1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "space-info.h" 6 #include "sysfs.h" 7 #include "volumes.h" 8 #include "free-space-cache.h" 9 #include "ordered-data.h" 10 #include "transaction.h" 11 #include "block-group.h" 12 13 /* 14 * HOW DOES SPACE RESERVATION WORK 15 * 16 * If you want to know about delalloc specifically, there is a separate comment 17 * for that with the delalloc code. This comment is about how the whole system 18 * works generally. 19 * 20 * BASIC CONCEPTS 21 * 22 * 1) space_info. This is the ultimate arbiter of how much space we can use. 23 * There's a description of the bytes_ fields with the struct declaration, 24 * refer to that for specifics on each field. Suffice it to say that for 25 * reservations we care about total_bytes - SUM(space_info->bytes_) when 26 * determining if there is space to make an allocation. There is a space_info 27 * for METADATA, SYSTEM, and DATA areas. 28 * 29 * 2) block_rsv's. These are basically buckets for every different type of 30 * metadata reservation we have. You can see the comment in the block_rsv 31 * code on the rules for each type, but generally block_rsv->reserved is how 32 * much space is accounted for in space_info->bytes_may_use. 33 * 34 * 3) btrfs_calc*_size. These are the worst case calculations we used based 35 * on the number of items we will want to modify. We have one for changing 36 * items, and one for inserting new items. Generally we use these helpers to 37 * determine the size of the block reserves, and then use the actual bytes 38 * values to adjust the space_info counters. 39 * 40 * MAKING RESERVATIONS, THE NORMAL CASE 41 * 42 * We call into either btrfs_reserve_data_bytes() or 43 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with 44 * num_bytes we want to reserve. 45 * 46 * ->reserve 47 * space_info->bytes_may_reserve += num_bytes 48 * 49 * ->extent allocation 50 * Call btrfs_add_reserved_bytes() which does 51 * space_info->bytes_may_reserve -= num_bytes 52 * space_info->bytes_reserved += extent_bytes 53 * 54 * ->insert reference 55 * Call btrfs_update_block_group() which does 56 * space_info->bytes_reserved -= extent_bytes 57 * space_info->bytes_used += extent_bytes 58 * 59 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) 60 * 61 * Assume we are unable to simply make the reservation because we do not have 62 * enough space 63 * 64 * -> __reserve_bytes 65 * create a reserve_ticket with ->bytes set to our reservation, add it to 66 * the tail of space_info->tickets, kick async flush thread 67 * 68 * ->handle_reserve_ticket 69 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set 70 * on the ticket. 71 * 72 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space 73 * Flushes various things attempting to free up space. 74 * 75 * -> btrfs_try_granting_tickets() 76 * This is called by anything that either subtracts space from 77 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the 78 * space_info->total_bytes. This loops through the ->priority_tickets and 79 * then the ->tickets list checking to see if the reservation can be 80 * completed. If it can the space is added to space_info->bytes_may_use and 81 * the ticket is woken up. 82 * 83 * -> ticket wakeup 84 * Check if ->bytes == 0, if it does we got our reservation and we can carry 85 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we 86 * were interrupted.) 87 * 88 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY 89 * 90 * Same as the above, except we add ourselves to the 91 * space_info->priority_tickets, and we do not use ticket->wait, we simply 92 * call flush_space() ourselves for the states that are safe for us to call 93 * without deadlocking and hope for the best. 94 * 95 * THE FLUSHING STATES 96 * 97 * Generally speaking we will have two cases for each state, a "nice" state 98 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to 99 * reduce the locking over head on the various trees, and even to keep from 100 * doing any work at all in the case of delayed refs. Each of these delayed 101 * things however hold reservations, and so letting them run allows us to 102 * reclaim space so we can make new reservations. 103 * 104 * FLUSH_DELAYED_ITEMS 105 * Every inode has a delayed item to update the inode. Take a simple write 106 * for example, we would update the inode item at write time to update the 107 * mtime, and then again at finish_ordered_io() time in order to update the 108 * isize or bytes. We keep these delayed items to coalesce these operations 109 * into a single operation done on demand. These are an easy way to reclaim 110 * metadata space. 111 * 112 * FLUSH_DELALLOC 113 * Look at the delalloc comment to get an idea of how much space is reserved 114 * for delayed allocation. We can reclaim some of this space simply by 115 * running delalloc, but usually we need to wait for ordered extents to 116 * reclaim the bulk of this space. 117 * 118 * FLUSH_DELAYED_REFS 119 * We have a block reserve for the outstanding delayed refs space, and every 120 * delayed ref operation holds a reservation. Running these is a quick way 121 * to reclaim space, but we want to hold this until the end because COW can 122 * churn a lot and we can avoid making some extent tree modifications if we 123 * are able to delay for as long as possible. 