1 /* 2 * Copyright (C) 2012 Alexander Block. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/bsearch.h> 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/sort.h> 23 #include <linux/mount.h> 24 #include <linux/xattr.h> 25 #include <linux/posix_acl_xattr.h> 26 #include <linux/radix-tree.h> 27 #include <linux/vmalloc.h> 28 #include <linux/string.h> 29 30 #include "send.h" 31 #include "backref.h" 32 #include "hash.h" 33 #include "locking.h" 34 #include "disk-io.h" 35 #include "btrfs_inode.h" 36 #include "transaction.h" 37 #include "compression.h" 38 39 static int g_verbose = 0; 40 41 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__) 42 43 /* 44 * A fs_path is a helper to dynamically build path names with unknown size. 45 * It reallocates the internal buffer on demand. 46 * It allows fast adding of path elements on the right side (normal path) and 47 * fast adding to the left side (reversed path). A reversed path can also be 48 * unreversed if needed. 49 */ 50 struct fs_path { 51 union { 52 struct { 53 char *start; 54 char *end; 55 56 char *buf; 57 unsigned short buf_len:15; 58 unsigned short reversed:1; 59 char inline_buf[]; 60 }; 61 /* 62 * Average path length does not exceed 200 bytes, we'll have 63 * better packing in the slab and higher chance to satisfy 64 * a allocation later during send. 65 */ 66 char pad[256]; 67 }; 68 }; 69 #define FS_PATH_INLINE_SIZE \ 70 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 71 72 73 /* reused for each extent */ 74 struct clone_root { 75 struct btrfs_root *root; 76 u64 ino; 77 u64 offset; 78 79 u64 found_refs; 80 }; 81 82 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 83 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 84 85 struct send_ctx { 86 struct file *send_filp; 87 loff_t send_off; 88 char *send_buf; 89 u32 send_size; 90 u32 send_max_size; 91 u64 total_send_size; 92 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 93 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 94 95 struct btrfs_root *send_root; 96 struct btrfs_root *parent_root; 97 struct clone_root *clone_roots; 98 int clone_roots_cnt; 99 100 /* current state of the compare_tree call */ 101 struct btrfs_path *left_path; 102 struct btrfs_path *right_path; 103 struct btrfs_key *cmp_key; 104 105 /* 106 * infos of the currently processed inode. In case of deleted inodes, 107 * these are the values from the deleted inode. 108 */ 109 u64 cur_ino; 110 u64 cur_inode_gen; 111 int cur_inode_new; 112 int cur_inode_new_gen; 113 int cur_inode_deleted; 114 u64 cur_inode_size; 115 u64 cur_inode_mode; 116 u64 cur_inode_rdev; 117 u64 cur_inode_last_extent; 118 119 u64 send_progress; 120 121 struct list_head new_refs; 122 struct list_head deleted_refs; 123 124 struct radix_tree_root name_cache; 125 struct list_head name_cache_list; 126 int name_cache_size; 127 128 struct file_ra_state ra; 129 130 char *read_buf; 131 132 /* 133 * We process inodes by their increasing order, so if before an 134 * incremental send we reverse the parent/child relationship of 135 * directories such that a directory with a lower inode number was 136 * the parent of a directory with a higher inode number, and the one 137 * becoming the new parent got renamed too, we can't rename/move the 138 * directory with lower inode number when we finish processing it - we 139 * must process the directory with higher inode number first, then 140 * rename/move it and then rename/move the directory with lower inode 141 * number. Example follows. 142 * 143 * Tree state when the first send was performed: 144 * 145 * . 146 * |-- a (ino 257) 147 * |-- b (ino 258) 148 * | 149 * | 150 * |-- c (ino 259) 151 * | |-- d (ino 260) 152 * | 153 * |-- c2 (ino 261) 154 * 155 * Tree state when the second (incremental) send is performed: 156 * 157 * . 158 * |-- a (ino 257) 159 * |-- b (ino 258) 160 * |-- c2 (ino 261) 161 * |-- d2 (ino 260) 162 * |-- cc (ino 259) 163 * 164 * The sequence of steps that lead to the second state was: 165 * 166 * mv /a/b/c/d /a/b/c2/d2 167 * mv /a/b/c /a/b/c2/d2/cc 168 * 169 * "c" has lower inode number, but we can't move it (2nd mv operation) 170 * before we move "d", which has higher inode number. 171 * 172 * So we just memorize which move/rename operations must be performed 173 * later when their respective parent is processed and moved/renamed. 174 */ 175 176 /* Indexed by parent directory inode number. */ 177 struct rb_root pending_dir_moves; 178 179 /* 180 * Reverse index, indexed by the inode number of a directory that 181 * is waiting for the move/rename of its immediate parent before its 182 * own move/rename can be performed. 183 */ 184 struct rb_root waiting_dir_moves; 185 186 /* 187 * A directory that is going to be rm'ed might have a child directory 188 * which is in the pending directory moves index above. In this case, 189 * the directory can only be removed after the move/rename of its child 190 * is performed. Example: 191 * 192 * Parent snapshot: 193 * 194 * . (ino 256) 195 * |-- a/ (ino 257) 196 * |-- b/ (ino 258) 197 * |-- c/ (ino 259) 198 * | |-- x/ (ino 260) 199 * | 200 * |-- y/ (ino 261) 201 * 202 * Send snapshot: 203 * 204 * . (ino 256) 205 * |-- a/ (ino 257) 206 * |-- b/ (ino 258) 207 * |-- YY/ (ino 261) 208 * |-- x/ (ino 260) 209 * 210 * Sequence of steps that lead to the send snapshot: 211 * rm -f /a/b/c/foo.txt 212 * mv /a/b/y /a/b/YY 213 * mv /a/b/c/x /a/b/YY 214 * rmdir /a/b/c 215 * 216 * When the child is processed, its move/rename is delayed until its 217 * parent is processed (as explained above), but all other operations 218 * like update utimes, chown, chgrp, etc, are performed and the paths 219 * that it uses for those operations must use the orphanized name of 220 * its parent (the directory we're going to rm later), so we need to 221 * memorize that name. 222 * 223 * Indexed by the inode number of the directory to be deleted. 224 */ 225 struct rb_root orphan_dirs; 226 }; 227 228 struct pending_dir_move { 229 struct rb_node node; 230 struct list_head list; 231 u64 parent_ino; 232 u64 ino; 233 u64 gen; 234 struct list_head update_refs; 235 }; 236 237 struct waiting_dir_move { 238 struct rb_node node; 239 u64 ino; 240 /* 241 * There might be some directory that could not be removed because it 242 * was waiting for this directory inode to be moved first. Therefore 243 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 244 */ 245 u64 rmdir_ino; 246 bool orphanized; 247 }; 248 249 struct orphan_dir_info { 250 struct rb_node node; 251 u64 ino; 252 u64 gen; 253 }; 254 255 struct name_cache_entry { 256 struct list_head list; 257 /* 258 * radix_tree has only 32bit entries but we need to handle 64bit inums. 259 * We use the lower 32bit of the 64bit inum to store it in the tree. If 260 * more then one inum would fall into the same entry, we use radix_list 261 * to store the additional entries. radix_list is also used to store 262 * entries where two entries have the same inum but different 263 * generations. 264 */ 265 struct list_head radix_list; 266 u64 ino; 267 u64 gen; 268 u64 parent_ino; 269 u64 parent_gen; 270 int ret; 271 int need_later_update; 272 int name_len; 273 char name[]; 274 }; 275 276 static void inconsistent_snapshot_error(struct send_ctx *sctx, 277 enum btrfs_compare_tree_result result, 278 const char *what) 279 { 280 const char *result_string; 281 282 switch (result) { 283 case BTRFS_COMPARE_TREE_NEW: 284 result_string = "new"; 285 break; 286 case BTRFS_COMPARE_TREE_DELETED: 287 result_string = "deleted"; 288 break; 289 case BTRFS_COMPARE_TREE_CHANGED: 290 result_string = "updated"; 291 break; 292 case BTRFS_COMPARE_TREE_SAME: 293 ASSERT(0); 294 result_string = "unchanged"; 295 break; 296 default: 297 ASSERT(0); 298 result_string = "unexpected"; 299 } 300 301 btrfs_err(sctx->send_root->fs_info, 302 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 303 result_string, what, sctx->cmp_key->objectid, 304 sctx->send_root->root_key.objectid, 305 (sctx->parent_root ? 306 sctx->parent_root->root_key.objectid : 0)); 307 } 308 309 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 310 311 static struct waiting_dir_move * 312 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 313 314 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino); 315 316 static int need_send_hole(struct send_ctx *sctx) 317 { 318 return (sctx->parent_root && !sctx->cur_inode_new && 319 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 320 S_ISREG(sctx->cur_inode_mode)); 321 } 322 323 static void fs_path_reset(struct fs_path *p) 324 { 325 if (p->reversed) { 326 p->start = p->buf + p->buf_len - 1; 327 p->end = p->start; 328 *p->start = 0; 329 } else { 330 p->start = p->buf; 331 p->end = p->start; 332 *p->start = 0; 333 } 334 } 335 336 static struct fs_path *fs_path_alloc(void) 337 { 338 struct fs_path *p; 339 340 p = kmalloc(sizeof(*p), GFP_KERNEL); 341 if (!p) 342 return NULL; 343 p->reversed = 0; 344 p->buf = p->inline_buf; 345 p->buf_len = FS_PATH_INLINE_SIZE; 346 fs_path_reset(p); 347 return p; 348 } 349 350 static struct fs_path *fs_path_alloc_reversed(void) 351 { 352 struct fs_path *p; 353 354 p = fs_path_alloc(); 355 if (!p) 356 return NULL; 357 p->reversed = 1; 358 fs_path_reset(p); 359 return p; 360 } 361 362 static void fs_path_free(struct fs_path *p) 363 { 364 if (!p) 365 return; 366 if (p->buf != p->inline_buf) 367 kfree(p->buf); 368 kfree(p); 369 } 370 371 static int fs_path_len(struct fs_path *p) 372 { 373 return p->end - p->start; 374 } 375 376 static int fs_path_ensure_buf(struct fs_path *p, int len) 377 { 378 char *tmp_buf; 379 int path_len; 380 int old_buf_len; 381 382 len++; 383 384 if (p->buf_len >= len) 385 return 0; 386 387 if (len > PATH_MAX) { 388 WARN_ON(1); 389 return -ENOMEM; 390 } 391 392 path_len = p->end - p->start; 393 old_buf_len = p->buf_len; 394 395 /* 396 * First time the inline_buf does not suffice 397 */ 398 if (p->buf == p->inline_buf) { 399 tmp_buf = kmalloc(len, GFP_KERNEL); 400 if (tmp_buf) 401 memcpy(tmp_buf, p->buf, old_buf_len); 402 } else { 403 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 404 } 405 if (!tmp_buf) 406 return -ENOMEM; 407 p->buf = tmp_buf; 408 /* 409 * The real size of the buffer is bigger, this will let the fast path 410 * happen most of the time 411 */ 412 p->buf_len = ksize(p->buf); 413 414 if (p->reversed) { 415 tmp_buf = p->buf + old_buf_len - path_len - 1; 416 p->end = p->buf + p->buf_len - 1; 417 p->start = p->end - path_len; 418 memmove(p->start, tmp_buf, path_len + 1); 419 } else { 420 p->start = p->buf; 421 p->end = p->start + path_len; 422 } 423 return 0; 424 } 425 426 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 427 char **prepared) 428 { 429 int ret; 430 int new_len; 431 432 new_len = p->end - p->start + name_len; 433 if (p->start != p->end) 434 new_len++; 435 ret = fs_path_ensure_buf(p, new_len); 436 if (ret < 0) 437 goto out; 438 439 if (p->reversed) { 440 if (p->start != p->end) 441 *--p->start = '/'; 442 p->start -= name_len; 443 *prepared = p->start; 444 } else { 445 if (p->start != p->end) 446 *p->end++ = '/'; 447 *prepared = p->end; 448 p->end += name_len; 449 *p->end = 0; 450 } 451 452 out: 453 return ret; 454 } 455 456 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 457 { 458 int ret; 459 char *prepared; 460 461 ret = fs_path_prepare_for_add(p, name_len, &prepared); 462 if (ret < 0) 463 goto out; 464 memcpy(prepared, name, name_len); 465 466 out: 467 return ret; 468 } 469 470 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 471 { 472 int ret; 473 char *prepared; 474 475 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 476 if (ret < 0) 477 goto out; 478 memcpy(prepared, p2->start, p2->end - p2->start); 479 480 out: 481 return ret; 482 } 483 484 static int fs_path_add_from_extent_buffer(struct fs_path *p, 485 struct extent_buffer *eb, 486 unsigned long off, int len) 487 { 488 int ret; 489 char *prepared; 490 491 ret = fs_path_prepare_for_add(p, len, &prepared); 492 if (ret < 0) 493 goto out; 494 495 read_extent_buffer(eb, prepared, off, len); 496 497 out: 498 return ret; 499 } 500 501 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 502 { 503 int ret; 504 505 p->reversed = from->reversed; 506 fs_path_reset(p); 507 508 ret = fs_path_add_path(p, from); 509 510 return ret; 511 } 512 513 514 static void fs_path_unreverse(struct fs_path *p) 515 { 516 char *tmp; 517 int len; 518 519 if (!p->reversed) 520 return; 521 522 tmp = p->start; 523 len = p->end - p->start; 524 p->start = p->buf; 525 p->end = p->start + len; 526 memmove(p->start, tmp, len + 1); 527 p->reversed = 0; 528 } 529 530 static struct btrfs_path *alloc_path_for_send(void) 531 { 532 struct btrfs_path *path; 533 534 path = btrfs_alloc_path(); 535 if (!path) 536 return NULL; 537 path->search_commit_root = 1; 538 path->skip_locking = 1; 539 path->need_commit_sem = 1; 540 return path; 541 } 542 543 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 544 { 545 int ret; 546 mm_segment_t old_fs; 547 u32 pos = 0; 548 549 old_fs = get_fs(); 550 set_fs(KERNEL_DS); 551 552 while (pos < len) { 553 ret = vfs_write(filp, (__force const char __user *)buf + pos, 554 len - pos, off); 555 /* TODO handle that correctly */ 556 /*if (ret == -ERESTARTSYS) { 557 continue; 558 }*/ 559 if (ret < 0) 560 goto out; 561 if (ret == 0) { 562 ret = -EIO; 563 goto out; 564 } 565 pos += ret; 566 } 567 568 ret = 0; 569 570 out: 571 set_fs(old_fs); 572 return ret; 573 } 574 575 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 576 { 577 struct btrfs_tlv_header *hdr; 578 int total_len = sizeof(*hdr) + len; 579 int left = sctx->send_max_size - sctx->send_size; 580 581 if (unlikely(left < total_len)) 582 return -EOVERFLOW; 583 584 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 585 hdr->tlv_type = cpu_to_le16(attr); 586 hdr->tlv_len = cpu_to_le16(len); 587 memcpy(hdr + 1, data, len); 588 sctx->send_size += total_len; 589 590 return 0; 591 } 592 593 #define TLV_PUT_DEFINE_INT(bits) \ 594 static int tlv_put_u##bits(struct send_ctx *sctx, \ 595 u##bits attr, u##bits value) \ 596 { \ 597 __le##bits __tmp = cpu_to_le##bits(value); \ 598 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 599 } 600 601 TLV_PUT_DEFINE_INT(64) 602 603 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 604 const char *str, int len) 605 { 606 if (len == -1) 607 len = strlen(str); 608 return tlv_put(sctx, attr, str, len); 609 } 610 611 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 612 const u8 *uuid) 613 { 614 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 615 } 616 617 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 618 struct extent_buffer *eb, 619 struct btrfs_timespec *ts) 620 { 621 struct btrfs_timespec bts; 622 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 623 return tlv_put(sctx, attr, &bts, sizeof(bts)); 624 } 625 626 627 #define TLV_PUT(sctx, attrtype, attrlen, data) \ 628 do { \ 629 ret = tlv_put(sctx, attrtype, attrlen, data); \ 630 if (ret < 0) \ 631 goto tlv_put_failure; \ 632 } while (0) 633 634 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 635 do { \ 636 ret = tlv_put_u##bits(sctx, attrtype, value); \ 637 if (ret < 0) \ 638 goto tlv_put_failure; \ 639 } while (0) 640 641 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 642 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 643 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 644 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 645 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 646 do { \ 647 ret = tlv_put_string(sctx, attrtype, str, len); \ 648 if (ret < 0) \ 649 goto tlv_put_failure; \ 650 } while (0) 651 #define TLV_PUT_PATH(sctx, attrtype, p) \ 652 do { \ 653 ret = tlv_put_string(sctx, attrtype, p->start, \ 654 p->end - p->start); \ 655 if (ret < 0) \ 656 goto tlv_put_failure; \ 657 } while(0) 658 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 659 do { \ 660 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 661 if (ret < 0) \ 662 goto tlv_put_failure; \ 663 } while (0) 664 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 665 do { \ 666 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 667 if (ret < 0) \ 668 goto tlv_put_failure; \ 669 } while (0) 670 671 static int send_header(struct send_ctx *sctx) 672 { 673 struct btrfs_stream_header hdr; 674 675 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 676 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 677 678 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 679 &sctx->send_off); 680 } 681 682 /* 683 * For each command/item we want to send to userspace, we call this function. 684 */ 685 static int begin_cmd(struct send_ctx *sctx, int cmd) 686 { 687 struct btrfs_cmd_header *hdr; 688 689 if (WARN_ON(!sctx->send_buf)) 690 return -EINVAL; 691 692 BUG_ON(sctx->send_size); 693 694 sctx->send_size += sizeof(*hdr); 695 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 696 hdr->cmd = cpu_to_le16(cmd); 697 698 return 0; 699 } 700 701 static int send_cmd(struct send_ctx *sctx) 702 { 703 int ret; 704 struct btrfs_cmd_header *hdr; 705 u32 crc; 706 707 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 708 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr)); 709 hdr->crc = 0; 710 711 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 712 hdr->crc = cpu_to_le32(crc); 713 714 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 715 &sctx->send_off); 716 717 sctx->total_send_size += sctx->send_size; 718 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size; 719 sctx->send_size = 0; 720 721 return ret; 722 } 723 724 /* 725 * Sends a move instruction to user space 726 */ 727 static int send_rename(struct send_ctx *sctx, 728 struct fs_path *from, struct fs_path *to) 729 { 730 int ret; 731 732 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start); 733 734 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 735 if (ret < 0) 736 goto out; 737 738 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 739 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 740 741 ret = send_cmd(sctx); 742 743 tlv_put_failure: 744 out: 745 return ret; 746 } 747 748 /* 749 * Sends a link instruction to user space 750 */ 751 static int send_link(struct send_ctx *sctx, 752 struct fs_path *path, struct fs_path *lnk) 753 { 754 int ret; 755 756 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start); 757 758 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 759 if (ret < 0) 760 goto out; 761 762 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 763 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 764 765 ret = send_cmd(sctx); 766 767 tlv_put_failure: 768 out: 769 return ret; 770 } 771 772 /* 773 * Sends an unlink instruction to user space 774 */ 775 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 776 { 777 int ret; 778 779 verbose_printk("btrfs: send_unlink %s\n", path->start); 780 781 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 782 if (ret < 0) 783 goto out; 784 785 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 786 787 ret = send_cmd(sctx); 788 789 tlv_put_failure: 790 out: 791 return ret; 792 } 793 794 /* 795 * Sends a rmdir instruction to user space 796 */ 797 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 798 { 799 int ret; 800 801 verbose_printk("btrfs: send_rmdir %s\n", path->start); 802 803 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 804 if (ret < 0) 805 goto out; 806 807 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 808 809 ret = send_cmd(sctx); 810 811 tlv_put_failure: 812 out: 813 return ret; 814 } 815 816 /* 817 * Helper function to retrieve some fields from an inode item. 818 */ 819 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 820 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 821 u64 *gid, u64 *rdev) 822 { 823 int ret; 824 struct btrfs_inode_item *ii; 825 struct btrfs_key key; 826 827 key.objectid = ino; 828 key.type = BTRFS_INODE_ITEM_KEY; 829 key.offset = 0; 830 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 831 if (ret) { 832 if (ret > 0) 833 ret = -ENOENT; 834 return ret; 835 } 836 837 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 838 struct btrfs_inode_item); 839 if (size) 840 *size = btrfs_inode_size(path->nodes[0], ii); 841 if (gen) 842 *gen = btrfs_inode_generation(path->nodes[0], ii); 843 if (mode) 844 *mode = btrfs_inode_mode(path->nodes[0], ii); 845 if (uid) 846 *uid = btrfs_inode_uid(path->nodes[0], ii); 847 if (gid) 848 *gid = btrfs_inode_gid(path->nodes[0], ii); 849 if (rdev) 850 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 851 852 return ret; 853 } 854 855 static int get_inode_info(struct btrfs_root *root, 856 u64 ino, u64 *size, u64 *gen, 857 u64 *mode, u64 *uid, u64 *gid, 858 u64 *rdev) 859 { 860 struct btrfs_path *path; 861 int ret; 862 863 path = alloc_path_for_send(); 864 if (!path) 865 return -ENOMEM; 866 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 867 rdev); 868 btrfs_free_path(path); 869 return ret; 870 } 871 872 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 873 struct fs_path *p, 874 void *ctx); 875 876 /* 877 * Helper function to iterate the entries in ONE btrfs_inode_ref or 878 * btrfs_inode_extref. 