xref: /openbmc/linux/fs/btrfs/space-info.c (revision 2e294c60)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     may_commit_transaction() is the ultimate arbiter on whether we commit the
137  *     transaction or not.  In order to avoid constantly churning we do all the
138  *     above flushing first and then commit the transaction as the last resort.
139  *     However we need to take into account things like pinned space that would
140  *     be freed, plus any delayed work we may not have gotten rid of in the case
141  *     of metadata.
142  *
143  *   FORCE_COMMIT_TRANS
144  *     For use by the preemptive flusher.  We use this to bypass the ticketing
145  *     checks in may_commit_transaction, as we have more information about the
146  *     overall state of the system and may want to commit the transaction ahead
147  *     of actual ENOSPC conditions.
148  *
149  * OVERCOMMIT
150  *
151  *   Because we hold so many reservations for metadata we will allow you to
152  *   reserve more space than is currently free in the currently allocate
153  *   metadata space.  This only happens with metadata, data does not allow
154  *   overcommitting.
155  *
156  *   You can see the current logic for when we allow overcommit in
157  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
158  *   is no unallocated space to be had, all reservations are kept within the
159  *   free space in the allocated metadata chunks.
160  *
161  *   Because of overcommitting, you generally want to use the
162  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
163  *   thing with or without extra unallocated space.
164  */
165 
166 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
167 			  bool may_use_included)
168 {
169 	ASSERT(s_info);
170 	return s_info->bytes_used + s_info->bytes_reserved +
171 		s_info->bytes_pinned + s_info->bytes_readonly +
172 		(may_use_included ? s_info->bytes_may_use : 0);
173 }
174 
175 /*
176  * after adding space to the filesystem, we need to clear the full flags
177  * on all the space infos.
178  */
179 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
180 {
181 	struct list_head *head = &info->space_info;
182 	struct btrfs_space_info *found;
183 
184 	list_for_each_entry(found, head, list)
185 		found->full = 0;
186 }
187 
188 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
189 {
190 
191 	struct btrfs_space_info *space_info;
192 	int i;
193 	int ret;
194 
195 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
196 	if (!space_info)
197 		return -ENOMEM;
198 
199 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
200 				 GFP_KERNEL);
201 	if (ret) {
202 		kfree(space_info);
203 		return ret;
204 	}
205 
206 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
207 		INIT_LIST_HEAD(&space_info->block_groups[i]);
208 	init_rwsem(&space_info->groups_sem);
209 	spin_lock_init(&space_info->lock);
210 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
211 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
212 	INIT_LIST_HEAD(&space_info->ro_bgs);
213 	INIT_LIST_HEAD(&space_info->tickets);
214 	INIT_LIST_HEAD(&space_info->priority_tickets);
215 
216 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
217 	if (ret)
218 		return ret;
219 
220 	list_add(&space_info->list, &info->space_info);
221 	if (flags & BTRFS_BLOCK_GROUP_DATA)
222 		info->data_sinfo = space_info;
223 
224 	return ret;
225 }
226 
227 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
228 {
229 	struct btrfs_super_block *disk_super;
230 	u64 features;
231 	u64 flags;
232 	int mixed = 0;
233 	int ret;
234 
235 	disk_super = fs_info->super_copy;
236 	if (!btrfs_super_root(disk_super))
237 		return -EINVAL;
238 
239 	features = btrfs_super_incompat_flags(disk_super);
240 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
241 		mixed = 1;
242 
243 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
244 	ret = create_space_info(fs_info, flags);
245 	if (ret)
246 		goto out;
247 
248 	if (mixed) {
249 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
250 		ret = create_space_info(fs_info, flags);
251 	} else {
252 		flags = BTRFS_BLOCK_GROUP_METADATA;
253 		ret = create_space_info(fs_info, flags);
254 		if (ret)
255 			goto out;
256 
257 		flags = BTRFS_BLOCK_GROUP_DATA;
258 		ret = create_space_info(fs_info, flags);
259 	}
260 out:
261 	return ret;
262 }
263 
264 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
265 			     u64 total_bytes, u64 bytes_used,
266 			     u64 bytes_readonly,
267 			     struct btrfs_space_info **space_info)
268 {
269 	struct btrfs_space_info *found;
270 	int factor;
271 
272 	factor = btrfs_bg_type_to_factor(flags);
273 
274 	found = btrfs_find_space_info(info, flags);
275 	ASSERT(found);
276 	spin_lock(&found->lock);
277 	found->total_bytes += total_bytes;
278 	found->disk_total += total_bytes * factor;
279 	found->bytes_used += bytes_used;
280 	found->disk_used += bytes_used * factor;
281 	found->bytes_readonly += bytes_readonly;
282 	if (total_bytes > 0)
283 		found->full = 0;
284 	btrfs_try_granting_tickets(info, found);
285 	spin_unlock(&found->lock);
286 	*space_info = found;
287 }
288 
289 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
290 					       u64 flags)
291 {
292 	struct list_head *head = &info->space_info;
293 	struct btrfs_space_info *found;
294 
295 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
296 
297 	list_for_each_entry(found, head, list) {
298 		if (found->flags & flags)
299 			return found;
300 	}
301 	return NULL;
302 }
303 
304 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
305 			  struct btrfs_space_info *space_info,
306 			  enum btrfs_reserve_flush_enum flush)
307 {
308 	u64 profile;
309 	u64 avail;
310 	int factor;
311 
312 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
313 		profile = btrfs_system_alloc_profile(fs_info);
314 	else
315 		profile = btrfs_metadata_alloc_profile(fs_info);
316 
317 	avail = atomic64_read(&fs_info->free_chunk_space);
318 
319 	/*
320 	 * If we have dup, raid1 or raid10 then only half of the free
321 	 * space is actually usable.  For raid56, the space info used
322 	 * doesn't include the parity drive, so we don't have to
323 	 * change the math
324 	 */
325 	factor = btrfs_bg_type_to_factor(profile);
326 	avail = div_u64(avail, factor);
327 
328 	/*
329 	 * If we aren't flushing all things, let us overcommit up to
330 	 * 1/2th of the space. If we can flush, don't let us overcommit
331 	 * too much, let it overcommit up to 1/8 of the space.
