xref: /openbmc/linux/fs/btrfs/space-info.c (revision 0096420a)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 
13 u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
14 			  bool may_use_included)
15 {
16 	ASSERT(s_info);
17 	return s_info->bytes_used + s_info->bytes_reserved +
18 		s_info->bytes_pinned + s_info->bytes_readonly +
19 		(may_use_included ? s_info->bytes_may_use : 0);
20 }
21 
22 /*
23  * after adding space to the filesystem, we need to clear the full flags
24  * on all the space infos.
25  */
26 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
27 {
28 	struct list_head *head = &info->space_info;
29 	struct btrfs_space_info *found;
30 
31 	rcu_read_lock();
32 	list_for_each_entry_rcu(found, head, list)
33 		found->full = 0;
34 	rcu_read_unlock();
35 }
36 
37 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
38 {
39 
40 	struct btrfs_space_info *space_info;
41 	int i;
42 	int ret;
43 
44 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
45 	if (!space_info)
46 		return -ENOMEM;
47 
48 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
49 				 GFP_KERNEL);
50 	if (ret) {
51 		kfree(space_info);
52 		return ret;
53 	}
54 
55 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
56 		INIT_LIST_HEAD(&space_info->block_groups[i]);
57 	init_rwsem(&space_info->groups_sem);
58 	spin_lock_init(&space_info->lock);
59 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
60 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
61 	init_waitqueue_head(&space_info->wait);
62 	INIT_LIST_HEAD(&space_info->ro_bgs);
63 	INIT_LIST_HEAD(&space_info->tickets);
64 	INIT_LIST_HEAD(&space_info->priority_tickets);
65 
66 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
67 	if (ret)
68 		return ret;
69 
70 	list_add_rcu(&space_info->list, &info->space_info);
71 	if (flags & BTRFS_BLOCK_GROUP_DATA)
72 		info->data_sinfo = space_info;
73 
74 	return ret;
75 }
76 
77 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
78 {
79 	struct btrfs_super_block *disk_super;
80 	u64 features;
81 	u64 flags;
82 	int mixed = 0;
83 	int ret;
84 
85 	disk_super = fs_info->super_copy;
86 	if (!btrfs_super_root(disk_super))
87 		return -EINVAL;
88 
89 	features = btrfs_super_incompat_flags(disk_super);
90 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
91 		mixed = 1;
92 
93 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
94 	ret = create_space_info(fs_info, flags);
95 	if (ret)
96 		goto out;
97 
98 	if (mixed) {
99 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
100 		ret = create_space_info(fs_info, flags);
101 	} else {
102 		flags = BTRFS_BLOCK_GROUP_METADATA;
103 		ret = create_space_info(fs_info, flags);
104 		if (ret)
105 			goto out;
106 
107 		flags = BTRFS_BLOCK_GROUP_DATA;
108 		ret = create_space_info(fs_info, flags);
109 	}
110 out:
111 	return ret;
112 }
113 
114 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
115 			     u64 total_bytes, u64 bytes_used,
116 			     u64 bytes_readonly,
117 			     struct btrfs_space_info **space_info)
118 {
119 	struct btrfs_space_info *found;
120 	int factor;
121 
122 	factor = btrfs_bg_type_to_factor(flags);
123 
124 	found = btrfs_find_space_info(info, flags);
125 	ASSERT(found);
126 	spin_lock(&found->lock);
127 	found->total_bytes += total_bytes;
128 	found->disk_total += total_bytes * factor;
129 	found->bytes_used += bytes_used;
130 	found->disk_used += bytes_used * factor;
131 	found->bytes_readonly += bytes_readonly;
132 	if (total_bytes > 0)
133 		found->full = 0;
134 	btrfs_try_granting_tickets(info, found);
135 	spin_unlock(&found->lock);
136 	*space_info = found;
137 }
138 
139 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
140 					       u64 flags)
141 {
142 	struct list_head *head = &info->space_info;
143 	struct btrfs_space_info *found;
144 
145 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
146 
147 	rcu_read_lock();
148 	list_for_each_entry_rcu(found, head, list) {
149 		if (found->flags & flags) {
150 			rcu_read_unlock();
151 			return found;
152 		}
153 	}
154 	rcu_read_unlock();
155 	return NULL;
156 }
157 
158 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
159 {
160 	return (global->size << 1);
161 }
162 
163 static int can_overcommit(struct btrfs_fs_info *fs_info,
164 			  struct btrfs_space_info *space_info, u64 bytes,
165 			  enum btrfs_reserve_flush_enum flush,
166 			  bool system_chunk)
167 {
168 	u64 profile;
169 	u64 avail;
170 	u64 used;
171 	int factor;
172 
173 	/* Don't overcommit when in mixed mode. */
174 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
175 		return 0;
176 
177 	if (system_chunk)
178 		profile = btrfs_system_alloc_profile(fs_info);
179 	else
180 		profile = btrfs_metadata_alloc_profile(fs_info);
181 
182 	used = btrfs_space_info_used(space_info, true);
183 	avail = atomic64_read(&fs_info->free_chunk_space);
184 
185 	/*
186 	 * If we have dup, raid1 or raid10 then only half of the free
187 	 * space is actually usable.  For raid56, the space info used
188 	 * doesn't include the parity drive, so we don't have to
189 	 * change the math
190 	 */
191 	factor = btrfs_bg_type_to_factor(profile);
192 	avail = div_u64(avail, factor);
193 
194 	/*
195 	 * If we aren't flushing all things, let us overcommit up to
196 	 * 1/2th of the space. If we can flush, don't let us overcommit
197 	 * too much, let it overcommit up to 1/8 of the space.
