xref: /openbmc/linux/fs/btrfs/space-info.c (revision 15e3ae36)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     may_commit_transaction() is the ultimate arbiter on whether we commit the
137  *     transaction or not.  In order to avoid constantly churning we do all the
138  *     above flushing first and then commit the transaction as the last resort.
139  *     However we need to take into account things like pinned space that would
140  *     be freed, plus any delayed work we may not have gotten rid of in the case
141  *     of metadata.
142  *
143  * OVERCOMMIT
144  *
145  *   Because we hold so many reservations for metadata we will allow you to
146  *   reserve more space than is currently free in the currently allocate
147  *   metadata space.  This only happens with metadata, data does not allow
148  *   overcommitting.
149  *
150  *   You can see the current logic for when we allow overcommit in
151  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
152  *   is no unallocated space to be had, all reservations are kept within the
153  *   free space in the allocated metadata chunks.
154  *
155  *   Because of overcommitting, you generally want to use the
156  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
157  *   thing with or without extra unallocated space.
158  */
159 
160 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
161 			  bool may_use_included)
162 {
163 	ASSERT(s_info);
164 	return s_info->bytes_used + s_info->bytes_reserved +
165 		s_info->bytes_pinned + s_info->bytes_readonly +
166 		(may_use_included ? s_info->bytes_may_use : 0);
167 }
168 
169 /*
170  * after adding space to the filesystem, we need to clear the full flags
171  * on all the space infos.
172  */
173 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
174 {
175 	struct list_head *head = &info->space_info;
176 	struct btrfs_space_info *found;
177 
178 	rcu_read_lock();
179 	list_for_each_entry_rcu(found, head, list)
180 		found->full = 0;
181 	rcu_read_unlock();
182 }
183 
184 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
185 {
186 
187 	struct btrfs_space_info *space_info;
188 	int i;
189 	int ret;
190 
191 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
192 	if (!space_info)
193 		return -ENOMEM;
194 
195 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
196 				 GFP_KERNEL);
197 	if (ret) {
198 		kfree(space_info);
199 		return ret;
200 	}
201 
202 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
203 		INIT_LIST_HEAD(&space_info->block_groups[i]);
204 	init_rwsem(&space_info->groups_sem);
205 	spin_lock_init(&space_info->lock);
206 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
207 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
208 	INIT_LIST_HEAD(&space_info->ro_bgs);
209 	INIT_LIST_HEAD(&space_info->tickets);
210 	INIT_LIST_HEAD(&space_info->priority_tickets);
211 
212 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
213 	if (ret)
214 		return ret;
215 
216 	list_add_rcu(&space_info->list, &info->space_info);
217 	if (flags & BTRFS_BLOCK_GROUP_DATA)
218 		info->data_sinfo = space_info;
219 
220 	return ret;
221 }
222 
223 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
224 {
225 	struct btrfs_super_block *disk_super;
226 	u64 features;
227 	u64 flags;
228 	int mixed = 0;
229 	int ret;
230 
231 	disk_super = fs_info->super_copy;
232 	if (!btrfs_super_root(disk_super))
233 		return -EINVAL;
234 
235 	features = btrfs_super_incompat_flags(disk_super);
236 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
237 		mixed = 1;
238 
239 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
240 	ret = create_space_info(fs_info, flags);
241 	if (ret)
242 		goto out;
243 
244 	if (mixed) {
245 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
246 		ret = create_space_info(fs_info, flags);
247 	} else {
248 		flags = BTRFS_BLOCK_GROUP_METADATA;
249 		ret = create_space_info(fs_info, flags);
250 		if (ret)
251 			goto out;
252 
253 		flags = BTRFS_BLOCK_GROUP_DATA;
254 		ret = create_space_info(fs_info, flags);
255 	}
256 out:
257 	return ret;
258 }
259 
260 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
261 			     u64 total_bytes, u64 bytes_used,
262 			     u64 bytes_readonly,
263 			     struct btrfs_space_info **space_info)
264 {
265 	struct btrfs_space_info *found;
266 	int factor;
267 
268 	factor = btrfs_bg_type_to_factor(flags);
269 
270 	found = btrfs_find_space_info(info, flags);
271 	ASSERT(found);
272 	spin_lock(&found->lock);
273 	found->total_bytes += total_bytes;
274 	found->disk_total += total_bytes * factor;
275 	found->bytes_used += bytes_used;
276 	found->disk_used += bytes_used * factor;
277 	found->bytes_readonly += bytes_readonly;
278 	if (total_bytes > 0)
279 		found->full = 0;
280 	btrfs_try_granting_tickets(info, found);
281 	spin_unlock(&found->lock);
282 	*space_info = found;
283 }
284 
285 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
286 					       u64 flags)
287 {
288 	struct list_head *head = &info->space_info;
289 	struct btrfs_space_info *found;
290 
291 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
292 
293 	rcu_read_lock();
294 	list_for_each_entry_rcu(found, head, list) {
295 		if (found->flags & flags) {
296 			rcu_read_unlock();
297 			return found;
298 		}
299 	}
300 	rcu_read_unlock();
301 	return NULL;
302 }
303 
304 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
305 {
306 	return (global->size << 1);
307 }
308 
309 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
310 			  struct btrfs_space_info *space_info,
311 			  enum btrfs_reserve_flush_enum flush)
312 {
313 	u64 profile;
314 	u64 avail;
