1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "space-info.h" 6 #include "sysfs.h" 7 #include "volumes.h" 8 #include "free-space-cache.h" 9 #include "ordered-data.h" 10 #include "transaction.h" 11 #include "block-group.h" 12 #include "zoned.h" 13 #include "fs.h" 14 #include "accessors.h" 15 #include "extent-tree.h" 16 17 /* 18 * HOW DOES SPACE RESERVATION WORK 19 * 20 * If you want to know about delalloc specifically, there is a separate comment 21 * for that with the delalloc code. This comment is about how the whole system 22 * works generally. 23 * 24 * BASIC CONCEPTS 25 * 26 * 1) space_info. This is the ultimate arbiter of how much space we can use. 27 * There's a description of the bytes_ fields with the struct declaration, 28 * refer to that for specifics on each field. Suffice it to say that for 29 * reservations we care about total_bytes - SUM(space_info->bytes_) when 30 * determining if there is space to make an allocation. There is a space_info 31 * for METADATA, SYSTEM, and DATA areas. 32 * 33 * 2) block_rsv's. These are basically buckets for every different type of 34 * metadata reservation we have. You can see the comment in the block_rsv 35 * code on the rules for each type, but generally block_rsv->reserved is how 36 * much space is accounted for in space_info->bytes_may_use. 37 * 38 * 3) btrfs_calc*_size. These are the worst case calculations we used based 39 * on the number of items we will want to modify. We have one for changing 40 * items, and one for inserting new items. Generally we use these helpers to 41 * determine the size of the block reserves, and then use the actual bytes 42 * values to adjust the space_info counters. 43 * 44 * MAKING RESERVATIONS, THE NORMAL CASE 45 * 46 * We call into either btrfs_reserve_data_bytes() or 47 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with 48 * num_bytes we want to reserve. 49 * 50 * ->reserve 51 * space_info->bytes_may_reserve += num_bytes 52 * 53 * ->extent allocation 54 * Call btrfs_add_reserved_bytes() which does 55 * space_info->bytes_may_reserve -= num_bytes 56 * space_info->bytes_reserved += extent_bytes 57 * 58 * ->insert reference 59 * Call btrfs_update_block_group() which does 60 * space_info->bytes_reserved -= extent_bytes 61 * space_info->bytes_used += extent_bytes 62 * 63 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) 64 * 65 * Assume we are unable to simply make the reservation because we do not have 66 * enough space 67 * 68 * -> __reserve_bytes 69 * create a reserve_ticket with ->bytes set to our reservation, add it to 70 * the tail of space_info->tickets, kick async flush thread 71 * 72 * ->handle_reserve_ticket 73 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set 74 * on the ticket. 75 * 76 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space 77 * Flushes various things attempting to free up space. 78 * 79 * -> btrfs_try_granting_tickets() 80 * This is called by anything that either subtracts space from 81 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the 82 * space_info->total_bytes. This loops through the ->priority_tickets and 83 * then the ->tickets list checking to see if the reservation can be 84 * completed. If it can the space is added to space_info->bytes_may_use and 85 * the ticket is woken up. 86 * 87 * -> ticket wakeup 88 * Check if ->bytes == 0, if it does we got our reservation and we can carry 89 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we 90 * were interrupted.) 91 * 92 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY 93 * 94 * Same as the above, except we add ourselves to the 95 * space_info->priority_tickets, and we do not use ticket->wait, we simply 96 * call flush_space() ourselves for the states that are safe for us to call 97 * without deadlocking and hope for the best. 98 * 99 * THE FLUSHING STATES 100 * 101 * Generally speaking we will have two cases for each state, a "nice" state 102 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to 103 * reduce the locking over head on the various trees, and even to keep from 104 * doing any work at all in the case of delayed refs. Each of these delayed 105 * things however hold reservations, and so letting them run allows us to 106 * reclaim space so we can make new reservations. 107 * 108 * FLUSH_DELAYED_ITEMS 109 * Every inode has a delayed item to update the inode. Take a simple write 110 * for example, we would update the inode item at write time to update the 111 * mtime, and then again at finish_ordered_io() time in order to update the 112 * isize or bytes. We keep these delayed items to coalesce these operations 113 * into a single operation done on demand. These are an easy way to reclaim 114 * metadata space. 115 * 116 * FLUSH_DELALLOC 117 * Look at the delalloc comment to get an idea of how much space is reserved 118 * for delayed allocation. We can reclaim some of this space simply by 119 * running delalloc, but usually we need to wait for ordered extents to 120 * reclaim the bulk of this space. 121 * 122 * FLUSH_DELAYED_REFS 123 * We have a block reserve for the outstanding delayed refs space, and every 124 * delayed ref operation holds a reservation. Running these is a quick way 125 * to reclaim space, but we want to hold this until the end because COW can 126 * churn a lot and we can avoid making some extent tree modifications if we 127 * are able to delay for as long as possible. 128 * 129 * ALLOC_CHUNK 130 * We will skip this the first time through space reservation, because of 131 * overcommit and we don't want to have a lot of useless metadata space when 132 * our worst case reservations will likely never come true. 133 * 134 * RUN_DELAYED_IPUTS 135 * If we're freeing inodes we're likely freeing checksums, file extent 136 * items, and extent tree items. Loads of space could be freed up by these 137 * operations, however they won't be usable until the transaction commits. 138 * 139 * COMMIT_TRANS 140 * This will commit the transaction. Historically we had a lot of logic 141 * surrounding whether or not we'd commit the transaction, but this waits born 142 * out of a pre-tickets era where we could end up committing the transaction 143 * thousands of times in a row without making progress. Now thanks to our 144 * ticketing system we know if we're not making progress and can error 145 * everybody out after a few commits rather than burning the disk hoping for 146 * a different answer. 147 * 148 * OVERCOMMIT 149 * 150 * Because we hold so many reservations for metadata we will allow you to 151 * reserve more space than is currently free in the currently allocate 152 * metadata space. This only happens with metadata, data does not allow 153 * overcommitting. 154 * 155 * You can see the current logic for when we allow overcommit in 156 * btrfs_can_overcommit(), but it only applies to unallocated space. If there 157 * is no unallocated space to be had, all reservations are kept within the 158 * free space in the allocated metadata chunks. 159 * 160 * Because of overcommitting, you generally want to use the 161 * btrfs_can_overcommit() logic for metadata allocations, as it does the right 162 * thing with or without extra unallocated space. 163 */ 164 165 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info, 166 bool may_use_included) 167 { 168 ASSERT(s_info); 169 return s_info->bytes_used + s_info->bytes_reserved + 170 s_info->bytes_pinned + s_info->bytes_readonly + 171 s_info->bytes_zone_unusable + 172 (may_use_included ? s_info->bytes_may_use : 0); 173 } 174 175 /* 176 * after adding space to the filesystem, we need to clear the full flags 177 * on all the space infos. 