xref: /openbmc/linux/fs/btrfs/space-info.c (revision 4b8b0528)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     may_commit_transaction() is the ultimate arbiter on whether we commit the
137  *     transaction or not.  In order to avoid constantly churning we do all the
138  *     above flushing first and then commit the transaction as the last resort.
139  *     However we need to take into account things like pinned space that would
140  *     be freed, plus any delayed work we may not have gotten rid of in the case
141  *     of metadata.
142  *
143  * OVERCOMMIT
144  *
145  *   Because we hold so many reservations for metadata we will allow you to
146  *   reserve more space than is currently free in the currently allocate
147  *   metadata space.  This only happens with metadata, data does not allow
148  *   overcommitting.
149  *
150  *   You can see the current logic for when we allow overcommit in
151  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
152  *   is no unallocated space to be had, all reservations are kept within the
153  *   free space in the allocated metadata chunks.
154  *
155  *   Because of overcommitting, you generally want to use the
156  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
157  *   thing with or without extra unallocated space.
158  */
159 
160 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
161 			  bool may_use_included)
162 {
163 	ASSERT(s_info);
164 	return s_info->bytes_used + s_info->bytes_reserved +
165 		s_info->bytes_pinned + s_info->bytes_readonly +
166 		(may_use_included ? s_info->bytes_may_use : 0);
167 }
168 
169 /*
170  * after adding space to the filesystem, we need to clear the full flags
171  * on all the space infos.
172  */
173 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
174 {
175 	struct list_head *head = &info->space_info;
176 	struct btrfs_space_info *found;
177 
178 	rcu_read_lock();
179 	list_for_each_entry_rcu(found, head, list)
180 		found->full = 0;
181 	rcu_read_unlock();
182 }
183 
184 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
185 {
186 
187 	struct btrfs_space_info *space_info;
188 	int i;
189 	int ret;
190 
191 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
192 	if (!space_info)
193 		return -ENOMEM;
194 
195 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
196 				 GFP_KERNEL);
197 	if (ret) {
198 		kfree(space_info);
199 		return ret;
200 	}
201 
202 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
203 		INIT_LIST_HEAD(&space_info->block_groups[i]);
204 	init_rwsem(&space_info->groups_sem);
205 	spin_lock_init(&space_info->lock);
206 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
207 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
208 	INIT_LIST_HEAD(&space_info->ro_bgs);
209 	INIT_LIST_HEAD(&space_info->tickets);
210 	INIT_LIST_HEAD(&space_info->priority_tickets);
211 
212 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
213 	if (ret)
214 		return ret;
215 
216 	list_add_rcu(&space_info->list, &info->space_info);
217 	if (flags & BTRFS_BLOCK_GROUP_DATA)
218 		info->data_sinfo = space_info;
219 
220 	return ret;
221 }
222 
223 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
224 {
225 	struct btrfs_super_block *disk_super;
226 	u64 features;
227 	u64 flags;
228 	int mixed = 0;
229 	int ret;
230 
231 	disk_super = fs_info->super_copy;
232 	if (!btrfs_super_root(disk_super))
233 		return -EINVAL;
234 
235 	features = btrfs_super_incompat_flags(disk_super);
236 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
237 		mixed = 1;
238 
239 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
240 	ret = create_space_info(fs_info, flags);
241 	if (ret)
242 		goto out;
243 
244 	if (mixed) {
245 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
246 		ret = create_space_info(fs_info, flags);
247 	} else {
248 		flags = BTRFS_BLOCK_GROUP_METADATA;
249 		ret = create_space_info(fs_info, flags);
250 		if (ret)
251 			goto out;
252 
253 		flags = BTRFS_BLOCK_GROUP_DATA;
254 		ret = create_space_info(fs_info, flags);
255 	}
256 out:
257 	return ret;
258 }
259 
260 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
261 			     u64 total_bytes, u64 bytes_used,
262 			     u64 bytes_readonly,
263 			     struct btrfs_space_info **space_info)
264 {
265 	struct btrfs_space_info *found;
266 	int factor;
267 
268 	factor = btrfs_bg_type_to_factor(flags);
269 
270 	found = btrfs_find_space_info(info, flags);
271 	ASSERT(found);
272 	spin_lock(&found->lock);
273 	found->total_bytes += total_bytes;
274 	found->disk_total += total_bytes * factor;
275 	found->bytes_used += bytes_used;
276 	found->disk_used += bytes_used * factor;
277 	found->bytes_readonly += bytes_readonly;
278 	if (total_bytes > 0)
279 		found->full = 0;
280 	btrfs_try_granting_tickets(info, found);
281 	spin_unlock(&found->lock);
282 	*space_info = found;
283 }
284 
285 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
286 					       u64 flags)
287 {
288 	struct list_head *head = &info->space_info;
289 	struct btrfs_space_info *found;
290 
291 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
292 
293 	rcu_read_lock();
294 	list_for_each_entry_rcu(found, head, list) {
295 		if (found->flags & flags) {
296 			rcu_read_unlock();
297 			return found;
298 		}
299 	}
300 	rcu_read_unlock();
301 	return NULL;
302 }
303 
304 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
305 {
306 	return (global->size << 1);
307 }
308 