879 * The iterate callback may return a non zero value to stop iteration. This can 880 * be a negative value for error codes or 1 to simply stop it. 881 * 882 * path must point to the INODE_REF or INODE_EXTREF when called. 883 */ 884 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 885 struct btrfs_key *found_key, int resolve, 886 iterate_inode_ref_t iterate, void *ctx) 887 { 888 struct extent_buffer *eb = path->nodes[0]; 889 struct btrfs_item *item; 890 struct btrfs_inode_ref *iref; 891 struct btrfs_inode_extref *extref; 892 struct btrfs_path *tmp_path; 893 struct fs_path *p; 894 u32 cur = 0; 895 u32 total; 896 int slot = path->slots[0]; 897 u32 name_len; 898 char *start; 899 int ret = 0; 900 int num = 0; 901 int index; 902 u64 dir; 903 unsigned long name_off; 904 unsigned long elem_size; 905 unsigned long ptr; 906 907 p = fs_path_alloc_reversed(); 908 if (!p) 909 return -ENOMEM; 910 911 tmp_path = alloc_path_for_send(); 912 if (!tmp_path) { 913 fs_path_free(p); 914 return -ENOMEM; 915 } 916 917 918 if (found_key->type == BTRFS_INODE_REF_KEY) { 919 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 920 struct btrfs_inode_ref); 921 item = btrfs_item_nr(slot); 922 total = btrfs_item_size(eb, item); 923 elem_size = sizeof(*iref); 924 } else { 925 ptr = btrfs_item_ptr_offset(eb, slot); 926 total = btrfs_item_size_nr(eb, slot); 927 elem_size = sizeof(*extref); 928 } 929 930 while (cur < total) { 931 fs_path_reset(p); 932 933 if (found_key->type == BTRFS_INODE_REF_KEY) { 934 iref = (struct btrfs_inode_ref *)(ptr + cur); 935 name_len = btrfs_inode_ref_name_len(eb, iref); 936 name_off = (unsigned long)(iref + 1); 937 index = btrfs_inode_ref_index(eb, iref); 938 dir = found_key->offset; 939 } else { 940 extref = (struct btrfs_inode_extref *)(ptr + cur); 941 name_len = btrfs_inode_extref_name_len(eb, extref); 942 name_off = (unsigned long)&extref->name; 943 index = btrfs_inode_extref_index(eb, extref); 944 dir = btrfs_inode_extref_parent(eb, extref); 945 } 946 947 if (resolve) { 948 start = btrfs_ref_to_path(root, tmp_path, name_len, 949 name_off, eb, dir, 950 p->buf, p->buf_len); 951 if (IS_ERR(start)) { 952 ret = PTR_ERR(start); 953 goto out; 954 } 955 if (start < p->buf) { 956 /* overflow , try again with larger buffer */ 957 ret = fs_path_ensure_buf(p, 958 p->buf_len + p->buf - start); 959 if (ret < 0) 960 goto out; 961 start = btrfs_ref_to_path(root, tmp_path, 962 name_len, name_off, 963 eb, dir, 964 p->buf, p->buf_len); 965 if (IS_ERR(start)) { 966 ret = PTR_ERR(start); 967 goto out; 968 } 969 BUG_ON(start < p->buf); 970 } 971 p->start = start; 972 } else { 973 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 974 name_len); 975 if (ret < 0) 976 goto out; 977 } 978 979 cur += elem_size + name_len; 980 ret = iterate(num, dir, index, p, ctx); 981 if (ret) 982 goto out; 983 num++; 984 } 985 986 out: 987 btrfs_free_path(tmp_path); 988 fs_path_free(p); 989 return ret; 990 } 991 992 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 993 const char *name, int name_len, 994 const char *data, int data_len, 995 u8 type, void *ctx); 996 997 /* 998 * Helper function to iterate the entries in ONE btrfs_dir_item. 999 * The iterate callback may return a non zero value to stop iteration. This can 1000 * be a negative value for error codes or 1 to simply stop it. 1001 * 1002 * path must point to the dir item when called. 1003 */ 1004 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1005 struct btrfs_key *found_key, 1006 iterate_dir_item_t iterate, void *ctx) 1007 { 1008 int ret = 0; 1009 struct extent_buffer *eb; 1010 struct btrfs_item *item; 1011 struct btrfs_dir_item *di; 1012 struct btrfs_key di_key; 1013 char *buf = NULL; 1014 int buf_len; 1015 u32 name_len; 1016 u32 data_len; 1017 u32 cur; 1018 u32 len; 1019 u32 total; 1020 int slot; 1021 int num; 1022 u8 type; 1023 1024 /* 1025 * Start with a small buffer (1 page). If later we end up needing more 1026 * space, which can happen for xattrs on a fs with a leaf size greater 1027 * then the page size, attempt to increase the buffer. Typically xattr 1028 * values are small. 1029 */ 1030 buf_len = PATH_MAX; 1031 buf = kmalloc(buf_len, GFP_KERNEL); 1032 if (!buf) { 1033 ret = -ENOMEM; 1034 goto out; 1035 } 1036 1037 eb = path->nodes[0]; 1038 slot = path->slots[0]; 1039 item = btrfs_item_nr(slot); 1040 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1041 cur = 0; 1042 len = 0; 1043 total = btrfs_item_size(eb, item); 1044 1045 num = 0; 1046 while (cur < total) { 1047 name_len = btrfs_dir_name_len(eb, di); 1048 data_len = btrfs_dir_data_len(eb, di); 1049 type = btrfs_dir_type(eb, di); 1050 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1051 1052 if (type == BTRFS_FT_XATTR) { 1053 if (name_len > XATTR_NAME_MAX) { 1054 ret = -ENAMETOOLONG; 1055 goto out; 1056 } 1057 if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) { 1058 ret = -E2BIG; 1059 goto out; 1060 } 1061 } else { 1062 /* 1063 * Path too long 1064 */ 1065 if (name_len + data_len > PATH_MAX) { 1066 ret = -ENAMETOOLONG; 1067 goto out; 1068 } 1069 } 1070 1071 if (name_len + data_len > buf_len) { 1072 buf_len = name_len + data_len; 1073 if (is_vmalloc_addr(buf)) { 1074 vfree(buf); 1075 buf = NULL; 1076 } else { 1077 char *tmp = krealloc(buf, buf_len, 1078 GFP_KERNEL | __GFP_NOWARN); 1079 1080 if (!tmp) 1081 kfree(buf); 1082 buf = tmp; 1083 } 1084 if (!buf) { 1085 buf = vmalloc(buf_len); 1086 if (!buf) { 1087 ret = -ENOMEM; 1088 goto out; 1089 } 1090 } 1091 } 1092 1093 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1094 name_len + data_len); 1095 1096 len = sizeof(*di) + name_len + data_len; 1097 di = (struct btrfs_dir_item *)((char *)di + len); 1098 cur += len; 1099 1100 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1101 data_len, type, ctx); 1102 if (ret < 0) 1103 goto out; 1104 if (ret) { 1105 ret = 0; 1106 goto out; 1107 } 1108 1109 num++; 1110 } 1111 1112 out: 1113 kvfree(buf); 1114 return ret; 1115 } 1116 1117 static int __copy_first_ref(int num, u64 dir, int index, 1118 struct fs_path *p, void *ctx) 1119 { 1120 int ret; 1121 struct fs_path *pt = ctx; 1122 1123 ret = fs_path_copy(pt, p); 1124 if (ret < 0) 1125 return ret; 1126 1127 /* we want the first only */ 1128 return 1; 1129 } 1130 1131 /* 1132 * Retrieve the first path of an inode. If an inode has more then one 1133 * ref/hardlink, this is ignored. 1134 */ 1135 static int get_inode_path(struct btrfs_root *root, 1136 u64 ino, struct fs_path *path) 1137 { 1138 int ret; 1139 struct btrfs_key key, found_key; 1140 struct btrfs_path *p; 1141 1142 p = alloc_path_for_send(); 1143 if (!p) 1144 return -ENOMEM; 1145 1146 fs_path_reset(path); 1147 1148 key.objectid = ino; 1149 key.type = BTRFS_INODE_REF_KEY; 1150 key.offset = 0; 1151 1152 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1153 if (ret < 0) 1154 goto out; 1155 if (ret) { 1156 ret = 1; 1157 goto out; 1158 } 1159 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1160 if (found_key.objectid != ino || 1161 (found_key.type != BTRFS_INODE_REF_KEY && 1162 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1163 ret = -ENOENT; 1164 goto out; 1165 } 1166 1167 ret = iterate_inode_ref(root, p, &found_key, 1, 1168 __copy_first_ref, path); 1169 if (ret < 0) 1170 goto out; 1171 ret = 0; 1172 1173 out: 1174 btrfs_free_path(p); 1175 return ret; 1176 } 1177 1178 struct backref_ctx { 1179 struct send_ctx *sctx; 1180 1181 struct btrfs_path *path; 1182 /* number of total found references */ 1183 u64 found; 1184 1185 /* 1186 * used for clones found in send_root. clones found behind cur_objectid 1187 * and cur_offset are not considered as allowed clones. 1188 */ 1189 u64 cur_objectid; 1190 u64 cur_offset; 1191 1192 /* may be truncated in case it's the last extent in a file */ 1193 u64 extent_len; 1194 1195 /* data offset in the file extent item */ 1196 u64 data_offset; 1197 1198 /* Just to check for bugs in backref resolving */ 1199 int found_itself; 1200 }; 1201 1202 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1203 { 1204 u64 root = (u64)(uintptr_t)key; 1205 struct clone_root *cr = (struct clone_root *)elt; 1206 1207 if (root < cr->root->objectid) 1208 return -1; 1209 if (root > cr->root->objectid) 1210 return 1; 1211 return 0; 1212 } 1213 1214 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1215 { 1216 struct clone_root *cr1 = (struct clone_root *)e1; 1217 struct clone_root *cr2 = (struct clone_root *)e2; 1218 1219 if (cr1->root->objectid < cr2->root->objectid) 1220 return -1; 1221 if (cr1->root->objectid > cr2->root->objectid) 1222 return 1; 1223 return 0; 1224 } 1225 1226 /* 1227 * Called for every backref that is found for the current extent. 1228 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1229 */ 1230 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1231 { 1232 struct backref_ctx *bctx = ctx_; 1233 struct clone_root *found; 1234 int ret; 1235 u64 i_size; 1236 1237 /* First check if the root is in the list of accepted clone sources */ 1238 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1239 bctx->sctx->clone_roots_cnt, 1240 sizeof(struct clone_root), 1241 __clone_root_cmp_bsearch); 1242 if (!found) 1243 return 0; 1244 1245 if (found->root == bctx->sctx->send_root && 1246 ino == bctx->cur_objectid && 1247 offset == bctx->cur_offset) { 1248 bctx->found_itself = 1; 1249 } 1250 1251 /* 1252 * There are inodes that have extents that lie behind its i_size. Don't 1253 * accept clones from these extents. 1254 */ 1255 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL, 1256 NULL, NULL, NULL); 1257 btrfs_release_path(bctx->path); 1258 if (ret < 0) 1259 return ret; 1260 1261 if (offset + bctx->data_offset + bctx->extent_len > i_size) 1262 return 0; 1263 1264 /* 1265 * Make sure we don't consider clones from send_root that are 1266 * behind the current inode/offset. 1267 */ 1268 if (found->root == bctx->sctx->send_root) { 1269 /* 1270 * TODO for the moment we don't accept clones from the inode 1271 * that is currently send. We may change this when 1272 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same 1273 * file. 1274 */ 1275 if (ino >= bctx->cur_objectid) 1276 return 0; 1277 #if 0 1278 if (ino > bctx->cur_objectid) 1279 return 0; 1280 if (offset + bctx->extent_len > bctx->cur_offset) 1281 return 0; 1282 #endif 1283 } 1284 1285 bctx->found++; 1286 found->found_refs++; 1287 if (ino < found->ino) { 1288 found->ino = ino; 1289 found->offset = offset; 1290 } else if (found->ino == ino) { 1291 /* 1292 * same extent found more then once in the same file. 1293 */ 1294 if (found->offset > offset + bctx->extent_len) 1295 found->offset = offset; 1296 } 1297 1298 return 0; 1299 } 1300 1301 /* 1302 * Given an inode, offset and extent item, it finds a good clone for a clone 1303 * instruction. Returns -ENOENT when none could be found. The function makes 1304 * sure that the returned clone is usable at the point where sending is at the 1305 * moment. This means, that no clones are accepted which lie behind the current 1306 * inode+offset. 1307 * 1308 * path must point to the extent item when called. 1309 */ 1310 static int find_extent_clone(struct send_ctx *sctx, 1311 struct btrfs_path *path, 1312 u64 ino, u64 data_offset, 1313 u64 ino_size, 1314 struct clone_root **found) 1315 { 1316 int ret; 1317 int extent_type; 1318 u64 logical; 1319 u64 disk_byte; 1320 u64 num_bytes; 1321 u64 extent_item_pos; 1322 u64 flags = 0; 1323 struct btrfs_file_extent_item *fi; 1324 struct extent_buffer *eb = path->nodes[0]; 1325 struct backref_ctx *backref_ctx = NULL; 1326 struct clone_root *cur_clone_root; 1327 struct btrfs_key found_key; 1328 struct btrfs_path *tmp_path; 1329 int compressed; 1330 u32 i; 1331 1332 tmp_path = alloc_path_for_send(); 1333 if (!tmp_path) 1334 return -ENOMEM; 1335 1336 /* We only use this path under the commit sem */ 1337 tmp_path->need_commit_sem = 0; 1338 1339 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL); 1340 if (!backref_ctx) { 1341 ret = -ENOMEM; 1342 goto out; 1343 } 1344 1345 backref_ctx->path = tmp_path; 1346 1347 if (data_offset >= ino_size) { 1348 /* 1349 * There may be extents that lie behind the file's size. 1350 * I at least had this in combination with snapshotting while 1351 * writing large files. 1352 */ 1353 ret = 0; 1354 goto out; 1355 } 1356 1357 fi = btrfs_item_ptr(eb, path->slots[0], 1358 struct btrfs_file_extent_item); 1359 extent_type = btrfs_file_extent_type(eb, fi); 1360 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1361 ret = -ENOENT; 1362 goto out; 1363 } 1364 compressed = btrfs_file_extent_compression(eb, fi); 1365 1366 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1367 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1368 if (disk_byte == 0) { 1369 ret = -ENOENT; 1370 goto out; 1371 } 1372 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1373 1374 down_read(&sctx->send_root->fs_info->commit_root_sem); 1375 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path, 1376 &found_key, &flags); 1377 up_read(&sctx->send_root->fs_info->commit_root_sem); 1378 btrfs_release_path(tmp_path); 1379 1380 if (ret < 0) 1381 goto out; 1382 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1383 ret = -EIO; 1384 goto out; 1385 } 1386 1387 /* 1388 * Setup the clone roots. 1389 */ 1390 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1391 cur_clone_root = sctx->clone_roots + i; 1392 cur_clone_root->ino = (u64)-1; 1393 cur_clone_root->offset = 0; 1394 cur_clone_root->found_refs = 0; 1395 } 1396 1397 backref_ctx->sctx = sctx; 1398 backref_ctx->found = 0; 1399 backref_ctx->cur_objectid = ino; 1400 backref_ctx->cur_offset = data_offset; 1401 backref_ctx->found_itself = 0; 1402 backref_ctx->extent_len = num_bytes; 1403 /* 1404 * For non-compressed extents iterate_extent_inodes() gives us extent 1405 * offsets that already take into account the data offset, but not for 1406 * compressed extents, since the offset is logical and not relative to 1407 * the physical extent locations. We must take this into account to 1408 * avoid sending clone offsets that go beyond the source file's size, 1409 * which would result in the clone ioctl failing with -EINVAL on the 1410 * receiving end. 1411 */ 1412 if (compressed == BTRFS_COMPRESS_NONE) 1413 backref_ctx->data_offset = 0; 1414 else 1415 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi); 1416 1417 /* 1418 * The last extent of a file may be too large due to page alignment. 1419 * We need to adjust extent_len in this case so that the checks in 1420 * __iterate_backrefs work. 1421 */ 1422 if (data_offset + num_bytes >= ino_size) 1423 backref_ctx->extent_len = ino_size - data_offset; 1424 1425 /* 1426 * Now collect all backrefs. 1427 */ 1428 if (compressed == BTRFS_COMPRESS_NONE) 1429 extent_item_pos = logical - found_key.objectid; 1430 else 1431 extent_item_pos = 0; 1432 ret = iterate_extent_inodes(sctx->send_root->fs_info, 1433 found_key.objectid, extent_item_pos, 1, 1434 __iterate_backrefs, backref_ctx); 1435 1436 if (ret < 0) 1437 goto out; 1438 1439 if (!backref_ctx->found_itself) { 1440 /* found a bug in backref code? */ 1441 ret = -EIO; 1442 btrfs_err(sctx->send_root->fs_info, "did not find backref in " 1443 "send_root. inode=%llu, offset=%llu, " 1444 "disk_byte=%llu found extent=%llu", 1445 ino, data_offset, disk_byte, found_key.objectid); 1446 goto out; 1447 } 1448 1449 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, " 1450 "ino=%llu, " 1451 "num_bytes=%llu, logical=%llu\n", 1452 data_offset, ino, num_bytes, logical); 1453 1454 if (!backref_ctx->found) 1455 verbose_printk("btrfs: no clones found\n"); 1456 1457 cur_clone_root = NULL; 1458 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1459 if (sctx->clone_roots[i].found_refs) { 1460 if (!cur_clone_root) 1461 cur_clone_root = sctx->clone_roots + i; 1462 else if (sctx->clone_roots[i].root == sctx->send_root) 1463 /* prefer clones from send_root over others */ 1464 cur_clone_root = sctx->clone_roots + i; 1465 } 1466 1467 } 1468 1469 if (cur_clone_root) { 1470 *found = cur_clone_root; 1471 ret = 0; 1472 } else { 1473 ret = -ENOENT; 1474 } 1475 1476 out: 1477 btrfs_free_path(tmp_path); 1478 kfree(backref_ctx); 1479 return ret; 1480 } 1481 1482 static int read_symlink(struct btrfs_root *root, 1483 u64 ino, 1484 struct fs_path *dest) 1485 { 1486 int ret; 1487 struct btrfs_path *path; 1488 struct btrfs_key key; 1489 struct btrfs_file_extent_item *ei; 1490 u8 type; 1491 u8 compression; 1492 unsigned long off; 1493 int len; 1494 1495 path = alloc_path_for_send(); 1496 if (!path) 1497 return -ENOMEM; 1498 1499 key.objectid = ino; 1500 key.type = BTRFS_EXTENT_DATA_KEY; 1501 key.offset = 0; 1502 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1503 if (ret < 0) 1504 goto out; 1505 if (ret) { 1506 /* 1507 * An empty symlink inode. Can happen in rare error paths when 1508 * creating a symlink (transaction committed before the inode 1509 * eviction handler removed the symlink inode items and a crash 1510 * happened in between or the subvol was snapshoted in between). 1511 * Print an informative message to dmesg/syslog so that the user 1512 * can delete the symlink. 1513 */ 1514 btrfs_err(root->fs_info, 1515 "Found empty symlink inode %llu at root %llu", 1516 ino, root->root_key.objectid); 1517 ret = -EIO; 1518 goto out; 1519 } 1520 1521 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1522 struct btrfs_file_extent_item); 1523 type = btrfs_file_extent_type(path->nodes[0], ei); 1524 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1525 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1526 BUG_ON(compression); 1527 1528 off = btrfs_file_extent_inline_start(ei); 1529 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei); 1530 1531 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1532 1533 out: 1534 btrfs_free_path(path); 1535 return ret; 1536 } 1537 1538 /* 1539 * Helper function to generate a file name that is unique in the root of 1540 * send_root and parent_root. This is used to generate names for orphan inodes. 1541 */ 1542 static int gen_unique_name(struct send_ctx *sctx, 1543 u64 ino, u64 gen, 1544 struct fs_path *dest) 1545 { 1546 int ret = 0; 1547 struct btrfs_path *path; 1548 struct btrfs_dir_item *di; 1549 char tmp[64]; 1550 int len; 1551 u64 idx = 0; 1552 1553 path = alloc_path_for_send(); 1554 if (!path) 1555 return -ENOMEM; 1556 1557 while (1) { 1558 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1559 ino, gen, idx); 1560 ASSERT(len < sizeof(tmp)); 1561 1562 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1563 path, BTRFS_FIRST_FREE_OBJECTID, 1564 tmp, strlen(tmp), 0); 1565 btrfs_release_path(path); 1566 if (IS_ERR(di)) { 1567 ret = PTR_ERR(di); 1568 goto out; 1569 } 1570 if (di) { 1571 /* not unique, try again */ 1572 idx++; 1573 continue; 1574 } 1575 1576 if (!sctx->parent_root) { 1577 /* unique */ 1578 ret = 0; 1579 break; 1580 } 1581 1582 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1583 path, BTRFS_FIRST_FREE_OBJECTID, 1584 tmp, strlen(tmp), 0); 1585 btrfs_release_path(path); 1586 if (IS_ERR(di)) { 1587 ret = PTR_ERR(di); 1588 goto out; 1589 } 1590 if (di) { 1591 /* not unique, try again */ 1592 idx++; 1593 continue; 1594 } 1595 /* unique */ 1596 break; 1597 } 1598 1599 ret = fs_path_add(dest, tmp, strlen(tmp)); 1600 1601 out: 1602 btrfs_free_path(path); 1603 return ret; 1604 } 1605 1606 enum inode_state { 1607 inode_state_no_change, 1608 inode_state_will_create, 1609 inode_state_did_create, 1610 inode_state_will_delete, 1611 inode_state_did_delete, 1612 }; 1613 1614 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1615 { 1616 int ret; 1617 int left_ret; 1618 int right_ret; 1619 u64 left_gen; 1620 u64 right_gen; 1621 1622 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1623 NULL, NULL); 1624 if (ret < 0 && ret != -ENOENT) 1625 goto out; 1626 left_ret = ret; 1627 1628 if (!sctx->parent_root) { 1629 right_ret = -ENOENT; 1630 } else { 1631 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1632 NULL, NULL, NULL, NULL); 1633 if (ret < 0 && ret != -ENOENT) 1634 goto out; 1635 right_ret = ret; 1636 } 1637 1638 if (!left_ret && !right_ret) { 1639 if (left_gen == gen && right_gen == gen) { 1640 ret = inode_state_no_change; 1641 } else if (left_gen == gen) { 1642 if (ino < sctx->send_progress) 1643 ret = inode_state_did_create; 1644 else 1645 ret = inode_state_will_create; 1646 } else if (right_gen == gen) { 1647 if (ino < sctx->send_progress) 1648 ret = inode_state_did_delete; 1649 else 1650 ret = inode_state_will_delete; 1651 } else { 1652 ret = -ENOENT; 1653 } 1654 } else if (!left_ret) { 1655 if (left_gen == gen) { 1656 if (ino < sctx->send_progress) 1657 ret = inode_state_did_create; 1658 else 1659 ret = inode_state_will_create; 1660 } else { 1661 ret = -ENOENT; 1662 } 1663 } else if (!right_ret) { 1664 if (right_gen == gen) { 1665 if (ino < sctx->send_progress) 1666 ret = inode_state_did_delete; 1667 else 1668 ret = inode_state_will_delete; 1669 } else { 1670 ret = -ENOENT; 1671 } 1672 } else { 1673 ret = -ENOENT; 1674 } 1675 1676 out: 1677 return ret; 1678 } 1679 1680 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1681 { 1682 int ret; 1683 1684 ret = get_cur_inode_state(sctx, ino, gen); 1685 if (ret < 0) 1686 goto out; 1687 1688 if (ret == inode_state_no_change || 1689 ret == inode_state_did_create || 1690 ret == inode_state_will_delete) 1691 ret = 1; 1692 else 1693 ret = 0; 1694 1695 out: 1696 return ret; 1697 } 1698 1699 /* 1700 * Helper function to lookup a dir item in a dir. 1701 */ 1702 static int lookup_dir_item_inode(struct btrfs_root *root, 1703 u64 dir, const char *name, int name_len, 1704 u64 *found_inode, 1705 u8 *found_type) 1706 { 1707 int ret = 0; 1708 struct btrfs_dir_item *di; 1709 struct btrfs_key key; 1710 struct btrfs_path *path; 1711 1712 path = alloc_path_for_send(); 1713 if (!path) 1714 return -ENOMEM; 1715 1716 di = btrfs_lookup_dir_item(NULL, root, path, 1717 dir, name, name_len, 0); 1718 if (!di) { 1719 ret = -ENOENT; 1720 goto out; 1721 } 1722 if (IS_ERR(di)) { 1723 ret = PTR_ERR(di); 1724 goto out; 1725 } 1726 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1727 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1728 ret = -ENOENT; 1729 goto out; 1730 } 1731 *found_inode = key.objectid; 1732 *found_type = btrfs_dir_type(path->nodes[0], di); 1733 1734 out: 1735 btrfs_free_path(path); 1736 return ret; 1737 } 1738 1739 /* 1740 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1741 * generation of the parent dir and the name of the dir entry. 