124 * 125 * ALLOC_CHUNK 126 * We will skip this the first time through space reservation, because of 127 * overcommit and we don't want to have a lot of useless metadata space when 128 * our worst case reservations will likely never come true. 129 * 130 * RUN_DELAYED_IPUTS 131 * If we're freeing inodes we're likely freeing checksums, file extent 132 * items, and extent tree items. Loads of space could be freed up by these 133 * operations, however they won't be usable until the transaction commits. 134 * 135 * COMMIT_TRANS 136 * may_commit_transaction() is the ultimate arbiter on whether we commit the 137 * transaction or not. In order to avoid constantly churning we do all the 138 * above flushing first and then commit the transaction as the last resort. 139 * However we need to take into account things like pinned space that would 140 * be freed, plus any delayed work we may not have gotten rid of in the case 141 * of metadata. 142 * 143 * OVERCOMMIT 144 * 145 * Because we hold so many reservations for metadata we will allow you to 146 * reserve more space than is currently free in the currently allocate 147 * metadata space. This only happens with metadata, data does not allow 148 * overcommitting. 149 * 150 * You can see the current logic for when we allow overcommit in 151 * btrfs_can_overcommit(), but it only applies to unallocated space. If there 152 * is no unallocated space to be had, all reservations are kept within the 153 * free space in the allocated metadata chunks. 154 * 155 * Because of overcommitting, you generally want to use the 156 * btrfs_can_overcommit() logic for metadata allocations, as it does the right 157 * thing with or without extra unallocated space. 158 */ 159 160 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info, 161 bool may_use_included) 162 { 163 ASSERT(s_info); 164 return s_info->bytes_used + s_info->bytes_reserved + 165 s_info->bytes_pinned + s_info->bytes_readonly + 166 (may_use_included ? s_info->bytes_may_use : 0); 167 } 168 169 /* 170 * after adding space to the filesystem, we need to clear the full flags 171 * on all the space infos. 172 */ 173 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 174 { 175 struct list_head *head = &info->space_info; 176 struct btrfs_space_info *found; 177 178 rcu_read_lock(); 179 list_for_each_entry_rcu(found, head, list) 180 found->full = 0; 181 rcu_read_unlock(); 182 } 183 184 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 185 { 186 187 struct btrfs_space_info *space_info; 188 int i; 189 int ret; 190 191 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 192 if (!space_info) 193 return -ENOMEM; 194 195 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0, 196 GFP_KERNEL); 197 if (ret) { 198 kfree(space_info); 199 return ret; 200 } 201 202 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 203 INIT_LIST_HEAD(&space_info->block_groups[i]); 204 init_rwsem(&space_info->groups_sem); 205 spin_lock_init(&space_info->lock); 206 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 207 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 208 INIT_LIST_HEAD(&space_info->ro_bgs); 209 INIT_LIST_HEAD(&space_info->tickets); 210 INIT_LIST_HEAD(&space_info->priority_tickets); 211 212 ret = btrfs_sysfs_add_space_info_type(info, space_info); 213 if (ret) 214 return ret; 215 216 list_add_rcu(&space_info->list, &info->space_info); 217 if (flags & BTRFS_BLOCK_GROUP_DATA) 218 info->data_sinfo = space_info; 219 220 return ret; 221 } 222 223 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 224 { 225 struct btrfs_super_block *disk_super; 226 u64 features; 227 u64 flags; 228 int mixed = 0; 229 int ret; 230 231 disk_super = fs_info->super_copy; 232 if (!btrfs_super_root(disk_super)) 233 return -EINVAL; 234 235 features = btrfs_super_incompat_flags(disk_super); 236 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 237 mixed = 1; 238 239 flags = BTRFS_BLOCK_GROUP_SYSTEM; 240 ret = create_space_info(fs_info, flags); 241 if (ret) 242 goto out; 243 244 if (mixed) { 245 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 246 ret = create_space_info(fs_info, flags); 247 } else { 248 flags = BTRFS_BLOCK_GROUP_METADATA; 249 ret = create_space_info(fs_info, flags); 250 if (ret) 251 goto out; 252 253 flags = BTRFS_BLOCK_GROUP_DATA; 254 ret = create_space_info(fs_info, flags); 255 } 256 out: 257 return ret; 258 } 259 260 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags, 261 u64 total_bytes, u64 bytes_used, 262 u64 bytes_readonly, 263 struct btrfs_space_info **space_info) 264 { 265 struct btrfs_space_info *found; 266 int factor; 267 268 factor = btrfs_bg_type_to_factor(flags); 269 270 found = btrfs_find_space_info(info, flags); 271 ASSERT(found); 272 spin_lock(&found->lock); 273 found->total_bytes += total_bytes; 274 found->disk_total += total_bytes * factor; 275 found->bytes_used += bytes_used; 276 found->disk_used += bytes_used * factor; 277 found->bytes_readonly += bytes_readonly; 278 if (total_bytes > 0) 279 found->full = 0; 280 btrfs_try_granting_tickets(info, found); 281 spin_unlock(&found->lock); 282 *space_info = found; 283 } 284 285 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 