178 */ 179 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 180 { 181 struct list_head *head = &info->space_info; 182 struct btrfs_space_info *found; 183 184 list_for_each_entry(found, head, list) 185 found->full = 0; 186 } 187 188 /* 189 * Block groups with more than this value (percents) of unusable space will be 190 * scheduled for background reclaim. 191 */ 192 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75) 193 194 /* 195 * Calculate chunk size depending on volume type (regular or zoned). 196 */ 197 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags) 198 { 199 if (btrfs_is_zoned(fs_info)) 200 return fs_info->zone_size; 201 202 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 203 204 if (flags & BTRFS_BLOCK_GROUP_DATA) 205 return BTRFS_MAX_DATA_CHUNK_SIZE; 206 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 207 return SZ_32M; 208 209 /* Handle BTRFS_BLOCK_GROUP_METADATA */ 210 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G) 211 return SZ_1G; 212 213 return SZ_256M; 214 } 215 216 /* 217 * Update default chunk size. 218 */ 219 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info, 220 u64 chunk_size) 221 { 222 WRITE_ONCE(space_info->chunk_size, chunk_size); 223 } 224 225 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 226 { 227 228 struct btrfs_space_info *space_info; 229 int i; 230 int ret; 231 232 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 233 if (!space_info) 234 return -ENOMEM; 235 236 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 237 INIT_LIST_HEAD(&space_info->block_groups[i]); 238 init_rwsem(&space_info->groups_sem); 239 spin_lock_init(&space_info->lock); 240 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 241 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 242 INIT_LIST_HEAD(&space_info->ro_bgs); 243 INIT_LIST_HEAD(&space_info->tickets); 244 INIT_LIST_HEAD(&space_info->priority_tickets); 245 space_info->clamp = 1; 246 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags)); 247 248 if (btrfs_is_zoned(info)) 249 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH; 250 251 ret = btrfs_sysfs_add_space_info_type(info, space_info); 252 if (ret) 253 return ret; 254 255 list_add(&space_info->list, &info->space_info); 256 if (flags & BTRFS_BLOCK_GROUP_DATA) 257 info->data_sinfo = space_info; 258 259 return ret; 260 } 261 262 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 263 { 264 struct btrfs_super_block *disk_super; 265 u64 features; 266 u64 flags; 267 int mixed = 0; 268 int ret; 269 270 disk_super = fs_info->super_copy; 271 if (!btrfs_super_root(disk_super)) 272 return -EINVAL; 273 274 features = btrfs_super_incompat_flags(disk_super); 275 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 276 mixed = 1; 277 278 flags = BTRFS_BLOCK_GROUP_SYSTEM; 279 ret = create_space_info(fs_info, flags); 280 if (ret) 281 goto out; 282 283 if (mixed) { 284 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 285 ret = create_space_info(fs_info, flags); 286 } else { 287 flags = BTRFS_BLOCK_GROUP_METADATA; 288 ret = create_space_info(fs_info, flags); 289 if (ret) 290 goto out; 291 292 flags = BTRFS_BLOCK_GROUP_DATA; 293 ret = create_space_info(fs_info, flags); 294 } 295 out: 296 return ret; 297 } 298 299 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info, 300 struct btrfs_block_group *block_group) 301 { 302 struct btrfs_space_info *found; 303 int factor, index; 304 305 factor = btrfs_bg_type_to_factor(block_group->flags); 306 307 found = btrfs_find_space_info(info, block_group->flags); 308 ASSERT(found); 309 spin_lock(&found->lock); 310 found->total_bytes += block_group->length; 311 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) 312 found->active_total_bytes += block_group->length; 313 found->disk_total += block_group->length * factor; 314 found->bytes_used += block_group->used; 315 found->disk_used += block_group->used * factor; 316 found->bytes_readonly += block_group->bytes_super; 317 found->bytes_zone_unusable += block_group->zone_unusable; 318 if (block_group->length > 0) 319 found->full = 0; 320 btrfs_try_granting_tickets(info, found); 321 spin_unlock(&found->lock); 322 323 block_group->space_info = found; 324 325 index = btrfs_bg_flags_to_raid_index(block_group->flags); 326 down_write(&found->groups_sem); 327 list_add_tail(&block_group->list, &found->block_groups[index]); 328 up_write(&found->groups_sem); 329 } 330 331 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 332 u64 flags) 333 { 334 struct list_head *head = &info->space_info; 335 struct btrfs_space_info *found; 336 337 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 338 339 list_for_each_entry(found, head, list) { 340 if (found->flags & flags) 341 return found; 342 } 343 return NULL; 344 } 345 346 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info, 347 struct btrfs_space_info *space_info, 348 enum btrfs_reserve_flush_enum flush) 349 { 350 u64 profile; 351 u64 avail; 352 int factor; 353 354 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 355 profile = btrfs_system_alloc_profile(fs_info); 356 else 357 profile = btrfs_metadata_alloc_profile(fs_info); 358 359 avail = atomic64_read(&fs_info->free_chunk_space); 360 361 /* 362 * If we have dup, raid1 or raid10 then only half of the free 363 * space is actually usable. For raid56, the space info used 364 * doesn't include the parity drive, so we don't have to 365 * change the math 366 */ 367 factor = btrfs_bg_type_to_factor(profile); 368 avail = div_u64(avail, factor); 369 370 /* 371 * If we aren't flushing all things, let us overcommit up to 372 * 1/2th of the space. If we can flush, don't let us overcommit 373 * too much, let it overcommit up to 1/8 of the space. 374 */ 375 if (flush == BTRFS_RESERVE_FLUSH_ALL) 376 avail >>= 3; 377 else 378 avail >>= 1; 379 return avail; 380 } 381 382 static inline u64 writable_total_bytes(struct btrfs_fs_info *fs_info, 383 struct btrfs_space_info *space_info) 384 { 385 /* 386 * On regular filesystem, all total_bytes are always writable. On zoned 387 * filesystem, there may be a limitation imposed by max_active_zones. 388 * For metadata allocation, we cannot finish an existing active block 389 * group to avoid a deadlock. Thus, we need to consider only the active 390 * groups to be writable for metadata space. 391 */ 392 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA)) 393 return space_info->total_bytes; 394 395 return space_info->active_total_bytes; 396 } 397 398 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info, 399 struct btrfs_space_info *space_info, u64 bytes, 400 enum btrfs_reserve_flush_enum flush) 401 { 402 u64 avail; 403 u64 used; 404 405 /* Don't overcommit when in mixed mode */ 406 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 407 return 0; 408 409 used = btrfs_space_info_used(space_info, true); 410 if (test_bit(BTRFS_FS_NO_OVERCOMMIT, &fs_info->flags) && 411 (space_info->flags & BTRFS_BLOCK_GROUP_METADATA)) 412 avail = 0; 413 else 414 avail = calc_available_free_space(fs_info, space_info, flush); 415 416 if (used + bytes < writable_total_bytes(fs_info, space_info) + avail) 417 return 1; 418 return 0; 419 } 420 421 static void remove_ticket(struct btrfs_space_info *space_info, 422 struct reserve_ticket *ticket) 423 { 424 if (!list_empty(&ticket->list)) { 425 list_del_init(&ticket->list); 426 ASSERT(space_info->reclaim_size >= ticket->bytes); 427 space_info->reclaim_size -= ticket->bytes; 428 } 429 } 430 431 /* 432 * This is for space we already have accounted in space_info->bytes_may_use, so 433 * basically when we're returning space from block_rsv's. 434 */ 435 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info, 436 struct btrfs_space_info *space_info) 437 { 438 struct list_head *head; 439 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 440 441 lockdep_assert_held(&space_info->lock); 442 443 head = &space_info->priority_tickets; 444 again: 445 while (!list_empty(head)) { 446 struct reserve_ticket *ticket; 447 u64 used = btrfs_space_info_used(space_info, true); 448 449 ticket = list_first_entry(head, struct reserve_ticket, list); 450 451 /* Check and see if our ticket can be satisfied now. */ 452 if ((used + ticket->bytes <= writable_total_bytes(fs_info, space_info)) || 453 btrfs_can_overcommit(fs_info, space_info, ticket->bytes, 454 flush)) { 455 btrfs_space_info_update_bytes_may_use(fs_info, 456 space_info, 457 ticket->bytes); 458 remove_ticket(space_info, ticket); 459 ticket->bytes = 0; 460 space_info->tickets_id++; 461 wake_up(&ticket->wait); 462 } else { 463 break; 464 } 465 } 466 467 if (head == &space_info->priority_tickets) { 468 head = &space_info->tickets; 469 flush = BTRFS_RESERVE_FLUSH_ALL; 470 goto again; 471 } 472 } 473 474 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ 475 do { \ 476 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ 477 spin_lock(&__rsv->lock); \ 478 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ 479 __rsv->size, __rsv->reserved); \ 480 spin_unlock(&__rsv->lock); \ 481 } while (0) 482 483 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info) 484 { 485 switch (space_info->flags) { 486 case BTRFS_BLOCK_GROUP_SYSTEM: 487 return "SYSTEM"; 488 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA: 489 return "DATA+METADATA"; 490 case BTRFS_BLOCK_GROUP_DATA: 491 return "DATA"; 492 case BTRFS_BLOCK_GROUP_METADATA: 493 return "METADATA"; 494 default: 495 return "UNKNOWN"; 496 } 497 } 498 499 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info) 500 { 501 DUMP_BLOCK_RSV(fs_info, global_block_rsv); 502 DUMP_BLOCK_RSV(fs_info, trans_block_rsv); 503 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); 504 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); 505 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); 506 } 507 508 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 509 struct btrfs_space_info *info) 510 { 511 const char *flag_str = space_info_flag_to_str(info); 512 lockdep_assert_held(&info->lock); 513 514 /* The free space could be negative in case of overcommit */ 515 btrfs_info(fs_info, "space_info %s has %lld free, is %sfull", 516 flag_str, 517 (s64)(info->total_bytes - btrfs_space_info_used(info, true)), 518 info->full ? "" : "not "); 519 btrfs_info(fs_info, 520 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu", 521 info->total_bytes, info->bytes_used, info->bytes_pinned, 522 info->bytes_reserved, info->bytes_may_use, 523 info->bytes_readonly, info->bytes_zone_unusable); 524 } 525 526 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 527 struct btrfs_space_info *info, u64 bytes, 528 int dump_block_groups) 529 { 530 struct btrfs_block_group *cache; 531 int index = 0; 532 533 spin_lock(&info->lock); 534 __btrfs_dump_space_info(fs_info, info); 535 dump_global_block_rsv(fs_info); 536 spin_unlock(&info->lock); 537 538 if (!dump_block_groups) 539 return; 540 541 down_read(&info->groups_sem); 542 again: 543 list_for_each_entry(cache, &info->block_groups[index], list) { 544 spin_lock(&cache->lock); 545 btrfs_info(fs_info, 546 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s", 547 cache->start, cache->length, cache->used, cache->pinned, 548 cache->reserved, cache->zone_unusable, 549 cache->ro ? "[readonly]" : ""); 550 spin_unlock(&cache->lock); 551 btrfs_dump_free_space(cache, bytes); 552 } 553 if (++index < BTRFS_NR_RAID_TYPES) 554 goto again; 555 up_read(&info->groups_sem); 556 } 557 558 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 559 u64 to_reclaim) 560 { 561 u64 bytes; 562 u64 nr; 563 564 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 565 nr = div64_u64(to_reclaim, bytes); 566 if (!nr) 567 nr = 1; 568 return nr; 569 } 570 571 #define EXTENT_SIZE_PER_ITEM SZ_256K 572 573 /* 574 * shrink metadata reservation for delalloc 575 */ 576 static void shrink_delalloc(struct btrfs_fs_info *fs_info, 577 struct btrfs_space_info *space_info, 578 u64 to_reclaim, bool wait_ordered, 579 bool for_preempt) 580 { 581 struct btrfs_trans_handle *trans; 582 u64 delalloc_bytes; 583 u64 ordered_bytes; 584 u64 items; 585 long time_left; 586 int loops; 587 588 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 589 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes); 590 if (delalloc_bytes == 0 && ordered_bytes == 0) 591 return; 592 593 /* Calc the number of the pages we need flush for space reservation */ 594 if (to_reclaim == U64_MAX) { 595 items = U64_MAX; 596 } else { 597 /* 598 * to_reclaim is set to however much metadata we need to 599 * reclaim, but reclaiming that much data doesn't really track 600 * exactly. What we really want to do is reclaim full inode's 601 * worth of reservations, however that's not available to us 602 * here. We will take a fraction of the delalloc bytes for our 603 * flushing loops and hope for the best. Delalloc will expand 604 * the amount we write to cover an entire dirty extent, which 605 * will reclaim the metadata reservation for that range. If 606 * it's not enough subsequent flush stages will be more 607 * aggressive. 608 */ 609 to_reclaim = max(to_reclaim, delalloc_bytes >> 3); 610 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2; 611 } 612 613 trans = current->journal_info; 614 615 /* 616 * If we are doing more ordered than delalloc we need to just wait on 617 * ordered extents, otherwise we'll waste time trying to flush delalloc 618 * that likely won't give us the space back we need. 619 */ 620 if (ordered_bytes > delalloc_bytes && !for_preempt) 621 wait_ordered = true; 622 623 loops = 0; 624 while ((delalloc_bytes || ordered_bytes) && loops < 3) { 625 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; 626 long nr_pages = min_t(u64, temp, LONG_MAX); 627 int async_pages; 628 629 btrfs_start_delalloc_roots(fs_info, nr_pages, true); 630 631 /* 632 * We need to make sure any outstanding async pages are now 633 * processed before we continue. This is because things like 634 * sync_inode() try to be smart and skip writing if the inode is 635 * marked clean. We don't use filemap_fwrite for flushing 636 * because we want to control how many pages we write out at a 637 * time, thus this is the only safe way to make sure we've 638 * waited for outstanding compressed workers to have started 639 * their jobs and thus have ordered extents set up properly. 640 * 641 * This exists because we do not want to wait for each 642 * individual inode to finish its async work, we simply want to 643 * start the IO on everybody, and then come back here and wait 644 * for all of the async work to catch up. Once we're done with 645 * that we know we'll have ordered extents for everything and we 646 * can decide if we wait for that or not. 647 * 648 * If we choose to replace this in the future, make absolutely 649 * sure that the proper waiting is being done in the async case, 650 * as there have been bugs in that area before. 651 */ 652 async_pages = atomic_read(&fs_info->async_delalloc_pages); 653 if (!async_pages) 654 goto skip_async; 655 656 /* 657 * We don't want to wait forever, if we wrote less pages in this 658 * loop than we have outstanding, only wait for that number of 659 * pages, otherwise we can wait for all async pages to finish 660 * before continuing. 661 */ 662 if (async_pages > nr_pages) 663 async_pages -= nr_pages; 664 else 665 async_pages = 0; 666 wait_event(fs_info->async_submit_wait, 667 atomic_read(&fs_info->async_delalloc_pages) <= 668 async_pages); 669 skip_async: 670 loops++; 671 if (wait_ordered && !trans) { 672 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 673 } else { 674 time_left = schedule_timeout_killable(1); 675 if (time_left) 676 break; 677 } 678 679 /* 680 * If we are for preemption we just want a one-shot of delalloc 681 * flushing so we can stop flushing if we decide we don't need 682 * to anymore. 