xref: /openbmc/linux/fs/btrfs/space-info.c (revision 9d0d47d5)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 #include "zoned.h"
13 #include "fs.h"
14 #include "accessors.h"
15 #include "extent-tree.h"
16 
17 /*
18  * HOW DOES SPACE RESERVATION WORK
19  *
20  * If you want to know about delalloc specifically, there is a separate comment
21  * for that with the delalloc code.  This comment is about how the whole system
22  * works generally.
23  *
24  * BASIC CONCEPTS
25  *
26  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
27  *   There's a description of the bytes_ fields with the struct declaration,
28  *   refer to that for specifics on each field.  Suffice it to say that for
29  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
30  *   determining if there is space to make an allocation.  There is a space_info
31  *   for METADATA, SYSTEM, and DATA areas.
32  *
33  *   2) block_rsv's.  These are basically buckets for every different type of
34  *   metadata reservation we have.  You can see the comment in the block_rsv
35  *   code on the rules for each type, but generally block_rsv->reserved is how
36  *   much space is accounted for in space_info->bytes_may_use.
37  *
38  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
39  *   on the number of items we will want to modify.  We have one for changing
40  *   items, and one for inserting new items.  Generally we use these helpers to
41  *   determine the size of the block reserves, and then use the actual bytes
42  *   values to adjust the space_info counters.
43  *
44  * MAKING RESERVATIONS, THE NORMAL CASE
45  *
46  *   We call into either btrfs_reserve_data_bytes() or
47  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
48  *   num_bytes we want to reserve.
49  *
50  *   ->reserve
51  *     space_info->bytes_may_reserve += num_bytes
52  *
53  *   ->extent allocation
54  *     Call btrfs_add_reserved_bytes() which does
55  *     space_info->bytes_may_reserve -= num_bytes
56  *     space_info->bytes_reserved += extent_bytes
57  *
58  *   ->insert reference
59  *     Call btrfs_update_block_group() which does
60  *     space_info->bytes_reserved -= extent_bytes
61  *     space_info->bytes_used += extent_bytes
62  *
63  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
64  *
65  *   Assume we are unable to simply make the reservation because we do not have
66  *   enough space
67  *
68  *   -> __reserve_bytes
69  *     create a reserve_ticket with ->bytes set to our reservation, add it to
70  *     the tail of space_info->tickets, kick async flush thread
71  *
72  *   ->handle_reserve_ticket
73  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
74  *     on the ticket.
75  *
76  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
77  *     Flushes various things attempting to free up space.
78  *
79  *   -> btrfs_try_granting_tickets()
80  *     This is called by anything that either subtracts space from
81  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
82  *     space_info->total_bytes.  This loops through the ->priority_tickets and
83  *     then the ->tickets list checking to see if the reservation can be
84  *     completed.  If it can the space is added to space_info->bytes_may_use and
85  *     the ticket is woken up.
86  *
87  *   -> ticket wakeup
88  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
89  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
90  *     were interrupted.)
91  *
92  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
93  *
94  *   Same as the above, except we add ourselves to the
95  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
96  *   call flush_space() ourselves for the states that are safe for us to call
97  *   without deadlocking and hope for the best.
98  *
99  * THE FLUSHING STATES
100  *
101  *   Generally speaking we will have two cases for each state, a "nice" state
102  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
103  *   reduce the locking over head on the various trees, and even to keep from
104  *   doing any work at all in the case of delayed refs.  Each of these delayed
105  *   things however hold reservations, and so letting them run allows us to
106  *   reclaim space so we can make new reservations.
107  *
108  *   FLUSH_DELAYED_ITEMS
109  *     Every inode has a delayed item to update the inode.  Take a simple write
110  *     for example, we would update the inode item at write time to update the
111  *     mtime, and then again at finish_ordered_io() time in order to update the
112  *     isize or bytes.  We keep these delayed items to coalesce these operations
113  *     into a single operation done on demand.  These are an easy way to reclaim
114  *     metadata space.
115  *
116  *   FLUSH_DELALLOC
117  *     Look at the delalloc comment to get an idea of how much space is reserved
118  *     for delayed allocation.  We can reclaim some of this space simply by
119  *     running delalloc, but usually we need to wait for ordered extents to
120  *     reclaim the bulk of this space.
121  *
122  *   FLUSH_DELAYED_REFS
123  *     We have a block reserve for the outstanding delayed refs space, and every
124  *     delayed ref operation holds a reservation.  Running these is a quick way
125  *     to reclaim space, but we want to hold this until the end because COW can
126  *     churn a lot and we can avoid making some extent tree modifications if we
127  *     are able to delay for as long as possible.
128  *
129  *   ALLOC_CHUNK
130  *     We will skip this the first time through space reservation, because of
131  *     overcommit and we don't want to have a lot of useless metadata space when
132  *     our worst case reservations will likely never come true.
133  *
134  *   RUN_DELAYED_IPUTS
135  *     If we're freeing inodes we're likely freeing checksums, file extent
136  *     items, and extent tree items.  Loads of space could be freed up by these
137  *     operations, however they won't be usable until the transaction commits.
138  *
139  *   COMMIT_TRANS
140  *     This will commit the transaction.  Historically we had a lot of logic
141  *     surrounding whether or not we'd commit the transaction, but this waits born
142  *     out of a pre-tickets era where we could end up committing the transaction
143  *     thousands of times in a row without making progress.  Now thanks to our
144  *     ticketing system we know if we're not making progress and can error
145  *     everybody out after a few commits rather than burning the disk hoping for
146  *     a different answer.
147  *
148  * OVERCOMMIT
149  *
150  *   Because we hold so many reservations for metadata we will allow you to
151  *   reserve more space than is currently free in the currently allocate
152  *   metadata space.  This only happens with metadata, data does not allow
153  *   overcommitting.
154  *
155  *   You can see the current logic for when we allow overcommit in
156  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
157  *   is no unallocated space to be had, all reservations are kept within the
158  *   free space in the allocated metadata chunks.
159  *
160  *   Because of overcommitting, you generally want to use the
161  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
162  *   thing with or without extra unallocated space.
163  */
164 
165 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
166 			  bool may_use_included)
167 {
168 	ASSERT(s_info);
169 	return s_info->bytes_used + s_info->bytes_reserved +
170 		s_info->bytes_pinned + s_info->bytes_readonly +
171 		s_info->bytes_zone_unusable +
172 		(may_use_included ? s_info->bytes_may_use : 0);
173 }
174 
175 /*
176  * after adding space to the filesystem, we need to clear the full flags
177  * on all the space infos.
178  */
179 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
180 {
181 	struct list_head *head = &info->space_info;
182 	struct btrfs_space_info *found;
183 
184 	list_for_each_entry(found, head, list)
185 		found->full = 0;
186 }
187 
188 /*
189  * Block groups with more than this value (percents) of unusable space will be
190  * scheduled for background reclaim.
191  */
192 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH			(75)
193 
194 /*
195  * Calculate chunk size depending on volume type (regular or zoned).
196  */
197 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
198 {
199 	if (btrfs_is_zoned(fs_info))
200 		return fs_info->zone_size;
201 
202 	ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
203 
204 	if (flags & BTRFS_BLOCK_GROUP_DATA)
205 		return BTRFS_MAX_DATA_CHUNK_SIZE;
206 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
207 		return SZ_32M;
208 
209 	/* Handle BTRFS_BLOCK_GROUP_METADATA */
210 	if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
211 		return SZ_1G;
212 
213 	return SZ_256M;
214 }
215 
216 /*
217  * Update default chunk size.
