xref: /openbmc/linux/fs/btrfs/space-info.c (revision 1ff9fee3)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 #include "zoned.h"
13 #include "fs.h"
14 #include "accessors.h"
15 #include "extent-tree.h"
16 
17 /*
18  * HOW DOES SPACE RESERVATION WORK
19  *
20  * If you want to know about delalloc specifically, there is a separate comment
21  * for that with the delalloc code.  This comment is about how the whole system
22  * works generally.
23  *
24  * BASIC CONCEPTS
25  *
26  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
27  *   There's a description of the bytes_ fields with the struct declaration,
28  *   refer to that for specifics on each field.  Suffice it to say that for
29  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
30  *   determining if there is space to make an allocation.  There is a space_info
31  *   for METADATA, SYSTEM, and DATA areas.
32  *
33  *   2) block_rsv's.  These are basically buckets for every different type of
34  *   metadata reservation we have.  You can see the comment in the block_rsv
35  *   code on the rules for each type, but generally block_rsv->reserved is how
36  *   much space is accounted for in space_info->bytes_may_use.
37  *
38  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
39  *   on the number of items we will want to modify.  We have one for changing
40  *   items, and one for inserting new items.  Generally we use these helpers to
41  *   determine the size of the block reserves, and then use the actual bytes
42  *   values to adjust the space_info counters.
43  *
44  * MAKING RESERVATIONS, THE NORMAL CASE
45  *
46  *   We call into either btrfs_reserve_data_bytes() or
47  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
48  *   num_bytes we want to reserve.
49  *
50  *   ->reserve
51  *     space_info->bytes_may_reserve += num_bytes
52  *
53  *   ->extent allocation
54  *     Call btrfs_add_reserved_bytes() which does
55  *     space_info->bytes_may_reserve -= num_bytes
56  *     space_info->bytes_reserved += extent_bytes
57  *
58  *   ->insert reference
59  *     Call btrfs_update_block_group() which does
60  *     space_info->bytes_reserved -= extent_bytes
61  *     space_info->bytes_used += extent_bytes
62  *
63  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
64  *
65  *   Assume we are unable to simply make the reservation because we do not have
66  *   enough space
67  *
68  *   -> __reserve_bytes
69  *     create a reserve_ticket with ->bytes set to our reservation, add it to
70  *     the tail of space_info->tickets, kick async flush thread
71  *
72  *   ->handle_reserve_ticket
73  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
74  *     on the ticket.
75  *
76  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
77  *     Flushes various things attempting to free up space.
78  *
79  *   -> btrfs_try_granting_tickets()
80  *     This is called by anything that either subtracts space from
81  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
82  *     space_info->total_bytes.  This loops through the ->priority_tickets and
83  *     then the ->tickets list checking to see if the reservation can be
84  *     completed.  If it can the space is added to space_info->bytes_may_use and
85  *     the ticket is woken up.
86  *
87  *   -> ticket wakeup
88  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
89  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
90  *     were interrupted.)
91  *
92  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
93  *
94  *   Same as the above, except we add ourselves to the
95  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
96  *   call flush_space() ourselves for the states that are safe for us to call
97  *   without deadlocking and hope for the best.
98  *
99  * THE FLUSHING STATES
100  *
101  *   Generally speaking we will have two cases for each state, a "nice" state
102  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
103  *   reduce the locking over head on the various trees, and even to keep from
104  *   doing any work at all in the case of delayed refs.  Each of these delayed
105  *   things however hold reservations, and so letting them run allows us to
106  *   reclaim space so we can make new reservations.
107  *
108  *   FLUSH_DELAYED_ITEMS
109  *     Every inode has a delayed item to update the inode.  Take a simple write
110  *     for example, we would update the inode item at write time to update the
111  *     mtime, and then again at finish_ordered_io() time in order to update the
112  *     isize or bytes.  We keep these delayed items to coalesce these operations
113  *     into a single operation done on demand.  These are an easy way to reclaim
114  *     metadata space.
115  *
116  *   FLUSH_DELALLOC
117  *     Look at the delalloc comment to get an idea of how much space is reserved
118  *     for delayed allocation.  We can reclaim some of this space simply by
119  *     running delalloc, but usually we need to wait for ordered extents to
120  *     reclaim the bulk of this space.
121  *
122  *   FLUSH_DELAYED_REFS
123  *     We have a block reserve for the outstanding delayed refs space, and every
124  *     delayed ref operation holds a reservation.  Running these is a quick way
125  *     to reclaim space, but we want to hold this until the end because COW can
126  *     churn a lot and we can avoid making some extent tree modifications if we
127  *     are able to delay for as long as possible.
128  *
129  *   ALLOC_CHUNK
130  *     We will skip this the first time through space reservation, because of
131  *     overcommit and we don't want to have a lot of useless metadata space when
132  *     our worst case reservations will likely never come true.
133  *
134  *   RUN_DELAYED_IPUTS
135  *     If we're freeing inodes we're likely freeing checksums, file extent
136  *     items, and extent tree items.  Loads of space could be freed up by these
137  *     operations, however they won't be usable until the transaction commits.
138  *
139  *   COMMIT_TRANS
140  *     This will commit the transaction.  Historically we had a lot of logic
141  *     surrounding whether or not we'd commit the transaction, but this waits born
142  *     out of a pre-tickets era where we could end up committing the transaction
143  *     thousands of times in a row without making progress.  Now thanks to our
144  *     ticketing system we know if we're not making progress and can error
145  *     everybody out after a few commits rather than burning the disk hoping for
146  *     a different answer.
147  *
148  * OVERCOMMIT
149  *
150  *   Because we hold so many reservations for metadata we will allow you to
151  *   reserve more space than is currently free in the currently allocate
152  *   metadata space.  This only happens with metadata, data does not allow
153  *   overcommitting.
154  *
155  *   You can see the current logic for when we allow overcommit in
156  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
157  *   is no unallocated space to be had, all reservations are kept within the
158  *   free space in the allocated metadata chunks.
159  *
160  *   Because of overcommitting, you generally want to use the
161  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
162  *   thing with or without extra unallocated space.
163  */
164 
165 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
166 			  bool may_use_included)
167 {
168 	ASSERT(s_info);
169 	return s_info->bytes_used + s_info->bytes_reserved +
170 		s_info->bytes_pinned + s_info->bytes_readonly +
171 		s_info->bytes_zone_unusable +
172 		(may_use_included ? s_info->bytes_may_use : 0);
173 }
174 
175 /*
176  * after adding space to the filesystem, we need to clear the full flags
177  * on all the space infos.
178  */
179 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
180 {
181 	struct list_head *head = &info->space_info;
182 	struct btrfs_space_info *found;
183 
184 	list_for_each_entry(found, head, list)
185 		found->full = 0;
186 }
187 
188 /*
189  * Block groups with more than this value (percents) of unusable space will be
190  * scheduled for background reclaim.
191  */
192 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH			(75)
193 
194 /*
195  * Calculate chunk size depending on volume type (regular or zoned).
196  */
197 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
198 {
199 	if (btrfs_is_zoned(fs_info))
200 		return fs_info->zone_size;
201 
202 	ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
203 
204 	if (flags & BTRFS_BLOCK_GROUP_DATA)
205 		return BTRFS_MAX_DATA_CHUNK_SIZE;
206 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
207 		return SZ_32M;
208 
209 	/* Handle BTRFS_BLOCK_GROUP_METADATA */
210 	if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
211 		return SZ_1G;
212 
213 	return SZ_256M;
214 }
215 
216 /*
217  * Update default chunk size.
