xref: /openbmc/linux/fs/btrfs/send.c (revision f5b06569)
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 #include "compression.h"
38 
39 static int g_verbose = 0;
40 
41 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
42 
43 /*
44  * A fs_path is a helper to dynamically build path names with unknown size.
45  * It reallocates the internal buffer on demand.
46  * It allows fast adding of path elements on the right side (normal path) and
47  * fast adding to the left side (reversed path). A reversed path can also be
48  * unreversed if needed.
49  */
50 struct fs_path {
51 	union {
52 		struct {
53 			char *start;
54 			char *end;
55 
56 			char *buf;
57 			unsigned short buf_len:15;
58 			unsigned short reversed:1;
59 			char inline_buf[];
60 		};
61 		/*
62 		 * Average path length does not exceed 200 bytes, we'll have
63 		 * better packing in the slab and higher chance to satisfy
64 		 * a allocation later during send.
65 		 */
66 		char pad[256];
67 	};
68 };
69 #define FS_PATH_INLINE_SIZE \
70 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
71 
72 
73 /* reused for each extent */
74 struct clone_root {
75 	struct btrfs_root *root;
76 	u64 ino;
77 	u64 offset;
78 
79 	u64 found_refs;
80 };
81 
82 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
83 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
84 
85 struct send_ctx {
86 	struct file *send_filp;
87 	loff_t send_off;
88 	char *send_buf;
89 	u32 send_size;
90 	u32 send_max_size;
91 	u64 total_send_size;
92 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
93 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
94 
95 	struct btrfs_root *send_root;
96 	struct btrfs_root *parent_root;
97 	struct clone_root *clone_roots;
98 	int clone_roots_cnt;
99 
100 	/* current state of the compare_tree call */
101 	struct btrfs_path *left_path;
102 	struct btrfs_path *right_path;
103 	struct btrfs_key *cmp_key;
104 
105 	/*
106 	 * infos of the currently processed inode. In case of deleted inodes,
107 	 * these are the values from the deleted inode.
108 	 */
109 	u64 cur_ino;
110 	u64 cur_inode_gen;
111 	int cur_inode_new;
112 	int cur_inode_new_gen;
113 	int cur_inode_deleted;
114 	u64 cur_inode_size;
115 	u64 cur_inode_mode;
116 	u64 cur_inode_rdev;
117 	u64 cur_inode_last_extent;
118 
119 	u64 send_progress;
120 
121 	struct list_head new_refs;
122 	struct list_head deleted_refs;
123 
124 	struct radix_tree_root name_cache;
125 	struct list_head name_cache_list;
126 	int name_cache_size;
127 
128 	struct file_ra_state ra;
129 
130 	char *read_buf;
131 
132 	/*
133 	 * We process inodes by their increasing order, so if before an
134 	 * incremental send we reverse the parent/child relationship of
135 	 * directories such that a directory with a lower inode number was
136 	 * the parent of a directory with a higher inode number, and the one
137 	 * becoming the new parent got renamed too, we can't rename/move the
138 	 * directory with lower inode number when we finish processing it - we
139 	 * must process the directory with higher inode number first, then
140 	 * rename/move it and then rename/move the directory with lower inode
141 	 * number. Example follows.
142 	 *
143 	 * Tree state when the first send was performed:
144 	 *
145 	 * .
146 	 * |-- a                   (ino 257)
147 	 *     |-- b               (ino 258)
148 	 *         |
149 	 *         |
150 	 *         |-- c           (ino 259)
151 	 *         |   |-- d       (ino 260)
152 	 *         |
153 	 *         |-- c2          (ino 261)
154 	 *
155 	 * Tree state when the second (incremental) send is performed:
156 	 *
157 	 * .
158 	 * |-- a                   (ino 257)
159 	 *     |-- b               (ino 258)
160 	 *         |-- c2          (ino 261)
161 	 *             |-- d2      (ino 260)
162 	 *                 |-- cc  (ino 259)
163 	 *
164 	 * The sequence of steps that lead to the second state was:
165 	 *
166 	 * mv /a/b/c/d /a/b/c2/d2
167 	 * mv /a/b/c /a/b/c2/d2/cc
168 	 *
169 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
170 	 * before we move "d", which has higher inode number.
171 	 *
172 	 * So we just memorize which move/rename operations must be performed
173 	 * later when their respective parent is processed and moved/renamed.
174 	 */
175 
176 	/* Indexed by parent directory inode number. */
177 	struct rb_root pending_dir_moves;
178 
179 	/*
180 	 * Reverse index, indexed by the inode number of a directory that
181 	 * is waiting for the move/rename of its immediate parent before its
182 	 * own move/rename can be performed.
183 	 */
184 	struct rb_root waiting_dir_moves;
185 
186 	/*
187 	 * A directory that is going to be rm'ed might have a child directory
188 	 * which is in the pending directory moves index above. In this case,
189 	 * the directory can only be removed after the move/rename of its child
190 	 * is performed. Example:
191 	 *
192 	 * Parent snapshot:
193 	 *
194 	 * .                        (ino 256)
195 	 * |-- a/                   (ino 257)
196 	 *     |-- b/               (ino 258)
197 	 *         |-- c/           (ino 259)
198 	 *         |   |-- x/       (ino 260)
199 	 *         |
200 	 *         |-- y/           (ino 261)
201 	 *
202 	 * Send snapshot:
203 	 *
204 	 * .                        (ino 256)
205 	 * |-- a/                   (ino 257)
206 	 *     |-- b/               (ino 258)
207 	 *         |-- YY/          (ino 261)
208 	 *              |-- x/      (ino 260)
209 	 *
210 	 * Sequence of steps that lead to the send snapshot:
211 	 * rm -f /a/b/c/foo.txt
212 	 * mv /a/b/y /a/b/YY
213 	 * mv /a/b/c/x /a/b/YY
214 	 * rmdir /a/b/c
215 	 *
216 	 * When the child is processed, its move/rename is delayed until its
217 	 * parent is processed (as explained above), but all other operations
218 	 * like update utimes, chown, chgrp, etc, are performed and the paths
219 	 * that it uses for those operations must use the orphanized name of
220 	 * its parent (the directory we're going to rm later), so we need to
221 	 * memorize that name.
222 	 *
223 	 * Indexed by the inode number of the directory to be deleted.
224 	 */
225 	struct rb_root orphan_dirs;
226 };
227 
228 struct pending_dir_move {
229 	struct rb_node node;
230 	struct list_head list;
231 	u64 parent_ino;
232 	u64 ino;
233 	u64 gen;
234 	struct list_head update_refs;
235 };
236 
237 struct waiting_dir_move {
238 	struct rb_node node;
239 	u64 ino;
240 	/*
241 	 * There might be some directory that could not be removed because it
242 	 * was waiting for this directory inode to be moved first. Therefore
243 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
244 	 */
245 	u64 rmdir_ino;
246 	bool orphanized;
247 };
248 
249 struct orphan_dir_info {
250 	struct rb_node node;
251 	u64 ino;
252 	u64 gen;
253 };
254 
255 struct name_cache_entry {
256 	struct list_head list;
257 	/*
258 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
259 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
260 	 * more then one inum would fall into the same entry, we use radix_list
261 	 * to store the additional entries. radix_list is also used to store
262 	 * entries where two entries have the same inum but different
263 	 * generations.
264 	 */
265 	struct list_head radix_list;
266 	u64 ino;
267 	u64 gen;
268 	u64 parent_ino;
269 	u64 parent_gen;
270 	int ret;
271 	int need_later_update;
272 	int name_len;
273 	char name[];
274 };
275 
276 static void inconsistent_snapshot_error(struct send_ctx *sctx,
277 					enum btrfs_compare_tree_result result,
278 					const char *what)
279 {
280 	const char *result_string;
281 
282 	switch (result) {
283 	case BTRFS_COMPARE_TREE_NEW:
284 		result_string = "new";
285 		break;
286 	case BTRFS_COMPARE_TREE_DELETED:
287 		result_string = "deleted";
288 		break;
289 	case BTRFS_COMPARE_TREE_CHANGED:
290 		result_string = "updated";
291 		break;
292 	case BTRFS_COMPARE_TREE_SAME:
293 		ASSERT(0);
294 		result_string = "unchanged";
295 		break;
296 	default:
297 		ASSERT(0);
298 		result_string = "unexpected";
299 	}
300 
301 	btrfs_err(sctx->send_root->fs_info,
302 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
303 		  result_string, what, sctx->cmp_key->objectid,
304 		  sctx->send_root->root_key.objectid,
305 		  (sctx->parent_root ?
