xref: /openbmc/linux/fs/btrfs/space-info.c (revision 94ab3170)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 #include "zoned.h"
13 #include "fs.h"
14 #include "accessors.h"
15 #include "extent-tree.h"
16 
17 /*
18  * HOW DOES SPACE RESERVATION WORK
19  *
20  * If you want to know about delalloc specifically, there is a separate comment
21  * for that with the delalloc code.  This comment is about how the whole system
22  * works generally.
23  *
24  * BASIC CONCEPTS
25  *
26  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
27  *   There's a description of the bytes_ fields with the struct declaration,
28  *   refer to that for specifics on each field.  Suffice it to say that for
29  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
30  *   determining if there is space to make an allocation.  There is a space_info
31  *   for METADATA, SYSTEM, and DATA areas.
32  *
33  *   2) block_rsv's.  These are basically buckets for every different type of
34  *   metadata reservation we have.  You can see the comment in the block_rsv
35  *   code on the rules for each type, but generally block_rsv->reserved is how
36  *   much space is accounted for in space_info->bytes_may_use.
37  *
38  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
39  *   on the number of items we will want to modify.  We have one for changing
40  *   items, and one for inserting new items.  Generally we use these helpers to
41  *   determine the size of the block reserves, and then use the actual bytes
42  *   values to adjust the space_info counters.
43  *
44  * MAKING RESERVATIONS, THE NORMAL CASE
45  *
46  *   We call into either btrfs_reserve_data_bytes() or
47  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
48  *   num_bytes we want to reserve.
49  *
50  *   ->reserve
51  *     space_info->bytes_may_reserve += num_bytes
52  *
53  *   ->extent allocation
54  *     Call btrfs_add_reserved_bytes() which does
55  *     space_info->bytes_may_reserve -= num_bytes
56  *     space_info->bytes_reserved += extent_bytes
57  *
58  *   ->insert reference
59  *     Call btrfs_update_block_group() which does
60  *     space_info->bytes_reserved -= extent_bytes
61  *     space_info->bytes_used += extent_bytes
62  *
63  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
64  *
65  *   Assume we are unable to simply make the reservation because we do not have
66  *   enough space
67  *
68  *   -> __reserve_bytes
69  *     create a reserve_ticket with ->bytes set to our reservation, add it to
70  *     the tail of space_info->tickets, kick async flush thread
71  *
72  *   ->handle_reserve_ticket
73  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
74  *     on the ticket.
75  *
76  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
77  *     Flushes various things attempting to free up space.
78  *
79  *   -> btrfs_try_granting_tickets()
80  *     This is called by anything that either subtracts space from
81  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
82  *     space_info->total_bytes.  This loops through the ->priority_tickets and
83  *     then the ->tickets list checking to see if the reservation can be
84  *     completed.  If it can the space is added to space_info->bytes_may_use and
85  *     the ticket is woken up.
86  *
87  *   -> ticket wakeup
88  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
89  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
90  *     were interrupted.)
91  *
92  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
93  *
94  *   Same as the above, except we add ourselves to the
95  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
96  *   call flush_space() ourselves for the states that are safe for us to call
97  *   without deadlocking and hope for the best.
98  *
99  * THE FLUSHING STATES
100  *
101  *   Generally speaking we will have two cases for each state, a "nice" state
102  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
103  *   reduce the locking over head on the various trees, and even to keep from
104  *   doing any work at all in the case of delayed refs.  Each of these delayed
105  *   things however hold reservations, and so letting them run allows us to
106  *   reclaim space so we can make new reservations.
107  *
108  *   FLUSH_DELAYED_ITEMS
109  *     Every inode has a delayed item to update the inode.  Take a simple write
110  *     for example, we would update the inode item at write time to update the
111  *     mtime, and then again at finish_ordered_io() time in order to update the
112  *     isize or bytes.  We keep these delayed items to coalesce these operations
113  *     into a single operation done on demand.  These are an easy way to reclaim
114  *     metadata space.
115  *
116  *   FLUSH_DELALLOC
117  *     Look at the delalloc comment to get an idea of how much space is reserved
118  *     for delayed allocation.  We can reclaim some of this space simply by
119  *     running delalloc, but usually we need to wait for ordered extents to
120  *     reclaim the bulk of this space.
121  *
122  *   FLUSH_DELAYED_REFS
123  *     We have a block reserve for the outstanding delayed refs space, and every
124  *     delayed ref operation holds a reservation.  Running these is a quick way
125  *     to reclaim space, but we want to hold this until the end because COW can
126  *     churn a lot and we can avoid making some extent tree modifications if we
127  *     are able to delay for as long as possible.
128  *
129  *   ALLOC_CHUNK
130  *     We will skip this the first time through space reservation, because of
131  *     overcommit and we don't want to have a lot of useless metadata space when
132  *     our worst case reservations will likely never come true.
133  *
134  *   RUN_DELAYED_IPUTS
135  *     If we're freeing inodes we're likely freeing checksums, file extent
136  *     items, and extent tree items.  Loads of space could be freed up by these
137  *     operations, however they won't be usable until the transaction commits.
138  *
139  *   COMMIT_TRANS
140  *     This will commit the transaction.  Historically we had a lot of logic
141  *     surrounding whether or not we'd commit the transaction, but this waits born
142  *     out of a pre-tickets era where we could end up committing the transaction
143  *     thousands of times in a row without making progress.  Now thanks to our
144  *     ticketing system we know if we're not making progress and can error
145  *     everybody out after a few commits rather than burning the disk hoping for
146  *     a different answer.
147  *
148  * OVERCOMMIT
149  *
150  *   Because we hold so many reservations for metadata we will allow you to
151  *   reserve more space than is currently free in the currently allocate
152  *   metadata space.  This only happens with metadata, data does not allow
153  *   overcommitting.
154  *
155  *   You can see the current logic for when we allow overcommit in
156  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
157  *   is no unallocated space to be had, all reservations are kept within the
158  *   free space in the allocated metadata chunks.
159  *
160  *   Because of overcommitting, you generally want to use the
161  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
162  *   thing with or without extra unallocated space.
163  */
164 
165 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
166 			  bool may_use_included)
167 {
168 	ASSERT(s_info);
169 	return s_info->bytes_used + s_info->bytes_reserved +
170 		s_info->bytes_pinned + s_info->bytes_readonly +
171 		s_info->bytes_zone_unusable +
172 		(may_use_included ? s_info->bytes_may_use : 0);
173 }
174 
175 /*
176  * after adding space to the filesystem, we need to clear the full flags
177  * on all the space infos.
178  */
179 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
180 {
181 	struct list_head *head = &info->space_info;
182 	struct btrfs_space_info *found;
183 
184 	list_for_each_entry(found, head, list)
185 		found->full = 0;
186 }
187 
188 /*
189  * Block groups with more than this value (percents) of unusable space will be
190  * scheduled for background reclaim.
191  */
192 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH			(75)
193 
194 /*
195  * Calculate chunk size depending on volume type (regular or zoned).
196  */
197 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
198 {
199 	if (btrfs_is_zoned(fs_info))
200 		return fs_info->zone_size;
201 
202 	ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
203 
204 	if (flags & BTRFS_BLOCK_GROUP_DATA)
205 		return BTRFS_MAX_DATA_CHUNK_SIZE;
206 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
207 		return SZ_32M;
208 
209 	/* Handle BTRFS_BLOCK_GROUP_METADATA */
210 	if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
211 		return SZ_1G;
212 
213 	return SZ_256M;
214 }
215 
216 /*
217  * Update default chunk size.