218  */
219 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
220 					u64 chunk_size)
221 {
222 	WRITE_ONCE(space_info->chunk_size, chunk_size);
223 }
224 
225 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
226 {
227 
228 	struct btrfs_space_info *space_info;
229 	int i;
230 	int ret;
231 
232 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
233 	if (!space_info)
234 		return -ENOMEM;
235 
236 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
237 		INIT_LIST_HEAD(&space_info->block_groups[i]);
238 	init_rwsem(&space_info->groups_sem);
239 	spin_lock_init(&space_info->lock);
240 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
241 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
242 	INIT_LIST_HEAD(&space_info->ro_bgs);
243 	INIT_LIST_HEAD(&space_info->tickets);
244 	INIT_LIST_HEAD(&space_info->priority_tickets);
245 	space_info->clamp = 1;
246 	btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
247 
248 	if (btrfs_is_zoned(info))
249 		space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
250 
251 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
252 	if (ret)
253 		return ret;
254 
255 	list_add(&space_info->list, &info->space_info);
256 	if (flags & BTRFS_BLOCK_GROUP_DATA)
257 		info->data_sinfo = space_info;
258 
259 	return ret;
260 }
261 
262 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
263 {
264 	struct btrfs_super_block *disk_super;
265 	u64 features;
266 	u64 flags;
267 	int mixed = 0;
268 	int ret;
269 
270 	disk_super = fs_info->super_copy;
271 	if (!btrfs_super_root(disk_super))
272 		return -EINVAL;
273 
274 	features = btrfs_super_incompat_flags(disk_super);
275 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
276 		mixed = 1;
277 
278 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
279 	ret = create_space_info(fs_info, flags);
280 	if (ret)
281 		goto out;
282 
283 	if (mixed) {
284 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
285 		ret = create_space_info(fs_info, flags);
286 	} else {
287 		flags = BTRFS_BLOCK_GROUP_METADATA;
288 		ret = create_space_info(fs_info, flags);
289 		if (ret)
290 			goto out;
291 
292 		flags = BTRFS_BLOCK_GROUP_DATA;
293 		ret = create_space_info(fs_info, flags);
294 	}
295 out:
296 	return ret;
297 }
298 
299 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
300 				struct btrfs_block_group *block_group)
301 {
302 	struct btrfs_space_info *found;
303 	int factor, index;
304 
305 	factor = btrfs_bg_type_to_factor(block_group->flags);
306 
307 	found = btrfs_find_space_info(info, block_group->flags);
308 	ASSERT(found);
309 	spin_lock(&found->lock);
310 	found->total_bytes += block_group->length;
311 	found->disk_total += block_group->length * factor;
312 	found->bytes_used += block_group->used;
313 	found->disk_used += block_group->used * factor;
314 	found->bytes_readonly += block_group->bytes_super;
315 	found->bytes_zone_unusable += block_group->zone_unusable;
316 	if (block_group->length > 0)
317 		found->full = 0;
318 	btrfs_try_granting_tickets(info, found);
319 	spin_unlock(&found->lock);
320 
321 	block_group->space_info = found;
322 
323 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
324 	down_write(&found->groups_sem);
325 	list_add_tail(&block_group->list, &found->block_groups[index]);
326 	up_write(&found->groups_sem);
327 }
328 
329 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
330 					       u64 flags)
331 {
332 	struct list_head *head = &info->space_info;
333 	struct btrfs_space_info *found;
334 
335 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
336 
337 	list_for_each_entry(found, head, list) {
338 		if (found->flags & flags)
339 			return found;
340 	}
341 	return NULL;
342 }
343 
344 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
345 			  struct btrfs_space_info *space_info,
346 			  enum btrfs_reserve_flush_enum flush)
347 {
348 	u64 profile;
349 	u64 avail;
350 	int factor;
351 
352 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
353 		profile = btrfs_system_alloc_profile(fs_info);
354 	else
355 		profile = btrfs_metadata_alloc_profile(fs_info);
356 
357 	avail = atomic64_read(&fs_info->free_chunk_space);
358 
359 	/*
360 	 * If we have dup, raid1 or raid10 then only half of the free
361 	 * space is actually usable.  For raid56, the space info used
362 	 * doesn't include the parity drive, so we don't have to
363 	 * change the math
364 	 */
365 	factor = btrfs_bg_type_to_factor(profile);
366 	avail = div_u64(avail, factor);
367 
368 	/*
369 	 * If we aren't flushing all things, let us overcommit up to
370 	 * 1/2th of the space. If we can flush, don't let us overcommit
371 	 * too much, let it overcommit up to 1/8 of the space.
372 	 */
373 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
374 		avail >>= 3;
375 	else
376 		avail >>= 1;
377 	return avail;
378 }
379 
380 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
381 			 struct btrfs_space_info *space_info, u64 bytes,
382 			 enum btrfs_reserve_flush_enum flush)
383 {
384 	u64 avail;
385 	u64 used;
386 
387 	/* Don't overcommit when in mixed mode */
388 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
389 		return 0;
390 
391 	used = btrfs_space_info_used(space_info, true);
392 	if (test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags) &&
393 	    (space_info->flags & BTRFS_BLOCK_GROUP_METADATA))
394 		avail = 0;
395 	else
396 		avail = calc_available_free_space(fs_info, space_info, flush);
397 
398 	if (used + bytes < space_info->total_bytes + avail)
399 		return 1;
400 	return 0;
401 }
402 
403 static void remove_ticket(struct btrfs_space_info *space_info,
404 			  struct reserve_ticket *ticket)
405 {
406 	if (!list_empty(&ticket->list)) {
407 		list_del_init(&ticket->list);
408 		ASSERT(space_info->reclaim_size >= ticket->bytes);
409 		space_info->reclaim_size -= ticket->bytes;
410 	}
411 }
412 
413 /*
414  * This is for space we already have accounted in space_info->bytes_may_use, so
415  * basically when we're returning space from block_rsv's.
416  */
417 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
418 				struct btrfs_space_info *space_info)
419 {
420 	struct list_head *head;
421 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
422 
423 	lockdep_assert_held(&space_info->lock);
424 
425 	head = &space_info->priority_tickets;
426 again:
427 	while (!list_empty(head)) {
428 		struct reserve_ticket *ticket;
429 		u64 used = btrfs_space_info_used(space_info, true);
430 
431 		ticket = list_first_entry(head, struct reserve_ticket, list);
432 
433 		/* Check and see if our ticket can be satisfied now. */
434 		if ((used + ticket->bytes <= space_info->total_bytes) ||
435 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
436 					 flush)) {
437 			btrfs_space_info_update_bytes_may_use(fs_info,
438 							      space_info,
439 							      ticket->bytes);
440 			remove_ticket(space_info, ticket);
441 			ticket->bytes = 0;
442 			space_info->tickets_id++;
443 			wake_up(&ticket->wait);
444 		} else {
445 			break;
446 		}
447 	}
448 
449 	if (head == &space_info->priority_tickets) {
450 		head = &space_info->tickets;
451 		flush = BTRFS_RESERVE_FLUSH_ALL;
452 		goto again;
453 	}
454 }
455 
456 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
457 do {									\
458 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
459 	spin_lock(&__rsv->lock);					\
460 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
461 		   __rsv->size, __rsv->reserved);			\
462 	spin_unlock(&__rsv->lock);					\
463 } while (0)
464 
465 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
466 {
467 	switch (space_info->flags) {
468 	case BTRFS_BLOCK_GROUP_SYSTEM:
469 		return "SYSTEM";
470 	case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
471 		return "DATA+METADATA";
472 	case BTRFS_BLOCK_GROUP_DATA:
473 		return "DATA";
474 	case BTRFS_BLOCK_GROUP_METADATA:
475 		return "METADATA";
476 	default:
477 		return "UNKNOWN";
478 	}
479 }
480 
481 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
482 {
483 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
484 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
485 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
486 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
487 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
488 }
489 
490 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
491 				    struct btrfs_space_info *info)
492 {
493 	const char *flag_str = space_info_flag_to_str(info);
494 	lockdep_assert_held(&info->lock);
495 
496 	/* The free space could be negative in case of overcommit */
497 	btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
498 		   flag_str,
499 		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
500 		   info->full ? "" : "not ");
501 	btrfs_info(fs_info,
502 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
