1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "space-info.h" 6 #include "sysfs.h" 7 #include "volumes.h" 8 #include "free-space-cache.h" 9 #include "ordered-data.h" 10 #include "transaction.h" 11 #include "block-group.h" 12 #include "zoned.h" 13 #include "fs.h" 14 #include "accessors.h" 15 #include "extent-tree.h" 16 17 /* 18 * HOW DOES SPACE RESERVATION WORK 19 * 20 * If you want to know about delalloc specifically, there is a separate comment 21 * for that with the delalloc code. This comment is about how the whole system 22 * works generally. 23 * 24 * BASIC CONCEPTS 25 * 26 * 1) space_info. This is the ultimate arbiter of how much space we can use. 27 * There's a description of the bytes_ fields with the struct declaration, 28 * refer to that for specifics on each field. Suffice it to say that for 29 * reservations we care about total_bytes - SUM(space_info->bytes_) when 30 * determining if there is space to make an allocation. There is a space_info 31 * for METADATA, SYSTEM, and DATA areas. 32 * 33 * 2) block_rsv's. These are basically buckets for every different type of 34 * metadata reservation we have. You can see the comment in the block_rsv 35 * code on the rules for each type, but generally block_rsv->reserved is how 36 * much space is accounted for in space_info->bytes_may_use. 37 * 38 * 3) btrfs_calc*_size. These are the worst case calculations we used based 39 * on the number of items we will want to modify. We have one for changing 40 * items, and one for inserting new items. Generally we use these helpers to 41 * determine the size of the block reserves, and then use the actual bytes 42 * values to adjust the space_info counters. 43 * 44 * MAKING RESERVATIONS, THE NORMAL CASE 45 * 46 * We call into either btrfs_reserve_data_bytes() or 47 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with 48 * num_bytes we want to reserve. 49 * 50 * ->reserve 51 * space_info->bytes_may_reserve += num_bytes 52 * 53 * ->extent allocation 54 * Call btrfs_add_reserved_bytes() which does 55 * space_info->bytes_may_reserve -= num_bytes 56 * space_info->bytes_reserved += extent_bytes 57 * 58 * ->insert reference 59 * Call btrfs_update_block_group() which does 60 * space_info->bytes_reserved -= extent_bytes 61 * space_info->bytes_used += extent_bytes 62 * 63 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) 64 * 65 * Assume we are unable to simply make the reservation because we do not have 66 * enough space 67 * 68 * -> __reserve_bytes 69 * create a reserve_ticket with ->bytes set to our reservation, add it to 70 * the tail of space_info->tickets, kick async flush thread 71 * 72 * ->handle_reserve_ticket 73 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set 74 * on the ticket. 75 * 76 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space 77 * Flushes various things attempting to free up space. 78 * 79 * -> btrfs_try_granting_tickets() 80 * This is called by anything that either subtracts space from 81 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the 82 * space_info->total_bytes. This loops through the ->priority_tickets and 83 * then the ->tickets list checking to see if the reservation can be 84 * completed. If it can the space is added to space_info->bytes_may_use and 85 * the ticket is woken up. 86 * 87 * -> ticket wakeup 88 * Check if ->bytes == 0, if it does we got our reservation and we can carry 89 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we 90 * were interrupted.) 91 * 92 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY 93 * 94 * Same as the above, except we add ourselves to the 95 * space_info->priority_tickets, and we do not use ticket->wait, we simply 96 * call flush_space() ourselves for the states that are safe for us to call 97 * without deadlocking and hope for the best. 98 * 99 * THE FLUSHING STATES 100 * 101 * Generally speaking we will have two cases for each state, a "nice" state 102 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to 103 * reduce the locking over head on the various trees, and even to keep from 104 * doing any work at all in the case of delayed refs. Each of these delayed 105 * things however hold reservations, and so letting them run allows us to 106 * reclaim space so we can make new reservations. 107 * 108 * FLUSH_DELAYED_ITEMS 109 * Every inode has a delayed item to update the inode. Take a simple write 110 * for example, we would update the inode item at write time to update the 111 * mtime, and then again at finish_ordered_io() time in order to update the 112 * isize or bytes. We keep these delayed items to coalesce these operations 113 * into a single operation done on demand. These are an easy way to reclaim 114 * metadata space. 115 * 116 * FLUSH_DELALLOC 117 * Look at the delalloc comment to get an idea of how much space is reserved 118 * for delayed allocation. We can reclaim some of this space simply by 119 * running delalloc, but usually we need to wait for ordered extents to 120 * reclaim the bulk of this space. 121 * 122 * FLUSH_DELAYED_REFS 123 * We have a block reserve for the outstanding delayed refs space, and every 124 * delayed ref operation holds a reservation. Running these is a quick way 125 * to reclaim space, but we want to hold this until the end because COW can 126 * churn a lot and we can avoid making some extent tree modifications if we 127 * are able to delay for as long as possible. 128 * 129 * ALLOC_CHUNK 130 * We will skip this the first time through space reservation, because of 131 * overcommit and we don't want to have a lot of useless metadata space when 132 * our worst case reservations will likely never come true. 133 * 134 * RUN_DELAYED_IPUTS 135 * If we're freeing inodes we're likely freeing checksums, file extent 136 * items, and extent tree items. Loads of space could be freed up by these 137 * operations, however they won't be usable until the transaction commits. 138 * 139 * COMMIT_TRANS 140 * This will commit the transaction. Historically we had a lot of logic 141 * surrounding whether or not we'd commit the transaction, but this waits born 142 * out of a pre-tickets era where we could end up committing the transaction 143 * thousands of times in a row without making progress. Now thanks to our 144 * ticketing system we know if we're not making progress and can error 145 * everybody out after a few commits rather than burning the disk hoping for 146 * a different answer. 147 * 148 * OVERCOMMIT 149 * 150 * Because we hold so many reservations for metadata we will allow you to 151 * reserve more space than is currently free in the currently allocate 152 * metadata space. This only happens with metadata, data does not allow 153 * overcommitting. 154 * 155 * You can see the current logic for when we allow overcommit in 156 * btrfs_can_overcommit(), but it only applies to unallocated space. If there 157 * is no unallocated space to be had, all reservations are kept within the 158 * free space in the allocated metadata chunks. 159 * 160 * Because of overcommitting, you generally want to use the 161 * btrfs_can_overcommit() logic for metadata allocations, as it does the right 162 * thing with or without extra unallocated space. 163 */ 164 165 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info, 166 bool may_use_included) 167 { 168 ASSERT(s_info); 169 return s_info->bytes_used + s_info->bytes_reserved + 170 s_info->bytes_pinned + s_info->bytes_readonly + 171 s_info->bytes_zone_unusable + 172 (may_use_included ? s_info->bytes_may_use : 0); 173 } 174 175 /* 176 * after adding space to the filesystem, we need to clear the full flags 177 * on all the space infos. 