218  */
219 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
220 					u64 chunk_size)
221 {
222 	WRITE_ONCE(space_info->chunk_size, chunk_size);
223 }
224 
225 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
226 {
227 
228 	struct btrfs_space_info *space_info;
229 	int i;
230 	int ret;
231 
232 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
233 	if (!space_info)
234 		return -ENOMEM;
235 
236 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
237 		INIT_LIST_HEAD(&space_info->block_groups[i]);
238 	init_rwsem(&space_info->groups_sem);
239 	spin_lock_init(&space_info->lock);
240 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
241 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
242 	INIT_LIST_HEAD(&space_info->ro_bgs);
243 	INIT_LIST_HEAD(&space_info->tickets);
244 	INIT_LIST_HEAD(&space_info->priority_tickets);
245 	space_info->clamp = 1;
246 	btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
247 
248 	if (btrfs_is_zoned(info))
249 		space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
250 
251 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
252 	if (ret)
253 		return ret;
254 
255 	list_add(&space_info->list, &info->space_info);
256 	if (flags & BTRFS_BLOCK_GROUP_DATA)
257 		info->data_sinfo = space_info;
258 
259 	return ret;
260 }
261 
262 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
263 {
264 	struct btrfs_super_block *disk_super;
265 	u64 features;
266 	u64 flags;
267 	int mixed = 0;
268 	int ret;
269 
270 	disk_super = fs_info->super_copy;
271 	if (!btrfs_super_root(disk_super))
272 		return -EINVAL;
273 
274 	features = btrfs_super_incompat_flags(disk_super);
275 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
276 		mixed = 1;
277 
278 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
279 	ret = create_space_info(fs_info, flags);
280 	if (ret)
281 		goto out;
282 
283 	if (mixed) {
284 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
285 		ret = create_space_info(fs_info, flags);
286 	} else {
287 		flags = BTRFS_BLOCK_GROUP_METADATA;
288 		ret = create_space_info(fs_info, flags);
289 		if (ret)
290 			goto out;
291 
292 		flags = BTRFS_BLOCK_GROUP_DATA;
293 		ret = create_space_info(fs_info, flags);
294 	}
295 out:
296 	return ret;
297 }
298 
299 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
300 				struct btrfs_block_group *block_group)
301 {
302 	struct btrfs_space_info *found;
303 	int factor, index;
304 
305 	factor = btrfs_bg_type_to_factor(block_group->flags);
306 
307 	found = btrfs_find_space_info(info, block_group->flags);
308 	ASSERT(found);
309 	spin_lock(&found->lock);
310 	found->total_bytes += block_group->length;
311 	found->disk_total += block_group->length * factor;
312 	found->bytes_used += block_group->used;
313 	found->disk_used += block_group->used * factor;
314 	found->bytes_readonly += block_group->bytes_super;
315 	btrfs_space_info_update_bytes_zone_unusable(info, found, block_group->zone_unusable);
316 	if (block_group->length > 0)
317 		found->full = 0;
318 	btrfs_try_granting_tickets(info, found);
319 	spin_unlock(&found->lock);
320 
321 	block_group->space_info = found;
322 
323 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
324 	down_write(&found->groups_sem);
325 	list_add_tail(&block_group->list, &found->block_groups[index]);
326 	up_write(&found->groups_sem);
327 }
328 
329 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
330 					       u64 flags)
331 {
332 	struct list_head *head = &info->space_info;
333 	struct btrfs_space_info *found;
334 
335 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
336 
337 	list_for_each_entry(found, head, list) {
338 		if (found->flags & flags)
339 			return found;
340 	}
341 	return NULL;
342 }
343 
344 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
345 			  struct btrfs_space_info *space_info,
346 			  enum btrfs_reserve_flush_enum flush)
347 {
348 	u64 profile;
349 	u64 avail;
350 	int factor;
351 
352 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
353 		profile = btrfs_system_alloc_profile(fs_info);
354 	else
355 		profile = btrfs_metadata_alloc_profile(fs_info);
356 
357 	avail = atomic64_read(&fs_info->free_chunk_space);
358 
359 	/*
360 	 * If we have dup, raid1 or raid10 then only half of the free
361 	 * space is actually usable.  For raid56, the space info used
362 	 * doesn't include the parity drive, so we don't have to
363 	 * change the math
364 	 */
365 	factor = btrfs_bg_type_to_factor(profile);
366 	avail = div_u64(avail, factor);
367 
368 	/*
369 	 * If we aren't flushing all things, let us overcommit up to
370 	 * 1/2th of the space. If we can flush, don't let us overcommit
371 	 * too much, let it overcommit up to 1/8 of the space.
372 	 */
373 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
374 		avail >>= 3;
375 	else
376 		avail >>= 1;
377 	return avail;
378 }
379 
380 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
381 			 struct btrfs_space_info *space_info, u64 bytes,
382 			 enum btrfs_reserve_flush_enum flush)
383 {
384 	u64 avail;
385 	u64 used;
386 
387 	/* Don't overcommit when in mixed mode */
388 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
389 		return 0;
390 
391 	used = btrfs_space_info_used(space_info, true);
392 	avail = calc_available_free_space(fs_info, space_info, flush);
393 
394 	if (used + bytes < space_info->total_bytes + avail)
395 		return 1;
396 	return 0;
397 }
398 
399 static void remove_ticket(struct btrfs_space_info *space_info,
400 			  struct reserve_ticket *ticket)
401 {
402 	if (!list_empty(&ticket->list)) {
403 		list_del_init(&ticket->list);
404 		ASSERT(space_info->reclaim_size >= ticket->bytes);
405 		space_info->reclaim_size -= ticket->bytes;
406 	}
407 }
408 
409 /*
410  * This is for space we already have accounted in space_info->bytes_may_use, so
411  * basically when we're returning space from block_rsv's.
412  */
413 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
414 				struct btrfs_space_info *space_info)
415 {
416 	struct list_head *head;
417 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
418 
419 	lockdep_assert_held(&space_info->lock);
420 
421 	head = &space_info->priority_tickets;
422 again:
423 	while (!list_empty(head)) {
424 		struct reserve_ticket *ticket;
425 		u64 used = btrfs_space_info_used(space_info, true);
426 
427 		ticket = list_first_entry(head, struct reserve_ticket, list);
428 
429 		/* Check and see if our ticket can be satisfied now. */
430 		if ((used + ticket->bytes <= space_info->total_bytes) ||
431 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
432 					 flush)) {
433 			btrfs_space_info_update_bytes_may_use(fs_info,
434 							      space_info,
435 							      ticket->bytes);
436 			remove_ticket(space_info, ticket);
437 			ticket->bytes = 0;
438 			space_info->tickets_id++;
439 			wake_up(&ticket->wait);
440 		} else {
441 			break;
442 		}
443 	}
444 
445 	if (head == &space_info->priority_tickets) {
446 		head = &space_info->tickets;
447 		flush = BTRFS_RESERVE_FLUSH_ALL;
448 		goto again;
449 	}
450 }
451 
452 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
453 do {									\
454 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
455 	spin_lock(&__rsv->lock);					\
456 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
457 		   __rsv->size, __rsv->reserved);			\
458 	spin_unlock(&__rsv->lock);					\
459 } while (0)
460 
461 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
462 {
463 	switch (space_info->flags) {
464 	case BTRFS_BLOCK_GROUP_SYSTEM:
465 		return "SYSTEM";
466 	case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
467 		return "DATA+METADATA";
468 	case BTRFS_BLOCK_GROUP_DATA:
469 		return "DATA";
470 	case BTRFS_BLOCK_GROUP_METADATA:
471 		return "METADATA";
472 	default:
473 		return "UNKNOWN";
474 	}
475 }
476 
477 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
478 {
479 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