309 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
310 			 struct btrfs_space_info *space_info, u64 bytes,
311 			 enum btrfs_reserve_flush_enum flush)
312 {
313 	u64 profile;
314 	u64 avail;
315 	u64 used;
316 	int factor;
317 
318 	/* Don't overcommit when in mixed mode. */
319 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
320 		return 0;
321 
322 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
323 		profile = btrfs_system_alloc_profile(fs_info);
324 	else
325 		profile = btrfs_metadata_alloc_profile(fs_info);
326 
327 	used = btrfs_space_info_used(space_info, true);
328 	avail = atomic64_read(&fs_info->free_chunk_space);
329 
330 	/*
331 	 * If we have dup, raid1 or raid10 then only half of the free
332 	 * space is actually usable.  For raid56, the space info used
333 	 * doesn't include the parity drive, so we don't have to
334 	 * change the math
335 	 */
336 	factor = btrfs_bg_type_to_factor(profile);
337 	avail = div_u64(avail, factor);
338 
339 	/*
340 	 * If we aren't flushing all things, let us overcommit up to
341 	 * 1/2th of the space. If we can flush, don't let us overcommit
342 	 * too much, let it overcommit up to 1/8 of the space.
343 	 */
344 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
345 		avail >>= 3;
346 	else
347 		avail >>= 1;
348 
349 	if (used + bytes < space_info->total_bytes + avail)
350 		return 1;
351 	return 0;
352 }
353 
354 /*
355  * This is for space we already have accounted in space_info->bytes_may_use, so
356  * basically when we're returning space from block_rsv's.
357  */
358 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
359 				struct btrfs_space_info *space_info)
360 {
361 	struct list_head *head;
362 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
363 
364 	lockdep_assert_held(&space_info->lock);
365 
366 	head = &space_info->priority_tickets;
367 again:
368 	while (!list_empty(head)) {
369 		struct reserve_ticket *ticket;
370 		u64 used = btrfs_space_info_used(space_info, true);
371 
372 		ticket = list_first_entry(head, struct reserve_ticket, list);
373 
374 		/* Check and see if our ticket can be satisified now. */
375 		if ((used + ticket->bytes <= space_info->total_bytes) ||
376 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
377 					 flush)) {
378 			btrfs_space_info_update_bytes_may_use(fs_info,
379 							      space_info,
380 							      ticket->bytes);
381 			list_del_init(&ticket->list);
382 			ticket->bytes = 0;
383 			space_info->tickets_id++;
384 			wake_up(&ticket->wait);
385 		} else {
386 			break;
387 		}
388 	}
389 
390 	if (head == &space_info->priority_tickets) {
391 		head = &space_info->tickets;
392 		flush = BTRFS_RESERVE_FLUSH_ALL;
393 		goto again;
394 	}
395 }
396 
397 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
398 do {									\
399 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
400 	spin_lock(&__rsv->lock);					\
401 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
402 		   __rsv->size, __rsv->reserved);			\
403 	spin_unlock(&__rsv->lock);					\
404 } while (0)
405 
406 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
407 				    struct btrfs_space_info *info)
408 {
409 	lockdep_assert_held(&info->lock);
410 
411 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
412 		   info->flags,
413 		   info->total_bytes - btrfs_space_info_used(info, true),
414 		   info->full ? "" : "not ");
415 	btrfs_info(fs_info,
416 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
417 		info->total_bytes, info->bytes_used, info->bytes_pinned,
418 		info->bytes_reserved, info->bytes_may_use,
419 		info->bytes_readonly);
420 
421 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
422 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
423 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
424 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
425 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
426 
427 }
428 
429 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
430 			   struct btrfs_space_info *info, u64 bytes,
431 			   int dump_block_groups)
432 {
433 	struct btrfs_block_group *cache;
434 	int index = 0;
435 
436 	spin_lock(&info->lock);
437 	__btrfs_dump_space_info(fs_info, info);
438 	spin_unlock(&info->lock);
439 
440 	if (!dump_block_groups)
441 		return;
442 
443 	down_read(&info->groups_sem);
444 again:
445 	list_for_each_entry(cache, &info->block_groups[index], list) {
446 		spin_lock(&cache->lock);
447 		btrfs_info(fs_info,
448 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
449 			cache->start, cache->length, cache->used, cache->pinned,
450 			cache->reserved, cache->ro ? "[readonly]" : "");
451 		btrfs_dump_free_space(cache, bytes);
452 		spin_unlock(&cache->lock);
453 	}
454 	if (++index < BTRFS_NR_RAID_TYPES)
455 		goto again;
456 	up_read(&info->groups_sem);
457 }
458 
459 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
460 					 unsigned long nr_pages, int nr_items)
461 {
462 	struct super_block *sb = fs_info->sb;
463 
464 	if (down_read_trylock(&sb->s_umount)) {
465 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
466 		up_read(&sb->s_umount);
467 	} else {
468 		/*
469 		 * We needn't worry the filesystem going from r/w to r/o though
470 		 * we don't acquire ->s_umount mutex, because the filesystem
471 		 * should guarantee the delalloc inodes list be empty after
472 		 * the filesystem is readonly(all dirty pages are written to
473 		 * the disk).