332 	 */
333 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
334 		avail >>= 3;
335 	else
336 		avail >>= 1;
337 	return avail;
338 }
339 
340 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
341 			 struct btrfs_space_info *space_info, u64 bytes,
342 			 enum btrfs_reserve_flush_enum flush)
343 {
344 	u64 avail;
345 	u64 used;
346 
347 	/* Don't overcommit when in mixed mode */
348 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
349 		return 0;
350 
351 	used = btrfs_space_info_used(space_info, true);
352 	avail = calc_available_free_space(fs_info, space_info, flush);
353 
354 	if (used + bytes < space_info->total_bytes + avail)
355 		return 1;
356 	return 0;
357 }
358 
359 static void remove_ticket(struct btrfs_space_info *space_info,
360 			  struct reserve_ticket *ticket)
361 {
362 	if (!list_empty(&ticket->list)) {
363 		list_del_init(&ticket->list);
364 		ASSERT(space_info->reclaim_size >= ticket->bytes);
365 		space_info->reclaim_size -= ticket->bytes;
366 	}
367 }
368 
369 /*
370  * This is for space we already have accounted in space_info->bytes_may_use, so
371  * basically when we're returning space from block_rsv's.
372  */
373 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
374 				struct btrfs_space_info *space_info)
375 {
376 	struct list_head *head;
377 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
378 
379 	lockdep_assert_held(&space_info->lock);
380 
381 	head = &space_info->priority_tickets;
382 again:
383 	while (!list_empty(head)) {
384 		struct reserve_ticket *ticket;
385 		u64 used = btrfs_space_info_used(space_info, true);
386 
387 		ticket = list_first_entry(head, struct reserve_ticket, list);
388 
389 		/* Check and see if our ticket can be satisified now. */
390 		if ((used + ticket->bytes <= space_info->total_bytes) ||
391 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
392 					 flush)) {
393 			btrfs_space_info_update_bytes_may_use(fs_info,
394 							      space_info,
395 							      ticket->bytes);
396 			remove_ticket(space_info, ticket);
397 			ticket->bytes = 0;
398 			space_info->tickets_id++;
399 			wake_up(&ticket->wait);
400 		} else {
401 			break;
402 		}
403 	}
404 
405 	if (head == &space_info->priority_tickets) {
406 		head = &space_info->tickets;
407 		flush = BTRFS_RESERVE_FLUSH_ALL;
408 		goto again;
409 	}
410 }
411 
412 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
413 do {									\
414 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
415 	spin_lock(&__rsv->lock);					\
416 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
417 		   __rsv->size, __rsv->reserved);			\
418 	spin_unlock(&__rsv->lock);					\
419 } while (0)
420 
421 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
422 				    struct btrfs_space_info *info)
423 {
424 	lockdep_assert_held(&info->lock);
425 
426 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
427 		   info->flags,
428 		   info->total_bytes - btrfs_space_info_used(info, true),
429 		   info->full ? "" : "not ");
430 	btrfs_info(fs_info,
431 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
432 		info->total_bytes, info->bytes_used, info->bytes_pinned,
433 		info->bytes_reserved, info->bytes_may_use,
434 		info->bytes_readonly);
435 
436 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
437 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
438 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
439 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
440 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
441 
442 }
443 
444 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
445 			   struct btrfs_space_info *info, u64 bytes,
446 			   int dump_block_groups)
447 {
448 	struct btrfs_block_group *cache;
449 	int index = 0;
450 
451 	spin_lock(&info->lock);
452 	__btrfs_dump_space_info(fs_info, info);
453 	spin_unlock(&info->lock);
454 
455 	if (!dump_block_groups)
456 		return;
457 
458 	down_read(&info->groups_sem);
459 again:
460 	list_for_each_entry(cache, &info->block_groups[index], list) {
461 		spin_lock(&cache->lock);
462 		btrfs_info(fs_info,
463 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
464 			cache->start, cache->length, cache->used, cache->pinned,
465 			cache->reserved, cache->ro ? "[readonly]" : "");
466 		spin_unlock(&cache->lock);
467 		btrfs_dump_free_space(cache, bytes);
468 	}
469 	if (++index < BTRFS_NR_RAID_TYPES)
470 		goto again;
471 	up_read(&info->groups_sem);
472 }
473 
474 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
475 					u64 to_reclaim)
476 {
477 	u64 bytes;
478 	u64 nr;
479 
480 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
481 	nr = div64_u64(to_reclaim, bytes);
482 	if (!nr)
483 		nr = 1;
484 	return nr;
485 }
486 
487 #define EXTENT_SIZE_PER_ITEM	SZ_256K
488 
489 /*
490  * shrink metadata reservation for delalloc
491  */
492 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
493 			    struct btrfs_space_info *space_info,
494 			    u64 to_reclaim, bool wait_ordered)
495 {
496 	struct btrfs_trans_handle *trans;
497 	u64 delalloc_bytes;
498 	u64 ordered_bytes;
499 	u64 items;
500 	long time_left;
501 	int loops;
502 
503 	/* Calc the number of the pages we need flush for space reservation */
504 	if (to_reclaim == U64_MAX) {
505 		items = U64_MAX;
506 	} else {
507 		/*
508 		 * to_reclaim is set to however much metadata we need to
509 		 * reclaim, but reclaiming that much data doesn't really track
510 		 * exactly, so increase the amount to reclaim by 2x in order to
511 		 * make sure we're flushing enough delalloc to hopefully reclaim
512 		 * some metadata reservations.
513 		 */
514 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
515 		to_reclaim = items * EXTENT_SIZE_PER_ITEM;
516 	}
517 
518 	trans = (struct btrfs_trans_handle *)current->journal_info;
519 
520 	delalloc_bytes = percpu_counter_sum_positive(
521 						&fs_info->delalloc_bytes);
522 	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
523 	if (delalloc_bytes == 0 && ordered_bytes == 0)
524 		return;
525 
526 	/*
527 	 * If we are doing more ordered than delalloc we need to just wait on
528 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
529 	 * that likely won't give us the space back we need.
530 	 */
531 	if (ordered_bytes > delalloc_bytes)
532 		wait_ordered = true;
533 
534 	loops = 0;
535 	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
536 		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
537 		long nr_pages = min_t(u64, temp, LONG_MAX);
538 
539 		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
540 
541 		loops++;
542 		if (wait_ordered && !trans) {
543 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
544 		} else {
545 			time_left = schedule_timeout_killable(1);
546 			if (time_left)
547 				break;
548 		}
549 
550 		spin_lock(&space_info->lock);
551 		if (list_empty(&space_info->tickets) &&
552 		    list_empty(&space_info->priority_tickets)) {
553 			spin_unlock(&space_info->lock);
554 			break;
555 		}
556 		spin_unlock(&space_info->lock);
557 
558 		delalloc_bytes = percpu_counter_sum_positive(
559 						&fs_info->delalloc_bytes);
560 		ordered_bytes = percpu_counter_sum_positive(
561 						&fs_info->ordered_bytes);
562 	}
563 }
564 
565 /**
566  * Possibly commit the transaction if its ok to
567  *
568  * @fs_info:    the filesystem
569  * @space_info: space_info we are checking for commit, either data or metadata
570  *
571  * This will check to make sure that committing the transaction will actually
572  * get us somewhere and then commit the transaction if it does.  Otherwise it
573  * will return -ENOSPC.