286 u64 flags) 287 { 288 struct list_head *head = &info->space_info; 289 struct btrfs_space_info *found; 290 291 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 292 293 rcu_read_lock(); 294 list_for_each_entry_rcu(found, head, list) { 295 if (found->flags & flags) { 296 rcu_read_unlock(); 297 return found; 298 } 299 } 300 rcu_read_unlock(); 301 return NULL; 302 } 303 304 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 305 { 306 return (global->size << 1); 307 } 308 309 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info, 310 struct btrfs_space_info *space_info, 311 enum btrfs_reserve_flush_enum flush) 312 { 313 u64 profile; 314 u64 avail; 315 int factor; 316 317 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 318 profile = btrfs_system_alloc_profile(fs_info); 319 else 320 profile = btrfs_metadata_alloc_profile(fs_info); 321 322 avail = atomic64_read(&fs_info->free_chunk_space); 323 324 /* 325 * If we have dup, raid1 or raid10 then only half of the free 326 * space is actually usable. For raid56, the space info used 327 * doesn't include the parity drive, so we don't have to 328 * change the math 329 */ 330 factor = btrfs_bg_type_to_factor(profile); 331 avail = div_u64(avail, factor); 332 333 /* 334 * If we aren't flushing all things, let us overcommit up to 335 * 1/2th of the space. If we can flush, don't let us overcommit 336 * too much, let it overcommit up to 1/8 of the space. 337 */ 338 if (flush == BTRFS_RESERVE_FLUSH_ALL) 339 avail >>= 3; 340 else 341 avail >>= 1; 342 return avail; 343 } 344 345 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info, 346 struct btrfs_space_info *space_info, u64 bytes, 347 enum btrfs_reserve_flush_enum flush) 348 { 349 u64 avail; 350 u64 used; 351 352 /* Don't overcommit when in mixed mode */ 353 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 354 return 0; 355 356 used = btrfs_space_info_used(space_info, true); 357 avail = calc_available_free_space(fs_info, space_info, flush); 358 359 if (used + bytes < space_info->total_bytes + avail) 360 return 1; 361 return 0; 362 } 363 364 /* 365 * This is for space we already have accounted in space_info->bytes_may_use, so 366 * basically when we're returning space from block_rsv's. 367 */ 368 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info, 369 struct btrfs_space_info *space_info) 370 { 371 struct list_head *head; 372 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 373 374 lockdep_assert_held(&space_info->lock); 375 376 head = &space_info->priority_tickets; 377 again: 378 while (!list_empty(head)) { 379 struct reserve_ticket *ticket; 380 u64 used = btrfs_space_info_used(space_info, true); 381 382 ticket = list_first_entry(head, struct reserve_ticket, list); 383 384 /* Check and see if our ticket can be satisified now. */ 385 if ((used + ticket->bytes <= space_info->total_bytes) || 386 btrfs_can_overcommit(fs_info, space_info, ticket->bytes, 387 flush)) { 388 btrfs_space_info_update_bytes_may_use(fs_info, 389 space_info, 390 ticket->bytes); 391 list_del_init(&ticket->list); 392 ASSERT(space_info->reclaim_size >= ticket->bytes); 393 space_info->reclaim_size -= ticket->bytes; 394 ticket->bytes = 0; 395 space_info->tickets_id++; 396 wake_up(&ticket->wait); 397 } else { 398 break; 399 } 400 } 401 402 if (head == &space_info->priority_tickets) { 403 head = &space_info->tickets; 404 flush = BTRFS_RESERVE_FLUSH_ALL; 405 goto again; 406 } 407 } 408 409 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ 410 do { \ 411 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ 412 spin_lock(&__rsv->lock); \ 413 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ 414 __rsv->size, __rsv->reserved); \ 415 spin_unlock(&__rsv->lock); \ 416 } while (0) 417 418 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 419 struct btrfs_space_info *info) 420 { 421 lockdep_assert_held(&info->lock); 422 423 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", 424 info->flags, 425 info->total_bytes - btrfs_space_info_used(info, true), 426 info->full ? "" : "not "); 427 btrfs_info(fs_info, 428 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", 429 info->total_bytes, info->bytes_used, info->bytes_pinned, 430 info->bytes_reserved, info->bytes_may_use, 431 info->bytes_readonly); 432 433 DUMP_BLOCK_RSV(fs_info, global_block_rsv); 434 DUMP_BLOCK_RSV(fs_info, trans_block_rsv); 435 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); 436 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); 437 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); 438 439 } 440 441 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 442 struct btrfs_space_info *info, u64 bytes, 443 int dump_block_groups) 444 { 445 struct btrfs_block_group *cache; 446 int index = 0; 447 448 spin_lock(&info->lock); 449 __btrfs_dump_space_info(fs_info, info); 450 spin_unlock(&info->lock); 451 452 if (!dump_block_groups) 453 return; 454 455 down_read(&info->groups_sem); 456 again: 457 list_for_each_entry(cache, &info->block_groups[index], list) { 458 spin_lock(&cache->lock); 459 btrfs_info(fs_info, 460 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", 461 cache->start, cache->length, cache->used, cache->pinned, 462 cache->reserved, cache->ro ? "[readonly]" : ""); 463 btrfs_dump_free_space(cache, bytes); 464 spin_unlock(&cache->lock); 465 } 466 if (++index < BTRFS_NR_RAID_TYPES) 467 goto again; 468 up_read(&info->groups_sem); 469 } 470 471 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info, 472 unsigned long nr_pages, int nr_items) 473 { 474 struct super_block *sb = fs_info->sb; 475 476 if (down_read_trylock(&sb->s_umount)) { 477 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 478 up_read(&sb->s_umount); 479 } else { 480 /* 481 * We needn't worry the filesystem going from r/w to r/o though 482 * we don't acquire ->s_umount mutex, because the filesystem 483 * should guarantee the delalloc inodes list be empty after 484 * the filesystem is readonly(all dirty pages are written to 485 * the disk). 