes - the number of bytes we want to reserve
449  * @force - force the commit
450  *
451  * This will check to make sure that committing the transaction will actually
452  * get us somewhere and then commit the transaction if it does.  Otherwise it
453  * will return -ENOSPC.
454  */
455 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
456 				  struct btrfs_space_info *space_info)
457 {
458 	struct reserve_ticket *ticket = NULL;
459 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
460 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
461 	struct btrfs_trans_handle *trans;
462 	u64 bytes_needed;
463 	u64 reclaim_bytes = 0;
464 	u64 cur_free_bytes = 0;
465 
466 	trans = (struct btrfs_trans_handle *)current->journal_info;
467 	if (trans)
468 		return -EAGAIN;
469 
470 	spin_lock(&space_info->lock);
471 	cur_free_bytes = btrfs_space_info_used(space_info, true);
472 	if (cur_free_bytes < space_info->total_bytes)
473 		cur_free_bytes = space_info->total_bytes - cur_free_bytes;
474 	else
475 		cur_free_bytes = 0;
476 
477 	if (!list_empty(&space_info->priority_tickets))
478 		ticket = list_first_entry(&space_info->priority_tickets,
479 					  struct reserve_ticket, list);
480 	else if (!list_empty(&space_info->tickets))
481 		ticket = list_first_entry(&space_info->tickets,
482 					  struct reserve_ticket, list);
483 	bytes_needed = (ticket) ? ticket->bytes : 0;
484 
485 	if (bytes_needed > cur_free_bytes)
486 		bytes_needed -= cur_free_bytes;
487 	else
488 		bytes_needed = 0;
489 	spin_unlock(&space_info->lock);
490 
491 	if (!bytes_needed)
492 		return 0;
493 
494 	trans = btrfs_join_transaction(fs_info->extent_root);
495 	if (IS_ERR(trans))
496 		return PTR_ERR(trans);
497 
498 	/*
499 	 * See if there is enough pinned space to make this reservation, or if
500 	 * we have block groups that are going to be freed, allowing us to
501 	 * possibly do a chunk allocation the next loop through.
502 	 */
503 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
504 	    __percpu_counter_compare(&space_info->total_bytes_pinned,
505 				     bytes_needed,
506 				     BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
507 		goto commit;
508 
509 	/*
510 	 * See if there is some space in the delayed insertion reservation for
511 	 * this reservation.
512 	 */
513 	if (space_info != delayed_rsv->space_info)
514 		goto enospc;
515 
516 	spin_lock(&delayed_rsv->lock);
517 	reclaim_bytes += delayed_rsv->reserved;
518 	spin_unlock(&delayed_rsv->lock);
519 
520 	spin_lock(&delayed_refs_rsv->lock);
521 	reclaim_bytes += delayed_refs_rsv->reserved;
522 	spin_unlock(&delayed_refs_rsv->lock);
523 	if (reclaim_bytes >= bytes_needed)
524 		goto commit;
525 	bytes_needed -= reclaim_bytes;
526 
527 	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
528 				   bytes_needed,
529 				   BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
530 		goto enospc;
531 
532 commit:
533 	return btrfs_commit_transaction(trans);
534 enospc:
535 	btrfs_end_transaction(trans);
536 	return -ENOSPC;
537 }
538 
539 /*
540  * Try to flush some data based on policy set by @state. This is only advisory
541  * and may fail for various reasons. The caller is supposed to examine the
542  * state of @space_info to detect the outcome.