574  */
575 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
576 				  struct btrfs_space_info *space_info)
577 {
578 	struct reserve_ticket *ticket = NULL;
579 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
580 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
581 	struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
582 	struct btrfs_trans_handle *trans;
583 	u64 reclaim_bytes = 0;
584 	u64 bytes_needed = 0;
585 	u64 cur_free_bytes = 0;
586 
587 	trans = (struct btrfs_trans_handle *)current->journal_info;
588 	if (trans)
589 		return -EAGAIN;
590 
591 	spin_lock(&space_info->lock);
592 	cur_free_bytes = btrfs_space_info_used(space_info, true);
593 	if (cur_free_bytes < space_info->total_bytes)
594 		cur_free_bytes = space_info->total_bytes - cur_free_bytes;
595 	else
596 		cur_free_bytes = 0;
597 
598 	if (!list_empty(&space_info->priority_tickets))
599 		ticket = list_first_entry(&space_info->priority_tickets,
600 					  struct reserve_ticket, list);
601 	else if (!list_empty(&space_info->tickets))
602 		ticket = list_first_entry(&space_info->tickets,
603 					  struct reserve_ticket, list);
604 	if (ticket)
605 		bytes_needed = ticket->bytes;
606 
607 	if (bytes_needed > cur_free_bytes)
608 		bytes_needed -= cur_free_bytes;
609 	else
610 		bytes_needed = 0;
611 	spin_unlock(&space_info->lock);
612 
613 	if (!bytes_needed)
614 		return 0;
615 
616 	trans = btrfs_join_transaction(fs_info->extent_root);
617 	if (IS_ERR(trans))
618 		return PTR_ERR(trans);
619 
620 	/*
621 	 * See if there is enough pinned space to make this reservation, or if
622 	 * we have block groups that are going to be freed, allowing us to
623 	 * possibly do a chunk allocation the next loop through.
624 	 */
625 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
626 	    __percpu_counter_compare(&space_info->total_bytes_pinned,
627 				     bytes_needed,
628 				     BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
629 		goto commit;
630 
631 	/*
632 	 * See if there is some space in the delayed insertion reserve for this
633 	 * reservation.  If the space_info's don't match (like for DATA or
634 	 * SYSTEM) then just go enospc, reclaiming this space won't recover any
635 	 * space to satisfy those reservations.
636 	 */
637 	if (space_info != delayed_rsv->space_info)
638 		goto enospc;
639 
640 	spin_lock(&delayed_rsv->lock);
641 	reclaim_bytes += delayed_rsv->reserved;
642 	spin_unlock(&delayed_rsv->lock);
643 
644 	spin_lock(&delayed_refs_rsv->lock);
645 	reclaim_bytes += delayed_refs_rsv->reserved;
646 	spin_unlock(&delayed_refs_rsv->lock);
647 
648 	spin_lock(&trans_rsv->lock);
649 	reclaim_bytes += trans_rsv->reserved;
650 	spin_unlock(&trans_rsv->lock);
651 
652 	if (reclaim_bytes >= bytes_needed)
653 		goto commit;
654 	bytes_needed -= reclaim_bytes;
655 
656 	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
657 				   bytes_needed,
658 				   BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
659 		goto enospc;
660 
661 commit:
662 	return btrfs_commit_transaction(trans);
663 enospc:
664 	btrfs_end_transaction(trans);
665 	return -ENOSPC;
666 }
667 
668 /*
669  * Try to flush some data based on policy set by @state. This is only advisory
670  * and may fail for various reasons. The caller is supposed to examine the
671  * state of @space_info to detect the outcome.
672  */
673 static void flush_space(struct btrfs_fs_info *fs_info,
674 		       struct btrfs_space_info *space_info, u64 num_bytes,
675 		       enum btrfs_flush_state state)
676 {
677 	struct btrfs_root *root = fs_info->extent_root;
678 	struct btrfs_trans_handle *trans;
679 	int nr;
680 	int ret = 0;
681 
682 	switch (state) {
683 	case FLUSH_DELAYED_ITEMS_NR:
684 	case FLUSH_DELAYED_ITEMS:
685 		if (state == FLUSH_DELAYED_ITEMS_NR)
686 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
687 		else
688 			nr = -1;
689 
690 		trans = btrfs_join_transaction(root);
691 		if (IS_ERR(trans)) {
692 			ret = PTR_ERR(trans);
693 			break;
694 		}
695 		ret = btrfs_run_delayed_items_nr(trans, nr);
696 		btrfs_end_transaction(trans);
697 		break;
698 	case FLUSH_DELALLOC:
699 	case FLUSH_DELALLOC_WAIT:
700 		shrink_delalloc(fs_info, space_info, num_bytes,
701 				state == FLUSH_DELALLOC_WAIT);
702 		break;
703 	case FLUSH_DELAYED_REFS_NR:
704 	case FLUSH_DELAYED_REFS:
705 		trans = btrfs_join_transaction(root);
706 		if (IS_ERR(trans)) {
707 			ret = PTR_ERR(trans);
708 			break;
709 		}
710 		if (state == FLUSH_DELAYED_REFS_NR)
711 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
712 		else
713 			nr = 0;
714 		btrfs_run_delayed_refs(trans, nr);
715 		btrfs_end_transaction(trans);
716 		break;
717 	case ALLOC_CHUNK:
718 	case ALLOC_CHUNK_FORCE:
719 		trans = btrfs_join_transaction(root);
720 		if (IS_ERR(trans)) {
721 			ret = PTR_ERR(trans);
722 			break;
723 		}
724 		ret = btrfs_chunk_alloc(trans,
725 				btrfs_get_alloc_profile(fs_info, space_info->flags),
726 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
727 					CHUNK_ALLOC_FORCE);
728 		btrfs_end_transaction(trans);
729 		if (ret > 0 || ret == -ENOSPC)
730 			ret = 0;
731 		break;
732 	case RUN_DELAYED_IPUTS:
733 		/*
734 		 * If we have pending delayed iputs then we could free up a
735 		 * bunch of pinned space, so make sure we run the iputs before
736 		 * we do our pinned bytes check below.
