xref: /openbmc/linux/fs/btrfs/space-info.c (revision 385f421f)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     may_commit_transaction() is the ultimate arbiter on whether we commit the
137  *     transaction or not.  In order to avoid constantly churning we do all the
138  *     above flushing first and then commit the transaction as the last resort.
139  *     However we need to take into account things like pinned space that would
140  *     be freed, plus any delayed work we may not have gotten rid of in the case
141  *     of metadata.
142  *
143  *   FORCE_COMMIT_TRANS
144  *     For use by the preemptive flusher.  We use this to bypass the ticketing
145  *     checks in may_commit_transaction, as we have more information about the
146  *     overall state of the system and may want to commit the transaction ahead
147  *     of actual ENOSPC conditions.
148  *
149  * OVERCOMMIT
150  *
151  *   Because we hold so many reservations for metadata we will allow you to
152  *   reserve more space than is currently free in the currently allocate
153  *   metadata space.  This only happens with metadata, data does not allow
154  *   overcommitting.
155  *
156  *   You can see the current logic for when we allow overcommit in
157  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
158  *   is no unallocated space to be had, all reservations are kept within the
159  *   free space in the allocated metadata chunks.
160  *
161  *   Because of overcommitting, you generally want to use the
162  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
163  *   thing with or without extra unallocated space.
164  */
165 
166 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
167 			  bool may_use_included)
168 {
169 	ASSERT(s_info);
170 	return s_info->bytes_used + s_info->bytes_reserved +
171 		s_info->bytes_pinned + s_info->bytes_readonly +
172 		s_info->bytes_zone_unusable +
173 		(may_use_included ? s_info->bytes_may_use : 0);
174 }
175 
176 /*
177  * after adding space to the filesystem, we need to clear the full flags
178  * on all the space infos.
179  */
180 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
181 {
182 	struct list_head *head = &info->space_info;
183 	struct btrfs_space_info *found;
184 
185 	list_for_each_entry(found, head, list)
186 		found->full = 0;
187 }
188 
189 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
190 {
191 
192 	struct btrfs_space_info *space_info;
193 	int i;
194 	int ret;
195 
196 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
197 	if (!space_info)
198 		return -ENOMEM;
199 
200 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
201 				 GFP_KERNEL);
202 	if (ret) {
203 		kfree(space_info);
204 		return ret;
205 	}
206 
207 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
208 		INIT_LIST_HEAD(&space_info->block_groups[i]);
209 	init_rwsem(&space_info->groups_sem);
210 	spin_lock_init(&space_info->lock);
211 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
212 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
213 	INIT_LIST_HEAD(&space_info->ro_bgs);
214 	INIT_LIST_HEAD(&space_info->tickets);
215 	INIT_LIST_HEAD(&space_info->priority_tickets);
216 	space_info->clamp = 1;
217 
218 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
219 	if (ret)
220 		return ret;
221 
222 	list_add(&space_info->list, &info->space_info);
223 	if (flags & BTRFS_BLOCK_GROUP_DATA)
224 		info->data_sinfo = space_info;
225 
226 	return ret;
227 }
228 
229 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
230 {
231 	struct btrfs_super_block *disk_super;
232 	u64 features;
233 	u64 flags;
234 	int mixed = 0;
235 	int ret;
236 
237 	disk_super = fs_info->super_copy;
238 	if (!btrfs_super_root(disk_super))
239 		return -EINVAL;
240 
241 	features = btrfs_super_incompat_flags(disk_super);
242 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
243 		mixed = 1;
244 
245 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
246 	ret = create_space_info(fs_info, flags);
247 	if (ret)
248 		goto out;
249 
250 	if (mixed) {
251 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
252 		ret = create_space_info(fs_info, flags);
253 	} else {
254 		flags = BTRFS_BLOCK_GROUP_METADATA;
255 		ret = create_space_info(fs_info, flags);
256 		if (ret)
257 			goto out;
258 
259 		flags = BTRFS_BLOCK_GROUP_DATA;
260 		ret = create_space_info(fs_info, flags);
261 	}
262 out:
263 	return ret;
264 }
265 
266 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
267 			     u64 total_bytes, u64 bytes_used,
268 			     u64 bytes_readonly, u64 bytes_zone_unusable,
269 			     struct btrfs_space_info **space_info)
270 {
271 	struct btrfs_space_info *found;
272 	int factor;
273 
274 	factor = btrfs_bg_type_to_factor(flags);
275 
276 	found = btrfs_find_space_info(info, flags);
277 	ASSERT(found);
278 	spin_lock(&found->lock);
279 	found->total_bytes += total_bytes;
280 	found->disk_total += total_bytes * factor;
281 	found->bytes_used += bytes_used;
282 	found->disk_used += bytes_used * factor;
283 	found->bytes_readonly += bytes_readonly;
284 	found->bytes_zone_unusable += bytes_zone_unusable;
285 	if (total_bytes > 0)
286 		found->full = 0;
287 	btrfs_try_granting_tickets(info, found);
288 	spin_unlock(&found->lock);
289 	*space_info = found;
290 }
291 
292 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
293 					       u64 flags)
294 {
295 	struct list_head *head = &info->space_info;
296 	struct btrfs_space_info *found;
297 
298 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
299 
300 	list_for_each_entry(found, head, list) {
301 		if (found->flags & flags)
302 			return found;
303 	}
304 	return NULL;
305 }
306 
307 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
308 			  struct btrfs_space_info *space_info,
309 			  enum btrfs_reserve_flush_enum flush)
310 {
311 	u64 profile;
312 	u64 avail;
313 	int factor;
314 
315 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
316 		profile = btrfs_system_alloc_profile(fs_info);
317 	else
318 		profile = btrfs_metadata_alloc_profile(fs_info);
319 
320 	avail = atomic64_read(&fs_info->free_chunk_space);
321 
322 	/*
323 	 * If we have dup, raid1 or raid10 then only half of the free
324 	 * space is actually usable.  For raid56, the space info used
325 	 * doesn't include the parity drive, so we don't have to
326 	 * change the math
327 	 */
328 	factor = btrfs_bg_type_to_factor(profile);
329 	avail = div_u64(avail, factor);
330 
331 	/*
332 	 * If we aren't flushing all things, let us overcommit up to
333 	 * 1/2th of the space. If we can flush, don't let us overcommit
334 	 * too much, let it overcommit up to 1/8 of the space.