474 		 */
475 		btrfs_start_delalloc_roots(fs_info, nr_items);
476 		if (!current->journal_info)
477 			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
478 	}
479 }
480 
481 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
482 					u64 to_reclaim)
483 {
484 	u64 bytes;
485 	u64 nr;
486 
487 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
488 	nr = div64_u64(to_reclaim, bytes);
489 	if (!nr)
490 		nr = 1;
491 	return nr;
492 }
493 
494 #define EXTENT_SIZE_PER_ITEM	SZ_256K
495 
496 /*
497  * shrink metadata reservation for delalloc
498  */
499 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
500 			    u64 orig, bool wait_ordered)
501 {
502 	struct btrfs_space_info *space_info;
503 	struct btrfs_trans_handle *trans;
504 	u64 delalloc_bytes;
505 	u64 dio_bytes;
506 	u64 async_pages;
507 	u64 items;
508 	long time_left;
509 	unsigned long nr_pages;
510 	int loops;
511 
512 	/* Calc the number of the pages we need flush for space reservation */
513 	items = calc_reclaim_items_nr(fs_info, to_reclaim);
514 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
515 
516 	trans = (struct btrfs_trans_handle *)current->journal_info;
517 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
518 
519 	delalloc_bytes = percpu_counter_sum_positive(
520 						&fs_info->delalloc_bytes);
521 	dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
522 	if (delalloc_bytes == 0 && dio_bytes == 0) {
523 		if (trans)
524 			return;
525 		if (wait_ordered)
526 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
527 		return;
528 	}
529 
530 	/*
531 	 * If we are doing more ordered than delalloc we need to just wait on
532 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
533 	 * that likely won't give us the space back we need.
534 	 */
535 	if (dio_bytes > delalloc_bytes)
536 		wait_ordered = true;
537 
538 	loops = 0;
539 	while ((delalloc_bytes || dio_bytes) && loops < 3) {
540 		nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
541 
542 		/*
543 		 * Triggers inode writeback for up to nr_pages. This will invoke
544 		 * ->writepages callback and trigger delalloc filling
545 		 *  (btrfs_run_delalloc_range()).
546 		 */
547 		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
548 
549 		/*
550 		 * We need to wait for the compressed pages to start before
551 		 * we continue.
552 		 */
553 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
554 		if (!async_pages)
555 			goto skip_async;
556 
557 		/*
558 		 * Calculate how many compressed pages we want to be written
559 		 * before we continue. I.e if there are more async pages than we
560 		 * require wait_event will wait until nr_pages are written.
561 		 */
562 		if (async_pages <= nr_pages)
563 			async_pages = 0;
564 		else
565 			async_pages -= nr_pages;
566 
567 		wait_event(fs_info->async_submit_wait,
568 			   atomic_read(&fs_info->async_delalloc_pages) <=
569 			   (int)async_pages);
570 skip_async:
571 		spin_lock(&space_info->lock);
572 		if (list_empty(&space_info->tickets) &&
573 		    list_empty(&space_info->priority_tickets)) {
574 			spin_unlock(&space_info->lock);
575 			break;
576 		}
577 		spin_unlock(&space_info->lock);
578 
579 		loops++;
580 		if (wait_ordered && !trans) {
581 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
582 		} else {
583 			time_left = schedule_timeout_killable(1);
584 			if (time_left)
585 				break;
586 		}
587 		delalloc_bytes = percpu_counter_sum_positive(
588 						&fs_info->delalloc_bytes);
589 		dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
590 	}
591 }
592 
593 /**
594  * maybe_commit_transaction - possibly commit the transaction if its ok to
595  * @root - the root we're allocating for
596  * @bytes - the number of bytes we want to reserve
597  * @force - force the commit
598  *
599  * This will check to make sure that committing the transaction will actually
600  * get us somewhere and then commit the transaction if it does.  Otherwise it
601  * will return -ENOSPC.