306 		   sctx->parent_root->root_key.objectid : 0));
307 }
308 
309 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
310 
311 static struct waiting_dir_move *
312 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
313 
314 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
315 
316 static int need_send_hole(struct send_ctx *sctx)
317 {
318 	return (sctx->parent_root && !sctx->cur_inode_new &&
319 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
320 		S_ISREG(sctx->cur_inode_mode));
321 }
322 
323 static void fs_path_reset(struct fs_path *p)
324 {
325 	if (p->reversed) {
326 		p->start = p->buf + p->buf_len - 1;
327 		p->end = p->start;
328 		*p->start = 0;
329 	} else {
330 		p->start = p->buf;
331 		p->end = p->start;
332 		*p->start = 0;
333 	}
334 }
335 
336 static struct fs_path *fs_path_alloc(void)
337 {
338 	struct fs_path *p;
339 
340 	p = kmalloc(sizeof(*p), GFP_KERNEL);
341 	if (!p)
342 		return NULL;
343 	p->reversed = 0;
344 	p->buf = p->inline_buf;
345 	p->buf_len = FS_PATH_INLINE_SIZE;
346 	fs_path_reset(p);
347 	return p;
348 }
349 
350 static struct fs_path *fs_path_alloc_reversed(void)
351 {
352 	struct fs_path *p;
353 
354 	p = fs_path_alloc();
355 	if (!p)
356 		return NULL;
357 	p->reversed = 1;
358 	fs_path_reset(p);
359 	return p;
360 }
361 
362 static void fs_path_free(struct fs_path *p)
363 {
364 	if (!p)
365 		return;
366 	if (p->buf != p->inline_buf)
367 		kfree(p->buf);
368 	kfree(p);
369 }
370 
371 static int fs_path_len(struct fs_path *p)
372 {
373 	return p->end - p->start;
374 }
375 
376 static int fs_path_ensure_buf(struct fs_path *p, int len)
377 {
378 	char *tmp_buf;
379 	int path_len;
380 	int old_buf_len;
381 
382 	len++;
383 
384 	if (p->buf_len >= len)
385 		return 0;
386 
387 	if (len > PATH_MAX) {
388 		WARN_ON(1);
389 		return -ENOMEM;
390 	}
391 
392 	path_len = p->end - p->start;
393 	old_buf_len = p->buf_len;
394 
395 	/*
396 	 * First time the inline_buf does not suffice
397 	 */
398 	if (p->buf == p->inline_buf) {
399 		tmp_buf = kmalloc(len, GFP_KERNEL);
400 		if (tmp_buf)
401 			memcpy(tmp_buf, p->buf, old_buf_len);
402 	} else {
403 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
404 	}
405 	if (!tmp_buf)
406 		return -ENOMEM;
407 	p->buf = tmp_buf;
408 	/*
409 	 * The real size of the buffer is bigger, this will let the fast path
410 	 * happen most of the time
411 	 */
412 	p->buf_len = ksize(p->buf);
413 
414 	if (p->reversed) {
415 		tmp_buf = p->buf + old_buf_len - path_len - 1;
416 		p->end = p->buf + p->buf_len - 1;
417 		p->start = p->end - path_len;
418 		memmove(p->start, tmp_buf, path_len + 1);
419 	} else {
420 		p->start = p->buf;
421 		p->end = p->start + path_len;
422 	}
423 	return 0;
424 }
425 
426 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
427 				   char **prepared)
428 {
429 	int ret;
430 	int new_len;
431 
432 	new_len = p->end - p->start + name_len;
433 	if (p->start != p->end)
434 		new_len++;
435 	ret = fs_path_ensure_buf(p, new_len);
436 	if (ret < 0)
437 		goto out;
438 
439 	if (p->reversed) {
440 		if (p->start != p->end)
441 			*--p->start = '/';
442 		p->start -= name_len;
443 		*prepared = p->start;
444 	} else {
445 		if (p->start != p->end)
446 			*p->end++ = '/';
447 		*prepared = p->end;
448 		p->end += name_len;
449 		*p->end = 0;
450 	}
451 
452 out:
453 	return ret;
454 }
455 
456 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
457 {
458 	int ret;
459 	char *prepared;
460 
461 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
462 	if (ret < 0)
463 		goto out;
464 	memcpy(prepared, name, name_len);
465 
466 out:
467 	return ret;
468 }
469 
470 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
471 {
472 	int ret;
473 	char *prepared;
474 
475 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
476 	if (ret < 0)
477 		goto out;
478 	memcpy(prepared, p2->start, p2->end - p2->start);
479 
480 out:
481 	return ret;
482 }
483 
484 static int fs_path_add_from_extent_buffer(struct fs_path *p,
485 					  struct extent_buffer *eb,
486 					  unsigned long off, int len)
487 {
488 	int ret;
489 	char *prepared;
490 
491 	ret = fs_path_prepare_for_add(p, len, &prepared);
492 	if (ret < 0)
493 		goto out;
494 
495 	read_extent_buffer(eb, prepared, off, len);
496 
497 out:
498 	return ret;
499 }
500 
501 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
502 {
503 	int ret;
504 
505 	p->reversed = from->reversed;
506 	fs_path_reset(p);
507 
508 	ret = fs_path_add_path(p, from);
509 
510 	return ret;
511 }
512 
513 
514 static void fs_path_unreverse(struct fs_path *p)
515 {
516 	char *tmp;
517 	int len;
518 
519 	if (!p->reversed)
520 		return;
521 
522 	tmp = p->start;
523 	len = p->end - p->start;
524 	p->start = p->buf;
525 	p->end = p->start + len;
526 	memmove(p->start, tmp, len + 1);
527 	p->reversed = 0;
528 }
529 
530 static struct btrfs_path *alloc_path_for_send(void)
531 {
532 	struct btrfs_path *path;
533 
534 	path = btrfs_alloc_path();
535 	if (!path)
536 		return NULL;
537 	path->search_commit_root = 1;
538 	path->skip_locking = 1;
539 	path->need_commit_sem = 1;
540 	return path;
541 }
542 
543 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
544 {
545 	int ret;
546 	mm_segment_t old_fs;
547 	u32 pos = 0;
548 
549 	old_fs = get_fs();
550 	set_fs(KERNEL_DS);
551 
552 	while (pos < len) {
553 		ret = vfs_write(filp, (__force const char __user *)buf + pos,
554 				len - pos, off);
555 		/* TODO handle that correctly */
556 		/*if (ret == -ERESTARTSYS) {
557 			continue;
558 		}*/
559 		if (ret < 0)
560 			goto out;
561 		if (ret == 0) {
562 			ret = -EIO;
563 			goto out;
564 		}
565 		pos += ret;
566 	}
567 
568 	ret = 0;
569 
570 out:
571 	set_fs(old_fs);
572 	return ret;
573 }
574 
575 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
576 {
577 	struct btrfs_tlv_header *hdr;
578 	int total_len = sizeof(*hdr) + len;
579 	int left = sctx->send_max_size - sctx->send_size;
580 
581 	if (unlikely(left < total_len))
582 		return -EOVERFLOW;
583 
584 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
585 	hdr->tlv_type = cpu_to_le16(attr);
586 	hdr->tlv_len = cpu_to_le16(len);
587 	memcpy(hdr + 1, data, len);
588 	sctx->send_size += total_len;
589 
590 	return 0;
591 }
592 
593 #define TLV_PUT_DEFINE_INT(bits) \
594 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
595 			u##bits attr, u##bits value)			\
596 	{								\
597 		__le##bits __tmp = cpu_to_le##bits(value);		\
598 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
599 	}
600 
601 TLV_PUT_DEFINE_INT(64)
602 
603 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
604 			  const char *str, int len)
605 {
606 	if (len == -1)
607 		len = strlen(str);
608 	return tlv_put(sctx, attr, str, len);
609 }
610 
611 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
612 			const u8 *uuid)
613 {
614 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
615 }
616 
617 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
618 				  struct extent_buffer *eb,
619 				  struct btrfs_timespec *ts)
620 {
621 	struct btrfs_timespec bts;
622 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
623 	return tlv_put(sctx, attr, &bts, sizeof(bts));
624 }
625 
626 
627 #define TLV_PUT(sctx, attrtype, attrlen, data) \
628 	do { \
629 		ret = tlv_put(sctx, attrtype, attrlen, data); \
630 		if (ret < 0) \
631 			goto tlv_put_failure; \
632 	} while (0)
633 
634 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
635 	do { \
636 		ret = tlv_put_u##bits(sctx, attrtype, value); \
637 		if (ret < 0) \
638 			goto tlv_put_failure; \
639 	} while (0)
640 
641 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
642 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
643 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
644 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
645 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
646 	do { \
647 		ret = tlv_put_string(sctx, attrtype, str, len); \
648 		if (ret < 0) \
649 			goto tlv_put_failure; \
650 	} while (0)
651 #define TLV_PUT_PATH(sctx, attrtype, p) \
652 	do { \
653 		ret = tlv_put_string(sctx, attrtype, p->start, \
654 			p->end - p->start); \
655 		if (ret < 0) \
656 			goto tlv_put_failure; \
657 	} while(0)
658 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
659 	do { \
660 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
661 		if (ret < 0) \
662 			goto tlv_put_failure; \
663 	} while (0)
664 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
665 	do { \
666 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
667 		if (ret < 0) \
668 			goto tlv_put_failure; \
669 	} while (0)
670 
671 static int send_header(struct send_ctx *sctx)
672 {
673 	struct btrfs_stream_header hdr;
674 
675 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
676 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
677 
678 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
679 					&sctx->send_off);
680 }
681 
682 /*
683  * For each command/item we want to send to userspace, we call this function.
