1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "space-info.h" 6 #include "sysfs.h" 7 #include "volumes.h" 8 #include "free-space-cache.h" 9 #include "ordered-data.h" 10 #include "transaction.h" 11 #include "block-group.h" 12 #include "zoned.h" 13 #include "fs.h" 14 #include "accessors.h" 15 #include "extent-tree.h" 16 17 /* 18 * HOW DOES SPACE RESERVATION WORK 19 * 20 * If you want to know about delalloc specifically, there is a separate comment 21 * for that with the delalloc code. This comment is about how the whole system 22 * works generally. 23 * 24 * BASIC CONCEPTS 25 * 26 * 1) space_info. This is the ultimate arbiter of how much space we can use. 27 * There's a description of the bytes_ fields with the struct declaration, 28 * refer to that for specifics on each field. Suffice it to say that for 29 * reservations we care about total_bytes - SUM(space_info->bytes_) when 30 * determining if there is space to make an allocation. There is a space_info 31 * for METADATA, SYSTEM, and DATA areas. 32 * 33 * 2) block_rsv's. These are basically buckets for every different type of 34 * metadata reservation we have. You can see the comment in the block_rsv 35 * code on the rules for each type, but generally block_rsv->reserved is how 36 * much space is accounted for in space_info->bytes_may_use. 37 * 38 * 3) btrfs_calc*_size. These are the worst case calculations we used based 39 * on the number of items we will want to modify. We have one for changing 40 * items, and one for inserting new items. Generally we use these helpers to 41 * determine the size of the block reserves, and then use the actual bytes 42 * values to adjust the space_info counters. 43 * 44 * MAKING RESERVATIONS, THE NORMAL CASE 45 * 46 * We call into either btrfs_reserve_data_bytes() or 47 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with 48 * num_bytes we want to reserve. 49 * 50 * ->reserve 51 * space_info->bytes_may_reserve += num_bytes 52 * 53 * ->extent allocation 54 * Call btrfs_add_reserved_bytes() which does 55 * space_info->bytes_may_reserve -= num_bytes 56 * space_info->bytes_reserved += extent_bytes 57 * 58 * ->insert reference 59 * Call btrfs_update_block_group() which does 60 * space_info->bytes_reserved -= extent_bytes 61 * space_info->bytes_used += extent_bytes 62 * 63 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) 64 * 65 * Assume we are unable to simply make the reservation because we do not have 66 * enough space 67 * 68 * -> __reserve_bytes 69 * create a reserve_ticket with ->bytes set to our reservation, add it to 70 * the tail of space_info->tickets, kick async flush thread 71 * 72 * ->handle_reserve_ticket 73 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set 74 * on the ticket. 75 * 76 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space 77 * Flushes various things attempting to free up space. 78 * 79 * -> btrfs_try_granting_tickets() 80 * This is called by anything that either subtracts space from 81 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the 82 * space_info->total_bytes. This loops through the ->priority_tickets and 83 * then the ->tickets list checking to see if the reservation can be 84 * completed. If it can the space is added to space_info->bytes_may_use and 85 * the ticket is woken up. 86 * 87 * -> ticket wakeup 88 * Check if ->bytes == 0, if it does we got our reservation and we can carry 89 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we 90 * were interrupted.) 91 * 92 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY 93 * 94 * Same as the above, except we add ourselves to the 95 * space_info->priority_tickets, and we do not use ticket->wait, we simply 96 * call flush_space() ourselves for the states that are safe for us to call 97 * without deadlocking and hope for the best. 98 * 99 * THE FLUSHING STATES 100 * 101 * Generally speaking we will have two cases for each state, a "nice" state 102 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to 103 * reduce the locking over head on the various trees, and even to keep from 104 * doing any work at all in the case of delayed refs. Each of these delayed 105 * things however hold reservations, and so letting them run allows us to 106 * reclaim space so we can make new reservations. 107 * 108 * FLUSH_DELAYED_ITEMS 109 * Every inode has a delayed item to update the inode. Take a simple write 110 * for example, we would update the inode item at write time to update the 111 * mtime, and then again at finish_ordered_io() time in order to update the 112 * isize or bytes. We keep these delayed items to coalesce these operations 113 * into a single operation done on demand. These are an easy way to reclaim 114 * metadata space. 115 * 116 * FLUSH_DELALLOC 117 * Look at the delalloc comment to get an idea of how much space is reserved 118 * for delayed allocation. We can reclaim some of this space simply by 119 * running delalloc, but usually we need to wait for ordered extents to 120 * reclaim the bulk of this space. 121 * 122 * FLUSH_DELAYED_REFS 123 * We have a block reserve for the outstanding delayed refs space, and every 124 * delayed ref operation holds a reservation. Running these is a quick way 125 * to reclaim space, but we want to hold this until the end because COW can 126 * churn a lot and we can avoid making some extent tree modifications if we 127 * are able to delay for as long as possible. 128 * 129 * ALLOC_CHUNK 130 * We will skip this the first time through space reservation, because of 131 * overcommit and we don't want to have a lot of useless metadata space when 132 * our worst case reservations will likely never come true. 133 * 134 * RUN_DELAYED_IPUTS 135 * If we're freeing inodes we're likely freeing checksums, file extent 136 * items, and extent tree items. Loads of space could be freed up by these 137 * operations, however they won't be usable until the transaction commits. 138 * 139 * COMMIT_TRANS 140 * This will commit the transaction. Historically we had a lot of logic 141 * surrounding whether or not we'd commit the transaction, but this waits born 142 * out of a pre-tickets era where we could end up committing the transaction 143 * thousands of times in a row without making progress. Now thanks to our 144 * ticketing system we know if we're not making progress and can error 145 * everybody out after a few commits rather than burning the disk hoping for 146 * a different answer. 147 * 148 * OVERCOMMIT 149 * 150 * Because we hold so many reservations for metadata we will allow you to 151 * reserve more space than is currently free in the currently allocate 152 * metadata space. This only happens with metadata, data does not allow 153 * overcommitting. 154 * 155 * You can see the current logic for when we allow overcommit in 156 * btrfs_can_overcommit(), but it only applies to unallocated space. If there 157 * is no unallocated space to be had, all reservations are kept within the 158 * free space in the allocated metadata chunks. 159 * 160 * Because of overcommitting, you generally want to use the 161 * btrfs_can_overcommit() logic for metadata allocations, as it does the right 162 * thing with or without extra unallocated space. 163 */ 164 165 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info, 166 bool may_use_included) 167 { 168 ASSERT(s_info); 169 return s_info->bytes_used + s_info->bytes_reserved + 170 s_info->bytes_pinned + s_info->bytes_readonly + 171 s_info->bytes_zone_unusable + 172 (may_use_included ? s_info->bytes_may_use : 0); 173 } 174 175 /* 176 * after adding space to the filesystem, we need to clear the full flags 177 * on all the space infos. 