xref: /openbmc/linux/fs/btrfs/space-info.c (revision 5a7d107e)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 #include "zoned.h"
13 #include "fs.h"
14 #include "accessors.h"
15 #include "extent-tree.h"
16 
17 /*
18  * HOW DOES SPACE RESERVATION WORK
19  *
20  * If you want to know about delalloc specifically, there is a separate comment
21  * for that with the delalloc code.  This comment is about how the whole system
22  * works generally.
23  *
24  * BASIC CONCEPTS
25  *
26  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
27  *   There's a description of the bytes_ fields with the struct declaration,
28  *   refer to that for specifics on each field.  Suffice it to say that for
29  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
30  *   determining if there is space to make an allocation.  There is a space_info
31  *   for METADATA, SYSTEM, and DATA areas.
32  *
33  *   2) block_rsv's.  These are basically buckets for every different type of
34  *   metadata reservation we have.  You can see the comment in the block_rsv
35  *   code on the rules for each type, but generally block_rsv->reserved is how
36  *   much space is accounted for in space_info->bytes_may_use.
37  *
38  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
39  *   on the number of items we will want to modify.  We have one for changing
40  *   items, and one for inserting new items.  Generally we use these helpers to
41  *   determine the size of the block reserves, and then use the actual bytes
42  *   values to adjust the space_info counters.
43  *
44  * MAKING RESERVATIONS, THE NORMAL CASE
45  *
46  *   We call into either btrfs_reserve_data_bytes() or
47  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
48  *   num_bytes we want to reserve.
49  *
50  *   ->reserve
51  *     space_info->bytes_may_reserve += num_bytes
52  *
53  *   ->extent allocation
54  *     Call btrfs_add_reserved_bytes() which does
55  *     space_info->bytes_may_reserve -= num_bytes
56  *     space_info->bytes_reserved += extent_bytes
57  *
58  *   ->insert reference
59  *     Call btrfs_update_block_group() which does
60  *     space_info->bytes_reserved -= extent_bytes
61  *     space_info->bytes_used += extent_bytes
62  *
63  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
64  *
65  *   Assume we are unable to simply make the reservation because we do not have
66  *   enough space
67  *
68  *   -> __reserve_bytes
69  *     create a reserve_ticket with ->bytes set to our reservation, add it to
70  *     the tail of space_info->tickets, kick async flush thread
71  *
72  *   ->handle_reserve_ticket
73  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
74  *     on the ticket.
75  *
76  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
77  *     Flushes various things attempting to free up space.
78  *
79  *   -> btrfs_try_granting_tickets()
80  *     This is called by anything that either subtracts space from
81  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
82  *     space_info->total_bytes.  This loops through the ->priority_tickets and
83  *     then the ->tickets list checking to see if the reservation can be
84  *     completed.  If it can the space is added to space_info->bytes_may_use and
85  *     the ticket is woken up.
86  *
87  *   -> ticket wakeup
88  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
89  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
90  *     were interrupted.)
91  *
92  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
93  *
94  *   Same as the above, except we add ourselves to the
95  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
96  *   call flush_space() ourselves for the states that are safe for us to call
97  *   without deadlocking and hope for the best.
98  *
99  * THE FLUSHING STATES
100  *
101  *   Generally speaking we will have two cases for each state, a "nice" state
102  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
103  *   reduce the locking over head on the various trees, and even to keep from
104  *   doing any work at all in the case of delayed refs.  Each of these delayed
105  *   things however hold reservations, and so letting them run allows us to
106  *   reclaim space so we can make new reservations.
107  *
108  *   FLUSH_DELAYED_ITEMS
109  *     Every inode has a delayed item to update the inode.  Take a simple write
110  *     for example, we would update the inode item at write time to update the
111  *     mtime, and then again at finish_ordered_io() time in order to update the
112  *     isize or bytes.  We keep these delayed items to coalesce these operations
113  *     into a single operation done on demand.  These are an easy way to reclaim
114  *     metadata space.
115  *
116  *   FLUSH_DELALLOC
117  *     Look at the delalloc comment to get an idea of how much space is reserved
118  *     for delayed allocation.  We can reclaim some of this space simply by
119  *     running delalloc, but usually we need to wait for ordered extents to
120  *     reclaim the bulk of this space.
121  *
122  *   FLUSH_DELAYED_REFS
123  *     We have a block reserve for the outstanding delayed refs space, and every
124  *     delayed ref operation holds a reservation.  Running these is a quick way
125  *     to reclaim space, but we want to hold this until the end because COW can
126  *     churn a lot and we can avoid making some extent tree modifications if we
127  *     are able to delay for as long as possible.
128  *
129  *   ALLOC_CHUNK
130  *     We will skip this the first time through space reservation, because of
131  *     overcommit and we don't want to have a lot of useless metadata space when
132  *     our worst case reservations will likely never come true.
133  *
134  *   RUN_DELAYED_IPUTS
135  *     If we're freeing inodes we're likely freeing checksums, file extent
136  *     items, and extent tree items.  Loads of space could be freed up by these
137  *     operations, however they won't be usable until the transaction commits.
138  *
139  *   COMMIT_TRANS
140  *     This will commit the transaction.  Historically we had a lot of logic
141  *     surrounding whether or not we'd commit the transaction, but this waits born
142  *     out of a pre-tickets era where we could end up committing the transaction
143  *     thousands of times in a row without making progress.  Now thanks to our
144  *     ticketing system we know if we're not making progress and can error
145  *     everybody out after a few commits rather than burning the disk hoping for
146  *     a different answer.
147  *
148  * OVERCOMMIT
149  *
150  *   Because we hold so many reservations for metadata we will allow you to
151  *   reserve more space than is currently free in the currently allocate
152  *   metadata space.  This only happens with metadata, data does not allow
153  *   overcommitting.
154  *
155  *   You can see the current logic for when we allow overcommit in
156  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
157  *   is no unallocated space to be had, all reservations are kept within the
158  *   free space in the allocated metadata chunks.
159  *
160  *   Because of overcommitting, you generally want to use the
161  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
162  *   thing with or without extra unallocated space.
163  */
164 
165 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
166 			  bool may_use_included)
167 {
168 	ASSERT(s_info);
169 	return s_info->bytes_used + s_info->bytes_reserved +
170 		s_info->bytes_pinned + s_info->bytes_readonly +
171 		s_info->bytes_zone_unusable +
172 		(may_use_included ? s_info->bytes_may_use : 0);
173 }
174 
175 /*
176  * after adding space to the filesystem, we need to clear the full flags
177  * on all the space infos.
178  */
179 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
180 {
181 	struct list_head *head = &info->space_info;
182 	struct btrfs_space_info *found;
183 
184 	list_for_each_entry(found, head, list)
185 		found->full = 0;
186 }
187 
188 /*
189  * Block groups with more than this value (percents) of unusable space will be
190  * scheduled for background reclaim.
191  */
192 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH			(75)
193 
194 /*
195  * Calculate chunk size depending on volume type (regular or zoned).
196  */
197 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
198 {
199 	if (btrfs_is_zoned(fs_info))
200 		return fs_info->zone_size;
201 
202 	ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
203 
204 	if (flags & BTRFS_BLOCK_GROUP_DATA)
205 		return BTRFS_MAX_DATA_CHUNK_SIZE;
206 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
207 		return SZ_32M;
208 
209 	/* Handle BTRFS_BLOCK_GROUP_METADATA */
210 	if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
211 		return SZ_1G;
212 
213 	return SZ_256M;
214 }
215 
216 /*
217  * Update default chunk size.