503 		info->total_bytes, info->bytes_used, info->bytes_pinned,
504 		info->bytes_reserved, info->bytes_may_use,
505 		info->bytes_readonly, info->bytes_zone_unusable);
506 }
507 
508 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
509 			   struct btrfs_space_info *info, u64 bytes,
510 			   int dump_block_groups)
511 {
512 	struct btrfs_block_group *cache;
513 	u64 total_avail = 0;
514 	int index = 0;
515 
516 	spin_lock(&info->lock);
517 	__btrfs_dump_space_info(fs_info, info);
518 	dump_global_block_rsv(fs_info);
519 	spin_unlock(&info->lock);
520 
521 	if (!dump_block_groups)
522 		return;
523 
524 	down_read(&info->groups_sem);
525 again:
526 	list_for_each_entry(cache, &info->block_groups[index], list) {
527 		u64 avail;
528 
529 		spin_lock(&cache->lock);
530 		avail = cache->length - cache->used - cache->pinned -
531 			cache->reserved - cache->delalloc_bytes -
532 			cache->bytes_super - cache->zone_unusable;
533 		btrfs_info(fs_info,
534 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s",
535 			   cache->start, cache->length, cache->used, cache->pinned,
536 			   cache->reserved, cache->delalloc_bytes,
537 			   cache->bytes_super, cache->zone_unusable,
538 			   avail, cache->ro ? "[readonly]" : "");
539 		spin_unlock(&cache->lock);
540 		btrfs_dump_free_space(cache, bytes);
541 		total_avail += avail;
542 	}
543 	if (++index < BTRFS_NR_RAID_TYPES)
544 		goto again;
545 	up_read(&info->groups_sem);
546 
547 	btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail);
548 }
549 
550 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info,
551 					u64 to_reclaim)
552 {
553 	u64 bytes;
554 	u64 nr;
555 
556 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
557 	nr = div64_u64(to_reclaim, bytes);
558 	if (!nr)
559 		nr = 1;
560 	return nr;
561 }
562 
563 static inline u64 calc_delayed_refs_nr(const struct btrfs_fs_info *fs_info,
564 				       u64 to_reclaim)
565 {
566 	const u64 bytes = btrfs_calc_delayed_ref_bytes(fs_info, 1);
567 	u64 nr;
568 
569 	nr = div64_u64(to_reclaim, bytes);
570 	if (!nr)
571 		nr = 1;
572 	return nr;
573 }
574 
575 #define EXTENT_SIZE_PER_ITEM	SZ_256K
576 
577 /*
578  * shrink metadata reservation for delalloc
579  */
580 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
581 			    struct btrfs_space_info *space_info,
582 			    u64 to_reclaim, bool wait_ordered,
583 			    bool for_preempt)
584 {
585 	struct btrfs_trans_handle *trans;
586 	u64 delalloc_bytes;
587 	u64 ordered_bytes;
588 	u64 items;
589 	long time_left;
590 	int loops;
591 
592 	delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
593 	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
594 	if (delalloc_bytes == 0 && ordered_bytes == 0)
595 		return;
596 
597 	/* Calc the number of the pages we need flush for space reservation */
598 	if (to_reclaim == U64_MAX) {
599 		items = U64_MAX;
600 	} else {
601 		/*
602 		 * to_reclaim is set to however much metadata we need to
603 		 * reclaim, but reclaiming that much data doesn't really track
604 		 * exactly.  What we really want to do is reclaim full inode's
605 		 * worth of reservations, however that's not available to us
606 		 * here.  We will take a fraction of the delalloc bytes for our
607 		 * flushing loops and hope for the best.  Delalloc will expand
608 		 * the amount we write to cover an entire dirty extent, which
609 		 * will reclaim the metadata reservation for that range.  If
610 		 * it's not enough subsequent flush stages will be more
611 		 * aggressive.
612 		 */
613 		to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
614 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
615 	}
616 
617 	trans = current->journal_info;
618 
619 	/*
620 	 * If we are doing more ordered than delalloc we need to just wait on
621 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
622 	 * that likely won't give us the space back we need.
623 	 */
624 	if (ordered_bytes > delalloc_bytes && !for_preempt)
625 		wait_ordered = true;
626 
627 	loops = 0;
628 	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
629 		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
630 		long nr_pages = min_t(u64, temp, LONG_MAX);
631 		int async_pages;
632 
633 		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
634 
635 		/*
636 		 * We need to make sure any outstanding async pages are now
637 		 * processed before we continue.  This is because things like
638 		 * sync_inode() try to be smart and skip writing if the inode is
639 		 * marked clean.  We don't use filemap_fwrite for flushing
640 		 * because we want to control how many pages we write out at a
641 		 * time, thus this is the only safe way to make sure we've
642 		 * waited for outstanding compressed workers to have started
643 		 * their jobs and thus have ordered extents set up properly.
644 		 *
645 		 * This exists because we do not want to wait for each
646 		 * individual inode to finish its async work, we simply want to
647 		 * start the IO on everybody, and then come back here and wait
648 		 * for all of the async work to catch up.  Once we're done with
649 		 * that we know we'll have ordered extents for everything and we
650 		 * can decide if we wait for that or not.
651 		 *
652 		 * If we choose to replace this in the future, make absolutely
653 		 * sure that the proper waiting is being done in the async case,
654 		 * as there have been bugs in that area before.
655 		 */
656 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
657 		if (!async_pages)
658 			goto skip_async;
659 
660 		/*
661 		 * We don't want to wait forever, if we wrote less pages in this
662 		 * loop than we have outstanding, only wait for that number of
663 		 * pages, otherwise we can wait for all async pages to finish
664 		 * before continuing.
665 		 */
666 		if (async_pages > nr_pages)
667 			async_pages -= nr_pages;
668 		else
669 			async_pages = 0;
670 		wait_event(fs_info->async_submit_wait,
671 			   atomic_read(&fs_info->async_delalloc_pages) <=
672 			   async_pages);
673 skip_async:
674 		loops++;
675 		if (wait_ordered && !trans) {
676 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
677 		} else {
678 			time_left = schedule_timeout_killable(1);
679 			if (time_left)
680 				break;
681 		}
682 
683 		/*
684 		 * If we are for preemption we just want a one-shot of delalloc
685 		 * flushing so we can stop flushing if we decide we don't need
686 		 * to anymore.
687 		 */
688 		if (for_preempt)
689 			break;
690 
691 		spin_lock(&space_info->lock);
692 		if (list_empty(&space_info->tickets) &&
693 		    list_empty(&space_info->priority_tickets)) {
694 			spin_unlock(&space_info->lock);
695 			break;
696 		}
697 		spin_unlock(&space_info->lock);
698 
699 		delalloc_bytes = percpu_counter_sum_positive(
700 						&fs_info->delalloc_bytes);
701 		ordered_bytes = percpu_counter_sum_positive(
702 						&fs_info->ordered_bytes);
703 	}
704 }
705 
706 /*
707  * Try to flush some data based on policy set by @state. This is only advisory
708  * and may fail for various reasons. The caller is supposed to examine the
709  * state of @space_info to detect the outcome.
710  */
711 static void flush_space(struct btrfs_fs_info *fs_info,
712 		       struct btrfs_space_info *space_info, u64 num_bytes,
713 		       enum btrfs_flush_state state, bool for_preempt)
714 {
715 	struct btrfs_root *root = fs_info->tree_root;
716 	struct btrfs_trans_handle *trans;
717 	int nr;
718 	int ret = 0;
719 
720 	switch (state) {
721 	case FLUSH_DELAYED_ITEMS_NR:
722 	case FLUSH_DELAYED_ITEMS:
723 		if (state == FLUSH_DELAYED_ITEMS_NR)
724 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
725 		else
726 			nr = -1;
727 
728 		trans = btrfs_join_transaction(root);
729 		if (IS_ERR(trans)) {
730 			ret = PTR_ERR(trans);
731 			break;
732 		}
733 		ret = btrfs_run_delayed_items_nr(trans, nr);
734 		btrfs_end_transaction(trans);
735 		break;
736 	case FLUSH_DELALLOC:
737 	case FLUSH_DELALLOC_WAIT:
738 	case FLUSH_DELALLOC_FULL:
739 		if (state == FLUSH_DELALLOC_FULL)
740 			num_bytes = U64_MAX;
741 		shrink_delalloc(fs_info, space_info, num_bytes,
742 				state != FLUSH_DELALLOC, for_preempt);
743 		break;
744 	case FLUSH_DELAYED_REFS_NR:
745 	case FLUSH_DELAYED_REFS:
746 		trans = btrfs_join_transaction(root);
747 		if (IS_ERR(trans)) {
748 			ret = PTR_ERR(trans);
749 			break;
750 		}
751 		if (state == FLUSH_DELAYED_REFS_NR)
752 			nr = calc_delayed_refs_nr(fs_info, num_bytes);
753 		else
754 			nr = 0;
755 		btrfs_run_delayed_refs(trans, nr);
756 		btrfs_end_transaction(trans);
757 		break;
758 	case ALLOC_CHUNK:
759 	case ALLOC_CHUNK_FORCE:
760 		/*
761 		 * For metadata space on zoned filesystem, reaching here means we
762 		 * don't have enough space left in active_total_bytes. Try to
763 		 * activate a block group first, because we may have inactive
764 		 * block group already allocated.