602  */
603 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
604 				  struct btrfs_space_info *space_info)
605 {
606 	struct reserve_ticket *ticket = NULL;
607 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
608 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
609 	struct btrfs_trans_handle *trans;
610 	u64 bytes_needed;
611 	u64 reclaim_bytes = 0;
612 	u64 cur_free_bytes = 0;
613 
614 	trans = (struct btrfs_trans_handle *)current->journal_info;
615 	if (trans)
616 		return -EAGAIN;
617 
618 	spin_lock(&space_info->lock);
619 	cur_free_bytes = btrfs_space_info_used(space_info, true);
620 	if (cur_free_bytes < space_info->total_bytes)
621 		cur_free_bytes = space_info->total_bytes - cur_free_bytes;
622 	else
623 		cur_free_bytes = 0;
624 
625 	if (!list_empty(&space_info->priority_tickets))
626 		ticket = list_first_entry(&space_info->priority_tickets,
627 					  struct reserve_ticket, list);
628 	else if (!list_empty(&space_info->tickets))
629 		ticket = list_first_entry(&space_info->tickets,
630 					  struct reserve_ticket, list);
631 	bytes_needed = (ticket) ? ticket->bytes : 0;
632 
633 	if (bytes_needed > cur_free_bytes)
634 		bytes_needed -= cur_free_bytes;
635 	else
636 		bytes_needed = 0;
637 	spin_unlock(&space_info->lock);
638 
639 	if (!bytes_needed)
640 		return 0;
641 
642 	trans = btrfs_join_transaction(fs_info->extent_root);
643 	if (IS_ERR(trans))
644 		return PTR_ERR(trans);
645 
646 	/*
647 	 * See if there is enough pinned space to make this reservation, or if
648 	 * we have block groups that are going to be freed, allowing us to
649 	 * possibly do a chunk allocation the next loop through.
650 	 */
651 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
652 	    __percpu_counter_compare(&space_info->total_bytes_pinned,
653 				     bytes_needed,
654 				     BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
655 		goto commit;
656 
657 	/*
658 	 * See if there is some space in the delayed insertion reservation for
659 	 * this reservation.
660 	 */
661 	if (space_info != delayed_rsv->space_info)
662 		goto enospc;
663 
664 	spin_lock(&delayed_rsv->lock);
665 	reclaim_bytes += delayed_rsv->reserved;
666 	spin_unlock(&delayed_rsv->lock);
667 
668 	spin_lock(&delayed_refs_rsv->lock);
669 	reclaim_bytes += delayed_refs_rsv->reserved;
670 	spin_unlock(&delayed_refs_rsv->lock);
671 	if (reclaim_bytes >= bytes_needed)
672 		goto commit;
673 	bytes_needed -= reclaim_bytes;
674 
675 	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
676 				   bytes_needed,
677 				   BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
678 		goto enospc;
679 
680 commit:
681 	return btrfs_commit_transaction(trans);
682 enospc:
683 	btrfs_end_transaction(trans);
684 	return -ENOSPC;
685 }
686 
687 /*
688  * Try to flush some data based on policy set by @state. This is only advisory
689  * and may fail for various reasons. The caller is supposed to examine the
690  * state of @space_info to detect the outcome.