218  */
219 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
220 					u64 chunk_size)
221 {
222 	WRITE_ONCE(space_info->chunk_size, chunk_size);
223 }
224 
225 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
226 {
227 
228 	struct btrfs_space_info *space_info;
229 	int i;
230 	int ret;
231 
232 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
233 	if (!space_info)
234 		return -ENOMEM;
235 
236 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
237 		INIT_LIST_HEAD(&space_info->block_groups[i]);
238 	init_rwsem(&space_info->groups_sem);
239 	spin_lock_init(&space_info->lock);
240 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
241 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
242 	INIT_LIST_HEAD(&space_info->ro_bgs);
243 	INIT_LIST_HEAD(&space_info->tickets);
244 	INIT_LIST_HEAD(&space_info->priority_tickets);
245 	space_info->clamp = 1;
246 	btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
247 
248 	if (btrfs_is_zoned(info))
249 		space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
250 
251 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
252 	if (ret)
253 		return ret;
254 
255 	list_add(&space_info->list, &info->space_info);
256 	if (flags & BTRFS_BLOCK_GROUP_DATA)
257 		info->data_sinfo = space_info;
258 
259 	return ret;
260 }
261 
262 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
263 {
264 	struct btrfs_super_block *disk_super;
265 	u64 features;
266 	u64 flags;
267 	int mixed = 0;
268 	int ret;
269 
270 	disk_super = fs_info->super_copy;
271 	if (!btrfs_super_root(disk_super))
272 		return -EINVAL;
273 
274 	features = btrfs_super_incompat_flags(disk_super);
275 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
276 		mixed = 1;
277 
278 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
279 	ret = create_space_info(fs_info, flags);
280 	if (ret)
281 		goto out;
282 
283 	if (mixed) {
284 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
285 		ret = create_space_info(fs_info, flags);
286 	} else {
287 		flags = BTRFS_BLOCK_GROUP_METADATA;
288 		ret = create_space_info(fs_info, flags);
289 		if (ret)
290 			goto out;
291 
292 		flags = BTRFS_BLOCK_GROUP_DATA;
293 		ret = create_space_info(fs_info, flags);
294 	}
295 out:
296 	return ret;
297 }
298 
299 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
300 				struct btrfs_block_group *block_group)
301 {
302 	struct btrfs_space_info *found;
303 	int factor, index;
304 
305 	factor = btrfs_bg_type_to_factor(block_group->flags);
306 
307 	found = btrfs_find_space_info(info, block_group->flags);
308 	ASSERT(found);
309 	spin_lock(&found->lock);
310 	found->total_bytes += block_group->length;
311 	found->disk_total += block_group->length * factor;
312 	found->bytes_used += block_group->used;
313 	found->disk_used += block_group->used * factor;
314 	found->bytes_readonly += block_group->bytes_super;
315 	found->bytes_zone_unusable += block_group->zone_unusable;
316 	if (block_group->length > 0)
317 		found->full = 0;
318 	btrfs_try_granting_tickets(info, found);
319 	spin_unlock(&found->lock);
320 
321 	block_group->space_info = found;
322 
323 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
324 	down_write(&found->groups_sem);
325 	list_add_tail(&block_group->list, &found->block_groups[index]);
326 	up_write(&found->groups_sem);
327 }
328 
329 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
330 					       u64 flags)
331 {
332 	struct list_head *head = &info->space_info;
333 	struct btrfs_space_info *found;
334 
335 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
336 
337 	list_for_each_entry(found, head, list) {
338 		if (found->flags & flags)
339 			return found;
340 	}
341 	return NULL;
342 }
343 
344 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
345 			  struct btrfs_space_info *space_info,
346 			  enum btrfs_reserve_flush_enum flush)
347 {
348 	u64 profile;
349 	u64 avail;
350 	int factor;
351 
352 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
353 		profile = btrfs_system_alloc_profile(fs_info);
354 	else
355 		profile = btrfs_metadata_alloc_profile(fs_info);
356 
357 	avail = atomic64_read(&fs_info->free_chunk_space);
358 
359 	/*
360 	 * If we have dup, raid1 or raid10 then only half of the free
361 	 * space is actually usable.  For raid56, the space info used
362 	 * doesn't include the parity drive, so we don't have to
363 	 * change the math
364 	 */
365 	factor = btrfs_bg_type_to_factor(profile);
366 	avail = div_u64(avail, factor);
367 
368 	/*
369 	 * If we aren't flushing all things, let us overcommit up to
370 	 * 1/2th of the space. If we can flush, don't let us overcommit
371 	 * too much, let it overcommit up to 1/8 of the space.
372 	 */
373 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
374 		avail >>= 3;
375 	else
376 		avail >>= 1;
377 	return avail;
378 }
379 
380 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
381 			 struct btrfs_space_info *space_info, u64 bytes,
382 			 enum btrfs_reserve_flush_enum flush)
383 {
384 	u64 avail;
385 	u64 used;
386 
387 	/* Don't overcommit when in mixed mode */
388 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
389 		return 0;
390 
391 	used = btrfs_space_info_used(space_info, true);
392 	if (test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags) &&
393 	    (space_info->flags & BTRFS_BLOCK_GROUP_METADATA))
394 		avail = 0;
395 	else
396 		avail = calc_available_free_space(fs_info, space_info, flush);
397 
398 	if (used + bytes < space_info->total_bytes + avail)
399 		return 1;
400 	return 0;
401 }
402 
403 static void remove_ticket(struct btrfs_space_info *space_info,
404 			  struct reserve_ticket *ticket)
405 {
406 	if (!list_empty(&ticket->list)) {
407 		list_del_init(&ticket->list);
408 		ASSERT(space_info->reclaim_size >= ticket->bytes);
409 		space_info->reclaim_size -= ticket->bytes;
410 	}
411 }
412 
413 /*
414  * This is for space we already have accounted in space_info->bytes_may_use, so
415  * basically when we're returning space from block_rsv's.
416  */
417 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
418 				struct btrfs_space_info *space_info)
419 {
420 	struct list_head *head;
421 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
422 
423 	lockdep_assert_held(&space_info->lock);
424 
425 	head = &space_info->priority_tickets;
426 again:
427 	while (!list_empty(head)) {
428 		struct reserve_ticket *ticket;
429 		u64 used = btrfs_space_info_used(space_info, true);
430 
431 		ticket = list_first_entry(head, struct reserve_ticket, list);
432 
433 		/* Check and see if our ticket can be satisfied now. */
434 		if ((used + ticket->bytes <= space_info->total_bytes) ||
435 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
436 					 flush)) {
437 			btrfs_space_info_update_bytes_may_use(fs_info,
438 							      space_info,
439 							      ticket->bytes);
440 			remove_ticket(space_info, ticket);
441 			ticket->bytes = 0;
442 			space_info->tickets_id++;
443 			wake_up(&ticket->wait);
444 		} else {
445 			break;
446 		}
447 	}
448 
449 	if (head == &space_info->priority_tickets) {
450 		head = &space_info->tickets;
451 		flush = BTRFS_RESERVE_FLUSH_ALL;
452 		goto again;
453 	}
454 }
455 
456 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
457 do {									\
458 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
459 	spin_lock(&__rsv->lock);					\
460 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
461 		   __rsv->size, __rsv->reserved);			\
462 	spin_unlock(&__rsv->lock);					\
463 } while (0)
464 
465 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
466 {
467 	switch (space_info->flags) {
468 	case BTRFS_BLOCK_GROUP_SYSTEM:
469 		return "SYSTEM";
470 	case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
471 		return "DATA+METADATA";
472 	case BTRFS_BLOCK_GROUP_DATA:
473 		return "DATA";
474 	case BTRFS_BLOCK_GROUP_METADATA:
475 		return "METADATA";
476 	default:
477 		return "UNKNOWN";
478 	}
479 }
480 
481 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