486 */ 487 btrfs_start_delalloc_roots(fs_info, nr_items); 488 if (!current->journal_info) 489 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1); 490 } 491 } 492 493 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 494 u64 to_reclaim) 495 { 496 u64 bytes; 497 u64 nr; 498 499 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 500 nr = div64_u64(to_reclaim, bytes); 501 if (!nr) 502 nr = 1; 503 return nr; 504 } 505 506 #define EXTENT_SIZE_PER_ITEM SZ_256K 507 508 /* 509 * shrink metadata reservation for delalloc 510 */ 511 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim, 512 u64 orig, bool wait_ordered) 513 { 514 struct btrfs_space_info *space_info; 515 struct btrfs_trans_handle *trans; 516 u64 delalloc_bytes; 517 u64 dio_bytes; 518 u64 async_pages; 519 u64 items; 520 long time_left; 521 unsigned long nr_pages; 522 int loops; 523 524 /* Calc the number of the pages we need flush for space reservation */ 525 items = calc_reclaim_items_nr(fs_info, to_reclaim); 526 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 527 528 trans = (struct btrfs_trans_handle *)current->journal_info; 529 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 530 531 delalloc_bytes = percpu_counter_sum_positive( 532 &fs_info->delalloc_bytes); 533 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes); 534 if (delalloc_bytes == 0 && dio_bytes == 0) { 535 if (trans) 536 return; 537 if (wait_ordered) 538 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 539 return; 540 } 541 542 /* 543 * If we are doing more ordered than delalloc we need to just wait on 544 * ordered extents, otherwise we'll waste time trying to flush delalloc 545 * that likely won't give us the space back we need. 546 */ 547 if (dio_bytes > delalloc_bytes) 548 wait_ordered = true; 549 550 loops = 0; 551 while ((delalloc_bytes || dio_bytes) && loops < 3) { 552 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; 553 554 /* 555 * Triggers inode writeback for up to nr_pages. This will invoke 556 * ->writepages callback and trigger delalloc filling 557 * (btrfs_run_delalloc_range()). 558 */ 559 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items); 560 561 /* 562 * We need to wait for the compressed pages to start before 563 * we continue. 564 */ 565 async_pages = atomic_read(&fs_info->async_delalloc_pages); 566 if (!async_pages) 567 goto skip_async; 568 569 /* 570 * Calculate how many compressed pages we want to be written 571 * before we continue. I.e if there are more async pages than we 572 * require wait_event will wait until nr_pages are written. 573 */ 574 if (async_pages <= nr_pages) 575 async_pages = 0; 576 else 577 async_pages -= nr_pages; 578 579 wait_event(fs_info->async_submit_wait, 580 atomic_read(&fs_info->async_delalloc_pages) <= 581 (int)async_pages); 582 skip_async: 583 spin_lock(&space_info->lock); 584 if (list_empty(&space_info->tickets) && 585 list_empty(&space_info->priority_tickets)) { 586 spin_unlock(&space_info->lock); 587 break; 588 } 589 spin_unlock(&space_info->lock); 590 591 loops++; 592 if (wait_ordered && !trans) { 593 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 594 } else { 595 time_left = schedule_timeout_killable(1); 596 if (time_left) 597 break; 598 } 599 delalloc_bytes = percpu_counter_sum_positive( 600 &fs_info->delalloc_bytes); 601 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes); 602 } 603 } 604 605 /** 606 * maybe_commit_transaction - possibly commit the transaction if its ok to 607 * @root - the root we're allocating for 608 * @bytes - the number of bytes we want to reserve 609 * @force - force the commit 610 * 611 * This will check to make sure that committing the transaction will actually 612 * get us somewhere and then commit the transaction if it does. Otherwise it 613 * will return -ENOSPC. 