765 		 */
766 		ret = btrfs_zoned_activate_one_bg(fs_info, space_info, false);
767 		if (ret < 0)
768 			break;
769 		else if (ret == 1)
770 			break;
771 
772 		trans = btrfs_join_transaction(root);
773 		if (IS_ERR(trans)) {
774 			ret = PTR_ERR(trans);
775 			break;
776 		}
777 		ret = btrfs_chunk_alloc(trans,
778 				btrfs_get_alloc_profile(fs_info, space_info->flags),
779 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
780 					CHUNK_ALLOC_FORCE);
781 		btrfs_end_transaction(trans);
782 
783 		/*
784 		 * For metadata space on zoned filesystem, allocating a new chunk
785 		 * is not enough. We still need to activate the block * group.
786 		 * Active the newly allocated block group by (maybe) finishing
787 		 * a block group.
788 		 */
789 		if (ret == 1) {
790 			ret = btrfs_zoned_activate_one_bg(fs_info, space_info, true);
791 			/*
792 			 * Revert to the original ret regardless we could finish
793 			 * one block group or not.
794 			 */
795 			if (ret >= 0)
796 				ret = 1;
797 		}
798 
799 		if (ret > 0 || ret == -ENOSPC)
800 			ret = 0;
801 		break;
802 	case RUN_DELAYED_IPUTS:
803 		/*
804 		 * If we have pending delayed iputs then we could free up a
805 		 * bunch of pinned space, so make sure we run the iputs before
806 		 * we do our pinned bytes check below.
807 		 */
808 		btrfs_run_delayed_iputs(fs_info);
809 		btrfs_wait_on_delayed_iputs(fs_info);
810 		break;
811 	case COMMIT_TRANS:
812 		ASSERT(current->journal_info == NULL);
813 		trans = btrfs_join_transaction(root);
814 		if (IS_ERR(trans)) {
815 			ret = PTR_ERR(trans);
816 			break;
817 		}
818 		ret = btrfs_commit_transaction(trans);
819 		break;
820 	default:
821 		ret = -ENOSPC;
822 		break;
823 	}
824 
825 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
826 				ret, for_preempt);
827 	return;
828 }
829 
830 static inline u64
831 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
832 				 struct btrfs_space_info *space_info)
833 {
834 	u64 used;
835 	u64 avail;
836 	u64 to_reclaim = space_info->reclaim_size;
837 
838 	lockdep_assert_held(&space_info->lock);
839 
840 	avail = calc_available_free_space(fs_info, space_info,
841 					  BTRFS_RESERVE_FLUSH_ALL);
842 	used = btrfs_space_info_used(space_info, true);
843 
844 	/*
845 	 * We may be flushing because suddenly we have less space than we had
846 	 * before, and now we're well over-committed based on our current free
847 	 * space.  If that's the case add in our overage so we make sure to put
848 	 * appropriate pressure on the flushing state machine.
849 	 */
850 	if (space_info->total_bytes + avail < used)
851 		to_reclaim += used - (space_info->total_bytes + avail);
852 
853 	return to_reclaim;
854 }
855 
856 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
857 				    struct btrfs_space_info *space_info)
858 {
859 	u64 global_rsv_size = fs_info->global_block_rsv.reserved;
860 	u64 ordered, delalloc;
861 	u64 thresh;
862 	u64 used;
863 
864 	thresh = mult_perc(space_info->total_bytes, 90);
865 
866 	lockdep_assert_held(&space_info->lock);
867 
868 	/* If we're just plain full then async reclaim just slows us down. */
869 	if ((space_info->bytes_used + space_info->bytes_reserved +
870 	     global_rsv_size) >= thresh)
871 		return false;
872 
873 	used = space_info->bytes_may_use + space_info->bytes_pinned;
874 
875 	/* The total flushable belongs to the global rsv, don't flush. */
876 	if (global_rsv_size >= used)
877 		return false;
878 
879 	/*
880 	 * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
881 	 * that devoted to other reservations then there's no sense in flushing,
882 	 * we don't have a lot of things that need flushing.
883 	 */
884 	if (used - global_rsv_size <= SZ_128M)
885 		return false;
886 
887 	/*
888 	 * We have tickets queued, bail so we don't compete with the async
889 	 * flushers.
890 	 */
891 	if (space_info->reclaim_size)
892 		return false;
893 
894 	/*
895 	 * If we have over half of the free space occupied by reservations or
896 	 * pinned then we want to start flushing.
897 	 *
898 	 * We do not do the traditional thing here, which is to say
899 	 *
900 	 *   if (used >= ((total_bytes + avail) / 2))
901 	 *     return 1;
902 	 *
903 	 * because this doesn't quite work how we want.  If we had more than 50%
904 	 * of the space_info used by bytes_used and we had 0 available we'd just
905 	 * constantly run the background flusher.  Instead we want it to kick in
906 	 * if our reclaimable space exceeds our clamped free space.
907 	 *
908 	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
909 	 * the following:
910 	 *
911 	 * Amount of RAM        Minimum threshold       Maximum threshold
912 	 *
913 	 *        256GiB                     1GiB                  128GiB
914 	 *        128GiB                   512MiB                   64GiB
915 	 *         64GiB                   256MiB                   32GiB
916 	 *         32GiB                   128MiB                   16GiB
917 	 *         16GiB                    64MiB                    8GiB
918 	 *
919 	 * These are the range our thresholds will fall in, corresponding to how
920 	 * much delalloc we need for the background flusher to kick in.
921 	 */
922 
923 	thresh = calc_available_free_space(fs_info, space_info,
924 					   BTRFS_RESERVE_FLUSH_ALL);
925 	used = space_info->bytes_used + space_info->bytes_reserved +
926 	       space_info->bytes_readonly + global_rsv_size;
927 	if (used < space_info->total_bytes)
928 		thresh += space_info->total_bytes - used;
929 	thresh >>= space_info->clamp;
930 
931 	used = space_info->bytes_pinned;
932 
933 	/*
934 	 * If we have more ordered bytes than delalloc bytes then we're either
935 	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
936 	 * around.  Preemptive flushing is only useful in that it can free up
937 	 * space before tickets need to wait for things to finish.  In the case
938 	 * of ordered extents, preemptively waiting on ordered extents gets us
939 	 * nothing, if our reservations are tied up in ordered extents we'll
940 	 * simply have to slow down writers by forcing them to wait on ordered
941 	 * extents.
942 	 *
943 	 * In the case that ordered is larger than delalloc, only include the
944 	 * block reserves that we would actually be able to directly reclaim
945 	 * from.  In this case if we're heavy on metadata operations this will
946 	 * clearly be heavy enough to warrant preemptive flushing.  In the case
947 	 * of heavy DIO or ordered reservations, preemptive flushing will just
948 	 * waste time and cause us to slow down.
949 	 *
950 	 * We want to make sure we truly are maxed out on ordered however, so
951 	 * cut ordered in half, and if it's still higher than delalloc then we
952 	 * can keep flushing.  This is to avoid the case where we start
953 	 * flushing, and now delalloc == ordered and we stop preemptively
954 	 * flushing when we could still have several gigs of delalloc to flush.