482 {
483 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
484 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
485 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
486 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
487 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
488 }
489 
490 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
491 				    struct btrfs_space_info *info)
492 {
493 	const char *flag_str = space_info_flag_to_str(info);
494 	lockdep_assert_held(&info->lock);
495 
496 	/* The free space could be negative in case of overcommit */
497 	btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
498 		   flag_str,
499 		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
500 		   info->full ? "" : "not ");
501 	btrfs_info(fs_info,
502 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
503 		info->total_bytes, info->bytes_used, info->bytes_pinned,
504 		info->bytes_reserved, info->bytes_may_use,
505 		info->bytes_readonly, info->bytes_zone_unusable);
506 }
507 
508 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
509 			   struct btrfs_space_info *info, u64 bytes,
510 			   int dump_block_groups)
511 {
512 	struct btrfs_block_group *cache;
513 	u64 total_avail = 0;
514 	int index = 0;
515 
516 	spin_lock(&info->lock);
517 	__btrfs_dump_space_info(fs_info, info);
518 	dump_global_block_rsv(fs_info);
519 	spin_unlock(&info->lock);
520 
521 	if (!dump_block_groups)
522 		return;
523 
524 	down_read(&info->groups_sem);
525 again:
526 	list_for_each_entry(cache, &info->block_groups[index], list) {
527 		u64 avail;
528 
529 		spin_lock(&cache->lock);
530 		avail = cache->length - cache->used - cache->pinned -
531 			cache->reserved - cache->delalloc_bytes -
532 			cache->bytes_super - cache->zone_unusable;
533 		btrfs_info(fs_info,
534 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s",
535 			   cache->start, cache->length, cache->used, cache->pinned,
536 			   cache->reserved, cache->delalloc_bytes,
537 			   cache->bytes_super, cache->zone_unusable,
538 			   avail, cache->ro ? "[readonly]" : "");
539 		spin_unlock(&cache->lock);
540 		btrfs_dump_free_space(cache, bytes);
541 		total_avail += avail;
542 	}
543 	if (++index < BTRFS_NR_RAID_TYPES)
544 		goto again;
545 	up_read(&info->groups_sem);
546 
547 	btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail);
548 }
549 
550 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info,
551 					u64 to_reclaim)
552 {
553 	u64 bytes;
554 	u64 nr;
555 
556 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
557 	nr = div64_u64(to_reclaim, bytes);
558 	if (!nr)
559 		nr = 1;
560 	return nr;
561 }
562 
563 static inline u64 calc_delayed_refs_nr(const struct btrfs_fs_info *fs_info,
564 				       u64 to_reclaim)
565 {
566 	const u64 bytes = btrfs_calc_delayed_ref_bytes(fs_info, 1);
567 	u64 nr;
568 
569 	nr = div64_u64(to_reclaim, bytes);
570 	if (!nr)
571 		nr = 1;
572 	return nr;
573 }
574 
575 #define EXTENT_SIZE_PER_ITEM	SZ_256K
576 
577 /*
578  * shrink metadata reservation for delalloc
579  */
580 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
581 			    struct btrfs_space_info *space_info,
582 			    u64 to_reclaim, bool wait_ordered,
583 			    bool for_preempt)
584 {
585 	struct btrfs_trans_handle *trans;
586 	u64 delalloc_bytes;
587 	u64 ordered_bytes;
588 	u64 items;
589 	long time_left;
590 	int loops;
591 
592 	delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
593 	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
594 	if (delalloc_bytes == 0 && ordered_bytes == 0)
595 		return;
596 
597 	/* Calc the number of the pages we need flush for space reservation */
598 	if (to_reclaim == U64_MAX) {
599 		items = U64_MAX;
600 	} else {
601 		/*
602 		 * to_reclaim is set to however much metadata we need to
603 		 * reclaim, but reclaiming that much data doesn't really track
604 		 * exactly.  What we really want to do is reclaim full inode's
605 		 * worth of reservations, however that's not available to us
606 		 * here.  We will take a fraction of the delalloc bytes for our
607 		 * flushing loops and hope for the best.  Delalloc will expand
608 		 * the amount we write to cover an entire dirty extent, which
609 		 * will reclaim the metadata reservation for that range.  If
610 		 * it's not enough subsequent flush stages will be more
611 		 * aggressive.
612 		 */
613 		to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
614 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
615 	}
616 
617 	trans = current->journal_info;
618 
619 	/*
620 	 * If we are doing more ordered than delalloc we need to just wait on
621 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
622 	 * that likely won't give us the space back we need.
623 	 */
624 	if (ordered_bytes > delalloc_bytes && !for_preempt)
625 		wait_ordered = true;
626 
627 	loops = 0;
628 	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
629 		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
630 		long nr_pages = min_t(u64, temp, LONG_MAX);
631 		int async_pages;
632 
633 		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
634 
635 		/*
636 		 * We need to make sure any outstanding async pages are now
637 		 * processed before we continue.  This is because things like
638 		 * sync_inode() try to be smart and skip writing if the inode is
639 		 * marked clean.  We don't use filemap_fwrite for flushing
640 		 * because we want to control how many pages we write out at a
641 		 * time, thus this is the only safe way to make sure we've
642 		 * waited for outstanding compressed workers to have started
643 		 * their jobs and thus have ordered extents set up properly.
644 		 *
645 		 * This exists because we do not want to wait for each
646 		 * individual inode to finish its async work, we simply want to
647 		 * start the IO on everybody, and then come back here and wait
648 		 * for all of the async work to catch up.  Once we're done with
649 		 * that we know we'll have ordered extents for everything and we
650 		 * can decide if we wait for that or not.
651 		 *
652 		 * If we choose to replace this in the future, make absolutely
653 		 * sure that the proper waiting is being done in the async case,
654 		 * as there have been bugs in that area before.
655 		 */
656 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
657 		if (!async_pages)
658 			goto skip_async;
659 
660 		/*
661 		 * We don't want to wait forever, if we wrote less pages in this
662 		 * loop than we have outstanding, only wait for that number of
663 		 * pages, otherwise we can wait for all async pages to finish
664 		 * before continuing.
665 		 */
666 		if (async_pages > nr_pages)
667 			async_pages -= nr_pages;
668 		else
669 			async_pages = 0;
670 		wait_event(fs_info->async_submit_wait,
671 			   atomic_read(&fs_info->async_delalloc_pages) <=
672 			   async_pages);
673 skip_async:
674 		loops++;
675 		if (wait_ordered && !trans) {
676 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
677 		} else {
678 			time_left = schedule_timeout_killable(1);
679 			if (time_left)
680 				break;
681 		}
682 
683 		/*
684 		 * If we are for preemption we just want a one-shot of delalloc
685 		 * flushing so we can stop flushing if we decide we don't need
686 		 * to anymore.
687 		 */
688 		if (for_preempt)
689 			break;
690 
691 		spin_lock(&space_info->lock);
692 		if (list_empty(&space_info->tickets) &&
693 		    list_empty(&space_info->priority_tickets)) {
694 			spin_unlock(&space_info->lock);
695 			break;
696 		}
697 		spin_unlock(&space_info->lock);
698 
699 		delalloc_bytes = percpu_counter_sum_positive(
700 						&fs_info->delalloc_bytes);
701 		ordered_bytes = percpu_counter_sum_positive(
702 						&fs_info->ordered_bytes);
703 	}
704 }
705 
706 /*
707  * Try to flush some data based on policy set by @state. This is only advisory
708  * and may fail for various reasons. The caller is supposed to examine the
709  * state of @space_info to detect the outcome.