315 	int factor;
316 
317 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
318 		profile = btrfs_system_alloc_profile(fs_info);
319 	else
320 		profile = btrfs_metadata_alloc_profile(fs_info);
321 
322 	avail = atomic64_read(&fs_info->free_chunk_space);
323 
324 	/*
325 	 * If we have dup, raid1 or raid10 then only half of the free
326 	 * space is actually usable.  For raid56, the space info used
327 	 * doesn't include the parity drive, so we don't have to
328 	 * change the math
329 	 */
330 	factor = btrfs_bg_type_to_factor(profile);
331 	avail = div_u64(avail, factor);
332 
333 	/*
334 	 * If we aren't flushing all things, let us overcommit up to
335 	 * 1/2th of the space. If we can flush, don't let us overcommit
336 	 * too much, let it overcommit up to 1/8 of the space.
337 	 */
338 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
339 		avail >>= 3;
340 	else
341 		avail >>= 1;
342 	return avail;
343 }
344 
345 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
346 			 struct btrfs_space_info *space_info, u64 bytes,
347 			 enum btrfs_reserve_flush_enum flush)
348 {
349 	u64 avail;
350 	u64 used;
351 
352 	/* Don't overcommit when in mixed mode */
353 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
354 		return 0;
355 
356 	used = btrfs_space_info_used(space_info, true);
357 	avail = calc_available_free_space(fs_info, space_info, flush);
358 
359 	if (used + bytes < space_info->total_bytes + avail)
360 		return 1;
361 	return 0;
362 }
363 
364 /*
365  * This is for space we already have accounted in space_info->bytes_may_use, so
366  * basically when we're returning space from block_rsv's.
367  */
368 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
369 				struct btrfs_space_info *space_info)
370 {
371 	struct list_head *head;
372 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
373 
374 	lockdep_assert_held(&space_info->lock);
375 
376 	head = &space_info->priority_tickets;
377 again:
378 	while (!list_empty(head)) {
379 		struct reserve_ticket *ticket;
380 		u64 used = btrfs_space_info_used(space_info, true);
381 
382 		ticket = list_first_entry(head, struct reserve_ticket, list);
383 
384 		/* Check and see if our ticket can be satisified now. */
385 		if ((used + ticket->bytes <= space_info->total_bytes) ||
386 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
387 					 flush)) {
388 			btrfs_space_info_update_bytes_may_use(fs_info,
389 							      space_info,
390 							      ticket->bytes);
391 			list_del_init(&ticket->list);
392 			ASSERT(space_info->reclaim_size >= ticket->bytes);
393 			space_info->reclaim_size -= ticket->bytes;
394 			ticket->bytes = 0;
395 			space_info->tickets_id++;
396 			wake_up(&ticket->wait);
397 		} else {
398 			break;
399 		}
400 	}
401 
402 	if (head == &space_info->priority_tickets) {
403 		head = &space_info->tickets;
404 		flush = BTRFS_RESERVE_FLUSH_ALL;
405 		goto again;
406 	}
407 }
408 
409 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
410 do {									\
411 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
412 	spin_lock(&__rsv->lock);					\
413 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
414 		   __rsv->size, __rsv->reserved);			\
415 	spin_unlock(&__rsv->lock);					\
416 } while (0)
417 
418 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
419 				    struct btrfs_space_info *info)
420 {
421 	lockdep_assert_held(&info->lock);
422 
423 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
424 		   info->flags,
425 		   info->total_bytes - btrfs_space_info_used(info, true),
426 		   info->full ? "" : "not ");
427 	btrfs_info(fs_info,
428 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
429 		info->total_bytes, info->bytes_used, info->bytes_pinned,
430 		info->bytes_reserved, info->bytes_may_use,
431 		info->bytes_readonly);
432 
433 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
434 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
435 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
436 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
437 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
438 
439 }
440 
441 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
442 			   struct btrfs_space_info *info, u64 bytes,
443 			   int dump_block_groups)
444 {
445 	struct btrfs_block_group *cache;
446 	int index = 0;
447 
448 	spin_lock(&info->lock);
449 	__btrfs_dump_space_info(fs_info, info);
450 	spin_unlock(&info->lock);
451 
452 	if (!dump_block_groups)
453 		return;
454 
455 	down_read(&info->groups_sem);
456 again:
457 	list_for_each_entry(cache, &info->block_groups[index], list) {
458 		spin_lock(&cache->lock);
459 		btrfs_info(fs_info,
460 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
461 			cache->start, cache->length, cache->used, cache->pinned,
462 			cache->reserved, cache->ro ? "[readonly]" : "");
463 		btrfs_dump_free_space(cache, bytes);
464 		spin_unlock(&cache->lock);
465 	}
466 	if (++index < BTRFS_NR_RAID_TYPES)
467 		goto again;
468 	up_read(&info->groups_sem);
469 }
470 
471 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
472 					 unsigned long nr_pages, int nr_items)
473 {
474 	struct super_block *sb = fs_info->sb;
475 
476 	if (down_read_trylock(&sb->s_umount)) {
477 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
478 		up_read(&sb->s_umount);
479 	} else {
480 		/*
481 		 * We needn't worry the filesystem going from r/w to r/o though
482 		 * we don't acquire ->s_umount mutex, because the filesystem
483 		 * should guarantee the delalloc inodes list be empty after
484 		 * the filesystem is readonly(all dirty pages are written to
485 		 * the disk).