683 */ 684 if (for_preempt) 685 break; 686 687 spin_lock(&space_info->lock); 688 if (list_empty(&space_info->tickets) && 689 list_empty(&space_info->priority_tickets)) { 690 spin_unlock(&space_info->lock); 691 break; 692 } 693 spin_unlock(&space_info->lock); 694 695 delalloc_bytes = percpu_counter_sum_positive( 696 &fs_info->delalloc_bytes); 697 ordered_bytes = percpu_counter_sum_positive( 698 &fs_info->ordered_bytes); 699 } 700 } 701 702 /* 703 * Try to flush some data based on policy set by @state. This is only advisory 704 * and may fail for various reasons. The caller is supposed to examine the 705 * state of @space_info to detect the outcome. 706 */ 707 static void flush_space(struct btrfs_fs_info *fs_info, 708 struct btrfs_space_info *space_info, u64 num_bytes, 709 enum btrfs_flush_state state, bool for_preempt) 710 { 711 struct btrfs_root *root = fs_info->tree_root; 712 struct btrfs_trans_handle *trans; 713 int nr; 714 int ret = 0; 715 716 switch (state) { 717 case FLUSH_DELAYED_ITEMS_NR: 718 case FLUSH_DELAYED_ITEMS: 719 if (state == FLUSH_DELAYED_ITEMS_NR) 720 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 721 else 722 nr = -1; 723 724 trans = btrfs_join_transaction(root); 725 if (IS_ERR(trans)) { 726 ret = PTR_ERR(trans); 727 break; 728 } 729 ret = btrfs_run_delayed_items_nr(trans, nr); 730 btrfs_end_transaction(trans); 731 break; 732 case FLUSH_DELALLOC: 733 case FLUSH_DELALLOC_WAIT: 734 case FLUSH_DELALLOC_FULL: 735 if (state == FLUSH_DELALLOC_FULL) 736 num_bytes = U64_MAX; 737 shrink_delalloc(fs_info, space_info, num_bytes, 738 state != FLUSH_DELALLOC, for_preempt); 739 break; 740 case FLUSH_DELAYED_REFS_NR: 741 case FLUSH_DELAYED_REFS: 742 trans = btrfs_join_transaction(root); 743 if (IS_ERR(trans)) { 744 ret = PTR_ERR(trans); 745 break; 746 } 747 if (state == FLUSH_DELAYED_REFS_NR) 748 nr = calc_reclaim_items_nr(fs_info, num_bytes); 749 else 750 nr = 0; 751 btrfs_run_delayed_refs(trans, nr); 752 btrfs_end_transaction(trans); 753 break; 754 case ALLOC_CHUNK: 755 case ALLOC_CHUNK_FORCE: 756 /* 757 * For metadata space on zoned filesystem, reaching here means we 758 * don't have enough space left in active_total_bytes. Try to 759 * activate a block group first, because we may have inactive 760 * block group already allocated. 761 */ 762 ret = btrfs_zoned_activate_one_bg(fs_info, space_info, false); 763 if (ret < 0) 764 break; 765 else if (ret == 1) 766 break; 767 768 trans = btrfs_join_transaction(root); 769 if (IS_ERR(trans)) { 770 ret = PTR_ERR(trans); 771 break; 772 } 773 ret = btrfs_chunk_alloc(trans, 774 btrfs_get_alloc_profile(fs_info, space_info->flags), 775 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : 776 CHUNK_ALLOC_FORCE); 777 btrfs_end_transaction(trans); 778 779 /* 780 * For metadata space on zoned filesystem, allocating a new chunk 781 * is not enough. We still need to activate the block * group. 782 * Active the newly allocated block group by (maybe) finishing 783 * a block group. 784 */ 785 if (ret == 1) { 786 ret = btrfs_zoned_activate_one_bg(fs_info, space_info, true); 787 /* 788 * Revert to the original ret regardless we could finish 789 * one block group or not. 790 */ 791 if (ret >= 0) 792 ret = 1; 793 } 794 795 if (ret > 0 || ret == -ENOSPC) 796 ret = 0; 797 break; 798 case RUN_DELAYED_IPUTS: 799 /* 800 * If we have pending delayed iputs then we could free up a 801 * bunch of pinned space, so make sure we run the iputs before 802 * we do our pinned bytes check below. 803 */ 804 btrfs_run_delayed_iputs(fs_info); 805 btrfs_wait_on_delayed_iputs(fs_info); 806 break; 807 case COMMIT_TRANS: 808 ASSERT(current->journal_info == NULL); 809 trans = btrfs_join_transaction(root); 810 if (IS_ERR(trans)) { 811 ret = PTR_ERR(trans); 812 break; 813 } 814 ret = btrfs_commit_transaction(trans); 815 break; 816 default: 817 ret = -ENOSPC; 818 break; 819 } 820 821 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 822 ret, for_preempt); 823 return; 824 } 825 826 static inline u64 827 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 828 struct btrfs_space_info *space_info) 829 { 830 u64 used; 831 u64 avail; 832 u64 total; 833 u64 to_reclaim = space_info->reclaim_size; 834 835 lockdep_assert_held(&space_info->lock); 836 837 avail = calc_available_free_space(fs_info, space_info, 838 BTRFS_RESERVE_FLUSH_ALL); 839 used = btrfs_space_info_used(space_info, true); 840 841 /* 842 * We may be flushing because suddenly we have less space than we had 843 * before, and now we're well over-committed based on our current free 844 * space. If that's the case add in our overage so we make sure to put 845 * appropriate pressure on the flushing state machine. 846 */ 847 total = writable_total_bytes(fs_info, space_info); 848 if (total + avail < used) 849 to_reclaim += used - (total + avail); 850 851 return to_reclaim; 852 } 853 854 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info, 855 struct btrfs_space_info *space_info) 856 { 857 u64 global_rsv_size = fs_info->global_block_rsv.reserved; 858 u64 ordered, delalloc; 859 u64 total = writable_total_bytes(fs_info, space_info); 860 u64 thresh; 861 u64 used; 862 863 thresh = mult_perc(total, 90); 864 865 lockdep_assert_held(&space_info->lock); 866 867 /* If we're just plain full then async reclaim just slows us down. */ 868 if ((space_info->bytes_used + space_info->bytes_reserved + 869 global_rsv_size) >= thresh) 870 return false; 871 872 used = space_info->bytes_may_use + space_info->bytes_pinned; 873 874 /* The total flushable belongs to the global rsv, don't flush. */ 875 if (global_rsv_size >= used) 876 return false; 877 878 /* 879 * 128MiB is 1/4 of the maximum global rsv size. If we have less than 880 * that devoted to other reservations then there's no sense in flushing, 881 * we don't have a lot of things that need flushing. 882 */ 883 if (used - global_rsv_size <= SZ_128M) 884 return false; 885 886 /* 887 * We have tickets queued, bail so we don't compete with the async 888 * flushers. 889 */ 890 if (space_info->reclaim_size) 891 return false; 892 893 /* 894 * If we have over half of the free space occupied by reservations or 895 * pinned then we want to start flushing. 896 * 897 * We do not do the traditional thing here, which is to say 898 * 899 * if (used >= ((total_bytes + avail) / 2)) 900 * return 1; 901 * 902 * because this doesn't quite work how we want. If we had more than 50% 903 * of the space_info used by bytes_used and we had 0 available we'd just 904 * constantly run the background flusher. Instead we want it to kick in 905 * if our reclaimable space exceeds our clamped free space. 906 * 907 * Our clamping range is 2^1 -> 2^8. Practically speaking that means 908 * the following: 909 * 910 * Amount of RAM Minimum threshold Maximum threshold 911 * 912 * 256GiB 1GiB 128GiB 913 * 128GiB 512MiB 64GiB 914 * 64GiB 256MiB 32GiB 915 * 32GiB 128MiB 16GiB 916 * 16GiB 64MiB 8GiB 917 * 918 * These are the range our thresholds will fall in, corresponding to how 919 * much delalloc we need for the background flusher to kick in. 920 */ 921 922 thresh = calc_available_free_space(fs_info, space_info, 923 BTRFS_RESERVE_FLUSH_ALL); 924 used = space_info->bytes_used + space_info->bytes_reserved + 925 space_info->bytes_readonly + global_rsv_size; 926 if (used < total) 927 thresh += total - used; 928 thresh >>= space_info->clamp; 929 930 used = space_info->bytes_pinned; 931 932 /* 933 * If we have more ordered bytes than delalloc bytes then we're either 934 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting 935 * around. Preemptive flushing is only useful in that it can free up 936 * space before tickets need to wait for things to finish. In the case 937 * of ordered extents, preemptively waiting on ordered extents gets us 938 * nothing, if our reservations are tied up in ordered extents we'll 939 * simply have to slow down writers by forcing them to wait on ordered 940 * extents. 