543  */
544 static void flush_space(struct btrfs_fs_info *fs_info,
545 		       struct btrfs_space_info *space_info, u64 num_bytes,
546 		       int state)
547 {
548 	struct btrfs_root *root = fs_info->extent_root;
549 	struct btrfs_trans_handle *trans;
550 	int nr;
551 	int ret = 0;
552 
553 	switch (state) {
554 	case FLUSH_DELAYED_ITEMS_NR:
555 	case FLUSH_DELAYED_ITEMS:
556 		if (state == FLUSH_DELAYED_ITEMS_NR)
557 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
558 		else
559 			nr = -1;
560 
561 		trans = btrfs_join_transaction(root);
562 		if (IS_ERR(trans)) {
563 			ret = PTR_ERR(trans);
564 			break;
565 		}
566 		ret = btrfs_run_delayed_items_nr(trans, nr);
567 		btrfs_end_transaction(trans);
568 		break;
569 	case FLUSH_DELALLOC:
570 	case FLUSH_DELALLOC_WAIT:
571 		shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
572 				state == FLUSH_DELALLOC_WAIT);
573 		break;
574 	case FLUSH_DELAYED_REFS_NR:
575 	case FLUSH_DELAYED_REFS:
576 		trans = btrfs_join_transaction(root);
577 		if (IS_ERR(trans)) {
578 			ret = PTR_ERR(trans);
579 			break;
580 		}
581 		if (state == FLUSH_DELAYED_REFS_NR)
582 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
583 		else
584 			nr = 0;
585 		btrfs_run_delayed_refs(trans, nr);
586 		btrfs_end_transaction(trans);
587 		break;
588 	case ALLOC_CHUNK:
589 	case ALLOC_CHUNK_FORCE:
590 		trans = btrfs_join_transaction(root);
591 		if (IS_ERR(trans)) {
592 			ret = PTR_ERR(trans);
593 			break;
594 		}
595 		ret = btrfs_chunk_alloc(trans,
596 				btrfs_metadata_alloc_profile(fs_info),
597 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
598 					CHUNK_ALLOC_FORCE);
599 		btrfs_end_transaction(trans);
600 		if (ret > 0 || ret == -ENOSPC)
601 			ret = 0;
602 		break;
603 	case RUN_DELAYED_IPUTS:
604 		/*
605 		 * If we have pending delayed iputs then we could free up a
606 		 * bunch of pinned space, so make sure we run the iputs before
607 		 * we do our pinned bytes check below.
608 		 */
609 		btrfs_run_delayed_iputs(fs_info);
610 		btrfs_wait_on_delayed_iputs(fs_info);
611 		break;
612 	case COMMIT_TRANS:
613 		ret = may_commit_transaction(fs_info, space_info);
614 		break;
615 	default:
616 		ret = -ENOSPC;
617 		break;
618 	}
619 
620 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
621 				ret);
622 	return;
623 }
624 
625 static inline u64
626 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
627 				 struct btrfs_space_info *space_info)
628 {
629 	struct reserve_ticket *ticket;
630 	u64 used;
631 	u64 expected;
632 	u64 to_reclaim = 0;
633 
634 	list_for_each_entry(ticket, &space_info->tickets, list)
635 		to_reclaim += ticket->bytes;
636 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
637 		to_reclaim += ticket->bytes;
638 	if (to_reclaim)
639 		return to_reclaim;
640 
641 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
642 	if (can_overcommit(fs_info, space_info, to_reclaim,
643 			   BTRFS_RESERVE_FLUSH_ALL))
644 		return 0;
645 
646 	used = btrfs_space_info_used(space_info, true);
647 
648 	if (can_overcommit(fs_info, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
649 		expected = div_factor_fine(space_info->total_bytes, 95);
650 	else
651 		expected = div_factor_fine(space_info->total_bytes, 90);
652 
653 	if (used > expected)
654 		to_reclaim = used - expected;
655 	else
656 		to_reclaim = 0;
657 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
658 				     space_info->bytes_reserved);
659 	return to_reclaim;
660 }
661 
662 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
663 					struct btrfs_space_info *space_info,
664 					u64 used)
665 {
666 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
667 
668 	/* If we're just plain full then async reclaim just slows us down. */
669 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
670 		return 0;
671 
672 	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
673 		return 0;
674 
675 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
676 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
677 }
678 
679 /*
680  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
681  * @fs_info - fs_info for this fs
682  * @space_info - the space info we were flushing
683  *
684  * We call this when we've exhausted our flushing ability and haven't made
685  * progress in satisfying tickets.  The reservation code handles tickets in
686  * order, so if there is a large ticket first and then smaller ones we could
687  * very well satisfy the smaller tickets.  This will attempt to wake up any
688  * tickets in the list to catch this case.
689  *
690  * This function returns true if it was able to make progress by clearing out
691  * other tickets, or if it stumbles across a ticket that was smaller than the
692  * first ticket.
693  */
694 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
695 				   struct btrfs_space_info *space_info)
696 {
697 	struct reserve_ticket *ticket;
698 	u64 tickets_id = space_info->tickets_id;
699 	u64 first_ticket_bytes = 0;
700 
701 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
702 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
703 		__btrfs_dump_space_info(fs_info, space_info);
704 	}
705 
706 	while (!list_empty(&space_info->tickets) &&
707 	       tickets_id == space_info->tickets_id) {
708 		ticket = list_first_entry(&space_info->tickets,
709 					  struct reserve_ticket, list);
710 
711 		/*
712 		 * may_commit_transaction will avoid committing the transaction
713 		 * if it doesn't feel like the space reclaimed by the commit
714 		 * would result in the ticket succeeding.  However if we have a
715 		 * smaller ticket in the queue it may be small enough to be
716 		 * satisified by committing the transaction, so if any
717 		 * subsequent ticket is smaller than the first ticket go ahead
718 		 * and send us back for another loop through the enospc flushing
719 		 * code.