1742 */ 1743 static int get_first_ref(struct btrfs_root *root, u64 ino, 1744 u64 *dir, u64 *dir_gen, struct fs_path *name) 1745 { 1746 int ret; 1747 struct btrfs_key key; 1748 struct btrfs_key found_key; 1749 struct btrfs_path *path; 1750 int len; 1751 u64 parent_dir; 1752 1753 path = alloc_path_for_send(); 1754 if (!path) 1755 return -ENOMEM; 1756 1757 key.objectid = ino; 1758 key.type = BTRFS_INODE_REF_KEY; 1759 key.offset = 0; 1760 1761 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1762 if (ret < 0) 1763 goto out; 1764 if (!ret) 1765 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1766 path->slots[0]); 1767 if (ret || found_key.objectid != ino || 1768 (found_key.type != BTRFS_INODE_REF_KEY && 1769 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1770 ret = -ENOENT; 1771 goto out; 1772 } 1773 1774 if (found_key.type == BTRFS_INODE_REF_KEY) { 1775 struct btrfs_inode_ref *iref; 1776 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1777 struct btrfs_inode_ref); 1778 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1779 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1780 (unsigned long)(iref + 1), 1781 len); 1782 parent_dir = found_key.offset; 1783 } else { 1784 struct btrfs_inode_extref *extref; 1785 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1786 struct btrfs_inode_extref); 1787 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1788 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1789 (unsigned long)&extref->name, len); 1790 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1791 } 1792 if (ret < 0) 1793 goto out; 1794 btrfs_release_path(path); 1795 1796 if (dir_gen) { 1797 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1798 NULL, NULL, NULL); 1799 if (ret < 0) 1800 goto out; 1801 } 1802 1803 *dir = parent_dir; 1804 1805 out: 1806 btrfs_free_path(path); 1807 return ret; 1808 } 1809 1810 static int is_first_ref(struct btrfs_root *root, 1811 u64 ino, u64 dir, 1812 const char *name, int name_len) 1813 { 1814 int ret; 1815 struct fs_path *tmp_name; 1816 u64 tmp_dir; 1817 1818 tmp_name = fs_path_alloc(); 1819 if (!tmp_name) 1820 return -ENOMEM; 1821 1822 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1823 if (ret < 0) 1824 goto out; 1825 1826 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1827 ret = 0; 1828 goto out; 1829 } 1830 1831 ret = !memcmp(tmp_name->start, name, name_len); 1832 1833 out: 1834 fs_path_free(tmp_name); 1835 return ret; 1836 } 1837 1838 /* 1839 * Used by process_recorded_refs to determine if a new ref would overwrite an 1840 * already existing ref. In case it detects an overwrite, it returns the 1841 * inode/gen in who_ino/who_gen. 1842 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1843 * to make sure later references to the overwritten inode are possible. 1844 * Orphanizing is however only required for the first ref of an inode. 1845 * process_recorded_refs does an additional is_first_ref check to see if 1846 * orphanizing is really required. 1847 */ 1848 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1849 const char *name, int name_len, 1850 u64 *who_ino, u64 *who_gen) 1851 { 1852 int ret = 0; 1853 u64 gen; 1854 u64 other_inode = 0; 1855 u8 other_type = 0; 1856 1857 if (!sctx->parent_root) 1858 goto out; 1859 1860 ret = is_inode_existent(sctx, dir, dir_gen); 1861 if (ret <= 0) 1862 goto out; 1863 1864 /* 1865 * If we have a parent root we need to verify that the parent dir was 1866 * not deleted and then re-created, if it was then we have no overwrite 1867 * and we can just unlink this entry. 1868 */ 1869 if (sctx->parent_root) { 1870 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1871 NULL, NULL, NULL); 1872 if (ret < 0 && ret != -ENOENT) 1873 goto out; 1874 if (ret) { 1875 ret = 0; 1876 goto out; 1877 } 1878 if (gen != dir_gen) 1879 goto out; 1880 } 1881 1882 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1883 &other_inode, &other_type); 1884 if (ret < 0 && ret != -ENOENT) 1885 goto out; 1886 if (ret) { 1887 ret = 0; 1888 goto out; 1889 } 1890 1891 /* 1892 * Check if the overwritten ref was already processed. If yes, the ref 1893 * was already unlinked/moved, so we can safely assume that we will not 1894 * overwrite anything at this point in time. 1895 */ 1896 if (other_inode > sctx->send_progress || 1897 is_waiting_for_move(sctx, other_inode)) { 1898 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1899 who_gen, NULL, NULL, NULL, NULL); 1900 if (ret < 0) 1901 goto out; 1902 1903 ret = 1; 1904 *who_ino = other_inode; 1905 } else { 1906 ret = 0; 1907 } 1908 1909 out: 1910 return ret; 1911 } 1912 1913 /* 1914 * Checks if the ref was overwritten by an already processed inode. This is 1915 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1916 * thus the orphan name needs be used. 1917 * process_recorded_refs also uses it to avoid unlinking of refs that were 1918 * overwritten. 1919 */ 1920 static int did_overwrite_ref(struct send_ctx *sctx, 1921 u64 dir, u64 dir_gen, 1922 u64 ino, u64 ino_gen, 1923 const char *name, int name_len) 1924 { 1925 int ret = 0; 1926 u64 gen; 1927 u64 ow_inode; 1928 u8 other_type; 1929 1930 if (!sctx->parent_root) 1931 goto out; 1932 1933 ret = is_inode_existent(sctx, dir, dir_gen); 1934 if (ret <= 0) 1935 goto out; 1936 1937 /* check if the ref was overwritten by another ref */ 1938 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1939 &ow_inode, &other_type); 1940 if (ret < 0 && ret != -ENOENT) 1941 goto out; 1942 if (ret) { 1943 /* was never and will never be overwritten */ 1944 ret = 0; 1945 goto out; 1946 } 1947 1948 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1949 NULL, NULL); 1950 if (ret < 0) 1951 goto out; 1952 1953 if (ow_inode == ino && gen == ino_gen) { 1954 ret = 0; 1955 goto out; 1956 } 1957 1958 /* 1959 * We know that it is or will be overwritten. Check this now. 1960 * The current inode being processed might have been the one that caused 1961 * inode 'ino' to be orphanized, therefore check if ow_inode matches 1962 * the current inode being processed. 1963 */ 1964 if ((ow_inode < sctx->send_progress) || 1965 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 1966 gen == sctx->cur_inode_gen)) 1967 ret = 1; 1968 else 1969 ret = 0; 1970 1971 out: 1972 return ret; 1973 } 1974 1975 /* 1976 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1977 * that got overwritten. This is used by process_recorded_refs to determine 1978 * if it has to use the path as returned by get_cur_path or the orphan name. 1979 */ 1980 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1981 { 1982 int ret = 0; 1983 struct fs_path *name = NULL; 1984 u64 dir; 1985 u64 dir_gen; 1986 1987 if (!sctx->parent_root) 1988 goto out; 1989 1990 name = fs_path_alloc(); 1991 if (!name) 1992 return -ENOMEM; 1993 1994 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 1995 if (ret < 0) 1996 goto out; 1997 1998 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 1999 name->start, fs_path_len(name)); 2000 2001 out: 2002 fs_path_free(name); 2003 return ret; 2004 } 2005 2006 /* 2007 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 2008 * so we need to do some special handling in case we have clashes. This function 2009 * takes care of this with the help of name_cache_entry::radix_list. 2010 * In case of error, nce is kfreed. 2011 */ 2012 static int name_cache_insert(struct send_ctx *sctx, 2013 struct name_cache_entry *nce) 2014 { 2015 int ret = 0; 2016 struct list_head *nce_head; 2017 2018 nce_head = radix_tree_lookup(&sctx->name_cache, 2019 (unsigned long)nce->ino); 2020 if (!nce_head) { 2021 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 2022 if (!nce_head) { 2023 kfree(nce); 2024 return -ENOMEM; 2025 } 2026 INIT_LIST_HEAD(nce_head); 2027 2028 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 2029 if (ret < 0) { 2030 kfree(nce_head); 2031 kfree(nce); 2032 return ret; 2033 } 2034 } 2035 list_add_tail(&nce->radix_list, nce_head); 2036 list_add_tail(&nce->list, &sctx->name_cache_list); 2037 sctx->name_cache_size++; 2038 2039 return ret; 2040 } 2041 2042 static void name_cache_delete(struct send_ctx *sctx, 2043 struct name_cache_entry *nce) 2044 { 2045 struct list_head *nce_head; 2046 2047 nce_head = radix_tree_lookup(&sctx->name_cache, 2048 (unsigned long)nce->ino); 2049 if (!nce_head) { 2050 btrfs_err(sctx->send_root->fs_info, 2051 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2052 nce->ino, sctx->name_cache_size); 2053 } 2054 2055 list_del(&nce->radix_list); 2056 list_del(&nce->list); 2057 sctx->name_cache_size--; 2058 2059 /* 2060 * We may not get to the final release of nce_head if the lookup fails 2061 */ 2062 if (nce_head && list_empty(nce_head)) { 2063 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2064 kfree(nce_head); 2065 } 2066 } 2067 2068 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2069 u64 ino, u64 gen) 2070 { 2071 struct list_head *nce_head; 2072 struct name_cache_entry *cur; 2073 2074 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2075 if (!nce_head) 2076 return NULL; 2077 2078 list_for_each_entry(cur, nce_head, radix_list) { 2079 if (cur->ino == ino && cur->gen == gen) 2080 return cur; 2081 } 2082 return NULL; 2083 } 2084 2085 /* 2086 * Removes the entry from the list and adds it back to the end. This marks the 2087 * entry as recently used so that name_cache_clean_unused does not remove it. 2088 */ 2089 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 2090 { 2091 list_del(&nce->list); 2092 list_add_tail(&nce->list, &sctx->name_cache_list); 2093 } 2094 2095 /* 2096 * Remove some entries from the beginning of name_cache_list. 2097 */ 2098 static void name_cache_clean_unused(struct send_ctx *sctx) 2099 { 2100 struct name_cache_entry *nce; 2101 2102 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2103 return; 2104 2105 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2106 nce = list_entry(sctx->name_cache_list.next, 2107 struct name_cache_entry, list); 2108 name_cache_delete(sctx, nce); 2109 kfree(nce); 2110 } 2111 } 2112 2113 static void name_cache_free(struct send_ctx *sctx) 2114 { 2115 struct name_cache_entry *nce; 2116 2117 while (!list_empty(&sctx->name_cache_list)) { 2118 nce = list_entry(sctx->name_cache_list.next, 2119 struct name_cache_entry, list); 2120 name_cache_delete(sctx, nce); 2121 kfree(nce); 2122 } 2123 } 2124 2125 /* 2126 * Used by get_cur_path for each ref up to the root. 2127 * Returns 0 if it succeeded. 2128 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2129 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2130 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2131 * Returns <0 in case of error. 2132 */ 2133 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2134 u64 ino, u64 gen, 2135 u64 *parent_ino, 2136 u64 *parent_gen, 2137 struct fs_path *dest) 2138 { 2139 int ret; 2140 int nce_ret; 2141 struct name_cache_entry *nce = NULL; 2142 2143 /* 2144 * First check if we already did a call to this function with the same 2145 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2146 * return the cached result. 2147 */ 2148 nce = name_cache_search(sctx, ino, gen); 2149 if (nce) { 2150 if (ino < sctx->send_progress && nce->need_later_update) { 2151 name_cache_delete(sctx, nce); 2152 kfree(nce); 2153 nce = NULL; 2154 } else { 2155 name_cache_used(sctx, nce); 2156 *parent_ino = nce->parent_ino; 2157 *parent_gen = nce->parent_gen; 2158 ret = fs_path_add(dest, nce->name, nce->name_len); 2159 if (ret < 0) 2160 goto out; 2161 ret = nce->ret; 2162 goto out; 2163 } 2164 } 2165 2166 /* 2167 * If the inode is not existent yet, add the orphan name and return 1. 2168 * This should only happen for the parent dir that we determine in 2169 * __record_new_ref 2170 */ 2171 ret = is_inode_existent(sctx, ino, gen); 2172 if (ret < 0) 2173 goto out; 2174 2175 if (!ret) { 2176 ret = gen_unique_name(sctx, ino, gen, dest); 2177 if (ret < 0) 2178 goto out; 2179 ret = 1; 2180 goto out_cache; 2181 } 2182 2183 /* 2184 * Depending on whether the inode was already processed or not, use 2185 * send_root or parent_root for ref lookup. 2186 */ 2187 if (ino < sctx->send_progress) 2188 ret = get_first_ref(sctx->send_root, ino, 2189 parent_ino, parent_gen, dest); 2190 else 2191 ret = get_first_ref(sctx->parent_root, ino, 2192 parent_ino, parent_gen, dest); 2193 if (ret < 0) 2194 goto out; 2195 2196 /* 2197 * Check if the ref was overwritten by an inode's ref that was processed 2198 * earlier. If yes, treat as orphan and return 1. 2199 */ 2200 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2201 dest->start, dest->end - dest->start); 2202 if (ret < 0) 2203 goto out; 2204 if (ret) { 2205 fs_path_reset(dest); 2206 ret = gen_unique_name(sctx, ino, gen, dest); 2207 if (ret < 0) 2208 goto out; 2209 ret = 1; 2210 } 2211 2212 out_cache: 2213 /* 2214 * Store the result of the lookup in the name cache. 2215 */ 2216 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2217 if (!nce) { 2218 ret = -ENOMEM; 2219 goto out; 2220 } 2221 2222 nce->ino = ino; 2223 nce->gen = gen; 2224 nce->parent_ino = *parent_ino; 2225 nce->parent_gen = *parent_gen; 2226 nce->name_len = fs_path_len(dest); 2227 nce->ret = ret; 2228 strcpy(nce->name, dest->start); 2229 2230 if (ino < sctx->send_progress) 2231 nce->need_later_update = 0; 2232 else 2233 nce->need_later_update = 1; 2234 2235 nce_ret = name_cache_insert(sctx, nce); 2236 if (nce_ret < 0) 2237 ret = nce_ret; 2238 name_cache_clean_unused(sctx); 2239 2240 out: 2241 return ret; 2242 } 2243 2244 /* 2245 * Magic happens here. This function returns the first ref to an inode as it 2246 * would look like while receiving the stream at this point in time. 2247 * We walk the path up to the root. For every inode in between, we check if it 2248 * was already processed/sent. If yes, we continue with the parent as found 2249 * in send_root. If not, we continue with the parent as found in parent_root. 2250 * If we encounter an inode that was deleted at this point in time, we use the 2251 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2252 * that were not created yet and overwritten inodes/refs. 2253 * 2254 * When do we have have orphan inodes: 2255 * 1. When an inode is freshly created and thus no valid refs are available yet 2256 * 2. When a directory lost all it's refs (deleted) but still has dir items 2257 * inside which were not processed yet (pending for move/delete). If anyone 2258 * tried to get the path to the dir items, it would get a path inside that 2259 * orphan directory. 2260 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2261 * of an unprocessed inode. If in that case the first ref would be 2262 * overwritten, the overwritten inode gets "orphanized". Later when we 2263 * process this overwritten inode, it is restored at a new place by moving 2264 * the orphan inode. 2265 * 2266 * sctx->send_progress tells this function at which point in time receiving 2267 * would be. 2268 */ 2269 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2270 struct fs_path *dest) 2271 { 2272 int ret = 0; 2273 struct fs_path *name = NULL; 2274 u64 parent_inode = 0; 2275 u64 parent_gen = 0; 2276 int stop = 0; 2277 2278 name = fs_path_alloc(); 2279 if (!name) { 2280 ret = -ENOMEM; 2281 goto out; 2282 } 2283 2284 dest->reversed = 1; 2285 fs_path_reset(dest); 2286 2287 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2288 struct waiting_dir_move *wdm; 2289 2290 fs_path_reset(name); 2291 2292 if (is_waiting_for_rm(sctx, ino)) { 2293 ret = gen_unique_name(sctx, ino, gen, name); 2294 if (ret < 0) 2295 goto out; 2296 ret = fs_path_add_path(dest, name); 2297 break; 2298 } 2299 2300 wdm = get_waiting_dir_move(sctx, ino); 2301 if (wdm && wdm->orphanized) { 2302 ret = gen_unique_name(sctx, ino, gen, name); 2303 stop = 1; 2304 } else if (wdm) { 2305 ret = get_first_ref(sctx->parent_root, ino, 2306 &parent_inode, &parent_gen, name); 2307 } else { 2308 ret = __get_cur_name_and_parent(sctx, ino, gen, 2309 &parent_inode, 2310 &parent_gen, name); 2311 if (ret) 2312 stop = 1; 2313 } 2314 2315 if (ret < 0) 2316 goto out; 2317 2318 ret = fs_path_add_path(dest, name); 2319 if (ret < 0) 2320 goto out; 2321 2322 ino = parent_inode; 2323 gen = parent_gen; 2324 } 2325 2326 out: 2327 fs_path_free(name); 2328 if (!ret) 2329 fs_path_unreverse(dest); 2330 return ret; 2331 } 2332 2333 /* 2334 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2335 */ 2336 static int send_subvol_begin(struct send_ctx *sctx) 2337 { 2338 int ret; 2339 struct btrfs_root *send_root = sctx->send_root; 2340 struct btrfs_root *parent_root = sctx->parent_root; 2341 struct btrfs_path *path; 2342 struct btrfs_key key; 2343 struct btrfs_root_ref *ref; 2344 struct extent_buffer *leaf; 2345 char *name = NULL; 2346 int namelen; 2347 2348 path = btrfs_alloc_path(); 2349 if (!path) 2350 return -ENOMEM; 2351 2352 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2353 if (!name) { 2354 btrfs_free_path(path); 2355 return -ENOMEM; 2356 } 2357 2358 key.objectid = send_root->objectid; 2359 key.type = BTRFS_ROOT_BACKREF_KEY; 2360 key.offset = 0; 2361 2362 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2363 &key, path, 1, 0); 2364 if (ret < 0) 2365 goto out; 2366 if (ret) { 2367 ret = -ENOENT; 2368 goto out; 2369 } 2370 2371 leaf = path->nodes[0]; 2372 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2373 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2374 key.objectid != send_root->objectid) { 2375 ret = -ENOENT; 2376 goto out; 2377 } 2378 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2379 namelen = btrfs_root_ref_name_len(leaf, ref); 2380 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2381 btrfs_release_path(path); 2382 2383 if (parent_root) { 2384 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2385 if (ret < 0) 2386 goto out; 2387 } else { 2388 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2389 if (ret < 0) 2390 goto out; 2391 } 2392 2393 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2394 2395 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2396 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2397 sctx->send_root->root_item.received_uuid); 2398 else 2399 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2400 sctx->send_root->root_item.uuid); 2401 2402 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2403 le64_to_cpu(sctx->send_root->root_item.ctransid)); 2404 if (parent_root) { 2405 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2406 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2407 parent_root->root_item.received_uuid); 2408 else 2409 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2410 parent_root->root_item.uuid); 2411 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2412 le64_to_cpu(sctx->parent_root->root_item.ctransid)); 2413 } 2414 2415 ret = send_cmd(sctx); 2416 2417 tlv_put_failure: 2418 out: 2419 btrfs_free_path(path); 2420 kfree(name); 2421 return ret; 2422 } 2423 2424 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2425 { 2426 int ret = 0; 2427 struct fs_path *p; 2428 2429 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size); 2430 2431 p = fs_path_alloc(); 2432 if (!p) 2433 return -ENOMEM; 2434 2435 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2436 if (ret < 0) 2437 goto out; 2438 2439 ret = get_cur_path(sctx, ino, gen, p); 2440 if (ret < 0) 2441 goto out; 2442 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2443 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2444 2445 ret = send_cmd(sctx); 2446 2447 tlv_put_failure: 2448 out: 2449 fs_path_free(p); 2450 return ret; 2451 } 2452 2453 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2454 { 2455 int ret = 0; 2456 struct fs_path *p; 2457 2458 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode); 2459 2460 p = fs_path_alloc(); 2461 if (!p) 2462 return -ENOMEM; 2463 2464 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2465 if (ret < 0) 2466 goto out; 2467 2468 ret = get_cur_path(sctx, ino, gen, p); 2469 if (ret < 0) 2470 goto out; 2471 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2472 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2473 2474 ret = send_cmd(sctx); 2475 2476 tlv_put_failure: 2477 out: 2478 fs_path_free(p); 2479 return ret; 2480 } 2481 2482 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2483 { 2484 int ret = 0; 2485 struct fs_path *p; 2486 2487 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid); 2488 2489 p = fs_path_alloc(); 2490 if (!p) 2491 return -ENOMEM; 2492 2493 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2494 if (ret < 0) 2495 goto out; 2496 2497 ret = get_cur_path(sctx, ino, gen, p); 2498 if (ret < 0) 2499 goto out; 2500 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2501 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2502 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2503 2504 ret = send_cmd(sctx); 2505 2506 tlv_put_failure: 2507 out: 2508 fs_path_free(p); 2509 return ret; 2510 } 2511 2512 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2513 { 2514 int ret = 0; 2515 struct fs_path *p = NULL; 2516 struct btrfs_inode_item *ii; 2517 struct btrfs_path *path = NULL; 2518 struct extent_buffer *eb; 2519 struct btrfs_key key; 2520 int slot; 2521 2522 verbose_printk("btrfs: send_utimes %llu\n", ino); 2523 2524 p = fs_path_alloc(); 2525 if (!p) 2526 return -ENOMEM; 2527 2528 path = alloc_path_for_send(); 2529 if (!path) { 2530 ret = -ENOMEM; 2531 goto out; 2532 } 2533 2534 key.objectid = ino; 2535 key.type = BTRFS_INODE_ITEM_KEY; 2536 key.offset = 0; 2537 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2538 if (ret > 0) 2539 ret = -ENOENT; 2540 if (ret < 0) 2541 goto out; 2542 2543 eb = path->nodes[0]; 2544 slot = path->slots[0]; 2545 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2546 2547 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2548 if (ret < 0) 2549 goto out; 2550 2551 ret = get_cur_path(sctx, ino, gen, p); 2552 if (ret < 0) 2553 goto out; 2554 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2555 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2556 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2557 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2558 /* TODO Add otime support when the otime patches get into upstream */ 2559 2560 ret = send_cmd(sctx); 2561 2562 tlv_put_failure: 2563 out: 2564 fs_path_free(p); 2565 btrfs_free_path(path); 2566 return ret; 2567 } 2568 2569 /* 2570 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2571 * a valid path yet because we did not process the refs yet. So, the inode 2572 * is created as orphan. 