198 	 */
199 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
200 		avail >>= 3;
201 	else
202 		avail >>= 1;
203 
204 	if (used + bytes < space_info->total_bytes + avail)
205 		return 1;
206 	return 0;
207 }
208 
209 /*
210  * This is for space we already have accounted in space_info->bytes_may_use, so
211  * basically when we're returning space from block_rsv's.
212  */
213 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
214 				struct btrfs_space_info *space_info)
215 {
216 	struct list_head *head;
217 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
218 
219 	lockdep_assert_held(&space_info->lock);
220 
221 	head = &space_info->priority_tickets;
222 again:
223 	while (!list_empty(head)) {
224 		struct reserve_ticket *ticket;
225 		u64 used = btrfs_space_info_used(space_info, true);
226 
227 		ticket = list_first_entry(head, struct reserve_ticket, list);
228 
229 		/* Check and see if our ticket can be satisified now. */
230 		if ((used + ticket->bytes <= space_info->total_bytes) ||
231 		    can_overcommit(fs_info, space_info, ticket->bytes, flush,
232 				   false)) {
233 			btrfs_space_info_update_bytes_may_use(fs_info,
234 							      space_info,
235 							      ticket->bytes);
236 			list_del_init(&ticket->list);
237 			ticket->bytes = 0;
238 			space_info->tickets_id++;
239 			wake_up(&ticket->wait);
240 		} else {
241 			break;
242 		}
243 	}
244 
245 	if (head == &space_info->priority_tickets) {
246 		head = &space_info->tickets;
247 		flush = BTRFS_RESERVE_FLUSH_ALL;
248 		goto again;
249 	}
250 }
251 
252 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
253 do {									\
254 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
255 	spin_lock(&__rsv->lock);					\
256 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
257 		   __rsv->size, __rsv->reserved);			\
258 	spin_unlock(&__rsv->lock);					\
259 } while (0)
260 
261 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
262 			   struct btrfs_space_info *info, u64 bytes,
263 			   int dump_block_groups)
264 {
265 	struct btrfs_block_group_cache *cache;
266 	int index = 0;
267 
268 	spin_lock(&info->lock);
269 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
270 		   info->flags,
271 		   info->total_bytes - btrfs_space_info_used(info, true),
272 		   info->full ? "" : "not ");
273 	btrfs_info(fs_info,
274 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
275 		info->total_bytes, info->bytes_used, info->bytes_pinned,
276 		info->bytes_reserved, info->bytes_may_use,
277 		info->bytes_readonly);
278 	spin_unlock(&info->lock);
279 
280 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
281 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
282 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
283 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
284 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
285 
286 	if (!dump_block_groups)
287 		return;
288 
289 	down_read(&info->groups_sem);
290 again:
291 	list_for_each_entry(cache, &info->block_groups[index], list) {
292 		spin_lock(&cache->lock);
293 		btrfs_info(fs_info,
294 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
295 			cache->key.objectid, cache->key.offset,
296 			btrfs_block_group_used(&cache->item), cache->pinned,
297 			cache->reserved, cache->ro ? "[readonly]" : "");
298 		btrfs_dump_free_space(cache, bytes);
299 		spin_unlock(&cache->lock);
300 	}
301 	if (++index < BTRFS_NR_RAID_TYPES)
302 		goto again;
303 	up_read(&info->groups_sem);
304 }
305 
306 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
307 					 unsigned long nr_pages, int nr_items)
308 {
309 	struct super_block *sb = fs_info->sb;
310 
311 	if (down_read_trylock(&sb->s_umount)) {
312 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
313 		up_read(&sb->s_umount);
314 	} else {
315 		/*
316 		 * We needn't worry the filesystem going from r/w to r/o though
317 		 * we don't acquire ->s_umount mutex, because the filesystem
318 		 * should guarantee the delalloc inodes list be empty after
319 		 * the filesystem is readonly(all dirty pages are written to
320 		 * the disk).