218  */
219 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
220 					u64 chunk_size)
221 {
222 	WRITE_ONCE(space_info->chunk_size, chunk_size);
223 }
224 
225 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
226 {
227 
228 	struct btrfs_space_info *space_info;
229 	int i;
230 	int ret;
231 
232 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
233 	if (!space_info)
234 		return -ENOMEM;
235 
236 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
237 		INIT_LIST_HEAD(&space_info->block_groups[i]);
238 	init_rwsem(&space_info->groups_sem);
239 	spin_lock_init(&space_info->lock);
240 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
241 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
242 	INIT_LIST_HEAD(&space_info->ro_bgs);
243 	INIT_LIST_HEAD(&space_info->tickets);
244 	INIT_LIST_HEAD(&space_info->priority_tickets);
245 	space_info->clamp = 1;
246 	btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
247 
248 	if (btrfs_is_zoned(info))
249 		space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
250 
251 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
252 	if (ret)
253 		return ret;
254 
255 	list_add(&space_info->list, &info->space_info);
256 	if (flags & BTRFS_BLOCK_GROUP_DATA)
257 		info->data_sinfo = space_info;
258 
259 	return ret;
260 }
261 
262 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
263 {
264 	struct btrfs_super_block *disk_super;
265 	u64 features;
266 	u64 flags;
267 	int mixed = 0;
268 	int ret;
269 
270 	disk_super = fs_info->super_copy;
271 	if (!btrfs_super_root(disk_super))
272 		return -EINVAL;
273 
274 	features = btrfs_super_incompat_flags(disk_super);
275 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
276 		mixed = 1;
277 
278 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
279 	ret = create_space_info(fs_info, flags);
280 	if (ret)
281 		goto out;
282 
283 	if (mixed) {
284 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
285 		ret = create_space_info(fs_info, flags);
286 	} else {
287 		flags = BTRFS_BLOCK_GROUP_METADATA;
288 		ret = create_space_info(fs_info, flags);
289 		if (ret)
290 			goto out;
291 
292 		flags = BTRFS_BLOCK_GROUP_DATA;
293 		ret = create_space_info(fs_info, flags);
294 	}
295 out:
296 	return ret;
297 }
298 
299 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
300 				struct btrfs_block_group *block_group)
301 {
302 	struct btrfs_space_info *found;
303 	int factor, index;
304 
305 	factor = btrfs_bg_type_to_factor(block_group->flags);
306 
307 	found = btrfs_find_space_info(info, block_group->flags);
308 	ASSERT(found);
309 	spin_lock(&found->lock);
310 	found->total_bytes += block_group->length;
311 	found->disk_total += block_group->length * factor;
312 	found->bytes_used += block_group->used;
313 	found->disk_used += block_group->used * factor;
314 	found->bytes_readonly += block_group->bytes_super;
315 	found->bytes_zone_unusable += block_group->zone_unusable;
316 	if (block_group->length > 0)
317 		found->full = 0;
318 	btrfs_try_granting_tickets(info, found);
319 	spin_unlock(&found->lock);
320 
321 	block_group->space_info = found;
322 
323 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
324 	down_write(&found->groups_sem);
325 	list_add_tail(&block_group->list, &found->block_groups[index]);
326 	up_write(&found->groups_sem);
327 }
328 
329 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
330 					       u64 flags)
331 {
332 	struct list_head *head = &info->space_info;
333 	struct btrfs_space_info *found;
334 
335 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
336 
337 	list_for_each_entry(found, head, list) {
338 		if (found->flags & flags)
339 			return found;
340 	}
341 	return NULL;
342 }
343 
344 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
345 			  struct btrfs_space_info *space_info,
346 			  enum btrfs_reserve_flush_enum flush)
347 {
348 	u64 profile;
349 	u64 avail;
350 	int factor;
351 
352 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
353 		profile = btrfs_system_alloc_profile(fs_info);
354 	else
355 		profile = btrfs_metadata_alloc_profile(fs_info);
356 
357 	avail = atomic64_read(&fs_info->free_chunk_space);
358 
359 	/*
360 	 * If we have dup, raid1 or raid10 then only half of the free
361 	 * space is actually usable.  For raid56, the space info used
362 	 * doesn't include the parity drive, so we don't have to
363 	 * change the math
364 	 */
365 	factor = btrfs_bg_type_to_factor(profile);
366 	avail = div_u64(avail, factor);
367 
368 	/*
369 	 * If we aren't flushing all things, let us overcommit up to
370 	 * 1/2th of the space. If we can flush, don't let us overcommit
371 	 * too much, let it overcommit up to 1/8 of the space.
372 	 */
373 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
374 		avail >>= 3;
375 	else
376 		avail >>= 1;
377 	return avail;
378 }
379 
380 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
381 			 struct btrfs_space_info *space_info, u64 bytes,
382 			 enum btrfs_reserve_flush_enum flush)
383 {
384 	u64 avail;
385 	u64 used;
386 
387 	/* Don't overcommit when in mixed mode */
388 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
389 		return 0;
390 
391 	used = btrfs_space_info_used(space_info, true);
392 	if (test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags) &&
393 	    (space_info->flags & BTRFS_BLOCK_GROUP_METADATA))
394 		avail = 0;
395 	else
396 		avail = calc_available_free_space(fs_info, space_info, flush);
397 
398 	if (used + bytes < space_info->total_bytes + avail)
399 		return 1;
400 	return 0;
401 }
402 
403 static void remove_ticket(struct btrfs_space_info *space_info,
404 			  struct reserve_ticket *ticket)
405 {
406 	if (!list_empty(&ticket->list)) {
407 		list_del_init(&ticket->list);
408 		ASSERT(space_info->reclaim_size >= ticket->bytes);
409 		space_info->reclaim_size -= ticket->bytes;
410 	}
411 }
412 
413 /*
414  * This is for space we already have accounted in space_info->bytes_may_use, so
415  * basically when we're returning space from block_rsv's.
416  */
417 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
418 				struct btrfs_space_info *space_info)
419 {
420 	struct list_head *head;
421 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
422 
423 	lockdep_assert_held(&space_info->lock);
424 
425 	head = &space_info->priority_tickets;
426 again:
427 	while (!list_empty(head)) {
428 		struct reserve_ticket *ticket;
429 		u64 used = btrfs_space_info_used(space_info, true);
430 
431 		ticket = list_first_entry(head, struct reserve_ticket, list);
432 
433 		/* Check and see if our ticket can be satisfied now. */
434 		if ((used + ticket->bytes <= space_info->total_bytes) ||
435 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
436 					 flush)) {
437 			btrfs_space_info_update_bytes_may_use(fs_info,
438 							      space_info,
439 							      ticket->bytes);
440 			remove_ticket(space_info, ticket);
441 			ticket->bytes = 0;
442 			space_info->tickets_id++;
443 			wake_up(&ticket->wait);
444 		} else {
445 			break;
446 		}
447 	}
448 
449 	if (head == &space_info->priority_tickets) {
450 		head = &space_info->tickets;
451 		flush = BTRFS_RESERVE_FLUSH_ALL;
452 		goto again;
453 	}
454 }
455 
456 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
457 do {									\
458 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
459 	spin_lock(&__rsv->lock);					\
460 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
461 		   __rsv->size, __rsv->reserved);			\
462 	spin_unlock(&__rsv->lock);					\
463 } while (0)
464 
465 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
466 {
467 	switch (space_info->flags) {
468 	case BTRFS_BLOCK_GROUP_SYSTEM:
469 		return "SYSTEM";
470 	case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
471 		return "DATA+METADATA";
472 	case BTRFS_BLOCK_GROUP_DATA:
473 		return "DATA";
474 	case BTRFS_BLOCK_GROUP_METADATA:
475 		return "METADATA";
476 	default:
477 		return "UNKNOWN";
478 	}
479 }
480 
481 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
482 {
483 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
484 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
485 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
486 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
487 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
488 }
489 
490 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
491 				    struct btrfs_space_info *info)
492 {
493 	const char *flag_str = space_info_flag_to_str(info);
494 	lockdep_assert_held(&info->lock);
495 