2573 */ 2574 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2575 { 2576 int ret = 0; 2577 struct fs_path *p; 2578 int cmd; 2579 u64 gen; 2580 u64 mode; 2581 u64 rdev; 2582 2583 verbose_printk("btrfs: send_create_inode %llu\n", ino); 2584 2585 p = fs_path_alloc(); 2586 if (!p) 2587 return -ENOMEM; 2588 2589 if (ino != sctx->cur_ino) { 2590 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2591 NULL, NULL, &rdev); 2592 if (ret < 0) 2593 goto out; 2594 } else { 2595 gen = sctx->cur_inode_gen; 2596 mode = sctx->cur_inode_mode; 2597 rdev = sctx->cur_inode_rdev; 2598 } 2599 2600 if (S_ISREG(mode)) { 2601 cmd = BTRFS_SEND_C_MKFILE; 2602 } else if (S_ISDIR(mode)) { 2603 cmd = BTRFS_SEND_C_MKDIR; 2604 } else if (S_ISLNK(mode)) { 2605 cmd = BTRFS_SEND_C_SYMLINK; 2606 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2607 cmd = BTRFS_SEND_C_MKNOD; 2608 } else if (S_ISFIFO(mode)) { 2609 cmd = BTRFS_SEND_C_MKFIFO; 2610 } else if (S_ISSOCK(mode)) { 2611 cmd = BTRFS_SEND_C_MKSOCK; 2612 } else { 2613 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2614 (int)(mode & S_IFMT)); 2615 ret = -ENOTSUPP; 2616 goto out; 2617 } 2618 2619 ret = begin_cmd(sctx, cmd); 2620 if (ret < 0) 2621 goto out; 2622 2623 ret = gen_unique_name(sctx, ino, gen, p); 2624 if (ret < 0) 2625 goto out; 2626 2627 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2628 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2629 2630 if (S_ISLNK(mode)) { 2631 fs_path_reset(p); 2632 ret = read_symlink(sctx->send_root, ino, p); 2633 if (ret < 0) 2634 goto out; 2635 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2636 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2637 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2638 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2639 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2640 } 2641 2642 ret = send_cmd(sctx); 2643 if (ret < 0) 2644 goto out; 2645 2646 2647 tlv_put_failure: 2648 out: 2649 fs_path_free(p); 2650 return ret; 2651 } 2652 2653 /* 2654 * We need some special handling for inodes that get processed before the parent 2655 * directory got created. See process_recorded_refs for details. 2656 * This function does the check if we already created the dir out of order. 2657 */ 2658 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2659 { 2660 int ret = 0; 2661 struct btrfs_path *path = NULL; 2662 struct btrfs_key key; 2663 struct btrfs_key found_key; 2664 struct btrfs_key di_key; 2665 struct extent_buffer *eb; 2666 struct btrfs_dir_item *di; 2667 int slot; 2668 2669 path = alloc_path_for_send(); 2670 if (!path) { 2671 ret = -ENOMEM; 2672 goto out; 2673 } 2674 2675 key.objectid = dir; 2676 key.type = BTRFS_DIR_INDEX_KEY; 2677 key.offset = 0; 2678 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2679 if (ret < 0) 2680 goto out; 2681 2682 while (1) { 2683 eb = path->nodes[0]; 2684 slot = path->slots[0]; 2685 if (slot >= btrfs_header_nritems(eb)) { 2686 ret = btrfs_next_leaf(sctx->send_root, path); 2687 if (ret < 0) { 2688 goto out; 2689 } else if (ret > 0) { 2690 ret = 0; 2691 break; 2692 } 2693 continue; 2694 } 2695 2696 btrfs_item_key_to_cpu(eb, &found_key, slot); 2697 if (found_key.objectid != key.objectid || 2698 found_key.type != key.type) { 2699 ret = 0; 2700 goto out; 2701 } 2702 2703 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2704 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2705 2706 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2707 di_key.objectid < sctx->send_progress) { 2708 ret = 1; 2709 goto out; 2710 } 2711 2712 path->slots[0]++; 2713 } 2714 2715 out: 2716 btrfs_free_path(path); 2717 return ret; 2718 } 2719 2720 /* 2721 * Only creates the inode if it is: 2722 * 1. Not a directory 2723 * 2. Or a directory which was not created already due to out of order 2724 * directories. See did_create_dir and process_recorded_refs for details. 2725 */ 2726 static int send_create_inode_if_needed(struct send_ctx *sctx) 2727 { 2728 int ret; 2729 2730 if (S_ISDIR(sctx->cur_inode_mode)) { 2731 ret = did_create_dir(sctx, sctx->cur_ino); 2732 if (ret < 0) 2733 goto out; 2734 if (ret) { 2735 ret = 0; 2736 goto out; 2737 } 2738 } 2739 2740 ret = send_create_inode(sctx, sctx->cur_ino); 2741 if (ret < 0) 2742 goto out; 2743 2744 out: 2745 return ret; 2746 } 2747 2748 struct recorded_ref { 2749 struct list_head list; 2750 char *dir_path; 2751 char *name; 2752 struct fs_path *full_path; 2753 u64 dir; 2754 u64 dir_gen; 2755 int dir_path_len; 2756 int name_len; 2757 }; 2758 2759 /* 2760 * We need to process new refs before deleted refs, but compare_tree gives us 2761 * everything mixed. So we first record all refs and later process them. 2762 * This function is a helper to record one ref. 2763 */ 2764 static int __record_ref(struct list_head *head, u64 dir, 2765 u64 dir_gen, struct fs_path *path) 2766 { 2767 struct recorded_ref *ref; 2768 2769 ref = kmalloc(sizeof(*ref), GFP_KERNEL); 2770 if (!ref) 2771 return -ENOMEM; 2772 2773 ref->dir = dir; 2774 ref->dir_gen = dir_gen; 2775 ref->full_path = path; 2776 2777 ref->name = (char *)kbasename(ref->full_path->start); 2778 ref->name_len = ref->full_path->end - ref->name; 2779 ref->dir_path = ref->full_path->start; 2780 if (ref->name == ref->full_path->start) 2781 ref->dir_path_len = 0; 2782 else 2783 ref->dir_path_len = ref->full_path->end - 2784 ref->full_path->start - 1 - ref->name_len; 2785 2786 list_add_tail(&ref->list, head); 2787 return 0; 2788 } 2789 2790 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2791 { 2792 struct recorded_ref *new; 2793 2794 new = kmalloc(sizeof(*ref), GFP_KERNEL); 2795 if (!new) 2796 return -ENOMEM; 2797 2798 new->dir = ref->dir; 2799 new->dir_gen = ref->dir_gen; 2800 new->full_path = NULL; 2801 INIT_LIST_HEAD(&new->list); 2802 list_add_tail(&new->list, list); 2803 return 0; 2804 } 2805 2806 static void __free_recorded_refs(struct list_head *head) 2807 { 2808 struct recorded_ref *cur; 2809 2810 while (!list_empty(head)) { 2811 cur = list_entry(head->next, struct recorded_ref, list); 2812 fs_path_free(cur->full_path); 2813 list_del(&cur->list); 2814 kfree(cur); 2815 } 2816 } 2817 2818 static void free_recorded_refs(struct send_ctx *sctx) 2819 { 2820 __free_recorded_refs(&sctx->new_refs); 2821 __free_recorded_refs(&sctx->deleted_refs); 2822 } 2823 2824 /* 2825 * Renames/moves a file/dir to its orphan name. Used when the first 2826 * ref of an unprocessed inode gets overwritten and for all non empty 2827 * directories. 2828 */ 2829 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2830 struct fs_path *path) 2831 { 2832 int ret; 2833 struct fs_path *orphan; 2834 2835 orphan = fs_path_alloc(); 2836 if (!orphan) 2837 return -ENOMEM; 2838 2839 ret = gen_unique_name(sctx, ino, gen, orphan); 2840 if (ret < 0) 2841 goto out; 2842 2843 ret = send_rename(sctx, path, orphan); 2844 2845 out: 2846 fs_path_free(orphan); 2847 return ret; 2848 } 2849 2850 static struct orphan_dir_info * 2851 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2852 { 2853 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2854 struct rb_node *parent = NULL; 2855 struct orphan_dir_info *entry, *odi; 2856 2857 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 2858 if (!odi) 2859 return ERR_PTR(-ENOMEM); 2860 odi->ino = dir_ino; 2861 odi->gen = 0; 2862 2863 while (*p) { 2864 parent = *p; 2865 entry = rb_entry(parent, struct orphan_dir_info, node); 2866 if (dir_ino < entry->ino) { 2867 p = &(*p)->rb_left; 2868 } else if (dir_ino > entry->ino) { 2869 p = &(*p)->rb_right; 2870 } else { 2871 kfree(odi); 2872 return entry; 2873 } 2874 } 2875 2876 rb_link_node(&odi->node, parent, p); 2877 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2878 return odi; 2879 } 2880 2881 static struct orphan_dir_info * 2882 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2883 { 2884 struct rb_node *n = sctx->orphan_dirs.rb_node; 2885 struct orphan_dir_info *entry; 2886 2887 while (n) { 2888 entry = rb_entry(n, struct orphan_dir_info, node); 2889 if (dir_ino < entry->ino) 2890 n = n->rb_left; 2891 else if (dir_ino > entry->ino) 2892 n = n->rb_right; 2893 else 2894 return entry; 2895 } 2896 return NULL; 2897 } 2898 2899 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino) 2900 { 2901 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino); 2902 2903 return odi != NULL; 2904 } 2905 2906 static void free_orphan_dir_info(struct send_ctx *sctx, 2907 struct orphan_dir_info *odi) 2908 { 2909 if (!odi) 2910 return; 2911 rb_erase(&odi->node, &sctx->orphan_dirs); 2912 kfree(odi); 2913 } 2914 2915 /* 2916 * Returns 1 if a directory can be removed at this point in time. 2917 * We check this by iterating all dir items and checking if the inode behind 2918 * the dir item was already processed. 2919 */ 2920 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2921 u64 send_progress) 2922 { 2923 int ret = 0; 2924 struct btrfs_root *root = sctx->parent_root; 2925 struct btrfs_path *path; 2926 struct btrfs_key key; 2927 struct btrfs_key found_key; 2928 struct btrfs_key loc; 2929 struct btrfs_dir_item *di; 2930 2931 /* 2932 * Don't try to rmdir the top/root subvolume dir. 2933 */ 2934 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2935 return 0; 2936 2937 path = alloc_path_for_send(); 2938 if (!path) 2939 return -ENOMEM; 2940 2941 key.objectid = dir; 2942 key.type = BTRFS_DIR_INDEX_KEY; 2943 key.offset = 0; 2944 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2945 if (ret < 0) 2946 goto out; 2947 2948 while (1) { 2949 struct waiting_dir_move *dm; 2950 2951 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2952 ret = btrfs_next_leaf(root, path); 2953 if (ret < 0) 2954 goto out; 2955 else if (ret > 0) 2956 break; 2957 continue; 2958 } 2959 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2960 path->slots[0]); 2961 if (found_key.objectid != key.objectid || 2962 found_key.type != key.type) 2963 break; 2964 2965 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2966 struct btrfs_dir_item); 2967 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2968 2969 dm = get_waiting_dir_move(sctx, loc.objectid); 2970 if (dm) { 2971 struct orphan_dir_info *odi; 2972 2973 odi = add_orphan_dir_info(sctx, dir); 2974 if (IS_ERR(odi)) { 2975 ret = PTR_ERR(odi); 2976 goto out; 2977 } 2978 odi->gen = dir_gen; 2979 dm->rmdir_ino = dir; 2980 ret = 0; 2981 goto out; 2982 } 2983 2984 if (loc.objectid > send_progress) { 2985 struct orphan_dir_info *odi; 2986 2987 odi = get_orphan_dir_info(sctx, dir); 2988 free_orphan_dir_info(sctx, odi); 2989 ret = 0; 2990 goto out; 2991 } 2992 2993 path->slots[0]++; 2994 } 2995 2996 ret = 1; 2997 2998 out: 2999 btrfs_free_path(path); 3000 return ret; 3001 } 3002 3003 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3004 { 3005 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3006 3007 return entry != NULL; 3008 } 3009 3010 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3011 { 3012 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3013 struct rb_node *parent = NULL; 3014 struct waiting_dir_move *entry, *dm; 3015 3016 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3017 if (!dm) 3018 return -ENOMEM; 3019 dm->ino = ino; 3020 dm->rmdir_ino = 0; 3021 dm->orphanized = orphanized; 3022 3023 while (*p) { 3024 parent = *p; 3025 entry = rb_entry(parent, struct waiting_dir_move, node); 3026 if (ino < entry->ino) { 3027 p = &(*p)->rb_left; 3028 } else if (ino > entry->ino) { 3029 p = &(*p)->rb_right; 3030 } else { 3031 kfree(dm); 3032 return -EEXIST; 3033 } 3034 } 3035 3036 rb_link_node(&dm->node, parent, p); 3037 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3038 return 0; 3039 } 3040 3041 static struct waiting_dir_move * 3042 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3043 { 3044 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3045 struct waiting_dir_move *entry; 3046 3047 while (n) { 3048 entry = rb_entry(n, struct waiting_dir_move, node); 3049 if (ino < entry->ino) 3050 n = n->rb_left; 3051 else if (ino > entry->ino) 3052 n = n->rb_right; 3053 else 3054 return entry; 3055 } 3056 return NULL; 3057 } 3058 3059 static void free_waiting_dir_move(struct send_ctx *sctx, 3060 struct waiting_dir_move *dm) 3061 { 3062 if (!dm) 3063 return; 3064 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3065 kfree(dm); 3066 } 3067 3068 static int add_pending_dir_move(struct send_ctx *sctx, 3069 u64 ino, 3070 u64 ino_gen, 3071 u64 parent_ino, 3072 struct list_head *new_refs, 3073 struct list_head *deleted_refs, 3074 const bool is_orphan) 3075 { 3076 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3077 struct rb_node *parent = NULL; 3078 struct pending_dir_move *entry = NULL, *pm; 3079 struct recorded_ref *cur; 3080 int exists = 0; 3081 int ret; 3082 3083 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3084 if (!pm) 3085 return -ENOMEM; 3086 pm->parent_ino = parent_ino; 3087 pm->ino = ino; 3088 pm->gen = ino_gen; 3089 INIT_LIST_HEAD(&pm->list); 3090 INIT_LIST_HEAD(&pm->update_refs); 3091 RB_CLEAR_NODE(&pm->node); 3092 3093 while (*p) { 3094 parent = *p; 3095 entry = rb_entry(parent, struct pending_dir_move, node); 3096 if (parent_ino < entry->parent_ino) { 3097 p = &(*p)->rb_left; 3098 } else if (parent_ino > entry->parent_ino) { 3099 p = &(*p)->rb_right; 3100 } else { 3101 exists = 1; 3102 break; 3103 } 3104 } 3105 3106 list_for_each_entry(cur, deleted_refs, list) { 3107 ret = dup_ref(cur, &pm->update_refs); 3108 if (ret < 0) 3109 goto out; 3110 } 3111 list_for_each_entry(cur, new_refs, list) { 3112 ret = dup_ref(cur, &pm->update_refs); 3113 if (ret < 0) 3114 goto out; 3115 } 3116 3117 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3118 if (ret) 3119 goto out; 3120 3121 if (exists) { 3122 list_add_tail(&pm->list, &entry->list); 3123 } else { 3124 rb_link_node(&pm->node, parent, p); 3125 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3126 } 3127 ret = 0; 3128 out: 3129 if (ret) { 3130 __free_recorded_refs(&pm->update_refs); 3131 kfree(pm); 3132 } 3133 return ret; 3134 } 3135 3136 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3137 u64 parent_ino) 3138 { 3139 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3140 struct pending_dir_move *entry; 3141 3142 while (n) { 3143 entry = rb_entry(n, struct pending_dir_move, node); 3144 if (parent_ino < entry->parent_ino) 3145 n = n->rb_left; 3146 else if (parent_ino > entry->parent_ino) 3147 n = n->rb_right; 3148 else 3149 return entry; 3150 } 3151 return NULL; 3152 } 3153 3154 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3155 u64 ino, u64 gen, u64 *ancestor_ino) 3156 { 3157 int ret = 0; 3158 u64 parent_inode = 0; 3159 u64 parent_gen = 0; 3160 u64 start_ino = ino; 3161 3162 *ancestor_ino = 0; 3163 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3164 fs_path_reset(name); 3165 3166 if (is_waiting_for_rm(sctx, ino)) 3167 break; 3168 if (is_waiting_for_move(sctx, ino)) { 3169 if (*ancestor_ino == 0) 3170 *ancestor_ino = ino; 3171 ret = get_first_ref(sctx->parent_root, ino, 3172 &parent_inode, &parent_gen, name); 3173 } else { 3174 ret = __get_cur_name_and_parent(sctx, ino, gen, 3175 &parent_inode, 3176 &parent_gen, name); 3177 if (ret > 0) { 3178 ret = 0; 3179 break; 3180 } 3181 } 3182 if (ret < 0) 3183 break; 3184 if (parent_inode == start_ino) { 3185 ret = 1; 3186 if (*ancestor_ino == 0) 3187 *ancestor_ino = ino; 3188 break; 3189 } 3190 ino = parent_inode; 3191 gen = parent_gen; 3192 } 3193 return ret; 3194 } 3195 3196 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3197 { 3198 struct fs_path *from_path = NULL; 3199 struct fs_path *to_path = NULL; 3200 struct fs_path *name = NULL; 3201 u64 orig_progress = sctx->send_progress; 3202 struct recorded_ref *cur; 3203 u64 parent_ino, parent_gen; 3204 struct waiting_dir_move *dm = NULL; 3205 u64 rmdir_ino = 0; 3206 u64 ancestor; 3207 bool is_orphan; 3208 int ret; 3209 3210 name = fs_path_alloc(); 3211 from_path = fs_path_alloc(); 3212 if (!name || !from_path) { 3213 ret = -ENOMEM; 3214 goto out; 3215 } 3216 3217 dm = get_waiting_dir_move(sctx, pm->ino); 3218 ASSERT(dm); 3219 rmdir_ino = dm->rmdir_ino; 3220 is_orphan = dm->orphanized; 3221 free_waiting_dir_move(sctx, dm); 3222 3223 if (is_orphan) { 3224 ret = gen_unique_name(sctx, pm->ino, 3225 pm->gen, from_path); 3226 } else { 3227 ret = get_first_ref(sctx->parent_root, pm->ino, 3228 &parent_ino, &parent_gen, name); 3229 if (ret < 0) 3230 goto out; 3231 ret = get_cur_path(sctx, parent_ino, parent_gen, 3232 from_path); 3233 if (ret < 0) 3234 goto out; 3235 ret = fs_path_add_path(from_path, name); 3236 } 3237 if (ret < 0) 3238 goto out; 3239 3240 sctx->send_progress = sctx->cur_ino + 1; 3241 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3242 if (ret < 0) 3243 goto out; 3244 if (ret) { 3245 LIST_HEAD(deleted_refs); 3246 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3247 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3248 &pm->update_refs, &deleted_refs, 3249 is_orphan); 3250 if (ret < 0) 3251 goto out; 3252 if (rmdir_ino) { 3253 dm = get_waiting_dir_move(sctx, pm->ino); 3254 ASSERT(dm); 3255 dm->rmdir_ino = rmdir_ino; 3256 } 3257 goto out; 3258 } 3259 fs_path_reset(name); 3260 to_path = name; 3261 name = NULL; 3262 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3263 if (ret < 0) 3264 goto out; 3265 3266 ret = send_rename(sctx, from_path, to_path); 3267 if (ret < 0) 3268 goto out; 3269 3270 if (rmdir_ino) { 3271 struct orphan_dir_info *odi; 3272 3273 odi = get_orphan_dir_info(sctx, rmdir_ino); 3274 if (!odi) { 3275 /* already deleted */ 3276 goto finish; 3277 } 3278 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino); 3279 if (ret < 0) 3280 goto out; 3281 if (!ret) 3282 goto finish; 3283 3284 name = fs_path_alloc(); 3285 if (!name) { 3286 ret = -ENOMEM; 3287 goto out; 3288 } 3289 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name); 3290 if (ret < 0) 3291 goto out; 3292 ret = send_rmdir(sctx, name); 3293 if (ret < 0) 3294 goto out; 3295 free_orphan_dir_info(sctx, odi); 3296 } 3297 3298 finish: 3299 ret = send_utimes(sctx, pm->ino, pm->gen); 3300 if (ret < 0) 3301 goto out; 3302 3303 /* 3304 * After rename/move, need to update the utimes of both new parent(s) 3305 * and old parent(s). 