178 */ 179 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 180 { 181 struct list_head *head = &info->space_info; 182 struct btrfs_space_info *found; 183 184 list_for_each_entry(found, head, list) 185 found->full = 0; 186 } 187 188 /* 189 * Block groups with more than this value (percents) of unusable space will be 190 * scheduled for background reclaim. 191 */ 192 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75) 193 194 /* 195 * Calculate chunk size depending on volume type (regular or zoned). 196 */ 197 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags) 198 { 199 if (btrfs_is_zoned(fs_info)) 200 return fs_info->zone_size; 201 202 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 203 204 if (flags & BTRFS_BLOCK_GROUP_DATA) 205 return BTRFS_MAX_DATA_CHUNK_SIZE; 206 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 207 return SZ_32M; 208 209 /* Handle BTRFS_BLOCK_GROUP_METADATA */ 210 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G) 211 return SZ_1G; 212 213 return SZ_256M; 214 } 215 216 /* 217 * Update default chunk size. 218 */ 219 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info, 220 u64 chunk_size) 221 { 222 WRITE_ONCE(space_info->chunk_size, chunk_size); 223 } 224 225 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 226 { 227 228 struct btrfs_space_info *space_info; 229 int i; 230 int ret; 231 232 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 233 if (!space_info) 234 return -ENOMEM; 235 236 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 237 INIT_LIST_HEAD(&space_info->block_groups[i]); 238 init_rwsem(&space_info->groups_sem); 239 spin_lock_init(&space_info->lock); 240 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 241 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 242 INIT_LIST_HEAD(&space_info->ro_bgs); 243 INIT_LIST_HEAD(&space_info->tickets); 244 INIT_LIST_HEAD(&space_info->priority_tickets); 245 space_info->clamp = 1; 246 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags)); 247 248 if (btrfs_is_zoned(info)) 249 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH; 250 251 ret = btrfs_sysfs_add_space_info_type(info, space_info); 252 if (ret) 253 return ret; 254 255 list_add(&space_info->list, &info->space_info); 256 if (flags & BTRFS_BLOCK_GROUP_DATA) 257 info->data_sinfo = space_info; 258 259 return ret; 260 } 261 262 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 263 { 264 struct btrfs_super_block *disk_super; 265 u64 features; 266 u64 flags; 267 int mixed = 0; 268 int ret; 269 270 disk_super = fs_info->super_copy; 271 if (!btrfs_super_root(disk_super)) 272 return -EINVAL; 273 274 features = btrfs_super_incompat_flags(disk_super); 275 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 276 mixed = 1; 277 278 flags = BTRFS_BLOCK_GROUP_SYSTEM; 279 ret = create_space_info(fs_info, flags); 280 if (ret) 281 goto out; 282 283 if (mixed) { 284 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 285 ret = create_space_info(fs_info, flags); 286 } else { 287 flags = BTRFS_BLOCK_GROUP_METADATA; 288 ret = create_space_info(fs_info, flags); 289 if (ret) 290 goto out; 291 292 flags = BTRFS_BLOCK_GROUP_DATA; 293 ret = create_space_info(fs_info, flags); 294 } 295 out: 296 return ret; 297 } 298 299 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info, 300 struct btrfs_block_group *block_group) 301 { 302 struct btrfs_space_info *found; 303 int factor, index; 304 305 factor = btrfs_bg_type_to_factor(block_group->flags); 306 307 found = btrfs_find_space_info(info, block_group->flags); 308 ASSERT(found); 309 spin_lock(&found->lock); 310 found->total_bytes += block_group->length; 311 found->disk_total += block_group->length * factor; 312 found->bytes_used += block_group->used; 313 found->disk_used += block_group->used * factor; 314 found->bytes_readonly += block_group->bytes_super; 315 found->bytes_zone_unusable += block_group->zone_unusable; 316 if (block_group->length > 0) 317 found->full = 0; 318 btrfs_try_granting_tickets(info, found); 319 spin_unlock(&found->lock); 320 321 block_group->space_info = found; 322 323 index = btrfs_bg_flags_to_raid_index(block_group->flags); 324 down_write(&found->groups_sem); 325 list_add_tail(&block_group->list, &found->block_groups[index]); 326 up_write(&found->groups_sem); 327 } 328 329 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 330 u64 flags) 331 { 332 struct list_head *head = &info->space_info; 333 struct btrfs_space_info *found; 334 335 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 336 337 list_for_each_entry(found, head, list) { 338 if (found->flags & flags) 339 return found; 340 } 341 return NULL; 342 } 343 344 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info, 345 struct btrfs_space_info *space_info, 346 enum btrfs_reserve_flush_enum flush) 347 { 348 u64 profile; 349 u64 avail; 350 int factor; 351 352 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 353 profile = btrfs_system_alloc_profile(fs_info); 354 else 355 profile = btrfs_metadata_alloc_profile(fs_info); 356 357 avail = atomic64_read(&fs_info->free_chunk_space); 358 359 /* 360 * If we have dup, raid1 or raid10 then only half of the free 361 * space is actually usable. For raid56, the space info used 362 * doesn't include the parity drive, so we don't have to 363 * change the math 364 */ 365 factor = btrfs_bg_type_to_factor(profile); 366 avail = div_u64(avail, factor); 367 368 /* 369 * If we aren't flushing all things, let us overcommit up to 370 * 1/2th of the space. If we can flush, don't let us overcommit 371 * too much, let it overcommit up to 1/8 of the space. 372 */ 373 if (flush == BTRFS_RESERVE_FLUSH_ALL) 374 avail >>= 3; 375 else 376 avail >>= 1; 377 return avail; 378 } 379 380 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info, 381 struct btrfs_space_info *space_info, u64 bytes, 382 enum btrfs_reserve_flush_enum flush) 383 { 384 u64 avail; 385 u64 used; 386 387 /* Don't overcommit when in mixed mode */ 388 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 389 return 0; 390 391 used = btrfs_space_info_used(space_info, true); 392 if (test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags) && 393 (space_info->flags & BTRFS_BLOCK_GROUP_METADATA)) 394 avail = 0; 395 else 396 avail = calc_available_free_space(fs_info, space_info, flush); 397 398 if (used + bytes < space_info->total_bytes + avail) 399 return 1; 400 return 0; 401 } 402 403 static void remove_ticket(struct btrfs_space_info *space_info, 404 struct reserve_ticket *ticket) 405 { 406 if (!list_empty(&ticket->list)) { 407 list_del_init(&ticket->list); 408 ASSERT(space_info->reclaim_size >= ticket->bytes); 409 space_info->reclaim_size -= ticket->bytes; 410 } 411 } 412 413 /* 414 * This is for space we already have accounted in space_info->bytes_may_use, so 415 * basically when we're returning space from block_rsv's. 416 */ 417 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info, 418 struct btrfs_space_info *space_info) 419 { 420 struct list_head *head; 421 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 422 423 lockdep_assert_held(&space_info->lock); 424 425 head = &space_info->priority_tickets; 426 again: 427 while (!list_empty(head)) { 428 struct reserve_ticket *ticket; 429 u64 used = btrfs_space_info_used(space_info, true); 430 431 ticket = list_first_entry(head, struct reserve_ticket, list); 432 433 /* Check and see if our ticket can be satisfied now. */ 434 if ((used + ticket->bytes <= space_info->total_bytes) || 435 btrfs_can_overcommit(fs_info, space_info, ticket->bytes, 436 flush)) { 437 btrfs_space_info_update_bytes_may_use(fs_info, 438 space_info, 439 ticket->bytes); 440 remove_ticket(space_info, ticket); 441 ticket->bytes = 0; 442 space_info->tickets_id++; 443 wake_up(&ticket->wait); 444 } else { 445 break; 446 } 447 } 448 449 if (head == &space_info->priority_tickets) { 450 head = &space_info->tickets; 451 flush = BTRFS_RESERVE_FLUSH_ALL; 452 goto again; 453 } 454 } 455 456 