737 		 */
738 		btrfs_run_delayed_iputs(fs_info);
739 		btrfs_wait_on_delayed_iputs(fs_info);
740 		break;
741 	case COMMIT_TRANS:
742 		ret = may_commit_transaction(fs_info, space_info);
743 		break;
744 	case FORCE_COMMIT_TRANS:
745 		trans = btrfs_join_transaction(root);
746 		if (IS_ERR(trans)) {
747 			ret = PTR_ERR(trans);
748 			break;
749 		}
750 		ret = btrfs_commit_transaction(trans);
751 		break;
752 	default:
753 		ret = -ENOSPC;
754 		break;
755 	}
756 
757 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
758 				ret);
759 	return;
760 }
761 
762 static inline u64
763 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
764 				 struct btrfs_space_info *space_info)
765 {
766 	u64 used;
767 	u64 avail;
768 	u64 to_reclaim = space_info->reclaim_size;
769 
770 	lockdep_assert_held(&space_info->lock);
771 
772 	avail = calc_available_free_space(fs_info, space_info,
773 					  BTRFS_RESERVE_FLUSH_ALL);
774 	used = btrfs_space_info_used(space_info, true);
775 
776 	/*
777 	 * We may be flushing because suddenly we have less space than we had
778 	 * before, and now we're well over-committed based on our current free
779 	 * space.  If that's the case add in our overage so we make sure to put
780 	 * appropriate pressure on the flushing state machine.
781 	 */
782 	if (space_info->total_bytes + avail < used)
783 		to_reclaim += used - (space_info->total_bytes + avail);
784 
785 	return to_reclaim;
786 }
787 
788 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
789 				    struct btrfs_space_info *space_info)
790 {
791 	u64 ordered, delalloc;
792 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
793 	u64 used;
794 
795 	/* If we're just plain full then async reclaim just slows us down. */
796 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
797 		return false;
798 
799 	/*
800 	 * We have tickets queued, bail so we don't compete with the async
801 	 * flushers.
802 	 */
803 	if (space_info->reclaim_size)
804 		return false;
805 
806 	/*
807 	 * If we have over half of the free space occupied by reservations or
808 	 * pinned then we want to start flushing.
809 	 *
810 	 * We do not do the traditional thing here, which is to say
811 	 *
812 	 *   if (used >= ((total_bytes + avail) / 2))
813 	 *     return 1;
814 	 *
815 	 * because this doesn't quite work how we want.  If we had more than 50%
816 	 * of the space_info used by bytes_used and we had 0 available we'd just
817 	 * constantly run the background flusher.  Instead we want it to kick in
818 	 * if our reclaimable space exceeds 50% of our available free space.
819 	 */
820 	thresh = calc_available_free_space(fs_info, space_info,
821 					   BTRFS_RESERVE_FLUSH_ALL);
822 	thresh += (space_info->total_bytes - space_info->bytes_used -
823 		   space_info->bytes_reserved - space_info->bytes_readonly);
824 	thresh >>= 1;
825 
826 	used = space_info->bytes_pinned;
827 
828 	/*
829 	 * If we have more ordered bytes than delalloc bytes then we're either
830 	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
831 	 * around.  Preemptive flushing is only useful in that it can free up
832 	 * space before tickets need to wait for things to finish.  In the case
833 	 * of ordered extents, preemptively waiting on ordered extents gets us
834 	 * nothing, if our reservations are tied up in ordered extents we'll
835 	 * simply have to slow down writers by forcing them to wait on ordered
836 	 * extents.
837 	 *
838 	 * In the case that ordered is larger than delalloc, only include the
839 	 * block reserves that we would actually be able to directly reclaim
840 	 * from.  In this case if we're heavy on metadata operations this will
841 	 * clearly be heavy enough to warrant preemptive flushing.  In the case
842 	 * of heavy DIO or ordered reservations, preemptive flushing will just
843 	 * waste time and cause us to slow down.
844 	 */
845 	ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
846 	delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
847 	if (ordered >= delalloc)
848 		used += fs_info->delayed_refs_rsv.reserved +
849 			fs_info->delayed_block_rsv.reserved;
850 	else
851 		used += space_info->bytes_may_use;
852 
853 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
854 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
855 }
856 
857 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
858 				  struct btrfs_space_info *space_info,
859 				  struct reserve_ticket *ticket)
860 {
861 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
862 	u64 min_bytes;
863 
864 	if (global_rsv->space_info != space_info)
865 		return false;
866 
867 	spin_lock(&global_rsv->lock);
868 	min_bytes = div_factor(global_rsv->size, 1);
869 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
870 		spin_unlock(&global_rsv->lock);
871 		return false;
872 	}
873 	global_rsv->reserved -= ticket->bytes;
874 	remove_ticket(space_info, ticket);
875 	ticket->bytes = 0;
876 	wake_up(&ticket->wait);
877 	space_info->tickets_id++;
878 	if (global_rsv->reserved < global_rsv->size)
879 		global_rsv->full = 0;
880 	spin_unlock(&global_rsv->lock);
881 
882 	return true;
883 }
884 
885 /*
886  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
887  * @fs_info - fs_info for this fs
888  * @space_info - the space info we were flushing
889  *
890  * We call this when we've exhausted our flushing ability and haven't made
891  * progress in satisfying tickets.  The reservation code handles tickets in
892  * order, so if there is a large ticket first and then smaller ones we could
893  * very well satisfy the smaller tickets.  This will attempt to wake up any
894  * tickets in the list to catch this case.
895  *
896  * This function returns true if it was able to make progress by clearing out
897  * other tickets, or if it stumbles across a ticket that was smaller than the
898  * first ticket.
899  */
900 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
901 				   struct btrfs_space_info *space_info)
902 {
903 	struct reserve_ticket *ticket;
904 	u64 tickets_id = space_info->tickets_id;
905 	u64 first_ticket_bytes = 0;
906 
907 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
908 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
909 		__btrfs_dump_space_info(fs_info, space_info);
910 	}
911 
912 	while (!list_empty(&space_info->tickets) &&
913 	       tickets_id == space_info->tickets_id) {
914 		ticket = list_first_entry(&space_info->tickets,
915 					  struct reserve_ticket, list);
916 
917 		if (ticket->steal &&
918 		    steal_from_global_rsv(fs_info, space_info, ticket))
919 			return true;
920 
921 		/*
922 		 * may_commit_transaction will avoid committing the transaction
923 		 * if it doesn't feel like the space reclaimed by the commit
924 		 * would result in the ticket succeeding.  However if we have a
925 		 * smaller ticket in the queue it may be small enough to be
926 		 * satisified by committing the transaction, so if any
927 		 * subsequent ticket is smaller than the first ticket go ahead
928 		 * and send us back for another loop through the enospc flushing
929 		 * code.