480 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
481 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
482 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
483 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
484 }
485 
486 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
487 				    struct btrfs_space_info *info)
488 {
489 	const char *flag_str = space_info_flag_to_str(info);
490 	lockdep_assert_held(&info->lock);
491 
492 	/* The free space could be negative in case of overcommit */
493 	btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
494 		   flag_str,
495 		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
496 		   info->full ? "" : "not ");
497 	btrfs_info(fs_info,
498 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
499 		info->total_bytes, info->bytes_used, info->bytes_pinned,
500 		info->bytes_reserved, info->bytes_may_use,
501 		info->bytes_readonly, info->bytes_zone_unusable);
502 }
503 
504 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
505 			   struct btrfs_space_info *info, u64 bytes,
506 			   int dump_block_groups)
507 {
508 	struct btrfs_block_group *cache;
509 	u64 total_avail = 0;
510 	int index = 0;
511 
512 	spin_lock(&info->lock);
513 	__btrfs_dump_space_info(fs_info, info);
514 	dump_global_block_rsv(fs_info);
515 	spin_unlock(&info->lock);
516 
517 	if (!dump_block_groups)
518 		return;
519 
520 	down_read(&info->groups_sem);
521 again:
522 	list_for_each_entry(cache, &info->block_groups[index], list) {
523 		u64 avail;
524 
525 		spin_lock(&cache->lock);
526 		avail = cache->length - cache->used - cache->pinned -
527 			cache->reserved - cache->bytes_super - cache->zone_unusable;
528 		btrfs_info(fs_info,
529 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s",
530 			   cache->start, cache->length, cache->used, cache->pinned,
531 			   cache->reserved, cache->delalloc_bytes,
532 			   cache->bytes_super, cache->zone_unusable,
533 			   avail, cache->ro ? "[readonly]" : "");
534 		spin_unlock(&cache->lock);
535 		btrfs_dump_free_space(cache, bytes);
536 		total_avail += avail;
537 	}
538 	if (++index < BTRFS_NR_RAID_TYPES)
539 		goto again;
540 	up_read(&info->groups_sem);
541 
542 	btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail);
543 }
544 
545 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info,
546 					u64 to_reclaim)
547 {
548 	u64 bytes;
549 	u64 nr;
550 
551 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
552 	nr = div64_u64(to_reclaim, bytes);
553 	if (!nr)
554 		nr = 1;
555 	return nr;
556 }
557 
558 static inline u64 calc_delayed_refs_nr(const struct btrfs_fs_info *fs_info,
559 				       u64 to_reclaim)
560 {
561 	const u64 bytes = btrfs_calc_delayed_ref_bytes(fs_info, 1);
562 	u64 nr;
563 
564 	nr = div64_u64(to_reclaim, bytes);
565 	if (!nr)
566 		nr = 1;
567 	return nr;
568 }
569 
570 #define EXTENT_SIZE_PER_ITEM	SZ_256K
571 
572 /*
573  * shrink metadata reservation for delalloc
574  */
575 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
576 			    struct btrfs_space_info *space_info,
577 			    u64 to_reclaim, bool wait_ordered,
578 			    bool for_preempt)
579 {
580 	struct btrfs_trans_handle *trans;
581 	u64 delalloc_bytes;
582 	u64 ordered_bytes;
583 	u64 items;
584 	long time_left;
585 	int loops;
586 
587 	delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
588 	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
589 	if (delalloc_bytes == 0 && ordered_bytes == 0)
590 		return;
591 
592 	/* Calc the number of the pages we need flush for space reservation */
593 	if (to_reclaim == U64_MAX) {
594 		items = U64_MAX;
595 	} else {
596 		/*
597 		 * to_reclaim is set to however much metadata we need to
598 		 * reclaim, but reclaiming that much data doesn't really track
599 		 * exactly.  What we really want to do is reclaim full inode's
600 		 * worth of reservations, however that's not available to us
601 		 * here.  We will take a fraction of the delalloc bytes for our
602 		 * flushing loops and hope for the best.  Delalloc will expand
603 		 * the amount we write to cover an entire dirty extent, which
604 		 * will reclaim the metadata reservation for that range.  If
605 		 * it's not enough subsequent flush stages will be more
606 		 * aggressive.
607 		 */
608 		to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
609 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
610 	}
611 
612 	trans = current->journal_info;
613 
614 	/*
615 	 * If we are doing more ordered than delalloc we need to just wait on
616 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
617 	 * that likely won't give us the space back we need.
618 	 */
619 	if (ordered_bytes > delalloc_bytes && !for_preempt)
620 		wait_ordered = true;
621 
622 	loops = 0;
623 	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
624 		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
625 		long nr_pages = min_t(u64, temp, LONG_MAX);
626 		int async_pages;
627 
628 		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
629 
630 		/*
631 		 * We need to make sure any outstanding async pages are now
632 		 * processed before we continue.  This is because things like
633 		 * sync_inode() try to be smart and skip writing if the inode is
634 		 * marked clean.  We don't use filemap_fwrite for flushing
635 		 * because we want to control how many pages we write out at a
636 		 * time, thus this is the only safe way to make sure we've
637 		 * waited for outstanding compressed workers to have started
638 		 * their jobs and thus have ordered extents set up properly.
639 		 *
640 		 * This exists because we do not want to wait for each
641 		 * individual inode to finish its async work, we simply want to
642 		 * start the IO on everybody, and then come back here and wait
643 		 * for all of the async work to catch up.  Once we're done with
644 		 * that we know we'll have ordered extents for everything and we
645 		 * can decide if we wait for that or not.
646 		 *
647 		 * If we choose to replace this in the future, make absolutely
648 		 * sure that the proper waiting is being done in the async case,
649 		 * as there have been bugs in that area before.
650 		 */
651 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
652 		if (!async_pages)
653 			goto skip_async;
654 
655 		/*
656 		 * We don't want to wait forever, if we wrote less pages in this
657 		 * loop than we have outstanding, only wait for that number of
658 		 * pages, otherwise we can wait for all async pages to finish
659 		 * before continuing.
660 		 */
661 		if (async_pages > nr_pages)
662 			async_pages -= nr_pages;
663 		else
664 			async_pages = 0;
665 		wait_event(fs_info->async_submit_wait,
666 			   atomic_read(&fs_info->async_delalloc_pages) <=
667 			   async_pages);
668 skip_async:
669 		loops++;
670 		if (wait_ordered && !trans) {
671 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
672 		} else {
673 			time_left = schedule_timeout_killable(1);
674 			if (time_left)
675 				break;
676 		}
677 
678 		/*
679 		 * If we are for preemption we just want a one-shot of delalloc
680 		 * flushing so we can stop flushing if we decide we don't need
681 		 * to anymore.
682 		 */
683 		if (for_preempt)
684 			break;
685 
686 		spin_lock(&space_info->lock);
687 		if (list_empty(&space_info->tickets) &&
688 		    list_empty(&space_info->priority_tickets)) {
689 			spin_unlock(&space_info->lock);
690 			break;
691 		}
692 		spin_unlock(&space_info->lock);
693 
694 		delalloc_bytes = percpu_counter_sum_positive(
695 						&fs_info->delalloc_bytes);
696 		ordered_bytes = percpu_counter_sum_positive(
697 						&fs_info->ordered_bytes);
698 	}
699 }
700 
701 /*
702  * Try to flush some data based on policy set by @state. This is only advisory
703  * and may fail for various reasons. The caller is supposed to examine the
704  * state of @space_info to detect the outcome.