335 	 */
336 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
337 		avail >>= 3;
338 	else
339 		avail >>= 1;
340 	return avail;
341 }
342 
343 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
344 			 struct btrfs_space_info *space_info, u64 bytes,
345 			 enum btrfs_reserve_flush_enum flush)
346 {
347 	u64 avail;
348 	u64 used;
349 
350 	/* Don't overcommit when in mixed mode */
351 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
352 		return 0;
353 
354 	used = btrfs_space_info_used(space_info, true);
355 	avail = calc_available_free_space(fs_info, space_info, flush);
356 
357 	if (used + bytes < space_info->total_bytes + avail)
358 		return 1;
359 	return 0;
360 }
361 
362 static void remove_ticket(struct btrfs_space_info *space_info,
363 			  struct reserve_ticket *ticket)
364 {
365 	if (!list_empty(&ticket->list)) {
366 		list_del_init(&ticket->list);
367 		ASSERT(space_info->reclaim_size >= ticket->bytes);
368 		space_info->reclaim_size -= ticket->bytes;
369 	}
370 }
371 
372 /*
373  * This is for space we already have accounted in space_info->bytes_may_use, so
374  * basically when we're returning space from block_rsv's.
375  */
376 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
377 				struct btrfs_space_info *space_info)
378 {
379 	struct list_head *head;
380 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
381 
382 	lockdep_assert_held(&space_info->lock);
383 
384 	head = &space_info->priority_tickets;
385 again:
386 	while (!list_empty(head)) {
387 		struct reserve_ticket *ticket;
388 		u64 used = btrfs_space_info_used(space_info, true);
389 
390 		ticket = list_first_entry(head, struct reserve_ticket, list);
391 
392 		/* Check and see if our ticket can be satisified now. */
393 		if ((used + ticket->bytes <= space_info->total_bytes) ||
394 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
395 					 flush)) {
396 			btrfs_space_info_update_bytes_may_use(fs_info,
397 							      space_info,
398 							      ticket->bytes);
399 			remove_ticket(space_info, ticket);
400 			ticket->bytes = 0;
401 			space_info->tickets_id++;
402 			wake_up(&ticket->wait);
403 		} else {
404 			break;
405 		}
406 	}
407 
408 	if (head == &space_info->priority_tickets) {
409 		head = &space_info->tickets;
410 		flush = BTRFS_RESERVE_FLUSH_ALL;
411 		goto again;
412 	}
413 }
414 
415 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
416 do {									\
417 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
418 	spin_lock(&__rsv->lock);					\
419 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
420 		   __rsv->size, __rsv->reserved);			\
421 	spin_unlock(&__rsv->lock);					\
422 } while (0)
423 
424 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
425 				    struct btrfs_space_info *info)
426 {
427 	lockdep_assert_held(&info->lock);
428 
429 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
430 		   info->flags,
431 		   info->total_bytes - btrfs_space_info_used(info, true),
432 		   info->full ? "" : "not ");
433 	btrfs_info(fs_info,
434 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
435 		info->total_bytes, info->bytes_used, info->bytes_pinned,
436 		info->bytes_reserved, info->bytes_may_use,
437 		info->bytes_readonly, info->bytes_zone_unusable);
438 
439 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
440 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
441 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
442 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
443 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
444 
445 }
446 
447 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
448 			   struct btrfs_space_info *info, u64 bytes,
449 			   int dump_block_groups)
450 {
451 	struct btrfs_block_group *cache;
452 	int index = 0;
453 
454 	spin_lock(&info->lock);
455 	__btrfs_dump_space_info(fs_info, info);
456 	spin_unlock(&info->lock);
457 
458 	if (!dump_block_groups)
459 		return;
460 
461 	down_read(&info->groups_sem);
462 again:
463 	list_for_each_entry(cache, &info->block_groups[index], list) {
464 		spin_lock(&cache->lock);
465 		btrfs_info(fs_info,
466 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
467 			cache->start, cache->length, cache->used, cache->pinned,
468 			cache->reserved, cache->zone_unusable,
469 			cache->ro ? "[readonly]" : "");
470 		spin_unlock(&cache->lock);
471 		btrfs_dump_free_space(cache, bytes);
472 	}
473 	if (++index < BTRFS_NR_RAID_TYPES)
474 		goto again;
475 	up_read(&info->groups_sem);
476 }
477 
478 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
479 					u64 to_reclaim)
480 {
481 	u64 bytes;
482 	u64 nr;
483 
484 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
485 	nr = div64_u64(to_reclaim, bytes);
486 	if (!nr)
487 		nr = 1;
488 	return nr;
489 }
490 
491 #define EXTENT_SIZE_PER_ITEM	SZ_256K
492 
493 /*
494  * shrink metadata reservation for delalloc
495  */
496 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
497 			    struct btrfs_space_info *space_info,
498 			    u64 to_reclaim, bool wait_ordered,
499 			    bool for_preempt)
500 {
501 	struct btrfs_trans_handle *trans;
502 	u64 delalloc_bytes;
503 	u64 ordered_bytes;
504 	u64 items;
505 	long time_left;
506 	int loops;
507 
508 	/* Calc the number of the pages we need flush for space reservation */
509 	if (to_reclaim == U64_MAX) {
510 		items = U64_MAX;
511 	} else {
512 		/*
513 		 * to_reclaim is set to however much metadata we need to
514 		 * reclaim, but reclaiming that much data doesn't really track
515 		 * exactly, so increase the amount to reclaim by 2x in order to
516 		 * make sure we're flushing enough delalloc to hopefully reclaim
517 		 * some metadata reservations.
518 		 */
519 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
520 		to_reclaim = items * EXTENT_SIZE_PER_ITEM;
521 	}
522 
523 	trans = (struct btrfs_trans_handle *)current->journal_info;
524 
525 	delalloc_bytes = percpu_counter_sum_positive(
526 						&fs_info->delalloc_bytes);
527 	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
528 	if (delalloc_bytes == 0 && ordered_bytes == 0)
529 		return;
530 
531 	/*
532 	 * If we are doing more ordered than delalloc we need to just wait on
533 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
534 	 * that likely won't give us the space back we need.
535 	 */
536 	if (ordered_bytes > delalloc_bytes && !for_preempt)
537 		wait_ordered = true;
538 
539 	loops = 0;
540 	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
541 		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
542 		long nr_pages = min_t(u64, temp, LONG_MAX);
543 
544 		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
545 
546 		loops++;
547 		if (wait_ordered && !trans) {
548 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
549 		} else {
550 			time_left = schedule_timeout_killable(1);
551 			if (time_left)
552 				break;
553 		}
554 
555 		/*
556 		 * If we are for preemption we just want a one-shot of delalloc
557 		 * flushing so we can stop flushing if we decide we don't need
558 		 * to anymore.
559 		 */
560 		if (for_preempt)
561 			break;
562 
563 		spin_lock(&space_info->lock);
564 		if (list_empty(&space_info->tickets) &&
565 		    list_empty(&space_info->priority_tickets)) {
566 			spin_unlock(&space_info->lock);
567 			break;
568 		}
569 		spin_unlock(&space_info->lock);
570 
571 		delalloc_bytes = percpu_counter_sum_positive(
572 						&fs_info->delalloc_bytes);
573 		ordered_bytes = percpu_counter_sum_positive(
574 						&fs_info->ordered_bytes);
575 	}
576 }
577 
578 /**
579  * Possibly commit the transaction if its ok to
580  *
581  * @fs_info:    the filesystem
582  * @space_info: space_info we are checking for commit, either data or metadata
583  *
584  * This will check to make sure that committing the transaction will actually
585  * get us somewhere and then commit the transaction if it does.  Otherwise it
586  * will return -ENOSPC.