178 */ 179 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 180 { 181 struct list_head *head = &info->space_info; 182 struct btrfs_space_info *found; 183 184 list_for_each_entry(found, head, list) 185 found->full = 0; 186 } 187 188 /* 189 * Block groups with more than this value (percents) of unusable space will be 190 * scheduled for background reclaim. 191 */ 192 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75) 193 194 /* 195 * Calculate chunk size depending on volume type (regular or zoned). 196 */ 197 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags) 198 { 199 if (btrfs_is_zoned(fs_info)) 200 return fs_info->zone_size; 201 202 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 203 204 if (flags & BTRFS_BLOCK_GROUP_DATA) 205 return BTRFS_MAX_DATA_CHUNK_SIZE; 206 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 207 return SZ_32M; 208 209 /* Handle BTRFS_BLOCK_GROUP_METADATA */ 210 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G) 211 return SZ_1G; 212 213 return SZ_256M; 214 } 215 216 /* 217 * Update default chunk size. 218 */ 219 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info, 220 u64 chunk_size) 221 { 222 WRITE_ONCE(space_info->chunk_size, chunk_size); 223 } 224 225 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 226 { 227 228 struct btrfs_space_info *space_info; 229 int i; 230 int ret; 231 232 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 233 if (!space_info) 234 return -ENOMEM; 235 236 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 237 INIT_LIST_HEAD(&space_info->block_groups[i]); 238 init_rwsem(&space_info->groups_sem); 239 spin_lock_init(&space_info->lock); 240 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 241 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 242 INIT_LIST_HEAD(&space_info->ro_bgs); 243 INIT_LIST_HEAD(&space_info->tickets); 244 INIT_LIST_HEAD(&space_info->priority_tickets); 245 space_info->clamp = 1; 246 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags)); 247 248 if (btrfs_is_zoned(info)) 249 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH; 250 251 ret = btrfs_sysfs_add_space_info_type(info, space_info); 252 if (ret) 253 return ret; 254 255 list_add(&space_info->list, &info->space_info); 256 if (flags & BTRFS_BLOCK_GROUP_DATA) 257 info->data_sinfo = space_info; 258 259 return ret; 260 } 261 262 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 263 { 264 struct btrfs_super_block *disk_super; 265 u64 features; 266 u64 flags; 267 int mixed = 0; 268 int ret; 269 270 disk_super = fs_info->super_copy; 271 if (!btrfs_super_root(disk_super)) 272 return -EINVAL; 273 274 features = btrfs_super_incompat_flags(disk_super); 275 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 276 mixed = 1; 277 278 flags = BTRFS_BLOCK_GROUP_SYSTEM; 279 ret = create_space_info(fs_info, flags); 280 if (ret) 281 goto out; 282 283 if (mixed) { 284 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 285 ret = create_space_info(fs_info, flags); 286 } else { 287 flags = BTRFS_BLOCK_GROUP_METADATA; 288 ret = create_space_info(fs_info, flags); 289 if (ret) 290 goto out; 291 292 flags = BTRFS_BLOCK_GROUP_DATA; 293 ret = create_space_info(fs_info, flags); 294 } 295 out: 296 return ret; 297 } 298 299 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info, 300 struct btrfs_block_group *block_group) 301 { 302 struct btrfs_space_info *found; 303 int factor, index; 304 305 factor = btrfs_bg_type_to_factor(block_group->flags); 306 307 found = btrfs_find_space_info(info, block_group->flags); 308 ASSERT(found); 309 spin_lock(&found->lock); 310 found->total_bytes += block_group->length; 311 found->disk_total += block_group->length * factor; 312 found->bytes_used += block_group->used; 313 found->disk_used += block_group->used * factor; 314 found->bytes_readonly += block_group->bytes_super; 315 found->bytes_zone_unusable += block_group->zone_unusable; 316 if (block_group->length > 0) 317 found->full = 0; 318 btrfs_try_granting_tickets(info, found); 319 spin_unlock(&found->lock); 320 321 block_group->space_info = found; 322 323 index = btrfs_bg_flags_to_raid_index(block_group->flags); 324 down_write(&found->groups_sem); 325 list_add_tail(&block_group->list, &found->block_groups[index]); 326 up_write(&found->groups_sem); 327 } 328 329 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 330 u64 flags) 331 { 332 struct list_head *head = &info->space_info; 333 struct btrfs_space_info *found; 334 335 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 336 337 list_for_each_entry(found, head, list) { 338 if (found->flags & flags) 339 return found; 340 } 341 return NULL; 342 } 343 344 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info, 345 struct btrfs_space_info *space_info, 346 enum btrfs_reserve_flush_enum flush) 347 { 348 u64 profile; 349 u64 avail; 350 int factor; 351 352 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 353 profile = btrfs_system_alloc_profile(fs_info); 354 else 355 profile = btrfs_metadata_alloc_profile(fs_info); 356 357 avail = atomic64_read(&fs_info->free_chunk_space); 358 359 /* 360 * If we have dup, raid1 or raid10 then only half of the free 361 * space is actually usable. For raid56, the space info used 362 * doesn't include the parity drive, so we don't have to 363 * change the math 364 */ 365 factor = btrfs_bg_type_to_factor(profile); 366 avail = div_u64(avail, factor); 367 368 /* 369 * If we aren't flushing all things, let us overcommit up to 370 * 1/2th of the space. If we can flush, don't let us overcommit 371 * too much, let it overcommit up to 1/8 of the space. 372 */ 373 if (flush == BTRFS_RESERVE_FLUSH_ALL) 374 avail >>= 3; 375 else 376 avail >>= 1; 377 return avail; 378 } 379 380 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info, 381 struct btrfs_space_info *space_info, u64 bytes, 382 enum btrfs_reserve_flush_enum flush) 383 { 384 u64 avail; 385 u64 used; 386 387 /* Don't overcommit when in mixed mode */ 388 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 389 return 0; 390 391 used = btrfs_space_info_used(space_info, true); 392 if (test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags) && 393 (space_info->flags & BTRFS_BLOCK_GROUP_METADATA)) 394 avail = 0; 395 else 396 avail = calc_available_free_space(fs_info, space_info, flush); 397 398 if (used + bytes < space_info->total_bytes + avail) 399 return 1; 400 return 0; 401 } 402 403 static void remove_ticket(struct btrfs_space_info *space_info, 404 struct reserve_ticket *ticket) 405 { 406 if (!list_empty(&ticket->list)) { 407 list_del_init(&ticket->list); 408 ASSERT(space_info->reclaim_size >= ticket->bytes); 409 space_info->reclaim_size -= ticket->bytes; 410 } 411 } 412 413 /* 414 * This is for space we already have accounted in space_info->bytes_may_use, so 415 * basically when we're returning space from block_rsv's. 416 */ 417 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info, 418 struct btrfs_space_info *space_info) 419 { 420 struct list_head *head; 421 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 422 423 lockdep_assert_held(&space_info->lock); 424 425 head = &space_info->priority_tickets; 426 again: 427 while (!list_empty(head)) { 428 struct reserve_ticket *ticket; 429 u64 used = btrfs_space_info_used(space_info, true); 430 431 ticket = list_first_entry(head, struct reserve_ticket, list); 432 433 /* Check and see if our ticket can be satisfied now. */ 434 if ((used + ticket->bytes <= space_info->total_bytes) || 435 btrfs_can_overcommit(fs_info, space_info, ticket->bytes, 436 flush)) { 437 btrfs_space_info_update_bytes_may_use(fs_info, 438 space_info, 439 ticket->bytes); 440 remove_ticket(space_info, ticket); 441 ticket->bytes = 0; 442 space_info->tickets_id++; 443 wake_up(&ticket->wait); 444 } else { 