684  */
685 static int begin_cmd(struct send_ctx *sctx, int cmd)
686 {
687 	struct btrfs_cmd_header *hdr;
688 
689 	if (WARN_ON(!sctx->send_buf))
690 		return -EINVAL;
691 
692 	BUG_ON(sctx->send_size);
693 
694 	sctx->send_size += sizeof(*hdr);
695 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
696 	hdr->cmd = cpu_to_le16(cmd);
697 
698 	return 0;
699 }
700 
701 static int send_cmd(struct send_ctx *sctx)
702 {
703 	int ret;
704 	struct btrfs_cmd_header *hdr;
705 	u32 crc;
706 
707 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
708 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
709 	hdr->crc = 0;
710 
711 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
712 	hdr->crc = cpu_to_le32(crc);
713 
714 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
715 					&sctx->send_off);
716 
717 	sctx->total_send_size += sctx->send_size;
718 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
719 	sctx->send_size = 0;
720 
721 	return ret;
722 }
723 
724 /*
725  * Sends a move instruction to user space
726  */
727 static int send_rename(struct send_ctx *sctx,
728 		     struct fs_path *from, struct fs_path *to)
729 {
730 	int ret;
731 
732 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
733 
734 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
735 	if (ret < 0)
736 		goto out;
737 
738 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
739 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
740 
741 	ret = send_cmd(sctx);
742 
743 tlv_put_failure:
744 out:
745 	return ret;
746 }
747 
748 /*
749  * Sends a link instruction to user space
750  */
751 static int send_link(struct send_ctx *sctx,
752 		     struct fs_path *path, struct fs_path *lnk)
753 {
754 	int ret;
755 
756 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
757 
758 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
759 	if (ret < 0)
760 		goto out;
761 
762 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
763 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
764 
765 	ret = send_cmd(sctx);
766 
767 tlv_put_failure:
768 out:
769 	return ret;
770 }
771 
772 /*
773  * Sends an unlink instruction to user space
774  */
775 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
776 {
777 	int ret;
778 
779 verbose_printk("btrfs: send_unlink %s\n", path->start);
780 
781 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
782 	if (ret < 0)
783 		goto out;
784 
785 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
786 
787 	ret = send_cmd(sctx);
788 
789 tlv_put_failure:
790 out:
791 	return ret;
792 }
793 
794 /*
795  * Sends a rmdir instruction to user space
796  */
797 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
798 {
799 	int ret;
800 
801 verbose_printk("btrfs: send_rmdir %s\n", path->start);
802 
803 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
804 	if (ret < 0)
805 		goto out;
806 
807 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
808 
809 	ret = send_cmd(sctx);
810 
811 tlv_put_failure:
812 out:
813 	return ret;
814 }
815 
816 /*
817  * Helper function to retrieve some fields from an inode item.
818  */
819 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
820 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
821 			  u64 *gid, u64 *rdev)
822 {
823 	int ret;
824 	struct btrfs_inode_item *ii;
825 	struct btrfs_key key;
826 
827 	key.objectid = ino;
828 	key.type = BTRFS_INODE_ITEM_KEY;
829 	key.offset = 0;
830 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
831 	if (ret) {
832 		if (ret > 0)
833 			ret = -ENOENT;
834 		return ret;
835 	}
836 
837 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
838 			struct btrfs_inode_item);
839 	if (size)
840 		*size = btrfs_inode_size(path->nodes[0], ii);
841 	if (gen)
842 		*gen = btrfs_inode_generation(path->nodes[0], ii);
843 	if (mode)
844 		*mode = btrfs_inode_mode(path->nodes[0], ii);
845 	if (uid)
846 		*uid = btrfs_inode_uid(path->nodes[0], ii);
847 	if (gid)
848 		*gid = btrfs_inode_gid(path->nodes[0], ii);
849 	if (rdev)
850 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
851 
852 	return ret;
853 }
854 
855 static int get_inode_info(struct btrfs_root *root,
856 			  u64 ino, u64 *size, u64 *gen,
857 			  u64 *mode, u64 *uid, u64 *gid,
858 			  u64 *rdev)
859 {
860 	struct btrfs_path *path;
861 	int ret;
862 
863 	path = alloc_path_for_send();
864 	if (!path)
865 		return -ENOMEM;
866 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
867 			       rdev);
868 	btrfs_free_path(path);
869 	return ret;
870 }
871 
872 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
873 				   struct fs_path *p,
874 				   void *ctx);
875 
876 /*
877  * Helper function to iterate the entries in ONE btrfs_inode_ref or
878  * btrfs_inode_extref.
879  * The iterate callback may return a non zero value to stop iteration. This can
880  * be a negative value for error codes or 1 to simply stop it.
881  *
882  * path must point to the INODE_REF or INODE_EXTREF when called.
883  */
884 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
885 			     struct btrfs_key *found_key, int resolve,
886 			     iterate_inode_ref_t iterate, void *ctx)
887 {
888 	struct extent_buffer *eb = path->nodes[0];
889 	struct btrfs_item *item;
890 	struct btrfs_inode_ref *iref;
891 	struct btrfs_inode_extref *extref;
892 	struct btrfs_path *tmp_path;
893 	struct fs_path *p;
894 	u32 cur = 0;
895 	u32 total;
896 	int slot = path->slots[0];
897 	u32 name_len;
898 	char *start;
899 	int ret = 0;
900 	int num = 0;
901 	int index;
902 	u64 dir;
903 	unsigned long name_off;
904 	unsigned long elem_size;
905 	unsigned long ptr;
906 
907 	p = fs_path_alloc_reversed();
908 	if (!p)
909 		return -ENOMEM;
910 
911 	tmp_path = alloc_path_for_send();
912 	if (!tmp_path) {
913 		fs_path_free(p);
914 		return -ENOMEM;
915 	}
916 
917 
918 	if (found_key->type == BTRFS_INODE_REF_KEY) {
919 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
920 						    struct btrfs_inode_ref);
921 		item = btrfs_item_nr(slot);
922 		total = btrfs_item_size(eb, item);
923 		elem_size = sizeof(*iref);
924 	} else {
925 		ptr = btrfs_item_ptr_offset(eb, slot);
926 		total = btrfs_item_size_nr(eb, slot);
927 		elem_size = sizeof(*extref);
928 	}
929 
930 	while (cur < total) {
931 		fs_path_reset(p);
932 
933 		if (found_key->type == BTRFS_INODE_REF_KEY) {
934 			iref = (struct btrfs_inode_ref *)(ptr + cur);
935 			name_len = btrfs_inode_ref_name_len(eb, iref);
936 			name_off = (unsigned long)(iref + 1);
937 			index = btrfs_inode_ref_index(eb, iref);
938 			dir = found_key->offset;
939 		} else {
940 			extref = (struct btrfs_inode_extref *)(ptr + cur);
941 			name_len = btrfs_inode_extref_name_len(eb, extref);
942 			name_off = (unsigned long)&extref->name;
943 			index = btrfs_inode_extref_index(eb, extref);
944 			dir = btrfs_inode_extref_parent(eb, extref);
945 		}
946 
947 		if (resolve) {
948 			start = btrfs_ref_to_path(root, tmp_path, name_len,
949 						  name_off, eb, dir,
950 						  p->buf, p->buf_len);
951 			if (IS_ERR(start)) {
952 				ret = PTR_ERR(start);
953 				goto out;
954 			}
955 			if (start < p->buf) {
956 				/* overflow , try again with larger buffer */
957 				ret = fs_path_ensure_buf(p,
958 						p->buf_len + p->buf - start);
959 				if (ret < 0)
960 					goto out;
961 				start = btrfs_ref_to_path(root, tmp_path,
962 							  name_len, name_off,
963 							  eb, dir,
964 							  p->buf, p->buf_len);
965 				if (IS_ERR(start)) {
966 					ret = PTR_ERR(start);
967 					goto out;
968 				}
969 				BUG_ON(start < p->buf);
970 			}
971 			p->start = start;
972 		} else {
973 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
974 							     name_len);
975 			if (ret < 0)
976 				goto out;
977 		}
978 
979 		cur += elem_size + name_len;
980 		ret = iterate(num, dir, index, p, ctx);
981 		if (ret)
982 			goto out;
983 		num++;
984 	}
985 
986 out:
987 	btrfs_free_path(tmp_path);
988 	fs_path_free(p);
989 	return ret;
990 }
991 
992 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
993 				  const char *name, int name_len,
994 				  const char *data, int data_len,
995 				  u8 type, void *ctx);
996 
997 /*
998  * Helper function to iterate the entries in ONE btrfs_dir_item.