710  */
711 static void flush_space(struct btrfs_fs_info *fs_info,
712 		       struct btrfs_space_info *space_info, u64 num_bytes,
713 		       enum btrfs_flush_state state, bool for_preempt)
714 {
715 	struct btrfs_root *root = fs_info->tree_root;
716 	struct btrfs_trans_handle *trans;
717 	int nr;
718 	int ret = 0;
719 
720 	switch (state) {
721 	case FLUSH_DELAYED_ITEMS_NR:
722 	case FLUSH_DELAYED_ITEMS:
723 		if (state == FLUSH_DELAYED_ITEMS_NR)
724 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
725 		else
726 			nr = -1;
727 
728 		trans = btrfs_join_transaction_nostart(root);
729 		if (IS_ERR(trans)) {
730 			ret = PTR_ERR(trans);
731 			if (ret == -ENOENT)
732 				ret = 0;
733 			break;
734 		}
735 		ret = btrfs_run_delayed_items_nr(trans, nr);
736 		btrfs_end_transaction(trans);
737 		break;
738 	case FLUSH_DELALLOC:
739 	case FLUSH_DELALLOC_WAIT:
740 	case FLUSH_DELALLOC_FULL:
741 		if (state == FLUSH_DELALLOC_FULL)
742 			num_bytes = U64_MAX;
743 		shrink_delalloc(fs_info, space_info, num_bytes,
744 				state != FLUSH_DELALLOC, for_preempt);
745 		break;
746 	case FLUSH_DELAYED_REFS_NR:
747 	case FLUSH_DELAYED_REFS:
748 		trans = btrfs_join_transaction_nostart(root);
749 		if (IS_ERR(trans)) {
750 			ret = PTR_ERR(trans);
751 			if (ret == -ENOENT)
752 				ret = 0;
753 			break;
754 		}
755 		if (state == FLUSH_DELAYED_REFS_NR)
756 			nr = calc_delayed_refs_nr(fs_info, num_bytes);
757 		else
758 			nr = 0;
759 		btrfs_run_delayed_refs(trans, nr);
760 		btrfs_end_transaction(trans);
761 		break;
762 	case ALLOC_CHUNK:
763 	case ALLOC_CHUNK_FORCE:
764 		trans = btrfs_join_transaction(root);
765 		if (IS_ERR(trans)) {
766 			ret = PTR_ERR(trans);
767 			break;
768 		}
769 		ret = btrfs_chunk_alloc(trans,
770 				btrfs_get_alloc_profile(fs_info, space_info->flags),
771 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
772 					CHUNK_ALLOC_FORCE);
773 		btrfs_end_transaction(trans);
774 
775 		if (ret > 0 || ret == -ENOSPC)
776 			ret = 0;
777 		break;
778 	case RUN_DELAYED_IPUTS:
779 		/*
780 		 * If we have pending delayed iputs then we could free up a
781 		 * bunch of pinned space, so make sure we run the iputs before
782 		 * we do our pinned bytes check below.
783 		 */
784 		btrfs_run_delayed_iputs(fs_info);
785 		btrfs_wait_on_delayed_iputs(fs_info);
786 		break;
787 	case COMMIT_TRANS:
788 		ASSERT(current->journal_info == NULL);
789 		/*
790 		 * We don't want to start a new transaction, just attach to the
791 		 * current one or wait it fully commits in case its commit is
792 		 * happening at the moment. Note: we don't use a nostart join
793 		 * because that does not wait for a transaction to fully commit
794 		 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED).
795 		 */
796 		trans = btrfs_attach_transaction_barrier(root);
797 		if (IS_ERR(trans)) {
798 			ret = PTR_ERR(trans);
799 			if (ret == -ENOENT)
800 				ret = 0;
801 			break;
802 		}
803 		ret = btrfs_commit_transaction(trans);
804 		break;
805 	default:
806 		ret = -ENOSPC;
807 		break;
808 	}
809 
810 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
811 				ret, for_preempt);
812 	return;
813 }
814 
815 static inline u64
816 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
817 				 struct btrfs_space_info *space_info)
818 {
819 	u64 used;
820 	u64 avail;
821 	u64 to_reclaim = space_info->reclaim_size;
822 
823 	lockdep_assert_held(&space_info->lock);
824 
825 	avail = calc_available_free_space(fs_info, space_info,
826 					  BTRFS_RESERVE_FLUSH_ALL);
827 	used = btrfs_space_info_used(space_info, true);
828 
829 	/*
830 	 * We may be flushing because suddenly we have less space than we had
831 	 * before, and now we're well over-committed based on our current free
832 	 * space.  If that's the case add in our overage so we make sure to put
833 	 * appropriate pressure on the flushing state machine.
834 	 */
835 	if (space_info->total_bytes + avail < used)
836 		to_reclaim += used - (space_info->total_bytes + avail);
837 
838 	return to_reclaim;
839 }
840 
841 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
842 				    struct btrfs_space_info *space_info)
843 {
844 	u64 global_rsv_size = fs_info->global_block_rsv.reserved;
845 	u64 ordered, delalloc;
846 	u64 thresh;
847 	u64 used;
848 
849 	thresh = mult_perc(space_info->total_bytes, 90);
850 
851 	lockdep_assert_held(&space_info->lock);
852 
853 	/* If we're just plain full then async reclaim just slows us down. */
854 	if ((space_info->bytes_used + space_info->bytes_reserved +
855 	     global_rsv_size) >= thresh)
856 		return false;
857 
858 	used = space_info->bytes_may_use + space_info->bytes_pinned;
859 
860 	/* The total flushable belongs to the global rsv, don't flush. */
861 	if (global_rsv_size >= used)
862 		return false;
863 
864 	/*
865 	 * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
866 	 * that devoted to other reservations then there's no sense in flushing,
867 	 * we don't have a lot of things that need flushing.
868 	 */
869 	if (used - global_rsv_size <= SZ_128M)
870 		return false;
871 
872 	/*
873 	 * We have tickets queued, bail so we don't compete with the async
874 	 * flushers.
875 	 */
876 	if (space_info->reclaim_size)
877 		return false;
878 
879 	/*
880 	 * If we have over half of the free space occupied by reservations or
881 	 * pinned then we want to start flushing.
882 	 *
883 	 * We do not do the traditional thing here, which is to say
884 	 *
885 	 *   if (used >= ((total_bytes + avail) / 2))
886 	 *     return 1;
887 	 *
888 	 * because this doesn't quite work how we want.  If we had more than 50%
889 	 * of the space_info used by bytes_used and we had 0 available we'd just
890 	 * constantly run the background flusher.  Instead we want it to kick in
891 	 * if our reclaimable space exceeds our clamped free space.
892 	 *
893 	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
894 	 * the following:
895 	 *
896 	 * Amount of RAM        Minimum threshold       Maximum threshold
897 	 *
898 	 *        256GiB                     1GiB                  128GiB
899 	 *        128GiB                   512MiB                   64GiB
900 	 *         64GiB                   256MiB                   32GiB
901 	 *         32GiB                   128MiB                   16GiB
902 	 *         16GiB                    64MiB                    8GiB
903 	 *
904 	 * These are the range our thresholds will fall in, corresponding to how
905 	 * much delalloc we need for the background flusher to kick in.
906 	 */
907 
908 	thresh = calc_available_free_space(fs_info, space_info,
909 					   BTRFS_RESERVE_FLUSH_ALL);
910 	used = space_info->bytes_used + space_info->bytes_reserved +
911 	       space_info->bytes_readonly + global_rsv_size;
912 	if (used < space_info->total_bytes)
913 		thresh += space_info->total_bytes - used;
914 	thresh >>= space_info->clamp;
915 
916 	used = space_info->bytes_pinned;
917 
918 	/*
919 	 * If we have more ordered bytes than delalloc bytes then we're either
920 	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
921 	 * around.  Preemptive flushing is only useful in that it can free up
922 	 * space before tickets need to wait for things to finish.  In the case
923 	 * of ordered extents, preemptively waiting on ordered extents gets us
924 	 * nothing, if our reservations are tied up in ordered extents we'll
925 	 * simply have to slow down writers by forcing them to wait on ordered
926 	 * extents.
927 	 *
928 	 * In the case that ordered is larger than delalloc, only include the
929 	 * block reserves that we would actually be able to directly reclaim
930 	 * from.  In this case if we're heavy on metadata operations this will
931 	 * clearly be heavy enough to warrant preemptive flushing.  In the case
932 	 * of heavy DIO or ordered reservations, preemptive flushing will just
933 	 * waste time and cause us to slow down.
934 	 *
935 	 * We want to make sure we truly are maxed out on ordered however, so
936 	 * cut ordered in half, and if it's still higher than delalloc then we
937 	 * can keep flushing.  This is to avoid the case where we start
938 	 * flushing, and now delalloc == ordered and we stop preemptively
939 	 * flushing when we could still have several gigs of delalloc to flush.