705  */
706 static void flush_space(struct btrfs_fs_info *fs_info,
707 		       struct btrfs_space_info *space_info, u64 num_bytes,
708 		       enum btrfs_flush_state state, bool for_preempt)
709 {
710 	struct btrfs_root *root = fs_info->tree_root;
711 	struct btrfs_trans_handle *trans;
712 	int nr;
713 	int ret = 0;
714 
715 	switch (state) {
716 	case FLUSH_DELAYED_ITEMS_NR:
717 	case FLUSH_DELAYED_ITEMS:
718 		if (state == FLUSH_DELAYED_ITEMS_NR)
719 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
720 		else
721 			nr = -1;
722 
723 		trans = btrfs_join_transaction_nostart(root);
724 		if (IS_ERR(trans)) {
725 			ret = PTR_ERR(trans);
726 			if (ret == -ENOENT)
727 				ret = 0;
728 			break;
729 		}
730 		ret = btrfs_run_delayed_items_nr(trans, nr);
731 		btrfs_end_transaction(trans);
732 		break;
733 	case FLUSH_DELALLOC:
734 	case FLUSH_DELALLOC_WAIT:
735 	case FLUSH_DELALLOC_FULL:
736 		if (state == FLUSH_DELALLOC_FULL)
737 			num_bytes = U64_MAX;
738 		shrink_delalloc(fs_info, space_info, num_bytes,
739 				state != FLUSH_DELALLOC, for_preempt);
740 		break;
741 	case FLUSH_DELAYED_REFS_NR:
742 	case FLUSH_DELAYED_REFS:
743 		trans = btrfs_join_transaction_nostart(root);
744 		if (IS_ERR(trans)) {
745 			ret = PTR_ERR(trans);
746 			if (ret == -ENOENT)
747 				ret = 0;
748 			break;
749 		}
750 		if (state == FLUSH_DELAYED_REFS_NR)
751 			nr = calc_delayed_refs_nr(fs_info, num_bytes);
752 		else
753 			nr = 0;
754 		btrfs_run_delayed_refs(trans, nr);
755 		btrfs_end_transaction(trans);
756 		break;
757 	case ALLOC_CHUNK:
758 	case ALLOC_CHUNK_FORCE:
759 		trans = btrfs_join_transaction(root);
760 		if (IS_ERR(trans)) {
761 			ret = PTR_ERR(trans);
762 			break;
763 		}
764 		ret = btrfs_chunk_alloc(trans,
765 				btrfs_get_alloc_profile(fs_info, space_info->flags),
766 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
767 					CHUNK_ALLOC_FORCE);
768 		btrfs_end_transaction(trans);
769 
770 		if (ret > 0 || ret == -ENOSPC)
771 			ret = 0;
772 		break;
773 	case RUN_DELAYED_IPUTS:
774 		/*
775 		 * If we have pending delayed iputs then we could free up a
776 		 * bunch of pinned space, so make sure we run the iputs before
777 		 * we do our pinned bytes check below.
778 		 */
779 		btrfs_run_delayed_iputs(fs_info);
780 		btrfs_wait_on_delayed_iputs(fs_info);
781 		break;
782 	case COMMIT_TRANS:
783 		ASSERT(current->journal_info == NULL);
784 		/*
785 		 * We don't want to start a new transaction, just attach to the
786 		 * current one or wait it fully commits in case its commit is
787 		 * happening at the moment. Note: we don't use a nostart join
788 		 * because that does not wait for a transaction to fully commit
789 		 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED).
790 		 */
791 		trans = btrfs_attach_transaction_barrier(root);
792 		if (IS_ERR(trans)) {
793 			ret = PTR_ERR(trans);
794 			if (ret == -ENOENT)
795 				ret = 0;
796 			break;
797 		}
798 		ret = btrfs_commit_transaction(trans);
799 		break;
800 	default:
801 		ret = -ENOSPC;
802 		break;
803 	}
804 
805 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
806 				ret, for_preempt);
807 	return;
808 }
809 
810 static inline u64
811 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
812 				 struct btrfs_space_info *space_info)
813 {
814 	u64 used;
815 	u64 avail;
816 	u64 to_reclaim = space_info->reclaim_size;
817 
818 	lockdep_assert_held(&space_info->lock);
819 
820 	avail = calc_available_free_space(fs_info, space_info,
821 					  BTRFS_RESERVE_FLUSH_ALL);
822 	used = btrfs_space_info_used(space_info, true);
823 
824 	/*
825 	 * We may be flushing because suddenly we have less space than we had
826 	 * before, and now we're well over-committed based on our current free
827 	 * space.  If that's the case add in our overage so we make sure to put
828 	 * appropriate pressure on the flushing state machine.
829 	 */
830 	if (space_info->total_bytes + avail < used)
831 		to_reclaim += used - (space_info->total_bytes + avail);
832 
833 	return to_reclaim;
834 }
835 
836 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
837 				    struct btrfs_space_info *space_info)
838 {
839 	const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv);
840 	u64 ordered, delalloc;
841 	u64 thresh;
842 	u64 used;
843 
844 	thresh = mult_perc(space_info->total_bytes, 90);
845 
846 	lockdep_assert_held(&space_info->lock);
847 
848 	/* If we're just plain full then async reclaim just slows us down. */
849 	if ((space_info->bytes_used + space_info->bytes_reserved +
850 	     global_rsv_size) >= thresh)
851 		return false;
852 
853 	used = space_info->bytes_may_use + space_info->bytes_pinned;
854 
855 	/* The total flushable belongs to the global rsv, don't flush. */
856 	if (global_rsv_size >= used)
857 		return false;
858 
859 	/*
860 	 * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
861 	 * that devoted to other reservations then there's no sense in flushing,
862 	 * we don't have a lot of things that need flushing.
863 	 */
864 	if (used - global_rsv_size <= SZ_128M)
865 		return false;
866 
867 	/*
868 	 * We have tickets queued, bail so we don't compete with the async
869 	 * flushers.
870 	 */
871 	if (space_info->reclaim_size)
872 		return false;
873 
874 	/*
875 	 * If we have over half of the free space occupied by reservations or
876 	 * pinned then we want to start flushing.
877 	 *
878 	 * We do not do the traditional thing here, which is to say
879 	 *
880 	 *   if (used >= ((total_bytes + avail) / 2))
881 	 *     return 1;
882 	 *
883 	 * because this doesn't quite work how we want.  If we had more than 50%
884 	 * of the space_info used by bytes_used and we had 0 available we'd just
885 	 * constantly run the background flusher.  Instead we want it to kick in
886 	 * if our reclaimable space exceeds our clamped free space.
887 	 *
888 	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
889 	 * the following:
890 	 *
891 	 * Amount of RAM        Minimum threshold       Maximum threshold
892 	 *
893 	 *        256GiB                     1GiB                  128GiB
894 	 *        128GiB                   512MiB                   64GiB
895 	 *         64GiB                   256MiB                   32GiB
896 	 *         32GiB                   128MiB                   16GiB
897 	 *         16GiB                    64MiB                    8GiB
898 	 *
899 	 * These are the range our thresholds will fall in, corresponding to how
900 	 * much delalloc we need for the background flusher to kick in.
901 	 */
902 
903 	thresh = calc_available_free_space(fs_info, space_info,
904 					   BTRFS_RESERVE_FLUSH_ALL);
905 	used = space_info->bytes_used + space_info->bytes_reserved +
906 	       space_info->bytes_readonly + global_rsv_size;
907 	if (used < space_info->total_bytes)
908 		thresh += space_info->total_bytes - used;
909 	thresh >>= space_info->clamp;
910 
911 	used = space_info->bytes_pinned;
912 
913 	/*
914 	 * If we have more ordered bytes than delalloc bytes then we're either
915 	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
916 	 * around.  Preemptive flushing is only useful in that it can free up
917 	 * space before tickets need to wait for things to finish.  In the case
918 	 * of ordered extents, preemptively waiting on ordered extents gets us
919 	 * nothing, if our reservations are tied up in ordered extents we'll
920 	 * simply have to slow down writers by forcing them to wait on ordered
921 	 * extents.
922 	 *
923 	 * In the case that ordered is larger than delalloc, only include the
924 	 * block reserves that we would actually be able to directly reclaim
925 	 * from.  In this case if we're heavy on metadata operations this will
926 	 * clearly be heavy enough to warrant preemptive flushing.  In the case
927 	 * of heavy DIO or ordered reservations, preemptive flushing will just
928 	 * waste time and cause us to slow down.
929 	 *
930 	 * We want to make sure we truly are maxed out on ordered however, so
931 	 * cut ordered in half, and if it's still higher than delalloc then we
932 	 * can keep flushing.  This is to avoid the case where we start
933 	 * flushing, and now delalloc == ordered and we stop preemptively
934 	 * flushing when we could still have several gigs of delalloc to flush.