999  * The iterate callback may return a non zero value to stop iteration. This can
1000  * be a negative value for error codes or 1 to simply stop it.
1001  *
1002  * path must point to the dir item when called.
1003  */
1004 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1005 			    struct btrfs_key *found_key,
1006 			    iterate_dir_item_t iterate, void *ctx)
1007 {
1008 	int ret = 0;
1009 	struct extent_buffer *eb;
1010 	struct btrfs_item *item;
1011 	struct btrfs_dir_item *di;
1012 	struct btrfs_key di_key;
1013 	char *buf = NULL;
1014 	int buf_len;
1015 	u32 name_len;
1016 	u32 data_len;
1017 	u32 cur;
1018 	u32 len;
1019 	u32 total;
1020 	int slot;
1021 	int num;
1022 	u8 type;
1023 
1024 	/*
1025 	 * Start with a small buffer (1 page). If later we end up needing more
1026 	 * space, which can happen for xattrs on a fs with a leaf size greater
1027 	 * then the page size, attempt to increase the buffer. Typically xattr
1028 	 * values are small.
1029 	 */
1030 	buf_len = PATH_MAX;
1031 	buf = kmalloc(buf_len, GFP_KERNEL);
1032 	if (!buf) {
1033 		ret = -ENOMEM;
1034 		goto out;
1035 	}
1036 
1037 	eb = path->nodes[0];
1038 	slot = path->slots[0];
1039 	item = btrfs_item_nr(slot);
1040 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1041 	cur = 0;
1042 	len = 0;
1043 	total = btrfs_item_size(eb, item);
1044 
1045 	num = 0;
1046 	while (cur < total) {
1047 		name_len = btrfs_dir_name_len(eb, di);
1048 		data_len = btrfs_dir_data_len(eb, di);
1049 		type = btrfs_dir_type(eb, di);
1050 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1051 
1052 		if (type == BTRFS_FT_XATTR) {
1053 			if (name_len > XATTR_NAME_MAX) {
1054 				ret = -ENAMETOOLONG;
1055 				goto out;
1056 			}
1057 			if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
1058 				ret = -E2BIG;
1059 				goto out;
1060 			}
1061 		} else {
1062 			/*
1063 			 * Path too long
1064 			 */
1065 			if (name_len + data_len > PATH_MAX) {
1066 				ret = -ENAMETOOLONG;
1067 				goto out;
1068 			}
1069 		}
1070 
1071 		if (name_len + data_len > buf_len) {
1072 			buf_len = name_len + data_len;
1073 			if (is_vmalloc_addr(buf)) {
1074 				vfree(buf);
1075 				buf = NULL;
1076 			} else {
1077 				char *tmp = krealloc(buf, buf_len,
1078 						GFP_KERNEL | __GFP_NOWARN);
1079 
1080 				if (!tmp)
1081 					kfree(buf);
1082 				buf = tmp;
1083 			}
1084 			if (!buf) {
1085 				buf = vmalloc(buf_len);
1086 				if (!buf) {
1087 					ret = -ENOMEM;
1088 					goto out;
1089 				}
1090 			}
1091 		}
1092 
1093 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1094 				name_len + data_len);
1095 
1096 		len = sizeof(*di) + name_len + data_len;
1097 		di = (struct btrfs_dir_item *)((char *)di + len);
1098 		cur += len;
1099 
1100 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1101 				data_len, type, ctx);
1102 		if (ret < 0)
1103 			goto out;
1104 		if (ret) {
1105 			ret = 0;
1106 			goto out;
1107 		}
1108 
1109 		num++;
1110 	}
1111 
1112 out:
1113 	kvfree(buf);
1114 	return ret;
1115 }
1116 
1117 static int __copy_first_ref(int num, u64 dir, int index,
1118 			    struct fs_path *p, void *ctx)
1119 {
1120 	int ret;
1121 	struct fs_path *pt = ctx;
1122 
1123 	ret = fs_path_copy(pt, p);
1124 	if (ret < 0)
1125 		return ret;
1126 
1127 	/* we want the first only */
1128 	return 1;
1129 }
1130 
1131 /*
1132  * Retrieve the first path of an inode. If an inode has more then one
1133  * ref/hardlink, this is ignored.
1134  */
1135 static int get_inode_path(struct btrfs_root *root,
1136 			  u64 ino, struct fs_path *path)
1137 {
1138 	int ret;
1139 	struct btrfs_key key, found_key;
1140 	struct btrfs_path *p;
1141 
1142 	p = alloc_path_for_send();
1143 	if (!p)
1144 		return -ENOMEM;
1145 
1146 	fs_path_reset(path);
1147 
1148 	key.objectid = ino;
1149 	key.type = BTRFS_INODE_REF_KEY;
1150 	key.offset = 0;
1151 
1152 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1153 	if (ret < 0)
1154 		goto out;
1155 	if (ret) {
1156 		ret = 1;
1157 		goto out;
1158 	}
1159 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1160 	if (found_key.objectid != ino ||
1161 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1162 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1163 		ret = -ENOENT;
1164 		goto out;
1165 	}
1166 
1167 	ret = iterate_inode_ref(root, p, &found_key, 1,
1168 				__copy_first_ref, path);
1169 	if (ret < 0)
1170 		goto out;
1171 	ret = 0;
1172 
1173 out:
1174 	btrfs_free_path(p);
1175 	return ret;
1176 }
1177 
1178 struct backref_ctx {
1179 	struct send_ctx *sctx;
1180 
1181 	struct btrfs_path *path;
1182 	/* number of total found references */
1183 	u64 found;
1184 
1185 	/*
1186 	 * used for clones found in send_root. clones found behind cur_objectid
1187 	 * and cur_offset are not considered as allowed clones.
1188 	 */
1189 	u64 cur_objectid;
1190 	u64 cur_offset;
1191 
1192 	/* may be truncated in case it's the last extent in a file */
1193 	u64 extent_len;
1194 
1195 	/* data offset in the file extent item */
1196 	u64 data_offset;
1197 
1198 	/* Just to check for bugs in backref resolving */
1199 	int found_itself;
1200 };
1201 
1202 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1203 {
1204 	u64 root = (u64)(uintptr_t)key;
1205 	struct clone_root *cr = (struct clone_root *)elt;
1206 
1207 	if (root < cr->root->objectid)
1208 		return -1;
1209 	if (root > cr->root->objectid)
1210 		return 1;
1211 	return 0;
1212 }
1213 
1214 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1215 {
1216 	struct clone_root *cr1 = (struct clone_root *)e1;
1217 	struct clone_root *cr2 = (struct clone_root *)e2;
1218 
1219 	if (cr1->root->objectid < cr2->root->objectid)
1220 		return -1;
1221 	if (cr1->root->objectid > cr2->root->objectid)
1222 		return 1;
1223 	return 0;
1224 }
1225 
1226 /*
1227  * Called for every backref that is found for the current extent.