941 * 942 * In the case that ordered is larger than delalloc, only include the 943 * block reserves that we would actually be able to directly reclaim 944 * from. In this case if we're heavy on metadata operations this will 945 * clearly be heavy enough to warrant preemptive flushing. In the case 946 * of heavy DIO or ordered reservations, preemptive flushing will just 947 * waste time and cause us to slow down. 948 * 949 * We want to make sure we truly are maxed out on ordered however, so 950 * cut ordered in half, and if it's still higher than delalloc then we 951 * can keep flushing. This is to avoid the case where we start 952 * flushing, and now delalloc == ordered and we stop preemptively 953 * flushing when we could still have several gigs of delalloc to flush. 954 */ 955 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1; 956 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes); 957 if (ordered >= delalloc) 958 used += fs_info->delayed_refs_rsv.reserved + 959 fs_info->delayed_block_rsv.reserved; 960 else 961 used += space_info->bytes_may_use - global_rsv_size; 962 963 return (used >= thresh && !btrfs_fs_closing(fs_info) && 964 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 965 } 966 967 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info, 968 struct btrfs_space_info *space_info, 969 struct reserve_ticket *ticket) 970 { 971 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 972 u64 min_bytes; 973 974 if (!ticket->steal) 975 return false; 976 977 if (global_rsv->space_info != space_info) 978 return false; 979 980 spin_lock(&global_rsv->lock); 981 min_bytes = mult_perc(global_rsv->size, 10); 982 if (global_rsv->reserved < min_bytes + ticket->bytes) { 983 spin_unlock(&global_rsv->lock); 984 return false; 985 } 986 global_rsv->reserved -= ticket->bytes; 987 remove_ticket(space_info, ticket); 988 ticket->bytes = 0; 989 wake_up(&ticket->wait); 990 space_info->tickets_id++; 991 if (global_rsv->reserved < global_rsv->size) 992 global_rsv->full = 0; 993 spin_unlock(&global_rsv->lock); 994 995 return true; 996 } 997 998 /* 999 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets 1000 * @fs_info - fs_info for this fs 1001 * @space_info - the space info we were flushing 1002 * 1003 * We call this when we've exhausted our flushing ability and haven't made 1004 * progress in satisfying tickets. The reservation code handles tickets in 1005 * order, so if there is a large ticket first and then smaller ones we could 1006 * very well satisfy the smaller tickets. This will attempt to wake up any 1007 * tickets in the list to catch this case. 1008 * 1009 * This function returns true if it was able to make progress by clearing out 1010 * other tickets, or if it stumbles across a ticket that was smaller than the 1011 * first ticket. 1012 */ 1013 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info, 1014 struct btrfs_space_info *space_info) 1015 { 1016 struct reserve_ticket *ticket; 1017 u64 tickets_id = space_info->tickets_id; 1018 const bool aborted = BTRFS_FS_ERROR(fs_info); 1019 1020 trace_btrfs_fail_all_tickets(fs_info, space_info); 1021 1022 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1023 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); 1024 __btrfs_dump_space_info(fs_info, space_info); 1025 } 1026 1027 while (!list_empty(&space_info->tickets) && 1028 tickets_id == space_info->tickets_id) { 1029 ticket = list_first_entry(&space_info->tickets, 1030 struct reserve_ticket, list); 1031 1032 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket)) 1033 return true; 1034 1035 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1036 btrfs_info(fs_info, "failing ticket with %llu bytes", 1037 ticket->bytes); 1038 1039 remove_ticket(space_info, ticket); 1040 if (aborted) 1041 ticket->error = -EIO; 1042 else 1043 ticket->error = -ENOSPC; 1044 wake_up(&ticket->wait); 1045 1046 /* 1047 * We're just throwing tickets away, so more flushing may not 1048 * trip over btrfs_try_granting_tickets, so we need to call it 1049 * here to see if we can make progress with the next ticket in 1050 * the list. 1051 */ 1052 if (!aborted) 1053 btrfs_try_granting_tickets(fs_info, space_info); 1054 } 1055 return (tickets_id != space_info->tickets_id); 1056 } 1057 1058 /* 1059 * This is for normal flushers, we can wait all goddamned day if we want to. We 1060 * will loop and continuously try to flush as long as we are making progress. 1061 * We count progress as clearing off tickets each time we have to loop. 1062 */ 1063 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 1064 { 1065 struct btrfs_fs_info *fs_info; 1066 struct btrfs_space_info *space_info; 1067 u64 to_reclaim; 1068 enum btrfs_flush_state flush_state; 1069 int commit_cycles = 0; 1070 u64 last_tickets_id; 1071 1072 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 1073 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1074 1075 spin_lock(&space_info->lock); 1076 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1077 if (!to_reclaim) { 1078 space_info->flush = 0; 1079 spin_unlock(&space_info->lock); 1080 return; 1081 } 1082 last_tickets_id = space_info->tickets_id; 1083 spin_unlock(&space_info->lock); 1084 1085 flush_state = FLUSH_DELAYED_ITEMS_NR; 1086 do { 1087 flush_space(fs_info, space_info, to_reclaim, flush_state, false); 1088 spin_lock(&space_info->lock); 1089 if (list_empty(&space_info->tickets)) { 1090 space_info->flush = 0; 1091 spin_unlock(&space_info->lock); 1092 return; 1093 } 1094 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 1095 space_info); 1096 if (last_tickets_id == space_info->tickets_id) { 1097 flush_state++; 1098 } else { 1099 last_tickets_id = space_info->tickets_id; 1100 flush_state = FLUSH_DELAYED_ITEMS_NR; 1101 if (commit_cycles) 1102 commit_cycles--; 1103 } 1104 1105 /* 1106 * We do not want to empty the system of delalloc unless we're 1107 * under heavy pressure, so allow one trip through the flushing 1108 * logic before we start doing a FLUSH_DELALLOC_FULL. 1109 */ 1110 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles) 1111 flush_state++; 1112 1113 /* 1114 * We don't want to force a chunk allocation until we've tried 1115 * pretty hard to reclaim space. Think of the case where we 1116 * freed up a bunch of space and so have a lot of pinned space 1117 * to reclaim. We would rather use that than possibly create a 1118 * underutilized metadata chunk. So if this is our first run 1119 * through the flushing state machine skip ALLOC_CHUNK_FORCE and 1120 * commit the transaction. If nothing has changed the next go 1121 * around then we can force a chunk allocation. 1122 */ 1123 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) 1124 flush_state++; 1125 1126 if (flush_state > COMMIT_TRANS) { 1127 commit_cycles++; 1128 if (commit_cycles > 2) { 1129 if (maybe_fail_all_tickets(fs_info, space_info)) { 1130 flush_state = FLUSH_DELAYED_ITEMS_NR; 1131 commit_cycles--; 1132 } else { 1133 space_info->flush = 0; 1134 } 1135 } else { 1136 flush_state = FLUSH_DELAYED_ITEMS_NR; 1137 } 1138 } 1139 spin_unlock(&space_info->lock); 1140 } while (flush_state <= COMMIT_TRANS); 1141 } 1142 1143 /* 1144 * This handles pre-flushing of metadata space before we get to the point that 1145 * we need to start blocking threads on tickets. The logic here is different 1146 * from the other flush paths because it doesn't rely on tickets to tell us how 1147 * much we need to flush, instead it attempts to keep us below the 80% full 1148 * watermark of space by flushing whichever reservation pool is currently the 1149 * largest. 