720 		 */
721 		if (first_ticket_bytes == 0)
722 			first_ticket_bytes = ticket->bytes;
723 		else if (first_ticket_bytes > ticket->bytes)
724 			return true;
725 
726 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
727 			btrfs_info(fs_info, "failing ticket with %llu bytes",
728 				   ticket->bytes);
729 
730 		list_del_init(&ticket->list);
731 		ticket->error = -ENOSPC;
732 		wake_up(&ticket->wait);
733 
734 		/*
735 		 * We're just throwing tickets away, so more flushing may not
736 		 * trip over btrfs_try_granting_tickets, so we need to call it
737 		 * here to see if we can make progress with the next ticket in
738 		 * the list.
739 		 */
740 		btrfs_try_granting_tickets(fs_info, space_info);
741 	}
742 	return (tickets_id != space_info->tickets_id);
743 }
744 
745 /*
746  * This is for normal flushers, we can wait all goddamned day if we want to.  We
747  * will loop and continuously try to flush as long as we are making progress.
748  * We count progress as clearing off tickets each time we have to loop.
749  */
750 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
751 {
752 	struct btrfs_fs_info *fs_info;
753 	struct btrfs_space_info *space_info;
754 	u64 to_reclaim;
755 	int flush_state;
756 	int commit_cycles = 0;
757 	u64 last_tickets_id;
758 
759 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
760 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
761 
762 	spin_lock(&space_info->lock);
763 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
764 	if (!to_reclaim) {
765 		space_info->flush = 0;
766 		spin_unlock(&space_info->lock);
767 		return;
768 	}
769 	last_tickets_id = space_info->tickets_id;
770 	spin_unlock(&space_info->lock);
771 
772 	flush_state = FLUSH_DELAYED_ITEMS_NR;
773 	do {
774 		flush_space(fs_info, space_info, to_reclaim, flush_state);
775 		spin_lock(&space_info->lock);
776 		if (list_empty(&space_info->tickets)) {
777 			space_info->flush = 0;
778 			spin_unlock(&space_info->lock);
779 			return;
780 		}
781 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
782 							      space_info);
783 		if (last_tickets_id == space_info->tickets_id) {
784 			flush_state++;
785 		} else {
786 			last_tickets_id = space_info->tickets_id;
787 			flush_state = FLUSH_DELAYED_ITEMS_NR;
788 			if (commit_cycles)
789 				commit_cycles--;
790 		}
791 
792 		/*
793 		 * We don't want to force a chunk allocation until we've tried
794 		 * pretty hard to reclaim space.  Think of the case where we
795 		 * freed up a bunch of space and so have a lot of pinned space
796 		 * to reclaim.  We would rather use that than possibly create a
797 		 * underutilized metadata chunk.  So if this is our first run
798 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
799 		 * commit the transaction.  If nothing has changed the next go
800 		 * around then we can force a chunk allocation.
