xref: /openbmc/linux/fs/btrfs/space-info.c (revision 91e79a83)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     may_commit_transaction() is the ultimate arbiter on whether we commit the
137  *     transaction or not.  In order to avoid constantly churning we do all the
138  *     above flushing first and then commit the transaction as the last resort.
139  *     However we need to take into account things like pinned space that would
140  *     be freed, plus any delayed work we may not have gotten rid of in the case
141  *     of metadata.
142  *
143  * OVERCOMMIT
144  *
145  *   Because we hold so many reservations for metadata we will allow you to
146  *   reserve more space than is currently free in the currently allocate
147  *   metadata space.  This only happens with metadata, data does not allow
148  *   overcommitting.
149  *
150  *   You can see the current logic for when we allow overcommit in
151  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
152  *   is no unallocated space to be had, all reservations are kept within the
153  *   free space in the allocated metadata chunks.
154  *
155  *   Because of overcommitting, you generally want to use the
156  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
157  *   thing with or without extra unallocated space.
158  */
159 
160 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
161 			  bool may_use_included)
162 {
163 	ASSERT(s_info);
164 	return s_info->bytes_used + s_info->bytes_reserved +
165 		s_info->bytes_pinned + s_info->bytes_readonly +
166 		(may_use_included ? s_info->bytes_may_use : 0);
167 }
168 
169 /*
170  * after adding space to the filesystem, we need to clear the full flags
171  * on all the space infos.
172  */
173 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
174 {
175 	struct list_head *head = &info->space_info;
176 	struct btrfs_space_info *found;
177 
178 	list_for_each_entry(found, head, list)
179 		found->full = 0;
180 }
181 
182 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
183 {
184 
185 	struct btrfs_space_info *space_info;
186 	int i;
187 	int ret;
188 
189 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
190 	if (!space_info)
191 		return -ENOMEM;
192 
193 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
194 				 GFP_KERNEL);
195 	if (ret) {
196 		kfree(space_info);
197 		return ret;
198 	}
199 
200 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
201 		INIT_LIST_HEAD(&space_info->block_groups[i]);
202 	init_rwsem(&space_info->groups_sem);
203 	spin_lock_init(&space_info->lock);
204 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
205 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
206 	INIT_LIST_HEAD(&space_info->ro_bgs);
207 	INIT_LIST_HEAD(&space_info->tickets);
208 	INIT_LIST_HEAD(&space_info->priority_tickets);
209 
210 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
211 	if (ret)
212 		return ret;
213 
214 	list_add(&space_info->list, &info->space_info);
215 	if (flags & BTRFS_BLOCK_GROUP_DATA)
216 		info->data_sinfo = space_info;
217 
218 	return ret;
219 }
220 
221 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
222 {
223 	struct btrfs_super_block *disk_super;
224 	u64 features;
225 	u64 flags;
226 	int mixed = 0;
227 	int ret;
228 
229 	disk_super = fs_info->super_copy;
230 	if (!btrfs_super_root(disk_super))
231 		return -EINVAL;
232 
233 	features = btrfs_super_incompat_flags(disk_super);
234 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
235 		mixed = 1;
236 
237 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
238 	ret = create_space_info(fs_info, flags);
239 	if (ret)
240 		goto out;
241 
242 	if (mixed) {
243 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
244 		ret = create_space_info(fs_info, flags);
245 	} else {
246 		flags = BTRFS_BLOCK_GROUP_METADATA;
247 		ret = create_space_info(fs_info, flags);
248 		if (ret)
249 			goto out;
250 
251 		flags = BTRFS_BLOCK_GROUP_DATA;
252 		ret = create_space_info(fs_info, flags);
253 	}
254 out:
255 	return ret;
256 }
257 
258 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
259 			     u64 total_bytes, u64 bytes_used,
260 			     u64 bytes_readonly,
261 			     struct btrfs_space_info **space_info)
262 {
263 	struct btrfs_space_info *found;
264 	int factor;
265 
266 	factor = btrfs_bg_type_to_factor(flags);
267 
268 	found = btrfs_find_space_info(info, flags);
269 	ASSERT(found);
270 	spin_lock(&found->lock);
271 	found->total_bytes += total_bytes;
272 	found->disk_total += total_bytes * factor;
273 	found->bytes_used += bytes_used;
274 	found->disk_used += bytes_used * factor;
275 	found->bytes_readonly += bytes_readonly;
276 	if (total_bytes > 0)
277 		found->full = 0;
278 	btrfs_try_granting_tickets(info, found);
279 	spin_unlock(&found->lock);
280 	*space_info = found;
281 }
282 
283 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
284 					       u64 flags)
285 {
286 	struct list_head *head = &info->space_info;
287 	struct btrfs_space_info *found;
288 
289 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
290 
291 	list_for_each_entry(found, head, list) {
292 		if (found->flags & flags)
293 			return found;
294 	}
295 	return NULL;
296 }
297 
298 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
299 			  struct btrfs_space_info *space_info,
300 			  enum btrfs_reserve_flush_enum flush)
301 {
302 	u64 profile;
303 	u64 avail;
304 	int factor;
305 
306 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
307 		profile = btrfs_system_alloc_profile(fs_info);
308 	else
309 		profile = btrfs_metadata_alloc_profile(fs_info);
310 
311 	avail = atomic64_read(&fs_info->free_chunk_space);
312 
313 	/*
314 	 * If we have dup, raid1 or raid10 then only half of the free
315 	 * space is actually usable.  For raid56, the space info used
316 	 * doesn't include the parity drive, so we don't have to
317 	 * change the math
318 	 */
319 	factor = btrfs_bg_type_to_factor(profile);
320 	avail = div_u64(avail, factor);
321 
322 	/*
323 	 * If we aren't flushing all things, let us overcommit up to
324 	 * 1/2th of the space. If we can flush, don't let us overcommit
325 	 * too much, let it overcommit up to 1/8 of the space.