935 	 */
936 	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
937 	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
938 	if (ordered >= delalloc)
939 		used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) +
940 			btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv);
941 	else
942 		used += space_info->bytes_may_use - global_rsv_size;
943 
944 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
945 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
946 }
947 
948 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
949 				  struct btrfs_space_info *space_info,
950 				  struct reserve_ticket *ticket)
951 {
952 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
953 	u64 min_bytes;
954 
955 	if (!ticket->steal)
956 		return false;
957 
958 	if (global_rsv->space_info != space_info)
959 		return false;
960 
961 	spin_lock(&global_rsv->lock);
962 	min_bytes = mult_perc(global_rsv->size, 10);
963 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
964 		spin_unlock(&global_rsv->lock);
965 		return false;
966 	}
967 	global_rsv->reserved -= ticket->bytes;
968 	remove_ticket(space_info, ticket);
969 	ticket->bytes = 0;
970 	wake_up(&ticket->wait);
971 	space_info->tickets_id++;
972 	if (global_rsv->reserved < global_rsv->size)
973 		global_rsv->full = 0;
974 	spin_unlock(&global_rsv->lock);
975 
976 	return true;
977 }
978 
979 /*
980  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
981  * @fs_info - fs_info for this fs
982  * @space_info - the space info we were flushing
983  *
984  * We call this when we've exhausted our flushing ability and haven't made
985  * progress in satisfying tickets.  The reservation code handles tickets in
986  * order, so if there is a large ticket first and then smaller ones we could
987  * very well satisfy the smaller tickets.  This will attempt to wake up any
988  * tickets in the list to catch this case.
989  *
990  * This function returns true if it was able to make progress by clearing out
991  * other tickets, or if it stumbles across a ticket that was smaller than the
992  * first ticket.
993  */
994 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
995 				   struct btrfs_space_info *space_info)
996 {
997 	struct reserve_ticket *ticket;
998 	u64 tickets_id = space_info->tickets_id;
999 	const bool aborted = BTRFS_FS_ERROR(fs_info);
1000 
1001 	trace_btrfs_fail_all_tickets(fs_info, space_info);
1002 
1003 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1004 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1005 		__btrfs_dump_space_info(fs_info, space_info);
1006 	}
1007 
1008 	while (!list_empty(&space_info->tickets) &&
1009 	       tickets_id == space_info->tickets_id) {
1010 		ticket = list_first_entry(&space_info->tickets,
1011 					  struct reserve_ticket, list);
1012 
1013 		if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1014 			return true;
1015 
1016 		if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1017 			btrfs_info(fs_info, "failing ticket with %llu bytes",
1018 				   ticket->bytes);
1019 
1020 		remove_ticket(space_info, ticket);
1021 		if (aborted)
1022 			ticket->error = -EIO;
1023 		else
1024 			ticket->error = -ENOSPC;
1025 		wake_up(&ticket->wait);
1026 
1027 		/*
1028 		 * We're just throwing tickets away, so more flushing may not
1029 		 * trip over btrfs_try_granting_tickets, so we need to call it
1030 		 * here to see if we can make progress with the next ticket in
1031 		 * the list.
1032 		 */
1033 		if (!aborted)
1034 			btrfs_try_granting_tickets(fs_info, space_info);
1035 	}
1036 	return (tickets_id != space_info->tickets_id);
1037 }
1038 
1039 /*
1040  * This is for normal flushers, we can wait all goddamned day if we want to.  We
1041  * will loop and continuously try to flush as long as we are making progress.
1042  * We count progress as clearing off tickets each time we have to loop.
1043  */
1044 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1045 {
1046 	struct btrfs_fs_info *fs_info;
1047 	struct btrfs_space_info *space_info;
1048 	u64 to_reclaim;
1049 	enum btrfs_flush_state flush_state;
1050 	int commit_cycles = 0;
1051 	u64 last_tickets_id;
1052 
1053 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1054 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1055 
1056 	spin_lock(&space_info->lock);
1057 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1058 	if (!to_reclaim) {
1059 		space_info->flush = 0;
1060 		spin_unlock(&space_info->lock);
1061 		return;
1062 	}
1063 	last_tickets_id = space_info->tickets_id;
1064 	spin_unlock(&space_info->lock);
1065 
1066 	flush_state = FLUSH_DELAYED_ITEMS_NR;
1067 	do {
1068 		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1069 		spin_lock(&space_info->lock);
1070 		if (list_empty(&space_info->tickets)) {
1071 			space_info->flush = 0;
1072 			spin_unlock(&space_info->lock);
1073 			return;
1074 		}
1075 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1076 							      space_info);
1077 		if (last_tickets_id == space_info->tickets_id) {
1078 			flush_state++;
1079 		} else {
1080 			last_tickets_id = space_info->tickets_id;
1081 			flush_state = FLUSH_DELAYED_ITEMS_NR;
1082 			if (commit_cycles)
1083 				commit_cycles--;
1084 		}
1085 
1086 		/*
1087 		 * We do not want to empty the system of delalloc unless we're
1088 		 * under heavy pressure, so allow one trip through the flushing
1089 		 * logic before we start doing a FLUSH_DELALLOC_FULL.
1090 		 */
1091 		if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1092 			flush_state++;
1093 
1094 		/*
1095 		 * We don't want to force a chunk allocation until we've tried
1096 		 * pretty hard to reclaim space.  Think of the case where we
1097 		 * freed up a bunch of space and so have a lot of pinned space
1098 		 * to reclaim.  We would rather use that than possibly create a
1099 		 * underutilized metadata chunk.  So if this is our first run
1100 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1101 		 * commit the transaction.  If nothing has changed the next go
1102 		 * around then we can force a chunk allocation.
1103 		 */
1104 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1105 			flush_state++;
1106 
1107 		if (flush_state > COMMIT_TRANS) {
1108 			commit_cycles++;
1109 			if (commit_cycles > 2) {
1110 				if (maybe_fail_all_tickets(fs_info, space_info)) {
1111 					flush_state = FLUSH_DELAYED_ITEMS_NR;
1112 					commit_cycles--;
1113 				} else {
1114 					space_info->flush = 0;
1115 				}
1116 			} else {
1117 				flush_state = FLUSH_DELAYED_ITEMS_NR;
1118 			}
1119 		}
1120 		spin_unlock(&space_info->lock);
1121 	} while (flush_state <= COMMIT_TRANS);
1122 }
1123 
1124 /*
1125  * This handles pre-flushing of metadata space before we get to the point that
1126  * we need to start blocking threads on tickets.  The logic here is different
1127  * from the other flush paths because it doesn't rely on tickets to tell us how
1128  * much we need to flush, instead it attempts to keep us below the 80% full
1129  * watermark of space by flushing whichever reservation pool is currently the
1130  * largest.
1131  */
1132 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1133 {
1134 	struct btrfs_fs_info *fs_info;
1135 	struct btrfs_space_info *space_info;
1136 	struct btrfs_block_rsv *delayed_block_rsv;
1137 	struct btrfs_block_rsv *delayed_refs_rsv;
1138 	struct btrfs_block_rsv *global_rsv;
1139 	struct btrfs_block_rsv *trans_rsv;
1140 	int loops = 0;
1141 
1142 	fs_info = container_of(work, struct btrfs_fs_info,
1143 			       preempt_reclaim_work);
1144 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1145 	delayed_block_rsv = &fs_info->delayed_block_rsv;
1146 	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1147 	global_rsv = &fs_info->global_block_rsv;
1148 	trans_rsv = &fs_info->trans_block_rsv;
1149 
1150 	spin_lock(&space_info->lock);
1151 	while (need_preemptive_reclaim(fs_info, space_info)) {
1152 		enum btrfs_flush_state flush;
1153 		u64 delalloc_size = 0;
1154 		u64 to_reclaim, block_rsv_size;
1155 		const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv);
1156 
1157 		loops++;
1158 
1159 		/*
1160 		 * We don't have a precise counter for the metadata being
1161 		 * reserved for delalloc, so we'll approximate it by subtracting
1162 		 * out the block rsv's space from the bytes_may_use.  If that
1163 		 * amount is higher than the individual reserves, then we can
1164 		 * assume it's tied up in delalloc reservations.