486 		 */
487 		btrfs_start_delalloc_roots(fs_info, nr_items);
488 		if (!current->journal_info)
489 			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
490 	}
491 }
492 
493 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
494 					u64 to_reclaim)
495 {
496 	u64 bytes;
497 	u64 nr;
498 
499 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
500 	nr = div64_u64(to_reclaim, bytes);
501 	if (!nr)
502 		nr = 1;
503 	return nr;
504 }
505 
506 #define EXTENT_SIZE_PER_ITEM	SZ_256K
507 
508 /*
509  * shrink metadata reservation for delalloc
510  */
511 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
512 			    u64 orig, bool wait_ordered)
513 {
514 	struct btrfs_space_info *space_info;
515 	struct btrfs_trans_handle *trans;
516 	u64 delalloc_bytes;
517 	u64 dio_bytes;
518 	u64 async_pages;
519 	u64 items;
520 	long time_left;
521 	unsigned long nr_pages;
522 	int loops;
523 
524 	/* Calc the number of the pages we need flush for space reservation */
525 	items = calc_reclaim_items_nr(fs_info, to_reclaim);
526 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
527 
528 	trans = (struct btrfs_trans_handle *)current->journal_info;
529 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
530 
531 	delalloc_bytes = percpu_counter_sum_positive(
532 						&fs_info->delalloc_bytes);
533 	dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
534 	if (delalloc_bytes == 0 && dio_bytes == 0) {
535 		if (trans)
536 			return;
537 		if (wait_ordered)
538 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
539 		return;
540 	}
541 
542 	/*
543 	 * If we are doing more ordered than delalloc we need to just wait on
544 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
545 	 * that likely won't give us the space back we need.
546 	 */
547 	if (dio_bytes > delalloc_bytes)
548 		wait_ordered = true;
549 
550 	loops = 0;
551 	while ((delalloc_bytes || dio_bytes) && loops < 3) {
552 		nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
553 
554 		/*
555 		 * Triggers inode writeback for up to nr_pages. This will invoke
556 		 * ->writepages callback and trigger delalloc filling
557 		 *  (btrfs_run_delalloc_range()).
558 		 */
559 		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
560 
561 		/*
562 		 * We need to wait for the compressed pages to start before
563 		 * we continue.
564 		 */
565 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
566 		if (!async_pages)
567 			goto skip_async;
568 
569 		/*
570 		 * Calculate how many compressed pages we want to be written
571 		 * before we continue. I.e if there are more async pages than we
572 		 * require wait_event will wait until nr_pages are written.
573 		 */
574 		if (async_pages <= nr_pages)
575 			async_pages = 0;
576 		else
577 			async_pages -= nr_pages;
578 
579 		wait_event(fs_info->async_submit_wait,
580 			   atomic_read(&fs_info->async_delalloc_pages) <=
581 			   (int)async_pages);
582 skip_async:
583 		spin_lock(&space_info->lock);
584 		if (list_empty(&space_info->tickets) &&
585 		    list_empty(&space_info->priority_tickets)) {
586 			spin_unlock(&space_info->lock);
587 			break;
588 		}
589 		spin_unlock(&space_info->lock);
590 
591 		loops++;
592 		if (wait_ordered && !trans) {
593 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
594 		} else {
595 			time_left = schedule_timeout_killable(1);
596 			if (time_left)
597 				break;
598 		}
599 		delalloc_bytes = percpu_counter_sum_positive(
600 						&fs_info->delalloc_bytes);
601 		dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
602 	}
603 }
604 
605 /**
606  * maybe_commit_transaction - possibly commit the transaction if its ok to
607  * @root - the root we're allocating for
608  * @bytes - the number of bytes we want to reserve
609  * @force - force the commit
610  *
611  * This will check to make sure that committing the transaction will actually
612  * get us somewhere and then commit the transaction if it does.  Otherwise it
613  * will return -ENOSPC.