321 		 */
322 		btrfs_start_delalloc_roots(fs_info, nr_items);
323 		if (!current->journal_info)
324 			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
325 	}
326 }
327 
328 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
329 					u64 to_reclaim)
330 {
331 	u64 bytes;
332 	u64 nr;
333 
334 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
335 	nr = div64_u64(to_reclaim, bytes);
336 	if (!nr)
337 		nr = 1;
338 	return nr;
339 }
340 
341 #define EXTENT_SIZE_PER_ITEM	SZ_256K
342 
343 /*
344  * shrink metadata reservation for delalloc
345  */
346 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
347 			    u64 orig, bool wait_ordered)
348 {
349 	struct btrfs_space_info *space_info;
350 	struct btrfs_trans_handle *trans;
351 	u64 delalloc_bytes;
352 	u64 dio_bytes;
353 	u64 async_pages;
354 	u64 items;
355 	long time_left;
356 	unsigned long nr_pages;
357 	int loops;
358 
359 	/* Calc the number of the pages we need flush for space reservation */
360 	items = calc_reclaim_items_nr(fs_info, to_reclaim);
361 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
362 
363 	trans = (struct btrfs_trans_handle *)current->journal_info;
364 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
365 
366 	delalloc_bytes = percpu_counter_sum_positive(
367 						&fs_info->delalloc_bytes);
368 	dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
369 	if (delalloc_bytes == 0 && dio_bytes == 0) {
370 		if (trans)
371 			return;
372 		if (wait_ordered)
373 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
374 		return;
375 	}
376 
377 	/*
378 	 * If we are doing more ordered than delalloc we need to just wait on
379 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
380 	 * that likely won't give us the space back we need.
381 	 */
382 	if (dio_bytes > delalloc_bytes)
383 		wait_ordered = true;
384 
385 	loops = 0;
386 	while ((delalloc_bytes || dio_bytes) && loops < 3) {
387 		nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
388 
389 		/*
390 		 * Triggers inode writeback for up to nr_pages. This will invoke
391 		 * ->writepages callback and trigger delalloc filling
392 		 *  (btrfs_run_delalloc_range()).
393 		 */
394 		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
395 
396 		/*
397 		 * We need to wait for the compressed pages to start before
398 		 * we continue.
399 		 */
400 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
401 		if (!async_pages)
402 			goto skip_async;
403 
404 		/*
405 		 * Calculate how many compressed pages we want to be written
406 		 * before we continue. I.e if there are more async pages than we
407 		 * require wait_event will wait until nr_pages are written.
408 		 */
409 		if (async_pages <= nr_pages)
410 			async_pages = 0;
411 		else
412 			async_pages -= nr_pages;
413 
414 		wait_event(fs_info->async_submit_wait,
415 			   atomic_read(&fs_info->async_delalloc_pages) <=
416 			   (int)async_pages);
417 skip_async:
418 		spin_lock(&space_info->lock);
419 		if (list_empty(&space_info->tickets) &&
420 		    list_empty(&space_info->priority_tickets)) {
421 			spin_unlock(&space_info->lock);
422 			break;
423 		}
424 		spin_unlock(&space_info->lock);
425 
426 		loops++;
427 		if (wait_ordered && !trans) {
428 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
429 		} else {
430 			time_left = schedule_timeout_killable(1);
431 			if (time_left)
432 				break;
433 		}
434 		delalloc_bytes = percpu_counter_sum_positive(
435 						&fs_info->delalloc_bytes);
436 		dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
437 	}
438 }
439 
440 /**
441  * maybe_commit_transaction - possibly commit the transaction if its ok to
442  * @root - the root we're allocating for
443  * @bytes - the number of bytes we want to reserve
444  * @force - force the commit
445  *
446  * This will check to make sure that committing the transaction will actually
447  * get us somewhere and then commit the transaction if it does.  Otherwise it
448  * will return -ENOSPC.