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ 457 do { \ 458 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ 459 spin_lock(&__rsv->lock); \ 460 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ 461 __rsv->size, __rsv->reserved); \ 462 spin_unlock(&__rsv->lock); \ 463 } while (0) 464 465 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info) 466 { 467 switch (space_info->flags) { 468 case BTRFS_BLOCK_GROUP_SYSTEM: 469 return "SYSTEM"; 470 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA: 471 return "DATA+METADATA"; 472 case BTRFS_BLOCK_GROUP_DATA: 473 return "DATA"; 474 case BTRFS_BLOCK_GROUP_METADATA: 475 return "METADATA"; 476 default: 477 return "UNKNOWN"; 478 } 479 } 480 481 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info) 482 { 483 DUMP_BLOCK_RSV(fs_info, global_block_rsv); 484 DUMP_BLOCK_RSV(fs_info, trans_block_rsv); 485 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); 486 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); 487 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); 488 } 489 490 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 491 struct btrfs_space_info *info) 492 { 493 const char *flag_str = space_info_flag_to_str(info); 494 lockdep_assert_held(&info->lock); 495 496 /* The free space could be negative in case of overcommit */ 497 btrfs_info(fs_info, "space_info %s has %lld free, is %sfull", 498 flag_str, 499 (s64)(info->total_bytes - btrfs_space_info_used(info, true)), 500 info->full ? "" : "not "); 501 btrfs_info(fs_info, 502 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu", 503 info->total_bytes, info->bytes_used, info->bytes_pinned, 504 info->bytes_reserved, info->bytes_may_use, 505 info->bytes_readonly, info->bytes_zone_unusable); 506 } 507 508 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 509 struct btrfs_space_info *info, u64 bytes, 510 int dump_block_groups) 511 { 512 struct btrfs_block_group *cache; 513 int index = 0; 514 515 spin_lock(&info->lock); 516 __btrfs_dump_space_info(fs_info, info); 517 dump_global_block_rsv(fs_info); 518 spin_unlock(&info->lock); 519 520 if (!dump_block_groups) 521 return; 522 523 down_read(&info->groups_sem); 524 again: 525 list_for_each_entry(cache, &info->block_groups[index], list) { 526 spin_lock(&cache->lock); 527 btrfs_info(fs_info, 528 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s", 529 cache->start, cache->length, cache->used, cache->pinned, 530 cache->reserved, cache->zone_unusable, 531 cache->ro ? "[readonly]" : ""); 532 spin_unlock(&cache->lock); 533 btrfs_dump_free_space(cache, bytes); 534 } 535 if (++index < BTRFS_NR_RAID_TYPES) 536 goto again; 537 up_read(&info->groups_sem); 538 } 539 540 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info, 541 u64 to_reclaim) 542 { 543 u64 bytes; 544 u64 nr; 545 546 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 547 nr = div64_u64(to_reclaim, bytes); 548 if (!nr) 549 nr = 1; 550 return nr; 551 } 552 553 static inline u64 calc_delayed_refs_nr(const struct btrfs_fs_info *fs_info, 554 u64 to_reclaim) 555 { 556 const u64 bytes = btrfs_calc_delayed_ref_bytes(fs_info, 1); 557 u64 nr; 558 559 nr = div64_u64(to_reclaim, bytes); 560 if (!nr) 561 nr = 1; 562 return nr; 563 } 564 565 #define EXTENT_SIZE_PER_ITEM SZ_256K 566 567 /* 568 * shrink metadata reservation for delalloc 569 */ 570 static void shrink_delalloc(struct btrfs_fs_info *fs_info, 571 struct btrfs_space_info *space_info, 572 u64 to_reclaim, bool wait_ordered, 573 bool for_preempt) 574 { 575 struct btrfs_trans_handle *trans; 576 u64 delalloc_bytes; 577 u64 ordered_bytes; 578 u64 items; 579 long time_left; 580 int loops; 581 582 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 583 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes); 584 if (delalloc_bytes == 0 && ordered_bytes == 0) 585 return; 586 587 /* Calc the number of the pages we need flush for space reservation */ 588 if (to_reclaim == U64_MAX) { 589 items = U64_MAX; 590 } else { 591 /* 592 * to_reclaim is set to however much metadata we need to 593 * reclaim, but reclaiming that much data doesn't really track 594 * exactly. What we really want to do is reclaim full inode's 595 * worth of reservations, however that's not available to us 596 * here. We will take a fraction of the delalloc bytes for our 597 * flushing loops and hope for the best. Delalloc will expand 598 * the amount we write to cover an entire dirty extent, which 599 * will reclaim the metadata reservation for that range. If 600 * it's not enough subsequent flush stages will be more 601 * aggressive. 602 */ 603 to_reclaim = max(to_reclaim, delalloc_bytes >> 3); 604 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2; 605 } 606 607 trans = current->journal_info; 608 609 /* 610 * If we are doing more ordered than delalloc we need to just wait on 611 * ordered extents, otherwise we'll waste time trying to flush delalloc 612 * that likely won't give us the space back we need. 613 */ 614 if (ordered_bytes > delalloc_bytes && !for_preempt) 615 wait_ordered = true; 616 617 loops = 0; 618 while ((delalloc_bytes || ordered_bytes) && loops < 3) { 619 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; 620 long nr_pages = min_t(u64, temp, LONG_MAX); 621 int async_pages; 622 623 btrfs_start_delalloc_roots(fs_info, nr_pages, true); 624 625 /* 626 * We need to make sure any outstanding async pages are now 627 * processed before we continue. This is because things like 628 * sync_inode() try to be smart and skip writing if the inode is 629 * marked clean. We don't use filemap_fwrite for flushing 630 * because we want to control how many pages we write out at a 631 * time, thus this is the only safe way to make sure we've 632 * waited for outstanding compressed workers to have started 633 * their jobs and thus have ordered extents set up properly. 634 * 635 * This exists because we do not want to wait for each 636 * individual inode to finish its async work, we simply want to 637 * start the IO on everybody, and then come back here and wait 638 * for all of the async work to catch up. Once we're done with 639 * that we know we'll have ordered extents for everything and we 640 * can decide if we wait for that or not. 641 * 642 * If we choose to replace this in the future, make absolutely 643 * sure that the proper waiting is being done in the async case, 644 * as there have been bugs in that area before. 645 */ 646 async_pages = atomic_read(&fs_info->async_delalloc_pages); 647 if (!async_pages) 648 goto skip_async; 649 650 /* 651 * We don't want to wait forever, if we wrote less pages in this 652 * loop than we have outstanding, only wait for that number of 653 * pages, otherwise we can wait for all async pages to finish 654 * before continuing. 655 */ 656 if (async_pages > nr_pages) 657 async_pages -= nr_pages; 658 else 659 async_pages = 0; 660 wait_event(fs_info->async_submit_wait, 661 atomic_read(&fs_info->async_delalloc_pages) <= 662 async_pages); 663 skip_async: 664 loops++; 665 if (wait_ordered && !trans) { 666 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 667 } else { 668 time_left = schedule_timeout_killable(1); 669 if (time_left) 670 break; 671 } 672 673 /* 674 * If we are for preemption we just want a one-shot of delalloc 675 * flushing so we can stop flushing if we decide we don't need 676 * to anymore. 677 */ 678 if (for_preempt) 679 break; 680 681 spin_lock(&space_info->lock); 682 if (list_empty(&space_info->tickets) && 683 list_empty(&space_info->priority_tickets)) { 684 spin_unlock(&space_info->lock); 685 break; 686 } 687 spin_unlock(&space_info->lock); 688 689 delalloc_bytes = percpu_counter_sum_positive( 690 &fs_info->delalloc_bytes); 691 ordered_bytes = percpu_counter_sum_positive( 692 &fs_info->ordered_bytes); 693 } 694 } 695 696 /* 697 * Try to flush some data based on policy set by @state. This is only advisory 698 * and may fail for various reasons. The caller is supposed to examine the 699 * state of @space_info to detect the outcome. 