940 	 */
941 	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
942 	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
943 	if (ordered >= delalloc)
944 		used += fs_info->delayed_refs_rsv.reserved +
945 			fs_info->delayed_block_rsv.reserved;
946 	else
947 		used += space_info->bytes_may_use - global_rsv_size;
948 
949 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
950 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
951 }
952 
953 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
954 				  struct btrfs_space_info *space_info,
955 				  struct reserve_ticket *ticket)
956 {
957 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
958 	u64 min_bytes;
959 
960 	if (!ticket->steal)
961 		return false;
962 
963 	if (global_rsv->space_info != space_info)
964 		return false;
965 
966 	spin_lock(&global_rsv->lock);
967 	min_bytes = mult_perc(global_rsv->size, 10);
968 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
969 		spin_unlock(&global_rsv->lock);
970 		return false;
971 	}
972 	global_rsv->reserved -= ticket->bytes;
973 	remove_ticket(space_info, ticket);
974 	ticket->bytes = 0;
975 	wake_up(&ticket->wait);
976 	space_info->tickets_id++;
977 	if (global_rsv->reserved < global_rsv->size)
978 		global_rsv->full = 0;
979 	spin_unlock(&global_rsv->lock);
980 
981 	return true;
982 }
983 
984 /*
985  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
986  * @fs_info - fs_info for this fs
987  * @space_info - the space info we were flushing
988  *
989  * We call this when we've exhausted our flushing ability and haven't made
990  * progress in satisfying tickets.  The reservation code handles tickets in
991  * order, so if there is a large ticket first and then smaller ones we could
992  * very well satisfy the smaller tickets.  This will attempt to wake up any
993  * tickets in the list to catch this case.
994  *
995  * This function returns true if it was able to make progress by clearing out
996  * other tickets, or if it stumbles across a ticket that was smaller than the
997  * first ticket.
998  */
999 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1000 				   struct btrfs_space_info *space_info)
1001 {
1002 	struct reserve_ticket *ticket;
1003 	u64 tickets_id = space_info->tickets_id;
1004 	const bool aborted = BTRFS_FS_ERROR(fs_info);
1005 
1006 	trace_btrfs_fail_all_tickets(fs_info, space_info);
1007 
1008 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1009 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1010 		__btrfs_dump_space_info(fs_info, space_info);
1011 	}
1012 
1013 	while (!list_empty(&space_info->tickets) &&
1014 	       tickets_id == space_info->tickets_id) {
1015 		ticket = list_first_entry(&space_info->tickets,
1016 					  struct reserve_ticket, list);
1017 
1018 		if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1019 			return true;
1020 
1021 		if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1022 			btrfs_info(fs_info, "failing ticket with %llu bytes",
1023 				   ticket->bytes);
1024 
1025 		remove_ticket(space_info, ticket);
1026 		if (aborted)
1027 			ticket->error = -EIO;
1028 		else
1029 			ticket->error = -ENOSPC;
1030 		wake_up(&ticket->wait);
1031 
1032 		/*
1033 		 * We're just throwing tickets away, so more flushing may not
1034 		 * trip over btrfs_try_granting_tickets, so we need to call it
1035 		 * here to see if we can make progress with the next ticket in
1036 		 * the list.
1037 		 */
1038 		if (!aborted)
1039 			btrfs_try_granting_tickets(fs_info, space_info);
1040 	}
1041 	return (tickets_id != space_info->tickets_id);
1042 }
1043 
1044 /*
1045  * This is for normal flushers, we can wait all goddamned day if we want to.  We
1046  * will loop and continuously try to flush as long as we are making progress.
1047  * We count progress as clearing off tickets each time we have to loop.
1048  */
1049 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1050 {
1051 	struct btrfs_fs_info *fs_info;
1052 	struct btrfs_space_info *space_info;
1053 	u64 to_reclaim;
1054 	enum btrfs_flush_state flush_state;
1055 	int commit_cycles = 0;
1056 	u64 last_tickets_id;
1057 
1058 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1059 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1060 
1061 	spin_lock(&space_info->lock);
1062 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1063 	if (!to_reclaim) {
1064 		space_info->flush = 0;
1065 		spin_unlock(&space_info->lock);
1066 		return;
1067 	}
1068 	last_tickets_id = space_info->tickets_id;
1069 	spin_unlock(&space_info->lock);
1070 
1071 	flush_state = FLUSH_DELAYED_ITEMS_NR;
1072 	do {
1073 		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1074 		spin_lock(&space_info->lock);
1075 		if (list_empty(&space_info->tickets)) {
1076 			space_info->flush = 0;
1077 			spin_unlock(&space_info->lock);
1078 			return;
1079 		}
1080 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1081 							      space_info);
1082 		if (last_tickets_id == space_info->tickets_id) {
1083 			flush_state++;
1084 		} else {
1085 			last_tickets_id = space_info->tickets_id;
1086 			flush_state = FLUSH_DELAYED_ITEMS_NR;
1087 			if (commit_cycles)
1088 				commit_cycles--;
1089 		}
1090 
1091 		/*
1092 		 * We do not want to empty the system of delalloc unless we're
1093 		 * under heavy pressure, so allow one trip through the flushing
1094 		 * logic before we start doing a FLUSH_DELALLOC_FULL.
1095 		 */
1096 		if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1097 			flush_state++;
1098 
1099 		/*
1100 		 * We don't want to force a chunk allocation until we've tried
1101 		 * pretty hard to reclaim space.  Think of the case where we
1102 		 * freed up a bunch of space and so have a lot of pinned space
1103 		 * to reclaim.  We would rather use that than possibly create a
1104 		 * underutilized metadata chunk.  So if this is our first run
1105 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1106 		 * commit the transaction.  If nothing has changed the next go
1107 		 * around then we can force a chunk allocation.
1108 		 */
1109 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1110 			flush_state++;
1111 
1112 		if (flush_state > COMMIT_TRANS) {
1113 			commit_cycles++;
1114 			if (commit_cycles > 2) {
1115 				if (maybe_fail_all_tickets(fs_info, space_info)) {
1116 					flush_state = FLUSH_DELAYED_ITEMS_NR;
1117 					commit_cycles--;
1118 				} else {
1119 					space_info->flush = 0;
1120 				}
1121 			} else {
1122 				flush_state = FLUSH_DELAYED_ITEMS_NR;
1123 			}
1124 		}
1125 		spin_unlock(&space_info->lock);
1126 	} while (flush_state <= COMMIT_TRANS);
1127 }
1128 
1129 /*
1130  * This handles pre-flushing of metadata space before we get to the point that
1131  * we need to start blocking threads on tickets.  The logic here is different
1132  * from the other flush paths because it doesn't rely on tickets to tell us how
1133  * much we need to flush, instead it attempts to keep us below the 80% full
1134  * watermark of space by flushing whichever reservation pool is currently the
1135  * largest.
1136  */
1137 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1138 {
1139 	struct btrfs_fs_info *fs_info;
1140 	struct btrfs_space_info *space_info;
1141 	struct btrfs_block_rsv *delayed_block_rsv;
1142 	struct btrfs_block_rsv *delayed_refs_rsv;
1143 	struct btrfs_block_rsv *global_rsv;
1144 	struct btrfs_block_rsv *trans_rsv;
1145 	int loops = 0;
1146 
1147 	fs_info = container_of(work, struct btrfs_fs_info,
1148 			       preempt_reclaim_work);
1149 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1150 	delayed_block_rsv = &fs_info->delayed_block_rsv;
1151 	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1152 	global_rsv = &fs_info->global_block_rsv;
1153 	trans_rsv = &fs_info->trans_block_rsv;
1154 
1155 	spin_lock(&space_info->lock);
1156 	while (need_preemptive_reclaim(fs_info, space_info)) {
1157 		enum btrfs_flush_state flush;
1158 		u64 delalloc_size = 0;
1159 		u64 to_reclaim, block_rsv_size;
1160 		u64 global_rsv_size = global_rsv->reserved;
1161 
1162 		loops++;
1163 
1164 		/*
1165 		 * We don't have a precise counter for the metadata being
1166 		 * reserved for delalloc, so we'll approximate it by subtracting
1167 		 * out the block rsv's space from the bytes_may_use.  If that
1168 		 * amount is higher than the individual reserves, then we can
1169 		 * assume it's tied up in delalloc reservations.