587  */
588 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
589 				  struct btrfs_space_info *space_info)
590 {
591 	struct reserve_ticket *ticket = NULL;
592 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
593 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
594 	struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
595 	struct btrfs_trans_handle *trans;
596 	u64 reclaim_bytes = 0;
597 	u64 bytes_needed = 0;
598 	u64 cur_free_bytes = 0;
599 
600 	trans = (struct btrfs_trans_handle *)current->journal_info;
601 	if (trans)
602 		return -EAGAIN;
603 
604 	spin_lock(&space_info->lock);
605 	cur_free_bytes = btrfs_space_info_used(space_info, true);
606 	if (cur_free_bytes < space_info->total_bytes)
607 		cur_free_bytes = space_info->total_bytes - cur_free_bytes;
608 	else
609 		cur_free_bytes = 0;
610 
611 	if (!list_empty(&space_info->priority_tickets))
612 		ticket = list_first_entry(&space_info->priority_tickets,
613 					  struct reserve_ticket, list);
614 	else if (!list_empty(&space_info->tickets))
615 		ticket = list_first_entry(&space_info->tickets,
616 					  struct reserve_ticket, list);
617 	if (ticket)
618 		bytes_needed = ticket->bytes;
619 
620 	if (bytes_needed > cur_free_bytes)
621 		bytes_needed -= cur_free_bytes;
622 	else
623 		bytes_needed = 0;
624 	spin_unlock(&space_info->lock);
625 
626 	if (!bytes_needed)
627 		return 0;
628 
629 	trans = btrfs_join_transaction(fs_info->extent_root);
630 	if (IS_ERR(trans))
631 		return PTR_ERR(trans);
632 
633 	/*
634 	 * See if there is enough pinned space to make this reservation, or if
635 	 * we have block groups that are going to be freed, allowing us to
636 	 * possibly do a chunk allocation the next loop through.
637 	 */
638 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
639 	    __percpu_counter_compare(&space_info->total_bytes_pinned,
640 				     bytes_needed,
641 				     BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
642 		goto commit;
643 
644 	/*
645 	 * See if there is some space in the delayed insertion reserve for this
646 	 * reservation.  If the space_info's don't match (like for DATA or
647 	 * SYSTEM) then just go enospc, reclaiming this space won't recover any
648 	 * space to satisfy those reservations.
649 	 */
650 	if (space_info != delayed_rsv->space_info)
651 		goto enospc;
652 
653 	spin_lock(&delayed_rsv->lock);
654 	reclaim_bytes += delayed_rsv->reserved;
655 	spin_unlock(&delayed_rsv->lock);
656 
657 	spin_lock(&delayed_refs_rsv->lock);
658 	reclaim_bytes += delayed_refs_rsv->reserved;
659 	spin_unlock(&delayed_refs_rsv->lock);
660 
661 	spin_lock(&trans_rsv->lock);
662 	reclaim_bytes += trans_rsv->reserved;
663 	spin_unlock(&trans_rsv->lock);
664 
665 	if (reclaim_bytes >= bytes_needed)
666 		goto commit;
667 	bytes_needed -= reclaim_bytes;
668 
669 	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
670 				   bytes_needed,
671 				   BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
672 		goto enospc;
673 
674 commit:
675 	return btrfs_commit_transaction(trans);
676 enospc:
677 	btrfs_end_transaction(trans);
678 	return -ENOSPC;
679 }
680 
681 /*
682  * Try to flush some data based on policy set by @state. This is only advisory
683  * and may fail for various reasons. The caller is supposed to examine the
684  * state of @space_info to detect the outcome.
685  */
686 static void flush_space(struct btrfs_fs_info *fs_info,
687 		       struct btrfs_space_info *space_info, u64 num_bytes,
688 		       enum btrfs_flush_state state, bool for_preempt)
689 {
690 	struct btrfs_root *root = fs_info->extent_root;
691 	struct btrfs_trans_handle *trans;
692 	int nr;
693 	int ret = 0;
694 
695 	switch (state) {
696 	case FLUSH_DELAYED_ITEMS_NR:
697 	case FLUSH_DELAYED_ITEMS:
698 		if (state == FLUSH_DELAYED_ITEMS_NR)
699 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
700 		else
701 			nr = -1;
702 
703 		trans = btrfs_join_transaction(root);
704 		if (IS_ERR(trans)) {
705 			ret = PTR_ERR(trans);
706 			break;
707 		}
708 		ret = btrfs_run_delayed_items_nr(trans, nr);
709 		btrfs_end_transaction(trans);
710 		break;
711 	case FLUSH_DELALLOC:
712 	case FLUSH_DELALLOC_WAIT:
713 		shrink_delalloc(fs_info, space_info, num_bytes,
714 				state == FLUSH_DELALLOC_WAIT, for_preempt);
715 		break;
716 	case FLUSH_DELAYED_REFS_NR:
717 	case FLUSH_DELAYED_REFS:
718 		trans = btrfs_join_transaction(root);
719 		if (IS_ERR(trans)) {
720 			ret = PTR_ERR(trans);
721 			break;
722 		}
723 		if (state == FLUSH_DELAYED_REFS_NR)
724 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
725 		else
726 			nr = 0;
727 		btrfs_run_delayed_refs(trans, nr);
728 		btrfs_end_transaction(trans);
729 		break;
730 	case ALLOC_CHUNK:
731 	case ALLOC_CHUNK_FORCE:
732 		trans = btrfs_join_transaction(root);
733 		if (IS_ERR(trans)) {
734 			ret = PTR_ERR(trans);
735 			break;
736 		}
737 		ret = btrfs_chunk_alloc(trans,
738 				btrfs_get_alloc_profile(fs_info, space_info->flags),
739 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
740 					CHUNK_ALLOC_FORCE);
741 		btrfs_end_transaction(trans);
742 		if (ret > 0 || ret == -ENOSPC)
743 			ret = 0;
744 		break;
745 	case RUN_DELAYED_IPUTS:
746 		/*
747 		 * If we have pending delayed iputs then we could free up a
748 		 * bunch of pinned space, so make sure we run the iputs before
749 		 * we do our pinned bytes check below.