326 	 */
327 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
328 		avail >>= 3;
329 	else
330 		avail >>= 1;
331 	return avail;
332 }
333 
334 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
335 			 struct btrfs_space_info *space_info, u64 bytes,
336 			 enum btrfs_reserve_flush_enum flush)
337 {
338 	u64 avail;
339 	u64 used;
340 
341 	/* Don't overcommit when in mixed mode */
342 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
343 		return 0;
344 
345 	used = btrfs_space_info_used(space_info, true);
346 	avail = calc_available_free_space(fs_info, space_info, flush);
347 
348 	if (used + bytes < space_info->total_bytes + avail)
349 		return 1;
350 	return 0;
351 }
352 
353 static void remove_ticket(struct btrfs_space_info *space_info,
354 			  struct reserve_ticket *ticket)
355 {
356 	if (!list_empty(&ticket->list)) {
357 		list_del_init(&ticket->list);
358 		ASSERT(space_info->reclaim_size >= ticket->bytes);
359 		space_info->reclaim_size -= ticket->bytes;
360 	}
361 }
362 
363 /*
364  * This is for space we already have accounted in space_info->bytes_may_use, so
365  * basically when we're returning space from block_rsv's.
366  */
367 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
368 				struct btrfs_space_info *space_info)
369 {
370 	struct list_head *head;
371 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
372 
373 	lockdep_assert_held(&space_info->lock);
374 
375 	head = &space_info->priority_tickets;
376 again:
377 	while (!list_empty(head)) {
378 		struct reserve_ticket *ticket;
379 		u64 used = btrfs_space_info_used(space_info, true);
380 
381 		ticket = list_first_entry(head, struct reserve_ticket, list);
382 
383 		/* Check and see if our ticket can be satisified now. */
384 		if ((used + ticket->bytes <= space_info->total_bytes) ||
385 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
386 					 flush)) {
387 			btrfs_space_info_update_bytes_may_use(fs_info,
388 							      space_info,
389 							      ticket->bytes);
390 			remove_ticket(space_info, ticket);
391 			ticket->bytes = 0;
392 			space_info->tickets_id++;
393 			wake_up(&ticket->wait);
394 		} else {
395 			break;
396 		}
397 	}
398 
399 	if (head == &space_info->priority_tickets) {
400 		head = &space_info->tickets;
401 		flush = BTRFS_RESERVE_FLUSH_ALL;
402 		goto again;
403 	}
404 }
405 
406 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
407 do {									\
408 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
409 	spin_lock(&__rsv->lock);					\
410 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
411 		   __rsv->size, __rsv->reserved);			\
412 	spin_unlock(&__rsv->lock);					\
413 } while (0)
414 
415 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
416 				    struct btrfs_space_info *info)
417 {
418 	lockdep_assert_held(&info->lock);
419 
420 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
421 		   info->flags,
422 		   info->total_bytes - btrfs_space_info_used(info, true),
423 		   info->full ? "" : "not ");
424 	btrfs_info(fs_info,
425 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
426 		info->total_bytes, info->bytes_used, info->bytes_pinned,
427 		info->bytes_reserved, info->bytes_may_use,
428 		info->bytes_readonly);
429 
430 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
431 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
432 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
433 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
434 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
435 
436 }
437 
438 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
439 			   struct btrfs_space_info *info, u64 bytes,
440 			   int dump_block_groups)
441 {
442 	struct btrfs_block_group *cache;
443 	int index = 0;
444 
445 	spin_lock(&info->lock);
446 	__btrfs_dump_space_info(fs_info, info);
447 	spin_unlock(&info->lock);
448 
449 	if (!dump_block_groups)
450 		return;
451 
452 	down_read(&info->groups_sem);
453 again:
454 	list_for_each_entry(cache, &info->block_groups[index], list) {
455 		spin_lock(&cache->lock);
456 		btrfs_info(fs_info,
457 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
458 			cache->start, cache->length, cache->used, cache->pinned,
459 			cache->reserved, cache->ro ? "[readonly]" : "");
460 		spin_unlock(&cache->lock);
461 		btrfs_dump_free_space(cache, bytes);
462 	}
463 	if (++index < BTRFS_NR_RAID_TYPES)
464 		goto again;
465 	up_read(&info->groups_sem);
466 }
467 
468 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
469 					u64 to_reclaim)
470 {
471 	u64 bytes;
472 	u64 nr;
473 
474 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
475 	nr = div64_u64(to_reclaim, bytes);
476 	if (!nr)
477 		nr = 1;
478 	return nr;
479 }
480 
481 #define EXTENT_SIZE_PER_ITEM	SZ_256K
482 
483 /*
484  * shrink metadata reservation for delalloc
485  */
486 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
487 			    struct btrfs_space_info *space_info,
488 			    u64 to_reclaim, bool wait_ordered)
489 {
490 	struct btrfs_trans_handle *trans;
491 	u64 delalloc_bytes;
492 	u64 dio_bytes;
493 	u64 items;
494 	long time_left;
495 	int loops;
496 
497 	/* Calc the number of the pages we need flush for space reservation */
498 	if (to_reclaim == U64_MAX) {
499 		items = U64_MAX;
500 	} else {
501 		/*
502 		 * to_reclaim is set to however much metadata we need to
503 		 * reclaim, but reclaiming that much data doesn't really track
504 		 * exactly, so increase the amount to reclaim by 2x in order to
505 		 * make sure we're flushing enough delalloc to hopefully reclaim
506 		 * some metadata reservations.