445 break; 446 } 447 } 448 449 if (head == &space_info->priority_tickets) { 450 head = &space_info->tickets; 451 flush = BTRFS_RESERVE_FLUSH_ALL; 452 goto again; 453 } 454 } 455 456 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ 457 do { \ 458 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ 459 spin_lock(&__rsv->lock); \ 460 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ 461 __rsv->size, __rsv->reserved); \ 462 spin_unlock(&__rsv->lock); \ 463 } while (0) 464 465 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info) 466 { 467 switch (space_info->flags) { 468 case BTRFS_BLOCK_GROUP_SYSTEM: 469 return "SYSTEM"; 470 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA: 471 return "DATA+METADATA"; 472 case BTRFS_BLOCK_GROUP_DATA: 473 return "DATA"; 474 case BTRFS_BLOCK_GROUP_METADATA: 475 return "METADATA"; 476 default: 477 return "UNKNOWN"; 478 } 479 } 480 481 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info) 482 { 483 DUMP_BLOCK_RSV(fs_info, global_block_rsv); 484 DUMP_BLOCK_RSV(fs_info, trans_block_rsv); 485 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); 486 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); 487 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); 488 } 489 490 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 491 struct btrfs_space_info *info) 492 { 493 const char *flag_str = space_info_flag_to_str(info); 494 lockdep_assert_held(&info->lock); 495 496 /* The free space could be negative in case of overcommit */ 497 btrfs_info(fs_info, "space_info %s has %lld free, is %sfull", 498 flag_str, 499 (s64)(info->total_bytes - btrfs_space_info_used(info, true)), 500 info->full ? "" : "not "); 501 btrfs_info(fs_info, 502 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu", 503 info->total_bytes, info->bytes_used, info->bytes_pinned, 504 info->bytes_reserved, info->bytes_may_use, 505 info->bytes_readonly, info->bytes_zone_unusable); 506 } 507 508 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 509 struct btrfs_space_info *info, u64 bytes, 510 int dump_block_groups) 511 { 512 struct btrfs_block_group *cache; 513 int index = 0; 514 515 spin_lock(&info->lock); 516 __btrfs_dump_space_info(fs_info, info); 517 dump_global_block_rsv(fs_info); 518 spin_unlock(&info->lock); 519 520 if (!dump_block_groups) 521 return; 522 523 down_read(&info->groups_sem); 524 again: 525 list_for_each_entry(cache, &info->block_groups[index], list) { 526 spin_lock(&cache->lock); 527 btrfs_info(fs_info, 528 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s", 529 cache->start, cache->length, cache->used, cache->pinned, 530 cache->reserved, cache->zone_unusable, 531 cache->ro ? "[readonly]" : ""); 532 spin_unlock(&cache->lock); 533 btrfs_dump_free_space(cache, bytes); 534 } 535 if (++index < BTRFS_NR_RAID_TYPES) 536 goto again; 537 up_read(&info->groups_sem); 538 } 539 540 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 541 u64 to_reclaim) 542 { 543 u64 bytes; 544 u64 nr; 545 546 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 547 nr = div64_u64(to_reclaim, bytes); 548 if (!nr) 549 nr = 1; 550 return nr; 551 } 552 553 #define EXTENT_SIZE_PER_ITEM SZ_256K 554 555 /* 556 * shrink metadata reservation for delalloc 557 */ 558 static void shrink_delalloc(struct btrfs_fs_info *fs_info, 559 struct btrfs_space_info *space_info, 560 u64 to_reclaim, bool wait_ordered, 561 bool for_preempt) 562 { 563 struct btrfs_trans_handle *trans; 564 u64 delalloc_bytes; 565 u64 ordered_bytes; 566 u64 items; 567 long time_left; 568 int loops; 569 570 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 571 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes); 572 if (delalloc_bytes == 0 && ordered_bytes == 0) 573 return; 574 575 /* Calc the number of the pages we need flush for space reservation */ 576 if (to_reclaim == U64_MAX) { 577 items = U64_MAX; 578 } else { 579 /* 580 * to_reclaim is set to however much metadata we need to 581 * reclaim, but reclaiming that much data doesn't really track 582 * exactly. What we really want to do is reclaim full inode's 583 * worth of reservations, however that's not available to us 584 * here. We will take a fraction of the delalloc bytes for our 585 * flushing loops and hope for the best. Delalloc will expand 586 * the amount we write to cover an entire dirty extent, which 587 * will reclaim the metadata reservation for that range. If 588 * it's not enough subsequent flush stages will be more 589 * aggressive. 590 */ 591 to_reclaim = max(to_reclaim, delalloc_bytes >> 3); 592 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2; 593 } 594 595 trans = current->journal_info; 596 597 /* 598 * If we are doing more ordered than delalloc we need to just wait on 599 * ordered extents, otherwise we'll waste time trying to flush delalloc 600 * that likely won't give us the space back we need. 601 */ 602 if (ordered_bytes > delalloc_bytes && !for_preempt) 603 wait_ordered = true; 604 605 loops = 0; 606 while ((delalloc_bytes || ordered_bytes) && loops < 3) { 607 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; 608 long nr_pages = min_t(u64, temp, LONG_MAX); 609 int async_pages; 610 611 btrfs_start_delalloc_roots(fs_info, nr_pages, true); 612 613 /* 614 * We need to make sure any outstanding async pages are now 615 * processed before we continue. This is because things like 616 * sync_inode() try to be smart and skip writing if the inode is 617 * marked clean. We don't use filemap_fwrite for flushing 618 * because we want to control how many pages we write out at a 619 * time, thus this is the only safe way to make sure we've 620 * waited for outstanding compressed workers to have started 621 * their jobs and thus have ordered extents set up properly. 622 * 623 * This exists because we do not want to wait for each 624 * individual inode to finish its async work, we simply want to 625 * start the IO on everybody, and then come back here and wait 626 * for all of the async work to catch up. Once we're done with 627 * that we know we'll have ordered extents for everything and we 628 * can decide if we wait for that or not. 629 * 630 * If we choose to replace this in the future, make absolutely 631 * sure that the proper waiting is being done in the async case, 632 * as there have been bugs in that area before. 633 */ 634 async_pages = atomic_read(&fs_info->async_delalloc_pages); 635 if (!async_pages) 636 goto skip_async; 637 638 /* 639 * We don't want to wait forever, if we wrote less pages in this 640 * loop than we have outstanding, only wait for that number of 641 * pages, otherwise we can wait for all async pages to finish 642 * before continuing. 643 */ 644 if (async_pages > nr_pages) 645 async_pages -= nr_pages; 646 else 647 async_pages = 0; 648 wait_event(fs_info->async_submit_wait, 649 atomic_read(&fs_info->async_delalloc_pages) <= 650 async_pages); 651 skip_async: 652 loops++; 653 if (wait_ordered && !trans) { 654 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 655 } else { 656 time_left = schedule_timeout_killable(1); 657 if (time_left) 658 break; 659 } 660 661 /* 662 * If we are for preemption we just want a one-shot of delalloc 663 * flushing so we can stop flushing if we decide we don't need 664 * to anymore. 665 */ 666 if (for_preempt) 667 break; 668 669 spin_lock(&space_info->lock); 670 if (list_empty(&space_info->tickets) && 671 list_empty(&space_info->priority_tickets)) { 672 spin_unlock(&space_info->lock); 673 break; 674 } 675 spin_unlock(&space_info->lock); 676 677 delalloc_bytes = percpu_counter_sum_positive( 678 &fs_info->delalloc_bytes); 679 ordered_bytes = percpu_counter_sum_positive( 680 &fs_info->ordered_bytes); 681 } 682 } 683 684 /* 685 * Try to flush some data based on policy set by @state. This is only advisory 686 * and may fail for various reasons. The caller is supposed to examine the 687 * state of @space_info to detect the outcome. 