1165 		 */
1166 		block_rsv_size = global_rsv_size +
1167 			btrfs_block_rsv_reserved(delayed_block_rsv) +
1168 			btrfs_block_rsv_reserved(delayed_refs_rsv) +
1169 			btrfs_block_rsv_reserved(trans_rsv);
1170 		if (block_rsv_size < space_info->bytes_may_use)
1171 			delalloc_size = space_info->bytes_may_use - block_rsv_size;
1172 
1173 		/*
1174 		 * We don't want to include the global_rsv in our calculation,
1175 		 * because that's space we can't touch.  Subtract it from the
1176 		 * block_rsv_size for the next checks.
1177 		 */
1178 		block_rsv_size -= global_rsv_size;
1179 
1180 		/*
1181 		 * We really want to avoid flushing delalloc too much, as it
1182 		 * could result in poor allocation patterns, so only flush it if
1183 		 * it's larger than the rest of the pools combined.
1184 		 */
1185 		if (delalloc_size > block_rsv_size) {
1186 			to_reclaim = delalloc_size;
1187 			flush = FLUSH_DELALLOC;
1188 		} else if (space_info->bytes_pinned >
1189 			   (btrfs_block_rsv_reserved(delayed_block_rsv) +
1190 			    btrfs_block_rsv_reserved(delayed_refs_rsv))) {
1191 			to_reclaim = space_info->bytes_pinned;
1192 			flush = COMMIT_TRANS;
1193 		} else if (btrfs_block_rsv_reserved(delayed_block_rsv) >
1194 			   btrfs_block_rsv_reserved(delayed_refs_rsv)) {
1195 			to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv);
1196 			flush = FLUSH_DELAYED_ITEMS_NR;
1197 		} else {
1198 			to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv);
1199 			flush = FLUSH_DELAYED_REFS_NR;
1200 		}
1201 
1202 		spin_unlock(&space_info->lock);
1203 
1204 		/*
1205 		 * We don't want to reclaim everything, just a portion, so scale
1206 		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1207 		 * reclaim 1 items worth.
1208 		 */
1209 		to_reclaim >>= 2;
1210 		if (!to_reclaim)
1211 			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1212 		flush_space(fs_info, space_info, to_reclaim, flush, true);
1213 		cond_resched();
1214 		spin_lock(&space_info->lock);
1215 	}
1216 
1217 	/* We only went through once, back off our clamping. */
1218 	if (loops == 1 && !space_info->reclaim_size)
1219 		space_info->clamp = max(1, space_info->clamp - 1);
1220 	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1221 	spin_unlock(&space_info->lock);
1222 }
1223 
1224 /*
1225  * FLUSH_DELALLOC_WAIT:
1226  *   Space is freed from flushing delalloc in one of two ways.
1227  *
1228  *   1) compression is on and we allocate less space than we reserved
1229  *   2) we are overwriting existing space
1230  *
1231  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1232  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1233  *   length to ->bytes_reserved, and subtracts the reserved space from
1234  *   ->bytes_may_use.
1235  *
1236  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1237  *   extent in the range we are overwriting, which creates a delayed ref for
1238  *   that freed extent.  This however is not reclaimed until the transaction
1239  *   commits, thus the next stages.
1240  *
1241  * RUN_DELAYED_IPUTS
1242  *   If we are freeing inodes, we want to make sure all delayed iputs have
1243  *   completed, because they could have been on an inode with i_nlink == 0, and
1244  *   thus have been truncated and freed up space.  But again this space is not
1245  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1246  *   run and then the transaction must be committed.
1247  *
1248  * COMMIT_TRANS
1249  *   This is where we reclaim all of the pinned space generated by running the
1250  *   iputs
1251  *
1252  * ALLOC_CHUNK_FORCE
1253  *   For data we start with alloc chunk force, however we could have been full
1254  *   before, and then the transaction commit could have freed new block groups,
1255  *   so if we now have space to allocate do the force chunk allocation.
1256  */
1257 static const enum btrfs_flush_state data_flush_states[] = {
1258 	FLUSH_DELALLOC_FULL,
1259 	RUN_DELAYED_IPUTS,
1260 	COMMIT_TRANS,
1261 	ALLOC_CHUNK_FORCE,
1262 };
1263 
1264 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1265 {
1266 	struct btrfs_fs_info *fs_info;
1267 	struct btrfs_space_info *space_info;
1268 	u64 last_tickets_id;
1269 	enum btrfs_flush_state flush_state = 0;
1270 
1271 	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1272 	space_info = fs_info->data_sinfo;
1273 
1274 	spin_lock(&space_info->lock);
1275 	if (list_empty(&space_info->tickets)) {
1276 		space_info->flush = 0;
1277 		spin_unlock(&space_info->lock);
1278 		return;
1279 	}
1280 	last_tickets_id = space_info->tickets_id;
1281 	spin_unlock(&space_info->lock);
1282 
1283 	while (!space_info->full) {
1284 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1285 		spin_lock(&space_info->lock);
1286 		if (list_empty(&space_info->tickets)) {
1287 			space_info->flush = 0;
1288 			spin_unlock(&space_info->lock);
1289 			return;
1290 		}
1291 
1292 		/* Something happened, fail everything and bail. */
1293 		if (BTRFS_FS_ERROR(fs_info))
1294 			goto aborted_fs;
1295 		last_tickets_id = space_info->tickets_id;
1296 		spin_unlock(&space_info->lock);
1297 	}
1298 
1299 	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1300 		flush_space(fs_info, space_info, U64_MAX,
1301 			    data_flush_states[flush_state], false);
1302 		spin_lock(&space_info->lock);
1303 		if (list_empty(&space_info->tickets)) {
1304 			space_info->flush = 0;
1305 			spin_unlock(&space_info->lock);
1306 			return;
1307 		}
1308 
1309 		if (last_tickets_id == space_info->tickets_id) {
1310 			flush_state++;
1311 		} else {
1312 			last_tickets_id = space_info->tickets_id;
1313 			flush_state = 0;
1314 		}
1315 
1316 		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1317 			if (space_info->full) {
1318 				if (maybe_fail_all_tickets(fs_info, space_info))
1319 					flush_state = 0;
1320 				else
1321 					space_info->flush = 0;
1322 			} else {
1323 				flush_state = 0;
1324 			}
1325 
1326 			/* Something happened, fail everything and bail. */
1327 			if (BTRFS_FS_ERROR(fs_info))
1328 				goto aborted_fs;
1329 
1330 		}
1331 		spin_unlock(&space_info->lock);
1332 	}
1333 	return;
1334 
1335 aborted_fs:
1336 	maybe_fail_all_tickets(fs_info, space_info);
1337 	space_info->flush = 0;
1338 	spin_unlock(&space_info->lock);
1339 }
1340 
1341 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1342 {
1343 	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1344 	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1345 	INIT_WORK(&fs_info->preempt_reclaim_work,
1346 		  btrfs_preempt_reclaim_metadata_space);
1347 }
1348 
1349 static const enum btrfs_flush_state priority_flush_states[] = {
1350 	FLUSH_DELAYED_ITEMS_NR,
1351 	FLUSH_DELAYED_ITEMS,
1352 	ALLOC_CHUNK,
1353 };
1354 
1355 static const enum btrfs_flush_state evict_flush_states[] = {
1356 	FLUSH_DELAYED_ITEMS_NR,
1357 	FLUSH_DELAYED_ITEMS,
1358 	FLUSH_DELAYED_REFS_NR,
1359 	FLUSH_DELAYED_REFS,
1360 	FLUSH_DELALLOC,
1361 	FLUSH_DELALLOC_WAIT,
1362 	FLUSH_DELALLOC_FULL,
1363 	ALLOC_CHUNK,
1364 	COMMIT_TRANS,
1365 };
1366 
1367 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1368 				struct btrfs_space_info *space_info,
1369 				struct reserve_ticket *ticket,
1370 				const enum btrfs_flush_state *states,
1371 				int states_nr)
1372 {
1373 	u64 to_reclaim;
1374 	int flush_state = 0;
1375 
1376 	spin_lock(&space_info->lock);
1377 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1378 	/*
1379 	 * This is the priority reclaim path, so to_reclaim could be >0 still
1380 	 * because we may have only satisfied the priority tickets and still
1381 	 * left non priority tickets on the list.  We would then have
1382 	 * to_reclaim but ->bytes == 0.