507 		 */
508 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
509 		to_reclaim = items * EXTENT_SIZE_PER_ITEM;
510 	}
511 
512 	trans = (struct btrfs_trans_handle *)current->journal_info;
513 
514 	delalloc_bytes = percpu_counter_sum_positive(
515 						&fs_info->delalloc_bytes);
516 	dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
517 	if (delalloc_bytes == 0 && dio_bytes == 0) {
518 		if (trans)
519 			return;
520 		if (wait_ordered)
521 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
522 		return;
523 	}
524 
525 	/*
526 	 * If we are doing more ordered than delalloc we need to just wait on
527 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
528 	 * that likely won't give us the space back we need.
529 	 */
530 	if (dio_bytes > delalloc_bytes)
531 		wait_ordered = true;
532 
533 	loops = 0;
534 	while ((delalloc_bytes || dio_bytes) && loops < 3) {
535 		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
536 		long nr_pages = min_t(u64, temp, LONG_MAX);
537 
538 		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
539 
540 		loops++;
541 		if (wait_ordered && !trans) {
542 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
543 		} else {
544 			time_left = schedule_timeout_killable(1);
545 			if (time_left)
546 				break;
547 		}
548 
549 		spin_lock(&space_info->lock);
550 		if (list_empty(&space_info->tickets) &&
551 		    list_empty(&space_info->priority_tickets)) {
552 			spin_unlock(&space_info->lock);
553 			break;
554 		}
555 		spin_unlock(&space_info->lock);
556 
557 		delalloc_bytes = percpu_counter_sum_positive(
558 						&fs_info->delalloc_bytes);
559 		dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
560 	}
561 }
562 
563 /**
564  * Possibly commit the transaction if its ok to
565  *
566  * @fs_info:    the filesystem
567  * @space_info: space_info we are checking for commit, either data or metadata
568  *
569  * This will check to make sure that committing the transaction will actually
570  * get us somewhere and then commit the transaction if it does.  Otherwise it
571  * will return -ENOSPC.
572  */
573 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
574 				  struct btrfs_space_info *space_info)
575 {
576 	struct reserve_ticket *ticket = NULL;
577 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
578 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
579 	struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
580 	struct btrfs_trans_handle *trans;
581 	u64 reclaim_bytes = 0;
582 	u64 bytes_needed = 0;
583 	u64 cur_free_bytes = 0;
584 
585 	trans = (struct btrfs_trans_handle *)current->journal_info;
586 	if (trans)
587 		return -EAGAIN;
588 
589 	spin_lock(&space_info->lock);
590 	cur_free_bytes = btrfs_space_info_used(space_info, true);
591 	if (cur_free_bytes < space_info->total_bytes)
592 		cur_free_bytes = space_info->total_bytes - cur_free_bytes;
593 	else
594 		cur_free_bytes = 0;
595 
596 	if (!list_empty(&space_info->priority_tickets))
597 		ticket = list_first_entry(&space_info->priority_tickets,
598 					  struct reserve_ticket, list);
599 	else if (!list_empty(&space_info->tickets))
600 		ticket = list_first_entry(&space_info->tickets,
601 					  struct reserve_ticket, list);
602 	if (ticket)
603 		bytes_needed = ticket->bytes;
604 
605 	if (bytes_needed > cur_free_bytes)
606 		bytes_needed -= cur_free_bytes;
607 	else
608 		bytes_needed = 0;
609 	spin_unlock(&space_info->lock);
610 
611 	if (!bytes_needed)
612 		return 0;
613 
614 	trans = btrfs_join_transaction(fs_info->extent_root);
615 	if (IS_ERR(trans))
616 		return PTR_ERR(trans);
617 
618 	/*
619 	 * See if there is enough pinned space to make this reservation, or if
620 	 * we have block groups that are going to be freed, allowing us to
621 	 * possibly do a chunk allocation the next loop through.
622 	 */
623 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
624 	    __percpu_counter_compare(&space_info->total_bytes_pinned,
625 				     bytes_needed,
626 				     BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
627 		goto commit;
628 
629 	/*
630 	 * See if there is some space in the delayed insertion reserve for this
631 	 * reservation.  If the space_info's don't match (like for DATA or
632 	 * SYSTEM) then just go enospc, reclaiming this space won't recover any
633 	 * space to satisfy those reservations.
634 	 */
635 	if (space_info != delayed_rsv->space_info)
636 		goto enospc;
637 
638 	spin_lock(&delayed_rsv->lock);
639 	reclaim_bytes += delayed_rsv->reserved;
640 	spin_unlock(&delayed_rsv->lock);
641 
642 	spin_lock(&delayed_refs_rsv->lock);
643 	reclaim_bytes += delayed_refs_rsv->reserved;
644 	spin_unlock(&delayed_refs_rsv->lock);
645 
646 	spin_lock(&trans_rsv->lock);
647 	reclaim_bytes += trans_rsv->reserved;
648 	spin_unlock(&trans_rsv->lock);
649 
650 	if (reclaim_bytes >= bytes_needed)
651 		goto commit;
652 	bytes_needed -= reclaim_bytes;
653 
654 	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
655 				   bytes_needed,
656 				   BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
657 		goto enospc;
658 
659 commit:
660 	return btrfs_commit_transaction(trans);
661 enospc:
662 	btrfs_end_transaction(trans);
663 	return -ENOSPC;
664 }
665 
666 /*
667  * Try to flush some data based on policy set by @state. This is only advisory
668  * and may fail for various reasons. The caller is supposed to examine the
669  * state of @space_info to detect the outcome.