750 		 */
751 		btrfs_run_delayed_iputs(fs_info);
752 		btrfs_wait_on_delayed_iputs(fs_info);
753 		break;
754 	case COMMIT_TRANS:
755 		ret = may_commit_transaction(fs_info, space_info);
756 		break;
757 	case FORCE_COMMIT_TRANS:
758 		trans = btrfs_join_transaction(root);
759 		if (IS_ERR(trans)) {
760 			ret = PTR_ERR(trans);
761 			break;
762 		}
763 		ret = btrfs_commit_transaction(trans);
764 		break;
765 	default:
766 		ret = -ENOSPC;
767 		break;
768 	}
769 
770 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
771 				ret, for_preempt);
772 	return;
773 }
774 
775 static inline u64
776 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
777 				 struct btrfs_space_info *space_info)
778 {
779 	u64 used;
780 	u64 avail;
781 	u64 to_reclaim = space_info->reclaim_size;
782 
783 	lockdep_assert_held(&space_info->lock);
784 
785 	avail = calc_available_free_space(fs_info, space_info,
786 					  BTRFS_RESERVE_FLUSH_ALL);
787 	used = btrfs_space_info_used(space_info, true);
788 
789 	/*
790 	 * We may be flushing because suddenly we have less space than we had
791 	 * before, and now we're well over-committed based on our current free
792 	 * space.  If that's the case add in our overage so we make sure to put
793 	 * appropriate pressure on the flushing state machine.
794 	 */
795 	if (space_info->total_bytes + avail < used)
796 		to_reclaim += used - (space_info->total_bytes + avail);
797 
798 	return to_reclaim;
799 }
800 
801 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
802 				    struct btrfs_space_info *space_info)
803 {
804 	u64 global_rsv_size = fs_info->global_block_rsv.reserved;
805 	u64 ordered, delalloc;
806 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
807 	u64 used;
808 
809 	/* If we're just plain full then async reclaim just slows us down. */
810 	if ((space_info->bytes_used + space_info->bytes_reserved +
811 	     global_rsv_size) >= thresh)
812 		return false;
813 
814 	/*
815 	 * We have tickets queued, bail so we don't compete with the async
816 	 * flushers.
817 	 */
818 	if (space_info->reclaim_size)
819 		return false;
820 
821 	/*
822 	 * If we have over half of the free space occupied by reservations or
823 	 * pinned then we want to start flushing.
824 	 *
825 	 * We do not do the traditional thing here, which is to say
826 	 *
827 	 *   if (used >= ((total_bytes + avail) / 2))
828 	 *     return 1;
829 	 *
830 	 * because this doesn't quite work how we want.  If we had more than 50%
831 	 * of the space_info used by bytes_used and we had 0 available we'd just
832 	 * constantly run the background flusher.  Instead we want it to kick in
833 	 * if our reclaimable space exceeds our clamped free space.
834 	 *
835 	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
836 	 * the following:
837 	 *
838 	 * Amount of RAM        Minimum threshold       Maximum threshold
839 	 *
840 	 *        256GiB                     1GiB                  128GiB
841 	 *        128GiB                   512MiB                   64GiB
842 	 *         64GiB                   256MiB                   32GiB
843 	 *         32GiB                   128MiB                   16GiB
844 	 *         16GiB                    64MiB                    8GiB
845 	 *
846 	 * These are the range our thresholds will fall in, corresponding to how
847 	 * much delalloc we need for the background flusher to kick in.
848 	 */
849 
850 	thresh = calc_available_free_space(fs_info, space_info,
851 					   BTRFS_RESERVE_FLUSH_ALL);
852 	used = space_info->bytes_used + space_info->bytes_reserved +
853 	       space_info->bytes_readonly + global_rsv_size;
854 	if (used < space_info->total_bytes)
855 		thresh += space_info->total_bytes - used;
856 	thresh >>= space_info->clamp;
857 
858 	used = space_info->bytes_pinned;
859 
860 	/*
861 	 * If we have more ordered bytes than delalloc bytes then we're either
862 	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
863 	 * around.  Preemptive flushing is only useful in that it can free up
864 	 * space before tickets need to wait for things to finish.  In the case
865 	 * of ordered extents, preemptively waiting on ordered extents gets us
866 	 * nothing, if our reservations are tied up in ordered extents we'll
867 	 * simply have to slow down writers by forcing them to wait on ordered
868 	 * extents.
869 	 *
870 	 * In the case that ordered is larger than delalloc, only include the
871 	 * block reserves that we would actually be able to directly reclaim
872 	 * from.  In this case if we're heavy on metadata operations this will
873 	 * clearly be heavy enough to warrant preemptive flushing.  In the case
874 	 * of heavy DIO or ordered reservations, preemptive flushing will just
875 	 * waste time and cause us to slow down.
876 	 *
877 	 * We want to make sure we truly are maxed out on ordered however, so
878 	 * cut ordered in half, and if it's still higher than delalloc then we
879 	 * can keep flushing.  This is to avoid the case where we start
880 	 * flushing, and now delalloc == ordered and we stop preemptively
881 	 * flushing when we could still have several gigs of delalloc to flush.
882 	 */
883 	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
884 	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
885 	if (ordered >= delalloc)
886 		used += fs_info->delayed_refs_rsv.reserved +
887 			fs_info->delayed_block_rsv.reserved;
888 	else
889 		used += space_info->bytes_may_use - global_rsv_size;
890 
891 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
892 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
893 }
894 
895 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
896 				  struct btrfs_space_info *space_info,
897 				  struct reserve_ticket *ticket)
898 {
899 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
900 	u64 min_bytes;
901 
902 	if (global_rsv->space_info != space_info)
903 		return false;
904 
905 	spin_lock(&global_rsv->lock);
906 	min_bytes = div_factor(global_rsv->size, 1);
907 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
908 		spin_unlock(&global_rsv->lock);
909 		return false;
910 	}
911 	global_rsv->reserved -= ticket->bytes;
912 	remove_ticket(space_info, ticket);
913 	ticket->bytes = 0;
914 	wake_up(&ticket->wait);
915 	space_info->tickets_id++;
916 	if (global_rsv->reserved < global_rsv->size)
917 		global_rsv->full = 0;
918 	spin_unlock(&global_rsv->lock);
919 
920 	return true;
921 }
922 
923 /*
924  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
925  * @fs_info - fs_info for this fs
926  * @space_info - the space info we were flushing
927  *
928  * We call this when we've exhausted our flushing ability and haven't made
929  * progress in satisfying tickets.  The reservation code handles tickets in
930  * order, so if there is a large ticket first and then smaller ones we could
931  * very well satisfy the smaller tickets.  This will attempt to wake up any
932  * tickets in the list to catch this case.
933  *
934  * This function returns true if it was able to make progress by clearing out
935  * other tickets, or if it stumbles across a ticket that was smaller than the
936  * first ticket.