691  */
692 static void flush_space(struct btrfs_fs_info *fs_info,
693 		       struct btrfs_space_info *space_info, u64 num_bytes,
694 		       int state)
695 {
696 	struct btrfs_root *root = fs_info->extent_root;
697 	struct btrfs_trans_handle *trans;
698 	int nr;
699 	int ret = 0;
700 
701 	switch (state) {
702 	case FLUSH_DELAYED_ITEMS_NR:
703 	case FLUSH_DELAYED_ITEMS:
704 		if (state == FLUSH_DELAYED_ITEMS_NR)
705 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
706 		else
707 			nr = -1;
708 
709 		trans = btrfs_join_transaction(root);
710 		if (IS_ERR(trans)) {
711 			ret = PTR_ERR(trans);
712 			break;
713 		}
714 		ret = btrfs_run_delayed_items_nr(trans, nr);
715 		btrfs_end_transaction(trans);
716 		break;
717 	case FLUSH_DELALLOC:
718 	case FLUSH_DELALLOC_WAIT:
719 		shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
720 				state == FLUSH_DELALLOC_WAIT);
721 		break;
722 	case FLUSH_DELAYED_REFS_NR:
723 	case FLUSH_DELAYED_REFS:
724 		trans = btrfs_join_transaction(root);
725 		if (IS_ERR(trans)) {
726 			ret = PTR_ERR(trans);
727 			break;
728 		}
729 		if (state == FLUSH_DELAYED_REFS_NR)
730 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
731 		else
732 			nr = 0;
733 		btrfs_run_delayed_refs(trans, nr);
734 		btrfs_end_transaction(trans);
735 		break;
736 	case ALLOC_CHUNK:
737 	case ALLOC_CHUNK_FORCE:
738 		trans = btrfs_join_transaction(root);
739 		if (IS_ERR(trans)) {
740 			ret = PTR_ERR(trans);
741 			break;
742 		}
743 		ret = btrfs_chunk_alloc(trans,
744 				btrfs_metadata_alloc_profile(fs_info),
745 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
746 					CHUNK_ALLOC_FORCE);
747 		btrfs_end_transaction(trans);
748 		if (ret > 0 || ret == -ENOSPC)
749 			ret = 0;
750 		break;
751 	case RUN_DELAYED_IPUTS:
752 		/*
753 		 * If we have pending delayed iputs then we could free up a
754 		 * bunch of pinned space, so make sure we run the iputs before
755 		 * we do our pinned bytes check below.
756 		 */
757 		btrfs_run_delayed_iputs(fs_info);
758 		btrfs_wait_on_delayed_iputs(fs_info);
759 		break;
760 	case COMMIT_TRANS:
761 		ret = may_commit_transaction(fs_info, space_info);
762 		break;
763 	default:
764 		ret = -ENOSPC;
765 		break;
766 	}
767 
768 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
769 				ret);
770 	return;
771 }
772 
773 static inline u64
774 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
775 				 struct btrfs_space_info *space_info)
776 {
777 	struct reserve_ticket *ticket;
778 	u64 used;
779 	u64 expected;
780 	u64 to_reclaim = 0;
781 
782 	list_for_each_entry(ticket, &space_info->tickets, list)
783 		to_reclaim += ticket->bytes;
784 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
785 		to_reclaim += ticket->bytes;
786 	if (to_reclaim)
787 		return to_reclaim;
788 
789 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
790 	if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
791 				 BTRFS_RESERVE_FLUSH_ALL))
792 		return 0;
793 
794 	used = btrfs_space_info_used(space_info, true);
795 
796 	if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
797 				 BTRFS_RESERVE_FLUSH_ALL))
798 		expected = div_factor_fine(space_info->total_bytes, 95);
799 	else
800 		expected = div_factor_fine(space_info->total_bytes, 90);
801 
802 	if (used > expected)
803 		to_reclaim = used - expected;
804 	else
805 		to_reclaim = 0;
806 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
807 				     space_info->bytes_reserved);
808 	return to_reclaim;
809 }
810 
811 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
812 					struct btrfs_space_info *space_info,
813 					u64 used)
814 {
815 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
816 
817 	/* If we're just plain full then async reclaim just slows us down. */
818 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
819 		return 0;
820 
821 	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
822 		return 0;
823 
824 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
825 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
826 }
827 
828 /*
829  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
830  * @fs_info - fs_info for this fs
831  * @space_info - the space info we were flushing
832  *
833  * We call this when we've exhausted our flushing ability and haven't made
834  * progress in satisfying tickets.  The reservation code handles tickets in
835  * order, so if there is a large ticket first and then smaller ones we could
836  * very well satisfy the smaller tickets.  This will attempt to wake up any
837  * tickets in the list to catch this case.
838  *
839  * This function returns true if it was able to make progress by clearing out
840  * other tickets, or if it stumbles across a ticket that was smaller than the
841  * first ticket.
842  */
843 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
844 				   struct btrfs_space_info *space_info)
845 {
846 	struct reserve_ticket *ticket;
847 	u64 tickets_id = space_info->tickets_id;
848 	u64 first_ticket_bytes = 0;
849 
850 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
851 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
852 		__btrfs_dump_space_info(fs_info, space_info);
853 	}
854 
855 	while (!list_empty(&space_info->tickets) &&
856 	       tickets_id == space_info->tickets_id) {
857 		ticket = list_first_entry(&space_info->tickets,
858 					  struct reserve_ticket, list);
859 
860 		/*
861 		 * may_commit_transaction will avoid committing the transaction
862 		 * if it doesn't feel like the space reclaimed by the commit
863 		 * would result in the ticket succeeding.  However if we have a
864 		 * smaller ticket in the queue it may be small enough to be
865 		 * satisified by committing the transaction, so if any
866 		 * subsequent ticket is smaller than the first ticket go ahead
867 		 * and send us back for another loop through the enospc flushing
868 		 * code.