670  */
671 static void flush_space(struct btrfs_fs_info *fs_info,
672 		       struct btrfs_space_info *space_info, u64 num_bytes,
673 		       enum btrfs_flush_state state)
674 {
675 	struct btrfs_root *root = fs_info->extent_root;
676 	struct btrfs_trans_handle *trans;
677 	int nr;
678 	int ret = 0;
679 
680 	switch (state) {
681 	case FLUSH_DELAYED_ITEMS_NR:
682 	case FLUSH_DELAYED_ITEMS:
683 		if (state == FLUSH_DELAYED_ITEMS_NR)
684 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
685 		else
686 			nr = -1;
687 
688 		trans = btrfs_join_transaction(root);
689 		if (IS_ERR(trans)) {
690 			ret = PTR_ERR(trans);
691 			break;
692 		}
693 		ret = btrfs_run_delayed_items_nr(trans, nr);
694 		btrfs_end_transaction(trans);
695 		break;
696 	case FLUSH_DELALLOC:
697 	case FLUSH_DELALLOC_WAIT:
698 		shrink_delalloc(fs_info, space_info, num_bytes,
699 				state == FLUSH_DELALLOC_WAIT);
700 		break;
701 	case FLUSH_DELAYED_REFS_NR:
702 	case FLUSH_DELAYED_REFS:
703 		trans = btrfs_join_transaction(root);
704 		if (IS_ERR(trans)) {
705 			ret = PTR_ERR(trans);
706 			break;
707 		}
708 		if (state == FLUSH_DELAYED_REFS_NR)
709 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
710 		else
711 			nr = 0;
712 		btrfs_run_delayed_refs(trans, nr);
713 		btrfs_end_transaction(trans);
714 		break;
715 	case ALLOC_CHUNK:
716 	case ALLOC_CHUNK_FORCE:
717 		trans = btrfs_join_transaction(root);
718 		if (IS_ERR(trans)) {
719 			ret = PTR_ERR(trans);
720 			break;
721 		}
722 		ret = btrfs_chunk_alloc(trans,
723 				btrfs_get_alloc_profile(fs_info, space_info->flags),
724 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
725 					CHUNK_ALLOC_FORCE);
726 		btrfs_end_transaction(trans);
727 		if (ret > 0 || ret == -ENOSPC)
728 			ret = 0;
729 		break;
730 	case RUN_DELAYED_IPUTS:
731 		/*
732 		 * If we have pending delayed iputs then we could free up a
733 		 * bunch of pinned space, so make sure we run the iputs before
734 		 * we do our pinned bytes check below.
735 		 */
736 		btrfs_run_delayed_iputs(fs_info);
737 		btrfs_wait_on_delayed_iputs(fs_info);
738 		break;
739 	case COMMIT_TRANS:
740 		ret = may_commit_transaction(fs_info, space_info);
741 		break;
742 	default:
743 		ret = -ENOSPC;
744 		break;
745 	}
746 
747 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
748 				ret);
749 	return;
750 }
751 
752 static inline u64
753 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
754 				 struct btrfs_space_info *space_info)
755 {
756 	u64 used;
757 	u64 avail;
758 	u64 expected;
759 	u64 to_reclaim = space_info->reclaim_size;
760 
761 	lockdep_assert_held(&space_info->lock);
762 
763 	avail = calc_available_free_space(fs_info, space_info,
764 					  BTRFS_RESERVE_FLUSH_ALL);
765 	used = btrfs_space_info_used(space_info, true);
766 
767 	/*
768 	 * We may be flushing because suddenly we have less space than we had
769 	 * before, and now we're well over-committed based on our current free
770 	 * space.  If that's the case add in our overage so we make sure to put
771 	 * appropriate pressure on the flushing state machine.
772 	 */
773 	if (space_info->total_bytes + avail < used)
774 		to_reclaim += used - (space_info->total_bytes + avail);
775 
776 	if (to_reclaim)
777 		return to_reclaim;
778 
779 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
780 	if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
781 				 BTRFS_RESERVE_FLUSH_ALL))
782 		return 0;
783 
784 	used = btrfs_space_info_used(space_info, true);
785 
786 	if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
787 				 BTRFS_RESERVE_FLUSH_ALL))
788 		expected = div_factor_fine(space_info->total_bytes, 95);
789 	else
790 		expected = div_factor_fine(space_info->total_bytes, 90);
791 
792 	if (used > expected)
793 		to_reclaim = used - expected;
794 	else
795 		to_reclaim = 0;
796 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
797 				     space_info->bytes_reserved);
798 	return to_reclaim;
799 }
800 
801 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
802 					struct btrfs_space_info *space_info,
803 					u64 used)
804 {
805 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
806 
807 	/* If we're just plain full then async reclaim just slows us down. */
808 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
809 		return 0;
810 
811 	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
812 		return 0;
813 
814 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
815 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
816 }
817 
818 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
819 				  struct btrfs_space_info *space_info,
820 				  struct reserve_ticket *ticket)
821 {
822 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
823 	u64 min_bytes;
824 
825 	if (global_rsv->space_info != space_info)
826 		return false;
827 
828 	spin_lock(&global_rsv->lock);
829 	min_bytes = div_factor(global_rsv->size, 1);
830 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
831 		spin_unlock(&global_rsv->lock);
832 		return false;
833 	}
834 	global_rsv->reserved -= ticket->bytes;
835 	remove_ticket(space_info, ticket);
836 	ticket->bytes = 0;
837 	wake_up(&ticket->wait);
838 	space_info->tickets_id++;
839 	if (global_rsv->reserved < global_rsv->size)
840 		global_rsv->full = 0;
841 	spin_unlock(&global_rsv->lock);
842 
843 	return true;
844 }
845 
846 /*
847  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
848  * @fs_info - fs_info for this fs
849  * @space_info - the space info we were flushing
850  *
851  * We call this when we've exhausted our flushing ability and haven't made
852  * progress in satisfying tickets.  The reservation code handles tickets in
853  * order, so if there is a large ticket first and then smaller ones we could
854  * very well satisfy the smaller tickets.  This will attempt to wake up any
855  * tickets in the list to catch this case.