449  */
450 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
451 				  struct btrfs_space_info *space_info)
452 {
453 	struct reserve_ticket *ticket = NULL;
454 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
455 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
456 	struct btrfs_trans_handle *trans;
457 	u64 bytes_needed;
458 	u64 reclaim_bytes = 0;
459 	u64 cur_free_bytes = 0;
460 
461 	trans = (struct btrfs_trans_handle *)current->journal_info;
462 	if (trans)
463 		return -EAGAIN;
464 
465 	spin_lock(&space_info->lock);
466 	cur_free_bytes = btrfs_space_info_used(space_info, true);
467 	if (cur_free_bytes < space_info->total_bytes)
468 		cur_free_bytes = space_info->total_bytes - cur_free_bytes;
469 	else
470 		cur_free_bytes = 0;
471 
472 	if (!list_empty(&space_info->priority_tickets))
473 		ticket = list_first_entry(&space_info->priority_tickets,
474 					  struct reserve_ticket, list);
475 	else if (!list_empty(&space_info->tickets))
476 		ticket = list_first_entry(&space_info->tickets,
477 					  struct reserve_ticket, list);
478 	bytes_needed = (ticket) ? ticket->bytes : 0;
479 
480 	if (bytes_needed > cur_free_bytes)
481 		bytes_needed -= cur_free_bytes;
482 	else
483 		bytes_needed = 0;
484 	spin_unlock(&space_info->lock);
485 
486 	if (!bytes_needed)
487 		return 0;
488 
489 	trans = btrfs_join_transaction(fs_info->extent_root);
490 	if (IS_ERR(trans))
491 		return PTR_ERR(trans);
492 
493 	/*
494 	 * See if there is enough pinned space to make this reservation, or if
495 	 * we have block groups that are going to be freed, allowing us to
496 	 * possibly do a chunk allocation the next loop through.
497 	 */
498 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
499 	    __percpu_counter_compare(&space_info->total_bytes_pinned,
500 				     bytes_needed,
501 				     BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
502 		goto commit;
503 
504 	/*
505 	 * See if there is some space in the delayed insertion reservation for
506 	 * this reservation.
507 	 */
508 	if (space_info != delayed_rsv->space_info)
509 		goto enospc;
510 
511 	spin_lock(&delayed_rsv->lock);
512 	reclaim_bytes += delayed_rsv->reserved;
513 	spin_unlock(&delayed_rsv->lock);
514 
515 	spin_lock(&delayed_refs_rsv->lock);
516 	reclaim_bytes += delayed_refs_rsv->reserved;
517 	spin_unlock(&delayed_refs_rsv->lock);
518 	if (reclaim_bytes >= bytes_needed)
519 		goto commit;
520 	bytes_needed -= reclaim_bytes;
521 
522 	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
523 				   bytes_needed,
524 				   BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
525 		goto enospc;
526 
527 commit:
528 	return btrfs_commit_transaction(trans);
529 enospc:
530 	btrfs_end_transaction(trans);
531 	return -ENOSPC;
532 }
533 
534 /*
535  * Try to flush some data based on policy set by @state. This is only advisory
536  * and may fail for various reasons. The caller is supposed to examine the
537  * state of @space_info to detect the outcome.