688 */ 689 static void flush_space(struct btrfs_fs_info *fs_info, 690 struct btrfs_space_info *space_info, u64 num_bytes, 691 enum btrfs_flush_state state, bool for_preempt) 692 { 693 struct btrfs_root *root = fs_info->tree_root; 694 struct btrfs_trans_handle *trans; 695 int nr; 696 int ret = 0; 697 698 switch (state) { 699 case FLUSH_DELAYED_ITEMS_NR: 700 case FLUSH_DELAYED_ITEMS: 701 if (state == FLUSH_DELAYED_ITEMS_NR) 702 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 703 else 704 nr = -1; 705 706 trans = btrfs_join_transaction(root); 707 if (IS_ERR(trans)) { 708 ret = PTR_ERR(trans); 709 break; 710 } 711 ret = btrfs_run_delayed_items_nr(trans, nr); 712 btrfs_end_transaction(trans); 713 break; 714 case FLUSH_DELALLOC: 715 case FLUSH_DELALLOC_WAIT: 716 case FLUSH_DELALLOC_FULL: 717 if (state == FLUSH_DELALLOC_FULL) 718 num_bytes = U64_MAX; 719 shrink_delalloc(fs_info, space_info, num_bytes, 720 state != FLUSH_DELALLOC, for_preempt); 721 break; 722 case FLUSH_DELAYED_REFS_NR: 723 case FLUSH_DELAYED_REFS: 724 trans = btrfs_join_transaction(root); 725 if (IS_ERR(trans)) { 726 ret = PTR_ERR(trans); 727 break; 728 } 729 if (state == FLUSH_DELAYED_REFS_NR) 730 nr = calc_reclaim_items_nr(fs_info, num_bytes); 731 else 732 nr = 0; 733 btrfs_run_delayed_refs(trans, nr); 734 btrfs_end_transaction(trans); 735 break; 736 case ALLOC_CHUNK: 737 case ALLOC_CHUNK_FORCE: 738 /* 739 * For metadata space on zoned filesystem, reaching here means we 740 * don't have enough space left in active_total_bytes. Try to 741 * activate a block group first, because we may have inactive 742 * block group already allocated. 743 */ 744 ret = btrfs_zoned_activate_one_bg(fs_info, space_info, false); 745 if (ret < 0) 746 break; 747 else if (ret == 1) 748 break; 749 750 trans = btrfs_join_transaction(root); 751 if (IS_ERR(trans)) { 752 ret = PTR_ERR(trans); 753 break; 754 } 755 ret = btrfs_chunk_alloc(trans, 756 btrfs_get_alloc_profile(fs_info, space_info->flags), 757 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : 758 CHUNK_ALLOC_FORCE); 759 btrfs_end_transaction(trans); 760 761 /* 762 * For metadata space on zoned filesystem, allocating a new chunk 763 * is not enough. We still need to activate the block * group. 764 * Active the newly allocated block group by (maybe) finishing 765 * a block group. 766 */ 767 if (ret == 1) { 768 ret = btrfs_zoned_activate_one_bg(fs_info, space_info, true); 769 /* 770 * Revert to the original ret regardless we could finish 771 * one block group or not. 772 */ 773 if (ret >= 0) 774 ret = 1; 775 } 776 777 if (ret > 0 || ret == -ENOSPC) 778 ret = 0; 779 break; 780 case RUN_DELAYED_IPUTS: 781 /* 782 * If we have pending delayed iputs then we could free up a 783 * bunch of pinned space, so make sure we run the iputs before 784 * we do our pinned bytes check below. 785 */ 786 btrfs_run_delayed_iputs(fs_info); 787 btrfs_wait_on_delayed_iputs(fs_info); 788 break; 789 case COMMIT_TRANS: 790 ASSERT(current->journal_info == NULL); 791 trans = btrfs_join_transaction(root); 792 if (IS_ERR(trans)) { 793 ret = PTR_ERR(trans); 794 break; 795 } 796 ret = btrfs_commit_transaction(trans); 797 break; 798 default: 799 ret = -ENOSPC; 800 break; 801 } 802 803 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 804 ret, for_preempt); 805 return; 806 } 807 808 static inline u64 809 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 810 struct btrfs_space_info *space_info) 811 { 812 u64 used; 813 u64 avail; 814 u64 to_reclaim = space_info->reclaim_size; 815 816 lockdep_assert_held(&space_info->lock); 817 818 avail = calc_available_free_space(fs_info, space_info, 819 BTRFS_RESERVE_FLUSH_ALL); 820 used = btrfs_space_info_used(space_info, true); 821 822 /* 823 * We may be flushing because suddenly we have less space than we had 824 * before, and now we're well over-committed based on our current free 825 * space. If that's the case add in our overage so we make sure to put 826 * appropriate pressure on the flushing state machine. 827 */ 828 if (space_info->total_bytes + avail < used) 829 to_reclaim += used - (space_info->total_bytes + avail); 830 831 return to_reclaim; 832 } 833 834 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info, 835 struct btrfs_space_info *space_info) 836 { 837 u64 global_rsv_size = fs_info->global_block_rsv.reserved; 838 u64 ordered, delalloc; 839 u64 thresh; 840 u64 used; 841 842 thresh = mult_perc(space_info->total_bytes, 90); 843 844 lockdep_assert_held(&space_info->lock); 845 846 /* If we're just plain full then async reclaim just slows us down. */ 847 if ((space_info->bytes_used + space_info->bytes_reserved + 848 global_rsv_size) >= thresh) 849 return false; 850 851 used = space_info->bytes_may_use + space_info->bytes_pinned; 852 853 /* The total flushable belongs to the global rsv, don't flush. */ 854 if (global_rsv_size >= used) 855 return false; 856 857 /* 858 * 128MiB is 1/4 of the maximum global rsv size. If we have less than 859 * that devoted to other reservations then there's no sense in flushing, 860 * we don't have a lot of things that need flushing. 861 */ 862 if (used - global_rsv_size <= SZ_128M) 863 return false; 864 865 /* 866 * We have tickets queued, bail so we don't compete with the async 867 * flushers. 868 */ 869 if (space_info->reclaim_size) 870 return false; 871 872 /* 873 * If we have over half of the free space occupied by reservations or 874 * pinned then we want to start flushing. 875 * 876 * We do not do the traditional thing here, which is to say 877 * 878 * if (used >= ((total_bytes + avail) / 2)) 879 * return 1; 880 * 881 * because this doesn't quite work how we want. If we had more than 50% 882 * of the space_info used by bytes_used and we had 0 available we'd just 883 * constantly run the background flusher. Instead we want it to kick in 884 * if our reclaimable space exceeds our clamped free space. 885 * 886 * Our clamping range is 2^1 -> 2^8. Practically speaking that means 887 * the following: 888 * 889 * Amount of RAM Minimum threshold Maximum threshold 890 * 891 * 256GiB 1GiB 128GiB 892 * 128GiB 512MiB 64GiB 893 * 64GiB 256MiB 32GiB 894 * 32GiB 128MiB 16GiB 895 * 16GiB 64MiB 8GiB 896 * 897 * These are the range our thresholds will fall in, corresponding to how 898 * much delalloc we need for the background flusher to kick in. 899 */ 900 901 thresh = calc_available_free_space(fs_info, space_info, 902 BTRFS_RESERVE_FLUSH_ALL); 903 used = space_info->bytes_used + space_info->bytes_reserved + 904 space_info->bytes_readonly + global_rsv_size; 905 if (used < space_info->total_bytes) 906 thresh += space_info->total_bytes - used; 907 thresh >>= space_info->clamp; 908 909 used = space_info->bytes_pinned; 910 911 /* 912 * If we have more ordered bytes than delalloc bytes then we're either 913 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting 914 * around. Preemptive flushing is only useful in that it can free up 915 * space before tickets need to wait for things to finish. In the case 916 * of ordered extents, preemptively waiting on ordered extents gets us 917 * nothing, if our reservations are tied up in ordered extents we'll 918 * simply have to slow down writers by forcing them to wait on ordered 919 * extents. 