496 	/* The free space could be negative in case of overcommit */
497 	btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
498 		   flag_str,
499 		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
500 		   info->full ? "" : "not ");
501 	btrfs_info(fs_info,
502 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
503 		info->total_bytes, info->bytes_used, info->bytes_pinned,
504 		info->bytes_reserved, info->bytes_may_use,
505 		info->bytes_readonly, info->bytes_zone_unusable);
506 }
507 
508 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
509 			   struct btrfs_space_info *info, u64 bytes,
510 			   int dump_block_groups)
511 {
512 	struct btrfs_block_group *cache;
513 	int index = 0;
514 
515 	spin_lock(&info->lock);
516 	__btrfs_dump_space_info(fs_info, info);
517 	dump_global_block_rsv(fs_info);
518 	spin_unlock(&info->lock);
519 
520 	if (!dump_block_groups)
521 		return;
522 
523 	down_read(&info->groups_sem);
524 again:
525 	list_for_each_entry(cache, &info->block_groups[index], list) {
526 		spin_lock(&cache->lock);
527 		btrfs_info(fs_info,
528 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
529 			cache->start, cache->length, cache->used, cache->pinned,
530 			cache->reserved, cache->zone_unusable,
531 			cache->ro ? "[readonly]" : "");
532 		spin_unlock(&cache->lock);
533 		btrfs_dump_free_space(cache, bytes);
534 	}
535 	if (++index < BTRFS_NR_RAID_TYPES)
536 		goto again;
537 	up_read(&info->groups_sem);
538 }
539 
540 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
541 					u64 to_reclaim)
542 {
543 	u64 bytes;
544 	u64 nr;
545 
546 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
547 	nr = div64_u64(to_reclaim, bytes);
548 	if (!nr)
549 		nr = 1;
550 	return nr;
551 }
552 
553 #define EXTENT_SIZE_PER_ITEM	SZ_256K
554 
555 /*
556  * shrink metadata reservation for delalloc
557  */
558 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
559 			    struct btrfs_space_info *space_info,
560 			    u64 to_reclaim, bool wait_ordered,
561 			    bool for_preempt)
562 {
563 	struct btrfs_trans_handle *trans;
564 	u64 delalloc_bytes;
565 	u64 ordered_bytes;
566 	u64 items;
567 	long time_left;
568 	int loops;
569 
570 	delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
571 	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
572 	if (delalloc_bytes == 0 && ordered_bytes == 0)
573 		return;
574 
575 	/* Calc the number of the pages we need flush for space reservation */
576 	if (to_reclaim == U64_MAX) {
577 		items = U64_MAX;
578 	} else {
579 		/*
580 		 * to_reclaim is set to however much metadata we need to
581 		 * reclaim, but reclaiming that much data doesn't really track
582 		 * exactly.  What we really want to do is reclaim full inode's
583 		 * worth of reservations, however that's not available to us
584 		 * here.  We will take a fraction of the delalloc bytes for our
585 		 * flushing loops and hope for the best.  Delalloc will expand
586 		 * the amount we write to cover an entire dirty extent, which
587 		 * will reclaim the metadata reservation for that range.  If
588 		 * it's not enough subsequent flush stages will be more
589 		 * aggressive.
590 		 */
591 		to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
592 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
593 	}
594 
595 	trans = current->journal_info;
596 
597 	/*
598 	 * If we are doing more ordered than delalloc we need to just wait on
599 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
600 	 * that likely won't give us the space back we need.
601 	 */
602 	if (ordered_bytes > delalloc_bytes && !for_preempt)
603 		wait_ordered = true;
604 
605 	loops = 0;
606 	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
607 		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
608 		long nr_pages = min_t(u64, temp, LONG_MAX);
609 		int async_pages;
610 
611 		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
612 
613 		/*
614 		 * We need to make sure any outstanding async pages are now
615 		 * processed before we continue.  This is because things like
616 		 * sync_inode() try to be smart and skip writing if the inode is
617 		 * marked clean.  We don't use filemap_fwrite for flushing
618 		 * because we want to control how many pages we write out at a
619 		 * time, thus this is the only safe way to make sure we've
620 		 * waited for outstanding compressed workers to have started
621 		 * their jobs and thus have ordered extents set up properly.
622 		 *
623 		 * This exists because we do not want to wait for each
624 		 * individual inode to finish its async work, we simply want to
625 		 * start the IO on everybody, and then come back here and wait
626 		 * for all of the async work to catch up.  Once we're done with
627 		 * that we know we'll have ordered extents for everything and we
628 		 * can decide if we wait for that or not.
629 		 *
630 		 * If we choose to replace this in the future, make absolutely
631 		 * sure that the proper waiting is being done in the async case,
632 		 * as there have been bugs in that area before.
633 		 */
634 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
635 		if (!async_pages)
636 			goto skip_async;
637 
638 		/*
639 		 * We don't want to wait forever, if we wrote less pages in this
640 		 * loop than we have outstanding, only wait for that number of
641 		 * pages, otherwise we can wait for all async pages to finish
642 		 * before continuing.
643 		 */
644 		if (async_pages > nr_pages)
645 			async_pages -= nr_pages;
646 		else
647 			async_pages = 0;
648 		wait_event(fs_info->async_submit_wait,
649 			   atomic_read(&fs_info->async_delalloc_pages) <=
650 			   async_pages);
651 skip_async:
652 		loops++;
653 		if (wait_ordered && !trans) {
654 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
655 		} else {
656 			time_left = schedule_timeout_killable(1);
657 			if (time_left)
658 				break;
659 		}
660 
661 		/*
662 		 * If we are for preemption we just want a one-shot of delalloc
663 		 * flushing so we can stop flushing if we decide we don't need
664 		 * to anymore.
665 		 */
666 		if (for_preempt)
667 			break;
668 
669 		spin_lock(&space_info->lock);
670 		if (list_empty(&space_info->tickets) &&
671 		    list_empty(&space_info->priority_tickets)) {
672 			spin_unlock(&space_info->lock);
673 			break;
674 		}
675 		spin_unlock(&space_info->lock);
676 
677 		delalloc_bytes = percpu_counter_sum_positive(
678 						&fs_info->delalloc_bytes);
679 		ordered_bytes = percpu_counter_sum_positive(
680 						&fs_info->ordered_bytes);
681 	}
682 }
683 
684 /*
685  * Try to flush some data based on policy set by @state. This is only advisory
686  * and may fail for various reasons. The caller is supposed to examine the
687  * state of @space_info to detect the outcome.
688  */
689 static void flush_space(struct btrfs_fs_info *fs_info,
690 		       struct btrfs_space_info *space_info, u64 num_bytes,
691 		       enum btrfs_flush_state state, bool for_preempt)
692 {
693 	struct btrfs_root *root = fs_info->tree_root;
694 	struct btrfs_trans_handle *trans;
695 	int nr;
696 	int ret = 0;
697 
698 	switch (state) {
699 	case FLUSH_DELAYED_ITEMS_NR:
700 	case FLUSH_DELAYED_ITEMS:
701 		if (state == FLUSH_DELAYED_ITEMS_NR)
702 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
703 		else
704 			nr = -1;
705 
706 		trans = btrfs_join_transaction(root);
707 		if (IS_ERR(trans)) {
708 			ret = PTR_ERR(trans);
709 			break;
710 		}
711 		ret = btrfs_run_delayed_items_nr(trans, nr);
712 		btrfs_end_transaction(trans);
713 		break;
714 	case FLUSH_DELALLOC:
715 	case FLUSH_DELALLOC_WAIT:
716 	case FLUSH_DELALLOC_FULL:
717 		if (state == FLUSH_DELALLOC_FULL)
718 			num_bytes = U64_MAX;
719 		shrink_delalloc(fs_info, space_info, num_bytes,
720 				state != FLUSH_DELALLOC, for_preempt);
721 		break;
722 	case FLUSH_DELAYED_REFS_NR:
723 	case FLUSH_DELAYED_REFS:
724 		trans = btrfs_join_transaction(root);
725 		if (IS_ERR(trans)) {
726 			ret = PTR_ERR(trans);
727 			break;
728 		}
729 		if (state == FLUSH_DELAYED_REFS_NR)
730 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
731 		else
732 			nr = 0;
733 		btrfs_run_delayed_refs(trans, nr);
734 		btrfs_end_transaction(trans);
735 		break;
736 	case ALLOC_CHUNK:
737 	case ALLOC_CHUNK_FORCE:
738 		/*
739 		 * For metadata space on zoned filesystem, reaching here means we
740 		 * don't have enough space left in active_total_bytes. Try to
741 		 * activate a block group first, because we may have inactive
742 		 * block group already allocated.