869 		 */
870 		if (first_ticket_bytes == 0)
871 			first_ticket_bytes = ticket->bytes;
872 		else if (first_ticket_bytes > ticket->bytes)
873 			return true;
874 
875 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
876 			btrfs_info(fs_info, "failing ticket with %llu bytes",
877 				   ticket->bytes);
878 
879 		list_del_init(&ticket->list);
880 		ticket->error = -ENOSPC;
881 		wake_up(&ticket->wait);
882 
883 		/*
884 		 * We're just throwing tickets away, so more flushing may not
885 		 * trip over btrfs_try_granting_tickets, so we need to call it
886 		 * here to see if we can make progress with the next ticket in
887 		 * the list.
888 		 */
889 		btrfs_try_granting_tickets(fs_info, space_info);
890 	}
891 	return (tickets_id != space_info->tickets_id);
892 }
893 
894 /*
895  * This is for normal flushers, we can wait all goddamned day if we want to.  We
896  * will loop and continuously try to flush as long as we are making progress.
897  * We count progress as clearing off tickets each time we have to loop.
898  */
899 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
900 {
901 	struct btrfs_fs_info *fs_info;
902 	struct btrfs_space_info *space_info;
903 	u64 to_reclaim;
904 	int flush_state;
905 	int commit_cycles = 0;
906 	u64 last_tickets_id;
907 
908 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
909 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
910 
911 	spin_lock(&space_info->lock);
912 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
913 	if (!to_reclaim) {
914 		space_info->flush = 0;
915 		spin_unlock(&space_info->lock);
916 		return;
917 	}
918 	last_tickets_id = space_info->tickets_id;
919 	spin_unlock(&space_info->lock);
920 
921 	flush_state = FLUSH_DELAYED_ITEMS_NR;
922 	do {
923 		flush_space(fs_info, space_info, to_reclaim, flush_state);
924 		spin_lock(&space_info->lock);
925 		if (list_empty(&space_info->tickets)) {
926 			space_info->flush = 0;
927 			spin_unlock(&space_info->lock);
928 			return;
929 		}
930 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
931 							      space_info);
932 		if (last_tickets_id == space_info->tickets_id) {
933 			flush_state++;
934 		} else {
935 			last_tickets_id = space_info->tickets_id;
936 			flush_state = FLUSH_DELAYED_ITEMS_NR;
937 			if (commit_cycles)
938 				commit_cycles--;
939 		}
940 
941 		/*
942 		 * We don't want to force a chunk allocation until we've tried
943 		 * pretty hard to reclaim space.  Think of the case where we
944 		 * freed up a bunch of space and so have a lot of pinned space
945 		 * to reclaim.  We would rather use that than possibly create a
946 		 * underutilized metadata chunk.  So if this is our first run
947 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
948 		 * commit the transaction.  If nothing has changed the next go
949 		 * around then we can force a chunk allocation.
950 		 */
951 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
952 			flush_state++;
953 
954 		if (flush_state > COMMIT_TRANS) {
955 			commit_cycles++;
956 			if (commit_cycles > 2) {
957 				if (maybe_fail_all_tickets(fs_info, space_info)) {
958 					flush_state = FLUSH_DELAYED_ITEMS_NR;
959 					commit_cycles--;
960 				} else {
961 					space_info->flush = 0;
962 				}
963 			} else {
964 				flush_state = FLUSH_DELAYED_ITEMS_NR;
965 			}
966 		}
967 		spin_unlock(&space_info->lock);
968 	} while (flush_state <= COMMIT_TRANS);
969 }
970 
971 void btrfs_init_async_reclaim_work(struct work_struct *work)
972 {
973 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
974 }
975 
976 static const enum btrfs_flush_state priority_flush_states[] = {
977 	FLUSH_DELAYED_ITEMS_NR,
978 	FLUSH_DELAYED_ITEMS,
979 	ALLOC_CHUNK,
980 };
981 
982 static const enum btrfs_flush_state evict_flush_states[] = {
983 	FLUSH_DELAYED_ITEMS_NR,
984 	FLUSH_DELAYED_ITEMS,
985 	FLUSH_DELAYED_REFS_NR,
986 	FLUSH_DELAYED_REFS,
987 	FLUSH_DELALLOC,
988 	FLUSH_DELALLOC_WAIT,