614 */ 615 static int may_commit_transaction(struct btrfs_fs_info *fs_info, 616 struct btrfs_space_info *space_info) 617 { 618 struct reserve_ticket *ticket = NULL; 619 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv; 620 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 621 struct btrfs_trans_handle *trans; 622 u64 bytes_needed; 623 u64 reclaim_bytes = 0; 624 u64 cur_free_bytes = 0; 625 626 trans = (struct btrfs_trans_handle *)current->journal_info; 627 if (trans) 628 return -EAGAIN; 629 630 spin_lock(&space_info->lock); 631 cur_free_bytes = btrfs_space_info_used(space_info, true); 632 if (cur_free_bytes < space_info->total_bytes) 633 cur_free_bytes = space_info->total_bytes - cur_free_bytes; 634 else 635 cur_free_bytes = 0; 636 637 if (!list_empty(&space_info->priority_tickets)) 638 ticket = list_first_entry(&space_info->priority_tickets, 639 struct reserve_ticket, list); 640 else if (!list_empty(&space_info->tickets)) 641 ticket = list_first_entry(&space_info->tickets, 642 struct reserve_ticket, list); 643 bytes_needed = (ticket) ? ticket->bytes : 0; 644 645 if (bytes_needed > cur_free_bytes) 646 bytes_needed -= cur_free_bytes; 647 else 648 bytes_needed = 0; 649 spin_unlock(&space_info->lock); 650 651 if (!bytes_needed) 652 return 0; 653 654 trans = btrfs_join_transaction(fs_info->extent_root); 655 if (IS_ERR(trans)) 656 return PTR_ERR(trans); 657 658 /* 659 * See if there is enough pinned space to make this reservation, or if 660 * we have block groups that are going to be freed, allowing us to 661 * possibly do a chunk allocation the next loop through. 662 */ 663 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) || 664 __percpu_counter_compare(&space_info->total_bytes_pinned, 665 bytes_needed, 666 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0) 667 goto commit; 668 669 /* 670 * See if there is some space in the delayed insertion reservation for 671 * this reservation. 672 */ 673 if (space_info != delayed_rsv->space_info) 674 goto enospc; 675 676 spin_lock(&delayed_rsv->lock); 677 reclaim_bytes += delayed_rsv->reserved; 678 spin_unlock(&delayed_rsv->lock); 679 680 spin_lock(&delayed_refs_rsv->lock); 681 reclaim_bytes += delayed_refs_rsv->reserved; 682 spin_unlock(&delayed_refs_rsv->lock); 683 if (reclaim_bytes >= bytes_needed) 684 goto commit; 685 bytes_needed -= reclaim_bytes; 686 687 if (__percpu_counter_compare(&space_info->total_bytes_pinned, 688 bytes_needed, 689 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) 690 goto enospc; 691 692 commit: 693 return btrfs_commit_transaction(trans); 694 enospc: 695 btrfs_end_transaction(trans); 696 return -ENOSPC; 697 } 698 699 /* 700 * Try to flush some data based on policy set by @state. This is only advisory 701 * and may fail for various reasons. The caller is supposed to examine the 702 * state of @space_info to detect the outcome. 703 */ 704 static void flush_space(struct btrfs_fs_info *fs_info, 705 struct btrfs_space_info *space_info, u64 num_bytes, 706 int state) 707 { 708 struct btrfs_root *root = fs_info->extent_root; 709 struct btrfs_trans_handle *trans; 710 int nr; 711 int ret = 0; 712 713 switch (state) { 714 case FLUSH_DELAYED_ITEMS_NR: 715 case FLUSH_DELAYED_ITEMS: 716 if (state == FLUSH_DELAYED_ITEMS_NR) 717 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 718 else 719 nr = -1; 720 721 trans = btrfs_join_transaction(root); 722 if (IS_ERR(trans)) { 723 ret = PTR_ERR(trans); 724 break; 725 } 726 ret = btrfs_run_delayed_items_nr(trans, nr); 727 btrfs_end_transaction(trans); 728 break; 729 case FLUSH_DELALLOC: 730 case FLUSH_DELALLOC_WAIT: 731 shrink_delalloc(fs_info, num_bytes * 2, num_bytes, 732 state == FLUSH_DELALLOC_WAIT); 733 break; 734 case FLUSH_DELAYED_REFS_NR: 735 case FLUSH_DELAYED_REFS: 736 trans = btrfs_join_transaction(root); 737 if (IS_ERR(trans)) { 738 ret = PTR_ERR(trans); 739 break; 740 } 741 if (state == FLUSH_DELAYED_REFS_NR) 742 nr = calc_reclaim_items_nr(fs_info, num_bytes); 743 else 744 nr = 0; 745 btrfs_run_delayed_refs(trans, nr); 746 btrfs_end_transaction(trans); 747 break; 748 case ALLOC_CHUNK: 749 case ALLOC_CHUNK_FORCE: 750 trans = btrfs_join_transaction(root); 751 if (IS_ERR(trans)) { 752 ret = PTR_ERR(trans); 753 break; 754 } 755 ret = btrfs_chunk_alloc(trans, 756 btrfs_metadata_alloc_profile(fs_info), 757 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : 758 CHUNK_ALLOC_FORCE); 759 btrfs_end_transaction(trans); 760 if (ret > 0 || ret == -ENOSPC) 761 ret = 0; 762 break; 763 case RUN_DELAYED_IPUTS: 764 /* 765 * If we have pending delayed iputs then we could free up a 766 * bunch of pinned space, so make sure we run the iputs before 767 * we do our pinned bytes check below. 768 */ 769 btrfs_run_delayed_iputs(fs_info); 770 btrfs_wait_on_delayed_iputs(fs_info); 771 break; 772 case COMMIT_TRANS: 773 ret = may_commit_transaction(fs_info, space_info); 774 break; 775 default: 776 ret = -ENOSPC; 777 break; 778 } 779 780 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 781 ret); 782 return; 783 } 784 785 static inline u64 786 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 787 struct btrfs_space_info *space_info) 788 { 789 u64 used; 790 u64 avail; 791 u64 expected; 792 u64 to_reclaim = space_info->reclaim_size; 793 794 lockdep_assert_held(&space_info->lock); 795 796 avail = calc_available_free_space(fs_info, space_info, 797 BTRFS_RESERVE_FLUSH_ALL); 798 used = btrfs_space_info_used(space_info, true); 799 800 /* 801 * We may be flushing because suddenly we have less space than we had 802 * before, and now we're well over-committed based on our current free 803 * space. If that's the case add in our overage so we make sure to put 804 * appropriate pressure on the flushing state machine. 