3306 */ 3307 list_for_each_entry(cur, &pm->update_refs, list) { 3308 /* 3309 * The parent inode might have been deleted in the send snapshot 3310 */ 3311 ret = get_inode_info(sctx->send_root, cur->dir, NULL, 3312 NULL, NULL, NULL, NULL, NULL); 3313 if (ret == -ENOENT) { 3314 ret = 0; 3315 continue; 3316 } 3317 if (ret < 0) 3318 goto out; 3319 3320 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3321 if (ret < 0) 3322 goto out; 3323 } 3324 3325 out: 3326 fs_path_free(name); 3327 fs_path_free(from_path); 3328 fs_path_free(to_path); 3329 sctx->send_progress = orig_progress; 3330 3331 return ret; 3332 } 3333 3334 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3335 { 3336 if (!list_empty(&m->list)) 3337 list_del(&m->list); 3338 if (!RB_EMPTY_NODE(&m->node)) 3339 rb_erase(&m->node, &sctx->pending_dir_moves); 3340 __free_recorded_refs(&m->update_refs); 3341 kfree(m); 3342 } 3343 3344 static void tail_append_pending_moves(struct pending_dir_move *moves, 3345 struct list_head *stack) 3346 { 3347 if (list_empty(&moves->list)) { 3348 list_add_tail(&moves->list, stack); 3349 } else { 3350 LIST_HEAD(list); 3351 list_splice_init(&moves->list, &list); 3352 list_add_tail(&moves->list, stack); 3353 list_splice_tail(&list, stack); 3354 } 3355 } 3356 3357 static int apply_children_dir_moves(struct send_ctx *sctx) 3358 { 3359 struct pending_dir_move *pm; 3360 struct list_head stack; 3361 u64 parent_ino = sctx->cur_ino; 3362 int ret = 0; 3363 3364 pm = get_pending_dir_moves(sctx, parent_ino); 3365 if (!pm) 3366 return 0; 3367 3368 INIT_LIST_HEAD(&stack); 3369 tail_append_pending_moves(pm, &stack); 3370 3371 while (!list_empty(&stack)) { 3372 pm = list_first_entry(&stack, struct pending_dir_move, list); 3373 parent_ino = pm->ino; 3374 ret = apply_dir_move(sctx, pm); 3375 free_pending_move(sctx, pm); 3376 if (ret) 3377 goto out; 3378 pm = get_pending_dir_moves(sctx, parent_ino); 3379 if (pm) 3380 tail_append_pending_moves(pm, &stack); 3381 } 3382 return 0; 3383 3384 out: 3385 while (!list_empty(&stack)) { 3386 pm = list_first_entry(&stack, struct pending_dir_move, list); 3387 free_pending_move(sctx, pm); 3388 } 3389 return ret; 3390 } 3391 3392 /* 3393 * We might need to delay a directory rename even when no ancestor directory 3394 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3395 * renamed. This happens when we rename a directory to the old name (the name 3396 * in the parent root) of some other unrelated directory that got its rename 3397 * delayed due to some ancestor with higher number that got renamed. 3398 * 3399 * Example: 3400 * 3401 * Parent snapshot: 3402 * . (ino 256) 3403 * |---- a/ (ino 257) 3404 * | |---- file (ino 260) 3405 * | 3406 * |---- b/ (ino 258) 3407 * |---- c/ (ino 259) 3408 * 3409 * Send snapshot: 3410 * . (ino 256) 3411 * |---- a/ (ino 258) 3412 * |---- x/ (ino 259) 3413 * |---- y/ (ino 257) 3414 * |----- file (ino 260) 3415 * 3416 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3417 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3418 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3419 * must issue is: 3420 * 3421 * 1 - rename 259 from 'c' to 'x' 3422 * 2 - rename 257 from 'a' to 'x/y' 3423 * 3 - rename 258 from 'b' to 'a' 3424 * 3425 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3426 * be done right away and < 0 on error. 3427 */ 3428 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3429 struct recorded_ref *parent_ref, 3430 const bool is_orphan) 3431 { 3432 struct btrfs_path *path; 3433 struct btrfs_key key; 3434 struct btrfs_key di_key; 3435 struct btrfs_dir_item *di; 3436 u64 left_gen; 3437 u64 right_gen; 3438 int ret = 0; 3439 struct waiting_dir_move *wdm; 3440 3441 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3442 return 0; 3443 3444 path = alloc_path_for_send(); 3445 if (!path) 3446 return -ENOMEM; 3447 3448 key.objectid = parent_ref->dir; 3449 key.type = BTRFS_DIR_ITEM_KEY; 3450 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3451 3452 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3453 if (ret < 0) { 3454 goto out; 3455 } else if (ret > 0) { 3456 ret = 0; 3457 goto out; 3458 } 3459 3460 di = btrfs_match_dir_item_name(sctx->parent_root, path, 3461 parent_ref->name, parent_ref->name_len); 3462 if (!di) { 3463 ret = 0; 3464 goto out; 3465 } 3466 /* 3467 * di_key.objectid has the number of the inode that has a dentry in the 3468 * parent directory with the same name that sctx->cur_ino is being 3469 * renamed to. We need to check if that inode is in the send root as 3470 * well and if it is currently marked as an inode with a pending rename, 3471 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3472 * that it happens after that other inode is renamed. 3473 */ 3474 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3475 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3476 ret = 0; 3477 goto out; 3478 } 3479 3480 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3481 &left_gen, NULL, NULL, NULL, NULL); 3482 if (ret < 0) 3483 goto out; 3484 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3485 &right_gen, NULL, NULL, NULL, NULL); 3486 if (ret < 0) { 3487 if (ret == -ENOENT) 3488 ret = 0; 3489 goto out; 3490 } 3491 3492 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3493 if (right_gen != left_gen) { 3494 ret = 0; 3495 goto out; 3496 } 3497 3498 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3499 if (wdm && !wdm->orphanized) { 3500 ret = add_pending_dir_move(sctx, 3501 sctx->cur_ino, 3502 sctx->cur_inode_gen, 3503 di_key.objectid, 3504 &sctx->new_refs, 3505 &sctx->deleted_refs, 3506 is_orphan); 3507 if (!ret) 3508 ret = 1; 3509 } 3510 out: 3511 btrfs_free_path(path); 3512 return ret; 3513 } 3514 3515 /* 3516 * Check if ino ino1 is an ancestor of inode ino2 in the given root. 3517 * Return 1 if true, 0 if false and < 0 on error. 3518 */ 3519 static int is_ancestor(struct btrfs_root *root, 3520 const u64 ino1, 3521 const u64 ino1_gen, 3522 const u64 ino2, 3523 struct fs_path *fs_path) 3524 { 3525 u64 ino = ino2; 3526 3527 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3528 int ret; 3529 u64 parent; 3530 u64 parent_gen; 3531 3532 fs_path_reset(fs_path); 3533 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3534 if (ret < 0) { 3535 if (ret == -ENOENT && ino == ino2) 3536 ret = 0; 3537 return ret; 3538 } 3539 if (parent == ino1) 3540 return parent_gen == ino1_gen ? 1 : 0; 3541 ino = parent; 3542 } 3543 return 0; 3544 } 3545 3546 static int wait_for_parent_move(struct send_ctx *sctx, 3547 struct recorded_ref *parent_ref, 3548 const bool is_orphan) 3549 { 3550 int ret = 0; 3551 u64 ino = parent_ref->dir; 3552 u64 parent_ino_before, parent_ino_after; 3553 struct fs_path *path_before = NULL; 3554 struct fs_path *path_after = NULL; 3555 int len1, len2; 3556 3557 path_after = fs_path_alloc(); 3558 path_before = fs_path_alloc(); 3559 if (!path_after || !path_before) { 3560 ret = -ENOMEM; 3561 goto out; 3562 } 3563 3564 /* 3565 * Our current directory inode may not yet be renamed/moved because some 3566 * ancestor (immediate or not) has to be renamed/moved first. So find if 3567 * such ancestor exists and make sure our own rename/move happens after 3568 * that ancestor is processed to avoid path build infinite loops (done 3569 * at get_cur_path()). 3570 */ 3571 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3572 if (is_waiting_for_move(sctx, ino)) { 3573 /* 3574 * If the current inode is an ancestor of ino in the 3575 * parent root, we need to delay the rename of the 3576 * current inode, otherwise don't delayed the rename 3577 * because we can end up with a circular dependency 3578 * of renames, resulting in some directories never 3579 * getting the respective rename operations issued in 3580 * the send stream or getting into infinite path build 3581 * loops. 3582 */ 3583 ret = is_ancestor(sctx->parent_root, 3584 sctx->cur_ino, sctx->cur_inode_gen, 3585 ino, path_before); 3586 if (ret) 3587 break; 3588 } 3589 3590 fs_path_reset(path_before); 3591 fs_path_reset(path_after); 3592 3593 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3594 NULL, path_after); 3595 if (ret < 0) 3596 goto out; 3597 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3598 NULL, path_before); 3599 if (ret < 0 && ret != -ENOENT) { 3600 goto out; 3601 } else if (ret == -ENOENT) { 3602 ret = 0; 3603 break; 3604 } 3605 3606 len1 = fs_path_len(path_before); 3607 len2 = fs_path_len(path_after); 3608 if (ino > sctx->cur_ino && 3609 (parent_ino_before != parent_ino_after || len1 != len2 || 3610 memcmp(path_before->start, path_after->start, len1))) { 3611 ret = 1; 3612 break; 3613 } 3614 ino = parent_ino_after; 3615 } 3616 3617 out: 3618 fs_path_free(path_before); 3619 fs_path_free(path_after); 3620 3621 if (ret == 1) { 3622 ret = add_pending_dir_move(sctx, 3623 sctx->cur_ino, 3624 sctx->cur_inode_gen, 3625 ino, 3626 &sctx->new_refs, 3627 &sctx->deleted_refs, 3628 is_orphan); 3629 if (!ret) 3630 ret = 1; 3631 } 3632 3633 return ret; 3634 } 3635 3636 /* 3637 * This does all the move/link/unlink/rmdir magic. 3638 */ 3639 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3640 { 3641 int ret = 0; 3642 struct recorded_ref *cur; 3643 struct recorded_ref *cur2; 3644 struct list_head check_dirs; 3645 struct fs_path *valid_path = NULL; 3646 u64 ow_inode = 0; 3647 u64 ow_gen; 3648 int did_overwrite = 0; 3649 int is_orphan = 0; 3650 u64 last_dir_ino_rm = 0; 3651 bool can_rename = true; 3652 3653 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino); 3654 3655 /* 3656 * This should never happen as the root dir always has the same ref 3657 * which is always '..' 3658 */ 3659 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3660 INIT_LIST_HEAD(&check_dirs); 3661 3662 valid_path = fs_path_alloc(); 3663 if (!valid_path) { 3664 ret = -ENOMEM; 3665 goto out; 3666 } 3667 3668 /* 3669 * First, check if the first ref of the current inode was overwritten 3670 * before. If yes, we know that the current inode was already orphanized 3671 * and thus use the orphan name. If not, we can use get_cur_path to 3672 * get the path of the first ref as it would like while receiving at 3673 * this point in time. 3674 * New inodes are always orphan at the beginning, so force to use the 3675 * orphan name in this case. 3676 * The first ref is stored in valid_path and will be updated if it 3677 * gets moved around. 3678 */ 3679 if (!sctx->cur_inode_new) { 3680 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3681 sctx->cur_inode_gen); 3682 if (ret < 0) 3683 goto out; 3684 if (ret) 3685 did_overwrite = 1; 3686 } 3687 if (sctx->cur_inode_new || did_overwrite) { 3688 ret = gen_unique_name(sctx, sctx->cur_ino, 3689 sctx->cur_inode_gen, valid_path); 3690 if (ret < 0) 3691 goto out; 3692 is_orphan = 1; 3693 } else { 3694 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3695 valid_path); 3696 if (ret < 0) 3697 goto out; 3698 } 3699 3700 list_for_each_entry(cur, &sctx->new_refs, list) { 3701 /* 3702 * We may have refs where the parent directory does not exist 3703 * yet. This happens if the parent directories inum is higher 3704 * the the current inum. To handle this case, we create the 3705 * parent directory out of order. But we need to check if this 3706 * did already happen before due to other refs in the same dir. 3707 */ 3708 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3709 if (ret < 0) 3710 goto out; 3711 if (ret == inode_state_will_create) { 3712 ret = 0; 3713 /* 3714 * First check if any of the current inodes refs did 3715 * already create the dir. 3716 */ 3717 list_for_each_entry(cur2, &sctx->new_refs, list) { 3718 if (cur == cur2) 3719 break; 3720 if (cur2->dir == cur->dir) { 3721 ret = 1; 3722 break; 3723 } 3724 } 3725 3726 /* 3727 * If that did not happen, check if a previous inode 3728 * did already create the dir. 3729 */ 3730 if (!ret) 3731 ret = did_create_dir(sctx, cur->dir); 3732 if (ret < 0) 3733 goto out; 3734 if (!ret) { 3735 ret = send_create_inode(sctx, cur->dir); 3736 if (ret < 0) 3737 goto out; 3738 } 3739 } 3740 3741 /* 3742 * Check if this new ref would overwrite the first ref of 3743 * another unprocessed inode. If yes, orphanize the 3744 * overwritten inode. If we find an overwritten ref that is 3745 * not the first ref, simply unlink it. 3746 */ 3747 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3748 cur->name, cur->name_len, 3749 &ow_inode, &ow_gen); 3750 if (ret < 0) 3751 goto out; 3752 if (ret) { 3753 ret = is_first_ref(sctx->parent_root, 3754 ow_inode, cur->dir, cur->name, 3755 cur->name_len); 3756 if (ret < 0) 3757 goto out; 3758 if (ret) { 3759 struct name_cache_entry *nce; 3760 struct waiting_dir_move *wdm; 3761 3762 ret = orphanize_inode(sctx, ow_inode, ow_gen, 3763 cur->full_path); 3764 if (ret < 0) 3765 goto out; 3766 3767 /* 3768 * If ow_inode has its rename operation delayed 3769 * make sure that its orphanized name is used in 3770 * the source path when performing its rename 3771 * operation. 3772 */ 3773 if (is_waiting_for_move(sctx, ow_inode)) { 3774 wdm = get_waiting_dir_move(sctx, 3775 ow_inode); 3776 ASSERT(wdm); 3777 wdm->orphanized = true; 3778 } 3779 3780 /* 3781 * Make sure we clear our orphanized inode's 3782 * name from the name cache. This is because the 3783 * inode ow_inode might be an ancestor of some 3784 * other inode that will be orphanized as well 3785 * later and has an inode number greater than 3786 * sctx->send_progress. We need to prevent 3787 * future name lookups from using the old name 3788 * and get instead the orphan name. 3789 */ 3790 nce = name_cache_search(sctx, ow_inode, ow_gen); 3791 if (nce) { 3792 name_cache_delete(sctx, nce); 3793 kfree(nce); 3794 } 3795 3796 /* 3797 * ow_inode might currently be an ancestor of 3798 * cur_ino, therefore compute valid_path (the 3799 * current path of cur_ino) again because it 3800 * might contain the pre-orphanization name of 3801 * ow_inode, which is no longer valid. 3802 */ 3803 fs_path_reset(valid_path); 3804 ret = get_cur_path(sctx, sctx->cur_ino, 3805 sctx->cur_inode_gen, valid_path); 3806 if (ret < 0) 3807 goto out; 3808 } else { 3809 ret = send_unlink(sctx, cur->full_path); 3810 if (ret < 0) 3811 goto out; 3812 } 3813 } 3814 3815 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 3816 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 3817 if (ret < 0) 3818 goto out; 3819 if (ret == 1) { 3820 can_rename = false; 3821 *pending_move = 1; 3822 } 3823 } 3824 3825 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 3826 can_rename) { 3827 ret = wait_for_parent_move(sctx, cur, is_orphan); 3828 if (ret < 0) 3829 goto out; 3830 if (ret == 1) { 3831 can_rename = false; 3832 *pending_move = 1; 3833 } 3834 } 3835 3836 /* 3837 * link/move the ref to the new place. If we have an orphan 3838 * inode, move it and update valid_path. If not, link or move 3839 * it depending on the inode mode. 3840 */ 3841 if (is_orphan && can_rename) { 3842 ret = send_rename(sctx, valid_path, cur->full_path); 3843 if (ret < 0) 3844 goto out; 3845 is_orphan = 0; 3846 ret = fs_path_copy(valid_path, cur->full_path); 3847 if (ret < 0) 3848 goto out; 3849 } else if (can_rename) { 3850 if (S_ISDIR(sctx->cur_inode_mode)) { 3851 /* 3852 * Dirs can't be linked, so move it. For moved 3853 * dirs, we always have one new and one deleted 3854 * ref. The deleted ref is ignored later. 3855 */ 3856 ret = send_rename(sctx, valid_path, 3857 cur->full_path); 3858 if (!ret) 3859 ret = fs_path_copy(valid_path, 3860 cur->full_path); 3861 if (ret < 0) 3862 goto out; 3863 } else { 3864 ret = send_link(sctx, cur->full_path, 3865 valid_path); 3866 if (ret < 0) 3867 goto out; 3868 } 3869 } 3870 ret = dup_ref(cur, &check_dirs); 3871 if (ret < 0) 3872 goto out; 3873 } 3874 3875 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 3876 /* 3877 * Check if we can already rmdir the directory. If not, 3878 * orphanize it. For every dir item inside that gets deleted 3879 * later, we do this check again and rmdir it then if possible. 3880 * See the use of check_dirs for more details. 3881 */ 3882 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3883 sctx->cur_ino); 3884 if (ret < 0) 3885 goto out; 3886 if (ret) { 3887 ret = send_rmdir(sctx, valid_path); 3888 if (ret < 0) 3889 goto out; 3890 } else if (!is_orphan) { 3891 ret = orphanize_inode(sctx, sctx->cur_ino, 3892 sctx->cur_inode_gen, valid_path); 3893 if (ret < 0) 3894 goto out; 3895 is_orphan = 1; 3896 } 3897 3898 list_for_each_entry(cur, &sctx->deleted_refs, list) { 3899 ret = dup_ref(cur, &check_dirs); 3900 if (ret < 0) 3901 goto out; 3902 } 3903 } else if (S_ISDIR(sctx->cur_inode_mode) && 3904 !list_empty(&sctx->deleted_refs)) { 3905 /* 3906 * We have a moved dir. Add the old parent to check_dirs 3907 */ 3908 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 3909 list); 3910 ret = dup_ref(cur, &check_dirs); 3911 if (ret < 0) 3912 goto out; 3913 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 3914 /* 3915 * We have a non dir inode. Go through all deleted refs and 3916 * unlink them if they were not already overwritten by other 3917 * inodes. 3918 */ 3919 list_for_each_entry(cur, &sctx->deleted_refs, list) { 3920 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3921 sctx->cur_ino, sctx->cur_inode_gen, 3922 cur->name, cur->name_len); 3923 if (ret < 0) 3924 goto out; 3925 if (!ret) { 3926 ret = send_unlink(sctx, cur->full_path); 3927 if (ret < 0) 3928 goto out; 3929 } 3930 ret = dup_ref(cur, &check_dirs); 3931 if (ret < 0) 3932 goto out; 3933 } 3934 /* 3935 * If the inode is still orphan, unlink the orphan. This may 3936 * happen when a previous inode did overwrite the first ref 3937 * of this inode and no new refs were added for the current 3938 * inode. Unlinking does not mean that the inode is deleted in 3939 * all cases. There may still be links to this inode in other 3940 * places. 3941 */ 3942 if (is_orphan) { 3943 ret = send_unlink(sctx, valid_path); 3944 if (ret < 0) 3945 goto out; 3946 } 3947 } 3948 3949 /* 3950 * We did collect all parent dirs where cur_inode was once located. We 3951 * now go through all these dirs and check if they are pending for 3952 * deletion and if it's finally possible to perform the rmdir now. 3953 * We also update the inode stats of the parent dirs here. 3954 */ 3955 list_for_each_entry(cur, &check_dirs, list) { 3956 /* 3957 * In case we had refs into dirs that were not processed yet, 3958 * we don't need to do the utime and rmdir logic for these dirs. 3959 * The dir will be processed later. 3960 */ 3961 if (cur->dir > sctx->cur_ino) 3962 continue; 3963 3964 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3965 if (ret < 0) 3966 goto out; 3967 3968 if (ret == inode_state_did_create || 3969 ret == inode_state_no_change) { 3970 /* TODO delayed utimes */ 3971 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3972 if (ret < 0) 3973 goto out; 3974 } else if (ret == inode_state_did_delete && 3975 cur->dir != last_dir_ino_rm) { 3976 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 3977 sctx->cur_ino); 3978 if (ret < 0) 3979 goto out; 3980 if (ret) { 3981 ret = get_cur_path(sctx, cur->dir, 3982 cur->dir_gen, valid_path); 3983 if (ret < 0) 3984 goto out; 3985 ret = send_rmdir(sctx, valid_path); 3986 if (ret < 0) 3987 goto out; 3988 last_dir_ino_rm = cur->dir; 3989 } 3990 } 3991 } 3992 3993 ret = 0; 3994 3995 out: 3996 __free_recorded_refs(&check_dirs); 3997 free_recorded_refs(sctx); 3998 fs_path_free(valid_path); 3999 return ret; 4000 } 4001 4002 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index, 4003 struct fs_path *name, void *ctx, struct list_head *refs) 4004 { 4005 int ret = 0; 4006 struct send_ctx *sctx = ctx; 4007 struct fs_path *p; 4008 u64 gen; 4009 4010 p = fs_path_alloc(); 4011 if (!p) 4012 return -ENOMEM; 4013 4014 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 4015 NULL, NULL); 4016 if (ret < 0) 4017 goto out; 4018 4019 ret = get_cur_path(sctx, dir, gen, p); 4020 if (ret < 0) 4021 goto out; 4022 ret = fs_path_add_path(p, name); 4023 if (ret < 0) 4024 goto out; 4025 4026 ret = __record_ref(refs, dir, gen, p); 4027 4028 out: 4029 if (ret) 4030 fs_path_free(p); 4031 return ret; 4032 } 4033 4034 static int __record_new_ref(int num, u64 dir, int index, 4035 struct fs_path *name, 4036 void *ctx) 4037 { 4038 struct send_ctx *sctx = ctx; 4039 return record_ref(sctx->send_root, num, dir, index, name, 4040 ctx, &sctx->new_refs); 4041 } 4042 4043 4044 static int __record_deleted_ref(int num, u64 dir, int index, 4045 struct fs_path *name, 4046 void *ctx) 4047 { 4048 struct send_ctx *sctx = ctx; 4049 return record_ref(sctx->parent_root, num, dir, index, name, 4050 ctx, &sctx->deleted_refs); 4051 } 4052 4053 static int record_new_ref(struct send_ctx *sctx) 4054 { 4055 int ret; 4056 4057 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4058 sctx->cmp_key, 0, __record_new_ref, sctx); 4059 if (ret < 0) 4060 goto out; 4061 ret = 0; 4062 4063 out: 4064 return ret; 4065 } 4066 4067 static int record_deleted_ref(struct send_ctx *sctx) 4068 { 4069 int ret; 4070 4071 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4072 sctx->cmp_key, 0, __record_deleted_ref, sctx); 4073 if (ret < 0) 4074 goto out; 4075 ret = 0; 4076 4077 out: 4078 return ret; 4079 } 4080 4081 struct find_ref_ctx { 4082 u64 dir; 4083 u64 dir_gen; 4084 struct btrfs_root *root; 4085 struct fs_path *name; 4086 int found_idx; 4087 }; 4088 4089 static int __find_iref(int num, u64 dir, int index, 4090 struct fs_path *name, 4091 void *ctx_) 4092 { 4093 struct find_ref_ctx *ctx = ctx_; 4094 u64 dir_gen; 4095 int ret; 4096 4097 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 4098 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 4099 /* 4100 * To avoid doing extra lookups we'll only do this if everything 4101 * else matches. 