743 		 */
744 		ret = btrfs_zoned_activate_one_bg(fs_info, space_info, false);
745 		if (ret < 0)
746 			break;
747 		else if (ret == 1)
748 			break;
749 
750 		trans = btrfs_join_transaction(root);
751 		if (IS_ERR(trans)) {
752 			ret = PTR_ERR(trans);
753 			break;
754 		}
755 		ret = btrfs_chunk_alloc(trans,
756 				btrfs_get_alloc_profile(fs_info, space_info->flags),
757 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
758 					CHUNK_ALLOC_FORCE);
759 		btrfs_end_transaction(trans);
760 
761 		/*
762 		 * For metadata space on zoned filesystem, allocating a new chunk
763 		 * is not enough. We still need to activate the block * group.
764 		 * Active the newly allocated block group by (maybe) finishing
765 		 * a block group.
766 		 */
767 		if (ret == 1) {
768 			ret = btrfs_zoned_activate_one_bg(fs_info, space_info, true);
769 			/*
770 			 * Revert to the original ret regardless we could finish
771 			 * one block group or not.
772 			 */
773 			if (ret >= 0)
774 				ret = 1;
775 		}
776 
777 		if (ret > 0 || ret == -ENOSPC)
778 			ret = 0;
779 		break;
780 	case RUN_DELAYED_IPUTS:
781 		/*
782 		 * If we have pending delayed iputs then we could free up a
783 		 * bunch of pinned space, so make sure we run the iputs before
784 		 * we do our pinned bytes check below.
785 		 */
786 		btrfs_run_delayed_iputs(fs_info);
787 		btrfs_wait_on_delayed_iputs(fs_info);
788 		break;
789 	case COMMIT_TRANS:
790 		ASSERT(current->journal_info == NULL);
791 		trans = btrfs_join_transaction(root);
792 		if (IS_ERR(trans)) {
793 			ret = PTR_ERR(trans);
794 			break;
795 		}
796 		ret = btrfs_commit_transaction(trans);
797 		break;
798 	default:
799 		ret = -ENOSPC;
800 		break;
801 	}
802 
803 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
804 				ret, for_preempt);
805 	return;
806 }
807 
808 static inline u64
809 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
810 				 struct btrfs_space_info *space_info)
811 {
812 	u64 used;
813 	u64 avail;
814 	u64 to_reclaim = space_info->reclaim_size;
815 
816 	lockdep_assert_held(&space_info->lock);
817 
818 	avail = calc_available_free_space(fs_info, space_info,
819 					  BTRFS_RESERVE_FLUSH_ALL);
820 	used = btrfs_space_info_used(space_info, true);
821 
822 	/*
823 	 * We may be flushing because suddenly we have less space than we had
824 	 * before, and now we're well over-committed based on our current free
825 	 * space.  If that's the case add in our overage so we make sure to put
826 	 * appropriate pressure on the flushing state machine.
827 	 */
828 	if (space_info->total_bytes + avail < used)
829 		to_reclaim += used - (space_info->total_bytes + avail);
830 
831 	return to_reclaim;
832 }
833 
834 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
835 				    struct btrfs_space_info *space_info)
836 {
837 	u64 global_rsv_size = fs_info->global_block_rsv.reserved;
838 	u64 ordered, delalloc;
839 	u64 thresh;
840 	u64 used;
841 
842 	thresh = mult_perc(space_info->total_bytes, 90);
843 
844 	lockdep_assert_held(&space_info->lock);
845 
846 	/* If we're just plain full then async reclaim just slows us down. */
847 	if ((space_info->bytes_used + space_info->bytes_reserved +
848 	     global_rsv_size) >= thresh)
849 		return false;
850 
851 	used = space_info->bytes_may_use + space_info->bytes_pinned;
852 
853 	/* The total flushable belongs to the global rsv, don't flush. */
854 	if (global_rsv_size >= used)
855 		return false;
856 
857 	/*
858 	 * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
859 	 * that devoted to other reservations then there's no sense in flushing,
860 	 * we don't have a lot of things that need flushing.
861 	 */
862 	if (used - global_rsv_size <= SZ_128M)
863 		return false;
864 
865 	/*
866 	 * We have tickets queued, bail so we don't compete with the async
867 	 * flushers.
868 	 */
869 	if (space_info->reclaim_size)
870 		return false;
871 
872 	/*
873 	 * If we have over half of the free space occupied by reservations or
874 	 * pinned then we want to start flushing.
875 	 *
876 	 * We do not do the traditional thing here, which is to say
877 	 *
878 	 *   if (used >= ((total_bytes + avail) / 2))
879 	 *     return 1;
880 	 *
881 	 * because this doesn't quite work how we want.  If we had more than 50%
882 	 * of the space_info used by bytes_used and we had 0 available we'd just
883 	 * constantly run the background flusher.  Instead we want it to kick in
884 	 * if our reclaimable space exceeds our clamped free space.
885 	 *
886 	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
887 	 * the following:
888 	 *
889 	 * Amount of RAM        Minimum threshold       Maximum threshold
890 	 *
891 	 *        256GiB                     1GiB                  128GiB
892 	 *        128GiB                   512MiB                   64GiB
893 	 *         64GiB                   256MiB                   32GiB
894 	 *         32GiB                   128MiB                   16GiB
895 	 *         16GiB                    64MiB                    8GiB
896 	 *
897 	 * These are the range our thresholds will fall in, corresponding to how
898 	 * much delalloc we need for the background flusher to kick in.
899 	 */
900 
901 	thresh = calc_available_free_space(fs_info, space_info,
902 					   BTRFS_RESERVE_FLUSH_ALL);
903 	used = space_info->bytes_used + space_info->bytes_reserved +
904 	       space_info->bytes_readonly + global_rsv_size;
905 	if (used < space_info->total_bytes)
906 		thresh += space_info->total_bytes - used;
907 	thresh >>= space_info->clamp;
908 
909 	used = space_info->bytes_pinned;
910 
911 	/*
912 	 * If we have more ordered bytes than delalloc bytes then we're either
913 	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
914 	 * around.  Preemptive flushing is only useful in that it can free up
915 	 * space before tickets need to wait for things to finish.  In the case
916 	 * of ordered extents, preemptively waiting on ordered extents gets us
917 	 * nothing, if our reservations are tied up in ordered extents we'll
918 	 * simply have to slow down writers by forcing them to wait on ordered
919 	 * extents.
920 	 *
921 	 * In the case that ordered is larger than delalloc, only include the
922 	 * block reserves that we would actually be able to directly reclaim
923 	 * from.  In this case if we're heavy on metadata operations this will
924 	 * clearly be heavy enough to warrant preemptive flushing.  In the case
925 	 * of heavy DIO or ordered reservations, preemptive flushing will just
926 	 * waste time and cause us to slow down.
927 	 *
928 	 * We want to make sure we truly are maxed out on ordered however, so
929 	 * cut ordered in half, and if it's still higher than delalloc then we
930 	 * can keep flushing.  This is to avoid the case where we start
931 	 * flushing, and now delalloc == ordered and we stop preemptively
932 	 * flushing when we could still have several gigs of delalloc to flush.