614  */
615 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
616 				  struct btrfs_space_info *space_info)
617 {
618 	struct reserve_ticket *ticket = NULL;
619 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
620 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
621 	struct btrfs_trans_handle *trans;
622 	u64 bytes_needed;
623 	u64 reclaim_bytes = 0;
624 	u64 cur_free_bytes = 0;
625 
626 	trans = (struct btrfs_trans_handle *)current->journal_info;
627 	if (trans)
628 		return -EAGAIN;
629 
630 	spin_lock(&space_info->lock);
631 	cur_free_bytes = btrfs_space_info_used(space_info, true);
632 	if (cur_free_bytes < space_info->total_bytes)
633 		cur_free_bytes = space_info->total_bytes - cur_free_bytes;
634 	else
635 		cur_free_bytes = 0;
636 
637 	if (!list_empty(&space_info->priority_tickets))
638 		ticket = list_first_entry(&space_info->priority_tickets,
639 					  struct reserve_ticket, list);
640 	else if (!list_empty(&space_info->tickets))
641 		ticket = list_first_entry(&space_info->tickets,
642 					  struct reserve_ticket, list);
643 	bytes_needed = (ticket) ? ticket->bytes : 0;
644 
645 	if (bytes_needed > cur_free_bytes)
646 		bytes_needed -= cur_free_bytes;
647 	else
648 		bytes_needed = 0;
649 	spin_unlock(&space_info->lock);
650 
651 	if (!bytes_needed)
652 		return 0;
653 
654 	trans = btrfs_join_transaction(fs_info->extent_root);
655 	if (IS_ERR(trans))
656 		return PTR_ERR(trans);
657 
658 	/*
659 	 * See if there is enough pinned space to make this reservation, or if
660 	 * we have block groups that are going to be freed, allowing us to
661 	 * possibly do a chunk allocation the next loop through.
662 	 */
663 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
664 	    __percpu_counter_compare(&space_info->total_bytes_pinned,
665 				     bytes_needed,
666 				     BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
667 		goto commit;
668 
669 	/*
670 	 * See if there is some space in the delayed insertion reservation for
671 	 * this reservation.
672 	 */
673 	if (space_info != delayed_rsv->space_info)
674 		goto enospc;
675 
676 	spin_lock(&delayed_rsv->lock);
677 	reclaim_bytes += delayed_rsv->reserved;
678 	spin_unlock(&delayed_rsv->lock);
679 
680 	spin_lock(&delayed_refs_rsv->lock);
681 	reclaim_bytes += delayed_refs_rsv->reserved;
682 	spin_unlock(&delayed_refs_rsv->lock);
683 	if (reclaim_bytes >= bytes_needed)
684 		goto commit;
685 	bytes_needed -= reclaim_bytes;
686 
687 	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
688 				   bytes_needed,
689 				   BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
690 		goto enospc;
691 
692 commit:
693 	return btrfs_commit_transaction(trans);
694 enospc:
695 	btrfs_end_transaction(trans);
696 	return -ENOSPC;
697 }
698 
699 /*
700  * Try to flush some data based on policy set by @state. This is only advisory
701  * and may fail for various reasons. The caller is supposed to examine the
702  * state of @space_info to detect the outcome.