805 */ 806 if (space_info->total_bytes + avail < used) 807 to_reclaim += used - (space_info->total_bytes + avail); 808 809 if (to_reclaim) 810 return to_reclaim; 811 812 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 813 if (btrfs_can_overcommit(fs_info, space_info, to_reclaim, 814 BTRFS_RESERVE_FLUSH_ALL)) 815 return 0; 816 817 used = btrfs_space_info_used(space_info, true); 818 819 if (btrfs_can_overcommit(fs_info, space_info, SZ_1M, 820 BTRFS_RESERVE_FLUSH_ALL)) 821 expected = div_factor_fine(space_info->total_bytes, 95); 822 else 823 expected = div_factor_fine(space_info->total_bytes, 90); 824 825 if (used > expected) 826 to_reclaim = used - expected; 827 else 828 to_reclaim = 0; 829 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 830 space_info->bytes_reserved); 831 return to_reclaim; 832 } 833 834 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info, 835 struct btrfs_space_info *space_info, 836 u64 used) 837 { 838 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 839 840 /* If we're just plain full then async reclaim just slows us down. */ 841 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 842 return 0; 843 844 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info)) 845 return 0; 846 847 return (used >= thresh && !btrfs_fs_closing(fs_info) && 848 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 849 } 850 851 /* 852 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets 853 * @fs_info - fs_info for this fs 854 * @space_info - the space info we were flushing 855 * 856 * We call this when we've exhausted our flushing ability and haven't made 857 * progress in satisfying tickets. The reservation code handles tickets in 858 * order, so if there is a large ticket first and then smaller ones we could 859 * very well satisfy the smaller tickets. This will attempt to wake up any 860 * tickets in the list to catch this case. 861 * 862 * This function returns true if it was able to make progress by clearing out 863 * other tickets, or if it stumbles across a ticket that was smaller than the 864 * first ticket. 865 */ 866 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info, 867 struct btrfs_space_info *space_info) 868 { 869 struct reserve_ticket *ticket; 870 u64 tickets_id = space_info->tickets_id; 871 u64 first_ticket_bytes = 0; 872 873 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 874 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); 875 __btrfs_dump_space_info(fs_info, space_info); 876 } 877 878 while (!list_empty(&space_info->tickets) && 879 tickets_id == space_info->tickets_id) { 880 ticket = list_first_entry(&space_info->tickets, 881 struct reserve_ticket, list); 882 883 /* 884 * may_commit_transaction will avoid committing the transaction 885 * if it doesn't feel like the space reclaimed by the commit 886 * would result in the ticket succeeding. However if we have a 887 * smaller ticket in the queue it may be small enough to be 888 * satisified by committing the transaction, so if any 889 * subsequent ticket is smaller than the first ticket go ahead 890 * and send us back for another loop through the enospc flushing 891 * code. 892 */ 893 if (first_ticket_bytes == 0) 894 first_ticket_bytes = ticket->bytes; 895 else if (first_ticket_bytes > ticket->bytes) 896 return true; 897 898 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 899 btrfs_info(fs_info, "failing ticket with %llu bytes", 900 ticket->bytes); 901 902 list_del_init(&ticket->list); 903 ticket->error = -ENOSPC; 904 wake_up(&ticket->wait); 905 906 /* 907 * We're just throwing tickets away, so more flushing may not 908 * trip over btrfs_try_granting_tickets, so we need to call it 909 * here to see if we can make progress with the next ticket in 910 * the list. 911 */ 912 btrfs_try_granting_tickets(fs_info, space_info); 913 } 914 return (tickets_id != space_info->tickets_id); 915 } 916 917 /* 918 * This is for normal flushers, we can wait all goddamned day if we want to. We 919 * will loop and continuously try to flush as long as we are making progress. 920 * We count progress as clearing off tickets each time we have to loop. 921 */ 922 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 923 { 924 struct btrfs_fs_info *fs_info; 925 struct btrfs_space_info *space_info; 926 u64 to_reclaim; 927 int flush_state; 928 int commit_cycles = 0; 929 u64 last_tickets_id; 930 931 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 932 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 933 934 spin_lock(&space_info->lock); 935 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 936 if (!to_reclaim) { 937 space_info->flush = 0; 938 spin_unlock(&space_info->lock); 939 return; 940 } 941 last_tickets_id = space_info->tickets_id; 942 spin_unlock(&space_info->lock); 943 944 flush_state = FLUSH_DELAYED_ITEMS_NR; 945 do { 946 flush_space(fs_info, space_info, to_reclaim, flush_state); 947 spin_lock(&space_info->lock); 948 if (list_empty(&space_info->tickets)) { 949 space_info->flush = 0; 950 spin_unlock(&space_info->lock); 951 return; 952 } 953 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 954 space_info); 955 if (last_tickets_id == space_info->tickets_id) { 956 flush_state++; 957 } else { 958 last_tickets_id = space_info->tickets_id; 959 flush_state = FLUSH_DELAYED_ITEMS_NR; 960 if (commit_cycles) 961 commit_cycles--; 962 } 963 964 /* 965 * We don't want to force a chunk allocation until we've tried 966 * pretty hard to reclaim space. Think of the case where we 967 * freed up a bunch of space and so have a lot of pinned space 968 * to reclaim. We would rather use that than possibly create a 969 * underutilized metadata chunk. So if this is our first run 970 * through the flushing state machine skip ALLOC_CHUNK_FORCE and 971 * commit the transaction. If nothing has changed the next go 972 * around then we can force a chunk allocation. 