1150 */ 1151 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work) 1152 { 1153 struct btrfs_fs_info *fs_info; 1154 struct btrfs_space_info *space_info; 1155 struct btrfs_block_rsv *delayed_block_rsv; 1156 struct btrfs_block_rsv *delayed_refs_rsv; 1157 struct btrfs_block_rsv *global_rsv; 1158 struct btrfs_block_rsv *trans_rsv; 1159 int loops = 0; 1160 1161 fs_info = container_of(work, struct btrfs_fs_info, 1162 preempt_reclaim_work); 1163 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1164 delayed_block_rsv = &fs_info->delayed_block_rsv; 1165 delayed_refs_rsv = &fs_info->delayed_refs_rsv; 1166 global_rsv = &fs_info->global_block_rsv; 1167 trans_rsv = &fs_info->trans_block_rsv; 1168 1169 spin_lock(&space_info->lock); 1170 while (need_preemptive_reclaim(fs_info, space_info)) { 1171 enum btrfs_flush_state flush; 1172 u64 delalloc_size = 0; 1173 u64 to_reclaim, block_rsv_size; 1174 u64 global_rsv_size = global_rsv->reserved; 1175 1176 loops++; 1177 1178 /* 1179 * We don't have a precise counter for the metadata being 1180 * reserved for delalloc, so we'll approximate it by subtracting 1181 * out the block rsv's space from the bytes_may_use. If that 1182 * amount is higher than the individual reserves, then we can 1183 * assume it's tied up in delalloc reservations. 1184 */ 1185 block_rsv_size = global_rsv_size + 1186 delayed_block_rsv->reserved + 1187 delayed_refs_rsv->reserved + 1188 trans_rsv->reserved; 1189 if (block_rsv_size < space_info->bytes_may_use) 1190 delalloc_size = space_info->bytes_may_use - block_rsv_size; 1191 1192 /* 1193 * We don't want to include the global_rsv in our calculation, 1194 * because that's space we can't touch. Subtract it from the 1195 * block_rsv_size for the next checks. 1196 */ 1197 block_rsv_size -= global_rsv_size; 1198 1199 /* 1200 * We really want to avoid flushing delalloc too much, as it 1201 * could result in poor allocation patterns, so only flush it if 1202 * it's larger than the rest of the pools combined. 1203 */ 1204 if (delalloc_size > block_rsv_size) { 1205 to_reclaim = delalloc_size; 1206 flush = FLUSH_DELALLOC; 1207 } else if (space_info->bytes_pinned > 1208 (delayed_block_rsv->reserved + 1209 delayed_refs_rsv->reserved)) { 1210 to_reclaim = space_info->bytes_pinned; 1211 flush = COMMIT_TRANS; 1212 } else if (delayed_block_rsv->reserved > 1213 delayed_refs_rsv->reserved) { 1214 to_reclaim = delayed_block_rsv->reserved; 1215 flush = FLUSH_DELAYED_ITEMS_NR; 1216 } else { 1217 to_reclaim = delayed_refs_rsv->reserved; 1218 flush = FLUSH_DELAYED_REFS_NR; 1219 } 1220 1221 spin_unlock(&space_info->lock); 1222 1223 /* 1224 * We don't want to reclaim everything, just a portion, so scale 1225 * down the to_reclaim by 1/4. If it takes us down to 0, 1226 * reclaim 1 items worth. 1227 */ 1228 to_reclaim >>= 2; 1229 if (!to_reclaim) 1230 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1); 1231 flush_space(fs_info, space_info, to_reclaim, flush, true); 1232 cond_resched(); 1233 spin_lock(&space_info->lock); 1234 } 1235 1236 /* We only went through once, back off our clamping. */ 1237 if (loops == 1 && !space_info->reclaim_size) 1238 space_info->clamp = max(1, space_info->clamp - 1); 1239 trace_btrfs_done_preemptive_reclaim(fs_info, space_info); 1240 spin_unlock(&space_info->lock); 1241 } 1242 1243 /* 1244 * FLUSH_DELALLOC_WAIT: 1245 * Space is freed from flushing delalloc in one of two ways. 1246 * 1247 * 1) compression is on and we allocate less space than we reserved 1248 * 2) we are overwriting existing space 1249 * 1250 * For #1 that extra space is reclaimed as soon as the delalloc pages are 1251 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent 1252 * length to ->bytes_reserved, and subtracts the reserved space from 1253 * ->bytes_may_use. 1254 * 1255 * For #2 this is trickier. Once the ordered extent runs we will drop the 1256 * extent in the range we are overwriting, which creates a delayed ref for 1257 * that freed extent. This however is not reclaimed until the transaction 1258 * commits, thus the next stages. 1259 * 1260 * RUN_DELAYED_IPUTS 1261 * If we are freeing inodes, we want to make sure all delayed iputs have 1262 * completed, because they could have been on an inode with i_nlink == 0, and 1263 * thus have been truncated and freed up space. But again this space is not 1264 * immediately re-usable, it comes in the form of a delayed ref, which must be 1265 * run and then the transaction must be committed. 1266 * 1267 * COMMIT_TRANS 1268 * This is where we reclaim all of the pinned space generated by running the 1269 * iputs 1270 * 1271 * ALLOC_CHUNK_FORCE 1272 * For data we start with alloc chunk force, however we could have been full 1273 * before, and then the transaction commit could have freed new block groups, 1274 * so if we now have space to allocate do the force chunk allocation. 1275 */ 1276 static const enum btrfs_flush_state data_flush_states[] = { 1277 FLUSH_DELALLOC_FULL, 1278 RUN_DELAYED_IPUTS, 1279 COMMIT_TRANS, 1280 ALLOC_CHUNK_FORCE, 1281 }; 1282 1283 static void btrfs_async_reclaim_data_space(struct work_struct *work) 1284 { 1285 struct btrfs_fs_info *fs_info; 1286 struct btrfs_space_info *space_info; 1287 u64 last_tickets_id; 1288 enum btrfs_flush_state flush_state = 0; 1289 1290 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work); 1291 space_info = fs_info->data_sinfo; 1292 1293 spin_lock(&space_info->lock); 1294 if (list_empty(&space_info->tickets)) { 1295 space_info->flush = 0; 1296 spin_unlock(&space_info->lock); 1297 return; 1298 } 1299 last_tickets_id = space_info->tickets_id; 1300 spin_unlock(&space_info->lock); 1301 1302 while (!space_info->full) { 1303 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1304 spin_lock(&space_info->lock); 1305 if (list_empty(&space_info->tickets)) { 1306 space_info->flush = 0; 1307 spin_unlock(&space_info->lock); 1308 return; 1309 } 1310 1311 /* Something happened, fail everything and bail. */ 1312 if (BTRFS_FS_ERROR(fs_info)) 1313 goto aborted_fs; 1314 last_tickets_id = space_info->tickets_id; 1315 spin_unlock(&space_info->lock); 1316 } 1317 1318 while (flush_state < ARRAY_SIZE(data_flush_states)) { 1319 flush_space(fs_info, space_info, U64_MAX, 1320 data_flush_states[flush_state], false); 1321 spin_lock(&space_info->lock); 1322 if (list_empty(&space_info->tickets)) { 1323 space_info->flush = 0; 1324 spin_unlock(&space_info->lock); 1325 return; 1326 } 1327 1328 if (last_tickets_id == space_info->tickets_id) { 1329 flush_state++; 1330 } else { 1331 last_tickets_id = space_info->tickets_id; 1332 flush_state = 0; 1333 } 1334 1335 if (flush_state >= ARRAY_SIZE(data_flush_states)) { 1336 if (space_info->full) { 1337 if (maybe_fail_all_tickets(fs_info, space_info)) 1338 flush_state = 0; 1339 else 1340 space_info->flush = 0; 1341 } else { 1342 flush_state = 0; 1343 } 1344 1345 /* Something happened, fail everything and bail. */ 1346 if (BTRFS_FS_ERROR(fs_info)) 1347 goto aborted_fs; 1348 1349 } 1350 spin_unlock(&space_info->lock); 1351 } 1352 return; 1353 1354 aborted_fs: 1355 maybe_fail_all_tickets(fs_info, space_info); 1356 space_info->flush = 0; 1357 spin_unlock(&space_info->lock); 1358 } 1359 1360 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info) 1361 { 1362 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space); 1363 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space); 1364 INIT_WORK(&fs_info->preempt_reclaim_work, 1365 btrfs_preempt_reclaim_metadata_space); 1366 } 1367 1368 static const enum btrfs_flush_state priority_flush_states[] = { 1369 FLUSH_DELAYED_ITEMS_NR, 1370 FLUSH_DELAYED_ITEMS, 1371 ALLOC_CHUNK, 1372 }; 1373 1374 static const enum btrfs_flush_state evict_flush_states[] = { 1375 FLUSH_DELAYED_ITEMS_NR, 1376 FLUSH_DELAYED_ITEMS, 1377 FLUSH_DELAYED_REFS_NR, 1378 FLUSH_DELAYED_REFS, 1379 FLUSH_DELALLOC, 1380 FLUSH_DELALLOC_WAIT, 1381 FLUSH_DELALLOC_FULL, 1382 ALLOC_CHUNK, 1383 COMMIT_TRANS, 1384 }; 1385 1386 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 1387 struct btrfs_space_info *space_info, 1388 struct reserve_ticket *ticket, 1389 const enum btrfs_flush_state *states, 1390 int states_nr) 1391 { 1392 u64 to_reclaim; 1393 int flush_state = 0; 1394 1395 spin_lock(&space_info->lock); 1396 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1397 /* 1398 * This is the priority reclaim path, so to_reclaim could be >0 still 1399 * because we may have only satisfied the priority tickets and still 1400 * left non priority tickets on the list. We would then have 1401 * to_reclaim but ->bytes == 0. 