703  */
704 static void flush_space(struct btrfs_fs_info *fs_info,
705 		       struct btrfs_space_info *space_info, u64 num_bytes,
706 		       int state)
707 {
708 	struct btrfs_root *root = fs_info->extent_root;
709 	struct btrfs_trans_handle *trans;
710 	int nr;
711 	int ret = 0;
712 
713 	switch (state) {
714 	case FLUSH_DELAYED_ITEMS_NR:
715 	case FLUSH_DELAYED_ITEMS:
716 		if (state == FLUSH_DELAYED_ITEMS_NR)
717 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
718 		else
719 			nr = -1;
720 
721 		trans = btrfs_join_transaction(root);
722 		if (IS_ERR(trans)) {
723 			ret = PTR_ERR(trans);
724 			break;
725 		}
726 		ret = btrfs_run_delayed_items_nr(trans, nr);
727 		btrfs_end_transaction(trans);
728 		break;
729 	case FLUSH_DELALLOC:
730 	case FLUSH_DELALLOC_WAIT:
731 		shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
732 				state == FLUSH_DELALLOC_WAIT);
733 		break;
734 	case FLUSH_DELAYED_REFS_NR:
735 	case FLUSH_DELAYED_REFS:
736 		trans = btrfs_join_transaction(root);
737 		if (IS_ERR(trans)) {
738 			ret = PTR_ERR(trans);
739 			break;
740 		}
741 		if (state == FLUSH_DELAYED_REFS_NR)
742 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
743 		else
744 			nr = 0;
745 		btrfs_run_delayed_refs(trans, nr);
746 		btrfs_end_transaction(trans);
747 		break;
748 	case ALLOC_CHUNK:
749 	case ALLOC_CHUNK_FORCE:
750 		trans = btrfs_join_transaction(root);
751 		if (IS_ERR(trans)) {
752 			ret = PTR_ERR(trans);
753 			break;
754 		}
755 		ret = btrfs_chunk_alloc(trans,
756 				btrfs_metadata_alloc_profile(fs_info),
757 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
758 					CHUNK_ALLOC_FORCE);
759 		btrfs_end_transaction(trans);
760 		if (ret > 0 || ret == -ENOSPC)
761 			ret = 0;
762 		break;
763 	case RUN_DELAYED_IPUTS:
764 		/*
765 		 * If we have pending delayed iputs then we could free up a
766 		 * bunch of pinned space, so make sure we run the iputs before
767 		 * we do our pinned bytes check below.
768 		 */
769 		btrfs_run_delayed_iputs(fs_info);
770 		btrfs_wait_on_delayed_iputs(fs_info);
771 		break;
772 	case COMMIT_TRANS:
773 		ret = may_commit_transaction(fs_info, space_info);
774 		break;
775 	default:
776 		ret = -ENOSPC;
777 		break;
778 	}
779 
780 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
781 				ret);
782 	return;
783 }
784 
785 static inline u64
786 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
787 				 struct btrfs_space_info *space_info)
788 {
789 	u64 used;
790 	u64 avail;
791 	u64 expected;
792 	u64 to_reclaim = space_info->reclaim_size;
793 
794 	lockdep_assert_held(&space_info->lock);
795 
796 	avail = calc_available_free_space(fs_info, space_info,
797 					  BTRFS_RESERVE_FLUSH_ALL);
798 	used = btrfs_space_info_used(space_info, true);
799 
800 	/*
801 	 * We may be flushing because suddenly we have less space than we had
802 	 * before, and now we're well over-committed based on our current free
803 	 * space.  If that's the case add in our overage so we make sure to put
804 	 * appropriate pressure on the flushing state machine.
805 	 */
806 	if (space_info->total_bytes + avail < used)
807 		to_reclaim += used - (space_info->total_bytes + avail);
808 
809 	if (to_reclaim)
810 		return to_reclaim;
811 
812 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
813 	if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
814 				 BTRFS_RESERVE_FLUSH_ALL))
815 		return 0;
816 
817 	used = btrfs_space_info_used(space_info, true);
818 
819 	if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
820 				 BTRFS_RESERVE_FLUSH_ALL))
821 		expected = div_factor_fine(space_info->total_bytes, 95);
822 	else
823 		expected = div_factor_fine(space_info->total_bytes, 90);
824 
825 	if (used > expected)
826 		to_reclaim = used - expected;
827 	else
828 		to_reclaim = 0;
829 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
830 				     space_info->bytes_reserved);
831 	return to_reclaim;
832 }
833 
834 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
835 					struct btrfs_space_info *space_info,
836 					u64 used)
837 {
838 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
839 
840 	/* If we're just plain full then async reclaim just slows us down. */
841 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
842 		return 0;
843 
844 	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
845 		return 0;
846 
847 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
848 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
849 }
850 
851 /*
852  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
853  * @fs_info - fs_info for this fs
854  * @space_info - the space info we were flushing
855  *
856  * We call this when we've exhausted our flushing ability and haven't made
857  * progress in satisfying tickets.  The reservation code handles tickets in
858  * order, so if there is a large ticket first and then smaller ones we could
859  * very well satisfy the smaller tickets.  This will attempt to wake up any
860  * tickets in the list to catch this case.
861  *
862  * This function returns true if it was able to make progress by clearing out
863  * other tickets, or if it stumbles across a ticket that was smaller than the
864  * first ticket.