538  */
539 static void flush_space(struct btrfs_fs_info *fs_info,
540 		       struct btrfs_space_info *space_info, u64 num_bytes,
541 		       int state)
542 {
543 	struct btrfs_root *root = fs_info->extent_root;
544 	struct btrfs_trans_handle *trans;
545 	int nr;
546 	int ret = 0;
547 
548 	switch (state) {
549 	case FLUSH_DELAYED_ITEMS_NR:
550 	case FLUSH_DELAYED_ITEMS:
551 		if (state == FLUSH_DELAYED_ITEMS_NR)
552 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
553 		else
554 			nr = -1;
555 
556 		trans = btrfs_join_transaction(root);
557 		if (IS_ERR(trans)) {
558 			ret = PTR_ERR(trans);
559 			break;
560 		}
561 		ret = btrfs_run_delayed_items_nr(trans, nr);
562 		btrfs_end_transaction(trans);
563 		break;
564 	case FLUSH_DELALLOC:
565 	case FLUSH_DELALLOC_WAIT:
566 		shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
567 				state == FLUSH_DELALLOC_WAIT);
568 		break;
569 	case FLUSH_DELAYED_REFS_NR:
570 	case FLUSH_DELAYED_REFS:
571 		trans = btrfs_join_transaction(root);
572 		if (IS_ERR(trans)) {
573 			ret = PTR_ERR(trans);
574 			break;
575 		}
576 		if (state == FLUSH_DELAYED_REFS_NR)
577 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
578 		else
579 			nr = 0;
580 		btrfs_run_delayed_refs(trans, nr);
581 		btrfs_end_transaction(trans);
582 		break;
583 	case ALLOC_CHUNK:
584 	case ALLOC_CHUNK_FORCE:
585 		trans = btrfs_join_transaction(root);
586 		if (IS_ERR(trans)) {
587 			ret = PTR_ERR(trans);
588 			break;
589 		}
590 		ret = btrfs_chunk_alloc(trans,
591 				btrfs_metadata_alloc_profile(fs_info),
592 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
593 					CHUNK_ALLOC_FORCE);
594 		btrfs_end_transaction(trans);
595 		if (ret > 0 || ret == -ENOSPC)
596 			ret = 0;
597 		break;
598 	case RUN_DELAYED_IPUTS:
599 		/*
600 		 * If we have pending delayed iputs then we could free up a
601 		 * bunch of pinned space, so make sure we run the iputs before
602 		 * we do our pinned bytes check below.
603 		 */
604 		btrfs_run_delayed_iputs(fs_info);
605 		btrfs_wait_on_delayed_iputs(fs_info);
606 		break;
607 	case COMMIT_TRANS:
608 		ret = may_commit_transaction(fs_info, space_info);
609 		break;
610 	default:
611 		ret = -ENOSPC;
612 		break;
613 	}
614 
615 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
616 				ret);
617 	return;
618 }
619 
620 static inline u64
621 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
622 				 struct btrfs_space_info *space_info,
623 				 bool system_chunk)
624 {
625 	struct reserve_ticket *ticket;
626 	u64 used;
627 	u64 expected;
628 	u64 to_reclaim = 0;
629 
630 	list_for_each_entry(ticket, &space_info->tickets, list)
631 		to_reclaim += ticket->bytes;
632 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
633 		to_reclaim += ticket->bytes;
634 	if (to_reclaim)
635 		return to_reclaim;
636 
637 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
638 	if (can_overcommit(fs_info, space_info, to_reclaim,
639 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
640 		return 0;
641 
642 	used = btrfs_space_info_used(space_info, true);
643 
644 	if (can_overcommit(fs_info, space_info, SZ_1M,
645 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
646 		expected = div_factor_fine(space_info->total_bytes, 95);
647 	else
648 		expected = div_factor_fine(space_info->total_bytes, 90);
649 
650 	if (used > expected)
651 		to_reclaim = used - expected;
652 	else
653 		to_reclaim = 0;
654 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
655 				     space_info->bytes_reserved);
656 	return to_reclaim;
657 }
658 
659 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
660 					struct btrfs_space_info *space_info,
661 					u64 used, bool system_chunk)
662 {
663 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
664 
665 	/* If we're just plain full then async reclaim just slows us down. */
666 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
667 		return 0;
668 
669 	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
670 					      system_chunk))
671 		return 0;
672 
673 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
674 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
675 }
676 
677 /*
678  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
679  * @fs_info - fs_info for this fs
680  * @space_info - the space info we were flushing
681  *
682  * We call this when we've exhausted our flushing ability and haven't made
683  * progress in satisfying tickets.  The reservation code handles tickets in
684  * order, so if there is a large ticket first and then smaller ones we could
685  * very well satisfy the smaller tickets.  This will attempt to wake up any
686  * tickets in the list to catch this case.
687  *
688  * This function returns true if it was able to make progress by clearing out
689  * other tickets, or if it stumbles across a ticket that was smaller than the
690  * first ticket.