856  *
857  * This function returns true if it was able to make progress by clearing out
858  * other tickets, or if it stumbles across a ticket that was smaller than the
859  * first ticket.
860  */
861 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
862 				   struct btrfs_space_info *space_info)
863 {
864 	struct reserve_ticket *ticket;
865 	u64 tickets_id = space_info->tickets_id;
866 	u64 first_ticket_bytes = 0;
867 
868 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
869 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
870 		__btrfs_dump_space_info(fs_info, space_info);
871 	}
872 
873 	while (!list_empty(&space_info->tickets) &&
874 	       tickets_id == space_info->tickets_id) {
875 		ticket = list_first_entry(&space_info->tickets,
876 					  struct reserve_ticket, list);
877 
878 		if (ticket->steal &&
879 		    steal_from_global_rsv(fs_info, space_info, ticket))
880 			return true;
881 
882 		/*
883 		 * may_commit_transaction will avoid committing the transaction
884 		 * if it doesn't feel like the space reclaimed by the commit
885 		 * would result in the ticket succeeding.  However if we have a
886 		 * smaller ticket in the queue it may be small enough to be
887 		 * satisified by committing the transaction, so if any
888 		 * subsequent ticket is smaller than the first ticket go ahead
889 		 * and send us back for another loop through the enospc flushing
890 		 * code.
891 		 */
892 		if (first_ticket_bytes == 0)
893 			first_ticket_bytes = ticket->bytes;
894 		else if (first_ticket_bytes > ticket->bytes)
895 			return true;
896 
897 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
898 			btrfs_info(fs_info, "failing ticket with %llu bytes",
899 				   ticket->bytes);
900 
901 		remove_ticket(space_info, ticket);
902 		ticket->error = -ENOSPC;
903 		wake_up(&ticket->wait);
904 
905 		/*
906 		 * We're just throwing tickets away, so more flushing may not
907 		 * trip over btrfs_try_granting_tickets, so we need to call it
908 		 * here to see if we can make progress with the next ticket in
909 		 * the list.
910 		 */
911 		btrfs_try_granting_tickets(fs_info, space_info);
912 	}
913 	return (tickets_id != space_info->tickets_id);
914 }
915 
916 /*
917  * This is for normal flushers, we can wait all goddamned day if we want to.  We
918  * will loop and continuously try to flush as long as we are making progress.
919  * We count progress as clearing off tickets each time we have to loop.
920  */
921 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
922 {
923 	struct btrfs_fs_info *fs_info;
924 	struct btrfs_space_info *space_info;
925 	u64 to_reclaim;
926 	enum btrfs_flush_state flush_state;
927 	int commit_cycles = 0;
928 	u64 last_tickets_id;
929 
930 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
931 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
932 
933 	spin_lock(&space_info->lock);
934 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
935 	if (!to_reclaim) {
936 		space_info->flush = 0;
937 		spin_unlock(&space_info->lock);
938 		return;
939 	}
940 	last_tickets_id = space_info->tickets_id;
941 	spin_unlock(&space_info->lock);
942 
943 	flush_state = FLUSH_DELAYED_ITEMS_NR;
944 	do {
945 		flush_space(fs_info, space_info, to_reclaim, flush_state);
946 		spin_lock(&space_info->lock);
947 		if (list_empty(&space_info->tickets)) {
948 			space_info->flush = 0;
949 			spin_unlock(&space_info->lock);
950 			return;
951 		}
952 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
953 							      space_info);
954 		if (last_tickets_id == space_info->tickets_id) {
955 			flush_state++;
956 		} else {
957 			last_tickets_id = space_info->tickets_id;
958 			flush_state = FLUSH_DELAYED_ITEMS_NR;
959 			if (commit_cycles)
960 				commit_cycles--;
961 		}
962 
963 		/*
964 		 * We don't want to force a chunk allocation until we've tried
965 		 * pretty hard to reclaim space.  Think of the case where we
966 		 * freed up a bunch of space and so have a lot of pinned space
967 		 * to reclaim.  We would rather use that than possibly create a
968 		 * underutilized metadata chunk.  So if this is our first run
969 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
970 		 * commit the transaction.  If nothing has changed the next go
971 		 * around then we can force a chunk allocation.
972 		 */
973 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
974 			flush_state++;
975 
976 		if (flush_state > COMMIT_TRANS) {
977 			commit_cycles++;
978 			if (commit_cycles > 2) {
979 				if (maybe_fail_all_tickets(fs_info, space_info)) {
980 					flush_state = FLUSH_DELAYED_ITEMS_NR;
981 					commit_cycles--;
982 				} else {
983 					space_info->flush = 0;
984 				}
985 			} else {
986 				flush_state = FLUSH_DELAYED_ITEMS_NR;
987 			}
988 		}
989 		spin_unlock(&space_info->lock);
990 	} while (flush_state <= COMMIT_TRANS);
991 }
992 
993 /*
994  * FLUSH_DELALLOC_WAIT:
995  *   Space is freed from flushing delalloc in one of two ways.
996  *
997  *   1) compression is on and we allocate less space than we reserved
998  *   2) we are overwriting existing space
999  *
1000  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1001  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1002  *   length to ->bytes_reserved, and subtracts the reserved space from
1003  *   ->bytes_may_use.