4102 */ 4103 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 4104 NULL, NULL, NULL); 4105 if (ret) 4106 return ret; 4107 if (dir_gen != ctx->dir_gen) 4108 return 0; 4109 ctx->found_idx = num; 4110 return 1; 4111 } 4112 return 0; 4113 } 4114 4115 static int find_iref(struct btrfs_root *root, 4116 struct btrfs_path *path, 4117 struct btrfs_key *key, 4118 u64 dir, u64 dir_gen, struct fs_path *name) 4119 { 4120 int ret; 4121 struct find_ref_ctx ctx; 4122 4123 ctx.dir = dir; 4124 ctx.name = name; 4125 ctx.dir_gen = dir_gen; 4126 ctx.found_idx = -1; 4127 ctx.root = root; 4128 4129 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 4130 if (ret < 0) 4131 return ret; 4132 4133 if (ctx.found_idx == -1) 4134 return -ENOENT; 4135 4136 return ctx.found_idx; 4137 } 4138 4139 static int __record_changed_new_ref(int num, u64 dir, int index, 4140 struct fs_path *name, 4141 void *ctx) 4142 { 4143 u64 dir_gen; 4144 int ret; 4145 struct send_ctx *sctx = ctx; 4146 4147 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 4148 NULL, NULL, NULL); 4149 if (ret) 4150 return ret; 4151 4152 ret = find_iref(sctx->parent_root, sctx->right_path, 4153 sctx->cmp_key, dir, dir_gen, name); 4154 if (ret == -ENOENT) 4155 ret = __record_new_ref(num, dir, index, name, sctx); 4156 else if (ret > 0) 4157 ret = 0; 4158 4159 return ret; 4160 } 4161 4162 static int __record_changed_deleted_ref(int num, u64 dir, int index, 4163 struct fs_path *name, 4164 void *ctx) 4165 { 4166 u64 dir_gen; 4167 int ret; 4168 struct send_ctx *sctx = ctx; 4169 4170 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 4171 NULL, NULL, NULL); 4172 if (ret) 4173 return ret; 4174 4175 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4176 dir, dir_gen, name); 4177 if (ret == -ENOENT) 4178 ret = __record_deleted_ref(num, dir, index, name, sctx); 4179 else if (ret > 0) 4180 ret = 0; 4181 4182 return ret; 4183 } 4184 4185 static int record_changed_ref(struct send_ctx *sctx) 4186 { 4187 int ret = 0; 4188 4189 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4190 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 4191 if (ret < 0) 4192 goto out; 4193 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4194 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 4195 if (ret < 0) 4196 goto out; 4197 ret = 0; 4198 4199 out: 4200 return ret; 4201 } 4202 4203 /* 4204 * Record and process all refs at once. Needed when an inode changes the 4205 * generation number, which means that it was deleted and recreated. 4206 */ 4207 static int process_all_refs(struct send_ctx *sctx, 4208 enum btrfs_compare_tree_result cmd) 4209 { 4210 int ret; 4211 struct btrfs_root *root; 4212 struct btrfs_path *path; 4213 struct btrfs_key key; 4214 struct btrfs_key found_key; 4215 struct extent_buffer *eb; 4216 int slot; 4217 iterate_inode_ref_t cb; 4218 int pending_move = 0; 4219 4220 path = alloc_path_for_send(); 4221 if (!path) 4222 return -ENOMEM; 4223 4224 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4225 root = sctx->send_root; 4226 cb = __record_new_ref; 4227 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4228 root = sctx->parent_root; 4229 cb = __record_deleted_ref; 4230 } else { 4231 btrfs_err(sctx->send_root->fs_info, 4232 "Wrong command %d in process_all_refs", cmd); 4233 ret = -EINVAL; 4234 goto out; 4235 } 4236 4237 key.objectid = sctx->cmp_key->objectid; 4238 key.type = BTRFS_INODE_REF_KEY; 4239 key.offset = 0; 4240 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4241 if (ret < 0) 4242 goto out; 4243 4244 while (1) { 4245 eb = path->nodes[0]; 4246 slot = path->slots[0]; 4247 if (slot >= btrfs_header_nritems(eb)) { 4248 ret = btrfs_next_leaf(root, path); 4249 if (ret < 0) 4250 goto out; 4251 else if (ret > 0) 4252 break; 4253 continue; 4254 } 4255 4256 btrfs_item_key_to_cpu(eb, &found_key, slot); 4257 4258 if (found_key.objectid != key.objectid || 4259 (found_key.type != BTRFS_INODE_REF_KEY && 4260 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4261 break; 4262 4263 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4264 if (ret < 0) 4265 goto out; 4266 4267 path->slots[0]++; 4268 } 4269 btrfs_release_path(path); 4270 4271 ret = process_recorded_refs(sctx, &pending_move); 4272 /* Only applicable to an incremental send. */ 4273 ASSERT(pending_move == 0); 4274 4275 out: 4276 btrfs_free_path(path); 4277 return ret; 4278 } 4279 4280 static int send_set_xattr(struct send_ctx *sctx, 4281 struct fs_path *path, 4282 const char *name, int name_len, 4283 const char *data, int data_len) 4284 { 4285 int ret = 0; 4286 4287 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4288 if (ret < 0) 4289 goto out; 4290 4291 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4292 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4293 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4294 4295 ret = send_cmd(sctx); 4296 4297 tlv_put_failure: 4298 out: 4299 return ret; 4300 } 4301 4302 static int send_remove_xattr(struct send_ctx *sctx, 4303 struct fs_path *path, 4304 const char *name, int name_len) 4305 { 4306 int ret = 0; 4307 4308 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4309 if (ret < 0) 4310 goto out; 4311 4312 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4313 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4314 4315 ret = send_cmd(sctx); 4316 4317 tlv_put_failure: 4318 out: 4319 return ret; 4320 } 4321 4322 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4323 const char *name, int name_len, 4324 const char *data, int data_len, 4325 u8 type, void *ctx) 4326 { 4327 int ret; 4328 struct send_ctx *sctx = ctx; 4329 struct fs_path *p; 4330 posix_acl_xattr_header dummy_acl; 4331 4332 p = fs_path_alloc(); 4333 if (!p) 4334 return -ENOMEM; 4335 4336 /* 4337 * This hack is needed because empty acls are stored as zero byte 4338 * data in xattrs. Problem with that is, that receiving these zero byte 4339 * acls will fail later. To fix this, we send a dummy acl list that 4340 * only contains the version number and no entries. 4341 */ 4342 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4343 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4344 if (data_len == 0) { 4345 dummy_acl.a_version = 4346 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4347 data = (char *)&dummy_acl; 4348 data_len = sizeof(dummy_acl); 4349 } 4350 } 4351 4352 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4353 if (ret < 0) 4354 goto out; 4355 4356 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4357 4358 out: 4359 fs_path_free(p); 4360 return ret; 4361 } 4362 4363 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4364 const char *name, int name_len, 4365 const char *data, int data_len, 4366 u8 type, void *ctx) 4367 { 4368 int ret; 4369 struct send_ctx *sctx = ctx; 4370 struct fs_path *p; 4371 4372 p = fs_path_alloc(); 4373 if (!p) 4374 return -ENOMEM; 4375 4376 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4377 if (ret < 0) 4378 goto out; 4379 4380 ret = send_remove_xattr(sctx, p, name, name_len); 4381 4382 out: 4383 fs_path_free(p); 4384 return ret; 4385 } 4386 4387 static int process_new_xattr(struct send_ctx *sctx) 4388 { 4389 int ret = 0; 4390 4391 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4392 sctx->cmp_key, __process_new_xattr, sctx); 4393 4394 return ret; 4395 } 4396 4397 static int process_deleted_xattr(struct send_ctx *sctx) 4398 { 4399 int ret; 4400 4401 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4402 sctx->cmp_key, __process_deleted_xattr, sctx); 4403 4404 return ret; 4405 } 4406 4407 struct find_xattr_ctx { 4408 const char *name; 4409 int name_len; 4410 int found_idx; 4411 char *found_data; 4412 int found_data_len; 4413 }; 4414 4415 static int __find_xattr(int num, struct btrfs_key *di_key, 4416 const char *name, int name_len, 4417 const char *data, int data_len, 4418 u8 type, void *vctx) 4419 { 4420 struct find_xattr_ctx *ctx = vctx; 4421 4422 if (name_len == ctx->name_len && 4423 strncmp(name, ctx->name, name_len) == 0) { 4424 ctx->found_idx = num; 4425 ctx->found_data_len = data_len; 4426 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4427 if (!ctx->found_data) 4428 return -ENOMEM; 4429 return 1; 4430 } 4431 return 0; 4432 } 4433 4434 static int find_xattr(struct btrfs_root *root, 4435 struct btrfs_path *path, 4436 struct btrfs_key *key, 4437 const char *name, int name_len, 4438 char **data, int *data_len) 4439 { 4440 int ret; 4441 struct find_xattr_ctx ctx; 4442 4443 ctx.name = name; 4444 ctx.name_len = name_len; 4445 ctx.found_idx = -1; 4446 ctx.found_data = NULL; 4447 ctx.found_data_len = 0; 4448 4449 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx); 4450 if (ret < 0) 4451 return ret; 4452 4453 if (ctx.found_idx == -1) 4454 return -ENOENT; 4455 if (data) { 4456 *data = ctx.found_data; 4457 *data_len = ctx.found_data_len; 4458 } else { 4459 kfree(ctx.found_data); 4460 } 4461 return ctx.found_idx; 4462 } 4463 4464 4465 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4466 const char *name, int name_len, 4467 const char *data, int data_len, 4468 u8 type, void *ctx) 4469 { 4470 int ret; 4471 struct send_ctx *sctx = ctx; 4472 char *found_data = NULL; 4473 int found_data_len = 0; 4474 4475 ret = find_xattr(sctx->parent_root, sctx->right_path, 4476 sctx->cmp_key, name, name_len, &found_data, 4477 &found_data_len); 4478 if (ret == -ENOENT) { 4479 ret = __process_new_xattr(num, di_key, name, name_len, data, 4480 data_len, type, ctx); 4481 } else if (ret >= 0) { 4482 if (data_len != found_data_len || 4483 memcmp(data, found_data, data_len)) { 4484 ret = __process_new_xattr(num, di_key, name, name_len, 4485 data, data_len, type, ctx); 4486 } else { 4487 ret = 0; 4488 } 4489 } 4490 4491 kfree(found_data); 4492 return ret; 4493 } 4494 4495 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4496 const char *name, int name_len, 4497 const char *data, int data_len, 4498 u8 type, void *ctx) 4499 { 4500 int ret; 4501 struct send_ctx *sctx = ctx; 4502 4503 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4504 name, name_len, NULL, NULL); 4505 if (ret == -ENOENT) 4506 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4507 data_len, type, ctx); 4508 else if (ret >= 0) 4509 ret = 0; 4510 4511 return ret; 4512 } 4513 4514 static int process_changed_xattr(struct send_ctx *sctx) 4515 { 4516 int ret = 0; 4517 4518 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4519 sctx->cmp_key, __process_changed_new_xattr, sctx); 4520 if (ret < 0) 4521 goto out; 4522 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4523 sctx->cmp_key, __process_changed_deleted_xattr, sctx); 4524 4525 out: 4526 return ret; 4527 } 4528 4529 static int process_all_new_xattrs(struct send_ctx *sctx) 4530 { 4531 int ret; 4532 struct btrfs_root *root; 4533 struct btrfs_path *path; 4534 struct btrfs_key key; 4535 struct btrfs_key found_key; 4536 struct extent_buffer *eb; 4537 int slot; 4538 4539 path = alloc_path_for_send(); 4540 if (!path) 4541 return -ENOMEM; 4542 4543 root = sctx->send_root; 4544 4545 key.objectid = sctx->cmp_key->objectid; 4546 key.type = BTRFS_XATTR_ITEM_KEY; 4547 key.offset = 0; 4548 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4549 if (ret < 0) 4550 goto out; 4551 4552 while (1) { 4553 eb = path->nodes[0]; 4554 slot = path->slots[0]; 4555 if (slot >= btrfs_header_nritems(eb)) { 4556 ret = btrfs_next_leaf(root, path); 4557 if (ret < 0) { 4558 goto out; 4559 } else if (ret > 0) { 4560 ret = 0; 4561 break; 4562 } 4563 continue; 4564 } 4565 4566 btrfs_item_key_to_cpu(eb, &found_key, slot); 4567 if (found_key.objectid != key.objectid || 4568 found_key.type != key.type) { 4569 ret = 0; 4570 goto out; 4571 } 4572 4573 ret = iterate_dir_item(root, path, &found_key, 4574 __process_new_xattr, sctx); 4575 if (ret < 0) 4576 goto out; 4577 4578 path->slots[0]++; 4579 } 4580 4581 out: 4582 btrfs_free_path(path); 4583 return ret; 4584 } 4585 4586 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len) 4587 { 4588 struct btrfs_root *root = sctx->send_root; 4589 struct btrfs_fs_info *fs_info = root->fs_info; 4590 struct inode *inode; 4591 struct page *page; 4592 char *addr; 4593 struct btrfs_key key; 4594 pgoff_t index = offset >> PAGE_SHIFT; 4595 pgoff_t last_index; 4596 unsigned pg_offset = offset & ~PAGE_MASK; 4597 ssize_t ret = 0; 4598 4599 key.objectid = sctx->cur_ino; 4600 key.type = BTRFS_INODE_ITEM_KEY; 4601 key.offset = 0; 4602 4603 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4604 if (IS_ERR(inode)) 4605 return PTR_ERR(inode); 4606 4607 if (offset + len > i_size_read(inode)) { 4608 if (offset > i_size_read(inode)) 4609 len = 0; 4610 else 4611 len = offset - i_size_read(inode); 4612 } 4613 if (len == 0) 4614 goto out; 4615 4616 last_index = (offset + len - 1) >> PAGE_SHIFT; 4617 4618 /* initial readahead */ 4619 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 4620 file_ra_state_init(&sctx->ra, inode->i_mapping); 4621 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index, 4622 last_index - index + 1); 4623 4624 while (index <= last_index) { 4625 unsigned cur_len = min_t(unsigned, len, 4626 PAGE_SIZE - pg_offset); 4627 page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL); 4628 if (!page) { 4629 ret = -ENOMEM; 4630 break; 4631 } 4632 4633 if (!PageUptodate(page)) { 4634 btrfs_readpage(NULL, page); 4635 lock_page(page); 4636 if (!PageUptodate(page)) { 4637 unlock_page(page); 4638 put_page(page); 4639 ret = -EIO; 4640 break; 4641 } 4642 } 4643 4644 addr = kmap(page); 4645 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len); 4646 kunmap(page); 4647 unlock_page(page); 4648 put_page(page); 4649 index++; 4650 pg_offset = 0; 4651 len -= cur_len; 4652 ret += cur_len; 4653 } 4654 out: 4655 iput(inode); 4656 return ret; 4657 } 4658 4659 /* 4660 * Read some bytes from the current inode/file and send a write command to 4661 * user space. 4662 */ 4663 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 4664 { 4665 int ret = 0; 4666 struct fs_path *p; 4667 ssize_t num_read = 0; 4668 4669 p = fs_path_alloc(); 4670 if (!p) 4671 return -ENOMEM; 4672 4673 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len); 4674 4675 num_read = fill_read_buf(sctx, offset, len); 4676 if (num_read <= 0) { 4677 if (num_read < 0) 4678 ret = num_read; 4679 goto out; 4680 } 4681 4682 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4683 if (ret < 0) 4684 goto out; 4685 4686 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4687 if (ret < 0) 4688 goto out; 4689 4690 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4691 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4692 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read); 4693 4694 ret = send_cmd(sctx); 4695 4696 tlv_put_failure: 4697 out: 4698 fs_path_free(p); 4699 if (ret < 0) 4700 return ret; 4701 return num_read; 4702 } 4703 4704 /* 4705 * Send a clone command to user space. 4706 */ 4707 static int send_clone(struct send_ctx *sctx, 4708 u64 offset, u32 len, 4709 struct clone_root *clone_root) 4710 { 4711 int ret = 0; 4712 struct fs_path *p; 4713 u64 gen; 4714 4715 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, " 4716 "clone_inode=%llu, clone_offset=%llu\n", offset, len, 4717 clone_root->root->objectid, clone_root->ino, 4718 clone_root->offset); 4719 4720 p = fs_path_alloc(); 4721 if (!p) 4722 return -ENOMEM; 4723 4724 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 4725 if (ret < 0) 4726 goto out; 4727 4728 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4729 if (ret < 0) 4730 goto out; 4731 4732 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4733 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 4734 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4735 4736 if (clone_root->root == sctx->send_root) { 4737 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 4738 &gen, NULL, NULL, NULL, NULL); 4739 if (ret < 0) 4740 goto out; 4741 ret = get_cur_path(sctx, clone_root->ino, gen, p); 4742 } else { 4743 ret = get_inode_path(clone_root->root, clone_root->ino, p); 4744 } 4745 if (ret < 0) 4746 goto out; 4747 4748 /* 4749 * If the parent we're using has a received_uuid set then use that as 4750 * our clone source as that is what we will look for when doing a 4751 * receive. 4752 * 4753 * This covers the case that we create a snapshot off of a received 4754 * subvolume and then use that as the parent and try to receive on a 4755 * different host. 4756 */ 4757 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 4758 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4759 clone_root->root->root_item.received_uuid); 4760 else 4761 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4762 clone_root->root->root_item.uuid); 4763 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 4764 le64_to_cpu(clone_root->root->root_item.ctransid)); 4765 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 4766 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 4767 clone_root->offset); 4768 4769 ret = send_cmd(sctx); 4770 4771 tlv_put_failure: 4772 out: 4773 fs_path_free(p); 4774 return ret; 4775 } 4776 4777 /* 4778 * Send an update extent command to user space. 4779 */ 4780 static int send_update_extent(struct send_ctx *sctx, 4781 u64 offset, u32 len) 4782 { 4783 int ret = 0; 4784 struct fs_path *p; 4785 4786 p = fs_path_alloc(); 4787 if (!p) 4788 return -ENOMEM; 4789 4790 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 4791 if (ret < 0) 4792 goto out; 4793 4794 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4795 if (ret < 0) 4796 goto out; 4797 4798 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4799 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4800 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 4801 4802 ret = send_cmd(sctx); 4803 4804 tlv_put_failure: 4805 out: 4806 fs_path_free(p); 4807 return ret; 4808 } 4809 4810 static int send_hole(struct send_ctx *sctx, u64 end) 4811 { 4812 struct fs_path *p = NULL; 4813 u64 offset = sctx->cur_inode_last_extent; 4814 u64 len; 4815 int ret = 0; 4816 4817 p = fs_path_alloc(); 4818 if (!p) 4819 return -ENOMEM; 4820 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4821 if (ret < 0) 4822 goto tlv_put_failure; 4823 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE); 4824 while (offset < end) { 4825 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE); 4826 4827 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4828 if (ret < 0) 4829 break; 4830 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4831 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4832 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len); 4833 ret = send_cmd(sctx); 4834 if (ret < 0) 4835 break; 4836 offset += len; 4837 } 4838 tlv_put_failure: 4839 fs_path_free(p); 4840 return ret; 4841 } 4842 4843 static int send_extent_data(struct send_ctx *sctx, 4844 const u64 offset, 4845 const u64 len) 4846 { 4847 u64 sent = 0; 4848 4849 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 4850 return send_update_extent(sctx, offset, len); 4851 4852 while (sent < len) { 4853 u64 size = len - sent; 4854 int ret; 4855 4856 if (size > BTRFS_SEND_READ_SIZE) 4857 size = BTRFS_SEND_READ_SIZE; 4858 ret = send_write(sctx, offset + sent, size); 4859 if (ret < 0) 4860 return ret; 4861 if (!ret) 4862 break; 4863 sent += ret; 4864 } 4865 return 0; 4866 } 4867 4868 static int clone_range(struct send_ctx *sctx, 4869 struct clone_root *clone_root, 4870 const u64 disk_byte, 4871 u64 data_offset, 4872 u64 offset, 4873 u64 len) 4874 { 4875 struct btrfs_path *path; 4876 struct btrfs_key key; 4877 int ret; 4878 4879 path = alloc_path_for_send(); 4880 if (!path) 4881 return -ENOMEM; 4882 4883 /* 4884 * We can't send a clone operation for the entire range if we find 4885 * extent items in the respective range in the source file that 4886 * refer to different extents or if we find holes. 4887 * So check for that and do a mix of clone and regular write/copy 4888 * operations if needed. 4889 * 4890 * Example: 4891 * 4892 * mkfs.btrfs -f /dev/sda 4893 * mount /dev/sda /mnt 4894 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 4895 * cp --reflink=always /mnt/foo /mnt/bar 4896 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 4897 * btrfs subvolume snapshot -r /mnt /mnt/snap 4898 * 4899 * If when we send the snapshot and we are processing file bar (which 4900 * has a higher inode number than foo) we blindly send a clone operation 4901 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 4902 * a file bar that matches the content of file foo - iow, doesn't match 4903 * the content from bar in the original filesystem. 