920 * 921 * In the case that ordered is larger than delalloc, only include the 922 * block reserves that we would actually be able to directly reclaim 923 * from. In this case if we're heavy on metadata operations this will 924 * clearly be heavy enough to warrant preemptive flushing. In the case 925 * of heavy DIO or ordered reservations, preemptive flushing will just 926 * waste time and cause us to slow down. 927 * 928 * We want to make sure we truly are maxed out on ordered however, so 929 * cut ordered in half, and if it's still higher than delalloc then we 930 * can keep flushing. This is to avoid the case where we start 931 * flushing, and now delalloc == ordered and we stop preemptively 932 * flushing when we could still have several gigs of delalloc to flush. 933 */ 934 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1; 935 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes); 936 if (ordered >= delalloc) 937 used += fs_info->delayed_refs_rsv.reserved + 938 fs_info->delayed_block_rsv.reserved; 939 else 940 used += space_info->bytes_may_use - global_rsv_size; 941 942 return (used >= thresh && !btrfs_fs_closing(fs_info) && 943 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 944 } 945 946 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info, 947 struct btrfs_space_info *space_info, 948 struct reserve_ticket *ticket) 949 { 950 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 951 u64 min_bytes; 952 953 if (!ticket->steal) 954 return false; 955 956 if (global_rsv->space_info != space_info) 957 return false; 958 959 spin_lock(&global_rsv->lock); 960 min_bytes = mult_perc(global_rsv->size, 10); 961 if (global_rsv->reserved < min_bytes + ticket->bytes) { 962 spin_unlock(&global_rsv->lock); 963 return false; 964 } 965 global_rsv->reserved -= ticket->bytes; 966 remove_ticket(space_info, ticket); 967 ticket->bytes = 0; 968 wake_up(&ticket->wait); 969 space_info->tickets_id++; 970 if (global_rsv->reserved < global_rsv->size) 971 global_rsv->full = 0; 972 spin_unlock(&global_rsv->lock); 973 974 return true; 975 } 976 977 /* 978 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets 979 * @fs_info - fs_info for this fs 980 * @space_info - the space info we were flushing 981 * 982 * We call this when we've exhausted our flushing ability and haven't made 983 * progress in satisfying tickets. The reservation code handles tickets in 984 * order, so if there is a large ticket first and then smaller ones we could 985 * very well satisfy the smaller tickets. This will attempt to wake up any 986 * tickets in the list to catch this case. 987 * 988 * This function returns true if it was able to make progress by clearing out 989 * other tickets, or if it stumbles across a ticket that was smaller than the 990 * first ticket. 991 */ 992 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info, 993 struct btrfs_space_info *space_info) 994 { 995 struct reserve_ticket *ticket; 996 u64 tickets_id = space_info->tickets_id; 997 const bool aborted = BTRFS_FS_ERROR(fs_info); 998 999 trace_btrfs_fail_all_tickets(fs_info, space_info); 1000 1001 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1002 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); 1003 __btrfs_dump_space_info(fs_info, space_info); 1004 } 1005 1006 while (!list_empty(&space_info->tickets) && 1007 tickets_id == space_info->tickets_id) { 1008 ticket = list_first_entry(&space_info->tickets, 1009 struct reserve_ticket, list); 1010 1011 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket)) 1012 return true; 1013 1014 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1015 btrfs_info(fs_info, "failing ticket with %llu bytes", 1016 ticket->bytes); 1017 1018 remove_ticket(space_info, ticket); 1019 if (aborted) 1020 ticket->error = -EIO; 1021 else 1022 ticket->error = -ENOSPC; 1023 wake_up(&ticket->wait); 1024 1025 /* 1026 * We're just throwing tickets away, so more flushing may not 1027 * trip over btrfs_try_granting_tickets, so we need to call it 1028 * here to see if we can make progress with the next ticket in 1029 * the list. 1030 */ 1031 if (!aborted) 1032 btrfs_try_granting_tickets(fs_info, space_info); 1033 } 1034 return (tickets_id != space_info->tickets_id); 1035 } 1036 1037 /* 1038 * This is for normal flushers, we can wait all goddamned day if we want to. We 1039 * will loop and continuously try to flush as long as we are making progress. 1040 * We count progress as clearing off tickets each time we have to loop. 1041 */ 1042 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 1043 { 1044 struct btrfs_fs_info *fs_info; 1045 struct btrfs_space_info *space_info; 1046 u64 to_reclaim; 1047 enum btrfs_flush_state flush_state; 1048 int commit_cycles = 0; 1049 u64 last_tickets_id; 1050 1051 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 1052 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1053 1054 spin_lock(&space_info->lock); 1055 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1056 if (!to_reclaim) { 1057 space_info->flush = 0; 1058 spin_unlock(&space_info->lock); 1059 return; 1060 } 1061 last_tickets_id = space_info->tickets_id; 1062 spin_unlock(&space_info->lock); 1063 1064 flush_state = FLUSH_DELAYED_ITEMS_NR; 1065 do { 1066 flush_space(fs_info, space_info, to_reclaim, flush_state, false); 1067 spin_lock(&space_info->lock); 1068 if (list_empty(&space_info->tickets)) { 1069 space_info->flush = 0; 1070 spin_unlock(&space_info->lock); 1071 return; 1072 } 1073 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 1074 space_info); 1075 if (last_tickets_id == space_info->tickets_id) { 1076 flush_state++; 1077 } else { 1078 last_tickets_id = space_info->tickets_id; 1079 flush_state = FLUSH_DELAYED_ITEMS_NR; 1080 if (commit_cycles) 1081 commit_cycles--; 1082 } 1083 1084 /* 1085 * We do not want to empty the system of delalloc unless we're 1086 * under heavy pressure, so allow one trip through the flushing 1087 * logic before we start doing a FLUSH_DELALLOC_FULL. 1088 */ 1089 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles) 1090 flush_state++; 1091 1092 /* 1093 * We don't want to force a chunk allocation until we've tried 1094 * pretty hard to reclaim space. Think of the case where we 1095 * freed up a bunch of space and so have a lot of pinned space 1096 * to reclaim. We would rather use that than possibly create a 1097 * underutilized metadata chunk. So if this is our first run 1098 * through the flushing state machine skip ALLOC_CHUNK_FORCE and 1099 * commit the transaction. If nothing has changed the next go 1100 * around then we can force a chunk allocation. 1101 */ 1102 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) 1103 flush_state++; 1104 1105 if (flush_state > COMMIT_TRANS) { 1106 commit_cycles++; 1107 if (commit_cycles > 2) { 1108 if (maybe_fail_all_tickets(fs_info, space_info)) { 1109 flush_state = FLUSH_DELAYED_ITEMS_NR; 1110 commit_cycles--; 1111 } else { 1112 space_info->flush = 0; 1113 } 1114 } else { 1115 flush_state = FLUSH_DELAYED_ITEMS_NR; 1116 } 1117 } 1118 spin_unlock(&space_info->lock); 1119 } while (flush_state <= COMMIT_TRANS); 1120 } 1121 1122 /* 1123 * This handles pre-flushing of metadata space before we get to the point that 1124 * we need to start blocking threads on tickets. The logic here is different 1125 * from the other flush paths because it doesn't rely on tickets to tell us how 1126 * much we need to flush, instead it attempts to keep us below the 80% full 1127 * watermark of space by flushing whichever reservation pool is currently the 1128 * largest. 