973 */ 974 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) 975 flush_state++; 976 977 if (flush_state > COMMIT_TRANS) { 978 commit_cycles++; 979 if (commit_cycles > 2) { 980 if (maybe_fail_all_tickets(fs_info, space_info)) { 981 flush_state = FLUSH_DELAYED_ITEMS_NR; 982 commit_cycles--; 983 } else { 984 space_info->flush = 0; 985 } 986 } else { 987 flush_state = FLUSH_DELAYED_ITEMS_NR; 988 } 989 } 990 spin_unlock(&space_info->lock); 991 } while (flush_state <= COMMIT_TRANS); 992 } 993 994 void btrfs_init_async_reclaim_work(struct work_struct *work) 995 { 996 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 997 } 998 999 static const enum btrfs_flush_state priority_flush_states[] = { 1000 FLUSH_DELAYED_ITEMS_NR, 1001 FLUSH_DELAYED_ITEMS, 1002 ALLOC_CHUNK, 1003 }; 1004 1005 static const enum btrfs_flush_state evict_flush_states[] = { 1006 FLUSH_DELAYED_ITEMS_NR, 1007 FLUSH_DELAYED_ITEMS, 1008 FLUSH_DELAYED_REFS_NR, 1009 FLUSH_DELAYED_REFS, 1010 FLUSH_DELALLOC, 1011 FLUSH_DELALLOC_WAIT, 1012 ALLOC_CHUNK, 1013 COMMIT_TRANS, 1014 }; 1015 1016 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 1017 struct btrfs_space_info *space_info, 1018 struct reserve_ticket *ticket, 1019 const enum btrfs_flush_state *states, 1020 int states_nr) 1021 { 1022 u64 to_reclaim; 1023 int flush_state; 1024 1025 spin_lock(&space_info->lock); 1026 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1027 if (!to_reclaim) { 1028 spin_unlock(&space_info->lock); 1029 return; 1030 } 1031 spin_unlock(&space_info->lock); 1032 1033 flush_state = 0; 1034 do { 1035 flush_space(fs_info, space_info, to_reclaim, states[flush_state]); 1036 flush_state++; 1037 spin_lock(&space_info->lock); 1038 if (ticket->bytes == 0) { 1039 spin_unlock(&space_info->lock); 1040 return; 1041 } 1042 spin_unlock(&space_info->lock); 1043 } while (flush_state < states_nr); 1044 } 1045 1046 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info, 1047 struct btrfs_space_info *space_info, 1048 struct reserve_ticket *ticket) 1049 1050 { 1051 DEFINE_WAIT(wait); 1052 int ret = 0; 1053 1054 spin_lock(&space_info->lock); 1055 while (ticket->bytes > 0 && ticket->error == 0) { 1056 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 1057 if (ret) { 1058 /* 1059 * Delete us from the list. After we unlock the space 1060 * info, we don't want the async reclaim job to reserve 1061 * space for this ticket. If that would happen, then the 1062 * ticket's task would not known that space was reserved 1063 * despite getting an error, resulting in a space leak 1064 * (bytes_may_use counter of our space_info). 1065 */ 1066 list_del_init(&ticket->list); 1067 ticket->error = -EINTR; 1068 break; 1069 } 1070 spin_unlock(&space_info->lock); 1071 1072 schedule(); 1073 1074 finish_wait(&ticket->wait, &wait); 1075 spin_lock(&space_info->lock); 1076 } 1077 spin_unlock(&space_info->lock); 1078 } 1079 1080 /** 1081 * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket 1082 * @fs_info - the fs 1083 * @space_info - the space_info for the reservation 1084 * @ticket - the ticket for the reservation 1085 * @flush - how much we can flush 1086 * 1087 * This does the work of figuring out how to flush for the ticket, waiting for 1088 * the reservation, and returning the appropriate error if there is one. 1089 */ 1090 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info, 1091 struct btrfs_space_info *space_info, 1092 struct reserve_ticket *ticket, 1093 enum btrfs_reserve_flush_enum flush) 1094 { 1095 int ret; 1096 1097 switch (flush) { 1098 case BTRFS_RESERVE_FLUSH_ALL: 1099 wait_reserve_ticket(fs_info, space_info, ticket); 1100 break; 1101 case BTRFS_RESERVE_FLUSH_LIMIT: 1102 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1103 priority_flush_states, 1104 ARRAY_SIZE(priority_flush_states)); 1105 break; 1106 case BTRFS_RESERVE_FLUSH_EVICT: 1107 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1108 evict_flush_states, 1109 ARRAY_SIZE(evict_flush_states)); 1110 break; 1111 default: 1112 ASSERT(0); 1113 break; 1114 } 1115 1116 spin_lock(&space_info->lock); 1117 ret = ticket->error; 1118 if (ticket->bytes || ticket->error) { 1119 /* 1120 * Need to delete here for priority tickets. For regular tickets 1121 * either the async reclaim job deletes the ticket from the list 1122 * or we delete it ourselves at wait_reserve_ticket(). 1123 */ 1124 list_del_init(&ticket->list); 1125 if (!ret) 1126 ret = -ENOSPC; 1127 } 1128 spin_unlock(&space_info->lock); 1129 ASSERT(list_empty(&ticket->list)); 1130 /* 1131 * Check that we can't have an error set if the reservation succeeded, 1132 * as that would confuse tasks and lead them to error out without 1133 * releasing reserved space (if an error happens the expectation is that 1134 * space wasn't reserved at all). 1135 */ 1136 ASSERT(!