933 	 */
934 	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
935 	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
936 	if (ordered >= delalloc)
937 		used += fs_info->delayed_refs_rsv.reserved +
938 			fs_info->delayed_block_rsv.reserved;
939 	else
940 		used += space_info->bytes_may_use - global_rsv_size;
941 
942 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
943 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
944 }
945 
946 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
947 				  struct btrfs_space_info *space_info,
948 				  struct reserve_ticket *ticket)
949 {
950 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
951 	u64 min_bytes;
952 
953 	if (!ticket->steal)
954 		return false;
955 
956 	if (global_rsv->space_info != space_info)
957 		return false;
958 
959 	spin_lock(&global_rsv->lock);
960 	min_bytes = mult_perc(global_rsv->size, 10);
961 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
962 		spin_unlock(&global_rsv->lock);
963 		return false;
964 	}
965 	global_rsv->reserved -= ticket->bytes;
966 	remove_ticket(space_info, ticket);
967 	ticket->bytes = 0;
968 	wake_up(&ticket->wait);
969 	space_info->tickets_id++;
970 	if (global_rsv->reserved < global_rsv->size)
971 		global_rsv->full = 0;
972 	spin_unlock(&global_rsv->lock);
973 
974 	return true;
975 }
976 
977 /*
978  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
979  * @fs_info - fs_info for this fs
980  * @space_info - the space info we were flushing
981  *
982  * We call this when we've exhausted our flushing ability and haven't made
983  * progress in satisfying tickets.  The reservation code handles tickets in
984  * order, so if there is a large ticket first and then smaller ones we could
985  * very well satisfy the smaller tickets.  This will attempt to wake up any
986  * tickets in the list to catch this case.
987  *
988  * This function returns true if it was able to make progress by clearing out
989  * other tickets, or if it stumbles across a ticket that was smaller than the
990  * first ticket.
991  */
992 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
993 				   struct btrfs_space_info *space_info)
994 {
995 	struct reserve_ticket *ticket;
996 	u64 tickets_id = space_info->tickets_id;
997 	const bool aborted = BTRFS_FS_ERROR(fs_info);
998 
999 	trace_btrfs_fail_all_tickets(fs_info, space_info);
1000 
1001 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1002 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1003 		__btrfs_dump_space_info(fs_info, space_info);
1004 	}
1005 
1006 	while (!list_empty(&space_info->tickets) &&
1007 	       tickets_id == space_info->tickets_id) {
1008 		ticket = list_first_entry(&space_info->tickets,
1009 					  struct reserve_ticket, list);
1010 
1011 		if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1012 			return true;
1013 
1014 		if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1015 			btrfs_info(fs_info, "failing ticket with %llu bytes",
1016 				   ticket->bytes);
1017 
1018 		remove_ticket(space_info, ticket);
1019 		if (aborted)
1020 			ticket->error = -EIO;
1021 		else
1022 			ticket->error = -ENOSPC;
1023 		wake_up(&ticket->wait);
1024 
1025 		/*
1026 		 * We're just throwing tickets away, so more flushing may not
1027 		 * trip over btrfs_try_granting_tickets, so we need to call it
1028 		 * here to see if we can make progress with the next ticket in
1029 		 * the list.
1030 		 */
1031 		if (!aborted)
1032 			btrfs_try_granting_tickets(fs_info, space_info);
1033 	}
1034 	return (tickets_id != space_info->tickets_id);
1035 }
1036 
1037 /*
1038  * This is for normal flushers, we can wait all goddamned day if we want to.  We
1039  * will loop and continuously try to flush as long as we are making progress.
1040  * We count progress as clearing off tickets each time we have to loop.
1041  */
1042 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1043 {
1044 	struct btrfs_fs_info *fs_info;
1045 	struct btrfs_space_info *space_info;
1046 	u64 to_reclaim;
1047 	enum btrfs_flush_state flush_state;
1048 	int commit_cycles = 0;
1049 	u64 last_tickets_id;
1050 
1051 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1052 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1053 
1054 	spin_lock(&space_info->lock);
1055 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1056 	if (!to_reclaim) {
1057 		space_info->flush = 0;
1058 		spin_unlock(&space_info->lock);
1059 		return;
1060 	}
1061 	last_tickets_id = space_info->tickets_id;
1062 	spin_unlock(&space_info->lock);
1063 
1064 	flush_state = FLUSH_DELAYED_ITEMS_NR;
1065 	do {
1066 		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1067 		spin_lock(&space_info->lock);
1068 		if (list_empty(&space_info->tickets)) {
1069 			space_info->flush = 0;
1070 			spin_unlock(&space_info->lock);
1071 			return;
1072 		}
1073 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1074 							      space_info);
1075 		if (last_tickets_id == space_info->tickets_id) {
1076 			flush_state++;
1077 		} else {
1078 			last_tickets_id = space_info->tickets_id;
1079 			flush_state = FLUSH_DELAYED_ITEMS_NR;
1080 			if (commit_cycles)
1081 				commit_cycles--;
1082 		}
1083 
1084 		/*
1085 		 * We do not want to empty the system of delalloc unless we're
1086 		 * under heavy pressure, so allow one trip through the flushing
1087 		 * logic before we start doing a FLUSH_DELALLOC_FULL.
1088 		 */
1089 		if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1090 			flush_state++;
1091 
1092 		/*
1093 		 * We don't want to force a chunk allocation until we've tried
1094 		 * pretty hard to reclaim space.  Think of the case where we
1095 		 * freed up a bunch of space and so have a lot of pinned space
1096 		 * to reclaim.  We would rather use that than possibly create a
1097 		 * underutilized metadata chunk.  So if this is our first run
1098 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1099 		 * commit the transaction.  If nothing has changed the next go
1100 		 * around then we can force a chunk allocation.
1101 		 */
1102 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1103 			flush_state++;
1104 
1105 		if (flush_state > COMMIT_TRANS) {
1106 			commit_cycles++;
1107 			if (commit_cycles > 2) {
1108 				if (maybe_fail_all_tickets(fs_info, space_info)) {
1109 					flush_state = FLUSH_DELAYED_ITEMS_NR;
1110 					commit_cycles--;
1111 				} else {
1112 					space_info->flush = 0;
1113 				}
1114 			} else {
1115 				flush_state = FLUSH_DELAYED_ITEMS_NR;
1116 			}
1117 		}
1118 		spin_unlock(&space_info->lock);
1119 	} while (flush_state <= COMMIT_TRANS);
1120 }
1121 
1122 /*
1123  * This handles pre-flushing of metadata space before we get to the point that
1124  * we need to start blocking threads on tickets.  The logic here is different
1125  * from the other flush paths because it doesn't rely on tickets to tell us how
1126  * much we need to flush, instead it attempts to keep us below the 80% full
1127  * watermark of space by flushing whichever reservation pool is currently the
1128  * largest.
1129  */
1130 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1131 {
1132 	struct btrfs_fs_info *fs_info;
1133 	struct btrfs_space_info *space_info;
1134 	struct btrfs_block_rsv *delayed_block_rsv;
1135 	struct btrfs_block_rsv *delayed_refs_rsv;
1136 	struct btrfs_block_rsv *global_rsv;
1137 	struct btrfs_block_rsv *trans_rsv;
1138 	int loops = 0;
1139 
1140 	fs_info = container_of(work, struct btrfs_fs_info,
1141 			       preempt_reclaim_work);
1142 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1143 	delayed_block_rsv = &fs_info->delayed_block_rsv;
1144 	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1145 	global_rsv = &fs_info->global_block_rsv;
1146 	trans_rsv = &fs_info->trans_block_rsv;
1147 
1148 	spin_lock(&space_info->lock);
1149 	while (need_preemptive_reclaim(fs_info, space_info)) {
1150 		enum btrfs_flush_state flush;
1151 		u64 delalloc_size = 0;
1152 		u64 to_reclaim, block_rsv_size;
1153 		u64 global_rsv_size = global_rsv->reserved;
1154 
1155 		loops++;
1156 
1157 		/*
1158 		 * We don't have a precise counter for the metadata being
1159 		 * reserved for delalloc, so we'll approximate it by subtracting
1160 		 * out the block rsv's space from the bytes_may_use.  If that
1161 		 * amount is higher than the individual reserves, then we can
1162 		 * assume it's tied up in delalloc reservations.