691  */
692 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
693 				   struct btrfs_space_info *space_info)
694 {
695 	struct reserve_ticket *ticket;
696 	u64 tickets_id = space_info->tickets_id;
697 	u64 first_ticket_bytes = 0;
698 
699 	while (!list_empty(&space_info->tickets) &&
700 	       tickets_id == space_info->tickets_id) {
701 		ticket = list_first_entry(&space_info->tickets,
702 					  struct reserve_ticket, list);
703 
704 		/*
705 		 * may_commit_transaction will avoid committing the transaction
706 		 * if it doesn't feel like the space reclaimed by the commit
707 		 * would result in the ticket succeeding.  However if we have a
708 		 * smaller ticket in the queue it may be small enough to be
709 		 * satisified by committing the transaction, so if any
710 		 * subsequent ticket is smaller than the first ticket go ahead
711 		 * and send us back for another loop through the enospc flushing
712 		 * code.
713 		 */
714 		if (first_ticket_bytes == 0)
715 			first_ticket_bytes = ticket->bytes;
716 		else if (first_ticket_bytes > ticket->bytes)
717 			return true;
718 
719 		list_del_init(&ticket->list);
720 		ticket->error = -ENOSPC;
721 		wake_up(&ticket->wait);
722 
723 		/*
724 		 * We're just throwing tickets away, so more flushing may not
725 		 * trip over btrfs_try_granting_tickets, so we need to call it
726 		 * here to see if we can make progress with the next ticket in
727 		 * the list.
728 		 */
729 		btrfs_try_granting_tickets(fs_info, space_info);
730 	}
731 	return (tickets_id != space_info->tickets_id);
732 }
733 
734 /*
735  * This is for normal flushers, we can wait all goddamned day if we want to.  We
736  * will loop and continuously try to flush as long as we are making progress.
737  * We count progress as clearing off tickets each time we have to loop.
738  */
739 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
740 {
741 	struct btrfs_fs_info *fs_info;
742 	struct btrfs_space_info *space_info;
743 	u64 to_reclaim;
744 	int flush_state;
745 	int commit_cycles = 0;
746 	u64 last_tickets_id;
747 
748 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
749 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
750 
751 	spin_lock(&space_info->lock);
752 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
753 						      false);
754 	if (!to_reclaim) {
755 		space_info->flush = 0;
756 		spin_unlock(&space_info->lock);
757 		return;
758 	}
759 	last_tickets_id = space_info->tickets_id;
760 	spin_unlock(&space_info->lock);
761 
762 	flush_state = FLUSH_DELAYED_ITEMS_NR;
763 	do {
764 		flush_space(fs_info, space_info, to_reclaim, flush_state);
765 		spin_lock(&space_info->lock);
766 		if (list_empty(&space_info->tickets)) {
767 			space_info->flush = 0;
768 			spin_unlock(&space_info->lock);
769 			return;
770 		}
771 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
772 							      space_info,
773 							      false);
774 		if (last_tickets_id == space_info->tickets_id) {
775 			flush_state++;
776 		} else {
777 			last_tickets_id = space_info->tickets_id;
778 			flush_state = FLUSH_DELAYED_ITEMS_NR;
779 			if (commit_cycles)
780 				commit_cycles--;
781 		}
782 
783 		/*
784 		 * We don't want to force a chunk allocation until we've tried
785 		 * pretty hard to reclaim space.  Think of the case where we
786 		 * freed up a bunch of space and so have a lot of pinned space
787 		 * to reclaim.  We would rather use that than possibly create a
788 		 * underutilized metadata chunk.  So if this is our first run
789 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
790 		 * commit the transaction.  If nothing has changed the next go
791 		 * around then we can force a chunk allocation.