930 		 */
931 		if (first_ticket_bytes == 0)
932 			first_ticket_bytes = ticket->bytes;
933 		else if (first_ticket_bytes > ticket->bytes)
934 			return true;
935 
936 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
937 			btrfs_info(fs_info, "failing ticket with %llu bytes",
938 				   ticket->bytes);
939 
940 		remove_ticket(space_info, ticket);
941 		ticket->error = -ENOSPC;
942 		wake_up(&ticket->wait);
943 
944 		/*
945 		 * We're just throwing tickets away, so more flushing may not
946 		 * trip over btrfs_try_granting_tickets, so we need to call it
947 		 * here to see if we can make progress with the next ticket in
948 		 * the list.
949 		 */
950 		btrfs_try_granting_tickets(fs_info, space_info);
951 	}
952 	return (tickets_id != space_info->tickets_id);
953 }
954 
955 /*
956  * This is for normal flushers, we can wait all goddamned day if we want to.  We
957  * will loop and continuously try to flush as long as we are making progress.
958  * We count progress as clearing off tickets each time we have to loop.
959  */
960 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
961 {
962 	struct btrfs_fs_info *fs_info;
963 	struct btrfs_space_info *space_info;
964 	u64 to_reclaim;
965 	enum btrfs_flush_state flush_state;
966 	int commit_cycles = 0;
967 	u64 last_tickets_id;
968 
969 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
970 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
971 
972 	spin_lock(&space_info->lock);
973 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
974 	if (!to_reclaim) {
975 		space_info->flush = 0;
976 		spin_unlock(&space_info->lock);
977 		return;
978 	}
979 	last_tickets_id = space_info->tickets_id;
980 	spin_unlock(&space_info->lock);
981 
982 	flush_state = FLUSH_DELAYED_ITEMS_NR;
983 	do {
984 		flush_space(fs_info, space_info, to_reclaim, flush_state);
985 		spin_lock(&space_info->lock);
986 		if (list_empty(&space_info->tickets)) {
987 			space_info->flush = 0;
988 			spin_unlock(&space_info->lock);
989 			return;
990 		}
991 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
992 							      space_info);
993 		if (last_tickets_id == space_info->tickets_id) {
994 			flush_state++;
995 		} else {
996 			last_tickets_id = space_info->tickets_id;
997 			flush_state = FLUSH_DELAYED_ITEMS_NR;
998 			if (commit_cycles)
999 				commit_cycles--;
1000 		}
1001 
1002 		/*
1003 		 * We don't want to force a chunk allocation until we've tried
1004 		 * pretty hard to reclaim space.  Think of the case where we
1005 		 * freed up a bunch of space and so have a lot of pinned space
1006 		 * to reclaim.  We would rather use that than possibly create a
1007 		 * underutilized metadata chunk.  So if this is our first run
1008 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1009 		 * commit the transaction.  If nothing has changed the next go
1010 		 * around then we can force a chunk allocation.
1011 		 */
1012 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1013 			flush_state++;
1014 
1015 		if (flush_state > COMMIT_TRANS) {
1016 			commit_cycles++;
1017 			if (commit_cycles > 2) {
1018 				if (maybe_fail_all_tickets(fs_info, space_info)) {
1019 					flush_state = FLUSH_DELAYED_ITEMS_NR;
1020 					commit_cycles--;
1021 				} else {
1022 					space_info->flush = 0;
1023 				}
1024 			} else {
1025 				flush_state = FLUSH_DELAYED_ITEMS_NR;
1026 			}
1027 		}
1028 		spin_unlock(&space_info->lock);
1029 	} while (flush_state <= COMMIT_TRANS);
1030 }
1031 
1032 /*
1033  * This handles pre-flushing of metadata space before we get to the point that
1034  * we need to start blocking threads on tickets.  The logic here is different
1035  * from the other flush paths because it doesn't rely on tickets to tell us how
1036  * much we need to flush, instead it attempts to keep us below the 80% full
1037  * watermark of space by flushing whichever reservation pool is currently the
1038  * largest.
1039  */
1040 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1041 {
1042 	struct btrfs_fs_info *fs_info;
1043 	struct btrfs_space_info *space_info;
1044 	struct btrfs_block_rsv *delayed_block_rsv;
1045 	struct btrfs_block_rsv *delayed_refs_rsv;
1046 	struct btrfs_block_rsv *global_rsv;
1047 	struct btrfs_block_rsv *trans_rsv;
1048 
1049 	fs_info = container_of(work, struct btrfs_fs_info,
1050 			       preempt_reclaim_work);
1051 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1052 	delayed_block_rsv = &fs_info->delayed_block_rsv;
1053 	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1054 	global_rsv = &fs_info->global_block_rsv;
1055 	trans_rsv = &fs_info->trans_block_rsv;
1056 
1057 	spin_lock(&space_info->lock);
1058 	while (need_preemptive_reclaim(fs_info, space_info)) {
1059 		enum btrfs_flush_state flush;
1060 		u64 delalloc_size = 0;
1061 		u64 to_reclaim, block_rsv_size;
1062 		u64 global_rsv_size = global_rsv->reserved;
1063 
1064 		/*
1065 		 * We don't have a precise counter for the metadata being
1066 		 * reserved for delalloc, so we'll approximate it by subtracting
1067 		 * out the block rsv's space from the bytes_may_use.  If that
1068 		 * amount is higher than the individual reserves, then we can
1069 		 * assume it's tied up in delalloc reservations.
1070 		 */
1071 		block_rsv_size = global_rsv_size +
1072 			delayed_block_rsv->reserved +
1073 			delayed_refs_rsv->reserved +
1074 			trans_rsv->reserved;
1075 		if (block_rsv_size < space_info->bytes_may_use)
1076 			delalloc_size = space_info->bytes_may_use - block_rsv_size;
1077 		spin_unlock(&space_info->lock);
1078 
1079 		/*
1080 		 * We don't want to include the global_rsv in our calculation,
1081 		 * because that's space we can't touch.  Subtract it from the
1082 		 * block_rsv_size for the next checks.