1170 		 */
1171 		block_rsv_size = global_rsv_size +
1172 			delayed_block_rsv->reserved +
1173 			delayed_refs_rsv->reserved +
1174 			trans_rsv->reserved;
1175 		if (block_rsv_size < space_info->bytes_may_use)
1176 			delalloc_size = space_info->bytes_may_use - block_rsv_size;
1177 
1178 		/*
1179 		 * We don't want to include the global_rsv in our calculation,
1180 		 * because that's space we can't touch.  Subtract it from the
1181 		 * block_rsv_size for the next checks.
1182 		 */
1183 		block_rsv_size -= global_rsv_size;
1184 
1185 		/*
1186 		 * We really want to avoid flushing delalloc too much, as it
1187 		 * could result in poor allocation patterns, so only flush it if
1188 		 * it's larger than the rest of the pools combined.
1189 		 */
1190 		if (delalloc_size > block_rsv_size) {
1191 			to_reclaim = delalloc_size;
1192 			flush = FLUSH_DELALLOC;
1193 		} else if (space_info->bytes_pinned >
1194 			   (delayed_block_rsv->reserved +
1195 			    delayed_refs_rsv->reserved)) {
1196 			to_reclaim = space_info->bytes_pinned;
1197 			flush = COMMIT_TRANS;
1198 		} else if (delayed_block_rsv->reserved >
1199 			   delayed_refs_rsv->reserved) {
1200 			to_reclaim = delayed_block_rsv->reserved;
1201 			flush = FLUSH_DELAYED_ITEMS_NR;
1202 		} else {
1203 			to_reclaim = delayed_refs_rsv->reserved;
1204 			flush = FLUSH_DELAYED_REFS_NR;
1205 		}
1206 
1207 		spin_unlock(&space_info->lock);
1208 
1209 		/*
1210 		 * We don't want to reclaim everything, just a portion, so scale
1211 		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1212 		 * reclaim 1 items worth.
1213 		 */
1214 		to_reclaim >>= 2;
1215 		if (!to_reclaim)
1216 			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1217 		flush_space(fs_info, space_info, to_reclaim, flush, true);
1218 		cond_resched();
1219 		spin_lock(&space_info->lock);
1220 	}
1221 
1222 	/* We only went through once, back off our clamping. */
1223 	if (loops == 1 && !space_info->reclaim_size)
1224 		space_info->clamp = max(1, space_info->clamp - 1);
1225 	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1226 	spin_unlock(&space_info->lock);
1227 }
1228 
1229 /*
1230  * FLUSH_DELALLOC_WAIT:
1231  *   Space is freed from flushing delalloc in one of two ways.
1232  *
1233  *   1) compression is on and we allocate less space than we reserved
1234  *   2) we are overwriting existing space
1235  *
1236  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1237  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1238  *   length to ->bytes_reserved, and subtracts the reserved space from
1239  *   ->bytes_may_use.
1240  *
1241  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1242  *   extent in the range we are overwriting, which creates a delayed ref for
1243  *   that freed extent.  This however is not reclaimed until the transaction
1244  *   commits, thus the next stages.
1245  *
1246  * RUN_DELAYED_IPUTS
1247  *   If we are freeing inodes, we want to make sure all delayed iputs have
1248  *   completed, because they could have been on an inode with i_nlink == 0, and
1249  *   thus have been truncated and freed up space.  But again this space is not
1250  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1251  *   run and then the transaction must be committed.
1252  *
1253  * COMMIT_TRANS
1254  *   This is where we reclaim all of the pinned space generated by running the
1255  *   iputs
1256  *
1257  * ALLOC_CHUNK_FORCE
1258  *   For data we start with alloc chunk force, however we could have been full
1259  *   before, and then the transaction commit could have freed new block groups,
1260  *   so if we now have space to allocate do the force chunk allocation.
1261  */
1262 static const enum btrfs_flush_state data_flush_states[] = {
1263 	FLUSH_DELALLOC_FULL,
1264 	RUN_DELAYED_IPUTS,
1265 	COMMIT_TRANS,
1266 	ALLOC_CHUNK_FORCE,
1267 };
1268 
1269 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1270 {
1271 	struct btrfs_fs_info *fs_info;
1272 	struct btrfs_space_info *space_info;
1273 	u64 last_tickets_id;
1274 	enum btrfs_flush_state flush_state = 0;
1275 
1276 	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1277 	space_info = fs_info->data_sinfo;
1278 
1279 	spin_lock(&space_info->lock);
1280 	if (list_empty(&space_info->tickets)) {
1281 		space_info->flush = 0;
1282 		spin_unlock(&space_info->lock);
1283 		return;
1284 	}
1285 	last_tickets_id = space_info->tickets_id;
1286 	spin_unlock(&space_info->lock);
1287 
1288 	while (!space_info->full) {
1289 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1290 		spin_lock(&space_info->lock);
1291 		if (list_empty(&space_info->tickets)) {
1292 			space_info->flush = 0;
1293 			spin_unlock(&space_info->lock);
1294 			return;
1295 		}
1296 
1297 		/* Something happened, fail everything and bail. */
1298 		if (BTRFS_FS_ERROR(fs_info))
1299 			goto aborted_fs;
1300 		last_tickets_id = space_info->tickets_id;
1301 		spin_unlock(&space_info->lock);
1302 	}
1303 
1304 	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1305 		flush_space(fs_info, space_info, U64_MAX,
1306 			    data_flush_states[flush_state], false);
1307 		spin_lock(&space_info->lock);
1308 		if (list_empty(&space_info->tickets)) {
1309 			space_info->flush = 0;
1310 			spin_unlock(&space_info->lock);
1311 			return;
1312 		}
1313 
1314 		if (last_tickets_id == space_info->tickets_id) {
1315 			flush_state++;
1316 		} else {
1317 			last_tickets_id = space_info->tickets_id;
1318 			flush_state = 0;
1319 		}
1320 
1321 		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1322 			if (space_info->full) {
1323 				if (maybe_fail_all_tickets(fs_info, space_info))
1324 					flush_state = 0;
1325 				else
1326 					space_info->flush = 0;
1327 			} else {
1328 				flush_state = 0;
1329 			}
1330 
1331 			/* Something happened, fail everything and bail. */
1332 			if (BTRFS_FS_ERROR(fs_info))
1333 				goto aborted_fs;
1334 
1335 		}
1336 		spin_unlock(&space_info->lock);
1337 	}
1338 	return;
1339 
1340 aborted_fs:
1341 	maybe_fail_all_tickets(fs_info, space_info);
1342 	space_info->flush = 0;
1343 	spin_unlock(&space_info->lock);
1344 }
1345 
1346 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1347 {
1348 	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1349 	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1350 	INIT_WORK(&fs_info->preempt_reclaim_work,
1351 		  btrfs_preempt_reclaim_metadata_space);
1352 }
1353 
1354 static const enum btrfs_flush_state priority_flush_states[] = {
1355 	FLUSH_DELAYED_ITEMS_NR,
1356 	FLUSH_DELAYED_ITEMS,
1357 	ALLOC_CHUNK,
1358 };
1359 
1360 static const enum btrfs_flush_state evict_flush_states[] = {
1361 	FLUSH_DELAYED_ITEMS_NR,
1362 	FLUSH_DELAYED_ITEMS,
1363 	FLUSH_DELAYED_REFS_NR,
1364 	FLUSH_DELAYED_REFS,
1365 	FLUSH_DELALLOC,
1366 	FLUSH_DELALLOC_WAIT,
1367 	FLUSH_DELALLOC_FULL,
1368 	ALLOC_CHUNK,
1369 	COMMIT_TRANS,
1370 };
1371 
1372 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1373 				struct btrfs_space_info *space_info,
1374 				struct reserve_ticket *ticket,
1375 				const enum btrfs_flush_state *states,
1376 				int states_nr)
1377 {
1378 	u64 to_reclaim;
1379 	int flush_state = 0;
1380 
1381 	spin_lock(&space_info->lock);
1382 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1383 	/*
1384 	 * This is the priority reclaim path, so to_reclaim could be >0 still
1385 	 * because we may have only satisfied the priority tickets and still
1386 	 * left non priority tickets on the list.  We would then have
1387 	 * to_reclaim but ->bytes == 0.