700 */ 701 static void flush_space(struct btrfs_fs_info *fs_info, 702 struct btrfs_space_info *space_info, u64 num_bytes, 703 enum btrfs_flush_state state, bool for_preempt) 704 { 705 struct btrfs_root *root = fs_info->tree_root; 706 struct btrfs_trans_handle *trans; 707 int nr; 708 int ret = 0; 709 710 switch (state) { 711 case FLUSH_DELAYED_ITEMS_NR: 712 case FLUSH_DELAYED_ITEMS: 713 if (state == FLUSH_DELAYED_ITEMS_NR) 714 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 715 else 716 nr = -1; 717 718 trans = btrfs_join_transaction(root); 719 if (IS_ERR(trans)) { 720 ret = PTR_ERR(trans); 721 break; 722 } 723 ret = btrfs_run_delayed_items_nr(trans, nr); 724 btrfs_end_transaction(trans); 725 break; 726 case FLUSH_DELALLOC: 727 case FLUSH_DELALLOC_WAIT: 728 case FLUSH_DELALLOC_FULL: 729 if (state == FLUSH_DELALLOC_FULL) 730 num_bytes = U64_MAX; 731 shrink_delalloc(fs_info, space_info, num_bytes, 732 state != FLUSH_DELALLOC, for_preempt); 733 break; 734 case FLUSH_DELAYED_REFS_NR: 735 case FLUSH_DELAYED_REFS: 736 trans = btrfs_join_transaction(root); 737 if (IS_ERR(trans)) { 738 ret = PTR_ERR(trans); 739 break; 740 } 741 if (state == FLUSH_DELAYED_REFS_NR) 742 nr = calc_delayed_refs_nr(fs_info, num_bytes); 743 else 744 nr = 0; 745 btrfs_run_delayed_refs(trans, nr); 746 btrfs_end_transaction(trans); 747 break; 748 case ALLOC_CHUNK: 749 case ALLOC_CHUNK_FORCE: 750 /* 751 * For metadata space on zoned filesystem, reaching here means we 752 * don't have enough space left in active_total_bytes. Try to 753 * activate a block group first, because we may have inactive 754 * block group already allocated. 755 */ 756 ret = btrfs_zoned_activate_one_bg(fs_info, space_info, false); 757 if (ret < 0) 758 break; 759 else if (ret == 1) 760 break; 761 762 trans = btrfs_join_transaction(root); 763 if (IS_ERR(trans)) { 764 ret = PTR_ERR(trans); 765 break; 766 } 767 ret = btrfs_chunk_alloc(trans, 768 btrfs_get_alloc_profile(fs_info, space_info->flags), 769 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : 770 CHUNK_ALLOC_FORCE); 771 btrfs_end_transaction(trans); 772 773 /* 774 * For metadata space on zoned filesystem, allocating a new chunk 775 * is not enough. We still need to activate the block * group. 776 * Active the newly allocated block group by (maybe) finishing 777 * a block group. 778 */ 779 if (ret == 1) { 780 ret = btrfs_zoned_activate_one_bg(fs_info, space_info, true); 781 /* 782 * Revert to the original ret regardless we could finish 783 * one block group or not. 784 */ 785 if (ret >= 0) 786 ret = 1; 787 } 788 789 if (ret > 0 || ret == -ENOSPC) 790 ret = 0; 791 break; 792 case RUN_DELAYED_IPUTS: 793 /* 794 * If we have pending delayed iputs then we could free up a 795 * bunch of pinned space, so make sure we run the iputs before 796 * we do our pinned bytes check below. 797 */ 798 btrfs_run_delayed_iputs(fs_info); 799 btrfs_wait_on_delayed_iputs(fs_info); 800 break; 801 case COMMIT_TRANS: 802 ASSERT(current->journal_info == NULL); 803 trans = btrfs_join_transaction(root); 804 if (IS_ERR(trans)) { 805 ret = PTR_ERR(trans); 806 break; 807 } 808 ret = btrfs_commit_transaction(trans); 809 break; 810 default: 811 ret = -ENOSPC; 812 break; 813 } 814 815 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 816 ret, for_preempt); 817 return; 818 } 819 820 static inline u64 821 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 822 struct btrfs_space_info *space_info) 823 { 824 u64 used; 825 u64 avail; 826 u64 to_reclaim = space_info->reclaim_size; 827 828 lockdep_assert_held(&space_info->lock); 829 830 avail = calc_available_free_space(fs_info, space_info, 831 BTRFS_RESERVE_FLUSH_ALL); 832 used = btrfs_space_info_used(space_info, true); 833 834 /* 835 * We may be flushing because suddenly we have less space than we had 836 * before, and now we're well over-committed based on our current free 837 * space. If that's the case add in our overage so we make sure to put 838 * appropriate pressure on the flushing state machine. 839 */ 840 if (space_info->total_bytes + avail < used) 841 to_reclaim += used - (space_info->total_bytes + avail); 842 843 return to_reclaim; 844 } 845 846 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info, 847 struct btrfs_space_info *space_info) 848 { 849 u64 global_rsv_size = fs_info->global_block_rsv.reserved; 850 u64 ordered, delalloc; 851 u64 thresh; 852 u64 used; 853 854 thresh = mult_perc(space_info->total_bytes, 90); 855 856 lockdep_assert_held(&space_info->lock); 857 858 /* If we're just plain full then async reclaim just slows us down. */ 859 if ((space_info->bytes_used + space_info->bytes_reserved + 860 global_rsv_size) >= thresh) 861 return false; 862 863 used = space_info->bytes_may_use + space_info->bytes_pinned; 864 865 /* The total flushable belongs to the global rsv, don't flush. */ 866 if (global_rsv_size >= used) 867 return false; 868 869 /* 870 * 128MiB is 1/4 of the maximum global rsv size. If we have less than 871 * that devoted to other reservations then there's no sense in flushing, 872 * we don't have a lot of things that need flushing. 873 */ 874 if (used - global_rsv_size <= SZ_128M) 875 return false; 876 877 /* 878 * We have tickets queued, bail so we don't compete with the async 879 * flushers. 880 */ 881 if (space_info->reclaim_size) 882 return false; 883 884 /* 885 * If we have over half of the free space occupied by reservations or 886 * pinned then we want to start flushing. 887 * 888 * We do not do the traditional thing here, which is to say 889 * 890 * if (used >= ((total_bytes + avail) / 2)) 891 * return 1; 892 * 893 * because this doesn't quite work how we want. If we had more than 50% 894 * of the space_info used by bytes_used and we had 0 available we'd just 895 * constantly run the background flusher. Instead we want it to kick in 896 * if our reclaimable space exceeds our clamped free space. 897 * 898 * Our clamping range is 2^1 -> 2^8. Practically speaking that means 899 * the following: 900 * 901 * Amount of RAM Minimum threshold Maximum threshold 902 * 903 * 256GiB 1GiB 128GiB 904 * 128GiB 512MiB 64GiB 905 * 64GiB 256MiB 32GiB 906 * 32GiB 128MiB 16GiB 907 * 16GiB 64MiB 8GiB 908 * 909 * These are the range our thresholds will fall in, corresponding to how 910 * much delalloc we need for the background flusher to kick in. 911 */ 912 913 thresh = calc_available_free_space(fs_info, space_info, 914 BTRFS_RESERVE_FLUSH_ALL); 915 used = space_info->bytes_used + space_info->bytes_reserved + 916 space_info->bytes_readonly + global_rsv_size; 917 if (used < space_info->total_bytes) 918 thresh += space_info->total_bytes - used; 919 thresh >>= space_info->clamp; 920 921 used = space_info->bytes_pinned; 922 923 /* 924 * If we have more ordered bytes than delalloc bytes then we're either 925 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting 926 * around. Preemptive flushing is only useful in that it can free up 927 * space before tickets need to wait for things to finish. In the case 928 * of ordered extents, preemptively waiting on ordered extents gets us 929 * nothing, if our reservations are tied up in ordered extents we'll 930 * simply have to slow down writers by forcing them to wait on ordered 931 * extents. 932 * 933 * In the case that ordered is larger than delalloc, only include the 934 * block reserves that we would actually be able to directly reclaim 935 * from. In this case if we're heavy on metadata operations this will 936 * clearly be heavy enough to warrant preemptive flushing. In the case 937 * of heavy DIO or ordered reservations, preemptive flushing will just 938 * waste time and cause us to slow down. 939 * 940 * We want to make sure we truly are maxed out on ordered however, so 941 * cut ordered in half, and if it's still higher than delalloc then we 942 * can keep flushing. This is to avoid the case where we start 943 * flushing, and now delalloc == ordered and we stop preemptively 944 * flushing when we could still have several gigs of delalloc to flush. 