1083 		 */
1084 		block_rsv_size -= global_rsv_size;
1085 
1086 		/*
1087 		 * We really want to avoid flushing delalloc too much, as it
1088 		 * could result in poor allocation patterns, so only flush it if
1089 		 * it's larger than the rest of the pools combined.
1090 		 */
1091 		if (delalloc_size > block_rsv_size) {
1092 			to_reclaim = delalloc_size;
1093 			flush = FLUSH_DELALLOC;
1094 		} else if (space_info->bytes_pinned >
1095 			   (delayed_block_rsv->reserved +
1096 			    delayed_refs_rsv->reserved)) {
1097 			to_reclaim = space_info->bytes_pinned;
1098 			flush = FORCE_COMMIT_TRANS;
1099 		} else if (delayed_block_rsv->reserved >
1100 			   delayed_refs_rsv->reserved) {
1101 			to_reclaim = delayed_block_rsv->reserved;
1102 			flush = FLUSH_DELAYED_ITEMS_NR;
1103 		} else {
1104 			to_reclaim = delayed_refs_rsv->reserved;
1105 			flush = FLUSH_DELAYED_REFS_NR;
1106 		}
1107 
1108 		/*
1109 		 * We don't want to reclaim everything, just a portion, so scale
1110 		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1111 		 * reclaim 1 items worth.
1112 		 */
1113 		to_reclaim >>= 2;
1114 		if (!to_reclaim)
1115 			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1116 		flush_space(fs_info, space_info, to_reclaim, flush);
1117 		cond_resched();
1118 		spin_lock(&space_info->lock);
1119 	}
1120 	spin_unlock(&space_info->lock);
1121 }
1122 
1123 /*
1124  * FLUSH_DELALLOC_WAIT:
1125  *   Space is freed from flushing delalloc in one of two ways.
1126  *
1127  *   1) compression is on and we allocate less space than we reserved
1128  *   2) we are overwriting existing space
1129  *
1130  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1131  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1132  *   length to ->bytes_reserved, and subtracts the reserved space from
1133  *   ->bytes_may_use.
1134  *
1135  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1136  *   extent in the range we are overwriting, which creates a delayed ref for
1137  *   that freed extent.  This however is not reclaimed until the transaction
1138  *   commits, thus the next stages.
1139  *
1140  * RUN_DELAYED_IPUTS
1141  *   If we are freeing inodes, we want to make sure all delayed iputs have
1142  *   completed, because they could have been on an inode with i_nlink == 0, and
1143  *   thus have been truncated and freed up space.  But again this space is not
1144  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1145  *   run and then the transaction must be committed.
1146  *
1147  * FLUSH_DELAYED_REFS
1148  *   The above two cases generate delayed refs that will affect
1149  *   ->total_bytes_pinned.  However this counter can be inconsistent with
1150  *   reality if there are outstanding delayed refs.  This is because we adjust
1151  *   the counter based solely on the current set of delayed refs and disregard
1152  *   any on-disk state which might include more refs.  So for example, if we
1153  *   have an extent with 2 references, but we only drop 1, we'll see that there
1154  *   is a negative delayed ref count for the extent and assume that the space
1155  *   will be freed, and thus increase ->total_bytes_pinned.
1156  *
1157  *   Running the delayed refs gives us the actual real view of what will be
1158  *   freed at the transaction commit time.  This stage will not actually free
1159  *   space for us, it just makes sure that may_commit_transaction() has all of
1160  *   the information it needs to make the right decision.
1161  *
1162  * COMMIT_TRANS
1163  *   This is where we reclaim all of the pinned space generated by the previous
1164  *   two stages.  We will not commit the transaction if we don't think we're
1165  *   likely to satisfy our request, which means if our current free space +
1166  *   total_bytes_pinned < reservation we will not commit.  This is why the
1167  *   previous states are actually important, to make sure we know for sure
1168  *   whether committing the transaction will allow us to make progress.
1169  *
1170  * ALLOC_CHUNK_FORCE
1171  *   For data we start with alloc chunk force, however we could have been full
1172  *   before, and then the transaction commit could have freed new block groups,
1173  *   so if we now have space to allocate do the force chunk allocation.
1174  */
1175 static const enum btrfs_flush_state data_flush_states[] = {
1176 	FLUSH_DELALLOC_WAIT,
1177 	RUN_DELAYED_IPUTS,
1178 	FLUSH_DELAYED_REFS,
1179 	COMMIT_TRANS,
1180 	ALLOC_CHUNK_FORCE,
1181 };
1182 
1183 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1184 {
1185 	struct btrfs_fs_info *fs_info;
1186 	struct btrfs_space_info *space_info;
1187 	u64 last_tickets_id;
1188 	enum btrfs_flush_state flush_state = 0;
1189 
1190 	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1191 	space_info = fs_info->data_sinfo;
1192 
1193 	spin_lock(&space_info->lock);
1194 	if (list_empty(&space_info->tickets)) {
1195 		space_info->flush = 0;
1196 		spin_unlock(&space_info->lock);
1197 		return;
1198 	}
1199 	last_tickets_id = space_info->tickets_id;
1200 	spin_unlock(&space_info->lock);
1201 
1202 	while (!space_info->full) {
1203 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1204 		spin_lock(&space_info->lock);
1205 		if (list_empty(&space_info->tickets)) {
1206 			space_info->flush = 0;
1207 			spin_unlock(&space_info->lock);
1208 			return;
1209 		}
1210 		last_tickets_id = space_info->tickets_id;
1211 		spin_unlock(&space_info->lock);
1212 	}
1213 
1214 	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1215 		flush_space(fs_info, space_info, U64_MAX,
1216 			    data_flush_states[flush_state]);
1217 		spin_lock(&space_info->lock);
1218 		if (list_empty(&space_info->tickets)) {
1219 			space_info->flush = 0;
1220 			spin_unlock(&space_info->lock);
1221 			return;
1222 		}
1223 
1224 		if (last_tickets_id == space_info->tickets_id) {
1225 			flush_state++;
1226 		} else {
1227 			last_tickets_id = space_info->tickets_id;
1228 			flush_state = 0;
1229 		}
1230 
1231 		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1232 			if (space_info->full) {
1233 				if (maybe_fail_all_tickets(fs_info, space_info))
1234 					flush_state = 0;