1163 		 */
1164 		block_rsv_size = global_rsv_size +
1165 			delayed_block_rsv->reserved +
1166 			delayed_refs_rsv->reserved +
1167 			trans_rsv->reserved;
1168 		if (block_rsv_size < space_info->bytes_may_use)
1169 			delalloc_size = space_info->bytes_may_use - block_rsv_size;
1170 
1171 		/*
1172 		 * We don't want to include the global_rsv in our calculation,
1173 		 * because that's space we can't touch.  Subtract it from the
1174 		 * block_rsv_size for the next checks.
1175 		 */
1176 		block_rsv_size -= global_rsv_size;
1177 
1178 		/*
1179 		 * We really want to avoid flushing delalloc too much, as it
1180 		 * could result in poor allocation patterns, so only flush it if
1181 		 * it's larger than the rest of the pools combined.
1182 		 */
1183 		if (delalloc_size > block_rsv_size) {
1184 			to_reclaim = delalloc_size;
1185 			flush = FLUSH_DELALLOC;
1186 		} else if (space_info->bytes_pinned >
1187 			   (delayed_block_rsv->reserved +
1188 			    delayed_refs_rsv->reserved)) {
1189 			to_reclaim = space_info->bytes_pinned;
1190 			flush = COMMIT_TRANS;
1191 		} else if (delayed_block_rsv->reserved >
1192 			   delayed_refs_rsv->reserved) {
1193 			to_reclaim = delayed_block_rsv->reserved;
1194 			flush = FLUSH_DELAYED_ITEMS_NR;
1195 		} else {
1196 			to_reclaim = delayed_refs_rsv->reserved;
1197 			flush = FLUSH_DELAYED_REFS_NR;
1198 		}
1199 
1200 		spin_unlock(&space_info->lock);
1201 
1202 		/*
1203 		 * We don't want to reclaim everything, just a portion, so scale
1204 		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1205 		 * reclaim 1 items worth.
1206 		 */
1207 		to_reclaim >>= 2;
1208 		if (!to_reclaim)
1209 			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1210 		flush_space(fs_info, space_info, to_reclaim, flush, true);
1211 		cond_resched();
1212 		spin_lock(&space_info->lock);
1213 	}
1214 
1215 	/* We only went through once, back off our clamping. */
1216 	if (loops == 1 && !space_info->reclaim_size)
1217 		space_info->clamp = max(1, space_info->clamp - 1);
1218 	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1219 	spin_unlock(&space_info->lock);
1220 }
1221 
1222 /*
1223  * FLUSH_DELALLOC_WAIT:
1224  *   Space is freed from flushing delalloc in one of two ways.
1225  *
1226  *   1) compression is on and we allocate less space than we reserved
1227  *   2) we are overwriting existing space
1228  *
1229  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1230  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1231  *   length to ->bytes_reserved, and subtracts the reserved space from
1232  *   ->bytes_may_use.
1233  *
1234  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1235  *   extent in the range we are overwriting, which creates a delayed ref for
1236  *   that freed extent.  This however is not reclaimed until the transaction
1237  *   commits, thus the next stages.
1238  *
1239  * RUN_DELAYED_IPUTS
1240  *   If we are freeing inodes, we want to make sure all delayed iputs have
1241  *   completed, because they could have been on an inode with i_nlink == 0, and
1242  *   thus have been truncated and freed up space.  But again this space is not
1243  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1244  *   run and then the transaction must be committed.
1245  *
1246  * COMMIT_TRANS
1247  *   This is where we reclaim all of the pinned space generated by running the
1248  *   iputs
1249  *
1250  * ALLOC_CHUNK_FORCE
1251  *   For data we start with alloc chunk force, however we could have been full
1252  *   before, and then the transaction commit could have freed new block groups,
1253  *   so if we now have space to allocate do the force chunk allocation.
1254  */
1255 static const enum btrfs_flush_state data_flush_states[] = {
1256 	FLUSH_DELALLOC_FULL,
1257 	RUN_DELAYED_IPUTS,
1258 	COMMIT_TRANS,
1259 	ALLOC_CHUNK_FORCE,
1260 };
1261 
1262 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1263 {
1264 	struct btrfs_fs_info *fs_info;
1265 	struct btrfs_space_info *space_info;
1266 	u64 last_tickets_id;
1267 	enum btrfs_flush_state flush_state = 0;
1268 
1269 	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1270 	space_info = fs_info->data_sinfo;
1271 
1272 	spin_lock(&space_info->lock);
1273 	if (list_empty(&space_info->tickets)) {
1274 		space_info->flush = 0;
1275 		spin_unlock(&space_info->lock);
1276 		return;
1277 	}
1278 	last_tickets_id = space_info->tickets_id;
1279 	spin_unlock(&space_info->lock);
1280 
1281 	while (!space_info->full) {
1282 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1283 		spin_lock(&space_info->lock);
1284 		if (list_empty(&space_info->tickets)) {
1285 			space_info->flush = 0;
1286 			spin_unlock(&space_info->lock);
1287 			return;
1288 		}
1289 
1290 		/* Something happened, fail everything and bail. */
1291 		if (BTRFS_FS_ERROR(fs_info))
1292 			goto aborted_fs;
1293 		last_tickets_id = space_info->tickets_id;
1294 		spin_unlock(&space_info->lock);
1295 	}
1296 
1297 	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1298 		flush_space(fs_info, space_info, U64_MAX,
1299 			    data_flush_states[flush_state], false);
1300 		spin_lock(&space_info->lock);
1301 		if (list_empty(&space_info->tickets)) {
1302 			space_info->flush = 0;
1303 			spin_unlock(&space_info->lock);
1304 			return;
1305 		}
1306 
1307 		if (last_tickets_id == space_info->tickets_id) {
1308 			flush_state++;
1309 		} else {
1310 			last_tickets_id = space_info->tickets_id;
1311 			flush_state = 0;
1312 		}
1313 
1314 		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1315 			if (space_info->full) {
1316 				if (maybe_fail_all_tickets(fs_info, space_info))
1317 					flush_state = 0;
1318 				else
1319 					space_info->flush = 0;
1320 			} else {
1321 				flush_state = 0;
1322 			}
1323 
1324 			/* Something happened, fail everything and bail. */
1325 			if (BTRFS_FS_ERROR(fs_info))
1326 				goto aborted_fs;
1327 
1328 		}
1329 		spin_unlock(&space_info->lock);
1330 	}
1331 	return;
1332 
1333 aborted_fs:
1334 	maybe_fail_all_tickets(fs_info, space_info);
1335 	space_info->flush = 0;
1336 	spin_unlock(&space_info->lock);
1337 }
1338 
1339 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1340 {
1341 	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1342 	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1343 	INIT_WORK(&fs_info->preempt_reclaim_work,
1344 		  btrfs_preempt_reclaim_metadata_space);
1345 }
1346 
1347 static const enum btrfs_flush_state priority_flush_states[] = {
1348 	FLUSH_DELAYED_ITEMS_NR,
1349 	FLUSH_DELAYED_ITEMS,
1350 	ALLOC_CHUNK,
1351 };
1352 
1353 static const enum btrfs_flush_state evict_flush_states[] = {
1354 	FLUSH_DELAYED_ITEMS_NR,
1355 	FLUSH_DELAYED_ITEMS,
1356 	FLUSH_DELAYED_REFS_NR,
1357 	FLUSH_DELAYED_REFS,
1358 	FLUSH_DELALLOC,
1359 	FLUSH_DELALLOC_WAIT,
1360 	FLUSH_DELALLOC_FULL,
1361 	ALLOC_CHUNK,
1362 	COMMIT_TRANS,
1363 };
1364 
1365 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1366 				struct btrfs_space_info *space_info,
1367 				struct reserve_ticket *ticket,
1368 				const enum btrfs_flush_state *states,
1369 				int states_nr)
1370 {
1371 	u64 to_reclaim;
1372 	int flush_state = 0;
1373 
1374 	spin_lock(&space_info->lock);
1375 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1376 	/*
1377 	 * This is the priority reclaim path, so to_reclaim could be >0 still
1378 	 * because we may have only satisfied the priority tickets and still
1379 	 * left non priority tickets on the list.  We would then have
1380 	 * to_reclaim but ->bytes == 0.