937  */
938 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
939 				   struct btrfs_space_info *space_info)
940 {
941 	struct reserve_ticket *ticket;
942 	u64 tickets_id = space_info->tickets_id;
943 	u64 first_ticket_bytes = 0;
944 
945 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
946 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
947 		__btrfs_dump_space_info(fs_info, space_info);
948 	}
949 
950 	while (!list_empty(&space_info->tickets) &&
951 	       tickets_id == space_info->tickets_id) {
952 		ticket = list_first_entry(&space_info->tickets,
953 					  struct reserve_ticket, list);
954 
955 		if (ticket->steal &&
956 		    steal_from_global_rsv(fs_info, space_info, ticket))
957 			return true;
958 
959 		/*
960 		 * may_commit_transaction will avoid committing the transaction
961 		 * if it doesn't feel like the space reclaimed by the commit
962 		 * would result in the ticket succeeding.  However if we have a
963 		 * smaller ticket in the queue it may be small enough to be
964 		 * satisified by committing the transaction, so if any
965 		 * subsequent ticket is smaller than the first ticket go ahead
966 		 * and send us back for another loop through the enospc flushing
967 		 * code.
968 		 */
969 		if (first_ticket_bytes == 0)
970 			first_ticket_bytes = ticket->bytes;
971 		else if (first_ticket_bytes > ticket->bytes)
972 			return true;
973 
974 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
975 			btrfs_info(fs_info, "failing ticket with %llu bytes",
976 				   ticket->bytes);
977 
978 		remove_ticket(space_info, ticket);
979 		ticket->error = -ENOSPC;
980 		wake_up(&ticket->wait);
981 
982 		/*
983 		 * We're just throwing tickets away, so more flushing may not
984 		 * trip over btrfs_try_granting_tickets, so we need to call it
985 		 * here to see if we can make progress with the next ticket in
986 		 * the list.
987 		 */
988 		btrfs_try_granting_tickets(fs_info, space_info);
989 	}
990 	return (tickets_id != space_info->tickets_id);
991 }
992 
993 /*
994  * This is for normal flushers, we can wait all goddamned day if we want to.  We
995  * will loop and continuously try to flush as long as we are making progress.
996  * We count progress as clearing off tickets each time we have to loop.
997  */
998 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
999 {
1000 	struct btrfs_fs_info *fs_info;
1001 	struct btrfs_space_info *space_info;
1002 	u64 to_reclaim;
1003 	enum btrfs_flush_state flush_state;
1004 	int commit_cycles = 0;
1005 	u64 last_tickets_id;
1006 
1007 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1008 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1009 
1010 	spin_lock(&space_info->lock);
1011 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1012 	if (!to_reclaim) {
1013 		space_info->flush = 0;
1014 		spin_unlock(&space_info->lock);
1015 		return;
1016 	}
1017 	last_tickets_id = space_info->tickets_id;
1018 	spin_unlock(&space_info->lock);
1019 
1020 	flush_state = FLUSH_DELAYED_ITEMS_NR;
1021 	do {
1022 		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1023 		spin_lock(&space_info->lock);
1024 		if (list_empty(&space_info->tickets)) {
1025 			space_info->flush = 0;
1026 			spin_unlock(&space_info->lock);
1027 			return;
1028 		}
1029 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1030 							      space_info);
1031 		if (last_tickets_id == space_info->tickets_id) {
1032 			flush_state++;
1033 		} else {
1034 			last_tickets_id = space_info->tickets_id;
1035 			flush_state = FLUSH_DELAYED_ITEMS_NR;
1036 			if (commit_cycles)
1037 				commit_cycles--;
1038 		}
1039 
1040 		/*
1041 		 * We don't want to force a chunk allocation until we've tried
1042 		 * pretty hard to reclaim space.  Think of the case where we
1043 		 * freed up a bunch of space and so have a lot of pinned space
1044 		 * to reclaim.  We would rather use that than possibly create a
1045 		 * underutilized metadata chunk.  So if this is our first run
1046 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1047 		 * commit the transaction.  If nothing has changed the next go
1048 		 * around then we can force a chunk allocation.
1049 		 */
1050 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1051 			flush_state++;
1052 
1053 		if (flush_state > COMMIT_TRANS) {
1054 			commit_cycles++;
1055 			if (commit_cycles > 2) {
1056 				if (maybe_fail_all_tickets(fs_info, space_info)) {
1057 					flush_state = FLUSH_DELAYED_ITEMS_NR;
1058 					commit_cycles--;
1059 				} else {
1060 					space_info->flush = 0;
1061 				}
1062 			} else {
1063 				flush_state = FLUSH_DELAYED_ITEMS_NR;
1064 			}
1065 		}
1066 		spin_unlock(&space_info->lock);
1067 	} while (flush_state <= COMMIT_TRANS);
1068 }
1069 
1070 /*
1071  * This handles pre-flushing of metadata space before we get to the point that
1072  * we need to start blocking threads on tickets.  The logic here is different
1073  * from the other flush paths because it doesn't rely on tickets to tell us how
1074  * much we need to flush, instead it attempts to keep us below the 80% full
1075  * watermark of space by flushing whichever reservation pool is currently the
1076  * largest.
1077  */
1078 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1079 {
1080 	struct btrfs_fs_info *fs_info;
1081 	struct btrfs_space_info *space_info;
1082 	struct btrfs_block_rsv *delayed_block_rsv;
1083 	struct btrfs_block_rsv *delayed_refs_rsv;
1084 	struct btrfs_block_rsv *global_rsv;
1085 	struct btrfs_block_rsv *trans_rsv;
1086 	int loops = 0;
1087 
1088 	fs_info = container_of(work, struct btrfs_fs_info,
1089 			       preempt_reclaim_work);
1090 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1091 	delayed_block_rsv = &fs_info->delayed_block_rsv;
1092 	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1093 	global_rsv = &fs_info->global_block_rsv;
1094 	trans_rsv = &fs_info->trans_block_rsv;
1095 
1096 	spin_lock(&space_info->lock);
1097 	while (need_preemptive_reclaim(fs_info, space_info)) {
1098 		enum btrfs_flush_state flush;
1099 		u64 delalloc_size = 0;
1100 		u64 to_reclaim, block_rsv_size;
1101 		u64 global_rsv_size = global_rsv->reserved;
1102 
1103 		loops++;
1104 
1105 		/*
1106 		 * We don't have a precise counter for the metadata being
1107 		 * reserved for delalloc, so we'll approximate it by subtracting
1108 		 * out the block rsv's space from the bytes_may_use.  If that
1109 		 * amount is higher than the individual reserves, then we can
1110 		 * assume it's tied up in delalloc reservations.
1111 		 */
1112 		block_rsv_size = global_rsv_size +
1113 			delayed_block_rsv->reserved +
1114 			delayed_refs_rsv->reserved +
1115 			trans_rsv->reserved;
1116 		if (block_rsv_size < space_info->bytes_may_use)
1117 			delalloc_size = space_info->bytes_may_use - block_rsv_size;
1118 		spin_unlock(&space_info->lock);
1119 
1120 		/*
1121 		 * We don't want to include the global_rsv in our calculation,
1122 		 * because that's space we can't touch.  Subtract it from the
1123 		 * block_rsv_size for the next checks.