1235 				else
1236 					space_info->flush = 0;
1237 			} else {
1238 				flush_state = 0;
1239 			}
1240 		}
1241 		spin_unlock(&space_info->lock);
1242 	}
1243 }
1244 
1245 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1246 {
1247 	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1248 	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1249 	INIT_WORK(&fs_info->preempt_reclaim_work,
1250 		  btrfs_preempt_reclaim_metadata_space);
1251 }
1252 
1253 static const enum btrfs_flush_state priority_flush_states[] = {
1254 	FLUSH_DELAYED_ITEMS_NR,
1255 	FLUSH_DELAYED_ITEMS,
1256 	ALLOC_CHUNK,
1257 };
1258 
1259 static const enum btrfs_flush_state evict_flush_states[] = {
1260 	FLUSH_DELAYED_ITEMS_NR,
1261 	FLUSH_DELAYED_ITEMS,
1262 	FLUSH_DELAYED_REFS_NR,
1263 	FLUSH_DELAYED_REFS,
1264 	FLUSH_DELALLOC,
1265 	FLUSH_DELALLOC_WAIT,
1266 	ALLOC_CHUNK,
1267 	COMMIT_TRANS,
1268 };
1269 
1270 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1271 				struct btrfs_space_info *space_info,
1272 				struct reserve_ticket *ticket,
1273 				const enum btrfs_flush_state *states,
1274 				int states_nr)
1275 {
1276 	u64 to_reclaim;
1277 	int flush_state;
1278 
1279 	spin_lock(&space_info->lock);
1280 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1281 	if (!to_reclaim) {
1282 		spin_unlock(&space_info->lock);
1283 		return;
1284 	}
1285 	spin_unlock(&space_info->lock);
1286 
1287 	flush_state = 0;
1288 	do {
1289 		flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
1290 		flush_state++;
1291 		spin_lock(&space_info->lock);
1292 		if (ticket->bytes == 0) {
1293 			spin_unlock(&space_info->lock);
1294 			return;
1295 		}
1296 		spin_unlock(&space_info->lock);
1297 	} while (flush_state < states_nr);
1298 }
1299 
1300 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1301 					struct btrfs_space_info *space_info,
1302 					struct reserve_ticket *ticket)
1303 {
1304 	while (!space_info->full) {
1305 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1306 		spin_lock(&space_info->lock);
1307 		if (ticket->bytes == 0) {
1308 			spin_unlock(&space_info->lock);
1309 			return;
1310 		}
1311 		spin_unlock(&space_info->lock);
1312 	}
1313 }
1314 
1315 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1316 				struct btrfs_space_info *space_info,
1317 				struct reserve_ticket *ticket)
1318 
1319 {
1320 	DEFINE_WAIT(wait);
1321 	int ret = 0;
1322 
1323 	spin_lock(&space_info->lock);
1324 	while (ticket->bytes > 0 && ticket->error == 0) {
1325 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1326 		if (ret) {
1327 			/*
1328 			 * Delete us from the list. After we unlock the space
1329 			 * info, we don't want the async reclaim job to reserve
1330 			 * space for this ticket. If that would happen, then the
1331 			 * ticket's task would not known that space was reserved
1332 			 * despite getting an error, resulting in a space leak
1333 			 * (bytes_may_use counter of our space_info).
1334 			 */
1335 			remove_ticket(space_info, ticket);
1336 			ticket->error = -EINTR;
1337 			break;
1338 		}
1339 		spin_unlock(&space_info->lock);
1340 
1341 		schedule();
1342 
1343 		finish_wait(&ticket->wait, &wait);
1344 		spin_lock(&space_info->lock);
1345 	}
1346 	spin_unlock(&space_info->lock);
1347 }
1348 
1349 /**
1350  * Do the appropriate flushing and waiting for a ticket
1351  *
1352  * @fs_info:    the filesystem
1353  * @space_info: space info for the reservation
1354  * @ticket:     ticket for the reservation
1355  * @start_ns:   timestamp when the reservation started
1356  * @orig_bytes: amount of bytes originally reserved
1357  * @flush:      how much we can flush
1358  *
1359  * This does the work of figuring out how to flush for the ticket, waiting for
1360  * the reservation, and returning the appropriate error if there is one.
1361  */
1362 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1363 				 struct btrfs_space_info *space_info,
1364 				 struct reserve_ticket *ticket,
1365 				 u64 start_ns, u64 orig_bytes,
1366 				 enum btrfs_reserve_flush_enum flush)
1367 {
1368 	int ret;
1369 
1370 	switch (flush) {
1371 	case BTRFS_RESERVE_FLUSH_DATA:
1372 	case BTRFS_RESERVE_FLUSH_ALL:
1373 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1374 		wait_reserve_ticket(fs_info, space_info, ticket);
1375 		break;
1376 	case BTRFS_RESERVE_FLUSH_LIMIT:
1377 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1378 						priority_flush_states,
1379 						ARRAY_SIZE(priority_flush_states));
1380 		break;
1381 	case BTRFS_RESERVE_FLUSH_EVICT:
1382 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1383 						evict_flush_states,
1384 						ARRAY_SIZE(evict_flush_states));
1385 		break;
1386 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1387 		priority_reclaim_data_space(fs_info, space_info, ticket);
1388 		break;
1389 	default:
1390 		ASSERT(0);
1391 		break;
1392 	}
1393 
1394 	spin_lock(&space_info->lock);
1395 	ret = ticket->error;
1396 	if (ticket->bytes || ticket->error) {
1397 		/*
1398 		 * We were a priority ticket, so we need to delete ourselves
1399 		 * from the list.  Because we could have other priority tickets
1400 		 * behind us that require less space, run
1401 		 * btrfs_try_granting_tickets() to see if their reservations can
1402 		 * now be made.
1403 		 */
1404 		if (!list_empty(&ticket->list)) {
1405 			remove_ticket(space_info, ticket);
1406 			btrfs_try_granting_tickets(fs_info, space_info);
1407 		}
1408 
1409 		if (!ret)
1410 			ret = -ENOSPC;
1411 	}
1412 	spin_unlock(&space_info->lock);
1413 	ASSERT(list_empty(&ticket->list));
1414 	/*
1415 	 * Check that we can't have an error set if the reservation succeeded,
1416 	 * as that would confuse tasks and lead them to error out without
1417 	 * releasing reserved space (if an error happens the expectation is that
1418 	 * space wasn't reserved at all).
1419 	 */
1420 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1421 	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1422 				   start_ns, flush, ticket->error);
1423 	return ret;
1424 }
1425 
1426 /*
1427  * This returns true if this flush state will go through the ordinary flushing
1428  * code.