945 */ 946 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1; 947 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes); 948 if (ordered >= delalloc) 949 used += fs_info->delayed_refs_rsv.reserved + 950 fs_info->delayed_block_rsv.reserved; 951 else 952 used += space_info->bytes_may_use - global_rsv_size; 953 954 return (used >= thresh && !btrfs_fs_closing(fs_info) && 955 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 956 } 957 958 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info, 959 struct btrfs_space_info *space_info, 960 struct reserve_ticket *ticket) 961 { 962 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 963 u64 min_bytes; 964 965 if (!ticket->steal) 966 return false; 967 968 if (global_rsv->space_info != space_info) 969 return false; 970 971 spin_lock(&global_rsv->lock); 972 min_bytes = mult_perc(global_rsv->size, 10); 973 if (global_rsv->reserved < min_bytes + ticket->bytes) { 974 spin_unlock(&global_rsv->lock); 975 return false; 976 } 977 global_rsv->reserved -= ticket->bytes; 978 remove_ticket(space_info, ticket); 979 ticket->bytes = 0; 980 wake_up(&ticket->wait); 981 space_info->tickets_id++; 982 if (global_rsv->reserved < global_rsv->size) 983 global_rsv->full = 0; 984 spin_unlock(&global_rsv->lock); 985 986 return true; 987 } 988 989 /* 990 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets 991 * @fs_info - fs_info for this fs 992 * @space_info - the space info we were flushing 993 * 994 * We call this when we've exhausted our flushing ability and haven't made 995 * progress in satisfying tickets. The reservation code handles tickets in 996 * order, so if there is a large ticket first and then smaller ones we could 997 * very well satisfy the smaller tickets. This will attempt to wake up any 998 * tickets in the list to catch this case. 999 * 1000 * This function returns true if it was able to make progress by clearing out 1001 * other tickets, or if it stumbles across a ticket that was smaller than the 1002 * first ticket. 1003 */ 1004 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info, 1005 struct btrfs_space_info *space_info) 1006 { 1007 struct reserve_ticket *ticket; 1008 u64 tickets_id = space_info->tickets_id; 1009 const bool aborted = BTRFS_FS_ERROR(fs_info); 1010 1011 trace_btrfs_fail_all_tickets(fs_info, space_info); 1012 1013 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1014 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); 1015 __btrfs_dump_space_info(fs_info, space_info); 1016 } 1017 1018 while (!list_empty(&space_info->tickets) && 1019 tickets_id == space_info->tickets_id) { 1020 ticket = list_first_entry(&space_info->tickets, 1021 struct reserve_ticket, list); 1022 1023 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket)) 1024 return true; 1025 1026 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1027 btrfs_info(fs_info, "failing ticket with %llu bytes", 1028 ticket->bytes); 1029 1030 remove_ticket(space_info, ticket); 1031 if (aborted) 1032 ticket->error = -EIO; 1033 else 1034 ticket->error = -ENOSPC; 1035 wake_up(&ticket->wait); 1036 1037 /* 1038 * We're just throwing tickets away, so more flushing may not 1039 * trip over btrfs_try_granting_tickets, so we need to call it 1040 * here to see if we can make progress with the next ticket in 1041 * the list. 1042 */ 1043 if (!aborted) 1044 btrfs_try_granting_tickets(fs_info, space_info); 1045 } 1046 return (tickets_id != space_info->tickets_id); 1047 } 1048 1049 /* 1050 * This is for normal flushers, we can wait all goddamned day if we want to. We 1051 * will loop and continuously try to flush as long as we are making progress. 1052 * We count progress as clearing off tickets each time we have to loop. 1053 */ 1054 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 1055 { 1056 struct btrfs_fs_info *fs_info; 1057 struct btrfs_space_info *space_info; 1058 u64 to_reclaim; 1059 enum btrfs_flush_state flush_state; 1060 int commit_cycles = 0; 1061 u64 last_tickets_id; 1062 1063 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 1064 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1065 1066 spin_lock(&space_info->lock); 1067 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1068 if (!to_reclaim) { 1069 space_info->flush = 0; 1070 spin_unlock(&space_info->lock); 1071 return; 1072 } 1073 last_tickets_id = space_info->tickets_id; 1074 spin_unlock(&space_info->lock); 1075 1076 flush_state = FLUSH_DELAYED_ITEMS_NR; 1077 do { 1078 flush_space(fs_info, space_info, to_reclaim, flush_state, false); 1079 spin_lock(&space_info->lock); 1080 if (list_empty(&space_info->tickets)) { 1081 space_info->flush = 0; 1082 spin_unlock(&space_info->lock); 1083 return; 1084 } 1085 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 1086 space_info); 1087 if (last_tickets_id == space_info->tickets_id) { 1088 flush_state++; 1089 } else { 1090 last_tickets_id = space_info->tickets_id; 1091 flush_state = FLUSH_DELAYED_ITEMS_NR; 1092 if (commit_cycles) 1093 commit_cycles--; 1094 } 1095 1096 /* 1097 * We do not want to empty the system of delalloc unless we're 1098 * under heavy pressure, so allow one trip through the flushing 1099 * logic before we start doing a FLUSH_DELALLOC_FULL. 1100 */ 1101 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles) 1102 flush_state++; 1103 1104 /* 1105 * We don't want to force a chunk allocation until we've tried 1106 * pretty hard to reclaim space. Think of the case where we 1107 * freed up a bunch of space and so have a lot of pinned space 1108 * to reclaim. We would rather use that than possibly create a 1109 * underutilized metadata chunk. So if this is our first run 1110 * through the flushing state machine skip ALLOC_CHUNK_FORCE and 1111 * commit the transaction. If nothing has changed the next go 1112 * around then we can force a chunk allocation. 1113 */ 1114 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) 1115 flush_state++; 1116 1117 if (flush_state > COMMIT_TRANS) { 1118 commit_cycles++; 1119 if (commit_cycles > 2) { 1120 if (maybe_fail_all_tickets(fs_info, space_info)) { 1121 flush_state = FLUSH_DELAYED_ITEMS_NR; 1122 commit_cycles--; 1123 } else { 1124 space_info->flush = 0; 1125 } 1126 } else { 1127 flush_state = FLUSH_DELAYED_ITEMS_NR; 1128 } 1129 } 1130 spin_unlock(&space_info->lock); 1131 } while (flush_state <= COMMIT_TRANS); 1132 } 1133 1134 /* 1135 * This handles pre-flushing of metadata space before we get to the point that 1136 * we need to start blocking threads on tickets. The logic here is different 1137 * from the other flush paths because it doesn't rely on tickets to tell us how 1138 * much we need to flush, instead it attempts to keep us below the 80% full 1139 * watermark of space by flushing whichever reservation pool is currently the 1140 * largest. 