989 	ALLOC_CHUNK,
990 	COMMIT_TRANS,
991 };
992 
993 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
994 				struct btrfs_space_info *space_info,
995 				struct reserve_ticket *ticket,
996 				const enum btrfs_flush_state *states,
997 				int states_nr)
998 {
999 	u64 to_reclaim;
1000 	int flush_state;
1001 
1002 	spin_lock(&space_info->lock);
1003 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1004 	if (!to_reclaim) {
1005 		spin_unlock(&space_info->lock);
1006 		return;
1007 	}
1008 	spin_unlock(&space_info->lock);
1009 
1010 	flush_state = 0;
1011 	do {
1012 		flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
1013 		flush_state++;
1014 		spin_lock(&space_info->lock);
1015 		if (ticket->bytes == 0) {
1016 			spin_unlock(&space_info->lock);
1017 			return;
1018 		}
1019 		spin_unlock(&space_info->lock);
1020 	} while (flush_state < states_nr);
1021 }
1022 
1023 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1024 				struct btrfs_space_info *space_info,
1025 				struct reserve_ticket *ticket)
1026 
1027 {
1028 	DEFINE_WAIT(wait);
1029 	int ret = 0;
1030 
1031 	spin_lock(&space_info->lock);
1032 	while (ticket->bytes > 0 && ticket->error == 0) {
1033 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1034 		if (ret) {
1035 			/*
1036 			 * Delete us from the list. After we unlock the space
1037 			 * info, we don't want the async reclaim job to reserve
1038 			 * space for this ticket. If that would happen, then the
1039 			 * ticket's task would not known that space was reserved
1040 			 * despite getting an error, resulting in a space leak
1041 			 * (bytes_may_use counter of our space_info).
1042 			 */
1043 			list_del_init(&ticket->list);
1044 			ticket->error = -EINTR;
1045 			break;
1046 		}
1047 		spin_unlock(&space_info->lock);
1048 
1049 		schedule();
1050 
1051 		finish_wait(&ticket->wait, &wait);
1052 		spin_lock(&space_info->lock);
1053 	}
1054 	spin_unlock(&space_info->lock);
1055 }
1056 
1057 /**
1058  * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
1059  * @fs_info - the fs
1060  * @space_info - the space_info for the reservation
1061  * @ticket - the ticket for the reservation
1062  * @flush - how much we can flush
1063  *
1064  * This does the work of figuring out how to flush for the ticket, waiting for
1065  * the reservation, and returning the appropriate error if there is one.
1066  */
1067 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1068 				 struct btrfs_space_info *space_info,
1069 				 struct reserve_ticket *ticket,
1070 				 enum btrfs_reserve_flush_enum flush)
1071 {
1072 	int ret;
1073 
1074 	switch (flush) {
1075 	case BTRFS_RESERVE_FLUSH_ALL:
1076 		wait_reserve_ticket(fs_info, space_info, ticket);
1077 		break;
1078 	case BTRFS_RESERVE_FLUSH_LIMIT:
1079 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1080 						priority_flush_states,
1081 						ARRAY_SIZE(priority_flush_states));
1082 		break;
1083 	case BTRFS_RESERVE_FLUSH_EVICT:
1084 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1085 						evict_flush_states,
1086 						ARRAY_SIZE(evict_flush_states));
1087 		break;
1088 	default:
1089 		ASSERT(0);
1090 		break;
1091 	}
1092 
1093 	spin_lock(&space_info->lock);
1094 	ret = ticket->error;
1095 	if (ticket->bytes || ticket->error) {
1096 		/*
1097 		 * Need to delete here for priority tickets. For regular tickets
1098 		 * either the async reclaim job deletes the ticket from the list
1099 		 * or we delete it ourselves at wait_reserve_ticket().
1100 		 */
1101 		list_del_init(&ticket->list);
1102 		if (!ret)
1103 			ret = -ENOSPC;
1104 	}
1105 	spin_unlock(&space_info->lock);
1106 	ASSERT(list_empty(&ticket->list));
1107 	/*
1108 	 * Check that we can't have an error set if the reservation succeeded,
1109 	 * as that would confuse tasks and lead them to error out without
1110 	 * releasing reserved space (if an error happens the expectation is that
1111 	 * space wasn't reserved at all).