801 		 */
802 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
803 			flush_state++;
804 
805 		if (flush_state > COMMIT_TRANS) {
806 			commit_cycles++;
807 			if (commit_cycles > 2) {
808 				if (maybe_fail_all_tickets(fs_info, space_info)) {
809 					flush_state = FLUSH_DELAYED_ITEMS_NR;
810 					commit_cycles--;
811 				} else {
812 					space_info->flush = 0;
813 				}
814 			} else {
815 				flush_state = FLUSH_DELAYED_ITEMS_NR;
816 			}
817 		}
818 		spin_unlock(&space_info->lock);
819 	} while (flush_state <= COMMIT_TRANS);
820 }
821 
822 void btrfs_init_async_reclaim_work(struct work_struct *work)
823 {
824 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
825 }
826 
827 static const enum btrfs_flush_state priority_flush_states[] = {
828 	FLUSH_DELAYED_ITEMS_NR,
829 	FLUSH_DELAYED_ITEMS,
830 	ALLOC_CHUNK,
831 };
832 
833 static const enum btrfs_flush_state evict_flush_states[] = {
834 	FLUSH_DELAYED_ITEMS_NR,
835 	FLUSH_DELAYED_ITEMS,
836 	FLUSH_DELAYED_REFS_NR,
837 	FLUSH_DELAYED_REFS,
838 	FLUSH_DELALLOC,
839 	FLUSH_DELALLOC_WAIT,
840 	ALLOC_CHUNK,
841 	COMMIT_TRANS,
842 };
843 
844 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
845 				struct btrfs_space_info *space_info,
846 				struct reserve_ticket *ticket,
847 				const enum btrfs_flush_state *states,
848 				int states_nr)
849 {
850 	u64 to_reclaim;
851 	int flush_state;
852 
853 	spin_lock(&space_info->lock);
854 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
855 	if (!to_reclaim) {
856 		spin_unlock(&space_info->lock);
857 		return;
858 	}
859 	spin_unlock(&space_info->lock);
860 
861 	flush_state = 0;
862 	do {
863 		flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
864 		flush_state++;
865 		spin_lock(&space_info->lock);
866 		if (ticket->bytes == 0) {
867 			spin_unlock(&space_info->lock);
868 			return;
869 		}
870 		spin_unlock(&space_info->lock);
871 	} while (flush_state < states_nr);
872 }
873 
874 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
875 				struct btrfs_space_info *space_info,
876 				struct reserve_ticket *ticket)
877 
878 {
879 	DEFINE_WAIT(wait);
880 	int ret = 0;
881 
882 	spin_lock(&space_info->lock);
883 	while (ticket->bytes > 0 && ticket->error == 0) {
884 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
885 		if (ret) {
886 			/*
887 			 * Delete us from the list. After we unlock the space
888 			 * info, we don't want the async reclaim job to reserve
889 			 * space for this ticket. If that would happen, then the
890 			 * ticket's task would not known that space was reserved
891 			 * despite getting an error, resulting in a space leak
892 			 * (bytes_may_use counter of our space_info).
893 			 */
894 			list_del_init(&ticket->list);
895 			ticket->error = -EINTR;
896 			break;
897 		}
898 		spin_unlock(&space_info->lock);
899 
900 		schedule();
901 
902 		finish_wait(&ticket->wait, &wait);
903 		spin_lock(&space_info->lock);
904 	}
905 	spin_unlock(&space_info->lock);
906 }
907 
908 /**
909  * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
910  * @fs_info - the fs
911  * @space_info - the space_info for the reservation
912  * @ticket - the ticket for the reservation
913  * @flush - how much we can flush
914  *
915  * This does the work of figuring out how to flush for the ticket, waiting for
916  * the reservation, and returning the appropriate error if there is one.
917  */
918 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
919 				 struct btrfs_space_info *space_info,
920 				 struct reserve_ticket *ticket,
921 				 enum btrfs_reserve_flush_enum flush)
922 {
923 	int ret;
924 
925 	switch (flush) {
926 	case BTRFS_RESERVE_FLUSH_ALL:
927 		wait_reserve_ticket(fs_info, space_info, ticket);
928 		break;
929 	case BTRFS_RESERVE_FLUSH_LIMIT:
930 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
931 						priority_flush_states,
932 						ARRAY_SIZE(priority_flush_states));
933 		break;
934 	case BTRFS_RESERVE_FLUSH_EVICT:
935 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
936 						evict_flush_states,
937 						ARRAY_SIZE(evict_flush_states));
938 		break;
939 	default:
940 		ASSERT(0);
941 		break;
942 	}
943 
944 	spin_lock(&space_info->lock);
945 	ret = ticket->error;
946 	if (ticket->bytes || ticket->error) {
947 		/*
948 		 * Need to delete here for priority tickets. For regular tickets
949 		 * either the async reclaim job deletes the ticket from the list
950 		 * or we delete it ourselves at wait_reserve_ticket().
951 		 */
952 		list_del_init(&ticket->list);
953 		if (!ret)
954 			ret = -ENOSPC;
955 	}
956 	spin_unlock(&space_info->lock);
957 	ASSERT(list_empty(&ticket->list));
958 	/*
959 	 * Check that we can't have an error set if the reservation succeeded,
960 	 * as that would confuse tasks and lead them to error out without
961 	 * releasing reserved space (if an error happens the expectation is that
962 	 * space wasn't reserved at all).
963 	 */
964 	ASSERT(!(ticket->bytes == 0 && ticket->error));
965 	return ret;
966 }
967 
968 /**
969  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
970  * @root - the root we're allocating for
971  * @space_info - the space info we want to allocate from
972  * @orig_bytes - the number of bytes we want
973  * @flush - whether or not we can flush to make our reservation
974  *
975  * This will reserve orig_bytes number of bytes from the space info associated
976  * with the block_rsv.  If there is not enough space it will make an attempt to
977  * flush out space to make room.  It will do this by flushing delalloc if
978  * possible or committing the transaction.  If flush is 0 then no attempts to
979  * regain reservations will be made and this will fail if there is not enough
980  * space already.