1383 	 */
1384 	if (ticket->bytes == 0) {
1385 		spin_unlock(&space_info->lock);
1386 		return;
1387 	}
1388 
1389 	while (flush_state < states_nr) {
1390 		spin_unlock(&space_info->lock);
1391 		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1392 			    false);
1393 		flush_state++;
1394 		spin_lock(&space_info->lock);
1395 		if (ticket->bytes == 0) {
1396 			spin_unlock(&space_info->lock);
1397 			return;
1398 		}
1399 	}
1400 
1401 	/*
1402 	 * Attempt to steal from the global rsv if we can, except if the fs was
1403 	 * turned into error mode due to a transaction abort when flushing space
1404 	 * above, in that case fail with the abort error instead of returning
1405 	 * success to the caller if we can steal from the global rsv - this is
1406 	 * just to have caller fail immeditelly instead of later when trying to
1407 	 * modify the fs, making it easier to debug -ENOSPC problems.
1408 	 */
1409 	if (BTRFS_FS_ERROR(fs_info)) {
1410 		ticket->error = BTRFS_FS_ERROR(fs_info);
1411 		remove_ticket(space_info, ticket);
1412 	} else if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1413 		ticket->error = -ENOSPC;
1414 		remove_ticket(space_info, ticket);
1415 	}
1416 
1417 	/*
1418 	 * We must run try_granting_tickets here because we could be a large
1419 	 * ticket in front of a smaller ticket that can now be satisfied with
1420 	 * the available space.
1421 	 */
1422 	btrfs_try_granting_tickets(fs_info, space_info);
1423 	spin_unlock(&space_info->lock);
1424 }
1425 
1426 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1427 					struct btrfs_space_info *space_info,
1428 					struct reserve_ticket *ticket)
1429 {
1430 	spin_lock(&space_info->lock);
1431 
1432 	/* We could have been granted before we got here. */
1433 	if (ticket->bytes == 0) {
1434 		spin_unlock(&space_info->lock);
1435 		return;
1436 	}
1437 
1438 	while (!space_info->full) {
1439 		spin_unlock(&space_info->lock);
1440 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1441 		spin_lock(&space_info->lock);
1442 		if (ticket->bytes == 0) {
1443 			spin_unlock(&space_info->lock);
1444 			return;
1445 		}
1446 	}
1447 
1448 	ticket->error = -ENOSPC;
1449 	remove_ticket(space_info, ticket);
1450 	btrfs_try_granting_tickets(fs_info, space_info);
1451 	spin_unlock(&space_info->lock);
1452 }
1453 
1454 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1455 				struct btrfs_space_info *space_info,
1456 				struct reserve_ticket *ticket)
1457 
1458 {
1459 	DEFINE_WAIT(wait);
1460 	int ret = 0;
1461 
1462 	spin_lock(&space_info->lock);
1463 	while (ticket->bytes > 0 && ticket->error == 0) {
1464 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1465 		if (ret) {
1466 			/*
1467 			 * Delete us from the list. After we unlock the space
1468 			 * info, we don't want the async reclaim job to reserve
1469 			 * space for this ticket. If that would happen, then the
1470 			 * ticket's task would not known that space was reserved
1471 			 * despite getting an error, resulting in a space leak
1472 			 * (bytes_may_use counter of our space_info).
1473 			 */
1474 			remove_ticket(space_info, ticket);
1475 			ticket->error = -EINTR;
1476 			break;
1477 		}
1478 		spin_unlock(&space_info->lock);
1479 
1480 		schedule();
1481 
1482 		finish_wait(&ticket->wait, &wait);
1483 		spin_lock(&space_info->lock);
1484 	}
1485 	spin_unlock(&space_info->lock);
1486 }
1487 
1488 /*
1489  * Do the appropriate flushing and waiting for a ticket.
1490  *
1491  * @fs_info:    the filesystem
1492  * @space_info: space info for the reservation
1493  * @ticket:     ticket for the reservation
1494  * @start_ns:   timestamp when the reservation started
1495  * @orig_bytes: amount of bytes originally reserved
1496  * @flush:      how much we can flush
1497  *
1498  * This does the work of figuring out how to flush for the ticket, waiting for
1499  * the reservation, and returning the appropriate error if there is one.
1500  */
1501 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1502 				 struct btrfs_space_info *space_info,
1503 				 struct reserve_ticket *ticket,
1504 				 u64 start_ns, u64 orig_bytes,
1505 				 enum btrfs_reserve_flush_enum flush)
1506 {
1507 	int ret;
1508 
1509 	switch (flush) {
1510 	case BTRFS_RESERVE_FLUSH_DATA:
1511 	case BTRFS_RESERVE_FLUSH_ALL:
1512 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1513 		wait_reserve_ticket(fs_info, space_info, ticket);
1514 		break;
1515 	case BTRFS_RESERVE_FLUSH_LIMIT:
1516 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1517 						priority_flush_states,
1518 						ARRAY_SIZE(priority_flush_states));
1519 		break;
1520 	case BTRFS_RESERVE_FLUSH_EVICT:
1521 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1522 						evict_flush_states,
1523 						ARRAY_SIZE(evict_flush_states));
1524 		break;
1525 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1526 		priority_reclaim_data_space(fs_info, space_info, ticket);
1527 		break;
1528 	default:
1529 		ASSERT(0);
1530 		break;
1531 	}
1532 
1533 	ret = ticket->error;
1534 	ASSERT(list_empty(&ticket->list));
1535 	/*
1536 	 * Check that we can't have an error set if the reservation succeeded,
1537 	 * as that would confuse tasks and lead them to error out without
1538 	 * releasing reserved space (if an error happens the expectation is that
1539 	 * space wasn't reserved at all).
1540 	 */
1541 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1542 	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1543 				   start_ns, flush, ticket->error);
1544 	return ret;
1545 }
1546 
1547 /*
1548  * This returns true if this flush state will go through the ordinary flushing
1549  * code.
1550  */
1551 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1552 {
1553 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1554 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1555 }
1556 
1557 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1558 				       struct btrfs_space_info *space_info)
1559 {
1560 	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1561 	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1562 
1563 	/*
1564 	 * If we're heavy on ordered operations then clamping won't help us.  We
1565 	 * need to clamp specifically to keep up with dirty'ing buffered
1566 	 * writers, because there's not a 1:1 correlation of writing delalloc
1567 	 * and freeing space, like there is with flushing delayed refs or
1568 	 * delayed nodes.  If we're already more ordered than delalloc then
1569 	 * we're keeping up, otherwise we aren't and should probably clamp.
1570 	 */
1571 	if (ordered < delalloc)
1572 		space_info->clamp = min(space_info->clamp + 1, 8);
1573 }
1574 
1575 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1576 {
1577 	return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1578 		flush == BTRFS_RESERVE_FLUSH_EVICT);
1579 }
1580 
1581 /*
1582  * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1583  * fail as quickly as possible.
1584  */
1585 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1586 {
1587 	return (flush != BTRFS_RESERVE_NO_FLUSH &&
1588 		flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1589 }
1590 
1591 /*
1592  * Try to reserve bytes from the block_rsv's space.
1593  *
1594  * @fs_info:    the filesystem
1595  * @space_info: space info we want to allocate from
1596  * @orig_bytes: number of bytes we want
1597  * @flush:      whether or not we can flush to make our reservation
1598  *
1599  * This will reserve orig_bytes number of bytes from the space info associated
1600  * with the block_rsv.  If there is not enough space it will make an attempt to
1601  * flush out space to make room.  It will do this by flushing delalloc if
1602  * possible or committing the transaction.  If flush is 0 then no attempts to
1603  * regain reservations will be made and this will fail if there is not enough
1604  * space already.