1004  *
1005  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1006  *   extent in the range we are overwriting, which creates a delayed ref for
1007  *   that freed extent.  This however is not reclaimed until the transaction
1008  *   commits, thus the next stages.
1009  *
1010  * RUN_DELAYED_IPUTS
1011  *   If we are freeing inodes, we want to make sure all delayed iputs have
1012  *   completed, because they could have been on an inode with i_nlink == 0, and
1013  *   thus have been truncated and freed up space.  But again this space is not
1014  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1015  *   run and then the transaction must be committed.
1016  *
1017  * FLUSH_DELAYED_REFS
1018  *   The above two cases generate delayed refs that will affect
1019  *   ->total_bytes_pinned.  However this counter can be inconsistent with
1020  *   reality if there are outstanding delayed refs.  This is because we adjust
1021  *   the counter based solely on the current set of delayed refs and disregard
1022  *   any on-disk state which might include more refs.  So for example, if we
1023  *   have an extent with 2 references, but we only drop 1, we'll see that there
1024  *   is a negative delayed ref count for the extent and assume that the space
1025  *   will be freed, and thus increase ->total_bytes_pinned.
1026  *
1027  *   Running the delayed refs gives us the actual real view of what will be
1028  *   freed at the transaction commit time.  This stage will not actually free
1029  *   space for us, it just makes sure that may_commit_transaction() has all of
1030  *   the information it needs to make the right decision.
1031  *
1032  * COMMIT_TRANS
1033  *   This is where we reclaim all of the pinned space generated by the previous
1034  *   two stages.  We will not commit the transaction if we don't think we're
1035  *   likely to satisfy our request, which means if our current free space +
1036  *   total_bytes_pinned < reservation we will not commit.  This is why the
1037  *   previous states are actually important, to make sure we know for sure
1038  *   whether committing the transaction will allow us to make progress.
1039  *
1040  * ALLOC_CHUNK_FORCE
1041  *   For data we start with alloc chunk force, however we could have been full
1042  *   before, and then the transaction commit could have freed new block groups,
1043  *   so if we now have space to allocate do the force chunk allocation.
1044  */
1045 static const enum btrfs_flush_state data_flush_states[] = {
1046 	FLUSH_DELALLOC_WAIT,
1047 	RUN_DELAYED_IPUTS,
1048 	FLUSH_DELAYED_REFS,
1049 	COMMIT_TRANS,
1050 	ALLOC_CHUNK_FORCE,
1051 };
1052 
1053 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1054 {
1055 	struct btrfs_fs_info *fs_info;
1056 	struct btrfs_space_info *space_info;
1057 	u64 last_tickets_id;
1058 	enum btrfs_flush_state flush_state = 0;
1059 
1060 	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1061 	space_info = fs_info->data_sinfo;
1062 
1063 	spin_lock(&space_info->lock);
1064 	if (list_empty(&space_info->tickets)) {
1065 		space_info->flush = 0;
1066 		spin_unlock(&space_info->lock);
1067 		return;
1068 	}
1069 	last_tickets_id = space_info->tickets_id;
1070 	spin_unlock(&space_info->lock);
1071 
1072 	while (!space_info->full) {
1073 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1074 		spin_lock(&space_info->lock);
1075 		if (list_empty(&space_info->tickets)) {
1076 			space_info->flush = 0;
1077 			spin_unlock(&space_info->lock);
1078 			return;
1079 		}
1080 		last_tickets_id = space_info->tickets_id;
1081 		spin_unlock(&space_info->lock);
1082 	}
1083 
1084 	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1085 		flush_space(fs_info, space_info, U64_MAX,
1086 			    data_flush_states[flush_state]);
1087 		spin_lock(&space_info->lock);
1088 		if (list_empty(&space_info->tickets)) {
1089 			space_info->flush = 0;
1090 			spin_unlock(&space_info->lock);
1091 			return;
1092 		}
1093 
1094 		if (last_tickets_id == space_info->tickets_id) {
1095 			flush_state++;
1096 		} else {
1097 			last_tickets_id = space_info->tickets_id;
1098 			flush_state = 0;
1099 		}
1100 
1101 		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1102 			if (space_info->full) {
1103 				if (maybe_fail_all_tickets(fs_info, space_info))
1104 					flush_state = 0;
1105 				else
1106 					space_info->flush = 0;
1107 			} else {
1108 				flush_state = 0;
1109 			}
1110 		}
1111 		spin_unlock(&space_info->lock);
1112 	}
1113 }
1114 
1115 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1116 {
1117 	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1118 	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1119 }
1120 
1121 static const enum btrfs_flush_state priority_flush_states[] = {
1122 	FLUSH_DELAYED_ITEMS_NR,
1123 	FLUSH_DELAYED_ITEMS,
1124 	ALLOC_CHUNK,
1125 };
1126 
1127 static const enum btrfs_flush_state evict_flush_states[] = {
1128 	FLUSH_DELAYED_ITEMS_NR,
1129 	FLUSH_DELAYED_ITEMS,
1130 	FLUSH_DELAYED_REFS_NR,
1131 	FLUSH_DELAYED_REFS,
1132 	FLUSH_DELALLOC,
1133 	FLUSH_DELALLOC_WAIT,
1134 	ALLOC_CHUNK,
1135 	COMMIT_TRANS,
1136 };
1137 
1138 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1139 				struct btrfs_space_info *space_info,
1140 				struct reserve_ticket *ticket,
1141 				const enum btrfs_flush_state *states,
1142 				int states_nr)
1143 {
1144 	u64 to_reclaim;
1145 	int flush_state;
1146 
1147 	spin_lock(&space_info->lock);
1148 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1149 	if (!to_reclaim) {