981  */
982 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
983 				    struct btrfs_space_info *space_info,
984 				    u64 orig_bytes,
985 				    enum btrfs_reserve_flush_enum flush)
986 {
987 	struct reserve_ticket ticket;
988 	u64 used;
989 	int ret = 0;
990 	bool pending_tickets;
991 
992 	ASSERT(orig_bytes);
993 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
994 
995 	spin_lock(&space_info->lock);
996 	ret = -ENOSPC;
997 	used = btrfs_space_info_used(space_info, true);
998 	pending_tickets = !list_empty(&space_info->tickets) ||
999 		!list_empty(&space_info->priority_tickets);
1000 
1001 	/*
1002 	 * Carry on if we have enough space (short-circuit) OR call
1003 	 * can_overcommit() to ensure we can overcommit to continue.
1004 	 */
1005 	if (!pending_tickets &&
1006 	    ((used + orig_bytes <= space_info->total_bytes) ||
1007 	     can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1008 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1009 						      orig_bytes);
1010 		ret = 0;
1011 	}
1012 
1013 	/*
1014 	 * If we couldn't make a reservation then setup our reservation ticket
1015 	 * and kick the async worker if it's not already running.
1016 	 *
1017 	 * If we are a priority flusher then we just need to add our ticket to
1018 	 * the list and we will do our own flushing further down.
1019 	 */
1020 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1021 		ticket.bytes = orig_bytes;
1022 		ticket.error = 0;
1023 		init_waitqueue_head(&ticket.wait);
1024 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
1025 			list_add_tail(&ticket.list, &space_info->tickets);
1026 			if (!space_info->flush) {
1027 				space_info->flush = 1;
1028 				trace_btrfs_trigger_flush(fs_info,
1029 							  space_info->flags,
1030 							  orig_bytes, flush,
1031 							  "enospc");
1032 				queue_work(system_unbound_wq,
1033 					   &fs_info->async_reclaim_work);
1034 			}
1035 		} else {
1036 			list_add_tail(&ticket.list,
1037 				      &space_info->priority_tickets);
1038 		}
1039 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1040 		used += orig_bytes;
1041 		/*
1042 		 * We will do the space reservation dance during log replay,
1043 		 * which means we won't have fs_info->fs_root set, so don't do
1044 		 * the async reclaim as we will panic.
1045 		 */
1046 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1047 		    need_do_async_reclaim(fs_info, space_info, used) &&
1048 		    !work_busy(&fs_info->async_reclaim_work)) {
1049 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1050 						  orig_bytes, flush, "preempt");
1051 			queue_work(system_unbound_wq,
1052 				   &fs_info->async_reclaim_work);
1053 		}
1054 	}
1055 	spin_unlock(&space_info->lock);
1056 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1057 		return ret;
1058 
1059 	return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1060 }
1061 
1062 /**
1063  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1064  * @root - the root we're allocating for
1065  * @block_rsv - the block_rsv we're allocating for
1066  * @orig_bytes - the number of bytes we want
1067  * @flush - whether or not we can flush to make our reservation
1068  *
1069  * This will reserve orig_bytes number of bytes from the space info associated
1070  * with the block_rsv.  If there is not enough space it will make an attempt to
1071  * flush out space to make room.  It will do this by flushing delalloc if
1072  * possible or committing the transaction.  If flush is 0 then no attempts to
1073  * regain reservations will be made and this will fail if there is not enough
1074  * space already.
1075  */
1076 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1077 				 struct btrfs_block_rsv *block_rsv,
1078 				 u64 orig_bytes,
1079 				 enum btrfs_reserve_flush_enum flush)
1080 {
1081 	struct btrfs_fs_info *fs_info = root->fs_info;
1082 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1083 	int ret;
1084 
1085 	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
1086 				       orig_bytes, flush);
1087 	if (ret == -ENOSPC &&
1088 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1089 		if (block_rsv != global_rsv &&
1090 		    !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1091 			ret = 0;
1092 	}
1093 	if (ret == -ENOSPC) {
1094 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1095 					      block_rsv->space_info->flags,
1096 					      orig_bytes, 1);
1097 
1098 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1099 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1100 					      orig_bytes, 0);
1101 	}
1102 	return ret;
1103 }
1104