955 	 */
956 	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
957 	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
958 	if (ordered >= delalloc)
959 		used += fs_info->delayed_refs_rsv.reserved +
960 			fs_info->delayed_block_rsv.reserved;
961 	else
962 		used += space_info->bytes_may_use - global_rsv_size;
963 
964 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
965 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
966 }
967 
968 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
969 				  struct btrfs_space_info *space_info,
970 				  struct reserve_ticket *ticket)
971 {
972 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
973 	u64 min_bytes;
974 
975 	if (!ticket->steal)
976 		return false;
977 
978 	if (global_rsv->space_info != space_info)
979 		return false;
980 
981 	spin_lock(&global_rsv->lock);
982 	min_bytes = mult_perc(global_rsv->size, 10);
983 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
984 		spin_unlock(&global_rsv->lock);
985 		return false;
986 	}
987 	global_rsv->reserved -= ticket->bytes;
988 	remove_ticket(space_info, ticket);
989 	ticket->bytes = 0;
990 	wake_up(&ticket->wait);
991 	space_info->tickets_id++;
992 	if (global_rsv->reserved < global_rsv->size)
993 		global_rsv->full = 0;
994 	spin_unlock(&global_rsv->lock);
995 
996 	return true;
997 }
998 
999 /*
1000  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
1001  * @fs_info - fs_info for this fs
1002  * @space_info - the space info we were flushing
1003  *
1004  * We call this when we've exhausted our flushing ability and haven't made
1005  * progress in satisfying tickets.  The reservation code handles tickets in
1006  * order, so if there is a large ticket first and then smaller ones we could
1007  * very well satisfy the smaller tickets.  This will attempt to wake up any
1008  * tickets in the list to catch this case.
1009  *
1010  * This function returns true if it was able to make progress by clearing out
1011  * other tickets, or if it stumbles across a ticket that was smaller than the
1012  * first ticket.
1013  */
1014 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1015 				   struct btrfs_space_info *space_info)
1016 {
1017 	struct reserve_ticket *ticket;
1018 	u64 tickets_id = space_info->tickets_id;
1019 	const bool aborted = BTRFS_FS_ERROR(fs_info);
1020 
1021 	trace_btrfs_fail_all_tickets(fs_info, space_info);
1022 
1023 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1024 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1025 		__btrfs_dump_space_info(fs_info, space_info);
1026 	}
1027 
1028 	while (!list_empty(&space_info->tickets) &&
1029 	       tickets_id == space_info->tickets_id) {
1030 		ticket = list_first_entry(&space_info->tickets,
1031 					  struct reserve_ticket, list);
1032 
1033 		if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1034 			return true;
1035 
1036 		if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1037 			btrfs_info(fs_info, "failing ticket with %llu bytes",
1038 				   ticket->bytes);
1039 
1040 		remove_ticket(space_info, ticket);
1041 		if (aborted)
1042 			ticket->error = -EIO;
1043 		else
1044 			ticket->error = -ENOSPC;
1045 		wake_up(&ticket->wait);
1046 
1047 		/*
1048 		 * We're just throwing tickets away, so more flushing may not
1049 		 * trip over btrfs_try_granting_tickets, so we need to call it
1050 		 * here to see if we can make progress with the next ticket in
1051 		 * the list.
1052 		 */
1053 		if (!aborted)
1054 			btrfs_try_granting_tickets(fs_info, space_info);
1055 	}
1056 	return (tickets_id != space_info->tickets_id);
1057 }
1058 
1059 /*
1060  * This is for normal flushers, we can wait all goddamned day if we want to.  We
1061  * will loop and continuously try to flush as long as we are making progress.
1062  * We count progress as clearing off tickets each time we have to loop.
1063  */
1064 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1065 {
1066 	struct btrfs_fs_info *fs_info;
1067 	struct btrfs_space_info *space_info;
1068 	u64 to_reclaim;
1069 	enum btrfs_flush_state flush_state;
1070 	int commit_cycles = 0;
1071 	u64 last_tickets_id;
1072 
1073 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1074 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1075 
1076 	spin_lock(&space_info->lock);
1077 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1078 	if (!to_reclaim) {
1079 		space_info->flush = 0;
1080 		spin_unlock(&space_info->lock);
1081 		return;
1082 	}
1083 	last_tickets_id = space_info->tickets_id;
1084 	spin_unlock(&space_info->lock);
1085 
1086 	flush_state = FLUSH_DELAYED_ITEMS_NR;
1087 	do {
1088 		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1089 		spin_lock(&space_info->lock);
1090 		if (list_empty(&space_info->tickets)) {
1091 			space_info->flush = 0;
1092 			spin_unlock(&space_info->lock);
1093 			return;
1094 		}
1095 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1096 							      space_info);
1097 		if (last_tickets_id == space_info->tickets_id) {
1098 			flush_state++;
1099 		} else {
1100 			last_tickets_id = space_info->tickets_id;
1101 			flush_state = FLUSH_DELAYED_ITEMS_NR;
1102 			if (commit_cycles)
1103 				commit_cycles--;
1104 		}
1105 
1106 		/*
1107 		 * We do not want to empty the system of delalloc unless we're
1108 		 * under heavy pressure, so allow one trip through the flushing
1109 		 * logic before we start doing a FLUSH_DELALLOC_FULL.
1110 		 */
1111 		if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1112 			flush_state++;
1113 
1114 		/*
1115 		 * We don't want to force a chunk allocation until we've tried
1116 		 * pretty hard to reclaim space.  Think of the case where we
1117 		 * freed up a bunch of space and so have a lot of pinned space
1118 		 * to reclaim.  We would rather use that than possibly create a
1119 		 * underutilized metadata chunk.  So if this is our first run
1120 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1121 		 * commit the transaction.  If nothing has changed the next go
1122 		 * around then we can force a chunk allocation.
1123 		 */
1124 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1125 			flush_state++;
1126 
1127 		if (flush_state > COMMIT_TRANS) {
1128 			commit_cycles++;
1129 			if (commit_cycles > 2) {
1130 				if (maybe_fail_all_tickets(fs_info, space_info)) {
1131 					flush_state = FLUSH_DELAYED_ITEMS_NR;
1132 					commit_cycles--;
1133 				} else {
1134 					space_info->flush = 0;
1135 				}
1136 			} else {
1137 				flush_state = FLUSH_DELAYED_ITEMS_NR;
1138 			}
1139 		}
1140 		spin_unlock(&space_info->lock);
1141 	} while (flush_state <= COMMIT_TRANS);
1142 }
1143 
1144 /*
1145  * This handles pre-flushing of metadata space before we get to the point that
1146  * we need to start blocking threads on tickets.  The logic here is different
1147  * from the other flush paths because it doesn't rely on tickets to tell us how
1148  * much we need to flush, instead it attempts to keep us below the 80% full
1149  * watermark of space by flushing whichever reservation pool is currently the
1150  * largest.
1151  */
1152 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1153 {
1154 	struct btrfs_fs_info *fs_info;
1155 	struct btrfs_space_info *space_info;
1156 	struct btrfs_block_rsv *delayed_block_rsv;
1157 	struct btrfs_block_rsv *delayed_refs_rsv;
1158 	struct btrfs_block_rsv *global_rsv;
1159 	struct btrfs_block_rsv *trans_rsv;
1160 	int loops = 0;
1161 
1162 	fs_info = container_of(work, struct btrfs_fs_info,
1163 			       preempt_reclaim_work);
1164 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1165 	delayed_block_rsv = &fs_info->delayed_block_rsv;
1166 	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1167 	global_rsv = &fs_info->global_block_rsv;
1168 	trans_rsv = &fs_info->trans_block_rsv;
1169 
1170 	spin_lock(&space_info->lock);
1171 	while (need_preemptive_reclaim(fs_info, space_info)) {
1172 		enum btrfs_flush_state flush;
1173 		u64 delalloc_size = 0;
1174 		u64 to_reclaim, block_rsv_size;
1175 		u64 global_rsv_size = global_rsv->reserved;
1176 
1177 		loops++;
1178 
1179 		/*
1180 		 * We don't have a precise counter for the metadata being
1181 		 * reserved for delalloc, so we'll approximate it by subtracting
1182 		 * out the block rsv's space from the bytes_may_use.  If that
1183 		 * amount is higher than the individual reserves, then we can
1184 		 * assume it's tied up in delalloc reservations.