865  */
866 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
867 				   struct btrfs_space_info *space_info)
868 {
869 	struct reserve_ticket *ticket;
870 	u64 tickets_id = space_info->tickets_id;
871 	u64 first_ticket_bytes = 0;
872 
873 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
874 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
875 		__btrfs_dump_space_info(fs_info, space_info);
876 	}
877 
878 	while (!list_empty(&space_info->tickets) &&
879 	       tickets_id == space_info->tickets_id) {
880 		ticket = list_first_entry(&space_info->tickets,
881 					  struct reserve_ticket, list);
882 
883 		/*
884 		 * may_commit_transaction will avoid committing the transaction
885 		 * if it doesn't feel like the space reclaimed by the commit
886 		 * would result in the ticket succeeding.  However if we have a
887 		 * smaller ticket in the queue it may be small enough to be
888 		 * satisified by committing the transaction, so if any
889 		 * subsequent ticket is smaller than the first ticket go ahead
890 		 * and send us back for another loop through the enospc flushing
891 		 * code.
892 		 */
893 		if (first_ticket_bytes == 0)
894 			first_ticket_bytes = ticket->bytes;
895 		else if (first_ticket_bytes > ticket->bytes)
896 			return true;
897 
898 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
899 			btrfs_info(fs_info, "failing ticket with %llu bytes",
900 				   ticket->bytes);
901 
902 		list_del_init(&ticket->list);
903 		ticket->error = -ENOSPC;
904 		wake_up(&ticket->wait);
905 
906 		/*
907 		 * We're just throwing tickets away, so more flushing may not
908 		 * trip over btrfs_try_granting_tickets, so we need to call it
909 		 * here to see if we can make progress with the next ticket in
910 		 * the list.
911 		 */
912 		btrfs_try_granting_tickets(fs_info, space_info);
913 	}
914 	return (tickets_id != space_info->tickets_id);
915 }
916 
917 /*
918  * This is for normal flushers, we can wait all goddamned day if we want to.  We
919  * will loop and continuously try to flush as long as we are making progress.
920  * We count progress as clearing off tickets each time we have to loop.
921  */
922 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
923 {
924 	struct btrfs_fs_info *fs_info;
925 	struct btrfs_space_info *space_info;
926 	u64 to_reclaim;
927 	int flush_state;
928 	int commit_cycles = 0;
929 	u64 last_tickets_id;
930 
931 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
932 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
933 
934 	spin_lock(&space_info->lock);
935 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
936 	if (!to_reclaim) {
937 		space_info->flush = 0;
938 		spin_unlock(&space_info->lock);
939 		return;
940 	}
941 	last_tickets_id = space_info->tickets_id;
942 	spin_unlock(&space_info->lock);
943 
944 	flush_state = FLUSH_DELAYED_ITEMS_NR;
945 	do {
946 		flush_space(fs_info, space_info, to_reclaim, flush_state);
947 		spin_lock(&space_info->lock);
948 		if (list_empty(&space_info->tickets)) {
949 			space_info->flush = 0;
950 			spin_unlock(&space_info->lock);
951 			return;
952 		}
953 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
954 							      space_info);
955 		if (last_tickets_id == space_info->tickets_id) {
956 			flush_state++;
957 		} else {
958 			last_tickets_id = space_info->tickets_id;
959 			flush_state = FLUSH_DELAYED_ITEMS_NR;
960 			if (commit_cycles)
961 				commit_cycles--;
962 		}
963 
964 		/*
965 		 * We don't want to force a chunk allocation until we've tried
966 		 * pretty hard to reclaim space.  Think of the case where we
967 		 * freed up a bunch of space and so have a lot of pinned space
968 		 * to reclaim.  We would rather use that than possibly create a
969 		 * underutilized metadata chunk.  So if this is our first run
970 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
971 		 * commit the transaction.  If nothing has changed the next go
972 		 * around then we can force a chunk allocation.