1124 		 */
1125 		block_rsv_size -= global_rsv_size;
1126 
1127 		/*
1128 		 * We really want to avoid flushing delalloc too much, as it
1129 		 * could result in poor allocation patterns, so only flush it if
1130 		 * it's larger than the rest of the pools combined.
1131 		 */
1132 		if (delalloc_size > block_rsv_size) {
1133 			to_reclaim = delalloc_size;
1134 			flush = FLUSH_DELALLOC;
1135 		} else if (space_info->bytes_pinned >
1136 			   (delayed_block_rsv->reserved +
1137 			    delayed_refs_rsv->reserved)) {
1138 			to_reclaim = space_info->bytes_pinned;
1139 			flush = FORCE_COMMIT_TRANS;
1140 		} else if (delayed_block_rsv->reserved >
1141 			   delayed_refs_rsv->reserved) {
1142 			to_reclaim = delayed_block_rsv->reserved;
1143 			flush = FLUSH_DELAYED_ITEMS_NR;
1144 		} else {
1145 			to_reclaim = delayed_refs_rsv->reserved;
1146 			flush = FLUSH_DELAYED_REFS_NR;
1147 		}
1148 
1149 		/*
1150 		 * We don't want to reclaim everything, just a portion, so scale
1151 		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1152 		 * reclaim 1 items worth.
1153 		 */
1154 		to_reclaim >>= 2;
1155 		if (!to_reclaim)
1156 			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1157 		flush_space(fs_info, space_info, to_reclaim, flush, true);
1158 		cond_resched();
1159 		spin_lock(&space_info->lock);
1160 	}
1161 
1162 	/* We only went through once, back off our clamping. */
1163 	if (loops == 1 && !space_info->reclaim_size)
1164 		space_info->clamp = max(1, space_info->clamp - 1);
1165 	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1166 	spin_unlock(&space_info->lock);
1167 }
1168 
1169 /*
1170  * FLUSH_DELALLOC_WAIT:
1171  *   Space is freed from flushing delalloc in one of two ways.
1172  *
1173  *   1) compression is on and we allocate less space than we reserved
1174  *   2) we are overwriting existing space
1175  *
1176  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1177  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1178  *   length to ->bytes_reserved, and subtracts the reserved space from
1179  *   ->bytes_may_use.
1180  *
1181  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1182  *   extent in the range we are overwriting, which creates a delayed ref for
1183  *   that freed extent.  This however is not reclaimed until the transaction
1184  *   commits, thus the next stages.
1185  *
1186  * RUN_DELAYED_IPUTS
1187  *   If we are freeing inodes, we want to make sure all delayed iputs have
1188  *   completed, because they could have been on an inode with i_nlink == 0, and
1189  *   thus have been truncated and freed up space.  But again this space is not
1190  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1191  *   run and then the transaction must be committed.
1192  *
1193  * FLUSH_DELAYED_REFS
1194  *   The above two cases generate delayed refs that will affect
1195  *   ->total_bytes_pinned.  However this counter can be inconsistent with
1196  *   reality if there are outstanding delayed refs.  This is because we adjust
1197  *   the counter based solely on the current set of delayed refs and disregard
1198  *   any on-disk state which might include more refs.  So for example, if we
1199  *   have an extent with 2 references, but we only drop 1, we'll see that there
1200  *   is a negative delayed ref count for the extent and assume that the space
1201  *   will be freed, and thus increase ->total_bytes_pinned.
1202  *
1203  *   Running the delayed refs gives us the actual real view of what will be
1204  *   freed at the transaction commit time.  This stage will not actually free
1205  *   space for us, it just makes sure that may_commit_transaction() has all of
1206  *   the information it needs to make the right decision.
1207  *
1208  * COMMIT_TRANS
1209  *   This is where we reclaim all of the pinned space generated by the previous
1210  *   two stages.  We will not commit the transaction if we don't think we're
1211  *   likely to satisfy our request, which means if our current free space +
1212  *   total_bytes_pinned < reservation we will not commit.  This is why the
1213  *   previous states are actually important, to make sure we know for sure
1214  *   whether committing the transaction will allow us to make progress.
1215  *
1216  * ALLOC_CHUNK_FORCE
1217  *   For data we start with alloc chunk force, however we could have been full
1218  *   before, and then the transaction commit could have freed new block groups,
1219  *   so if we now have space to allocate do the force chunk allocation.
1220  */
1221 static const enum btrfs_flush_state data_flush_states[] = {
1222 	FLUSH_DELALLOC_WAIT,
1223 	RUN_DELAYED_IPUTS,
1224 	FLUSH_DELAYED_REFS,
1225 	COMMIT_TRANS,
1226 	ALLOC_CHUNK_FORCE,
1227 };
1228 
1229 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1230 {
1231 	struct btrfs_fs_info *fs_info;
1232 	struct btrfs_space_info *space_info;
1233 	u64 last_tickets_id;
1234 	enum btrfs_flush_state flush_state = 0;
1235 
1236 	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1237 	space_info = fs_info->data_sinfo;
1238 
1239 	spin_lock(&space_info->lock);
1240 	if (list_empty(&space_info->tickets)) {
1241 		space_info->flush = 0;
1242 		spin_unlock(&space_info->lock);
1243 		return;
1244 	}
1245 	last_tickets_id = space_info->tickets_id;
1246 	spin_unlock(&space_info->lock);
1247 
1248 	while (!space_info->full) {
1249 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1250 		spin_lock(&space_info->lock);
1251 		if (list_empty(&space_info->tickets)) {
1252 			space_info->flush = 0;
1253 			spin_unlock(&space_info->lock);
1254 			return;
1255 		}
1256 		last_tickets_id = space_info->tickets_id;
1257 		spin_unlock(&space_info->lock);
1258 	}
1259 
1260 	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1261 		flush_space(fs_info, space_info, U64_MAX,
1262 			    data_flush_states[flush_state], false);
1263 		spin_lock(&space_info->lock);
1264 		if (list_empty(&space_info->tickets)) {
1265 			space_info->flush = 0;
1266 			spin_unlock(&space_info->lock);
1267 			return;
1268 		}
1269 
1270 		if (last_tickets_id == space_info->tickets_id) {
1271 			flush_state++;
1272 		} else {
1273 			last_tickets_id = space_info->tickets_id;
1274 			flush_state = 0;
1275 		}
1276 
1277 		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1278 			if (space_info->full) {
1279 				if (maybe_fail_all_tickets(fs_info, space_info))
1280 					flush_state = 0;
1281 				else
1282 					space_info->flush = 0;
1283 			} else {
1284 				flush_state = 0;
1285 			}
1286 		}
1287 		spin_unlock(&space_info->lock);
1288 	}
1289 }
1290 
1291 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1292 {
1293 	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1294 	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1295 	INIT_WORK(&fs_info->preempt_reclaim_work,