1388 	 */
1389 	if (ticket->bytes == 0) {
1390 		spin_unlock(&space_info->lock);
1391 		return;
1392 	}
1393 
1394 	while (flush_state < states_nr) {
1395 		spin_unlock(&space_info->lock);
1396 		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1397 			    false);
1398 		flush_state++;
1399 		spin_lock(&space_info->lock);
1400 		if (ticket->bytes == 0) {
1401 			spin_unlock(&space_info->lock);
1402 			return;
1403 		}
1404 	}
1405 
1406 	/*
1407 	 * Attempt to steal from the global rsv if we can, except if the fs was
1408 	 * turned into error mode due to a transaction abort when flushing space
1409 	 * above, in that case fail with the abort error instead of returning
1410 	 * success to the caller if we can steal from the global rsv - this is
1411 	 * just to have caller fail immeditelly instead of later when trying to
1412 	 * modify the fs, making it easier to debug -ENOSPC problems.
1413 	 */
1414 	if (BTRFS_FS_ERROR(fs_info)) {
1415 		ticket->error = BTRFS_FS_ERROR(fs_info);
1416 		remove_ticket(space_info, ticket);
1417 	} else if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1418 		ticket->error = -ENOSPC;
1419 		remove_ticket(space_info, ticket);
1420 	}
1421 
1422 	/*
1423 	 * We must run try_granting_tickets here because we could be a large
1424 	 * ticket in front of a smaller ticket that can now be satisfied with
1425 	 * the available space.
1426 	 */
1427 	btrfs_try_granting_tickets(fs_info, space_info);
1428 	spin_unlock(&space_info->lock);
1429 }
1430 
1431 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1432 					struct btrfs_space_info *space_info,
1433 					struct reserve_ticket *ticket)
1434 {
1435 	spin_lock(&space_info->lock);
1436 
1437 	/* We could have been granted before we got here. */
1438 	if (ticket->bytes == 0) {
1439 		spin_unlock(&space_info->lock);
1440 		return;
1441 	}
1442 
1443 	while (!space_info->full) {
1444 		spin_unlock(&space_info->lock);
1445 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1446 		spin_lock(&space_info->lock);
1447 		if (ticket->bytes == 0) {
1448 			spin_unlock(&space_info->lock);
1449 			return;
1450 		}
1451 	}
1452 
1453 	ticket->error = -ENOSPC;
1454 	remove_ticket(space_info, ticket);
1455 	btrfs_try_granting_tickets(fs_info, space_info);
1456 	spin_unlock(&space_info->lock);
1457 }
1458 
1459 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1460 				struct btrfs_space_info *space_info,
1461 				struct reserve_ticket *ticket)
1462 
1463 {
1464 	DEFINE_WAIT(wait);
1465 	int ret = 0;
1466 
1467 	spin_lock(&space_info->lock);
1468 	while (ticket->bytes > 0 && ticket->error == 0) {
1469 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1470 		if (ret) {
1471 			/*
1472 			 * Delete us from the list. After we unlock the space
1473 			 * info, we don't want the async reclaim job to reserve
1474 			 * space for this ticket. If that would happen, then the
1475 			 * ticket's task would not known that space was reserved
1476 			 * despite getting an error, resulting in a space leak
1477 			 * (bytes_may_use counter of our space_info).
1478 			 */
1479 			remove_ticket(space_info, ticket);
1480 			ticket->error = -EINTR;
1481 			break;
1482 		}
1483 		spin_unlock(&space_info->lock);
1484 
1485 		schedule();
1486 
1487 		finish_wait(&ticket->wait, &wait);
1488 		spin_lock(&space_info->lock);
1489 	}
1490 	spin_unlock(&space_info->lock);
1491 }
1492 
1493 /*
1494  * Do the appropriate flushing and waiting for a ticket.
1495  *
1496  * @fs_info:    the filesystem
1497  * @space_info: space info for the reservation
1498  * @ticket:     ticket for the reservation
1499  * @start_ns:   timestamp when the reservation started
1500  * @orig_bytes: amount of bytes originally reserved
1501  * @flush:      how much we can flush
1502  *
1503  * This does the work of figuring out how to flush for the ticket, waiting for
1504  * the reservation, and returning the appropriate error if there is one.
1505  */
1506 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1507 				 struct btrfs_space_info *space_info,
1508 				 struct reserve_ticket *ticket,
1509 				 u64 start_ns, u64 orig_bytes,
1510 				 enum btrfs_reserve_flush_enum flush)
1511 {
1512 	int ret;
1513 
1514 	switch (flush) {
1515 	case BTRFS_RESERVE_FLUSH_DATA:
1516 	case BTRFS_RESERVE_FLUSH_ALL:
1517 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1518 		wait_reserve_ticket(fs_info, space_info, ticket);
1519 		break;
1520 	case BTRFS_RESERVE_FLUSH_LIMIT:
1521 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1522 						priority_flush_states,
1523 						ARRAY_SIZE(priority_flush_states));
1524 		break;
1525 	case BTRFS_RESERVE_FLUSH_EVICT:
1526 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1527 						evict_flush_states,
1528 						ARRAY_SIZE(evict_flush_states));
1529 		break;
1530 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1531 		priority_reclaim_data_space(fs_info, space_info, ticket);
1532 		break;
1533 	default:
1534 		ASSERT(0);
1535 		break;
1536 	}
1537 
1538 	ret = ticket->error;
1539 	ASSERT(list_empty(&ticket->list));
1540 	/*
1541 	 * Check that we can't have an error set if the reservation succeeded,
1542 	 * as that would confuse tasks and lead them to error out without
1543 	 * releasing reserved space (if an error happens the expectation is that
1544 	 * space wasn't reserved at all).
1545 	 */
1546 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1547 	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1548 				   start_ns, flush, ticket->error);
1549 	return ret;
1550 }
1551 
1552 /*
1553  * This returns true if this flush state will go through the ordinary flushing
1554  * code.
1555  */
1556 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1557 {
1558 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1559 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1560 }
1561 
1562 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1563 				       struct btrfs_space_info *space_info)
1564 {
1565 	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1566 	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1567 
1568 	/*
1569 	 * If we're heavy on ordered operations then clamping won't help us.  We
1570 	 * need to clamp specifically to keep up with dirty'ing buffered
1571 	 * writers, because there's not a 1:1 correlation of writing delalloc
1572 	 * and freeing space, like there is with flushing delayed refs or
1573 	 * delayed nodes.  If we're already more ordered than delalloc then
1574 	 * we're keeping up, otherwise we aren't and should probably clamp.
1575 	 */
1576 	if (ordered < delalloc)
1577 		space_info->clamp = min(space_info->clamp + 1, 8);
1578 }
1579 
1580 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1581 {
1582 	return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1583 		flush == BTRFS_RESERVE_FLUSH_EVICT);
1584 }
1585 
1586 /*
1587  * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1588  * fail as quickly as possible.
1589  */
1590 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1591 {
1592 	return (flush != BTRFS_RESERVE_NO_FLUSH &&
1593 		flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1594 }
1595 
1596 /*
1597  * Try to reserve bytes from the block_rsv's space.
1598  *
1599  * @fs_info:    the filesystem
1600  * @space_info: space info we want to allocate from
1601  * @orig_bytes: number of bytes we want
1602  * @flush:      whether or not we can flush to make our reservation
1603  *
1604  * This will reserve orig_bytes number of bytes from the space info associated
1605  * with the block_rsv.  If there is not enough space it will make an attempt to
1606  * flush out space to make room.  It will do this by flushing delalloc if
1607  * possible or committing the transaction.  If flush is 0 then no attempts to
1608  * regain reservations will be made and this will fail if there is not enough
1609  * space already.