973 		 */
974 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
975 			flush_state++;
976 
977 		if (flush_state > COMMIT_TRANS) {
978 			commit_cycles++;
979 			if (commit_cycles > 2) {
980 				if (maybe_fail_all_tickets(fs_info, space_info)) {
981 					flush_state = FLUSH_DELAYED_ITEMS_NR;
982 					commit_cycles--;
983 				} else {
984 					space_info->flush = 0;
985 				}
986 			} else {
987 				flush_state = FLUSH_DELAYED_ITEMS_NR;
988 			}
989 		}
990 		spin_unlock(&space_info->lock);
991 	} while (flush_state <= COMMIT_TRANS);
992 }
993 
994 void btrfs_init_async_reclaim_work(struct work_struct *work)
995 {
996 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
997 }
998 
999 static const enum btrfs_flush_state priority_flush_states[] = {
1000 	FLUSH_DELAYED_ITEMS_NR,
1001 	FLUSH_DELAYED_ITEMS,
1002 	ALLOC_CHUNK,
1003 };
1004 
1005 static const enum btrfs_flush_state evict_flush_states[] = {
1006 	FLUSH_DELAYED_ITEMS_NR,
1007 	FLUSH_DELAYED_ITEMS,
1008 	FLUSH_DELAYED_REFS_NR,
1009 	FLUSH_DELAYED_REFS,
1010 	FLUSH_DELALLOC,
1011 	FLUSH_DELALLOC_WAIT,
1012 	ALLOC_CHUNK,
1013 	COMMIT_TRANS,
1014 };
1015 
1016 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1017 				struct btrfs_space_info *space_info,
1018 				struct reserve_ticket *ticket,
1019 				const enum btrfs_flush_state *states,
1020 				int states_nr)
1021 {
1022 	u64 to_reclaim;
1023 	int flush_state;
1024 
1025 	spin_lock(&space_info->lock);
1026 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1027 	if (!to_reclaim) {
1028 		spin_unlock(&space_info->lock);
1029 		return;
1030 	}
1031 	spin_unlock(&space_info->lock);
1032 
1033 	flush_state = 0;
1034 	do {
1035 		flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
1036 		flush_state++;
1037 		spin_lock(&space_info->lock);
1038 		if (ticket->bytes == 0) {
1039 			spin_unlock(&space_info->lock);
1040 			return;
1041 		}
1042 		spin_unlock(&space_info->lock);
1043 	} while (flush_state < states_nr);
1044 }
1045 
1046 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1047 				struct btrfs_space_info *space_info,
1048 				struct reserve_ticket *ticket)
1049 
1050 {
1051 	DEFINE_WAIT(wait);
1052 	int ret = 0;
1053 
1054 	spin_lock(&space_info->lock);
1055 	while (ticket->bytes > 0 && ticket->error == 0) {
1056 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1057 		if (ret) {
1058 			/*
1059 			 * Delete us from the list. After we unlock the space
1060 			 * info, we don't want the async reclaim job to reserve
1061 			 * space for this ticket. If that would happen, then the
1062 			 * ticket's task would not known that space was reserved
1063 			 * despite getting an error, resulting in a space leak
1064 			 * (bytes_may_use counter of our space_info).
1065 			 */
1066 			list_del_init(&ticket->list);
1067 			ticket->error = -EINTR;
1068 			break;
1069 		}
1070 		spin_unlock(&space_info->lock);
1071 
1072 		schedule();
1073 
1074 		finish_wait(&ticket->wait, &wait);
1075 		spin_lock(&space_info->lock);
1076 	}
1077 	spin_unlock(&space_info->lock);
1078 }
1079 
1080 /**
1081  * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
1082  * @fs_info - the fs
1083  * @space_info - the space_info for the reservation
1084  * @ticket - the ticket for the reservation
1085  * @flush - how much we can flush
1086  *
1087  * This does the work of figuring out how to flush for the ticket, waiting for
1088  * the reservation, and returning the appropriate error if there is one.
1089  */
1090 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1091 				 struct btrfs_space_info *space_info,
1092 				 struct reserve_ticket *ticket,
1093 				 enum btrfs_reserve_flush_enum flush)
1094 {
1095 	int ret;
1096 
1097 	switch (flush) {
1098 	case BTRFS_RESERVE_FLUSH_ALL:
1099 		wait_reserve_ticket(fs_info, space_info, ticket);
1100 		break;
1101 	case BTRFS_RESERVE_FLUSH_LIMIT:
1102 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1103 						priority_flush_states,
1104 						ARRAY_SIZE(priority_flush_states));
1105 		break;
1106 	case BTRFS_RESERVE_FLUSH_EVICT:
1107 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1108 						evict_flush_states,
1109 						ARRAY_SIZE(evict_flush_states));
1110 		break;
1111 	default:
1112 		ASSERT(0);
1113 		break;
1114 	}
1115 
1116 	spin_lock(&space_info->lock);
1117 	ret = ticket->error;
1118 	if (ticket->bytes || ticket->error) {
1119 		/*
1120 		 * Need to delete here for priority tickets. For regular tickets
1121 		 * either the async reclaim job deletes the ticket from the list
1122 		 * or we delete it ourselves at wait_reserve_ticket().
1123 		 */
1124 		list_del_init(&ticket->list);
1125 		if (!ret)
1126 			ret = -ENOSPC;
1127 	}
1128 	spin_unlock(&space_info->lock);
1129 	ASSERT(list_empty(&ticket->list));
1130 	/*
1131 	 * Check that we can't have an error set if the reservation succeeded,
1132 	 * as that would confuse tasks and lead them to error out without
1133 	 * releasing reserved space (if an error happens the expectation is that
1134 	 * space wasn't reserved at all).