1296 		  btrfs_preempt_reclaim_metadata_space);
1297 }
1298 
1299 static const enum btrfs_flush_state priority_flush_states[] = {
1300 	FLUSH_DELAYED_ITEMS_NR,
1301 	FLUSH_DELAYED_ITEMS,
1302 	ALLOC_CHUNK,
1303 };
1304 
1305 static const enum btrfs_flush_state evict_flush_states[] = {
1306 	FLUSH_DELAYED_ITEMS_NR,
1307 	FLUSH_DELAYED_ITEMS,
1308 	FLUSH_DELAYED_REFS_NR,
1309 	FLUSH_DELAYED_REFS,
1310 	FLUSH_DELALLOC,
1311 	FLUSH_DELALLOC_WAIT,
1312 	ALLOC_CHUNK,
1313 	COMMIT_TRANS,
1314 };
1315 
1316 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1317 				struct btrfs_space_info *space_info,
1318 				struct reserve_ticket *ticket,
1319 				const enum btrfs_flush_state *states,
1320 				int states_nr)
1321 {
1322 	u64 to_reclaim;
1323 	int flush_state;
1324 
1325 	spin_lock(&space_info->lock);
1326 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1327 	if (!to_reclaim) {
1328 		spin_unlock(&space_info->lock);
1329 		return;
1330 	}
1331 	spin_unlock(&space_info->lock);
1332 
1333 	flush_state = 0;
1334 	do {
1335 		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1336 			    false);
1337 		flush_state++;
1338 		spin_lock(&space_info->lock);
1339 		if (ticket->bytes == 0) {
1340 			spin_unlock(&space_info->lock);
1341 			return;
1342 		}
1343 		spin_unlock(&space_info->lock);
1344 	} while (flush_state < states_nr);
1345 }
1346 
1347 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1348 					struct btrfs_space_info *space_info,
1349 					struct reserve_ticket *ticket)
1350 {
1351 	while (!space_info->full) {
1352 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1353 		spin_lock(&space_info->lock);
1354 		if (ticket->bytes == 0) {
1355 			spin_unlock(&space_info->lock);
1356 			return;
1357 		}
1358 		spin_unlock(&space_info->lock);
1359 	}
1360 }
1361 
1362 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1363 				struct btrfs_space_info *space_info,
1364 				struct reserve_ticket *ticket)
1365 
1366 {
1367 	DEFINE_WAIT(wait);
1368 	int ret = 0;
1369 
1370 	spin_lock(&space_info->lock);
1371 	while (ticket->bytes > 0 && ticket->error == 0) {
1372 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1373 		if (ret) {
1374 			/*
1375 			 * Delete us from the list. After we unlock the space
1376 			 * info, we don't want the async reclaim job to reserve
1377 			 * space for this ticket. If that would happen, then the
1378 			 * ticket's task would not known that space was reserved
1379 			 * despite getting an error, resulting in a space leak
1380 			 * (bytes_may_use counter of our space_info).
1381 			 */
1382 			remove_ticket(space_info, ticket);
1383 			ticket->error = -EINTR;
1384 			break;
1385 		}
1386 		spin_unlock(&space_info->lock);
1387 
1388 		schedule();
1389 
1390 		finish_wait(&ticket->wait, &wait);
1391 		spin_lock(&space_info->lock);
1392 	}
1393 	spin_unlock(&space_info->lock);
1394 }
1395 
1396 /**
1397  * Do the appropriate flushing and waiting for a ticket
1398  *
1399  * @fs_info:    the filesystem
1400  * @space_info: space info for the reservation
1401  * @ticket:     ticket for the reservation
1402  * @start_ns:   timestamp when the reservation started
1403  * @orig_bytes: amount of bytes originally reserved
1404  * @flush:      how much we can flush
1405  *
1406  * This does the work of figuring out how to flush for the ticket, waiting for
1407  * the reservation, and returning the appropriate error if there is one.
1408  */
1409 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1410 				 struct btrfs_space_info *space_info,
1411 				 struct reserve_ticket *ticket,
1412 				 u64 start_ns, u64 orig_bytes,
1413 				 enum btrfs_reserve_flush_enum flush)
1414 {
1415 	int ret;
1416 
1417 	switch (flush) {
1418 	case BTRFS_RESERVE_FLUSH_DATA:
1419 	case BTRFS_RESERVE_FLUSH_ALL:
1420 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1421 		wait_reserve_ticket(fs_info, space_info, ticket);
1422 		break;
1423 	case BTRFS_RESERVE_FLUSH_LIMIT:
1424 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1425 						priority_flush_states,
1426 						ARRAY_SIZE(priority_flush_states));
1427 		break;
1428 	case BTRFS_RESERVE_FLUSH_EVICT:
1429 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1430 						evict_flush_states,
1431 						ARRAY_SIZE(evict_flush_states));
1432 		break;
1433 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1434 		priority_reclaim_data_space(fs_info, space_info, ticket);
1435 		break;
1436 	default:
1437 		ASSERT(0);
1438 		break;
1439 	}
1440 
1441 	spin_lock(&space_info->lock);
1442 	ret = ticket->error;
1443 	if (ticket->bytes || ticket->error) {
1444 		/*
1445 		 * We were a priority ticket, so we need to delete ourselves
1446 		 * from the list.  Because we could have other priority tickets
1447 		 * behind us that require less space, run
1448 		 * btrfs_try_granting_tickets() to see if their reservations can
1449 		 * now be made.
1450 		 */
1451 		if (!list_empty(&ticket->list)) {
1452 			remove_ticket(space_info, ticket);
1453 			btrfs_try_granting_tickets(fs_info, space_info);
1454 		}
1455 
1456 		if (!ret)
1457 			ret = -ENOSPC;
1458 	}
1459 	spin_unlock(&space_info->lock);
1460 	ASSERT(list_empty(&ticket->list));
1461 	/*
1462 	 * Check that we can't have an error set if the reservation succeeded,
1463 	 * as that would confuse tasks and lead them to error out without
1464 	 * releasing reserved space (if an error happens the expectation is that
1465 	 * space wasn't reserved at all).
1466 	 */
1467 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1468 	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1469 				   start_ns, flush, ticket->error);
1470 	return ret;
1471 }
1472 
1473 /*
1474  * This returns true if this flush state will go through the ordinary flushing
1475  * code.
1476  */
1477 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1478 {
1479 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1480 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1481 }
1482 
1483 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1484 				       struct btrfs_space_info *space_info)
1485 {
1486 	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1487 	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1488 
1489 	/*
1490 	 * If we're heavy on ordered operations then clamping won't help us.  We
1491 	 * need to clamp specifically to keep up with dirty'ing buffered
1492 	 * writers, because there's not a 1:1 correlation of writing delalloc
1493 	 * and freeing space, like there is with flushing delayed refs or
1494 	 * delayed nodes.  If we're already more ordered than delalloc then
1495 	 * we're keeping up, otherwise we aren't and should probably clamp.