1228  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1229  */
1230 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1231 {
1232 	struct backref_ctx *bctx = ctx_;
1233 	struct clone_root *found;
1234 	int ret;
1235 	u64 i_size;
1236 
1237 	/* First check if the root is in the list of accepted clone sources */
1238 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1239 			bctx->sctx->clone_roots_cnt,
1240 			sizeof(struct clone_root),
1241 			__clone_root_cmp_bsearch);
1242 	if (!found)
1243 		return 0;
1244 
1245 	if (found->root == bctx->sctx->send_root &&
1246 	    ino == bctx->cur_objectid &&
1247 	    offset == bctx->cur_offset) {
1248 		bctx->found_itself = 1;
1249 	}
1250 
1251 	/*
1252 	 * There are inodes that have extents that lie behind its i_size. Don't
1253 	 * accept clones from these extents.
1254 	 */
1255 	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1256 			       NULL, NULL, NULL);
1257 	btrfs_release_path(bctx->path);
1258 	if (ret < 0)
1259 		return ret;
1260 
1261 	if (offset + bctx->data_offset + bctx->extent_len > i_size)
1262 		return 0;
1263 
1264 	/*
1265 	 * Make sure we don't consider clones from send_root that are
1266 	 * behind the current inode/offset.
1267 	 */
1268 	if (found->root == bctx->sctx->send_root) {
1269 		/*
1270 		 * TODO for the moment we don't accept clones from the inode
1271 		 * that is currently send. We may change this when
1272 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1273 		 * file.
1274 		 */
1275 		if (ino >= bctx->cur_objectid)
1276 			return 0;
1277 #if 0
1278 		if (ino > bctx->cur_objectid)
1279 			return 0;
1280 		if (offset + bctx->extent_len > bctx->cur_offset)
1281 			return 0;
1282 #endif
1283 	}
1284 
1285 	bctx->found++;
1286 	found->found_refs++;
1287 	if (ino < found->ino) {
1288 		found->ino = ino;
1289 		found->offset = offset;
1290 	} else if (found->ino == ino) {
1291 		/*
1292 		 * same extent found more then once in the same file.
1293 		 */
1294 		if (found->offset > offset + bctx->extent_len)
1295 			found->offset = offset;
1296 	}
1297 
1298 	return 0;
1299 }
1300 
1301 /*
1302  * Given an inode, offset and extent item, it finds a good clone for a clone
1303  * instruction. Returns -ENOENT when none could be found. The function makes
1304  * sure that the returned clone is usable at the point where sending is at the
1305  * moment. This means, that no clones are accepted which lie behind the current
1306  * inode+offset.
1307  *
1308  * path must point to the extent item when called.
1309  */
1310 static int find_extent_clone(struct send_ctx *sctx,
1311 			     struct btrfs_path *path,
1312 			     u64 ino, u64 data_offset,
1313 			     u64 ino_size,
1314 			     struct clone_root **found)
1315 {
1316 	int ret;
1317 	int extent_type;
1318 	u64 logical;
1319 	u64 disk_byte;
1320 	u64 num_bytes;
1321 	u64 extent_item_pos;
1322 	u64 flags = 0;
1323 	struct btrfs_file_extent_item *fi;
1324 	struct extent_buffer *eb = path->nodes[0];
1325 	struct backref_ctx *backref_ctx = NULL;
1326 	struct clone_root *cur_clone_root;
1327 	struct btrfs_key found_key;
1328 	struct btrfs_path *tmp_path;
1329 	int compressed;
1330 	u32 i;
1331 
1332 	tmp_path = alloc_path_for_send();
1333 	if (!tmp_path)
1334 		return -ENOMEM;
1335 
1336 	/* We only use this path under the commit sem */
1337 	tmp_path->need_commit_sem = 0;
1338 
1339 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1340 	if (!backref_ctx) {
1341 		ret = -ENOMEM;
1342 		goto out;
1343 	}
1344 
1345 	backref_ctx->path = tmp_path;
1346 
1347 	if (data_offset >= ino_size) {
1348 		/*
1349 		 * There may be extents that lie behind the file's size.
1350 		 * I at least had this in combination with snapshotting while
1351 		 * writing large files.
1352 		 */
1353 		ret = 0;
1354 		goto out;
1355 	}
1356 
1357 	fi = btrfs_item_ptr(eb, path->slots[0],
1358 			struct btrfs_file_extent_item);
1359 	extent_type = btrfs_file_extent_type(eb, fi);
1360 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1361 		ret = -ENOENT;
1362 		goto out;
1363 	}
1364 	compressed = btrfs_file_extent_compression(eb, fi);
1365 
1366 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1367 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1368 	if (disk_byte == 0) {
1369 		ret = -ENOENT;
1370 		goto out;
1371 	}
1372 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1373 
1374 	down_read(&sctx->send_root->fs_info->commit_root_sem);
1375 	ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1376 				  &found_key, &flags);
1377 	up_read(&sctx->send_root->fs_info->commit_root_sem);
1378 	btrfs_release_path(tmp_path);
1379 
1380 	if (ret < 0)
1381 		goto out;
1382 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1383 		ret = -EIO;
1384 		goto out;
1385 	}
1386 
1387 	/*
1388 	 * Setup the clone roots.
1389 	 */
1390 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1391 		cur_clone_root = sctx->clone_roots + i;
1392 		cur_clone_root->ino = (u64)-1;
1393 		cur_clone_root->offset = 0;
1394 		cur_clone_root->found_refs = 0;
1395 	}
1396 
1397 	backref_ctx->sctx = sctx;
1398 	backref_ctx->found = 0;
1399 	backref_ctx->cur_objectid = ino;
1400 	backref_ctx->cur_offset = data_offset;
1401 	backref_ctx->found_itself = 0;
1402 	backref_ctx->extent_len = num_bytes;
1403 	/*
1404 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1405 	 * offsets that already take into account the data offset, but not for
1406 	 * compressed extents, since the offset is logical and not relative to
1407 	 * the physical extent locations. We must take this into account to
1408 	 * avoid sending clone offsets that go beyond the source file's size,
1409 	 * which would result in the clone ioctl failing with -EINVAL on the
1410 	 * receiving end.
1411 	 */
1412 	if (compressed == BTRFS_COMPRESS_NONE)
1413 		backref_ctx->data_offset = 0;
1414 	else
1415 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1416 
1417 	/*
1418 	 * The last extent of a file may be too large due to page alignment.
1419 	 * We need to adjust extent_len in this case so that the checks in
1420 	 * __iterate_backrefs work.
1421 	 */
1422 	if (data_offset + num_bytes >= ino_size)
1423 		backref_ctx->extent_len = ino_size - data_offset;
1424 
1425 	/*
1426 	 * Now collect all backrefs.
1427 	 */
1428 	if (compressed == BTRFS_COMPRESS_NONE)
1429 		extent_item_pos = logical - found_key.objectid;
1430 	else
1431 		extent_item_pos = 0;
1432 	ret = iterate_extent_inodes(sctx->send_root->fs_info,
1433 					found_key.objectid, extent_item_pos, 1,
1434 					__iterate_backrefs, backref_ctx);
1435 
1436 	if (ret < 0)
1437 		goto out;
1438 
1439 	if (!backref_ctx->found_itself) {
1440 		/* found a bug in backref code? */
1441 		ret = -EIO;
1442 		btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1443 				"send_root. inode=%llu, offset=%llu, "
1444 				"disk_byte=%llu found extent=%llu",
1445 				ino, data_offset, disk_byte, found_key.objectid);
1446 		goto out;
1447 	}
1448 
1449 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1450 		"ino=%llu, "
1451 		"num_bytes=%llu, logical=%llu\n",
1452 		data_offset, ino, num_bytes, logical);
1453 
1454 	if (!backref_ctx->found)
1455 		verbose_printk("btrfs:    no clones found\n");
1456 
1457 	cur_clone_root = NULL;
1458 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1459 		if (sctx->clone_roots[i].found_refs) {
1460 			if (!cur_clone_root)
1461 				cur_clone_root = sctx->clone_roots + i;
1462 			else if (sctx->clone_roots[i].root == sctx->send_root)
1463 				/* prefer clones from send_root over others */
1464 				cur_clone_root = sctx->clone_roots + i;
1465 		}
1466 
1467 	}
1468 
1469 	if (cur_clone_root) {
1470 		*found = cur_clone_root;
1471 		ret = 0;
1472 	} else {
1473 		ret = -ENOENT;
1474 	}
1475 
1476 out:
1477 	btrfs_free_path(tmp_path);
1478 	kfree(backref_ctx);
1479 	return ret;
1480 }
1481 
1482 static int read_symlink(struct btrfs_root *root,
1483 			u64 ino,
1484 			struct fs_path *dest)
1485 {
1486 	int ret;
1487 	struct btrfs_path *path;
1488 	struct btrfs_key key;
1489 	struct btrfs_file_extent_item *ei;
1490 	u8 type;
1491 	u8 compression;
1492 	unsigned long off;
1493 	int len;
1494 
1495 	path = alloc_path_for_send();
1496 	if (!path)
1497 		return -ENOMEM;
1498 
1499 	key.objectid = ino;
1500 	key.type = BTRFS_EXTENT_DATA_KEY;
1501 	key.offset = 0;
1502 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1503 	if (ret < 0)
1504 		goto out;
1505 	if (ret) {
1506 		/*
1507 		 * An empty symlink inode. Can happen in rare error paths when
1508 		 * creating a symlink (transaction committed before the inode
1509 		 * eviction handler removed the symlink inode items and a crash
1510 		 * happened in between or the subvol was snapshoted in between).