1429  */
1430 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1431 {
1432 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1433 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1434 }
1435 
1436 /**
1437  * Try to reserve bytes from the block_rsv's space
1438  *
1439  * @fs_info:    the filesystem
1440  * @space_info: space info we want to allocate from
1441  * @orig_bytes: number of bytes we want
1442  * @flush:      whether or not we can flush to make our reservation
1443  *
1444  * This will reserve orig_bytes number of bytes from the space info associated
1445  * with the block_rsv.  If there is not enough space it will make an attempt to
1446  * flush out space to make room.  It will do this by flushing delalloc if
1447  * possible or committing the transaction.  If flush is 0 then no attempts to
1448  * regain reservations will be made and this will fail if there is not enough
1449  * space already.
1450  */
1451 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1452 			   struct btrfs_space_info *space_info, u64 orig_bytes,
1453 			   enum btrfs_reserve_flush_enum flush)
1454 {
1455 	struct work_struct *async_work;
1456 	struct reserve_ticket ticket;
1457 	u64 start_ns = 0;
1458 	u64 used;
1459 	int ret = 0;
1460 	bool pending_tickets;
1461 
1462 	ASSERT(orig_bytes);
1463 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1464 
1465 	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1466 		async_work = &fs_info->async_data_reclaim_work;
1467 	else
1468 		async_work = &fs_info->async_reclaim_work;
1469 
1470 	spin_lock(&space_info->lock);
1471 	ret = -ENOSPC;
1472 	used = btrfs_space_info_used(space_info, true);
1473 
1474 	/*
1475 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1476 	 * generally handle ENOSPC in a different way, so treat them the same as
1477 	 * normal flushers when it comes to skipping pending tickets.
1478 	 */
1479 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1480 		pending_tickets = !list_empty(&space_info->tickets) ||
1481 			!list_empty(&space_info->priority_tickets);
1482 	else
1483 		pending_tickets = !list_empty(&space_info->priority_tickets);
1484 
1485 	/*
1486 	 * Carry on if we have enough space (short-circuit) OR call
1487 	 * can_overcommit() to ensure we can overcommit to continue.
1488 	 */
1489 	if (!pending_tickets &&
1490 	    ((used + orig_bytes <= space_info->total_bytes) ||
1491 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1492 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1493 						      orig_bytes);
1494 		ret = 0;
1495 	}
1496 
1497 	/*
1498 	 * If we couldn't make a reservation then setup our reservation ticket
1499 	 * and kick the async worker if it's not already running.
1500 	 *
1501 	 * If we are a priority flusher then we just need to add our ticket to
1502 	 * the list and we will do our own flushing further down.
1503 	 */
1504 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1505 		ticket.bytes = orig_bytes;
1506 		ticket.error = 0;
1507 		space_info->reclaim_size += ticket.bytes;
1508 		init_waitqueue_head(&ticket.wait);
1509 		ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1510 		if (trace_btrfs_reserve_ticket_enabled())
1511 			start_ns = ktime_get_ns();
1512 
1513 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1514 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1515 		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1516 			list_add_tail(&ticket.list, &space_info->tickets);
1517 			if (!space_info->flush) {
1518 				space_info->flush = 1;
1519 				trace_btrfs_trigger_flush(fs_info,
1520 							  space_info->flags,
1521 							  orig_bytes, flush,
1522 							  "enospc");
1523 				queue_work(system_unbound_wq, async_work);
1524 			}
1525 		} else {
1526 			list_add_tail(&ticket.list,
1527 				      &space_info->priority_tickets);
1528 		}
1529 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1530 		used += orig_bytes;
1531 		/*
1532 		 * We will do the space reservation dance during log replay,
1533 		 * which means we won't have fs_info->fs_root set, so don't do
1534 		 * the async reclaim as we will panic.
1535 		 */
1536 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1537 		    need_preemptive_reclaim(fs_info, space_info) &&
1538 		    !work_busy(&fs_info->preempt_reclaim_work)) {
1539 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1540 						  orig_bytes, flush, "preempt");
1541 			queue_work(system_unbound_wq,
1542 				   &fs_info->preempt_reclaim_work);
1543 		}
1544 	}
1545 	spin_unlock(&space_info->lock);
1546 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1547 		return ret;
1548 
1549 	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1550 				     orig_bytes, flush);
1551 }
1552 
1553 /**
1554  * Trye to reserve metadata bytes from the block_rsv's space
1555  *
1556  * @root:       the root we're allocating for
1557  * @block_rsv:  block_rsv we're allocating for
1558  * @orig_bytes: number of bytes we want
1559  * @flush:      whether or not we can flush to make our reservation
1560  *
1561  * This will reserve orig_bytes number of bytes from the space info associated
1562  * with the block_rsv.  If there is not enough space it will make an attempt to
1563  * flush out space to make room.  It will do this by flushing delalloc if
1564  * possible or committing the transaction.  If flush is 0 then no attempts to
1565  * regain reservations will be made and this will fail if there is not enough
1566  * space already.
1567  */
1568 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1569 				 struct btrfs_block_rsv *block_rsv,
1570 				 u64 orig_bytes,
1571 				 enum btrfs_reserve_flush_enum flush)
1572 {
1573 	struct btrfs_fs_info *fs_info = root->fs_info;
1574 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1575 	int ret;
1576 
1577 	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1578 	if (ret == -ENOSPC &&
1579 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1580 		if (block_rsv != global_rsv &&
1581 		    !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1582 			ret = 0;
1583 	}
1584 	if (ret == -ENOSPC) {
1585 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1586 					      block_rsv->space_info->flags,
1587 					      orig_bytes, 1);
1588 
1589 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1590 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1591 					      orig_bytes, 0);
1592 	}
1593 	return ret;
1594 }
1595 
1596 /**
1597  * Try to reserve data bytes for an allocation
1598  *
1599  * @fs_info: the filesystem
1600  * @bytes:   number of bytes we need
1601  * @flush:   how we are allowed to flush
1602  *
1603  * This will reserve bytes from the data space info.  If there is not enough
1604  * space then we will attempt to flush space as specified by flush.
1605  */
1606 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1607 			     enum btrfs_reserve_flush_enum flush)
1608 {
1609 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1610 	int ret;
1611 
1612 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1613 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1614 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1615 
1616 	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1617 	if (ret == -ENOSPC) {
1618 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1619 					      data_sinfo->flags, bytes, 1);
1620 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1621 			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1622 	}
1623 	return ret;
1624 }
1625