1610  */
1611 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1612 			   struct btrfs_space_info *space_info, u64 orig_bytes,
1613 			   enum btrfs_reserve_flush_enum flush)
1614 {
1615 	struct work_struct *async_work;
1616 	struct reserve_ticket ticket;
1617 	u64 start_ns = 0;
1618 	u64 used;
1619 	int ret = -ENOSPC;
1620 	bool pending_tickets;
1621 
1622 	ASSERT(orig_bytes);
1623 	/*
1624 	 * If have a transaction handle (current->journal_info != NULL), then
1625 	 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor
1626 	 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those
1627 	 * flushing methods can trigger transaction commits.
1628 	 */
1629 	if (current->journal_info) {
1630 		/* One assert per line for easier debugging. */
1631 		ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL);
1632 		ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL);
1633 		ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT);
1634 	}
1635 
1636 	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1637 		async_work = &fs_info->async_data_reclaim_work;
1638 	else
1639 		async_work = &fs_info->async_reclaim_work;
1640 
1641 	spin_lock(&space_info->lock);
1642 	used = btrfs_space_info_used(space_info, true);
1643 
1644 	/*
1645 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1646 	 * generally handle ENOSPC in a different way, so treat them the same as
1647 	 * normal flushers when it comes to skipping pending tickets.
1648 	 */
1649 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1650 		pending_tickets = !list_empty(&space_info->tickets) ||
1651 			!list_empty(&space_info->priority_tickets);
1652 	else
1653 		pending_tickets = !list_empty(&space_info->priority_tickets);
1654 
1655 	/*
1656 	 * Carry on if we have enough space (short-circuit) OR call
1657 	 * can_overcommit() to ensure we can overcommit to continue.
1658 	 */
1659 	if (!pending_tickets &&
1660 	    ((used + orig_bytes <= space_info->total_bytes) ||
1661 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1662 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1663 						      orig_bytes);
1664 		ret = 0;
1665 	}
1666 
1667 	/*
1668 	 * Things are dire, we need to make a reservation so we don't abort.  We
1669 	 * will let this reservation go through as long as we have actual space
1670 	 * left to allocate for the block.
1671 	 */
1672 	if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1673 		used = btrfs_space_info_used(space_info, false);
1674 		if (used + orig_bytes <= space_info->total_bytes) {
1675 			btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1676 							      orig_bytes);
1677 			ret = 0;
1678 		}
1679 	}
1680 
1681 	/*
1682 	 * If we couldn't make a reservation then setup our reservation ticket
1683 	 * and kick the async worker if it's not already running.
1684 	 *
1685 	 * If we are a priority flusher then we just need to add our ticket to
1686 	 * the list and we will do our own flushing further down.
1687 	 */
1688 	if (ret && can_ticket(flush)) {
1689 		ticket.bytes = orig_bytes;
1690 		ticket.error = 0;
1691 		space_info->reclaim_size += ticket.bytes;
1692 		init_waitqueue_head(&ticket.wait);
1693 		ticket.steal = can_steal(flush);
1694 		if (trace_btrfs_reserve_ticket_enabled())
1695 			start_ns = ktime_get_ns();
1696 
1697 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1698 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1699 		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1700 			list_add_tail(&ticket.list, &space_info->tickets);
1701 			if (!space_info->flush) {
1702 				/*
1703 				 * We were forced to add a reserve ticket, so
1704 				 * our preemptive flushing is unable to keep
1705 				 * up.  Clamp down on the threshold for the
1706 				 * preemptive flushing in order to keep up with
1707 				 * the workload.
1708 				 */
1709 				maybe_clamp_preempt(fs_info, space_info);
1710 
1711 				space_info->flush = 1;
1712 				trace_btrfs_trigger_flush(fs_info,
1713 							  space_info->flags,
1714 							  orig_bytes, flush,
1715 							  "enospc");
1716 				queue_work(system_unbound_wq, async_work);
1717 			}
1718 		} else {
1719 			list_add_tail(&ticket.list,
1720 				      &space_info->priority_tickets);
1721 		}
1722 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1723 		/*
1724 		 * We will do the space reservation dance during log replay,
1725 		 * which means we won't have fs_info->fs_root set, so don't do
1726 		 * the async reclaim as we will panic.
1727 		 */
1728 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1729 		    !work_busy(&fs_info->preempt_reclaim_work) &&
1730 		    need_preemptive_reclaim(fs_info, space_info)) {
1731 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1732 						  orig_bytes, flush, "preempt");
1733 			queue_work(system_unbound_wq,
1734 				   &fs_info->preempt_reclaim_work);
1735 		}
1736 	}
1737 	spin_unlock(&space_info->lock);
1738 	if (!ret || !can_ticket(flush))
1739 		return ret;
1740 
1741 	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1742 				     orig_bytes, flush);
1743 }
1744 
1745 /*
1746  * Try to reserve metadata bytes from the block_rsv's space.
1747  *
1748  * @fs_info:    the filesystem
1749  * @block_rsv:  block_rsv we're allocating for
1750  * @orig_bytes: number of bytes we want
1751  * @flush:      whether or not we can flush to make our reservation
1752  *
1753  * This will reserve orig_bytes number of bytes from the space info associated
1754  * with the block_rsv.  If there is not enough space it will make an attempt to
1755  * flush out space to make room.  It will do this by flushing delalloc if
1756  * possible or committing the transaction.  If flush is 0 then no attempts to
1757  * regain reservations will be made and this will fail if there is not enough
1758  * space already.
1759  */
1760 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1761 				 struct btrfs_block_rsv *block_rsv,
1762 				 u64 orig_bytes,
1763 				 enum btrfs_reserve_flush_enum flush)
1764 {
1765 	int ret;
1766 
1767 	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1768 	if (ret == -ENOSPC) {
1769 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1770 					      block_rsv->space_info->flags,
1771 					      orig_bytes, 1);
1772 
1773 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1774 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1775 					      orig_bytes, 0);
1776 	}
1777 	return ret;
1778 }
1779 
1780 /*
1781  * Try to reserve data bytes for an allocation.
1782  *
1783  * @fs_info: the filesystem
1784  * @bytes:   number of bytes we need
1785  * @flush:   how we are allowed to flush
1786  *
1787  * This will reserve bytes from the data space info.  If there is not enough
1788  * space then we will attempt to flush space as specified by flush.
1789  */
1790 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1791 			     enum btrfs_reserve_flush_enum flush)
1792 {
1793 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1794 	int ret;
1795 
1796 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1797 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1798 	       flush == BTRFS_RESERVE_NO_FLUSH);
1799 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1800 
1801 	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1802 	if (ret == -ENOSPC) {
1803 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1804 					      data_sinfo->flags, bytes, 1);
1805 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1806 			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1807 	}
1808 	return ret;
1809 }
1810 
1811 /* Dump all the space infos when we abort a transaction due to ENOSPC. */
1812 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1813 {
1814 	struct btrfs_space_info *space_info;
1815 
1816 	btrfs_info(fs_info, "dumping space info:");
1817 	list_for_each_entry(space_info, &fs_info->space_info, list) {
1818 		spin_lock(&space_info->lock);
1819 		__btrfs_dump_space_info(fs_info, space_info);
1820 		spin_unlock(&space_info->lock);
1821 	}
1822 	dump_global_block_rsv(fs_info);
1823 }
1824 
1825 /*
1826  * Account the unused space of all the readonly block group in the space_info.
1827  * takes mirrors into account.
1828  */
1829 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1830 {
1831 	struct btrfs_block_group *block_group;
1832 	u64 free_bytes = 0;
1833 	int factor;
1834 
1835 	/* It's df, we don't care if it's racy */
1836 	if (list_empty(&sinfo->ro_bgs))
1837 		return 0;
1838 
1839 	spin_lock(&sinfo->lock);
1840 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1841 		spin_lock(&block_group->lock);
1842 
1843 		if (!block_group->ro) {
1844 			spin_unlock(&block_group->lock);
1845 			continue;
1846 		}
1847 
1848 		factor = btrfs_bg_type_to_factor(block_group->flags);
1849 		free_bytes += (block_group->length -
1850 			       block_group->used) * factor;
1851 
1852 		spin_unlock(&block_group->lock);
1853 	}
1854 	spin_unlock(&sinfo->lock);
1855 
1856 	return free_bytes;
1857 }
1858