1141 */ 1142 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work) 1143 { 1144 struct btrfs_fs_info *fs_info; 1145 struct btrfs_space_info *space_info; 1146 struct btrfs_block_rsv *delayed_block_rsv; 1147 struct btrfs_block_rsv *delayed_refs_rsv; 1148 struct btrfs_block_rsv *global_rsv; 1149 struct btrfs_block_rsv *trans_rsv; 1150 int loops = 0; 1151 1152 fs_info = container_of(work, struct btrfs_fs_info, 1153 preempt_reclaim_work); 1154 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1155 delayed_block_rsv = &fs_info->delayed_block_rsv; 1156 delayed_refs_rsv = &fs_info->delayed_refs_rsv; 1157 global_rsv = &fs_info->global_block_rsv; 1158 trans_rsv = &fs_info->trans_block_rsv; 1159 1160 spin_lock(&space_info->lock); 1161 while (need_preemptive_reclaim(fs_info, space_info)) { 1162 enum btrfs_flush_state flush; 1163 u64 delalloc_size = 0; 1164 u64 to_reclaim, block_rsv_size; 1165 u64 global_rsv_size = global_rsv->reserved; 1166 1167 loops++; 1168 1169 /* 1170 * We don't have a precise counter for the metadata being 1171 * reserved for delalloc, so we'll approximate it by subtracting 1172 * out the block rsv's space from the bytes_may_use. If that 1173 * amount is higher than the individual reserves, then we can 1174 * assume it's tied up in delalloc reservations. 1175 */ 1176 block_rsv_size = global_rsv_size + 1177 delayed_block_rsv->reserved + 1178 delayed_refs_rsv->reserved + 1179 trans_rsv->reserved; 1180 if (block_rsv_size < space_info->bytes_may_use) 1181 delalloc_size = space_info->bytes_may_use - block_rsv_size; 1182 1183 /* 1184 * We don't want to include the global_rsv in our calculation, 1185 * because that's space we can't touch. Subtract it from the 1186 * block_rsv_size for the next checks. 1187 */ 1188 block_rsv_size -= global_rsv_size; 1189 1190 /* 1191 * We really want to avoid flushing delalloc too much, as it 1192 * could result in poor allocation patterns, so only flush it if 1193 * it's larger than the rest of the pools combined. 1194 */ 1195 if (delalloc_size > block_rsv_size) { 1196 to_reclaim = delalloc_size; 1197 flush = FLUSH_DELALLOC; 1198 } else if (space_info->bytes_pinned > 1199 (delayed_block_rsv->reserved + 1200 delayed_refs_rsv->reserved)) { 1201 to_reclaim = space_info->bytes_pinned; 1202 flush = COMMIT_TRANS; 1203 } else if (delayed_block_rsv->reserved > 1204 delayed_refs_rsv->reserved) { 1205 to_reclaim = delayed_block_rsv->reserved; 1206 flush = FLUSH_DELAYED_ITEMS_NR; 1207 } else { 1208 to_reclaim = delayed_refs_rsv->reserved; 1209 flush = FLUSH_DELAYED_REFS_NR; 1210 } 1211 1212 spin_unlock(&space_info->lock); 1213 1214 /* 1215 * We don't want to reclaim everything, just a portion, so scale 1216 * down the to_reclaim by 1/4. If it takes us down to 0, 1217 * reclaim 1 items worth. 1218 */ 1219 to_reclaim >>= 2; 1220 if (!to_reclaim) 1221 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1); 1222 flush_space(fs_info, space_info, to_reclaim, flush, true); 1223 cond_resched(); 1224 spin_lock(&space_info->lock); 1225 } 1226 1227 /* We only went through once, back off our clamping. */ 1228 if (loops == 1 && !space_info->reclaim_size) 1229 space_info->clamp = max(1, space_info->clamp - 1); 1230 trace_btrfs_done_preemptive_reclaim(fs_info, space_info); 1231 spin_unlock(&space_info->lock); 1232 } 1233 1234 /* 1235 * FLUSH_DELALLOC_WAIT: 1236 * Space is freed from flushing delalloc in one of two ways. 1237 * 1238 * 1) compression is on and we allocate less space than we reserved 1239 * 2) we are overwriting existing space 1240 * 1241 * For #1 that extra space is reclaimed as soon as the delalloc pages are 1242 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent 1243 * length to ->bytes_reserved, and subtracts the reserved space from 1244 * ->bytes_may_use. 1245 * 1246 * For #2 this is trickier. Once the ordered extent runs we will drop the 1247 * extent in the range we are overwriting, which creates a delayed ref for 1248 * that freed extent. This however is not reclaimed until the transaction 1249 * commits, thus the next stages. 1250 * 1251 * RUN_DELAYED_IPUTS 1252 * If we are freeing inodes, we want to make sure all delayed iputs have 1253 * completed, because they could have been on an inode with i_nlink == 0, and 1254 * thus have been truncated and freed up space. But again this space is not 1255 * immediately re-usable, it comes in the form of a delayed ref, which must be 1256 * run and then the transaction must be committed. 1257 * 1258 * COMMIT_TRANS 1259 * This is where we reclaim all of the pinned space generated by running the 1260 * iputs 1261 * 1262 * ALLOC_CHUNK_FORCE 1263 * For data we start with alloc chunk force, however we could have been full 1264 * before, and then the transaction commit could have freed new block groups, 1265 * so if we now have space to allocate do the force chunk allocation. 1266 */ 1267 static const enum btrfs_flush_state data_flush_states[] = { 1268 FLUSH_DELALLOC_FULL, 1269 RUN_DELAYED_IPUTS, 1270 COMMIT_TRANS, 1271 ALLOC_CHUNK_FORCE, 1272 }; 1273 1274 static void btrfs_async_reclaim_data_space(struct work_struct *work) 1275 { 1276 struct btrfs_fs_info *fs_info; 1277 struct btrfs_space_info *space_info; 1278 u64 last_tickets_id; 1279 enum btrfs_flush_state flush_state = 0; 1280 1281 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work); 1282 space_info = fs_info->data_sinfo; 1283 1284 spin_lock(&space_info->lock); 1285 if (list_empty(&space_info->tickets)) { 1286 space_info->flush = 0; 1287 spin_unlock(&space_info->lock); 1288 return; 1289 } 1290 last_tickets_id = space_info->tickets_id; 1291 spin_unlock(&space_info->lock); 1292 1293 while (!space_info->full) { 1294 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1295 spin_lock(&space_info->lock); 1296 if (list_empty(&space_info->tickets)) { 1297 space_info->flush = 0; 1298 spin_unlock(&space_info->lock); 1299 return; 1300 } 1301 1302 /* Something happened, fail everything and bail. */ 1303 if (BTRFS_FS_ERROR(fs_info)) 1304 goto aborted_fs; 1305 last_tickets_id = space_info->tickets_id; 1306 spin_unlock(&space_info->lock); 1307 } 1308 1309 while (flush_state < ARRAY_SIZE(data_flush_states)) { 1310 flush_space(fs_info, space_info, U64_MAX, 1311 data_flush_states[flush_state], false); 1312 spin_lock(&space_info->lock); 1313 if (list_empty(&space_info->tickets)) { 1314 space_info->flush = 0; 1315 spin_unlock(&space_info->lock); 1316 return; 1317 } 1318 1319 if (last_tickets_id == space_info->tickets_id) { 1320 flush_state++; 1321 } else { 1322 last_tickets_id = space_info->tickets_id; 1323 flush_state = 0; 1324 } 1325 1326 if (flush_state >= ARRAY_SIZE(data_flush_states)) { 1327 if (space_info->full) { 1328 if (maybe_fail_all_tickets(fs_info, space_info)) 1329 flush_state = 0; 1330 else 1331 space_info->flush = 0; 1332 } else { 1333 flush_state = 0; 1334 } 1335 1336 /* Something happened, fail everything and bail. */ 1337 if (BTRFS_FS_ERROR(fs_info)) 1338 goto aborted_fs; 1339 1340 } 1341 spin_unlock(&space_info->lock); 1342 } 1343 return; 1344 1345 aborted_fs: 1346 maybe_fail_all_tickets(fs_info, space_info); 1347 space_info->flush = 0; 1348 spin_unlock(&space_info->lock); 1349 } 1350 1351 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info) 1352 { 1353 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space); 1354 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space); 1355 INIT_WORK(&fs_info->preempt_reclaim_work, 1356 btrfs_preempt_reclaim_metadata_space); 1357 } 1358 1359 static const enum btrfs_flush_state priority_flush_states[] = { 1360 FLUSH_DELAYED_ITEMS_NR, 1361 FLUSH_DELAYED_ITEMS, 1362 ALLOC_CHUNK, 1363 }; 1364 1365 static const enum btrfs_flush_state evict_flush_states[] = { 1366 FLUSH_DELAYED_ITEMS_NR, 1367 FLUSH_DELAYED_ITEMS, 1368 FLUSH_DELAYED_REFS_NR, 1369 FLUSH_DELAYED_REFS, 1370 FLUSH_DELALLOC, 1371 FLUSH_DELALLOC_WAIT, 1372 FLUSH_DELALLOC_FULL, 1373 ALLOC_CHUNK, 1374 COMMIT_TRANS, 1375 }; 1376 1377 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 1378 struct btrfs_space_info *space_info, 1379 struct reserve_ticket *ticket, 1380 const enum btrfs_flush_state *states, 1381 int states_nr) 1382 { 1383 u64 to_reclaim; 1384 int flush_state = 0; 1385 1386 spin_lock(&space_info->lock); 1387 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1388 /* 1389 * This is the priority reclaim path, so to_reclaim could be >0 still 1390 * because we may have only satisfied the priority tickets and still 1391 * left non priority tickets on the list. We would then have 1392 * to_reclaim but ->bytes == 0. 