1185 		 */
1186 		block_rsv_size = global_rsv_size +
1187 			delayed_block_rsv->reserved +
1188 			delayed_refs_rsv->reserved +
1189 			trans_rsv->reserved;
1190 		if (block_rsv_size < space_info->bytes_may_use)
1191 			delalloc_size = space_info->bytes_may_use - block_rsv_size;
1192 
1193 		/*
1194 		 * We don't want to include the global_rsv in our calculation,
1195 		 * because that's space we can't touch.  Subtract it from the
1196 		 * block_rsv_size for the next checks.
1197 		 */
1198 		block_rsv_size -= global_rsv_size;
1199 
1200 		/*
1201 		 * We really want to avoid flushing delalloc too much, as it
1202 		 * could result in poor allocation patterns, so only flush it if
1203 		 * it's larger than the rest of the pools combined.
1204 		 */
1205 		if (delalloc_size > block_rsv_size) {
1206 			to_reclaim = delalloc_size;
1207 			flush = FLUSH_DELALLOC;
1208 		} else if (space_info->bytes_pinned >
1209 			   (delayed_block_rsv->reserved +
1210 			    delayed_refs_rsv->reserved)) {
1211 			to_reclaim = space_info->bytes_pinned;
1212 			flush = COMMIT_TRANS;
1213 		} else if (delayed_block_rsv->reserved >
1214 			   delayed_refs_rsv->reserved) {
1215 			to_reclaim = delayed_block_rsv->reserved;
1216 			flush = FLUSH_DELAYED_ITEMS_NR;
1217 		} else {
1218 			to_reclaim = delayed_refs_rsv->reserved;
1219 			flush = FLUSH_DELAYED_REFS_NR;
1220 		}
1221 
1222 		spin_unlock(&space_info->lock);
1223 
1224 		/*
1225 		 * We don't want to reclaim everything, just a portion, so scale
1226 		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1227 		 * reclaim 1 items worth.
1228 		 */
1229 		to_reclaim >>= 2;
1230 		if (!to_reclaim)
1231 			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1232 		flush_space(fs_info, space_info, to_reclaim, flush, true);
1233 		cond_resched();
1234 		spin_lock(&space_info->lock);
1235 	}
1236 
1237 	/* We only went through once, back off our clamping. */
1238 	if (loops == 1 && !space_info->reclaim_size)
1239 		space_info->clamp = max(1, space_info->clamp - 1);
1240 	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1241 	spin_unlock(&space_info->lock);
1242 }
1243 
1244 /*
1245  * FLUSH_DELALLOC_WAIT:
1246  *   Space is freed from flushing delalloc in one of two ways.
1247  *
1248  *   1) compression is on and we allocate less space than we reserved
1249  *   2) we are overwriting existing space
1250  *
1251  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1252  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1253  *   length to ->bytes_reserved, and subtracts the reserved space from
1254  *   ->bytes_may_use.
1255  *
1256  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1257  *   extent in the range we are overwriting, which creates a delayed ref for
1258  *   that freed extent.  This however is not reclaimed until the transaction
1259  *   commits, thus the next stages.
1260  *
1261  * RUN_DELAYED_IPUTS
1262  *   If we are freeing inodes, we want to make sure all delayed iputs have
1263  *   completed, because they could have been on an inode with i_nlink == 0, and
1264  *   thus have been truncated and freed up space.  But again this space is not
1265  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1266  *   run and then the transaction must be committed.
1267  *
1268  * COMMIT_TRANS
1269  *   This is where we reclaim all of the pinned space generated by running the
1270  *   iputs
1271  *
1272  * ALLOC_CHUNK_FORCE
1273  *   For data we start with alloc chunk force, however we could have been full
1274  *   before, and then the transaction commit could have freed new block groups,
1275  *   so if we now have space to allocate do the force chunk allocation.
1276  */
1277 static const enum btrfs_flush_state data_flush_states[] = {
1278 	FLUSH_DELALLOC_FULL,
1279 	RUN_DELAYED_IPUTS,
1280 	COMMIT_TRANS,
1281 	ALLOC_CHUNK_FORCE,
1282 };
1283 
1284 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1285 {
1286 	struct btrfs_fs_info *fs_info;
1287 	struct btrfs_space_info *space_info;
1288 	u64 last_tickets_id;
1289 	enum btrfs_flush_state flush_state = 0;
1290 
1291 	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1292 	space_info = fs_info->data_sinfo;
1293 
1294 	spin_lock(&space_info->lock);
1295 	if (list_empty(&space_info->tickets)) {
1296 		space_info->flush = 0;
1297 		spin_unlock(&space_info->lock);
1298 		return;
1299 	}
1300 	last_tickets_id = space_info->tickets_id;
1301 	spin_unlock(&space_info->lock);
1302 
1303 	while (!space_info->full) {
1304 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1305 		spin_lock(&space_info->lock);
1306 		if (list_empty(&space_info->tickets)) {
1307 			space_info->flush = 0;
1308 			spin_unlock(&space_info->lock);
1309 			return;
1310 		}
1311 
1312 		/* Something happened, fail everything and bail. */
1313 		if (BTRFS_FS_ERROR(fs_info))
1314 			goto aborted_fs;
1315 		last_tickets_id = space_info->tickets_id;
1316 		spin_unlock(&space_info->lock);
1317 	}
1318 
1319 	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1320 		flush_space(fs_info, space_info, U64_MAX,
1321 			    data_flush_states[flush_state], false);
1322 		spin_lock(&space_info->lock);
1323 		if (list_empty(&space_info->tickets)) {
1324 			space_info->flush = 0;
1325 			spin_unlock(&space_info->lock);
1326 			return;
1327 		}
1328 
1329 		if (last_tickets_id == space_info->tickets_id) {
1330 			flush_state++;
1331 		} else {
1332 			last_tickets_id = space_info->tickets_id;
1333 			flush_state = 0;
1334 		}
1335 
1336 		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1337 			if (space_info->full) {
1338 				if (maybe_fail_all_tickets(fs_info, space_info))
1339 					flush_state = 0;
1340 				else
1341 					space_info->flush = 0;
1342 			} else {
1343 				flush_state = 0;
1344 			}
1345 
1346 			/* Something happened, fail everything and bail. */
1347 			if (BTRFS_FS_ERROR(fs_info))
1348 				goto aborted_fs;
1349 
1350 		}
1351 		spin_unlock(&space_info->lock);
1352 	}
1353 	return;
1354 
1355 aborted_fs:
1356 	maybe_fail_all_tickets(fs_info, space_info);
1357 	space_info->flush = 0;
1358 	spin_unlock(&space_info->lock);
1359 }
1360 
1361 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1362 {
1363 	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1364 	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1365 	INIT_WORK(&fs_info->preempt_reclaim_work,
1366 		  btrfs_preempt_reclaim_metadata_space);
1367 }
1368 
1369 static const enum btrfs_flush_state priority_flush_states[] = {
1370 	FLUSH_DELAYED_ITEMS_NR,
1371 	FLUSH_DELAYED_ITEMS,
1372 	ALLOC_CHUNK,
1373 };
1374 
1375 static const enum btrfs_flush_state evict_flush_states[] = {
1376 	FLUSH_DELAYED_ITEMS_NR,
1377 	FLUSH_DELAYED_ITEMS,
1378 	FLUSH_DELAYED_REFS_NR,
1379 	FLUSH_DELAYED_REFS,
1380 	FLUSH_DELALLOC,
1381 	FLUSH_DELALLOC_WAIT,
1382 	FLUSH_DELALLOC_FULL,
1383 	ALLOC_CHUNK,
1384 	COMMIT_TRANS,
1385 };
1386 
1387 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1388 				struct btrfs_space_info *space_info,
1389 				struct reserve_ticket *ticket,
1390 				const enum btrfs_flush_state *states,
1391 				int states_nr)
1392 {
1393 	u64 to_reclaim;
1394 	int flush_state = 0;
1395 
1396 	spin_lock(&space_info->lock);
1397 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1398 	/*
1399 	 * This is the priority reclaim path, so to_reclaim could be >0 still
1400 	 * because we may have only satisfied the priority tickets and still
1401 	 * left non priority tickets on the list.  We would then have
1402 	 * to_reclaim but ->bytes == 0.