1135 	 */
1136 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1137 	return ret;
1138 }
1139 
1140 /**
1141  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1142  * @root - the root we're allocating for
1143  * @space_info - the space info we want to allocate from
1144  * @orig_bytes - the number of bytes we want
1145  * @flush - whether or not we can flush to make our reservation
1146  *
1147  * This will reserve orig_bytes number of bytes from the space info associated
1148  * with the block_rsv.  If there is not enough space it will make an attempt to
1149  * flush out space to make room.  It will do this by flushing delalloc if
1150  * possible or committing the transaction.  If flush is 0 then no attempts to
1151  * regain reservations will be made and this will fail if there is not enough
1152  * space already.
1153  */
1154 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1155 				    struct btrfs_space_info *space_info,
1156 				    u64 orig_bytes,
1157 				    enum btrfs_reserve_flush_enum flush)
1158 {
1159 	struct reserve_ticket ticket;
1160 	u64 used;
1161 	int ret = 0;
1162 	bool pending_tickets;
1163 
1164 	ASSERT(orig_bytes);
1165 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1166 
1167 	spin_lock(&space_info->lock);
1168 	ret = -ENOSPC;
1169 	used = btrfs_space_info_used(space_info, true);
1170 	pending_tickets = !list_empty(&space_info->tickets) ||
1171 		!list_empty(&space_info->priority_tickets);
1172 
1173 	/*
1174 	 * Carry on if we have enough space (short-circuit) OR call
1175 	 * can_overcommit() to ensure we can overcommit to continue.
1176 	 */
1177 	if (!pending_tickets &&
1178 	    ((used + orig_bytes <= space_info->total_bytes) ||
1179 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1180 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1181 						      orig_bytes);
1182 		ret = 0;
1183 	}
1184 
1185 	/*
1186 	 * If we couldn't make a reservation then setup our reservation ticket
1187 	 * and kick the async worker if it's not already running.
1188 	 *
1189 	 * If we are a priority flusher then we just need to add our ticket to
1190 	 * the list and we will do our own flushing further down.
1191 	 */
1192 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1193 		ASSERT(space_info->reclaim_size >= 0);
1194 		ticket.bytes = orig_bytes;
1195 		ticket.error = 0;
1196 		space_info->reclaim_size += ticket.bytes;
1197 		init_waitqueue_head(&ticket.wait);
1198 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
1199 			list_add_tail(&ticket.list, &space_info->tickets);
1200 			if (!space_info->flush) {
1201 				space_info->flush = 1;
1202 				trace_btrfs_trigger_flush(fs_info,
1203 							  space_info->flags,
1204 							  orig_bytes, flush,
1205 							  "enospc");
1206 				queue_work(system_unbound_wq,
1207 					   &fs_info->async_reclaim_work);
1208 			}
1209 		} else {
1210 			list_add_tail(&ticket.list,
1211 				      &space_info->priority_tickets);
1212 		}
1213 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1214 		used += orig_bytes;
1215 		/*
1216 		 * We will do the space reservation dance during log replay,
1217 		 * which means we won't have fs_info->fs_root set, so don't do
1218 		 * the async reclaim as we will panic.
1219 		 */
1220 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1221 		    need_do_async_reclaim(fs_info, space_info, used) &&
1222 		    !work_busy(&fs_info->async_reclaim_work)) {
1223 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1224 						  orig_bytes, flush, "preempt");
1225 			queue_work(system_unbound_wq,
1226 				   &fs_info->async_reclaim_work);
1227 		}
1228 	}
1229 	spin_unlock(&space_info->lock);
1230 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1231 		return ret;
1232 
1233 	return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1234 }
1235 
1236 /**
1237  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1238  * @root - the root we're allocating for
1239  * @block_rsv - the block_rsv we're allocating for
1240  * @orig_bytes - the number of bytes we want
1241  * @flush - whether or not we can flush to make our reservation
1242  *
1243  * This will reserve orig_bytes number of bytes from the space info associated
1244  * with the block_rsv.  If there is not enough space it will make an attempt to
1245  * flush out space to make room.  It will do this by flushing delalloc if
1246  * possible or committing the transaction.  If flush is 0 then no attempts to
1247  * regain reservations will be made and this will fail if there is not enough
1248  * space already.
1249  */
1250 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1251 				 struct btrfs_block_rsv *block_rsv,
1252 				 u64 orig_bytes,
1253 				 enum btrfs_reserve_flush_enum flush)
1254 {
1255 	struct btrfs_fs_info *fs_info = root->fs_info;
1256 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1257 	int ret;
1258 
1259 	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
1260 				       orig_bytes, flush);
1261 	if (ret == -ENOSPC &&
1262 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1263 		if (block_rsv != global_rsv &&
1264 		    !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1265 			ret = 0;
1266 	}
1267 	if (ret == -ENOSPC) {
1268 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1269 					      block_rsv->space_info->flags,
1270 					      orig_bytes, 1);
1271 
1272 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1273 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1274 					      orig_bytes, 0);
1275 	}
1276 	return ret;
1277 }
1278