792 		 */
793 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
794 			flush_state++;
795 
796 		if (flush_state > COMMIT_TRANS) {
797 			commit_cycles++;
798 			if (commit_cycles > 2) {
799 				if (maybe_fail_all_tickets(fs_info, space_info)) {
800 					flush_state = FLUSH_DELAYED_ITEMS_NR;
801 					commit_cycles--;
802 				} else {
803 					space_info->flush = 0;
804 				}
805 			} else {
806 				flush_state = FLUSH_DELAYED_ITEMS_NR;
807 			}
808 		}
809 		spin_unlock(&space_info->lock);
810 	} while (flush_state <= COMMIT_TRANS);
811 }
812 
813 void btrfs_init_async_reclaim_work(struct work_struct *work)
814 {
815 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
816 }
817 
818 static const enum btrfs_flush_state priority_flush_states[] = {
819 	FLUSH_DELAYED_ITEMS_NR,
820 	FLUSH_DELAYED_ITEMS,
821 	ALLOC_CHUNK,
822 };
823 
824 static const enum btrfs_flush_state evict_flush_states[] = {
825 	FLUSH_DELAYED_ITEMS_NR,
826 	FLUSH_DELAYED_ITEMS,
827 	FLUSH_DELAYED_REFS_NR,
828 	FLUSH_DELAYED_REFS,
829 	FLUSH_DELALLOC,
830 	FLUSH_DELALLOC_WAIT,
831 	ALLOC_CHUNK,
832 	COMMIT_TRANS,
833 };
834 
835 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
836 				struct btrfs_space_info *space_info,
837 				struct reserve_ticket *ticket,
838 				const enum btrfs_flush_state *states,
839 				int states_nr)
840 {
841 	u64 to_reclaim;
842 	int flush_state;
843 
844 	spin_lock(&space_info->lock);
845 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
846 						      false);
847 	if (!to_reclaim) {
848 		spin_unlock(&space_info->lock);
849 		return;
850 	}
851 	spin_unlock(&space_info->lock);
852 
853 	flush_state = 0;
854 	do {
855 		flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
856 		flush_state++;
857 		spin_lock(&space_info->lock);
858 		if (ticket->bytes == 0) {
859 			spin_unlock(&space_info->lock);
860 			return;
861 		}
862 		spin_unlock(&space_info->lock);
863 	} while (flush_state < states_nr);
864 }
865 
866 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
867 				struct btrfs_space_info *space_info,
868 				struct reserve_ticket *ticket)
869 
870 {
871 	DEFINE_WAIT(wait);
872 	int ret = 0;
873 
874 	spin_lock(&space_info->lock);
875 	while (ticket->bytes > 0 && ticket->error == 0) {
876 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
877 		if (ret) {
878 			ticket->error = -EINTR;
879 			break;
880 		}
881 		spin_unlock(&space_info->lock);
882 
883 		schedule();
884 
885 		finish_wait(&ticket->wait, &wait);
886 		spin_lock(&space_info->lock);
887 	}
888 	spin_unlock(&space_info->lock);
889 }
890 
891 /**
892  * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
893  * @fs_info - the fs
894  * @space_info - the space_info for the reservation
895  * @ticket - the ticket for the reservation
896  * @flush - how much we can flush
897  *
898  * This does the work of figuring out how to flush for the ticket, waiting for
899  * the reservation, and returning the appropriate error if there is one.
900  */
901 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
902 				 struct btrfs_space_info *space_info,
903 				 struct reserve_ticket *ticket,
904 				 enum btrfs_reserve_flush_enum flush)
905 {
906 	int ret;
907 
908 	switch (flush) {
909 	case BTRFS_RESERVE_FLUSH_ALL:
910 		wait_reserve_ticket(fs_info, space_info, ticket);
911 		break;
912 	case BTRFS_RESERVE_FLUSH_LIMIT:
913 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
914 						priority_flush_states,
915 						ARRAY_SIZE(priority_flush_states));
916 		break;
917 	case BTRFS_RESERVE_FLUSH_EVICT:
918 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
919 						evict_flush_states,
920 						ARRAY_SIZE(evict_flush_states));
921 		break;
922 	default:
923 		ASSERT(0);
924 		break;
925 	}
926 
927 	spin_lock(&space_info->lock);
928 	ret = ticket->error;
929 	if (ticket->bytes || ticket->error) {
930 		list_del_init(&ticket->list);
931 		if (!ret)
932 			ret = -ENOSPC;
933 	}
934 	spin_unlock(&space_info->lock);
935 	ASSERT(list_empty(&ticket->list));
936 	return ret;
937 }
938 
939 /**
940  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
941  * @root - the root we're allocating for
942  * @space_info - the space info we want to allocate from
943  * @orig_bytes - the number of bytes we want
944  * @flush - whether or not we can flush to make our reservation
945  *
946  * This will reserve orig_bytes number of bytes from the space info associated
947  * with the block_rsv.  If there is not enough space it will make an attempt to
948  * flush out space to make room.  It will do this by flushing delalloc if
949  * possible or committing the transaction.  If flush is 0 then no attempts to
950  * regain reservations will be made and this will fail if there is not enough
951  * space already.