1150 		spin_unlock(&space_info->lock);
1151 		return;
1152 	}
1153 	spin_unlock(&space_info->lock);
1154 
1155 	flush_state = 0;
1156 	do {
1157 		flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
1158 		flush_state++;
1159 		spin_lock(&space_info->lock);
1160 		if (ticket->bytes == 0) {
1161 			spin_unlock(&space_info->lock);
1162 			return;
1163 		}
1164 		spin_unlock(&space_info->lock);
1165 	} while (flush_state < states_nr);
1166 }
1167 
1168 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1169 					struct btrfs_space_info *space_info,
1170 					struct reserve_ticket *ticket)
1171 {
1172 	while (!space_info->full) {
1173 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1174 		spin_lock(&space_info->lock);
1175 		if (ticket->bytes == 0) {
1176 			spin_unlock(&space_info->lock);
1177 			return;
1178 		}
1179 		spin_unlock(&space_info->lock);
1180 	}
1181 }
1182 
1183 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1184 				struct btrfs_space_info *space_info,
1185 				struct reserve_ticket *ticket)
1186 
1187 {
1188 	DEFINE_WAIT(wait);
1189 	int ret = 0;
1190 
1191 	spin_lock(&space_info->lock);
1192 	while (ticket->bytes > 0 && ticket->error == 0) {
1193 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1194 		if (ret) {
1195 			/*
1196 			 * Delete us from the list. After we unlock the space
1197 			 * info, we don't want the async reclaim job to reserve
1198 			 * space for this ticket. If that would happen, then the
1199 			 * ticket's task would not known that space was reserved
1200 			 * despite getting an error, resulting in a space leak
1201 			 * (bytes_may_use counter of our space_info).
1202 			 */
1203 			remove_ticket(space_info, ticket);
1204 			ticket->error = -EINTR;
1205 			break;
1206 		}
1207 		spin_unlock(&space_info->lock);
1208 
1209 		schedule();
1210 
1211 		finish_wait(&ticket->wait, &wait);
1212 		spin_lock(&space_info->lock);
1213 	}
1214 	spin_unlock(&space_info->lock);
1215 }
1216 
1217 /**
1218  * Do the appropriate flushing and waiting for a ticket
1219  *
1220  * @fs_info:    the filesystem
1221  * @space_info: space info for the reservation
1222  * @ticket:     ticket for the reservation
1223  * @flush:      how much we can flush
1224  *
1225  * This does the work of figuring out how to flush for the ticket, waiting for
1226  * the reservation, and returning the appropriate error if there is one.
1227  */
1228 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1229 				 struct btrfs_space_info *space_info,
1230 				 struct reserve_ticket *ticket,
1231 				 enum btrfs_reserve_flush_enum flush)
1232 {
1233 	int ret;
1234 
1235 	switch (flush) {
1236 	case BTRFS_RESERVE_FLUSH_DATA:
1237 	case BTRFS_RESERVE_FLUSH_ALL:
1238 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1239 		wait_reserve_ticket(fs_info, space_info, ticket);
1240 		break;
1241 	case BTRFS_RESERVE_FLUSH_LIMIT:
1242 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1243 						priority_flush_states,
1244 						ARRAY_SIZE(priority_flush_states));
1245 		break;
1246 	case BTRFS_RESERVE_FLUSH_EVICT:
1247 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1248 						evict_flush_states,
1249 						ARRAY_SIZE(evict_flush_states));
1250 		break;
1251 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1252 		priority_reclaim_data_space(fs_info, space_info, ticket);
1253 		break;
1254 	default:
1255 		ASSERT(0);
1256 		break;
1257 	}
1258 
1259 	spin_lock(&space_info->lock);
1260 	ret = ticket->error;
1261 	if (ticket->bytes || ticket->error) {
1262 		/*
1263 		 * We were a priority ticket, so we need to delete ourselves
1264 		 * from the list.  Because we could have other priority tickets
1265 		 * behind us that require less space, run
1266 		 * btrfs_try_granting_tickets() to see if their reservations can
1267 		 * now be made.
1268 		 */
1269 		if (!list_empty(&ticket->list)) {
1270 			remove_ticket(space_info, ticket);
1271 			btrfs_try_granting_tickets(fs_info, space_info);
1272 		}
1273 
1274 		if (!ret)
1275 			ret = -ENOSPC;
1276 	}
1277 	spin_unlock(&space_info->lock);
1278 	ASSERT(list_empty(&ticket->list));
1279 	/*
1280 	 * Check that we can't have an error set if the reservation succeeded,
1281 	 * as that would confuse tasks and lead them to error out without
1282 	 * releasing reserved space (if an error happens the expectation is that
1283 	 * space wasn't reserved at all).
1284 	 */
1285 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1286 	return ret;
1287 }
1288 
1289 /*
1290  * This returns true if this flush state will go through the ordinary flushing
1291  * code.
1292  */
1293 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1294 {
1295 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1296 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1297 }
1298 
1299 /**
1300  * Try to reserve bytes from the block_rsv's space
1301  *
1302  * @fs_info:    the filesystem
1303  * @space_info: space info we want to allocate from
1304  * @orig_bytes: number of bytes we want
1305  * @flush:      whether or not we can flush to make our reservation
1306  *
1307  * This will reserve orig_bytes number of bytes from the space info associated
1308  * with the block_rsv.  If there is not enough space it will make an attempt to
1309  * flush out space to make room.  It will do this by flushing delalloc if
1310  * possible or committing the transaction.  If flush is 0 then no attempts to
1311  * regain reservations will be made and this will fail if there is not enough
1312  * space already.