1129 */ 1130 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work) 1131 { 1132 struct btrfs_fs_info *fs_info; 1133 struct btrfs_space_info *space_info; 1134 struct btrfs_block_rsv *delayed_block_rsv; 1135 struct btrfs_block_rsv *delayed_refs_rsv; 1136 struct btrfs_block_rsv *global_rsv; 1137 struct btrfs_block_rsv *trans_rsv; 1138 int loops = 0; 1139 1140 fs_info = container_of(work, struct btrfs_fs_info, 1141 preempt_reclaim_work); 1142 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1143 delayed_block_rsv = &fs_info->delayed_block_rsv; 1144 delayed_refs_rsv = &fs_info->delayed_refs_rsv; 1145 global_rsv = &fs_info->global_block_rsv; 1146 trans_rsv = &fs_info->trans_block_rsv; 1147 1148 spin_lock(&space_info->lock); 1149 while (need_preemptive_reclaim(fs_info, space_info)) { 1150 enum btrfs_flush_state flush; 1151 u64 delalloc_size = 0; 1152 u64 to_reclaim, block_rsv_size; 1153 u64 global_rsv_size = global_rsv->reserved; 1154 1155 loops++; 1156 1157 /* 1158 * We don't have a precise counter for the metadata being 1159 * reserved for delalloc, so we'll approximate it by subtracting 1160 * out the block rsv's space from the bytes_may_use. If that 1161 * amount is higher than the individual reserves, then we can 1162 * assume it's tied up in delalloc reservations. 1163 */ 1164 block_rsv_size = global_rsv_size + 1165 delayed_block_rsv->reserved + 1166 delayed_refs_rsv->reserved + 1167 trans_rsv->reserved; 1168 if (block_rsv_size < space_info->bytes_may_use) 1169 delalloc_size = space_info->bytes_may_use - block_rsv_size; 1170 1171 /* 1172 * We don't want to include the global_rsv in our calculation, 1173 * because that's space we can't touch. Subtract it from the 1174 * block_rsv_size for the next checks. 1175 */ 1176 block_rsv_size -= global_rsv_size; 1177 1178 /* 1179 * We really want to avoid flushing delalloc too much, as it 1180 * could result in poor allocation patterns, so only flush it if 1181 * it's larger than the rest of the pools combined. 1182 */ 1183 if (delalloc_size > block_rsv_size) { 1184 to_reclaim = delalloc_size; 1185 flush = FLUSH_DELALLOC; 1186 } else if (space_info->bytes_pinned > 1187 (delayed_block_rsv->reserved + 1188 delayed_refs_rsv->reserved)) { 1189 to_reclaim = space_info->bytes_pinned; 1190 flush = COMMIT_TRANS; 1191 } else if (delayed_block_rsv->reserved > 1192 delayed_refs_rsv->reserved) { 1193 to_reclaim = delayed_block_rsv->reserved; 1194 flush = FLUSH_DELAYED_ITEMS_NR; 1195 } else { 1196 to_reclaim = delayed_refs_rsv->reserved; 1197 flush = FLUSH_DELAYED_REFS_NR; 1198 } 1199 1200 spin_unlock(&space_info->lock); 1201 1202 /* 1203 * We don't want to reclaim everything, just a portion, so scale 1204 * down the to_reclaim by 1/4. If it takes us down to 0, 1205 * reclaim 1 items worth. 1206 */ 1207 to_reclaim >>= 2; 1208 if (!to_reclaim) 1209 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1); 1210 flush_space(fs_info, space_info, to_reclaim, flush, true); 1211 cond_resched(); 1212 spin_lock(&space_info->lock); 1213 } 1214 1215 /* We only went through once, back off our clamping. */ 1216 if (loops == 1 && !space_info->reclaim_size) 1217 space_info->clamp = max(1, space_info->clamp - 1); 1218 trace_btrfs_done_preemptive_reclaim(fs_info, space_info); 1219 spin_unlock(&space_info->lock); 1220 } 1221 1222 /* 1223 * FLUSH_DELALLOC_WAIT: 1224 * Space is freed from flushing delalloc in one of two ways. 1225 * 1226 * 1) compression is on and we allocate less space than we reserved 1227 * 2) we are overwriting existing space 1228 * 1229 * For #1 that extra space is reclaimed as soon as the delalloc pages are 1230 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent 1231 * length to ->bytes_reserved, and subtracts the reserved space from 1232 * ->bytes_may_use. 1233 * 1234 * For #2 this is trickier. Once the ordered extent runs we will drop the 1235 * extent in the range we are overwriting, which creates a delayed ref for 1236 * that freed extent. This however is not reclaimed until the transaction 1237 * commits, thus the next stages. 1238 * 1239 * RUN_DELAYED_IPUTS 1240 * If we are freeing inodes, we want to make sure all delayed iputs have 1241 * completed, because they could have been on an inode with i_nlink == 0, and 1242 * thus have been truncated and freed up space. But again this space is not 1243 * immediately re-usable, it comes in the form of a delayed ref, which must be 1244 * run and then the transaction must be committed. 1245 * 1246 * COMMIT_TRANS 1247 * This is where we reclaim all of the pinned space generated by running the 1248 * iputs 1249 * 1250 * ALLOC_CHUNK_FORCE 1251 * For data we start with alloc chunk force, however we could have been full 1252 * before, and then the transaction commit could have freed new block groups, 1253 * so if we now have space to allocate do the force chunk allocation. 1254 */ 1255 static const enum btrfs_flush_state data_flush_states[] = { 1256 FLUSH_DELALLOC_FULL, 1257 RUN_DELAYED_IPUTS, 1258 COMMIT_TRANS, 1259 ALLOC_CHUNK_FORCE, 1260 }; 1261 1262 static void btrfs_async_reclaim_data_space(struct work_struct *work) 1263 { 1264 struct btrfs_fs_info *fs_info; 1265 struct btrfs_space_info *space_info; 1266 u64 last_tickets_id; 1267 enum btrfs_flush_state flush_state = 0; 1268 1269 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work); 1270 space_info = fs_info->data_sinfo; 1271 1272 spin_lock(&space_info->lock); 1273 if (list_empty(&space_info->tickets)) { 1274 space_info->flush = 0; 1275 spin_unlock(&space_info->lock); 1276 return; 1277 } 1278 last_tickets_id = space_info->tickets_id; 1279 spin_unlock(&space_info->lock); 1280 1281 while (!space_info->full) { 1282 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1283 spin_lock(&space_info->lock); 1284 if (list_empty(&space_info->tickets)) { 1285 space_info->flush = 0; 1286 spin_unlock(&space_info->lock); 1287 return; 1288 } 1289 1290 /* Something happened, fail everything and bail. */ 1291 if (BTRFS_FS_ERROR(fs_info)) 1292 goto aborted_fs; 1293 last_tickets_id = space_info->tickets_id; 1294 spin_unlock(&space_info->lock); 1295 } 1296 1297 while (flush_state < ARRAY_SIZE(data_flush_states)) { 1298 flush_space(fs_info, space_info, U64_MAX, 1299 data_flush_states[flush_state], false); 1300 spin_lock(&space_info->lock); 1301 if (list_empty(&space_info->tickets)) { 1302 space_info->flush = 0; 1303 spin_unlock(&space_info->lock); 1304 return; 1305 } 1306 1307 if (last_tickets_id == space_info->tickets_id) { 1308 flush_state++; 1309 } else { 1310 last_tickets_id = space_info->tickets_id; 1311 flush_state = 0; 1312 } 1313 1314 if (flush_state >= ARRAY_SIZE(data_flush_states)) { 1315 if (space_info->full) { 1316 if (maybe_fail_all_tickets(fs_info, space_info)) 1317 flush_state = 0; 1318 else 1319 space_info->flush = 0; 1320 } else { 1321 flush_state = 0; 1322 } 1323 1324 /* Something happened, fail everything and bail. */ 1325 if (BTRFS_FS_ERROR(fs_info)) 1326 goto aborted_fs; 1327 1328 } 1329 spin_unlock(&space_info->lock); 1330 } 1331 return; 1332 1333 aborted_fs: 1334 maybe_fail_all_tickets(fs_info, space_info); 1335 space_info->flush = 0; 1336 spin_unlock(&space_info->lock); 1337 } 1338 1339 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info) 1340 { 1341 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space); 1342 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space); 1343 INIT_WORK(&fs_info->preempt_reclaim_work, 1344 btrfs_preempt_reclaim_metadata_space); 1345 } 1346 1347 static const enum btrfs_flush_state priority_flush_states[] = { 1348 FLUSH_DELAYED_ITEMS_NR, 1349 FLUSH_DELAYED_ITEMS, 1350 ALLOC_CHUNK, 1351 }; 1352 1353 static const enum btrfs_flush_state evict_flush_states[] = { 1354 FLUSH_DELAYED_ITEMS_NR, 1355 FLUSH_DELAYED_ITEMS, 1356 FLUSH_DELAYED_REFS_NR, 1357 FLUSH_DELAYED_REFS, 1358 FLUSH_DELALLOC, 1359 FLUSH_DELALLOC_WAIT, 1360 FLUSH_DELALLOC_FULL, 1361 ALLOC_CHUNK, 1362 COMMIT_TRANS, 1363 }; 1364 1365 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 1366 struct btrfs_space_info *space_info, 1367 struct reserve_ticket *ticket, 1368 const enum btrfs_flush_state *states, 1369 int states_nr) 1370 { 1371 u64 to_reclaim; 1372 int flush_state = 0; 1373 1374 spin_lock(&space_info->lock); 1375 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1376 /* 1377 * This is the priority reclaim path, so to_reclaim could be >0 still 1378 * because we may have only satisfied the priority tickets and still 1379 * left non priority tickets on the list. We would then have 1380 * to_reclaim but ->bytes == 0. 