4904 */ 4905 key.objectid = clone_root->ino; 4906 key.type = BTRFS_EXTENT_DATA_KEY; 4907 key.offset = clone_root->offset; 4908 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 4909 if (ret < 0) 4910 goto out; 4911 if (ret > 0 && path->slots[0] > 0) { 4912 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 4913 if (key.objectid == clone_root->ino && 4914 key.type == BTRFS_EXTENT_DATA_KEY) 4915 path->slots[0]--; 4916 } 4917 4918 while (true) { 4919 struct extent_buffer *leaf = path->nodes[0]; 4920 int slot = path->slots[0]; 4921 struct btrfs_file_extent_item *ei; 4922 u8 type; 4923 u64 ext_len; 4924 u64 clone_len; 4925 4926 if (slot >= btrfs_header_nritems(leaf)) { 4927 ret = btrfs_next_leaf(clone_root->root, path); 4928 if (ret < 0) 4929 goto out; 4930 else if (ret > 0) 4931 break; 4932 continue; 4933 } 4934 4935 btrfs_item_key_to_cpu(leaf, &key, slot); 4936 4937 /* 4938 * We might have an implicit trailing hole (NO_HOLES feature 4939 * enabled). We deal with it after leaving this loop. 4940 */ 4941 if (key.objectid != clone_root->ino || 4942 key.type != BTRFS_EXTENT_DATA_KEY) 4943 break; 4944 4945 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4946 type = btrfs_file_extent_type(leaf, ei); 4947 if (type == BTRFS_FILE_EXTENT_INLINE) { 4948 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei); 4949 ext_len = PAGE_ALIGN(ext_len); 4950 } else { 4951 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 4952 } 4953 4954 if (key.offset + ext_len <= clone_root->offset) 4955 goto next; 4956 4957 if (key.offset > clone_root->offset) { 4958 /* Implicit hole, NO_HOLES feature enabled. */ 4959 u64 hole_len = key.offset - clone_root->offset; 4960 4961 if (hole_len > len) 4962 hole_len = len; 4963 ret = send_extent_data(sctx, offset, hole_len); 4964 if (ret < 0) 4965 goto out; 4966 4967 len -= hole_len; 4968 if (len == 0) 4969 break; 4970 offset += hole_len; 4971 clone_root->offset += hole_len; 4972 data_offset += hole_len; 4973 } 4974 4975 if (key.offset >= clone_root->offset + len) 4976 break; 4977 4978 clone_len = min_t(u64, ext_len, len); 4979 4980 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 4981 btrfs_file_extent_offset(leaf, ei) == data_offset) 4982 ret = send_clone(sctx, offset, clone_len, clone_root); 4983 else 4984 ret = send_extent_data(sctx, offset, clone_len); 4985 4986 if (ret < 0) 4987 goto out; 4988 4989 len -= clone_len; 4990 if (len == 0) 4991 break; 4992 offset += clone_len; 4993 clone_root->offset += clone_len; 4994 data_offset += clone_len; 4995 next: 4996 path->slots[0]++; 4997 } 4998 4999 if (len > 0) 5000 ret = send_extent_data(sctx, offset, len); 5001 else 5002 ret = 0; 5003 out: 5004 btrfs_free_path(path); 5005 return ret; 5006 } 5007 5008 static int send_write_or_clone(struct send_ctx *sctx, 5009 struct btrfs_path *path, 5010 struct btrfs_key *key, 5011 struct clone_root *clone_root) 5012 { 5013 int ret = 0; 5014 struct btrfs_file_extent_item *ei; 5015 u64 offset = key->offset; 5016 u64 len; 5017 u8 type; 5018 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 5019 5020 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5021 struct btrfs_file_extent_item); 5022 type = btrfs_file_extent_type(path->nodes[0], ei); 5023 if (type == BTRFS_FILE_EXTENT_INLINE) { 5024 len = btrfs_file_extent_inline_len(path->nodes[0], 5025 path->slots[0], ei); 5026 /* 5027 * it is possible the inline item won't cover the whole page, 5028 * but there may be items after this page. Make 5029 * sure to send the whole thing 5030 */ 5031 len = PAGE_ALIGN(len); 5032 } else { 5033 len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 5034 } 5035 5036 if (offset + len > sctx->cur_inode_size) 5037 len = sctx->cur_inode_size - offset; 5038 if (len == 0) { 5039 ret = 0; 5040 goto out; 5041 } 5042 5043 if (clone_root && IS_ALIGNED(offset + len, bs)) { 5044 u64 disk_byte; 5045 u64 data_offset; 5046 5047 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 5048 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 5049 ret = clone_range(sctx, clone_root, disk_byte, data_offset, 5050 offset, len); 5051 } else { 5052 ret = send_extent_data(sctx, offset, len); 5053 } 5054 out: 5055 return ret; 5056 } 5057 5058 static int is_extent_unchanged(struct send_ctx *sctx, 5059 struct btrfs_path *left_path, 5060 struct btrfs_key *ekey) 5061 { 5062 int ret = 0; 5063 struct btrfs_key key; 5064 struct btrfs_path *path = NULL; 5065 struct extent_buffer *eb; 5066 int slot; 5067 struct btrfs_key found_key; 5068 struct btrfs_file_extent_item *ei; 5069 u64 left_disknr; 5070 u64 right_disknr; 5071 u64 left_offset; 5072 u64 right_offset; 5073 u64 left_offset_fixed; 5074 u64 left_len; 5075 u64 right_len; 5076 u64 left_gen; 5077 u64 right_gen; 5078 u8 left_type; 5079 u8 right_type; 5080 5081 path = alloc_path_for_send(); 5082 if (!path) 5083 return -ENOMEM; 5084 5085 eb = left_path->nodes[0]; 5086 slot = left_path->slots[0]; 5087 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5088 left_type = btrfs_file_extent_type(eb, ei); 5089 5090 if (left_type != BTRFS_FILE_EXTENT_REG) { 5091 ret = 0; 5092 goto out; 5093 } 5094 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5095 left_len = btrfs_file_extent_num_bytes(eb, ei); 5096 left_offset = btrfs_file_extent_offset(eb, ei); 5097 left_gen = btrfs_file_extent_generation(eb, ei); 5098 5099 /* 5100 * Following comments will refer to these graphics. L is the left 5101 * extents which we are checking at the moment. 1-8 are the right 5102 * extents that we iterate. 5103 * 5104 * |-----L-----| 5105 * |-1-|-2a-|-3-|-4-|-5-|-6-| 5106 * 5107 * |-----L-----| 5108 * |--1--|-2b-|...(same as above) 5109 * 5110 * Alternative situation. Happens on files where extents got split. 5111 * |-----L-----| 5112 * |-----------7-----------|-6-| 5113 * 5114 * Alternative situation. Happens on files which got larger. 5115 * |-----L-----| 5116 * |-8-| 5117 * Nothing follows after 8. 5118 */ 5119 5120 key.objectid = ekey->objectid; 5121 key.type = BTRFS_EXTENT_DATA_KEY; 5122 key.offset = ekey->offset; 5123 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 5124 if (ret < 0) 5125 goto out; 5126 if (ret) { 5127 ret = 0; 5128 goto out; 5129 } 5130 5131 /* 5132 * Handle special case where the right side has no extents at all. 5133 */ 5134 eb = path->nodes[0]; 5135 slot = path->slots[0]; 5136 btrfs_item_key_to_cpu(eb, &found_key, slot); 5137 if (found_key.objectid != key.objectid || 5138 found_key.type != key.type) { 5139 /* If we're a hole then just pretend nothing changed */ 5140 ret = (left_disknr) ? 0 : 1; 5141 goto out; 5142 } 5143 5144 /* 5145 * We're now on 2a, 2b or 7. 5146 */ 5147 key = found_key; 5148 while (key.offset < ekey->offset + left_len) { 5149 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5150 right_type = btrfs_file_extent_type(eb, ei); 5151 if (right_type != BTRFS_FILE_EXTENT_REG) { 5152 ret = 0; 5153 goto out; 5154 } 5155 5156 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5157 right_len = btrfs_file_extent_num_bytes(eb, ei); 5158 right_offset = btrfs_file_extent_offset(eb, ei); 5159 right_gen = btrfs_file_extent_generation(eb, ei); 5160 5161 /* 5162 * Are we at extent 8? If yes, we know the extent is changed. 5163 * This may only happen on the first iteration. 5164 */ 5165 if (found_key.offset + right_len <= ekey->offset) { 5166 /* If we're a hole just pretend nothing changed */ 5167 ret = (left_disknr) ? 0 : 1; 5168 goto out; 5169 } 5170 5171 left_offset_fixed = left_offset; 5172 if (key.offset < ekey->offset) { 5173 /* Fix the right offset for 2a and 7. */ 5174 right_offset += ekey->offset - key.offset; 5175 } else { 5176 /* Fix the left offset for all behind 2a and 2b */ 5177 left_offset_fixed += key.offset - ekey->offset; 5178 } 5179 5180 /* 5181 * Check if we have the same extent. 5182 */ 5183 if (left_disknr != right_disknr || 5184 left_offset_fixed != right_offset || 5185 left_gen != right_gen) { 5186 ret = 0; 5187 goto out; 5188 } 5189 5190 /* 5191 * Go to the next extent. 5192 */ 5193 ret = btrfs_next_item(sctx->parent_root, path); 5194 if (ret < 0) 5195 goto out; 5196 if (!ret) { 5197 eb = path->nodes[0]; 5198 slot = path->slots[0]; 5199 btrfs_item_key_to_cpu(eb, &found_key, slot); 5200 } 5201 if (ret || found_key.objectid != key.objectid || 5202 found_key.type != key.type) { 5203 key.offset += right_len; 5204 break; 5205 } 5206 if (found_key.offset != key.offset + right_len) { 5207 ret = 0; 5208 goto out; 5209 } 5210 key = found_key; 5211 } 5212 5213 /* 5214 * We're now behind the left extent (treat as unchanged) or at the end 5215 * of the right side (treat as changed). 5216 */ 5217 if (key.offset >= ekey->offset + left_len) 5218 ret = 1; 5219 else 5220 ret = 0; 5221 5222 5223 out: 5224 btrfs_free_path(path); 5225 return ret; 5226 } 5227 5228 static int get_last_extent(struct send_ctx *sctx, u64 offset) 5229 { 5230 struct btrfs_path *path; 5231 struct btrfs_root *root = sctx->send_root; 5232 struct btrfs_file_extent_item *fi; 5233 struct btrfs_key key; 5234 u64 extent_end; 5235 u8 type; 5236 int ret; 5237 5238 path = alloc_path_for_send(); 5239 if (!path) 5240 return -ENOMEM; 5241 5242 sctx->cur_inode_last_extent = 0; 5243 5244 key.objectid = sctx->cur_ino; 5245 key.type = BTRFS_EXTENT_DATA_KEY; 5246 key.offset = offset; 5247 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 5248 if (ret < 0) 5249 goto out; 5250 ret = 0; 5251 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 5252 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 5253 goto out; 5254 5255 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 5256 struct btrfs_file_extent_item); 5257 type = btrfs_file_extent_type(path->nodes[0], fi); 5258 if (type == BTRFS_FILE_EXTENT_INLINE) { 5259 u64 size = btrfs_file_extent_inline_len(path->nodes[0], 5260 path->slots[0], fi); 5261 extent_end = ALIGN(key.offset + size, 5262 sctx->send_root->sectorsize); 5263 } else { 5264 extent_end = key.offset + 5265 btrfs_file_extent_num_bytes(path->nodes[0], fi); 5266 } 5267 sctx->cur_inode_last_extent = extent_end; 5268 out: 5269 btrfs_free_path(path); 5270 return ret; 5271 } 5272 5273 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 5274 struct btrfs_key *key) 5275 { 5276 struct btrfs_file_extent_item *fi; 5277 u64 extent_end; 5278 u8 type; 5279 int ret = 0; 5280 5281 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 5282 return 0; 5283 5284 if (sctx->cur_inode_last_extent == (u64)-1) { 5285 ret = get_last_extent(sctx, key->offset - 1); 5286 if (ret) 5287 return ret; 5288 } 5289 5290 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 5291 struct btrfs_file_extent_item); 5292 type = btrfs_file_extent_type(path->nodes[0], fi); 5293 if (type == BTRFS_FILE_EXTENT_INLINE) { 5294 u64 size = btrfs_file_extent_inline_len(path->nodes[0], 5295 path->slots[0], fi); 5296 extent_end = ALIGN(key->offset + size, 5297 sctx->send_root->sectorsize); 5298 } else { 5299 extent_end = key->offset + 5300 btrfs_file_extent_num_bytes(path->nodes[0], fi); 5301 } 5302 5303 if (path->slots[0] == 0 && 5304 sctx->cur_inode_last_extent < key->offset) { 5305 /* 5306 * We might have skipped entire leafs that contained only 5307 * file extent items for our current inode. These leafs have 5308 * a generation number smaller (older) than the one in the 5309 * current leaf and the leaf our last extent came from, and 5310 * are located between these 2 leafs. 5311 */ 5312 ret = get_last_extent(sctx, key->offset - 1); 5313 if (ret) 5314 return ret; 5315 } 5316 5317 if (sctx->cur_inode_last_extent < key->offset) 5318 ret = send_hole(sctx, key->offset); 5319 sctx->cur_inode_last_extent = extent_end; 5320 return ret; 5321 } 5322 5323 static int process_extent(struct send_ctx *sctx, 5324 struct btrfs_path *path, 5325 struct btrfs_key *key) 5326 { 5327 struct clone_root *found_clone = NULL; 5328 int ret = 0; 5329 5330 if (S_ISLNK(sctx->cur_inode_mode)) 5331 return 0; 5332 5333 if (sctx->parent_root && !sctx->cur_inode_new) { 5334 ret = is_extent_unchanged(sctx, path, key); 5335 if (ret < 0) 5336 goto out; 5337 if (ret) { 5338 ret = 0; 5339 goto out_hole; 5340 } 5341 } else { 5342 struct btrfs_file_extent_item *ei; 5343 u8 type; 5344 5345 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5346 struct btrfs_file_extent_item); 5347 type = btrfs_file_extent_type(path->nodes[0], ei); 5348 if (type == BTRFS_FILE_EXTENT_PREALLOC || 5349 type == BTRFS_FILE_EXTENT_REG) { 5350 /* 5351 * The send spec does not have a prealloc command yet, 5352 * so just leave a hole for prealloc'ed extents until 5353 * we have enough commands queued up to justify rev'ing 5354 * the send spec. 5355 */ 5356 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 5357 ret = 0; 5358 goto out; 5359 } 5360 5361 /* Have a hole, just skip it. */ 5362 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 5363 ret = 0; 5364 goto out; 5365 } 5366 } 5367 } 5368 5369 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 5370 sctx->cur_inode_size, &found_clone); 5371 if (ret != -ENOENT && ret < 0) 5372 goto out; 5373 5374 ret = send_write_or_clone(sctx, path, key, found_clone); 5375 if (ret) 5376 goto out; 5377 out_hole: 5378 ret = maybe_send_hole(sctx, path, key); 5379 out: 5380 return ret; 5381 } 5382 5383 static int process_all_extents(struct send_ctx *sctx) 5384 { 5385 int ret; 5386 struct btrfs_root *root; 5387 struct btrfs_path *path; 5388 struct btrfs_key key; 5389 struct btrfs_key found_key; 5390 struct extent_buffer *eb; 5391 int slot; 5392 5393 root = sctx->send_root; 5394 path = alloc_path_for_send(); 5395 if (!path) 5396 return -ENOMEM; 5397 5398 key.objectid = sctx->cmp_key->objectid; 5399 key.type = BTRFS_EXTENT_DATA_KEY; 5400 key.offset = 0; 5401 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5402 if (ret < 0) 5403 goto out; 5404 5405 while (1) { 5406 eb = path->nodes[0]; 5407 slot = path->slots[0]; 5408 5409 if (slot >= btrfs_header_nritems(eb)) { 5410 ret = btrfs_next_leaf(root, path); 5411 if (ret < 0) { 5412 goto out; 5413 } else if (ret > 0) { 5414 ret = 0; 5415 break; 5416 } 5417 continue; 5418 } 5419 5420 btrfs_item_key_to_cpu(eb, &found_key, slot); 5421 5422 if (found_key.objectid != key.objectid || 5423 found_key.type != key.type) { 5424 ret = 0; 5425 goto out; 5426 } 5427 5428 ret = process_extent(sctx, path, &found_key); 5429 if (ret < 0) 5430 goto out; 5431 5432 path->slots[0]++; 5433 } 5434 5435 out: 5436 btrfs_free_path(path); 5437 return ret; 5438 } 5439 5440 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 5441 int *pending_move, 5442 int *refs_processed) 5443 { 5444 int ret = 0; 5445 5446 if (sctx->cur_ino == 0) 5447 goto out; 5448 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 5449 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 5450 goto out; 5451 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 5452 goto out; 5453 5454 ret = process_recorded_refs(sctx, pending_move); 5455 if (ret < 0) 5456 goto out; 5457 5458 *refs_processed = 1; 5459 out: 5460 return ret; 5461 } 5462 5463 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 5464 { 5465 int ret = 0; 5466 u64 left_mode; 5467 u64 left_uid; 5468 u64 left_gid; 5469 u64 right_mode; 5470 u64 right_uid; 5471 u64 right_gid; 5472 int need_chmod = 0; 5473 int need_chown = 0; 5474 int pending_move = 0; 5475 int refs_processed = 0; 5476 5477 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 5478 &refs_processed); 5479 if (ret < 0) 5480 goto out; 5481 5482 /* 5483 * We have processed the refs and thus need to advance send_progress. 5484 * Now, calls to get_cur_xxx will take the updated refs of the current 5485 * inode into account. 5486 * 5487 * On the other hand, if our current inode is a directory and couldn't 5488 * be moved/renamed because its parent was renamed/moved too and it has 5489 * a higher inode number, we can only move/rename our current inode 5490 * after we moved/renamed its parent. Therefore in this case operate on 5491 * the old path (pre move/rename) of our current inode, and the 5492 * move/rename will be performed later. 5493 */ 5494 if (refs_processed && !pending_move) 5495 sctx->send_progress = sctx->cur_ino + 1; 5496 5497 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 5498 goto out; 5499 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 5500 goto out; 5501 5502 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 5503 &left_mode, &left_uid, &left_gid, NULL); 5504 if (ret < 0) 5505 goto out; 5506 5507 if (!sctx->parent_root || sctx->cur_inode_new) { 5508 need_chown = 1; 5509 if (!S_ISLNK(sctx->cur_inode_mode)) 5510 need_chmod = 1; 5511 } else { 5512 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 5513 NULL, NULL, &right_mode, &right_uid, 5514 &right_gid, NULL); 5515 if (ret < 0) 5516 goto out; 5517 5518 if (left_uid != right_uid || left_gid != right_gid) 5519 need_chown = 1; 5520 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 5521 need_chmod = 1; 5522 } 5523 5524 if (S_ISREG(sctx->cur_inode_mode)) { 5525 if (need_send_hole(sctx)) { 5526 if (sctx->cur_inode_last_extent == (u64)-1 || 5527 sctx->cur_inode_last_extent < 5528 sctx->cur_inode_size) { 5529 ret = get_last_extent(sctx, (u64)-1); 5530 if (ret) 5531 goto out; 5532 } 5533 if (sctx->cur_inode_last_extent < 5534 sctx->cur_inode_size) { 5535 ret = send_hole(sctx, sctx->cur_inode_size); 5536 if (ret) 5537 goto out; 5538 } 5539 } 5540 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5541 sctx->cur_inode_size); 5542 if (ret < 0) 5543 goto out; 5544 } 5545 5546 if (need_chown) { 5547 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5548 left_uid, left_gid); 5549 if (ret < 0) 5550 goto out; 5551 } 5552 if (need_chmod) { 5553 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5554 left_mode); 5555 if (ret < 0) 5556 goto out; 5557 } 5558 5559 /* 5560 * If other directory inodes depended on our current directory 5561 * inode's move/rename, now do their move/rename operations. 5562 */ 5563 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 5564 ret = apply_children_dir_moves(sctx); 5565 if (ret) 5566 goto out; 5567 /* 5568 * Need to send that every time, no matter if it actually 5569 * changed between the two trees as we have done changes to 5570 * the inode before. If our inode is a directory and it's 5571 * waiting to be moved/renamed, we will send its utimes when 5572 * it's moved/renamed, therefore we don't need to do it here. 5573 */ 5574 sctx->send_progress = sctx->cur_ino + 1; 5575 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 5576 if (ret < 0) 5577 goto out; 5578 } 5579 5580 out: 5581 return ret; 5582 } 5583 5584 static int changed_inode(struct send_ctx *sctx, 5585 enum btrfs_compare_tree_result result) 5586 { 5587 int ret = 0; 5588 struct btrfs_key *key = sctx->cmp_key; 5589 struct btrfs_inode_item *left_ii = NULL; 5590 struct btrfs_inode_item *right_ii = NULL; 5591 u64 left_gen = 0; 5592 u64 right_gen = 0; 5593 5594 sctx->cur_ino = key->objectid; 5595 sctx->cur_inode_new_gen = 0; 5596 sctx->cur_inode_last_extent = (u64)-1; 5597 5598 /* 5599 * Set send_progress to current inode. This will tell all get_cur_xxx 5600 * functions that the current inode's refs are not updated yet. Later, 5601 * when process_recorded_refs is finished, it is set to cur_ino + 1. 5602 */ 5603 sctx->send_progress = sctx->cur_ino; 5604 5605 if (result == BTRFS_COMPARE_TREE_NEW || 5606 result == BTRFS_COMPARE_TREE_CHANGED) { 5607 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 5608 sctx->left_path->slots[0], 5609 struct btrfs_inode_item); 5610 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 5611 left_ii); 5612 } else { 5613 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 5614 sctx->right_path->slots[0], 5615 struct btrfs_inode_item); 5616 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 5617 right_ii); 5618 } 5619 if (result == BTRFS_COMPARE_TREE_CHANGED) { 5620 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 5621 sctx->right_path->slots[0], 5622 struct btrfs_inode_item); 5623 5624 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 5625 right_ii); 5626 5627 /* 5628 * The cur_ino = root dir case is special here. We can't treat 5629 * the inode as deleted+reused because it would generate a 5630 * stream that tries to delete/mkdir the root dir. 5631 */ 5632 if (left_gen != right_gen && 5633 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 5634 sctx->cur_inode_new_gen = 1; 5635 } 5636 5637 if (result == BTRFS_COMPARE_TREE_NEW) { 5638 sctx->cur_inode_gen = left_gen; 5639 sctx->cur_inode_new = 1; 5640 sctx->cur_inode_deleted = 0; 5641 sctx->cur_inode_size = btrfs_inode_size( 5642 sctx->left_path->nodes[0], left_ii); 5643 sctx->cur_inode_mode = btrfs_inode_mode( 5644 sctx->left_path->nodes[0], left_ii); 5645 sctx->cur_inode_rdev = btrfs_inode_rdev( 5646 sctx->left_path->nodes[0], left_ii); 5647 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 5648 ret = send_create_inode_if_needed(sctx); 5649 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 5650 sctx->cur_inode_gen = right_gen; 5651 sctx->cur_inode_new = 0; 5652 sctx->cur_inode_deleted = 1; 5653 sctx->cur_inode_size = btrfs_inode_size( 5654 sctx->right_path->nodes[0], right_ii); 5655 sctx->cur_inode_mode = btrfs_inode_mode( 5656 sctx->right_path->nodes[0], right_ii); 5657 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 5658 /* 5659 * We need to do some special handling in case the inode was 5660 * reported as changed with a changed generation number. This 5661 * means that the original inode was deleted and new inode 5662 * reused the same inum. So we have to treat the old inode as 5663 * deleted and the new one as new. 5664 */ 5665 if (sctx->cur_inode_new_gen) { 5666 /* 5667 * First, process the inode as if it was deleted. 