1313  */
1314 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1315 			   struct btrfs_space_info *space_info, u64 orig_bytes,
1316 			   enum btrfs_reserve_flush_enum flush)
1317 {
1318 	struct work_struct *async_work;
1319 	struct reserve_ticket ticket;
1320 	u64 used;
1321 	int ret = 0;
1322 	bool pending_tickets;
1323 
1324 	ASSERT(orig_bytes);
1325 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1326 
1327 	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1328 		async_work = &fs_info->async_data_reclaim_work;
1329 	else
1330 		async_work = &fs_info->async_reclaim_work;
1331 
1332 	spin_lock(&space_info->lock);
1333 	ret = -ENOSPC;
1334 	used = btrfs_space_info_used(space_info, true);
1335 
1336 	/*
1337 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1338 	 * generally handle ENOSPC in a different way, so treat them the same as
1339 	 * normal flushers when it comes to skipping pending tickets.
1340 	 */
1341 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1342 		pending_tickets = !list_empty(&space_info->tickets) ||
1343 			!list_empty(&space_info->priority_tickets);
1344 	else
1345 		pending_tickets = !list_empty(&space_info->priority_tickets);
1346 
1347 	/*
1348 	 * Carry on if we have enough space (short-circuit) OR call
1349 	 * can_overcommit() to ensure we can overcommit to continue.
1350 	 */
1351 	if (!pending_tickets &&
1352 	    ((used + orig_bytes <= space_info->total_bytes) ||
1353 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1354 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1355 						      orig_bytes);
1356 		ret = 0;
1357 	}
1358 
1359 	/*
1360 	 * If we couldn't make a reservation then setup our reservation ticket
1361 	 * and kick the async worker if it's not already running.
1362 	 *
1363 	 * If we are a priority flusher then we just need to add our ticket to
1364 	 * the list and we will do our own flushing further down.
1365 	 */
1366 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1367 		ticket.bytes = orig_bytes;
1368 		ticket.error = 0;
1369 		space_info->reclaim_size += ticket.bytes;
1370 		init_waitqueue_head(&ticket.wait);
1371 		ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1372 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1373 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1374 		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1375 			list_add_tail(&ticket.list, &space_info->tickets);
1376 			if (!space_info->flush) {
1377 				space_info->flush = 1;
1378 				trace_btrfs_trigger_flush(fs_info,
1379 							  space_info->flags,
1380 							  orig_bytes, flush,
1381 							  "enospc");
1382 				queue_work(system_unbound_wq, async_work);
1383 			}
1384 		} else {
1385 			list_add_tail(&ticket.list,
1386 				      &space_info->priority_tickets);
1387 		}
1388 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1389 		used += orig_bytes;
1390 		/*
1391 		 * We will do the space reservation dance during log replay,
1392 		 * which means we won't have fs_info->fs_root set, so don't do
1393 		 * the async reclaim as we will panic.
1394 		 */
1395 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1396 		    need_do_async_reclaim(fs_info, space_info, used) &&
1397 		    !work_busy(&fs_info->async_reclaim_work)) {
1398 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1399 						  orig_bytes, flush, "preempt");
1400 			queue_work(system_unbound_wq,
1401 				   &fs_info->async_reclaim_work);
1402 		}
1403 	}
1404 	spin_unlock(&space_info->lock);
1405 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1406 		return ret;
1407 
1408 	return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1409 }
1410 
1411 /**
1412  * Trye to reserve metadata bytes from the block_rsv's space
1413  *
1414  * @root:       the root we're allocating for
1415  * @block_rsv:  block_rsv we're allocating for
1416  * @orig_bytes: number of bytes we want
1417  * @flush:      whether or not we can flush to make our reservation
1418  *
1419  * This will reserve orig_bytes number of bytes from the space info associated
1420  * with the block_rsv.  If there is not enough space it will make an attempt to
1421  * flush out space to make room.  It will do this by flushing delalloc if
1422  * possible or committing the transaction.  If flush is 0 then no attempts to
1423  * regain reservations will be made and this will fail if there is not enough
1424  * space already.
1425  */
1426 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1427 				 struct btrfs_block_rsv *block_rsv,
1428 				 u64 orig_bytes,
1429 				 enum btrfs_reserve_flush_enum flush)
1430 {
1431 	struct btrfs_fs_info *fs_info = root->fs_info;
1432 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1433 	int ret;
1434 
1435 	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1436 	if (ret == -ENOSPC &&
1437 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1438 		if (block_rsv != global_rsv &&
1439 		    !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1440 			ret = 0;
1441 	}
1442 	if (ret == -ENOSPC) {
1443 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1444 					      block_rsv->space_info->flags,
1445 					      orig_bytes, 1);
1446 
1447 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1448 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1449 					      orig_bytes, 0);
1450 	}
1451 	return ret;
1452 }
1453 
1454 /**
1455  * Try to reserve data bytes for an allocation
1456  *
1457  * @fs_info: the filesystem
1458  * @bytes:   number of bytes we need
1459  * @flush:   how we are allowed to flush
1460  *
1461  * This will reserve bytes from the data space info.  If there is not enough
1462  * space then we will attempt to flush space as specified by flush.
1463  */
1464 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1465 			     enum btrfs_reserve_flush_enum flush)
1466 {
1467 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1468 	int ret;
1469 
1470 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1471 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1472 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1473 
1474 	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1475 	if (ret == -ENOSPC) {
1476 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1477 					      data_sinfo->flags, bytes, 1);
1478 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1479 			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1480 	}
1481 	return ret;
1482 }
1483