1403 	 */
1404 	if (ticket->bytes == 0) {
1405 		spin_unlock(&space_info->lock);
1406 		return;
1407 	}
1408 
1409 	while (flush_state < states_nr) {
1410 		spin_unlock(&space_info->lock);
1411 		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1412 			    false);
1413 		flush_state++;
1414 		spin_lock(&space_info->lock);
1415 		if (ticket->bytes == 0) {
1416 			spin_unlock(&space_info->lock);
1417 			return;
1418 		}
1419 	}
1420 
1421 	/* Attempt to steal from the global rsv if we can. */
1422 	if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1423 		ticket->error = -ENOSPC;
1424 		remove_ticket(space_info, ticket);
1425 	}
1426 
1427 	/*
1428 	 * We must run try_granting_tickets here because we could be a large
1429 	 * ticket in front of a smaller ticket that can now be satisfied with
1430 	 * the available space.
1431 	 */
1432 	btrfs_try_granting_tickets(fs_info, space_info);
1433 	spin_unlock(&space_info->lock);
1434 }
1435 
1436 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1437 					struct btrfs_space_info *space_info,
1438 					struct reserve_ticket *ticket)
1439 {
1440 	spin_lock(&space_info->lock);
1441 
1442 	/* We could have been granted before we got here. */
1443 	if (ticket->bytes == 0) {
1444 		spin_unlock(&space_info->lock);
1445 		return;
1446 	}
1447 
1448 	while (!space_info->full) {
1449 		spin_unlock(&space_info->lock);
1450 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1451 		spin_lock(&space_info->lock);
1452 		if (ticket->bytes == 0) {
1453 			spin_unlock(&space_info->lock);
1454 			return;
1455 		}
1456 	}
1457 
1458 	ticket->error = -ENOSPC;
1459 	remove_ticket(space_info, ticket);
1460 	btrfs_try_granting_tickets(fs_info, space_info);
1461 	spin_unlock(&space_info->lock);
1462 }
1463 
1464 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1465 				struct btrfs_space_info *space_info,
1466 				struct reserve_ticket *ticket)
1467 
1468 {
1469 	DEFINE_WAIT(wait);
1470 	int ret = 0;
1471 
1472 	spin_lock(&space_info->lock);
1473 	while (ticket->bytes > 0 && ticket->error == 0) {
1474 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1475 		if (ret) {
1476 			/*
1477 			 * Delete us from the list. After we unlock the space
1478 			 * info, we don't want the async reclaim job to reserve
1479 			 * space for this ticket. If that would happen, then the
1480 			 * ticket's task would not known that space was reserved
1481 			 * despite getting an error, resulting in a space leak
1482 			 * (bytes_may_use counter of our space_info).
1483 			 */
1484 			remove_ticket(space_info, ticket);
1485 			ticket->error = -EINTR;
1486 			break;
1487 		}
1488 		spin_unlock(&space_info->lock);
1489 
1490 		schedule();
1491 
1492 		finish_wait(&ticket->wait, &wait);
1493 		spin_lock(&space_info->lock);
1494 	}
1495 	spin_unlock(&space_info->lock);
1496 }
1497 
1498 /*
1499  * Do the appropriate flushing and waiting for a ticket.
1500  *
1501  * @fs_info:    the filesystem
1502  * @space_info: space info for the reservation
1503  * @ticket:     ticket for the reservation
1504  * @start_ns:   timestamp when the reservation started
1505  * @orig_bytes: amount of bytes originally reserved
1506  * @flush:      how much we can flush
1507  *
1508  * This does the work of figuring out how to flush for the ticket, waiting for
1509  * the reservation, and returning the appropriate error if there is one.
1510  */
1511 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1512 				 struct btrfs_space_info *space_info,
1513 				 struct reserve_ticket *ticket,
1514 				 u64 start_ns, u64 orig_bytes,
1515 				 enum btrfs_reserve_flush_enum flush)
1516 {
1517 	int ret;
1518 
1519 	switch (flush) {
1520 	case BTRFS_RESERVE_FLUSH_DATA:
1521 	case BTRFS_RESERVE_FLUSH_ALL:
1522 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1523 		wait_reserve_ticket(fs_info, space_info, ticket);
1524 		break;
1525 	case BTRFS_RESERVE_FLUSH_LIMIT:
1526 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1527 						priority_flush_states,
1528 						ARRAY_SIZE(priority_flush_states));
1529 		break;
1530 	case BTRFS_RESERVE_FLUSH_EVICT:
1531 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1532 						evict_flush_states,
1533 						ARRAY_SIZE(evict_flush_states));
1534 		break;
1535 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1536 		priority_reclaim_data_space(fs_info, space_info, ticket);
1537 		break;
1538 	default:
1539 		ASSERT(0);
1540 		break;
1541 	}
1542 
1543 	ret = ticket->error;
1544 	ASSERT(list_empty(&ticket->list));
1545 	/*
1546 	 * Check that we can't have an error set if the reservation succeeded,
1547 	 * as that would confuse tasks and lead them to error out without
1548 	 * releasing reserved space (if an error happens the expectation is that
1549 	 * space wasn't reserved at all).
1550 	 */
1551 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1552 	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1553 				   start_ns, flush, ticket->error);
1554 	return ret;
1555 }
1556 
1557 /*
1558  * This returns true if this flush state will go through the ordinary flushing
1559  * code.
1560  */
1561 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1562 {
1563 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1564 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1565 }
1566 
1567 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1568 				       struct btrfs_space_info *space_info)
1569 {
1570 	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1571 	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1572 
1573 	/*
1574 	 * If we're heavy on ordered operations then clamping won't help us.  We
1575 	 * need to clamp specifically to keep up with dirty'ing buffered
1576 	 * writers, because there's not a 1:1 correlation of writing delalloc
1577 	 * and freeing space, like there is with flushing delayed refs or
1578 	 * delayed nodes.  If we're already more ordered than delalloc then
1579 	 * we're keeping up, otherwise we aren't and should probably clamp.
1580 	 */
1581 	if (ordered < delalloc)
1582 		space_info->clamp = min(space_info->clamp + 1, 8);
1583 }
1584 
1585 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1586 {
1587 	return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1588 		flush == BTRFS_RESERVE_FLUSH_EVICT);
1589 }
1590 
1591 /*
1592  * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1593  * fail as quickly as possible.
1594  */
1595 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1596 {
1597 	return (flush != BTRFS_RESERVE_NO_FLUSH &&
1598 		flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1599 }
1600 
1601 /*
1602  * Try to reserve bytes from the block_rsv's space.
1603  *
1604  * @fs_info:    the filesystem
1605  * @space_info: space info we want to allocate from
1606  * @orig_bytes: number of bytes we want
1607  * @flush:      whether or not we can flush to make our reservation
1608  *
1609  * This will reserve orig_bytes number of bytes from the space info associated
1610  * with the block_rsv.  If there is not enough space it will make an attempt to
1611  * flush out space to make room.  It will do this by flushing delalloc if
1612  * possible or committing the transaction.  If flush is 0 then no attempts to
1613  * regain reservations will be made and this will fail if there is not enough
1614  * space already.