1496 	 */
1497 	if (ordered < delalloc)
1498 		space_info->clamp = min(space_info->clamp + 1, 8);
1499 }
1500 
1501 /**
1502  * Try to reserve bytes from the block_rsv's space
1503  *
1504  * @fs_info:    the filesystem
1505  * @space_info: space info we want to allocate from
1506  * @orig_bytes: number of bytes we want
1507  * @flush:      whether or not we can flush to make our reservation
1508  *
1509  * This will reserve orig_bytes number of bytes from the space info associated
1510  * with the block_rsv.  If there is not enough space it will make an attempt to
1511  * flush out space to make room.  It will do this by flushing delalloc if
1512  * possible or committing the transaction.  If flush is 0 then no attempts to
1513  * regain reservations will be made and this will fail if there is not enough
1514  * space already.
1515  */
1516 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1517 			   struct btrfs_space_info *space_info, u64 orig_bytes,
1518 			   enum btrfs_reserve_flush_enum flush)
1519 {
1520 	struct work_struct *async_work;
1521 	struct reserve_ticket ticket;
1522 	u64 start_ns = 0;
1523 	u64 used;
1524 	int ret = 0;
1525 	bool pending_tickets;
1526 
1527 	ASSERT(orig_bytes);
1528 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1529 
1530 	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1531 		async_work = &fs_info->async_data_reclaim_work;
1532 	else
1533 		async_work = &fs_info->async_reclaim_work;
1534 
1535 	spin_lock(&space_info->lock);
1536 	ret = -ENOSPC;
1537 	used = btrfs_space_info_used(space_info, true);
1538 
1539 	/*
1540 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1541 	 * generally handle ENOSPC in a different way, so treat them the same as
1542 	 * normal flushers when it comes to skipping pending tickets.
1543 	 */
1544 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1545 		pending_tickets = !list_empty(&space_info->tickets) ||
1546 			!list_empty(&space_info->priority_tickets);
1547 	else
1548 		pending_tickets = !list_empty(&space_info->priority_tickets);
1549 
1550 	/*
1551 	 * Carry on if we have enough space (short-circuit) OR call
1552 	 * can_overcommit() to ensure we can overcommit to continue.
1553 	 */
1554 	if (!pending_tickets &&
1555 	    ((used + orig_bytes <= space_info->total_bytes) ||
1556 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1557 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1558 						      orig_bytes);
1559 		ret = 0;
1560 	}
1561 
1562 	/*
1563 	 * If we couldn't make a reservation then setup our reservation ticket
1564 	 * and kick the async worker if it's not already running.
1565 	 *
1566 	 * If we are a priority flusher then we just need to add our ticket to
1567 	 * the list and we will do our own flushing further down.
1568 	 */
1569 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1570 		ticket.bytes = orig_bytes;
1571 		ticket.error = 0;
1572 		space_info->reclaim_size += ticket.bytes;
1573 		init_waitqueue_head(&ticket.wait);
1574 		ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1575 		if (trace_btrfs_reserve_ticket_enabled())
1576 			start_ns = ktime_get_ns();
1577 
1578 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1579 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1580 		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1581 			list_add_tail(&ticket.list, &space_info->tickets);
1582 			if (!space_info->flush) {
1583 				/*
1584 				 * We were forced to add a reserve ticket, so
1585 				 * our preemptive flushing is unable to keep
1586 				 * up.  Clamp down on the threshold for the
1587 				 * preemptive flushing in order to keep up with
1588 				 * the workload.
1589 				 */
1590 				maybe_clamp_preempt(fs_info, space_info);
1591 
1592 				space_info->flush = 1;
1593 				trace_btrfs_trigger_flush(fs_info,
1594 							  space_info->flags,
1595 							  orig_bytes, flush,
1596 							  "enospc");
1597 				queue_work(system_unbound_wq, async_work);
1598 			}
1599 		} else {
1600 			list_add_tail(&ticket.list,
1601 				      &space_info->priority_tickets);
1602 		}
1603 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1604 		used += orig_bytes;
1605 		/*
1606 		 * We will do the space reservation dance during log replay,
1607 		 * which means we won't have fs_info->fs_root set, so don't do
1608 		 * the async reclaim as we will panic.
1609 		 */
1610 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1611 		    !work_busy(&fs_info->preempt_reclaim_work) &&
1612 		    need_preemptive_reclaim(fs_info, space_info)) {
1613 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1614 						  orig_bytes, flush, "preempt");
1615 			queue_work(system_unbound_wq,
1616 				   &fs_info->preempt_reclaim_work);
1617 		}
1618 	}
1619 	spin_unlock(&space_info->lock);
1620 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1621 		return ret;
1622 
1623 	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1624 				     orig_bytes, flush);
1625 }
1626 
1627 /**
1628  * Trye to reserve metadata bytes from the block_rsv's space
1629  *
1630  * @root:       the root we're allocating for
1631  * @block_rsv:  block_rsv we're allocating for
1632  * @orig_bytes: number of bytes we want
1633  * @flush:      whether or not we can flush to make our reservation
1634  *
1635  * This will reserve orig_bytes number of bytes from the space info associated
1636  * with the block_rsv.  If there is not enough space it will make an attempt to
1637  * flush out space to make room.  It will do this by flushing delalloc if
1638  * possible or committing the transaction.  If flush is 0 then no attempts to
1639  * regain reservations will be made and this will fail if there is not enough
1640  * space already.
1641  */
1642 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1643 				 struct btrfs_block_rsv *block_rsv,
1644 				 u64 orig_bytes,
1645 				 enum btrfs_reserve_flush_enum flush)
1646 {
1647 	struct btrfs_fs_info *fs_info = root->fs_info;
1648 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1649 	int ret;
1650 
1651 	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1652 	if (ret == -ENOSPC &&
1653 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1654 		if (block_rsv != global_rsv &&
1655 		    !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1656 			ret = 0;
1657 	}
1658 	if (ret == -ENOSPC) {
1659 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1660 					      block_rsv->space_info->flags,
1661 					      orig_bytes, 1);
1662 
1663 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1664 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1665 					      orig_bytes, 0);
1666 	}
1667 	return ret;
1668 }
1669 
1670 /**
1671  * Try to reserve data bytes for an allocation
1672  *
1673  * @fs_info: the filesystem
1674  * @bytes:   number of bytes we need
1675  * @flush:   how we are allowed to flush
1676  *
1677  * This will reserve bytes from the data space info.  If there is not enough
1678  * space then we will attempt to flush space as specified by flush.
1679  */
1680 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1681 			     enum btrfs_reserve_flush_enum flush)
1682 {
1683 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1684 	int ret;
1685 
1686 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1687 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1688 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1689 
1690 	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1691 	if (ret == -ENOSPC) {
1692 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1693 					      data_sinfo->flags, bytes, 1);
1694 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1695 			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1696 	}
1697 	return ret;
1698 }
1699