1393 */ 1394 if (ticket->bytes == 0) { 1395 spin_unlock(&space_info->lock); 1396 return; 1397 } 1398 1399 while (flush_state < states_nr) { 1400 spin_unlock(&space_info->lock); 1401 flush_space(fs_info, space_info, to_reclaim, states[flush_state], 1402 false); 1403 flush_state++; 1404 spin_lock(&space_info->lock); 1405 if (ticket->bytes == 0) { 1406 spin_unlock(&space_info->lock); 1407 return; 1408 } 1409 } 1410 1411 /* Attempt to steal from the global rsv if we can. */ 1412 if (!steal_from_global_rsv(fs_info, space_info, ticket)) { 1413 ticket->error = -ENOSPC; 1414 remove_ticket(space_info, ticket); 1415 } 1416 1417 /* 1418 * We must run try_granting_tickets here because we could be a large 1419 * ticket in front of a smaller ticket that can now be satisfied with 1420 * the available space. 1421 */ 1422 btrfs_try_granting_tickets(fs_info, space_info); 1423 spin_unlock(&space_info->lock); 1424 } 1425 1426 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info, 1427 struct btrfs_space_info *space_info, 1428 struct reserve_ticket *ticket) 1429 { 1430 spin_lock(&space_info->lock); 1431 1432 /* We could have been granted before we got here. */ 1433 if (ticket->bytes == 0) { 1434 spin_unlock(&space_info->lock); 1435 return; 1436 } 1437 1438 while (!space_info->full) { 1439 spin_unlock(&space_info->lock); 1440 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1441 spin_lock(&space_info->lock); 1442 if (ticket->bytes == 0) { 1443 spin_unlock(&space_info->lock); 1444 return; 1445 } 1446 } 1447 1448 ticket->error = -ENOSPC; 1449 remove_ticket(space_info, ticket); 1450 btrfs_try_granting_tickets(fs_info, space_info); 1451 spin_unlock(&space_info->lock); 1452 } 1453 1454 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info, 1455 struct btrfs_space_info *space_info, 1456 struct reserve_ticket *ticket) 1457 1458 { 1459 DEFINE_WAIT(wait); 1460 int ret = 0; 1461 1462 spin_lock(&space_info->lock); 1463 while (ticket->bytes > 0 && ticket->error == 0) { 1464 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 1465 if (ret) { 1466 /* 1467 * Delete us from the list. After we unlock the space 1468 * info, we don't want the async reclaim job to reserve 1469 * space for this ticket. If that would happen, then the 1470 * ticket's task would not known that space was reserved 1471 * despite getting an error, resulting in a space leak 1472 * (bytes_may_use counter of our space_info). 1473 */ 1474 remove_ticket(space_info, ticket); 1475 ticket->error = -EINTR; 1476 break; 1477 } 1478 spin_unlock(&space_info->lock); 1479 1480 schedule(); 1481 1482 finish_wait(&ticket->wait, &wait); 1483 spin_lock(&space_info->lock); 1484 } 1485 spin_unlock(&space_info->lock); 1486 } 1487 1488 /* 1489 * Do the appropriate flushing and waiting for a ticket. 1490 * 1491 * @fs_info: the filesystem 1492 * @space_info: space info for the reservation 1493 * @ticket: ticket for the reservation 1494 * @start_ns: timestamp when the reservation started 1495 * @orig_bytes: amount of bytes originally reserved 1496 * @flush: how much we can flush 1497 * 1498 * This does the work of figuring out how to flush for the ticket, waiting for 1499 * the reservation, and returning the appropriate error if there is one. 1500 */ 1501 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info, 1502 struct btrfs_space_info *space_info, 1503 struct reserve_ticket *ticket, 1504 u64 start_ns, u64 orig_bytes, 1505 enum btrfs_reserve_flush_enum flush) 1506 { 1507 int ret; 1508 1509 switch (flush) { 1510 case BTRFS_RESERVE_FLUSH_DATA: 1511 case BTRFS_RESERVE_FLUSH_ALL: 1512 case BTRFS_RESERVE_FLUSH_ALL_STEAL: 1513 wait_reserve_ticket(fs_info, space_info, ticket); 1514 break; 1515 case BTRFS_RESERVE_FLUSH_LIMIT: 1516 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1517 priority_flush_states, 1518 ARRAY_SIZE(priority_flush_states)); 1519 break; 1520 case BTRFS_RESERVE_FLUSH_EVICT: 1521 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1522 evict_flush_states, 1523 ARRAY_SIZE(evict_flush_states)); 1524 break; 1525 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE: 1526 priority_reclaim_data_space(fs_info, space_info, ticket); 1527 break; 1528 default: 1529 ASSERT(0); 1530 break; 1531 } 1532 1533 ret = ticket->error; 1534 ASSERT(list_empty(&ticket->list)); 1535 /* 1536 * Check that we can't have an error set if the reservation succeeded, 1537 * as that would confuse tasks and lead them to error out without 1538 * releasing reserved space (if an error happens the expectation is that 1539 * space wasn't reserved at all). 1540 */ 1541 ASSERT(!(ticket->bytes == 0 && ticket->error)); 1542 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes, 1543 start_ns, flush, ticket->error); 1544 return ret; 1545 } 1546 1547 /* 1548 * This returns true if this flush state will go through the ordinary flushing 1549 * code. 1550 */ 1551 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush) 1552 { 1553 return (flush == BTRFS_RESERVE_FLUSH_ALL) || 1554 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1555 } 1556 1557 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info, 1558 struct btrfs_space_info *space_info) 1559 { 1560 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes); 1561 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 1562 1563 /* 1564 * If we're heavy on ordered operations then clamping won't help us. We 1565 * need to clamp specifically to keep up with dirty'ing buffered 1566 * writers, because there's not a 1:1 correlation of writing delalloc 1567 * and freeing space, like there is with flushing delayed refs or 1568 * delayed nodes. If we're already more ordered than delalloc then 1569 * we're keeping up, otherwise we aren't and should probably clamp. 1570 */ 1571 if (ordered < delalloc) 1572 space_info->clamp = min(space_info->clamp + 1, 8); 1573 } 1574 1575 static inline bool can_steal(enum btrfs_reserve_flush_enum flush) 1576 { 1577 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1578 flush == BTRFS_RESERVE_FLUSH_EVICT); 1579 } 1580 1581 /* 1582 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to 1583 * fail as quickly as possible. 1584 */ 1585 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush) 1586 { 1587 return (flush != BTRFS_RESERVE_NO_FLUSH && 1588 flush != BTRFS_RESERVE_FLUSH_EMERGENCY); 1589 } 1590 1591 /* 1592 * Try to reserve bytes from the block_rsv's space. 1593 * 1594 * @fs_info: the filesystem 1595 * @space_info: space info we want to allocate from 1596 * @orig_bytes: number of bytes we want 1597 * @flush: whether or not we can flush to make our reservation 1598 * 1599 * This will reserve orig_bytes number of bytes from the space info associated 1600 * with the block_rsv. If there is not enough space it will make an attempt to 1601 * flush out space to make room. It will do this by flushing delalloc if 1602 * possible or committing the transaction. If flush is 0 then no attempts to 1603 * regain reservations will be made and this will fail if there is not enough 1604 * space already. 1605 */ 1606 static int __reserve_bytes(struct btrfs_fs_info *fs_info, 1607 struct btrfs_space_info *space_info, u64 orig_bytes, 1608 enum btrfs_reserve_flush_enum flush) 1609 { 1610 struct work_struct *async_work; 1611 struct reserve_ticket ticket; 1612 u64 start_ns = 0; 1613 u64 used; 1614 int ret = -ENOSPC; 1615 bool pending_tickets; 1616 1617 ASSERT(orig_bytes); 1618 /* 1619 * If have a transaction handle (current->journal_info != NULL), then 1620 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor 1621 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those 1622 * flushing methods can trigger transaction commits. 