5668 */ 5669 sctx->cur_inode_gen = right_gen; 5670 sctx->cur_inode_new = 0; 5671 sctx->cur_inode_deleted = 1; 5672 sctx->cur_inode_size = btrfs_inode_size( 5673 sctx->right_path->nodes[0], right_ii); 5674 sctx->cur_inode_mode = btrfs_inode_mode( 5675 sctx->right_path->nodes[0], right_ii); 5676 ret = process_all_refs(sctx, 5677 BTRFS_COMPARE_TREE_DELETED); 5678 if (ret < 0) 5679 goto out; 5680 5681 /* 5682 * Now process the inode as if it was new. 5683 */ 5684 sctx->cur_inode_gen = left_gen; 5685 sctx->cur_inode_new = 1; 5686 sctx->cur_inode_deleted = 0; 5687 sctx->cur_inode_size = btrfs_inode_size( 5688 sctx->left_path->nodes[0], left_ii); 5689 sctx->cur_inode_mode = btrfs_inode_mode( 5690 sctx->left_path->nodes[0], left_ii); 5691 sctx->cur_inode_rdev = btrfs_inode_rdev( 5692 sctx->left_path->nodes[0], left_ii); 5693 ret = send_create_inode_if_needed(sctx); 5694 if (ret < 0) 5695 goto out; 5696 5697 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 5698 if (ret < 0) 5699 goto out; 5700 /* 5701 * Advance send_progress now as we did not get into 5702 * process_recorded_refs_if_needed in the new_gen case. 5703 */ 5704 sctx->send_progress = sctx->cur_ino + 1; 5705 5706 /* 5707 * Now process all extents and xattrs of the inode as if 5708 * they were all new. 5709 */ 5710 ret = process_all_extents(sctx); 5711 if (ret < 0) 5712 goto out; 5713 ret = process_all_new_xattrs(sctx); 5714 if (ret < 0) 5715 goto out; 5716 } else { 5717 sctx->cur_inode_gen = left_gen; 5718 sctx->cur_inode_new = 0; 5719 sctx->cur_inode_new_gen = 0; 5720 sctx->cur_inode_deleted = 0; 5721 sctx->cur_inode_size = btrfs_inode_size( 5722 sctx->left_path->nodes[0], left_ii); 5723 sctx->cur_inode_mode = btrfs_inode_mode( 5724 sctx->left_path->nodes[0], left_ii); 5725 } 5726 } 5727 5728 out: 5729 return ret; 5730 } 5731 5732 /* 5733 * We have to process new refs before deleted refs, but compare_trees gives us 5734 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 5735 * first and later process them in process_recorded_refs. 5736 * For the cur_inode_new_gen case, we skip recording completely because 5737 * changed_inode did already initiate processing of refs. The reason for this is 5738 * that in this case, compare_tree actually compares the refs of 2 different 5739 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 5740 * refs of the right tree as deleted and all refs of the left tree as new. 5741 */ 5742 static int changed_ref(struct send_ctx *sctx, 5743 enum btrfs_compare_tree_result result) 5744 { 5745 int ret = 0; 5746 5747 if (sctx->cur_ino != sctx->cmp_key->objectid) { 5748 inconsistent_snapshot_error(sctx, result, "reference"); 5749 return -EIO; 5750 } 5751 5752 if (!sctx->cur_inode_new_gen && 5753 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 5754 if (result == BTRFS_COMPARE_TREE_NEW) 5755 ret = record_new_ref(sctx); 5756 else if (result == BTRFS_COMPARE_TREE_DELETED) 5757 ret = record_deleted_ref(sctx); 5758 else if (result == BTRFS_COMPARE_TREE_CHANGED) 5759 ret = record_changed_ref(sctx); 5760 } 5761 5762 return ret; 5763 } 5764 5765 /* 5766 * Process new/deleted/changed xattrs. We skip processing in the 5767 * cur_inode_new_gen case because changed_inode did already initiate processing 5768 * of xattrs. The reason is the same as in changed_ref 5769 */ 5770 static int changed_xattr(struct send_ctx *sctx, 5771 enum btrfs_compare_tree_result result) 5772 { 5773 int ret = 0; 5774 5775 if (sctx->cur_ino != sctx->cmp_key->objectid) { 5776 inconsistent_snapshot_error(sctx, result, "xattr"); 5777 return -EIO; 5778 } 5779 5780 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 5781 if (result == BTRFS_COMPARE_TREE_NEW) 5782 ret = process_new_xattr(sctx); 5783 else if (result == BTRFS_COMPARE_TREE_DELETED) 5784 ret = process_deleted_xattr(sctx); 5785 else if (result == BTRFS_COMPARE_TREE_CHANGED) 5786 ret = process_changed_xattr(sctx); 5787 } 5788 5789 return ret; 5790 } 5791 5792 /* 5793 * Process new/deleted/changed extents. We skip processing in the 5794 * cur_inode_new_gen case because changed_inode did already initiate processing 5795 * of extents. The reason is the same as in changed_ref 5796 */ 5797 static int changed_extent(struct send_ctx *sctx, 5798 enum btrfs_compare_tree_result result) 5799 { 5800 int ret = 0; 5801 5802 if (sctx->cur_ino != sctx->cmp_key->objectid) { 5803 inconsistent_snapshot_error(sctx, result, "extent"); 5804 return -EIO; 5805 } 5806 5807 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 5808 if (result != BTRFS_COMPARE_TREE_DELETED) 5809 ret = process_extent(sctx, sctx->left_path, 5810 sctx->cmp_key); 5811 } 5812 5813 return ret; 5814 } 5815 5816 static int dir_changed(struct send_ctx *sctx, u64 dir) 5817 { 5818 u64 orig_gen, new_gen; 5819 int ret; 5820 5821 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 5822 NULL, NULL); 5823 if (ret) 5824 return ret; 5825 5826 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 5827 NULL, NULL, NULL); 5828 if (ret) 5829 return ret; 5830 5831 return (orig_gen != new_gen) ? 1 : 0; 5832 } 5833 5834 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 5835 struct btrfs_key *key) 5836 { 5837 struct btrfs_inode_extref *extref; 5838 struct extent_buffer *leaf; 5839 u64 dirid = 0, last_dirid = 0; 5840 unsigned long ptr; 5841 u32 item_size; 5842 u32 cur_offset = 0; 5843 int ref_name_len; 5844 int ret = 0; 5845 5846 /* Easy case, just check this one dirid */ 5847 if (key->type == BTRFS_INODE_REF_KEY) { 5848 dirid = key->offset; 5849 5850 ret = dir_changed(sctx, dirid); 5851 goto out; 5852 } 5853 5854 leaf = path->nodes[0]; 5855 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 5856 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 5857 while (cur_offset < item_size) { 5858 extref = (struct btrfs_inode_extref *)(ptr + 5859 cur_offset); 5860 dirid = btrfs_inode_extref_parent(leaf, extref); 5861 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 5862 cur_offset += ref_name_len + sizeof(*extref); 5863 if (dirid == last_dirid) 5864 continue; 5865 ret = dir_changed(sctx, dirid); 5866 if (ret) 5867 break; 5868 last_dirid = dirid; 5869 } 5870 out: 5871 return ret; 5872 } 5873 5874 /* 5875 * Updates compare related fields in sctx and simply forwards to the actual 5876 * changed_xxx functions. 5877 */ 5878 static int changed_cb(struct btrfs_root *left_root, 5879 struct btrfs_root *right_root, 5880 struct btrfs_path *left_path, 5881 struct btrfs_path *right_path, 5882 struct btrfs_key *key, 5883 enum btrfs_compare_tree_result result, 5884 void *ctx) 5885 { 5886 int ret = 0; 5887 struct send_ctx *sctx = ctx; 5888 5889 if (result == BTRFS_COMPARE_TREE_SAME) { 5890 if (key->type == BTRFS_INODE_REF_KEY || 5891 key->type == BTRFS_INODE_EXTREF_KEY) { 5892 ret = compare_refs(sctx, left_path, key); 5893 if (!ret) 5894 return 0; 5895 if (ret < 0) 5896 return ret; 5897 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 5898 return maybe_send_hole(sctx, left_path, key); 5899 } else { 5900 return 0; 5901 } 5902 result = BTRFS_COMPARE_TREE_CHANGED; 5903 ret = 0; 5904 } 5905 5906 sctx->left_path = left_path; 5907 sctx->right_path = right_path; 5908 sctx->cmp_key = key; 5909 5910 ret = finish_inode_if_needed(sctx, 0); 5911 if (ret < 0) 5912 goto out; 5913 5914 /* Ignore non-FS objects */ 5915 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 5916 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 5917 goto out; 5918 5919 if (key->type == BTRFS_INODE_ITEM_KEY) 5920 ret = changed_inode(sctx, result); 5921 else if (key->type == BTRFS_INODE_REF_KEY || 5922 key->type == BTRFS_INODE_EXTREF_KEY) 5923 ret = changed_ref(sctx, result); 5924 else if (key->type == BTRFS_XATTR_ITEM_KEY) 5925 ret = changed_xattr(sctx, result); 5926 else if (key->type == BTRFS_EXTENT_DATA_KEY) 5927 ret = changed_extent(sctx, result); 5928 5929 out: 5930 return ret; 5931 } 5932 5933 static int full_send_tree(struct send_ctx *sctx) 5934 { 5935 int ret; 5936 struct btrfs_root *send_root = sctx->send_root; 5937 struct btrfs_key key; 5938 struct btrfs_key found_key; 5939 struct btrfs_path *path; 5940 struct extent_buffer *eb; 5941 int slot; 5942 5943 path = alloc_path_for_send(); 5944 if (!path) 5945 return -ENOMEM; 5946 5947 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 5948 key.type = BTRFS_INODE_ITEM_KEY; 5949 key.offset = 0; 5950 5951 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 5952 if (ret < 0) 5953 goto out; 5954 if (ret) 5955 goto out_finish; 5956 5957 while (1) { 5958 eb = path->nodes[0]; 5959 slot = path->slots[0]; 5960 btrfs_item_key_to_cpu(eb, &found_key, slot); 5961 5962 ret = changed_cb(send_root, NULL, path, NULL, 5963 &found_key, BTRFS_COMPARE_TREE_NEW, sctx); 5964 if (ret < 0) 5965 goto out; 5966 5967 key.objectid = found_key.objectid; 5968 key.type = found_key.type; 5969 key.offset = found_key.offset + 1; 5970 5971 ret = btrfs_next_item(send_root, path); 5972 if (ret < 0) 5973 goto out; 5974 if (ret) { 5975 ret = 0; 5976 break; 5977 } 5978 } 5979 5980 out_finish: 5981 ret = finish_inode_if_needed(sctx, 1); 5982 5983 out: 5984 btrfs_free_path(path); 5985 return ret; 5986 } 5987 5988 static int send_subvol(struct send_ctx *sctx) 5989 { 5990 int ret; 5991 5992 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 5993 ret = send_header(sctx); 5994 if (ret < 0) 5995 goto out; 5996 } 5997 5998 ret = send_subvol_begin(sctx); 5999 if (ret < 0) 6000 goto out; 6001 6002 if (sctx->parent_root) { 6003 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, 6004 changed_cb, sctx); 6005 if (ret < 0) 6006 goto out; 6007 ret = finish_inode_if_needed(sctx, 1); 6008 if (ret < 0) 6009 goto out; 6010 } else { 6011 ret = full_send_tree(sctx); 6012 if (ret < 0) 6013 goto out; 6014 } 6015 6016 out: 6017 free_recorded_refs(sctx); 6018 return ret; 6019 } 6020 6021 /* 6022 * If orphan cleanup did remove any orphans from a root, it means the tree 6023 * was modified and therefore the commit root is not the same as the current 6024 * root anymore. This is a problem, because send uses the commit root and 6025 * therefore can see inode items that don't exist in the current root anymore, 6026 * and for example make calls to btrfs_iget, which will do tree lookups based 6027 * on the current root and not on the commit root. Those lookups will fail, 6028 * returning a -ESTALE error, and making send fail with that error. So make 6029 * sure a send does not see any orphans we have just removed, and that it will 6030 * see the same inodes regardless of whether a transaction commit happened 6031 * before it started (meaning that the commit root will be the same as the 6032 * current root) or not. 6033 */ 6034 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 6035 { 6036 int i; 6037 struct btrfs_trans_handle *trans = NULL; 6038 6039 again: 6040 if (sctx->parent_root && 6041 sctx->parent_root->node != sctx->parent_root->commit_root) 6042 goto commit_trans; 6043 6044 for (i = 0; i < sctx->clone_roots_cnt; i++) 6045 if (sctx->clone_roots[i].root->node != 6046 sctx->clone_roots[i].root->commit_root) 6047 goto commit_trans; 6048 6049 if (trans) 6050 return btrfs_end_transaction(trans, sctx->send_root); 6051 6052 return 0; 6053 6054 commit_trans: 6055 /* Use any root, all fs roots will get their commit roots updated. */ 6056 if (!trans) { 6057 trans = btrfs_join_transaction(sctx->send_root); 6058 if (IS_ERR(trans)) 6059 return PTR_ERR(trans); 6060 goto again; 6061 } 6062 6063 return btrfs_commit_transaction(trans, sctx->send_root); 6064 } 6065 6066 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 6067 { 6068 spin_lock(&root->root_item_lock); 6069 root->send_in_progress--; 6070 /* 6071 * Not much left to do, we don't know why it's unbalanced and 6072 * can't blindly reset it to 0. 6073 */ 6074 if (root->send_in_progress < 0) 6075 btrfs_err(root->fs_info, 6076 "send_in_progres unbalanced %d root %llu", 6077 root->send_in_progress, root->root_key.objectid); 6078 spin_unlock(&root->root_item_lock); 6079 } 6080 6081 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_) 6082 { 6083 int ret = 0; 6084 struct btrfs_root *send_root; 6085 struct btrfs_root *clone_root; 6086 struct btrfs_fs_info *fs_info; 6087 struct btrfs_ioctl_send_args *arg = NULL; 6088 struct btrfs_key key; 6089 struct send_ctx *sctx = NULL; 6090 u32 i; 6091 u64 *clone_sources_tmp = NULL; 6092 int clone_sources_to_rollback = 0; 6093 unsigned alloc_size; 6094 int sort_clone_roots = 0; 6095 int index; 6096 6097 if (!capable(CAP_SYS_ADMIN)) 6098 return -EPERM; 6099 6100 send_root = BTRFS_I(file_inode(mnt_file))->root; 6101 fs_info = send_root->fs_info; 6102 6103 /* 6104 * The subvolume must remain read-only during send, protect against 6105 * making it RW. This also protects against deletion. 6106 */ 6107 spin_lock(&send_root->root_item_lock); 6108 send_root->send_in_progress++; 6109 spin_unlock(&send_root->root_item_lock); 6110 6111 /* 6112 * This is done when we lookup the root, it should already be complete 6113 * by the time we get here. 6114 */ 6115 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE); 6116 6117 /* 6118 * Userspace tools do the checks and warn the user if it's 6119 * not RO. 6120 */ 6121 if (!btrfs_root_readonly(send_root)) { 6122 ret = -EPERM; 6123 goto out; 6124 } 6125 6126 arg = memdup_user(arg_, sizeof(*arg)); 6127 if (IS_ERR(arg)) { 6128 ret = PTR_ERR(arg); 6129 arg = NULL; 6130 goto out; 6131 } 6132 6133 if (arg->clone_sources_count > 6134 ULLONG_MAX / sizeof(*arg->clone_sources)) { 6135 ret = -EINVAL; 6136 goto out; 6137 } 6138 6139 if (!access_ok(VERIFY_READ, arg->clone_sources, 6140 sizeof(*arg->clone_sources) * 6141 arg->clone_sources_count)) { 6142 ret = -EFAULT; 6143 goto out; 6144 } 6145 6146 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 6147 ret = -EINVAL; 6148 goto out; 6149 } 6150 6151 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 6152 if (!sctx) { 6153 ret = -ENOMEM; 6154 goto out; 6155 } 6156 6157 INIT_LIST_HEAD(&sctx->new_refs); 6158 INIT_LIST_HEAD(&sctx->deleted_refs); 6159 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL); 6160 INIT_LIST_HEAD(&sctx->name_cache_list); 6161 6162 sctx->flags = arg->flags; 6163 6164 sctx->send_filp = fget(arg->send_fd); 6165 if (!sctx->send_filp) { 6166 ret = -EBADF; 6167 goto out; 6168 } 6169 6170 sctx->send_root = send_root; 6171 /* 6172 * Unlikely but possible, if the subvolume is marked for deletion but 6173 * is slow to remove the directory entry, send can still be started 6174 */ 6175 if (btrfs_root_dead(sctx->send_root)) { 6176 ret = -EPERM; 6177 goto out; 6178 } 6179 6180 sctx->clone_roots_cnt = arg->clone_sources_count; 6181 6182 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 6183 sctx->send_buf = kmalloc(sctx->send_max_size, GFP_KERNEL | __GFP_NOWARN); 6184 if (!sctx->send_buf) { 6185 sctx->send_buf = vmalloc(sctx->send_max_size); 6186 if (!sctx->send_buf) { 6187 ret = -ENOMEM; 6188 goto out; 6189 } 6190 } 6191 6192 sctx->read_buf = kmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL | __GFP_NOWARN); 6193 if (!sctx->read_buf) { 6194 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE); 6195 if (!sctx->read_buf) { 6196 ret = -ENOMEM; 6197 goto out; 6198 } 6199 } 6200 6201 sctx->pending_dir_moves = RB_ROOT; 6202 sctx->waiting_dir_moves = RB_ROOT; 6203 sctx->orphan_dirs = RB_ROOT; 6204 6205 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1); 6206 6207 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN); 6208 if (!sctx->clone_roots) { 6209 sctx->clone_roots = vzalloc(alloc_size); 6210 if (!sctx->clone_roots) { 6211 ret = -ENOMEM; 6212 goto out; 6213 } 6214 } 6215 6216 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources); 6217 6218 if (arg->clone_sources_count) { 6219 clone_sources_tmp = kmalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN); 6220 if (!clone_sources_tmp) { 6221 clone_sources_tmp = vmalloc(alloc_size); 6222 if (!clone_sources_tmp) { 6223 ret = -ENOMEM; 6224 goto out; 6225 } 6226 } 6227 6228 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 6229 alloc_size); 6230 if (ret) { 6231 ret = -EFAULT; 6232 goto out; 6233 } 6234 6235 for (i = 0; i < arg->clone_sources_count; i++) { 6236 key.objectid = clone_sources_tmp[i]; 6237 key.type = BTRFS_ROOT_ITEM_KEY; 6238 key.offset = (u64)-1; 6239 6240 index = srcu_read_lock(&fs_info->subvol_srcu); 6241 6242 clone_root = btrfs_read_fs_root_no_name(fs_info, &key); 6243 if (IS_ERR(clone_root)) { 6244 srcu_read_unlock(&fs_info->subvol_srcu, index); 6245 ret = PTR_ERR(clone_root); 6246 goto out; 6247 } 6248 spin_lock(&clone_root->root_item_lock); 6249 if (!btrfs_root_readonly(clone_root) || 6250 btrfs_root_dead(clone_root)) { 6251 spin_unlock(&clone_root->root_item_lock); 6252 srcu_read_unlock(&fs_info->subvol_srcu, index); 6253 ret = -EPERM; 6254 goto out; 6255 } 6256 clone_root->send_in_progress++; 6257 spin_unlock(&clone_root->root_item_lock); 6258 srcu_read_unlock(&fs_info->subvol_srcu, index); 6259 6260 sctx->clone_roots[i].root = clone_root; 6261 clone_sources_to_rollback = i + 1; 6262 } 6263 kvfree(clone_sources_tmp); 6264 clone_sources_tmp = NULL; 6265 } 6266 6267 if (arg->parent_root) { 6268 key.objectid = arg->parent_root; 6269 key.type = BTRFS_ROOT_ITEM_KEY; 6270 key.offset = (u64)-1; 6271 6272 index = srcu_read_lock(&fs_info->subvol_srcu); 6273 6274 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key); 6275 if (IS_ERR(sctx->parent_root)) { 6276 srcu_read_unlock(&fs_info->subvol_srcu, index); 6277 ret = PTR_ERR(sctx->parent_root); 6278 goto out; 6279 } 6280 6281 spin_lock(&sctx->parent_root->root_item_lock); 6282 sctx->parent_root->send_in_progress++; 6283 if (!btrfs_root_readonly(sctx->parent_root) || 6284 btrfs_root_dead(sctx->parent_root)) { 6285 spin_unlock(&sctx->parent_root->root_item_lock); 6286 srcu_read_unlock(&fs_info->subvol_srcu, index); 6287 ret = -EPERM; 6288 goto out; 6289 } 6290 spin_unlock(&sctx->parent_root->root_item_lock); 6291 6292 srcu_read_unlock(&fs_info->subvol_srcu, index); 6293 } 6294 6295 /* 6296 * Clones from send_root are allowed, but only if the clone source 6297 * is behind the current send position. This is checked while searching 6298 * for possible clone sources. 6299 */ 6300 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root; 6301 6302 /* We do a bsearch later */ 6303 sort(sctx->clone_roots, sctx->clone_roots_cnt, 6304 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 6305 NULL); 6306 sort_clone_roots = 1; 6307 6308 ret = ensure_commit_roots_uptodate(sctx); 6309 if (ret) 6310 goto out; 6311 6312 current->journal_info = BTRFS_SEND_TRANS_STUB; 6313 ret = send_subvol(sctx); 6314 current->journal_info = NULL; 6315 if (ret < 0) 6316 goto out; 6317 6318 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 6319 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 6320 if (ret < 0) 6321 goto out; 6322 ret = send_cmd(sctx); 6323 if (ret < 0) 6324 goto out; 6325 } 6326 6327 out: 6328 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 6329 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 6330 struct rb_node *n; 6331 struct pending_dir_move *pm; 6332 6333 n = rb_first(&sctx->pending_dir_moves); 6334 pm = rb_entry(n, struct pending_dir_move, node); 6335 while (!list_empty(&pm->list)) { 6336 struct pending_dir_move *pm2; 6337 6338 pm2 = list_first_entry(&pm->list, 6339 struct pending_dir_move, list); 6340 free_pending_move(sctx, pm2); 6341 } 6342 free_pending_move(sctx, pm); 6343 } 6344 6345 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 6346 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 6347 struct rb_node *n; 6348 struct waiting_dir_move *dm; 6349 6350 n = rb_first(&sctx->waiting_dir_moves); 6351 dm = rb_entry(n, struct waiting_dir_move, node); 6352 rb_erase(&dm->node, &sctx->waiting_dir_moves); 6353 kfree(dm); 6354 } 6355 6356 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 6357 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 6358 struct rb_node *n; 6359 struct orphan_dir_info *odi; 6360 6361 n = rb_first(&sctx->orphan_dirs); 6362 odi = rb_entry(n, struct orphan_dir_info, node); 6363 free_orphan_dir_info(sctx, odi); 6364 } 6365 6366 if (sort_clone_roots) { 6367 for (i = 0; i < sctx->clone_roots_cnt; i++) 6368 btrfs_root_dec_send_in_progress( 6369 sctx->clone_roots[i].root); 6370 } else { 6371 for (i = 0; sctx && i < clone_sources_to_rollback; i++) 6372 btrfs_root_dec_send_in_progress( 6373 sctx->clone_roots[i].root); 6374 6375 btrfs_root_dec_send_in_progress(send_root); 6376 } 6377 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) 6378 btrfs_root_dec_send_in_progress(sctx->parent_root); 6379 6380 kfree(arg); 6381 kvfree(clone_sources_tmp); 6382 6383 if (sctx) { 6384 if (sctx->send_filp) 6385 fput(sctx->send_filp); 6386 6387 kvfree(sctx->clone_roots); 6388 kvfree(sctx->send_buf); 6389 kvfree(sctx->read_buf); 6390 6391 name_cache_free(sctx); 6392 6393 kfree(sctx); 6394 } 6395 6396 return ret; 6397 } 6398