1112 	 */
1113 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1114 	return ret;
1115 }
1116 
1117 /**
1118  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1119  * @root - the root we're allocating for
1120  * @space_info - the space info we want to allocate from
1121  * @orig_bytes - the number of bytes we want
1122  * @flush - whether or not we can flush to make our reservation
1123  *
1124  * This will reserve orig_bytes number of bytes from the space info associated
1125  * with the block_rsv.  If there is not enough space it will make an attempt to
1126  * flush out space to make room.  It will do this by flushing delalloc if
1127  * possible or committing the transaction.  If flush is 0 then no attempts to
1128  * regain reservations will be made and this will fail if there is not enough
1129  * space already.
1130  */
1131 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1132 				    struct btrfs_space_info *space_info,
1133 				    u64 orig_bytes,
1134 				    enum btrfs_reserve_flush_enum flush)
1135 {
1136 	struct reserve_ticket ticket;
1137 	u64 used;
1138 	int ret = 0;
1139 	bool pending_tickets;
1140 
1141 	ASSERT(orig_bytes);
1142 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1143 
1144 	spin_lock(&space_info->lock);
1145 	ret = -ENOSPC;
1146 	used = btrfs_space_info_used(space_info, true);
1147 	pending_tickets = !list_empty(&space_info->tickets) ||
1148 		!list_empty(&space_info->priority_tickets);
1149 
1150 	/*
1151 	 * Carry on if we have enough space (short-circuit) OR call
1152 	 * can_overcommit() to ensure we can overcommit to continue.
1153 	 */
1154 	if (!pending_tickets &&
1155 	    ((used + orig_bytes <= space_info->total_bytes) ||
1156 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1157 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1158 						      orig_bytes);
1159 		ret = 0;
1160 	}
1161 
1162 	/*
1163 	 * If we couldn't make a reservation then setup our reservation ticket
1164 	 * and kick the async worker if it's not already running.
1165 	 *
1166 	 * If we are a priority flusher then we just need to add our ticket to
1167 	 * the list and we will do our own flushing further down.
1168 	 */
1169 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1170 		ticket.bytes = orig_bytes;
1171 		ticket.error = 0;
1172 		init_waitqueue_head(&ticket.wait);
1173 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
1174 			list_add_tail(&ticket.list, &space_info->tickets);
1175 			if (!space_info->flush) {
1176 				space_info->flush = 1;
1177 				trace_btrfs_trigger_flush(fs_info,
1178 							  space_info->flags,
1179 							  orig_bytes, flush,
1180 							  "enospc");
1181 				queue_work(system_unbound_wq,
1182 					   &fs_info->async_reclaim_work);
1183 			}
1184 		} else {
1185 			list_add_tail(&ticket.list,
1186 				      &space_info->priority_tickets);
1187 		}
1188 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1189 		used += orig_bytes;
1190 		/*
1191 		 * We will do the space reservation dance during log replay,
1192 		 * which means we won't have fs_info->fs_root set, so don't do
1193 		 * the async reclaim as we will panic.
1194 		 */
1195 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1196 		    need_do_async_reclaim(fs_info, space_info, used) &&
1197 		    !work_busy(&fs_info->async_reclaim_work)) {
1198 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1199 						  orig_bytes, flush, "preempt");
1200 			queue_work(system_unbound_wq,
1201 				   &fs_info->async_reclaim_work);
1202 		}
1203 	}
1204 	spin_unlock(&space_info->lock);
1205 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1206 		return ret;
1207 
1208 	return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1209 }
1210 
1211 /**
1212  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1213  * @root - the root we're allocating for
1214  * @block_rsv - the block_rsv we're allocating for
1215  * @orig_bytes - the number of bytes we want
1216  * @flush - whether or not we can flush to make our reservation
1217  *
1218  * This will reserve orig_bytes number of bytes from the space info associated
1219  * with the block_rsv.  If there is not enough space it will make an attempt to
1220  * flush out space to make room.  It will do this by flushing delalloc if
1221  * possible or committing the transaction.  If flush is 0 then no attempts to
1222  * regain reservations will be made and this will fail if there is not enough
1223  * space already.
1224  */
1225 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1226 				 struct btrfs_block_rsv *block_rsv,
1227 				 u64 orig_bytes,
1228 				 enum btrfs_reserve_flush_enum flush)
1229 {
1230 	struct btrfs_fs_info *fs_info = root->fs_info;
1231 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1232 	int ret;
1233 
1234 	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
1235 				       orig_bytes, flush);
1236 	if (ret == -ENOSPC &&
1237 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1238 		if (block_rsv != global_rsv &&
1239 		    !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1240 			ret = 0;
1241 	}
1242 	if (ret == -ENOSPC) {
1243 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1244 					      block_rsv->space_info->flags,
1245 					      orig_bytes, 1);
1246 
1247 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1248 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1249 					      orig_bytes, 0);
1250 	}
1251 	return ret;
1252 }
1253