1511 		 * Print an informative message to dmesg/syslog so that the user
1512 		 * can delete the symlink.
1513 		 */
1514 		btrfs_err(root->fs_info,
1515 			  "Found empty symlink inode %llu at root %llu",
1516 			  ino, root->root_key.objectid);
1517 		ret = -EIO;
1518 		goto out;
1519 	}
1520 
1521 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1522 			struct btrfs_file_extent_item);
1523 	type = btrfs_file_extent_type(path->nodes[0], ei);
1524 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1525 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1526 	BUG_ON(compression);
1527 
1528 	off = btrfs_file_extent_inline_start(ei);
1529 	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1530 
1531 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1532 
1533 out:
1534 	btrfs_free_path(path);
1535 	return ret;
1536 }
1537 
1538 /*
1539  * Helper function to generate a file name that is unique in the root of
1540  * send_root and parent_root. This is used to generate names for orphan inodes.
1541  */
1542 static int gen_unique_name(struct send_ctx *sctx,
1543 			   u64 ino, u64 gen,
1544 			   struct fs_path *dest)
1545 {
1546 	int ret = 0;
1547 	struct btrfs_path *path;
1548 	struct btrfs_dir_item *di;
1549 	char tmp[64];
1550 	int len;
1551 	u64 idx = 0;
1552 
1553 	path = alloc_path_for_send();
1554 	if (!path)
1555 		return -ENOMEM;
1556 
1557 	while (1) {
1558 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1559 				ino, gen, idx);
1560 		ASSERT(len < sizeof(tmp));
1561 
1562 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1563 				path, BTRFS_FIRST_FREE_OBJECTID,
1564 				tmp, strlen(tmp), 0);
1565 		btrfs_release_path(path);
1566 		if (IS_ERR(di)) {
1567 			ret = PTR_ERR(di);
1568 			goto out;
1569 		}
1570 		if (di) {
1571 			/* not unique, try again */
1572 			idx++;
1573 			continue;
1574 		}
1575 
1576 		if (!sctx->parent_root) {
1577 			/* unique */
1578 			ret = 0;
1579 			break;
1580 		}
1581 
1582 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1583 				path, BTRFS_FIRST_FREE_OBJECTID,
1584 				tmp, strlen(tmp), 0);
1585 		btrfs_release_path(path);
1586 		if (IS_ERR(di)) {
1587 			ret = PTR_ERR(di);
1588 			goto out;
1589 		}
1590 		if (di) {
1591 			/* not unique, try again */
1592 			idx++;
1593 			continue;
1594 		}
1595 		/* unique */
1596 		break;
1597 	}
1598 
1599 	ret = fs_path_add(dest, tmp, strlen(tmp));
1600 
1601 out:
1602 	btrfs_free_path(path);
1603 	return ret;
1604 }
1605 
1606 enum inode_state {
1607 	inode_state_no_change,
1608 	inode_state_will_create,
1609 	inode_state_did_create,
1610 	inode_state_will_delete,
1611 	inode_state_did_delete,
1612 };
1613 
1614 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1615 {
1616 	int ret;
1617 	int left_ret;
1618 	int right_ret;
1619 	u64 left_gen;
1620 	u64 right_gen;
1621 
1622 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1623 			NULL, NULL);
1624 	if (ret < 0 && ret != -ENOENT)
1625 		goto out;
1626 	left_ret = ret;
1627 
1628 	if (!sctx->parent_root) {
1629 		right_ret = -ENOENT;
1630 	} else {
1631 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1632 				NULL, NULL, NULL, NULL);
1633 		if (ret < 0 && ret != -ENOENT)
1634 			goto out;
1635 		right_ret = ret;
1636 	}
1637 
1638 	if (!left_ret && !right_ret) {
1639 		if (left_gen == gen && right_gen == gen) {
1640 			ret = inode_state_no_change;
1641 		} else if (left_gen == gen) {
1642 			if (ino < sctx->send_progress)
1643 				ret = inode_state_did_create;
1644 			else
1645 				ret = inode_state_will_create;
1646 		} else if (right_gen == gen) {
1647 			if (ino < sctx->send_progress)
1648 				ret = inode_state_did_delete;
1649 			else
1650 				ret = inode_state_will_delete;
1651 		} else  {
1652 			ret = -ENOENT;
1653 		}
1654 	} else if (!left_ret) {
1655 		if (left_gen == gen) {
1656 			if (ino < sctx->send_progress)
1657 				ret = inode_state_did_create;
1658 			else
1659 				ret = inode_state_will_create;
1660 		} else {
1661 			ret = -ENOENT;
1662 		}
1663 	} else if (!right_ret) {
1664 		if (right_gen == gen) {
1665 			if (ino < sctx->send_progress)
1666 				ret = inode_state_did_delete;
1667 			else
1668 				ret = inode_state_will_delete;
1669 		} else {
1670 			ret = -ENOENT;
1671 		}
1672 	} else {
1673 		ret = -ENOENT;
1674 	}
1675 
1676 out:
1677 	return ret;
1678 }
1679 
1680 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1681 {
1682 	int ret;
1683 
1684 	ret = get_cur_inode_state(sctx, ino, gen);
1685 	if (ret < 0)
1686 		goto out;
1687 
1688 	if (ret == inode_state_no_change ||
1689 	    ret == inode_state_did_create ||
1690 	    ret == inode_state_will_delete)
1691 		ret = 1;
1692 	else
1693 		ret = 0;
1694 
1695 out:
1696 	return ret;
1697 }
1698 
1699 /*
1700  * Helper function to lookup a dir item in a dir.
1701  */
1702 static int lookup_dir_item_inode(struct btrfs_root *root,
1703 				 u64 dir, const char *name, int name_len,
1704 				 u64 *found_inode,
1705 				 u8 *found_type)
1706 {
1707 	int ret = 0;
1708 	struct btrfs_dir_item *di;
1709 	struct btrfs_key key;
1710 	struct btrfs_path *path;
1711 
1712 	path = alloc_path_for_send();
1713 	if (!path)
1714 		return -ENOMEM;
1715 
1716 	di = btrfs_lookup_dir_item(NULL, root, path,
1717 			dir, name, name_len, 0);
1718 	if (!di) {
1719 		ret = -ENOENT;
1720 		goto out;
1721 	}
1722 	if (IS_ERR(di)) {
1723 		ret = PTR_ERR(di);
1724 		goto out;
1725 	}
1726 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1727 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1728 		ret = -ENOENT;
1729 		goto out;
1730 	}
1731 	*found_inode = key.objectid;
1732 	*found_type = btrfs_dir_type(path->nodes[0], di);
1733 
1734 out:
1735 	btrfs_free_path(path);
1736 	return ret;
1737 }
1738 
1739 /*
1740  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1741  * generation of the parent dir and the name of the dir entry.