(ticket->bytes == 0 && ticket->error)); 1137 return ret; 1138 } 1139 1140 /** 1141 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 1142 * @root - the root we're allocating for 1143 * @space_info - the space info we want to allocate from 1144 * @orig_bytes - the number of bytes we want 1145 * @flush - whether or not we can flush to make our reservation 1146 * 1147 * This will reserve orig_bytes number of bytes from the space info associated 1148 * with the block_rsv. If there is not enough space it will make an attempt to 1149 * flush out space to make room. It will do this by flushing delalloc if 1150 * possible or committing the transaction. If flush is 0 then no attempts to 1151 * regain reservations will be made and this will fail if there is not enough 1152 * space already. 1153 */ 1154 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 1155 struct btrfs_space_info *space_info, 1156 u64 orig_bytes, 1157 enum btrfs_reserve_flush_enum flush) 1158 { 1159 struct reserve_ticket ticket; 1160 u64 used; 1161 int ret = 0; 1162 bool pending_tickets; 1163 1164 ASSERT(orig_bytes); 1165 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 1166 1167 spin_lock(&space_info->lock); 1168 ret = -ENOSPC; 1169 used = btrfs_space_info_used(space_info, true); 1170 pending_tickets = !list_empty(&space_info->tickets) || 1171 !list_empty(&space_info->priority_tickets); 1172 1173 /* 1174 * Carry on if we have enough space (short-circuit) OR call 1175 * can_overcommit() to ensure we can overcommit to continue. 1176 */ 1177 if (!pending_tickets && 1178 ((used + orig_bytes <= space_info->total_bytes) || 1179 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) { 1180 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1181 orig_bytes); 1182 ret = 0; 1183 } 1184 1185 /* 1186 * If we couldn't make a reservation then setup our reservation ticket 1187 * and kick the async worker if it's not already running. 1188 * 1189 * If we are a priority flusher then we just need to add our ticket to 1190 * the list and we will do our own flushing further down. 1191 */ 1192 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 1193 ASSERT(space_info->reclaim_size >= 0); 1194 ticket.bytes = orig_bytes; 1195 ticket.error = 0; 1196 space_info->reclaim_size += ticket.bytes; 1197 init_waitqueue_head(&ticket.wait); 1198 if (flush == BTRFS_RESERVE_FLUSH_ALL) { 1199 list_add_tail(&ticket.list, &space_info->tickets); 1200 if (!space_info->flush) { 1201 space_info->flush = 1; 1202 trace_btrfs_trigger_flush(fs_info, 1203 space_info->flags, 1204 orig_bytes, flush, 1205 "enospc"); 1206 queue_work(system_unbound_wq, 1207 &fs_info->async_reclaim_work); 1208 } 1209 } else { 1210 list_add_tail(&ticket.list, 1211 &space_info->priority_tickets); 1212 } 1213 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 1214 used += orig_bytes; 1215 /* 1216 * We will do the space reservation dance during log replay, 1217 * which means we won't have fs_info->fs_root set, so don't do 1218 * the async reclaim as we will panic. 1219 */ 1220 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 1221 need_do_async_reclaim(fs_info, space_info, used) && 1222 !work_busy(&fs_info->async_reclaim_work)) { 1223 trace_btrfs_trigger_flush(fs_info, space_info->flags, 1224 orig_bytes, flush, "preempt"); 1225 queue_work(system_unbound_wq, 1226 &fs_info->async_reclaim_work); 1227 } 1228 } 1229 spin_unlock(&space_info->lock); 1230 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 1231 return ret; 1232 1233 return handle_reserve_ticket(fs_info, space_info, &ticket, flush); 1234 } 1235 1236 /** 1237 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 1238 * @root - the root we're allocating for 1239 * @block_rsv - the block_rsv we're allocating for 1240 * @orig_bytes - the number of bytes we want 1241 * @flush - whether or not we can flush to make our reservation 1242 * 1243 * This will reserve orig_bytes number of bytes from the space info associated 1244 * with the block_rsv. If there is not enough space it will make an attempt to 1245 * flush out space to make room. It will do this by flushing delalloc if 1246 * possible or committing the transaction. If flush is 0 then no attempts to 1247 * regain reservations will be made and this will fail if there is not enough 1248 * space already. 1249 */ 1250 int btrfs_reserve_metadata_bytes(struct btrfs_root *root, 1251 struct btrfs_block_rsv *block_rsv, 1252 u64 orig_bytes, 1253 enum btrfs_reserve_flush_enum flush) 1254 { 1255 struct btrfs_fs_info *fs_info = root->fs_info; 1256 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 1257 int ret; 1258 1259 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info, 1260 orig_bytes, flush); 1261 if (ret == -ENOSPC && 1262 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 1263 if (block_rsv != global_rsv && 1264 !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes)) 1265 ret = 0; 1266 } 1267 if (ret == -ENOSPC) { 1268 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1269 block_rsv->space_info->flags, 1270 orig_bytes, 1); 1271 1272 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1273 btrfs_dump_space_info(fs_info, block_rsv->space_info, 1274 orig_bytes, 0); 1275 } 1276 return ret; 1277 } 1278