1605  */
1606 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1607 			   struct btrfs_space_info *space_info, u64 orig_bytes,
1608 			   enum btrfs_reserve_flush_enum flush)
1609 {
1610 	struct work_struct *async_work;
1611 	struct reserve_ticket ticket;
1612 	u64 start_ns = 0;
1613 	u64 used;
1614 	int ret = -ENOSPC;
1615 	bool pending_tickets;
1616 
1617 	ASSERT(orig_bytes);
1618 	/*
1619 	 * If have a transaction handle (current->journal_info != NULL), then
1620 	 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor
1621 	 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those
1622 	 * flushing methods can trigger transaction commits.
1623 	 */
1624 	if (current->journal_info) {
1625 		/* One assert per line for easier debugging. */
1626 		ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL);
1627 		ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL);
1628 		ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT);
1629 	}
1630 
1631 	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1632 		async_work = &fs_info->async_data_reclaim_work;
1633 	else
1634 		async_work = &fs_info->async_reclaim_work;
1635 
1636 	spin_lock(&space_info->lock);
1637 	used = btrfs_space_info_used(space_info, true);
1638 
1639 	/*
1640 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1641 	 * generally handle ENOSPC in a different way, so treat them the same as
1642 	 * normal flushers when it comes to skipping pending tickets.
1643 	 */
1644 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1645 		pending_tickets = !list_empty(&space_info->tickets) ||
1646 			!list_empty(&space_info->priority_tickets);
1647 	else
1648 		pending_tickets = !list_empty(&space_info->priority_tickets);
1649 
1650 	/*
1651 	 * Carry on if we have enough space (short-circuit) OR call
1652 	 * can_overcommit() to ensure we can overcommit to continue.
1653 	 */
1654 	if (!pending_tickets &&
1655 	    ((used + orig_bytes <= space_info->total_bytes) ||
1656 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1657 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1658 						      orig_bytes);
1659 		ret = 0;
1660 	}
1661 
1662 	/*
1663 	 * Things are dire, we need to make a reservation so we don't abort.  We
1664 	 * will let this reservation go through as long as we have actual space
1665 	 * left to allocate for the block.
1666 	 */
1667 	if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1668 		used = btrfs_space_info_used(space_info, false);
1669 		if (used + orig_bytes <= space_info->total_bytes) {
1670 			btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1671 							      orig_bytes);
1672 			ret = 0;
1673 		}
1674 	}
1675 
1676 	/*
1677 	 * If we couldn't make a reservation then setup our reservation ticket
1678 	 * and kick the async worker if it's not already running.
1679 	 *
1680 	 * If we are a priority flusher then we just need to add our ticket to
1681 	 * the list and we will do our own flushing further down.
1682 	 */
1683 	if (ret && can_ticket(flush)) {
1684 		ticket.bytes = orig_bytes;
1685 		ticket.error = 0;
1686 		space_info->reclaim_size += ticket.bytes;
1687 		init_waitqueue_head(&ticket.wait);
1688 		ticket.steal = can_steal(flush);
1689 		if (trace_btrfs_reserve_ticket_enabled())
1690 			start_ns = ktime_get_ns();
1691 
1692 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1693 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1694 		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1695 			list_add_tail(&ticket.list, &space_info->tickets);
1696 			if (!space_info->flush) {
1697 				/*
1698 				 * We were forced to add a reserve ticket, so
1699 				 * our preemptive flushing is unable to keep
1700 				 * up.  Clamp down on the threshold for the
1701 				 * preemptive flushing in order to keep up with
1702 				 * the workload.
1703 				 */
1704 				maybe_clamp_preempt(fs_info, space_info);
1705 
1706 				space_info->flush = 1;
1707 				trace_btrfs_trigger_flush(fs_info,
1708 							  space_info->flags,
1709 							  orig_bytes, flush,
1710 							  "enospc");
1711 				queue_work(system_unbound_wq, async_work);
1712 			}
1713 		} else {
1714 			list_add_tail(&ticket.list,
1715 				      &space_info->priority_tickets);
1716 		}
1717 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1718 		/*
1719 		 * We will do the space reservation dance during log replay,
1720 		 * which means we won't have fs_info->fs_root set, so don't do
1721 		 * the async reclaim as we will panic.
1722 		 */
1723 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1724 		    !work_busy(&fs_info->preempt_reclaim_work) &&
1725 		    need_preemptive_reclaim(fs_info, space_info)) {
1726 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1727 						  orig_bytes, flush, "preempt");
1728 			queue_work(system_unbound_wq,
1729 				   &fs_info->preempt_reclaim_work);
1730 		}
1731 	}
1732 	spin_unlock(&space_info->lock);
1733 	if (!ret || !can_ticket(flush))
1734 		return ret;
1735 
1736 	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1737 				     orig_bytes, flush);
1738 }
1739 
1740 /*
1741  * Try to reserve metadata bytes from the block_rsv's space.
1742  *
1743  * @fs_info:    the filesystem
1744  * @block_rsv:  block_rsv we're allocating for
1745  * @orig_bytes: number of bytes we want
1746  * @flush:      whether or not we can flush to make our reservation
1747  *
1748  * This will reserve orig_bytes number of bytes from the space info associated
1749  * with the block_rsv.  If there is not enough space it will make an attempt to
1750  * flush out space to make room.  It will do this by flushing delalloc if
1751  * possible or committing the transaction.  If flush is 0 then no attempts to
1752  * regain reservations will be made and this will fail if there is not enough
1753  * space already.
1754  */
1755 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1756 				 struct btrfs_block_rsv *block_rsv,
1757 				 u64 orig_bytes,
1758 				 enum btrfs_reserve_flush_enum flush)
1759 {
1760 	int ret;
1761 
1762 	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1763 	if (ret == -ENOSPC) {
1764 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1765 					      block_rsv->space_info->flags,
1766 					      orig_bytes, 1);
1767 
1768 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1769 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1770 					      orig_bytes, 0);
1771 	}
1772 	return ret;
1773 }
1774 
1775 /*
1776  * Try to reserve data bytes for an allocation.
1777  *
1778  * @fs_info: the filesystem
1779  * @bytes:   number of bytes we need
1780  * @flush:   how we are allowed to flush
1781  *
1782  * This will reserve bytes from the data space info.  If there is not enough
1783  * space then we will attempt to flush space as specified by flush.
1784  */
1785 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1786 			     enum btrfs_reserve_flush_enum flush)
1787 {
1788 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1789 	int ret;
1790 
1791 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1792 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1793 	       flush == BTRFS_RESERVE_NO_FLUSH);
1794 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1795 
1796 	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1797 	if (ret == -ENOSPC) {
1798 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1799 					      data_sinfo->flags, bytes, 1);
1800 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1801 			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1802 	}
1803 	return ret;
1804 }
1805 
1806 /* Dump all the space infos when we abort a transaction due to ENOSPC. */
1807 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1808 {
1809 	struct btrfs_space_info *space_info;
1810 
1811 	btrfs_info(fs_info, "dumping space info:");
1812 	list_for_each_entry(space_info, &fs_info->space_info, list) {
1813 		spin_lock(&space_info->lock);
1814 		__btrfs_dump_space_info(fs_info, space_info);
1815 		spin_unlock(&space_info->lock);
1816 	}
1817 	dump_global_block_rsv(fs_info);
1818 }
1819 
1820 /*
1821  * Account the unused space of all the readonly block group in the space_info.
1822  * takes mirrors into account.
1823  */
1824 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1825 {
1826 	struct btrfs_block_group *block_group;
1827 	u64 free_bytes = 0;
1828 	int factor;
1829 
1830 	/* It's df, we don't care if it's racy */
1831 	if (list_empty(&sinfo->ro_bgs))
1832 		return 0;
1833 
1834 	spin_lock(&sinfo->lock);
1835 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1836 		spin_lock(&block_group->lock);
1837 
1838 		if (!block_group->ro) {
1839 			spin_unlock(&block_group->lock);
1840 			continue;
1841 		}
1842 
1843 		factor = btrfs_bg_type_to_factor(block_group->flags);
1844 		free_bytes += (block_group->length -
1845 			       block_group->used) * factor;
1846 
1847 		spin_unlock(&block_group->lock);
1848 	}
1849 	spin_unlock(&sinfo->lock);
1850 
1851 	return free_bytes;
1852 }
1853