1402 */ 1403 if (ticket->bytes == 0) { 1404 spin_unlock(&space_info->lock); 1405 return; 1406 } 1407 1408 while (flush_state < states_nr) { 1409 spin_unlock(&space_info->lock); 1410 flush_space(fs_info, space_info, to_reclaim, states[flush_state], 1411 false); 1412 flush_state++; 1413 spin_lock(&space_info->lock); 1414 if (ticket->bytes == 0) { 1415 spin_unlock(&space_info->lock); 1416 return; 1417 } 1418 } 1419 1420 /* Attempt to steal from the global rsv if we can. */ 1421 if (!steal_from_global_rsv(fs_info, space_info, ticket)) { 1422 ticket->error = -ENOSPC; 1423 remove_ticket(space_info, ticket); 1424 } 1425 1426 /* 1427 * We must run try_granting_tickets here because we could be a large 1428 * ticket in front of a smaller ticket that can now be satisfied with 1429 * the available space. 1430 */ 1431 btrfs_try_granting_tickets(fs_info, space_info); 1432 spin_unlock(&space_info->lock); 1433 } 1434 1435 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info, 1436 struct btrfs_space_info *space_info, 1437 struct reserve_ticket *ticket) 1438 { 1439 spin_lock(&space_info->lock); 1440 1441 /* We could have been granted before we got here. */ 1442 if (ticket->bytes == 0) { 1443 spin_unlock(&space_info->lock); 1444 return; 1445 } 1446 1447 while (!space_info->full) { 1448 spin_unlock(&space_info->lock); 1449 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1450 spin_lock(&space_info->lock); 1451 if (ticket->bytes == 0) { 1452 spin_unlock(&space_info->lock); 1453 return; 1454 } 1455 } 1456 1457 ticket->error = -ENOSPC; 1458 remove_ticket(space_info, ticket); 1459 btrfs_try_granting_tickets(fs_info, space_info); 1460 spin_unlock(&space_info->lock); 1461 } 1462 1463 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info, 1464 struct btrfs_space_info *space_info, 1465 struct reserve_ticket *ticket) 1466 1467 { 1468 DEFINE_WAIT(wait); 1469 int ret = 0; 1470 1471 spin_lock(&space_info->lock); 1472 while (ticket->bytes > 0 && ticket->error == 0) { 1473 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 1474 if (ret) { 1475 /* 1476 * Delete us from the list. After we unlock the space 1477 * info, we don't want the async reclaim job to reserve 1478 * space for this ticket. If that would happen, then the 1479 * ticket's task would not known that space was reserved 1480 * despite getting an error, resulting in a space leak 1481 * (bytes_may_use counter of our space_info). 1482 */ 1483 remove_ticket(space_info, ticket); 1484 ticket->error = -EINTR; 1485 break; 1486 } 1487 spin_unlock(&space_info->lock); 1488 1489 schedule(); 1490 1491 finish_wait(&ticket->wait, &wait); 1492 spin_lock(&space_info->lock); 1493 } 1494 spin_unlock(&space_info->lock); 1495 } 1496 1497 /* 1498 * Do the appropriate flushing and waiting for a ticket. 1499 * 1500 * @fs_info: the filesystem 1501 * @space_info: space info for the reservation 1502 * @ticket: ticket for the reservation 1503 * @start_ns: timestamp when the reservation started 1504 * @orig_bytes: amount of bytes originally reserved 1505 * @flush: how much we can flush 1506 * 1507 * This does the work of figuring out how to flush for the ticket, waiting for 1508 * the reservation, and returning the appropriate error if there is one. 1509 */ 1510 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info, 1511 struct btrfs_space_info *space_info, 1512 struct reserve_ticket *ticket, 1513 u64 start_ns, u64 orig_bytes, 1514 enum btrfs_reserve_flush_enum flush) 1515 { 1516 int ret; 1517 1518 switch (flush) { 1519 case BTRFS_RESERVE_FLUSH_DATA: 1520 case BTRFS_RESERVE_FLUSH_ALL: 1521 case BTRFS_RESERVE_FLUSH_ALL_STEAL: 1522 wait_reserve_ticket(fs_info, space_info, ticket); 1523 break; 1524 case BTRFS_RESERVE_FLUSH_LIMIT: 1525 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1526 priority_flush_states, 1527 ARRAY_SIZE(priority_flush_states)); 1528 break; 1529 case BTRFS_RESERVE_FLUSH_EVICT: 1530 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1531 evict_flush_states, 1532 ARRAY_SIZE(evict_flush_states)); 1533 break; 1534 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE: 1535 priority_reclaim_data_space(fs_info, space_info, ticket); 1536 break; 1537 default: 1538 ASSERT(0); 1539 break; 1540 } 1541 1542 ret = ticket->error; 1543 ASSERT(list_empty(&ticket->list)); 1544 /* 1545 * Check that we can't have an error set if the reservation succeeded, 1546 * as that would confuse tasks and lead them to error out without 1547 * releasing reserved space (if an error happens the expectation is that 1548 * space wasn't reserved at all). 1549 */ 1550 ASSERT(!(ticket->bytes == 0 && ticket->error)); 1551 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes, 1552 start_ns, flush, ticket->error); 1553 return ret; 1554 } 1555 1556 /* 1557 * This returns true if this flush state will go through the ordinary flushing 1558 * code. 1559 */ 1560 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush) 1561 { 1562 return (flush == BTRFS_RESERVE_FLUSH_ALL) || 1563 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1564 } 1565 1566 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info, 1567 struct btrfs_space_info *space_info) 1568 { 1569 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes); 1570 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 1571 1572 /* 1573 * If we're heavy on ordered operations then clamping won't help us. We 1574 * need to clamp specifically to keep up with dirty'ing buffered 1575 * writers, because there's not a 1:1 correlation of writing delalloc 1576 * and freeing space, like there is with flushing delayed refs or 1577 * delayed nodes. If we're already more ordered than delalloc then 1578 * we're keeping up, otherwise we aren't and should probably clamp. 1579 */ 1580 if (ordered < delalloc) 1581 space_info->clamp = min(space_info->clamp + 1, 8); 1582 } 1583 1584 static inline bool can_steal(enum btrfs_reserve_flush_enum flush) 1585 { 1586 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1587 flush == BTRFS_RESERVE_FLUSH_EVICT); 1588 } 1589 1590 /* 1591 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to 1592 * fail as quickly as possible. 1593 */ 1594 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush) 1595 { 1596 return (flush != BTRFS_RESERVE_NO_FLUSH && 1597 flush != BTRFS_RESERVE_FLUSH_EMERGENCY); 1598 } 1599 1600 /* 1601 * Try to reserve bytes from the block_rsv's space. 1602 * 1603 * @fs_info: the filesystem 1604 * @space_info: space info we want to allocate from 1605 * @orig_bytes: number of bytes we want 1606 * @flush: whether or not we can flush to make our reservation 1607 * 1608 * This will reserve orig_bytes number of bytes from the space info associated 1609 * with the block_rsv. If there is not enough space it will make an attempt to 1610 * flush out space to make room. It will do this by flushing delalloc if 1611 * possible or committing the transaction. If flush is 0 then no attempts to 1612 * regain reservations will be made and this will fail if there is not enough 1613 * space already. 