1381 */ 1382 if (ticket->bytes == 0) { 1383 spin_unlock(&space_info->lock); 1384 return; 1385 } 1386 1387 while (flush_state < states_nr) { 1388 spin_unlock(&space_info->lock); 1389 flush_space(fs_info, space_info, to_reclaim, states[flush_state], 1390 false); 1391 flush_state++; 1392 spin_lock(&space_info->lock); 1393 if (ticket->bytes == 0) { 1394 spin_unlock(&space_info->lock); 1395 return; 1396 } 1397 } 1398 1399 /* Attempt to steal from the global rsv if we can. */ 1400 if (!steal_from_global_rsv(fs_info, space_info, ticket)) { 1401 ticket->error = -ENOSPC; 1402 remove_ticket(space_info, ticket); 1403 } 1404 1405 /* 1406 * We must run try_granting_tickets here because we could be a large 1407 * ticket in front of a smaller ticket that can now be satisfied with 1408 * the available space. 1409 */ 1410 btrfs_try_granting_tickets(fs_info, space_info); 1411 spin_unlock(&space_info->lock); 1412 } 1413 1414 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info, 1415 struct btrfs_space_info *space_info, 1416 struct reserve_ticket *ticket) 1417 { 1418 spin_lock(&space_info->lock); 1419 1420 /* We could have been granted before we got here. */ 1421 if (ticket->bytes == 0) { 1422 spin_unlock(&space_info->lock); 1423 return; 1424 } 1425 1426 while (!space_info->full) { 1427 spin_unlock(&space_info->lock); 1428 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1429 spin_lock(&space_info->lock); 1430 if (ticket->bytes == 0) { 1431 spin_unlock(&space_info->lock); 1432 return; 1433 } 1434 } 1435 1436 ticket->error = -ENOSPC; 1437 remove_ticket(space_info, ticket); 1438 btrfs_try_granting_tickets(fs_info, space_info); 1439 spin_unlock(&space_info->lock); 1440 } 1441 1442 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info, 1443 struct btrfs_space_info *space_info, 1444 struct reserve_ticket *ticket) 1445 1446 { 1447 DEFINE_WAIT(wait); 1448 int ret = 0; 1449 1450 spin_lock(&space_info->lock); 1451 while (ticket->bytes > 0 && ticket->error == 0) { 1452 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 1453 if (ret) { 1454 /* 1455 * Delete us from the list. After we unlock the space 1456 * info, we don't want the async reclaim job to reserve 1457 * space for this ticket. If that would happen, then the 1458 * ticket's task would not known that space was reserved 1459 * despite getting an error, resulting in a space leak 1460 * (bytes_may_use counter of our space_info). 1461 */ 1462 remove_ticket(space_info, ticket); 1463 ticket->error = -EINTR; 1464 break; 1465 } 1466 spin_unlock(&space_info->lock); 1467 1468 schedule(); 1469 1470 finish_wait(&ticket->wait, &wait); 1471 spin_lock(&space_info->lock); 1472 } 1473 spin_unlock(&space_info->lock); 1474 } 1475 1476 /* 1477 * Do the appropriate flushing and waiting for a ticket. 1478 * 1479 * @fs_info: the filesystem 1480 * @space_info: space info for the reservation 1481 * @ticket: ticket for the reservation 1482 * @start_ns: timestamp when the reservation started 1483 * @orig_bytes: amount of bytes originally reserved 1484 * @flush: how much we can flush 1485 * 1486 * This does the work of figuring out how to flush for the ticket, waiting for 1487 * the reservation, and returning the appropriate error if there is one. 1488 */ 1489 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info, 1490 struct btrfs_space_info *space_info, 1491 struct reserve_ticket *ticket, 1492 u64 start_ns, u64 orig_bytes, 1493 enum btrfs_reserve_flush_enum flush) 1494 { 1495 int ret; 1496 1497 switch (flush) { 1498 case BTRFS_RESERVE_FLUSH_DATA: 1499 case BTRFS_RESERVE_FLUSH_ALL: 1500 case BTRFS_RESERVE_FLUSH_ALL_STEAL: 1501 wait_reserve_ticket(fs_info, space_info, ticket); 1502 break; 1503 case BTRFS_RESERVE_FLUSH_LIMIT: 1504 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1505 priority_flush_states, 1506 ARRAY_SIZE(priority_flush_states)); 1507 break; 1508 case BTRFS_RESERVE_FLUSH_EVICT: 1509 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1510 evict_flush_states, 1511 ARRAY_SIZE(evict_flush_states)); 1512 break; 1513 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE: 1514 priority_reclaim_data_space(fs_info, space_info, ticket); 1515 break; 1516 default: 1517 ASSERT(0); 1518 break; 1519 } 1520 1521 ret = ticket->error; 1522 ASSERT(list_empty(&ticket->list)); 1523 /* 1524 * Check that we can't have an error set if the reservation succeeded, 1525 * as that would confuse tasks and lead them to error out without 1526 * releasing reserved space (if an error happens the expectation is that 1527 * space wasn't reserved at all). 1528 */ 1529 ASSERT(!(ticket->bytes == 0 && ticket->error)); 1530 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes, 1531 start_ns, flush, ticket->error); 1532 return ret; 1533 } 1534 1535 /* 1536 * This returns true if this flush state will go through the ordinary flushing 1537 * code. 1538 */ 1539 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush) 1540 { 1541 return (flush == BTRFS_RESERVE_FLUSH_ALL) || 1542 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1543 } 1544 1545 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info, 1546 struct btrfs_space_info *space_info) 1547 { 1548 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes); 1549 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 1550 1551 /* 1552 * If we're heavy on ordered operations then clamping won't help us. We 1553 * need to clamp specifically to keep up with dirty'ing buffered 1554 * writers, because there's not a 1:1 correlation of writing delalloc 1555 * and freeing space, like there is with flushing delayed refs or 1556 * delayed nodes. If we're already more ordered than delalloc then 1557 * we're keeping up, otherwise we aren't and should probably clamp. 1558 */ 1559 if (ordered < delalloc) 1560 space_info->clamp = min(space_info->clamp + 1, 8); 1561 } 1562 1563 static inline bool can_steal(enum btrfs_reserve_flush_enum flush) 1564 { 1565 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1566 flush == BTRFS_RESERVE_FLUSH_EVICT); 1567 } 1568 1569 /* 1570 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to 1571 * fail as quickly as possible. 1572 */ 1573 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush) 1574 { 1575 return (flush != BTRFS_RESERVE_NO_FLUSH && 1576 flush != BTRFS_RESERVE_FLUSH_EMERGENCY); 1577 } 1578 1579 /* 1580 * Try to reserve bytes from the block_rsv's space. 1581 * 1582 * @fs_info: the filesystem 1583 * @space_info: space info we want to allocate from 1584 * @orig_bytes: number of bytes we want 1585 * @flush: whether or not we can flush to make our reservation 1586 * 1587 * This will reserve orig_bytes number of bytes from the space info associated 1588 * with the block_rsv. If there is not enough space it will make an attempt to 1589 * flush out space to make room. It will do this by flushing delalloc if 1590 * possible or committing the transaction. If flush is 0 then no attempts to 1591 * regain reservations will be made and this will fail if there is not enough 1592 * space already. 