1623 */ 1624 if (current->journal_info) { 1625 /* One assert per line for easier debugging. */ 1626 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL); 1627 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL); 1628 ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT); 1629 } 1630 1631 if (flush == BTRFS_RESERVE_FLUSH_DATA) 1632 async_work = &fs_info->async_data_reclaim_work; 1633 else 1634 async_work = &fs_info->async_reclaim_work; 1635 1636 spin_lock(&space_info->lock); 1637 used = btrfs_space_info_used(space_info, true); 1638 1639 /* 1640 * We don't want NO_FLUSH allocations to jump everybody, they can 1641 * generally handle ENOSPC in a different way, so treat them the same as 1642 * normal flushers when it comes to skipping pending tickets. 1643 */ 1644 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH)) 1645 pending_tickets = !list_empty(&space_info->tickets) || 1646 !list_empty(&space_info->priority_tickets); 1647 else 1648 pending_tickets = !list_empty(&space_info->priority_tickets); 1649 1650 /* 1651 * Carry on if we have enough space (short-circuit) OR call 1652 * can_overcommit() to ensure we can overcommit to continue. 1653 */ 1654 if (!pending_tickets && 1655 ((used + orig_bytes <= space_info->total_bytes) || 1656 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) { 1657 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1658 orig_bytes); 1659 ret = 0; 1660 } 1661 1662 /* 1663 * Things are dire, we need to make a reservation so we don't abort. We 1664 * will let this reservation go through as long as we have actual space 1665 * left to allocate for the block. 1666 */ 1667 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) { 1668 used = btrfs_space_info_used(space_info, false); 1669 if (used + orig_bytes <= space_info->total_bytes) { 1670 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1671 orig_bytes); 1672 ret = 0; 1673 } 1674 } 1675 1676 /* 1677 * If we couldn't make a reservation then setup our reservation ticket 1678 * and kick the async worker if it's not already running. 1679 * 1680 * If we are a priority flusher then we just need to add our ticket to 1681 * the list and we will do our own flushing further down. 1682 */ 1683 if (ret && can_ticket(flush)) { 1684 ticket.bytes = orig_bytes; 1685 ticket.error = 0; 1686 space_info->reclaim_size += ticket.bytes; 1687 init_waitqueue_head(&ticket.wait); 1688 ticket.steal = can_steal(flush); 1689 if (trace_btrfs_reserve_ticket_enabled()) 1690 start_ns = ktime_get_ns(); 1691 1692 if (flush == BTRFS_RESERVE_FLUSH_ALL || 1693 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1694 flush == BTRFS_RESERVE_FLUSH_DATA) { 1695 list_add_tail(&ticket.list, &space_info->tickets); 1696 if (!space_info->flush) { 1697 /* 1698 * We were forced to add a reserve ticket, so 1699 * our preemptive flushing is unable to keep 1700 * up. Clamp down on the threshold for the 1701 * preemptive flushing in order to keep up with 1702 * the workload. 1703 */ 1704 maybe_clamp_preempt(fs_info, space_info); 1705 1706 space_info->flush = 1; 1707 trace_btrfs_trigger_flush(fs_info, 1708 space_info->flags, 1709 orig_bytes, flush, 1710 "enospc"); 1711 queue_work(system_unbound_wq, async_work); 1712 } 1713 } else { 1714 list_add_tail(&ticket.list, 1715 &space_info->priority_tickets); 1716 } 1717 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 1718 /* 1719 * We will do the space reservation dance during log replay, 1720 * which means we won't have fs_info->fs_root set, so don't do 1721 * the async reclaim as we will panic. 1722 */ 1723 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 1724 !work_busy(&fs_info->preempt_reclaim_work) && 1725 need_preemptive_reclaim(fs_info, space_info)) { 1726 trace_btrfs_trigger_flush(fs_info, space_info->flags, 1727 orig_bytes, flush, "preempt"); 1728 queue_work(system_unbound_wq, 1729 &fs_info->preempt_reclaim_work); 1730 } 1731 } 1732 spin_unlock(&space_info->lock); 1733 if (!ret || !can_ticket(flush)) 1734 return ret; 1735 1736 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns, 1737 orig_bytes, flush); 1738 } 1739 1740 /* 1741 * Try to reserve metadata bytes from the block_rsv's space. 1742 * 1743 * @fs_info: the filesystem 1744 * @block_rsv: block_rsv we're allocating for 1745 * @orig_bytes: number of bytes we want 1746 * @flush: whether or not we can flush to make our reservation 1747 * 1748 * This will reserve orig_bytes number of bytes from the space info associated 1749 * with the block_rsv. If there is not enough space it will make an attempt to 1750 * flush out space to make room. It will do this by flushing delalloc if 1751 * possible or committing the transaction. If flush is 0 then no attempts to 1752 * regain reservations will be made and this will fail if there is not enough 1753 * space already. 1754 */ 1755 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 1756 struct btrfs_block_rsv *block_rsv, 1757 u64 orig_bytes, 1758 enum btrfs_reserve_flush_enum flush) 1759 { 1760 int ret; 1761 1762 ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush); 1763 if (ret == -ENOSPC) { 1764 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1765 block_rsv->space_info->flags, 1766 orig_bytes, 1); 1767 1768 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1769 btrfs_dump_space_info(fs_info, block_rsv->space_info, 1770 orig_bytes, 0); 1771 } 1772 return ret; 1773 } 1774 1775 /* 1776 * Try to reserve data bytes for an allocation. 1777 * 1778 * @fs_info: the filesystem 1779 * @bytes: number of bytes we need 1780 * @flush: how we are allowed to flush 1781 * 1782 * This will reserve bytes from the data space info. If there is not enough 1783 * space then we will attempt to flush space as specified by flush. 1784 */ 1785 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes, 1786 enum btrfs_reserve_flush_enum flush) 1787 { 1788 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 1789 int ret; 1790 1791 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA || 1792 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE || 1793 flush == BTRFS_RESERVE_NO_FLUSH); 1794 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA); 1795 1796 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush); 1797 if (ret == -ENOSPC) { 1798 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1799 data_sinfo->flags, bytes, 1); 1800 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1801 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0); 1802 } 1803 return ret; 1804 } 1805 1806 /* Dump all the space infos when we abort a transaction due to ENOSPC. */ 1807 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info) 1808 { 1809 struct btrfs_space_info *space_info; 1810 1811 btrfs_info(fs_info, "dumping space info:"); 1812 list_for_each_entry(space_info, &fs_info->space_info, list) { 1813 spin_lock(&space_info->lock); 1814 __btrfs_dump_space_info(fs_info, space_info); 1815 spin_unlock(&space_info->lock); 1816 } 1817 dump_global_block_rsv(fs_info); 1818 } 1819 1820 /* 1821 * Account the unused space of all the readonly block group in the space_info. 1822 * takes mirrors into account. 1823 */ 1824 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 1825 { 1826 struct btrfs_block_group *block_group; 1827 u64 free_bytes = 0; 1828 int factor; 1829 1830 /* It's df, we don't care if it's racy */ 1831 if (list_empty(&sinfo->ro_bgs)) 1832 return 0; 1833 1834 spin_lock(&sinfo->lock); 1835 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 1836 spin_lock(&block_group->lock); 1837 1838 if (!block_group->ro) { 1839 spin_unlock(&block_group->lock); 1840 continue; 1841 } 1842 1843 factor = btrfs_bg_type_to_factor(block_group->flags); 1844 free_bytes += (block_group->length - 1845 block_group->used) * factor; 1846 1847 spin_unlock(&block_group->lock); 1848 } 1849 spin_unlock(&sinfo->lock); 1850 1851 return free_bytes; 1852 } 1853