1381 	 */
1382 	if (ticket->bytes == 0) {
1383 		spin_unlock(&space_info->lock);
1384 		return;
1385 	}
1386 
1387 	while (flush_state < states_nr) {
1388 		spin_unlock(&space_info->lock);
1389 		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1390 			    false);
1391 		flush_state++;
1392 		spin_lock(&space_info->lock);
1393 		if (ticket->bytes == 0) {
1394 			spin_unlock(&space_info->lock);
1395 			return;
1396 		}
1397 	}
1398 
1399 	/* Attempt to steal from the global rsv if we can. */
1400 	if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1401 		ticket->error = -ENOSPC;
1402 		remove_ticket(space_info, ticket);
1403 	}
1404 
1405 	/*
1406 	 * We must run try_granting_tickets here because we could be a large
1407 	 * ticket in front of a smaller ticket that can now be satisfied with
1408 	 * the available space.
1409 	 */
1410 	btrfs_try_granting_tickets(fs_info, space_info);
1411 	spin_unlock(&space_info->lock);
1412 }
1413 
1414 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1415 					struct btrfs_space_info *space_info,
1416 					struct reserve_ticket *ticket)
1417 {
1418 	spin_lock(&space_info->lock);
1419 
1420 	/* We could have been granted before we got here. */
1421 	if (ticket->bytes == 0) {
1422 		spin_unlock(&space_info->lock);
1423 		return;
1424 	}
1425 
1426 	while (!space_info->full) {
1427 		spin_unlock(&space_info->lock);
1428 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1429 		spin_lock(&space_info->lock);
1430 		if (ticket->bytes == 0) {
1431 			spin_unlock(&space_info->lock);
1432 			return;
1433 		}
1434 	}
1435 
1436 	ticket->error = -ENOSPC;
1437 	remove_ticket(space_info, ticket);
1438 	btrfs_try_granting_tickets(fs_info, space_info);
1439 	spin_unlock(&space_info->lock);
1440 }
1441 
1442 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1443 				struct btrfs_space_info *space_info,
1444 				struct reserve_ticket *ticket)
1445 
1446 {
1447 	DEFINE_WAIT(wait);
1448 	int ret = 0;
1449 
1450 	spin_lock(&space_info->lock);
1451 	while (ticket->bytes > 0 && ticket->error == 0) {
1452 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1453 		if (ret) {
1454 			/*
1455 			 * Delete us from the list. After we unlock the space
1456 			 * info, we don't want the async reclaim job to reserve
1457 			 * space for this ticket. If that would happen, then the
1458 			 * ticket's task would not known that space was reserved
1459 			 * despite getting an error, resulting in a space leak
1460 			 * (bytes_may_use counter of our space_info).
1461 			 */
1462 			remove_ticket(space_info, ticket);
1463 			ticket->error = -EINTR;
1464 			break;
1465 		}
1466 		spin_unlock(&space_info->lock);
1467 
1468 		schedule();
1469 
1470 		finish_wait(&ticket->wait, &wait);
1471 		spin_lock(&space_info->lock);
1472 	}
1473 	spin_unlock(&space_info->lock);
1474 }
1475 
1476 /*
1477  * Do the appropriate flushing and waiting for a ticket.
1478  *
1479  * @fs_info:    the filesystem
1480  * @space_info: space info for the reservation
1481  * @ticket:     ticket for the reservation
1482  * @start_ns:   timestamp when the reservation started
1483  * @orig_bytes: amount of bytes originally reserved
1484  * @flush:      how much we can flush
1485  *
1486  * This does the work of figuring out how to flush for the ticket, waiting for
1487  * the reservation, and returning the appropriate error if there is one.
1488  */
1489 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1490 				 struct btrfs_space_info *space_info,
1491 				 struct reserve_ticket *ticket,
1492 				 u64 start_ns, u64 orig_bytes,
1493 				 enum btrfs_reserve_flush_enum flush)
1494 {
1495 	int ret;
1496 
1497 	switch (flush) {
1498 	case BTRFS_RESERVE_FLUSH_DATA:
1499 	case BTRFS_RESERVE_FLUSH_ALL:
1500 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1501 		wait_reserve_ticket(fs_info, space_info, ticket);
1502 		break;
1503 	case BTRFS_RESERVE_FLUSH_LIMIT:
1504 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1505 						priority_flush_states,
1506 						ARRAY_SIZE(priority_flush_states));
1507 		break;
1508 	case BTRFS_RESERVE_FLUSH_EVICT:
1509 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1510 						evict_flush_states,
1511 						ARRAY_SIZE(evict_flush_states));
1512 		break;
1513 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1514 		priority_reclaim_data_space(fs_info, space_info, ticket);
1515 		break;
1516 	default:
1517 		ASSERT(0);
1518 		break;
1519 	}
1520 
1521 	ret = ticket->error;
1522 	ASSERT(list_empty(&ticket->list));
1523 	/*
1524 	 * Check that we can't have an error set if the reservation succeeded,
1525 	 * as that would confuse tasks and lead them to error out without
1526 	 * releasing reserved space (if an error happens the expectation is that
1527 	 * space wasn't reserved at all).
1528 	 */
1529 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1530 	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1531 				   start_ns, flush, ticket->error);
1532 	return ret;
1533 }
1534 
1535 /*
1536  * This returns true if this flush state will go through the ordinary flushing
1537  * code.
1538  */
1539 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1540 {
1541 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1542 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1543 }
1544 
1545 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1546 				       struct btrfs_space_info *space_info)
1547 {
1548 	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1549 	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1550 
1551 	/*
1552 	 * If we're heavy on ordered operations then clamping won't help us.  We
1553 	 * need to clamp specifically to keep up with dirty'ing buffered
1554 	 * writers, because there's not a 1:1 correlation of writing delalloc
1555 	 * and freeing space, like there is with flushing delayed refs or
1556 	 * delayed nodes.  If we're already more ordered than delalloc then
1557 	 * we're keeping up, otherwise we aren't and should probably clamp.
1558 	 */
1559 	if (ordered < delalloc)
1560 		space_info->clamp = min(space_info->clamp + 1, 8);
1561 }
1562 
1563 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1564 {
1565 	return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1566 		flush == BTRFS_RESERVE_FLUSH_EVICT);
1567 }
1568 
1569 /*
1570  * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1571  * fail as quickly as possible.
1572  */
1573 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1574 {
1575 	return (flush != BTRFS_RESERVE_NO_FLUSH &&
1576 		flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1577 }
1578 
1579 /*
1580  * Try to reserve bytes from the block_rsv's space.
1581  *
1582  * @fs_info:    the filesystem
1583  * @space_info: space info we want to allocate from
1584  * @orig_bytes: number of bytes we want
1585  * @flush:      whether or not we can flush to make our reservation
1586  *
1587  * This will reserve orig_bytes number of bytes from the space info associated
1588  * with the block_rsv.  If there is not enough space it will make an attempt to
1589  * flush out space to make room.  It will do this by flushing delalloc if
1590  * possible or committing the transaction.  If flush is 0 then no attempts to
1591  * regain reservations will be made and this will fail if there is not enough
1592  * space already.
1593  */
1594 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1595 			   struct btrfs_space_info *space_info, u64 orig_bytes,
1596 			   enum btrfs_reserve_flush_enum flush)
1597 {
1598 	struct work_struct *async_work;
1599 	struct reserve_ticket ticket;
1600 	u64 start_ns = 0;
1601 	u64 used;
1602 	int ret = 0;
1603 	bool pending_tickets;
1604 
1605 	ASSERT(orig_bytes);
1606 	/*
1607 	 * If have a transaction handle (current->journal_info != NULL), then
1608 	 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor
1609 	 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those
1610 	 * flushing methods can trigger transaction commits.