1593 */ 1594 static int __reserve_bytes(struct btrfs_fs_info *fs_info, 1595 struct btrfs_space_info *space_info, u64 orig_bytes, 1596 enum btrfs_reserve_flush_enum flush) 1597 { 1598 struct work_struct *async_work; 1599 struct reserve_ticket ticket; 1600 u64 start_ns = 0; 1601 u64 used; 1602 int ret = 0; 1603 bool pending_tickets; 1604 1605 ASSERT(orig_bytes); 1606 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 1607 1608 if (flush == BTRFS_RESERVE_FLUSH_DATA) 1609 async_work = &fs_info->async_data_reclaim_work; 1610 else 1611 async_work = &fs_info->async_reclaim_work; 1612 1613 spin_lock(&space_info->lock); 1614 ret = -ENOSPC; 1615 used = btrfs_space_info_used(space_info, true); 1616 1617 /* 1618 * We don't want NO_FLUSH allocations to jump everybody, they can 1619 * generally handle ENOSPC in a different way, so treat them the same as 1620 * normal flushers when it comes to skipping pending tickets. 1621 */ 1622 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH)) 1623 pending_tickets = !list_empty(&space_info->tickets) || 1624 !list_empty(&space_info->priority_tickets); 1625 else 1626 pending_tickets = !list_empty(&space_info->priority_tickets); 1627 1628 /* 1629 * Carry on if we have enough space (short-circuit) OR call 1630 * can_overcommit() to ensure we can overcommit to continue. 1631 */ 1632 if (!pending_tickets && 1633 ((used + orig_bytes <= space_info->total_bytes) || 1634 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) { 1635 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1636 orig_bytes); 1637 ret = 0; 1638 } 1639 1640 /* 1641 * Things are dire, we need to make a reservation so we don't abort. We 1642 * will let this reservation go through as long as we have actual space 1643 * left to allocate for the block. 1644 */ 1645 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) { 1646 used = btrfs_space_info_used(space_info, false); 1647 if (used + orig_bytes <= space_info->total_bytes) { 1648 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1649 orig_bytes); 1650 ret = 0; 1651 } 1652 } 1653 1654 /* 1655 * If we couldn't make a reservation then setup our reservation ticket 1656 * and kick the async worker if it's not already running. 1657 * 1658 * If we are a priority flusher then we just need to add our ticket to 1659 * the list and we will do our own flushing further down. 1660 */ 1661 if (ret && can_ticket(flush)) { 1662 ticket.bytes = orig_bytes; 1663 ticket.error = 0; 1664 space_info->reclaim_size += ticket.bytes; 1665 init_waitqueue_head(&ticket.wait); 1666 ticket.steal = can_steal(flush); 1667 if (trace_btrfs_reserve_ticket_enabled()) 1668 start_ns = ktime_get_ns(); 1669 1670 if (flush == BTRFS_RESERVE_FLUSH_ALL || 1671 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1672 flush == BTRFS_RESERVE_FLUSH_DATA) { 1673 list_add_tail(&ticket.list, &space_info->tickets); 1674 if (!space_info->flush) { 1675 /* 1676 * We were forced to add a reserve ticket, so 1677 * our preemptive flushing is unable to keep 1678 * up. Clamp down on the threshold for the 1679 * preemptive flushing in order to keep up with 1680 * the workload. 1681 */ 1682 maybe_clamp_preempt(fs_info, space_info); 1683 1684 space_info->flush = 1; 1685 trace_btrfs_trigger_flush(fs_info, 1686 space_info->flags, 1687 orig_bytes, flush, 1688 "enospc"); 1689 queue_work(system_unbound_wq, async_work); 1690 } 1691 } else { 1692 list_add_tail(&ticket.list, 1693 &space_info->priority_tickets); 1694 } 1695 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 1696 /* 1697 * We will do the space reservation dance during log replay, 1698 * which means we won't have fs_info->fs_root set, so don't do 1699 * the async reclaim as we will panic. 1700 */ 1701 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 1702 !work_busy(&fs_info->preempt_reclaim_work) && 1703 need_preemptive_reclaim(fs_info, space_info)) { 1704 trace_btrfs_trigger_flush(fs_info, space_info->flags, 1705 orig_bytes, flush, "preempt"); 1706 queue_work(system_unbound_wq, 1707 &fs_info->preempt_reclaim_work); 1708 } 1709 } 1710 spin_unlock(&space_info->lock); 1711 if (!ret || !can_ticket(flush)) 1712 return ret; 1713 1714 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns, 1715 orig_bytes, flush); 1716 } 1717 1718 /* 1719 * Try to reserve metadata bytes from the block_rsv's space. 1720 * 1721 * @fs_info: the filesystem 1722 * @block_rsv: block_rsv we're allocating for 1723 * @orig_bytes: number of bytes we want 1724 * @flush: whether or not we can flush to make our reservation 1725 * 1726 * This will reserve orig_bytes number of bytes from the space info associated 1727 * with the block_rsv. If there is not enough space it will make an attempt to 1728 * flush out space to make room. It will do this by flushing delalloc if 1729 * possible or committing the transaction. If flush is 0 then no attempts to 1730 * regain reservations will be made and this will fail if there is not enough 1731 * space already. 1732 */ 1733 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 1734 struct btrfs_block_rsv *block_rsv, 1735 u64 orig_bytes, 1736 enum btrfs_reserve_flush_enum flush) 1737 { 1738 int ret; 1739 1740 ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush); 1741 if (ret == -ENOSPC) { 1742 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1743 block_rsv->space_info->flags, 1744 orig_bytes, 1); 1745 1746 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1747 btrfs_dump_space_info(fs_info, block_rsv->space_info, 1748 orig_bytes, 0); 1749 } 1750 return ret; 1751 } 1752 1753 /* 1754 * Try to reserve data bytes for an allocation. 1755 * 1756 * @fs_info: the filesystem 1757 * @bytes: number of bytes we need 1758 * @flush: how we are allowed to flush 1759 * 1760 * This will reserve bytes from the data space info. If there is not enough 1761 * space then we will attempt to flush space as specified by flush. 1762 */ 1763 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes, 1764 enum btrfs_reserve_flush_enum flush) 1765 { 1766 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 1767 int ret; 1768 1769 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA || 1770 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE || 1771 flush == BTRFS_RESERVE_NO_FLUSH); 1772 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA); 1773 1774 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush); 1775 if (ret == -ENOSPC) { 1776 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1777 data_sinfo->flags, bytes, 1); 1778 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1779 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0); 1780 } 1781 return ret; 1782 } 1783 1784 /* Dump all the space infos when we abort a transaction due to ENOSPC. */ 1785 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info) 1786 { 1787 struct btrfs_space_info *space_info; 1788 1789 btrfs_info(fs_info, "dumping space info:"); 1790 list_for_each_entry(space_info, &fs_info->space_info, list) { 1791 spin_lock(&space_info->lock); 1792 __btrfs_dump_space_info(fs_info, space_info); 1793 spin_unlock(&space_info->lock); 1794 } 1795 dump_global_block_rsv(fs_info); 1796 } 1797 1798 /* 1799 * Account the unused space of all the readonly block group in the space_info. 1800 * takes mirrors into account. 1801 */ 1802 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 1803 { 1804 struct btrfs_block_group *block_group; 1805 u64 free_bytes = 0; 1806 int factor; 1807 1808 /* It's df, we don't care if it's racy */ 1809 if (list_empty(&sinfo->ro_bgs)) 1810 return 0; 1811 1812 spin_lock(&sinfo->lock); 1813 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 1814 spin_lock(&block_group->lock); 1815 1816 if (!block_group->ro) { 1817 spin_unlock(&block_group->lock); 1818 continue; 1819 } 1820 1821 factor = btrfs_bg_type_to_factor(block_group->flags); 1822 free_bytes += (block_group->length - 1823 block_group->used) * factor; 1824 1825 spin_unlock(&block_group->lock); 1826 } 1827 spin_unlock(&sinfo->lock); 1828 1829 return free_bytes; 1830 } 1831