1614 */ 1615 static int __reserve_bytes(struct btrfs_fs_info *fs_info, 1616 struct btrfs_space_info *space_info, u64 orig_bytes, 1617 enum btrfs_reserve_flush_enum flush) 1618 { 1619 struct work_struct *async_work; 1620 struct reserve_ticket ticket; 1621 u64 start_ns = 0; 1622 u64 used; 1623 int ret = 0; 1624 bool pending_tickets; 1625 1626 ASSERT(orig_bytes); 1627 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 1628 1629 if (flush == BTRFS_RESERVE_FLUSH_DATA) 1630 async_work = &fs_info->async_data_reclaim_work; 1631 else 1632 async_work = &fs_info->async_reclaim_work; 1633 1634 spin_lock(&space_info->lock); 1635 ret = -ENOSPC; 1636 used = btrfs_space_info_used(space_info, true); 1637 1638 /* 1639 * We don't want NO_FLUSH allocations to jump everybody, they can 1640 * generally handle ENOSPC in a different way, so treat them the same as 1641 * normal flushers when it comes to skipping pending tickets. 1642 */ 1643 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH)) 1644 pending_tickets = !list_empty(&space_info->tickets) || 1645 !list_empty(&space_info->priority_tickets); 1646 else 1647 pending_tickets = !list_empty(&space_info->priority_tickets); 1648 1649 /* 1650 * Carry on if we have enough space (short-circuit) OR call 1651 * can_overcommit() to ensure we can overcommit to continue. 1652 */ 1653 if (!pending_tickets && 1654 ((used + orig_bytes <= writable_total_bytes(fs_info, space_info)) || 1655 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) { 1656 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1657 orig_bytes); 1658 ret = 0; 1659 } 1660 1661 /* 1662 * Things are dire, we need to make a reservation so we don't abort. We 1663 * will let this reservation go through as long as we have actual space 1664 * left to allocate for the block. 1665 */ 1666 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) { 1667 used = btrfs_space_info_used(space_info, false); 1668 if (used + orig_bytes <= 1669 writable_total_bytes(fs_info, space_info)) { 1670 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1671 orig_bytes); 1672 ret = 0; 1673 } 1674 } 1675 1676 /* 1677 * If we couldn't make a reservation then setup our reservation ticket 1678 * and kick the async worker if it's not already running. 1679 * 1680 * If we are a priority flusher then we just need to add our ticket to 1681 * the list and we will do our own flushing further down. 1682 */ 1683 if (ret && can_ticket(flush)) { 1684 ticket.bytes = orig_bytes; 1685 ticket.error = 0; 1686 space_info->reclaim_size += ticket.bytes; 1687 init_waitqueue_head(&ticket.wait); 1688 ticket.steal = can_steal(flush); 1689 if (trace_btrfs_reserve_ticket_enabled()) 1690 start_ns = ktime_get_ns(); 1691 1692 if (flush == BTRFS_RESERVE_FLUSH_ALL || 1693 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1694 flush == BTRFS_RESERVE_FLUSH_DATA) { 1695 list_add_tail(&ticket.list, &space_info->tickets); 1696 if (!space_info->flush) { 1697 /* 1698 * We were forced to add a reserve ticket, so 1699 * our preemptive flushing is unable to keep 1700 * up. Clamp down on the threshold for the 1701 * preemptive flushing in order to keep up with 1702 * the workload. 1703 */ 1704 maybe_clamp_preempt(fs_info, space_info); 1705 1706 space_info->flush = 1; 1707 trace_btrfs_trigger_flush(fs_info, 1708 space_info->flags, 1709 orig_bytes, flush, 1710 "enospc"); 1711 queue_work(system_unbound_wq, async_work); 1712 } 1713 } else { 1714 list_add_tail(&ticket.list, 1715 &space_info->priority_tickets); 1716 } 1717 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 1718 /* 1719 * We will do the space reservation dance during log replay, 1720 * which means we won't have fs_info->fs_root set, so don't do 1721 * the async reclaim as we will panic. 1722 */ 1723 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 1724 !work_busy(&fs_info->preempt_reclaim_work) && 1725 need_preemptive_reclaim(fs_info, space_info)) { 1726 trace_btrfs_trigger_flush(fs_info, space_info->flags, 1727 orig_bytes, flush, "preempt"); 1728 queue_work(system_unbound_wq, 1729 &fs_info->preempt_reclaim_work); 1730 } 1731 } 1732 spin_unlock(&space_info->lock); 1733 if (!ret || !can_ticket(flush)) 1734 return ret; 1735 1736 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns, 1737 orig_bytes, flush); 1738 } 1739 1740 /* 1741 * Try to reserve metadata bytes from the block_rsv's space. 1742 * 1743 * @fs_info: the filesystem 1744 * @block_rsv: block_rsv we're allocating for 1745 * @orig_bytes: number of bytes we want 1746 * @flush: whether or not we can flush to make our reservation 1747 * 1748 * This will reserve orig_bytes number of bytes from the space info associated 1749 * with the block_rsv. If there is not enough space it will make an attempt to 1750 * flush out space to make room. It will do this by flushing delalloc if 1751 * possible or committing the transaction. If flush is 0 then no attempts to 1752 * regain reservations will be made and this will fail if there is not enough 1753 * space already. 1754 */ 1755 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 1756 struct btrfs_block_rsv *block_rsv, 1757 u64 orig_bytes, 1758 enum btrfs_reserve_flush_enum flush) 1759 { 1760 int ret; 1761 1762 ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush); 1763 if (ret == -ENOSPC) { 1764 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1765 block_rsv->space_info->flags, 1766 orig_bytes, 1); 1767 1768 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1769 btrfs_dump_space_info(fs_info, block_rsv->space_info, 1770 orig_bytes, 0); 1771 } 1772 return ret; 1773 } 1774 1775 /* 1776 * Try to reserve data bytes for an allocation. 1777 * 1778 * @fs_info: the filesystem 1779 * @bytes: number of bytes we need 1780 * @flush: how we are allowed to flush 1781 * 1782 * This will reserve bytes from the data space info. If there is not enough 1783 * space then we will attempt to flush space as specified by flush. 1784 */ 1785 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes, 1786 enum btrfs_reserve_flush_enum flush) 1787 { 1788 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 1789 int ret; 1790 1791 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA || 1792 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE || 1793 flush == BTRFS_RESERVE_NO_FLUSH); 1794 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA); 1795 1796 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush); 1797 if (ret == -ENOSPC) { 1798 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1799 data_sinfo->flags, bytes, 1); 1800 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1801 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0); 1802 } 1803 return ret; 1804 } 1805 1806 /* Dump all the space infos when we abort a transaction due to ENOSPC. */ 1807 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info) 1808 { 1809 struct btrfs_space_info *space_info; 1810 1811 btrfs_info(fs_info, "dumping space info:"); 1812 list_for_each_entry(space_info, &fs_info->space_info, list) { 1813 spin_lock(&space_info->lock); 1814 __btrfs_dump_space_info(fs_info, space_info); 1815 spin_unlock(&space_info->lock); 1816 } 1817 dump_global_block_rsv(fs_info); 1818 } 1819 1820 /* 1821 * Account the unused space of all the readonly block group in the space_info. 1822 * takes mirrors into account. 1823 */ 1824 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 1825 { 1826 struct btrfs_block_group *block_group; 1827 u64 free_bytes = 0; 1828 int factor; 1829 1830 /* It's df, we don't care if it's racy */ 1831 if (list_empty(&sinfo->ro_bgs)) 1832 return 0; 1833 1834 spin_lock(&sinfo->lock); 1835 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 1836 spin_lock(&block_group->lock); 1837 1838 if (!block_group->ro) { 1839 spin_unlock(&block_group->lock); 1840 continue; 1841 } 1842 1843 factor = btrfs_bg_type_to_factor(block_group->flags); 1844 free_bytes += (block_group->length - 1845 block_group->used) * factor; 1846 1847 spin_unlock(&block_group->lock); 1848 } 1849 spin_unlock(&sinfo->lock); 1850 1851 return free_bytes; 1852 } 1853