1615  */
1616 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1617 			   struct btrfs_space_info *space_info, u64 orig_bytes,
1618 			   enum btrfs_reserve_flush_enum flush)
1619 {
1620 	struct work_struct *async_work;
1621 	struct reserve_ticket ticket;
1622 	u64 start_ns = 0;
1623 	u64 used;
1624 	int ret = -ENOSPC;
1625 	bool pending_tickets;
1626 
1627 	ASSERT(orig_bytes);
1628 	/*
1629 	 * If have a transaction handle (current->journal_info != NULL), then
1630 	 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor
1631 	 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those
1632 	 * flushing methods can trigger transaction commits.
1633 	 */
1634 	if (current->journal_info) {
1635 		/* One assert per line for easier debugging. */
1636 		ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL);
1637 		ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL);
1638 		ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT);
1639 	}
1640 
1641 	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1642 		async_work = &fs_info->async_data_reclaim_work;
1643 	else
1644 		async_work = &fs_info->async_reclaim_work;
1645 
1646 	spin_lock(&space_info->lock);
1647 	used = btrfs_space_info_used(space_info, true);
1648 
1649 	/*
1650 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1651 	 * generally handle ENOSPC in a different way, so treat them the same as
1652 	 * normal flushers when it comes to skipping pending tickets.
1653 	 */
1654 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1655 		pending_tickets = !list_empty(&space_info->tickets) ||
1656 			!list_empty(&space_info->priority_tickets);
1657 	else
1658 		pending_tickets = !list_empty(&space_info->priority_tickets);
1659 
1660 	/*
1661 	 * Carry on if we have enough space (short-circuit) OR call
1662 	 * can_overcommit() to ensure we can overcommit to continue.
1663 	 */
1664 	if (!pending_tickets &&
1665 	    ((used + orig_bytes <= space_info->total_bytes) ||
1666 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1667 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1668 						      orig_bytes);
1669 		ret = 0;
1670 	}
1671 
1672 	/*
1673 	 * Things are dire, we need to make a reservation so we don't abort.  We
1674 	 * will let this reservation go through as long as we have actual space
1675 	 * left to allocate for the block.
1676 	 */
1677 	if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1678 		used = btrfs_space_info_used(space_info, false);
1679 		if (used + orig_bytes <= space_info->total_bytes) {
1680 			btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1681 							      orig_bytes);
1682 			ret = 0;
1683 		}
1684 	}
1685 
1686 	/*
1687 	 * If we couldn't make a reservation then setup our reservation ticket
1688 	 * and kick the async worker if it's not already running.
1689 	 *
1690 	 * If we are a priority flusher then we just need to add our ticket to
1691 	 * the list and we will do our own flushing further down.
1692 	 */
1693 	if (ret && can_ticket(flush)) {
1694 		ticket.bytes = orig_bytes;
1695 		ticket.error = 0;
1696 		space_info->reclaim_size += ticket.bytes;
1697 		init_waitqueue_head(&ticket.wait);
1698 		ticket.steal = can_steal(flush);
1699 		if (trace_btrfs_reserve_ticket_enabled())
1700 			start_ns = ktime_get_ns();
1701 
1702 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1703 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1704 		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1705 			list_add_tail(&ticket.list, &space_info->tickets);
1706 			if (!space_info->flush) {
1707 				/*
1708 				 * We were forced to add a reserve ticket, so
1709 				 * our preemptive flushing is unable to keep
1710 				 * up.  Clamp down on the threshold for the
1711 				 * preemptive flushing in order to keep up with
1712 				 * the workload.
1713 				 */
1714 				maybe_clamp_preempt(fs_info, space_info);
1715 
1716 				space_info->flush = 1;
1717 				trace_btrfs_trigger_flush(fs_info,
1718 							  space_info->flags,
1719 							  orig_bytes, flush,
1720 							  "enospc");
1721 				queue_work(system_unbound_wq, async_work);
1722 			}
1723 		} else {
1724 			list_add_tail(&ticket.list,
1725 				      &space_info->priority_tickets);
1726 		}
1727 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1728 		/*
1729 		 * We will do the space reservation dance during log replay,
1730 		 * which means we won't have fs_info->fs_root set, so don't do
1731 		 * the async reclaim as we will panic.
1732 		 */
1733 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1734 		    !work_busy(&fs_info->preempt_reclaim_work) &&
1735 		    need_preemptive_reclaim(fs_info, space_info)) {
1736 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1737 						  orig_bytes, flush, "preempt");
1738 			queue_work(system_unbound_wq,
1739 				   &fs_info->preempt_reclaim_work);
1740 		}
1741 	}
1742 	spin_unlock(&space_info->lock);
1743 	if (!ret || !can_ticket(flush))
1744 		return ret;
1745 
1746 	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1747 				     orig_bytes, flush);
1748 }
1749 
1750 /*
1751  * Try to reserve metadata bytes from the block_rsv's space.
1752  *
1753  * @fs_info:    the filesystem
1754  * @block_rsv:  block_rsv we're allocating for
1755  * @orig_bytes: number of bytes we want
1756  * @flush:      whether or not we can flush to make our reservation
1757  *
1758  * This will reserve orig_bytes number of bytes from the space info associated
1759  * with the block_rsv.  If there is not enough space it will make an attempt to
1760  * flush out space to make room.  It will do this by flushing delalloc if
1761  * possible or committing the transaction.  If flush is 0 then no attempts to
1762  * regain reservations will be made and this will fail if there is not enough
1763  * space already.
1764  */
1765 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1766 				 struct btrfs_block_rsv *block_rsv,
1767 				 u64 orig_bytes,
1768 				 enum btrfs_reserve_flush_enum flush)
1769 {
1770 	int ret;
1771 
1772 	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1773 	if (ret == -ENOSPC) {
1774 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1775 					      block_rsv->space_info->flags,
1776 					      orig_bytes, 1);
1777 
1778 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1779 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1780 					      orig_bytes, 0);
1781 	}
1782 	return ret;
1783 }
1784 
1785 /*
1786  * Try to reserve data bytes for an allocation.
1787  *
1788  * @fs_info: the filesystem
1789  * @bytes:   number of bytes we need
1790  * @flush:   how we are allowed to flush
1791  *
1792  * This will reserve bytes from the data space info.  If there is not enough
1793  * space then we will attempt to flush space as specified by flush.
1794  */
1795 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1796 			     enum btrfs_reserve_flush_enum flush)
1797 {
1798 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1799 	int ret;
1800 
1801 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1802 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1803 	       flush == BTRFS_RESERVE_NO_FLUSH);
1804 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1805 
1806 	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1807 	if (ret == -ENOSPC) {
1808 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1809 					      data_sinfo->flags, bytes, 1);
1810 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1811 			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1812 	}
1813 	return ret;
1814 }
1815 
1816 /* Dump all the space infos when we abort a transaction due to ENOSPC. */
1817 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1818 {
1819 	struct btrfs_space_info *space_info;
1820 
1821 	btrfs_info(fs_info, "dumping space info:");
1822 	list_for_each_entry(space_info, &fs_info->space_info, list) {
1823 		spin_lock(&space_info->lock);
1824 		__btrfs_dump_space_info(fs_info, space_info);
1825 		spin_unlock(&space_info->lock);
1826 	}
1827 	dump_global_block_rsv(fs_info);
1828 }
1829 
1830 /*
1831  * Account the unused space of all the readonly block group in the space_info.
1832  * takes mirrors into account.
1833  */
1834 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1835 {
1836 	struct btrfs_block_group *block_group;
1837 	u64 free_bytes = 0;
1838 	int factor;
1839 
1840 	/* It's df, we don't care if it's racy */
1841 	if (list_empty(&sinfo->ro_bgs))
1842 		return 0;
1843 
1844 	spin_lock(&sinfo->lock);
1845 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1846 		spin_lock(&block_group->lock);
1847 
1848 		if (!block_group->ro) {
1849 			spin_unlock(&block_group->lock);
1850 			continue;
1851 		}
1852 
1853 		factor = btrfs_bg_type_to_factor(block_group->flags);
1854 		free_bytes += (block_group->length -
1855 			       block_group->used) * factor;
1856 
1857 		spin_unlock(&block_group->lock);
1858 	}
1859 	spin_unlock(&sinfo->lock);
1860 
1861 	return free_bytes;
1862 }
1863