952  */
953 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
954 				    struct btrfs_space_info *space_info,
955 				    u64 orig_bytes,
956 				    enum btrfs_reserve_flush_enum flush,
957 				    bool system_chunk)
958 {
959 	struct reserve_ticket ticket;
960 	u64 used;
961 	int ret = 0;
962 	bool pending_tickets;
963 
964 	ASSERT(orig_bytes);
965 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
966 
967 	spin_lock(&space_info->lock);
968 	ret = -ENOSPC;
969 	used = btrfs_space_info_used(space_info, true);
970 	pending_tickets = !list_empty(&space_info->tickets) ||
971 		!list_empty(&space_info->priority_tickets);
972 
973 	/*
974 	 * Carry on if we have enough space (short-circuit) OR call
975 	 * can_overcommit() to ensure we can overcommit to continue.
976 	 */
977 	if (!pending_tickets &&
978 	    ((used + orig_bytes <= space_info->total_bytes) ||
979 	     can_overcommit(fs_info, space_info, orig_bytes, flush,
980 			   system_chunk))) {
981 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
982 						      orig_bytes);
983 		ret = 0;
984 	}
985 
986 	/*
987 	 * If we couldn't make a reservation then setup our reservation ticket
988 	 * and kick the async worker if it's not already running.
989 	 *
990 	 * If we are a priority flusher then we just need to add our ticket to
991 	 * the list and we will do our own flushing further down.
992 	 */
993 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
994 		ticket.bytes = orig_bytes;
995 		ticket.error = 0;
996 		init_waitqueue_head(&ticket.wait);
997 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
998 			list_add_tail(&ticket.list, &space_info->tickets);
999 			if (!space_info->flush) {
1000 				space_info->flush = 1;
1001 				trace_btrfs_trigger_flush(fs_info,
1002 							  space_info->flags,
1003 							  orig_bytes, flush,
1004 							  "enospc");
1005 				queue_work(system_unbound_wq,
1006 					   &fs_info->async_reclaim_work);
1007 			}
1008 		} else {
1009 			list_add_tail(&ticket.list,
1010 				      &space_info->priority_tickets);
1011 		}
1012 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1013 		used += orig_bytes;
1014 		/*
1015 		 * We will do the space reservation dance during log replay,
1016 		 * which means we won't have fs_info->fs_root set, so don't do
1017 		 * the async reclaim as we will panic.
1018 		 */
1019 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1020 		    need_do_async_reclaim(fs_info, space_info,
1021 					  used, system_chunk) &&
1022 		    !work_busy(&fs_info->async_reclaim_work)) {
1023 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1024 						  orig_bytes, flush, "preempt");
1025 			queue_work(system_unbound_wq,
1026 				   &fs_info->async_reclaim_work);
1027 		}
1028 	}
1029 	spin_unlock(&space_info->lock);
1030 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1031 		return ret;
1032 
1033 	return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1034 }
1035 
1036 /**
1037  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1038  * @root - the root we're allocating for
1039  * @block_rsv - the block_rsv we're allocating for
1040  * @orig_bytes - the number of bytes we want
1041  * @flush - whether or not we can flush to make our reservation
1042  *
1043  * This will reserve orig_bytes number of bytes from the space info associated
1044  * with the block_rsv.  If there is not enough space it will make an attempt to
1045  * flush out space to make room.  It will do this by flushing delalloc if
1046  * possible or committing the transaction.  If flush is 0 then no attempts to
1047  * regain reservations will be made and this will fail if there is not enough
1048  * space already.
1049  */
1050 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1051 				 struct btrfs_block_rsv *block_rsv,
1052 				 u64 orig_bytes,
1053 				 enum btrfs_reserve_flush_enum flush)
1054 {
1055 	struct btrfs_fs_info *fs_info = root->fs_info;
1056 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1057 	int ret;
1058 	bool system_chunk = (root == fs_info->chunk_root);
1059 
1060 	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
1061 				       orig_bytes, flush, system_chunk);
1062 	if (ret == -ENOSPC &&
1063 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1064 		if (block_rsv != global_rsv &&
1065 		    !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1066 			ret = 0;
1067 	}
1068 	if (ret == -ENOSPC) {
1069 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1070 					      block_rsv->space_info->flags,
1071 					      orig_bytes, 1);
1072 
1073 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1074 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1075 					      orig_bytes, 0);
1076 	}
1077 	return ret;
1078 }
1079