1742  */
1743 static int get_first_ref(struct btrfs_root *root, u64 ino,
1744 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1745 {
1746 	int ret;
1747 	struct btrfs_key key;
1748 	struct btrfs_key found_key;
1749 	struct btrfs_path *path;
1750 	int len;
1751 	u64 parent_dir;
1752 
1753 	path = alloc_path_for_send();
1754 	if (!path)
1755 		return -ENOMEM;
1756 
1757 	key.objectid = ino;
1758 	key.type = BTRFS_INODE_REF_KEY;
1759 	key.offset = 0;
1760 
1761 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1762 	if (ret < 0)
1763 		goto out;
1764 	if (!ret)
1765 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1766 				path->slots[0]);
1767 	if (ret || found_key.objectid != ino ||
1768 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1769 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1770 		ret = -ENOENT;
1771 		goto out;
1772 	}
1773 
1774 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1775 		struct btrfs_inode_ref *iref;
1776 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1777 				      struct btrfs_inode_ref);
1778 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1779 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1780 						     (unsigned long)(iref + 1),
1781 						     len);
1782 		parent_dir = found_key.offset;
1783 	} else {
1784 		struct btrfs_inode_extref *extref;
1785 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1786 					struct btrfs_inode_extref);
1787 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1788 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1789 					(unsigned long)&extref->name, len);
1790 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1791 	}
1792 	if (ret < 0)
1793 		goto out;
1794 	btrfs_release_path(path);
1795 
1796 	if (dir_gen) {
1797 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1798 				     NULL, NULL, NULL);
1799 		if (ret < 0)
1800 			goto out;
1801 	}
1802 
1803 	*dir = parent_dir;
1804 
1805 out:
1806 	btrfs_free_path(path);
1807 	return ret;
1808 }
1809 
1810 static int is_first_ref(struct btrfs_root *root,
1811 			u64 ino, u64 dir,
1812 			const char *name, int name_len)
1813 {
1814 	int ret;
1815 	struct fs_path *tmp_name;
1816 	u64 tmp_dir;
1817 
1818 	tmp_name = fs_path_alloc();
1819 	if (!tmp_name)
1820 		return -ENOMEM;
1821 
1822 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1823 	if (ret < 0)
1824 		goto out;
1825 
1826 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1827 		ret = 0;
1828 		goto out;
1829 	}
1830 
1831 	ret = !memcmp(tmp_name->start, name, name_len);
1832 
1833 out:
1834 	fs_path_free(tmp_name);
1835 	return ret;
1836 }
1837 
1838 /*
1839  * Used by process_recorded_refs to determine if a new ref would overwrite an
1840  * already existing ref. In case it detects an overwrite, it returns the
1841  * inode/gen in who_ino/who_gen.
1842  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1843  * to make sure later references to the overwritten inode are possible.
1844  * Orphanizing is however only required for the first ref of an inode.
1845  * process_recorded_refs does an additional is_first_ref check to see if
1846  * orphanizing is really required.
1847  */
1848 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1849 			      const char *name, int name_len,
1850 			      u64 *who_ino, u64 *who_gen)
1851 {
1852 	int ret = 0;
1853 	u64 gen;
1854 	u64 other_inode = 0;
1855 	u8 other_type = 0;
1856 
1857 	if (!sctx->parent_root)
1858 		goto out;
1859 
1860 	ret = is_inode_existent(sctx, dir, dir_gen);
1861 	if (ret <= 0)
1862 		goto out;
1863 
1864 	/*
1865 	 * If we have a parent root we need to verify that the parent dir was
1866 	 * not deleted and then re-created, if it was then we have no overwrite
1867 	 * and we can just unlink this entry.
1868 	 */
1869 	if (sctx->parent_root) {
1870 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1871 				     NULL, NULL, NULL);
1872 		if (ret < 0 && ret != -ENOENT)
1873 			goto out;
1874 		if (ret) {
1875 			ret = 0;
1876 			goto out;
1877 		}
1878 		if (gen != dir_gen)
1879 			goto out;
1880 	}
1881 
1882 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1883 			&other_inode, &other_type);
1884 	if (ret < 0 && ret != -ENOENT)
1885 		goto out;
1886 	if (ret) {
1887 		ret = 0;
1888 		goto out;
1889 	}
1890 
1891 	/*
1892 	 * Check if the overwritten ref was already processed. If yes, the ref
1893 	 * was already unlinked/moved, so we can safely assume that we will not
1894 	 * overwrite anything at this point in time.
1895 	 */
1896 	if (other_inode > sctx->send_progress ||
1897 	    is_waiting_for_move(sctx, other_inode)) {
1898 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1899 				who_gen, NULL, NULL, NULL, NULL);
1900 		if (ret < 0)
1901 			goto out;
1902 
1903 		ret = 1;
1904 		*who_ino = other_inode;
1905 	} else {
1906 		ret = 0;
1907 	}
1908 
1909 out:
1910 	return ret;
1911 }
1912 
1913 /*
1914  * Checks if the ref was overwritten by an already processed inode. This is
1915  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1916  * thus the orphan name needs be used.
1917  * process_recorded_refs also uses it to avoid unlinking of refs that were
1918  * overwritten.
1919  */
1920 static int did_overwrite_ref(struct send_ctx *sctx,
1921 			    u64 dir, u64 dir_gen,
1922 			    u64 ino, u64 ino_gen,
1923 			    const char *name, int name_len)
1924 {
1925 	int ret = 0;
1926 	u64 gen;
1927 	u64 ow_inode;
1928 	u8 other_type;
1929 
1930 	if (!sctx->parent_root)
1931 		goto out;
1932 
1933 	ret = is_inode_existent(sctx, dir, dir_gen);
1934 	if (ret <= 0)
1935 		goto out;
1936 
1937 	/* check if the ref was overwritten by another ref */
1938 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1939 			&ow_inode, &other_type);
1940 	if (ret < 0 && ret != -ENOENT)
1941 		goto out;
1942 	if (ret) {
1943 		/* was never and will never be overwritten */
1944 		ret = 0;
1945 		goto out;
1946 	}
1947 
1948 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1949 			NULL, NULL);
1950 	if (ret < 0)
1951 		goto out;
1952 
1953 	if (ow_inode == ino && gen == ino_gen) {
1954 		ret = 0;
1955 		goto out;
1956 	}
1957 
1958 	/*
1959 	 * We know that it is or will be overwritten. Check this now.
1960 	 * The current inode being processed might have been the one that caused
1961 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1962 	 * the current inode being processed.
1963 	 */
1964 	if ((ow_inode < sctx->send_progress) ||
1965 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1966 	     gen == sctx->cur_inode_gen))
1967 		ret = 1;
1968 	else
1969 		ret = 0;
1970 
1971 out:
1972 	return ret;
1973 }
1974 
1975 /*
1976  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1977  * that got overwritten. This is used by process_recorded_refs to determine
1978  * if it has to use the path as returned by get_cur_path or the orphan name.
1979  */
1980 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1981 {
1982 	int ret = 0;
1983 	struct fs_path *name = NULL;
1984 	u64 dir;
1985 	u64 dir_gen;
1986 
1987 	if (!sctx->parent_root)
1988 		goto out;
1989 
1990 	name = fs_path_alloc();
1991 	if (!name)
1992 		return -ENOMEM;
1993 
1994 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1995 	if (ret < 0)
1996 		goto out;
1997 
1998 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1999 			name->start, fs_path_len(name));
2000 
2001 out:
2002 	fs_path_free(name);
2003 	return ret;
2004 }
2005 
2006 /*
2007  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2008  * so we need to do some special handling in case we have clashes. This function
2009  * takes care of this with the help of name_cache_entry::radix_list.
2010  * In case of error, nce is kfreed.
2011  */
2012 static int name_cache_insert(struct send_ctx *sctx,
2013 			     struct name_cache_entry *nce)
2014 {
2015 	int ret = 0;
2016 	struct list_head *nce_head;
2017 
2018 	nce_head = radix_tree_lookup(&sctx->name_cache,
2019 			(unsigned long)nce->ino);
2020 	if (!nce_head) {
2021 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2022 		if (!nce_head) {
2023 			kfree(nce);
2024 			return -ENOMEM;
2025 		}
2026 		INIT_LIST_HEAD(nce_head);
2027 
2028 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2029 		if (ret < 0) {
2030 			kfree(nce_head);
2031 			kfree(nce);
2032 			return ret;
2033 		}
2034 	}
2035 	list_add_tail(&nce->radix_list, nce_head);
2036 	list_add_tail(&nce->list, &sctx->name_cache_list);
2037 	sctx->name_cache_size++;
2038 
2039 	return ret;
2040 }
2041 
2042 static void name_cache_delete(struct send_ctx *sctx,
2043 			      struct name_cache_entry *nce)
2044 {
2045 	struct list_head *nce_head;
2046 
2047 	nce_head = radix_tree_lookup(&sctx->name_cache,
2048 			(unsigned long)nce->ino);
2049 	if (!nce_head) {
2050 		btrfs_err(sctx->send_root->fs_info,
2051 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2052 			nce->ino, sctx->name_cache_size);
2053 	}
2054 
2055 	list_del(&nce->radix_list);
2056 	list_del(&nce->list);
2057 	sctx->name_cache_size--;
2058 
2059 	/*
2060 	 * We may not get to the final release of nce_head if the lookup fails
2061 	 */
2062 	if (nce_head && list_empty(nce_head)) {
2063 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2064 		kfree(nce_head);
2065 	}
2066 }
2067 
2068 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2069 						    u64 ino, u64 gen)
2070 {
2071 	struct list_head *nce_head;
2072 	struct name_cache_entry *cur;
2073 
2074 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2075 	if (!nce_head)
2076 		return NULL;
2077 
2078 	list_for_each_entry(cur, nce_head, radix_list) {
2079 		if (cur->ino == ino && cur->gen == gen)
2080 			return cur;
2081 	}
2082 	return NULL;
2083 }
2084 
2085 /*
2086  * Removes the entry from the list and adds it back to the end. This marks the
2087  * entry as recently used so that name_cache_clean_unused does not remove it.