1611 	 */
1612 	if (current->journal_info) {
1613 		/* One assert per line for easier debugging. */
1614 		ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL);
1615 		ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL);
1616 		ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT);
1617 	}
1618 
1619 	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1620 		async_work = &fs_info->async_data_reclaim_work;
1621 	else
1622 		async_work = &fs_info->async_reclaim_work;
1623 
1624 	spin_lock(&space_info->lock);
1625 	ret = -ENOSPC;
1626 	used = btrfs_space_info_used(space_info, true);
1627 
1628 	/*
1629 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1630 	 * generally handle ENOSPC in a different way, so treat them the same as
1631 	 * normal flushers when it comes to skipping pending tickets.
1632 	 */
1633 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1634 		pending_tickets = !list_empty(&space_info->tickets) ||
1635 			!list_empty(&space_info->priority_tickets);
1636 	else
1637 		pending_tickets = !list_empty(&space_info->priority_tickets);
1638 
1639 	/*
1640 	 * Carry on if we have enough space (short-circuit) OR call
1641 	 * can_overcommit() to ensure we can overcommit to continue.
1642 	 */
1643 	if (!pending_tickets &&
1644 	    ((used + orig_bytes <= space_info->total_bytes) ||
1645 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1646 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1647 						      orig_bytes);
1648 		ret = 0;
1649 	}
1650 
1651 	/*
1652 	 * Things are dire, we need to make a reservation so we don't abort.  We
1653 	 * will let this reservation go through as long as we have actual space
1654 	 * left to allocate for the block.
1655 	 */
1656 	if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1657 		used = btrfs_space_info_used(space_info, false);
1658 		if (used + orig_bytes <= space_info->total_bytes) {
1659 			btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1660 							      orig_bytes);
1661 			ret = 0;
1662 		}
1663 	}
1664 
1665 	/*
1666 	 * If we couldn't make a reservation then setup our reservation ticket
1667 	 * and kick the async worker if it's not already running.
1668 	 *
1669 	 * If we are a priority flusher then we just need to add our ticket to
1670 	 * the list and we will do our own flushing further down.
1671 	 */
1672 	if (ret && can_ticket(flush)) {
1673 		ticket.bytes = orig_bytes;
1674 		ticket.error = 0;
1675 		space_info->reclaim_size += ticket.bytes;
1676 		init_waitqueue_head(&ticket.wait);
1677 		ticket.steal = can_steal(flush);
1678 		if (trace_btrfs_reserve_ticket_enabled())
1679 			start_ns = ktime_get_ns();
1680 
1681 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1682 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1683 		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1684 			list_add_tail(&ticket.list, &space_info->tickets);
1685 			if (!space_info->flush) {
1686 				/*
1687 				 * We were forced to add a reserve ticket, so
1688 				 * our preemptive flushing is unable to keep
1689 				 * up.  Clamp down on the threshold for the
1690 				 * preemptive flushing in order to keep up with
1691 				 * the workload.
1692 				 */
1693 				maybe_clamp_preempt(fs_info, space_info);
1694 
1695 				space_info->flush = 1;
1696 				trace_btrfs_trigger_flush(fs_info,
1697 							  space_info->flags,
1698 							  orig_bytes, flush,
1699 							  "enospc");
1700 				queue_work(system_unbound_wq, async_work);
1701 			}
1702 		} else {
1703 			list_add_tail(&ticket.list,
1704 				      &space_info->priority_tickets);
1705 		}
1706 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1707 		/*
1708 		 * We will do the space reservation dance during log replay,
1709 		 * which means we won't have fs_info->fs_root set, so don't do
1710 		 * the async reclaim as we will panic.
1711 		 */
1712 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1713 		    !work_busy(&fs_info->preempt_reclaim_work) &&
1714 		    need_preemptive_reclaim(fs_info, space_info)) {
1715 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1716 						  orig_bytes, flush, "preempt");
1717 			queue_work(system_unbound_wq,
1718 				   &fs_info->preempt_reclaim_work);
1719 		}
1720 	}
1721 	spin_unlock(&space_info->lock);
1722 	if (!ret || !can_ticket(flush))
1723 		return ret;
1724 
1725 	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1726 				     orig_bytes, flush);
1727 }
1728 
1729 /*
1730  * Try to reserve metadata bytes from the block_rsv's space.
1731  *
1732  * @fs_info:    the filesystem
1733  * @block_rsv:  block_rsv we're allocating for
1734  * @orig_bytes: number of bytes we want
1735  * @flush:      whether or not we can flush to make our reservation
1736  *
1737  * This will reserve orig_bytes number of bytes from the space info associated
1738  * with the block_rsv.  If there is not enough space it will make an attempt to
1739  * flush out space to make room.  It will do this by flushing delalloc if
1740  * possible or committing the transaction.  If flush is 0 then no attempts to
1741  * regain reservations will be made and this will fail if there is not enough
1742  * space already.
1743  */
1744 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1745 				 struct btrfs_block_rsv *block_rsv,
1746 				 u64 orig_bytes,
1747 				 enum btrfs_reserve_flush_enum flush)
1748 {
1749 	int ret;
1750 
1751 	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1752 	if (ret == -ENOSPC) {
1753 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1754 					      block_rsv->space_info->flags,
1755 					      orig_bytes, 1);
1756 
1757 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1758 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1759 					      orig_bytes, 0);
1760 	}
1761 	return ret;
1762 }
1763 
1764 /*
1765  * Try to reserve data bytes for an allocation.
1766  *
1767  * @fs_info: the filesystem
1768  * @bytes:   number of bytes we need
1769  * @flush:   how we are allowed to flush
1770  *
1771  * This will reserve bytes from the data space info.  If there is not enough
1772  * space then we will attempt to flush space as specified by flush.
1773  */
1774 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1775 			     enum btrfs_reserve_flush_enum flush)
1776 {
1777 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1778 	int ret;
1779 
1780 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1781 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1782 	       flush == BTRFS_RESERVE_NO_FLUSH);
1783 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1784 
1785 	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1786 	if (ret == -ENOSPC) {
1787 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1788 					      data_sinfo->flags, bytes, 1);
1789 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1790 			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1791 	}
1792 	return ret;
1793 }
1794 
1795 /* Dump all the space infos when we abort a transaction due to ENOSPC. */
1796 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1797 {
1798 	struct btrfs_space_info *space_info;
1799 
1800 	btrfs_info(fs_info, "dumping space info:");
1801 	list_for_each_entry(space_info, &fs_info->space_info, list) {
1802 		spin_lock(&space_info->lock);
1803 		__btrfs_dump_space_info(fs_info, space_info);
1804 		spin_unlock(&space_info->lock);
1805 	}
1806 	dump_global_block_rsv(fs_info);
1807 }
1808 
1809 /*
1810  * Account the unused space of all the readonly block group in the space_info.
1811  * takes mirrors into account.
1812  */
1813 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1814 {
1815 	struct btrfs_block_group *block_group;
1816 	u64 free_bytes = 0;
1817 	int factor;
1818 
1819 	/* It's df, we don't care if it's racy */
1820 	if (list_empty(&sinfo->ro_bgs))
1821 		return 0;
1822 
1823 	spin_lock(&sinfo->lock);
1824 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1825 		spin_lock(&block_group->lock);
1826 
1827 		if (!block_group->ro) {
1828 			spin_unlock(&block_group->lock);
1829 			continue;
1830 		}
1831 
1832 		factor = btrfs_bg_type_to_factor(block_group->flags);
1833 		free_bytes += (block_group->length -
1834 			       block_group->used) * factor;
1835 
1836 		spin_unlock(&block_group->lock);
1837 	}
1838 	spin_unlock(&sinfo->lock);
1839 
1840 	return free_bytes;
1841 }
1842