2088  */
2089 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2090 {
2091 	list_del(&nce->list);
2092 	list_add_tail(&nce->list, &sctx->name_cache_list);
2093 }
2094 
2095 /*
2096  * Remove some entries from the beginning of name_cache_list.
2097  */
2098 static void name_cache_clean_unused(struct send_ctx *sctx)
2099 {
2100 	struct name_cache_entry *nce;
2101 
2102 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2103 		return;
2104 
2105 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2106 		nce = list_entry(sctx->name_cache_list.next,
2107 				struct name_cache_entry, list);
2108 		name_cache_delete(sctx, nce);
2109 		kfree(nce);
2110 	}
2111 }
2112 
2113 static void name_cache_free(struct send_ctx *sctx)
2114 {
2115 	struct name_cache_entry *nce;
2116 
2117 	while (!list_empty(&sctx->name_cache_list)) {
2118 		nce = list_entry(sctx->name_cache_list.next,
2119 				struct name_cache_entry, list);
2120 		name_cache_delete(sctx, nce);
2121 		kfree(nce);
2122 	}
2123 }
2124 
2125 /*
2126  * Used by get_cur_path for each ref up to the root.
2127  * Returns 0 if it succeeded.
2128  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2129  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2130  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2131  * Returns <0 in case of error.
2132  */
2133 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2134 				     u64 ino, u64 gen,
2135 				     u64 *parent_ino,
2136 				     u64 *parent_gen,
2137 				     struct fs_path *dest)
2138 {
2139 	int ret;
2140 	int nce_ret;
2141 	struct name_cache_entry *nce = NULL;
2142 
2143 	/*
2144 	 * First check if we already did a call to this function with the same
2145 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2146 	 * return the cached result.
2147 	 */
2148 	nce = name_cache_search(sctx, ino, gen);
2149 	if (nce) {
2150 		if (ino < sctx->send_progress && nce->need_later_update) {
2151 			name_cache_delete(sctx, nce);
2152 			kfree(nce);
2153 			nce = NULL;
2154 		} else {
2155 			name_cache_used(sctx, nce);
2156 			*parent_ino = nce->parent_ino;
2157 			*parent_gen = nce->parent_gen;
2158 			ret = fs_path_add(dest, nce->name, nce->name_len);
2159 			if (ret < 0)
2160 				goto out;
2161 			ret = nce->ret;
2162 			goto out;
2163 		}
2164 	}
2165 
2166 	/*
2167 	 * If the inode is not existent yet, add the orphan name and return 1.
2168 	 * This should only happen for the parent dir that we determine in
2169 	 * __record_new_ref
2170 	 */
2171 	ret = is_inode_existent(sctx, ino, gen);
2172 	if (ret < 0)
2173 		goto out;
2174 
2175 	if (!ret) {
2176 		ret = gen_unique_name(sctx, ino, gen, dest);
2177 		if (ret < 0)
2178 			goto out;
2179 		ret = 1;
2180 		goto out_cache;
2181 	}
2182 
2183 	/*
2184 	 * Depending on whether the inode was already processed or not, use
2185 	 * send_root or parent_root for ref lookup.
2186 	 */
2187 	if (ino < sctx->send_progress)
2188 		ret = get_first_ref(sctx->send_root, ino,
2189 				    parent_ino, parent_gen, dest);
2190 	else
2191 		ret = get_first_ref(sctx->parent_root, ino,
2192 				    parent_ino, parent_gen, dest);
2193 	if (ret < 0)
2194 		goto out;
2195 
2196 	/*
2197 	 * Check if the ref was overwritten by an inode's ref that was processed
2198 	 * earlier. If yes, treat as orphan and return 1.
2199 	 */
2200 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2201 			dest->start, dest->end - dest->start);
2202 	if (ret < 0)
2203 		goto out;
2204 	if (ret) {
2205 		fs_path_reset(dest);
2206 		ret = gen_unique_name(sctx, ino, gen, dest);
2207 		if (ret < 0)
2208 			goto out;
2209 		ret = 1;
2210 	}
2211 
2212 out_cache:
2213 	/*
2214 	 * Store the result of the lookup in the name cache.
2215 	 */
2216 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2217 	if (!nce) {
2218 		ret = -ENOMEM;
2219 		goto out;
2220 	}
2221 
2222 	nce->ino = ino;
2223 	nce->gen = gen;
2224 	nce->parent_ino = *parent_ino;
2225 	nce->parent_gen = *parent_gen;
2226 	nce->name_len = fs_path_len(dest);
2227 	nce->ret = ret;
2228 	strcpy(nce->name, dest->start);
2229 
2230 	if (ino < sctx->send_progress)
2231 		nce->need_later_update = 0;
2232 	else
2233 		nce->need_later_update = 1;
2234 
2235 	nce_ret = name_cache_insert(sctx, nce);
2236 	if (nce_ret < 0)
2237 		ret = nce_ret;
2238 	name_cache_clean_unused(sctx);
2239 
2240 out:
2241 	return ret;
2242 }
2243 
2244 /*
2245  * Magic happens here. This function returns the first ref to an inode as it
2246  * would look like while receiving the stream at this point in time.
2247  * We walk the path up to the root. For every inode in between, we check if it
2248  * was already processed/sent. If yes, we continue with the parent as found
2249  * in send_root. If not, we continue with the parent as found in parent_root.
2250  * If we encounter an inode that was deleted at this point in time, we use the
2251  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2252  * that were not created yet and overwritten inodes/refs.
2253  *
2254  * When do we have have orphan inodes:
2255  * 1. When an inode is freshly created and thus no valid refs are available yet
2256  * 2. When a directory lost all it's refs (deleted) but still has dir items
2257  *    inside which were not processed yet (pending for move/delete). If anyone
2258  *    tried to get the path to the dir items, it would get a path inside that
2259  *    orphan directory.
2260  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2261  *    of an unprocessed inode. If in that case the first ref would be
2262  *    overwritten, the overwritten inode gets "orphanized". Later when we
2263  *    process this overwritten inode, it is restored at a new place by moving
2264  *    the orphan inode.
2265  *
2266  * sctx->send_progress tells this function at which point in time receiving
2267  * would be.
2268  */
2269 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2270 			struct fs_path *dest)
2271 {
2272 	int ret = 0;
2273 	struct fs_path *name = NULL;
2274 	u64 parent_inode = 0;
2275 	u64 parent_gen = 0;
2276 	int stop = 0;
2277 
2278 	name = fs_path_alloc();
2279 	if (!name) {
2280 		ret = -ENOMEM;
2281 		goto out;
2282 	}
2283 
2284 	dest->reversed = 1;
2285 	fs_path_reset(dest);
2286 
2287 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2288 		struct waiting_dir_move *wdm;
2289 
2290 		fs_path_reset(name);
2291 
2292 		if (is_waiting_for_rm(sctx, ino)) {
2293 			ret = gen_unique_name(sctx, ino, gen, name);
2294 			if (ret < 0)
2295 				goto out;
2296 			ret = fs_path_add_path(dest, name);
2297 			break;
2298 		}
2299 
2300 		wdm = get_waiting_dir_move(sctx, ino);
2301 		if (wdm && wdm->orphanized) {
2302 			ret = gen_unique_name(sctx, ino, gen, name);
2303 			stop = 1;
2304 		} else if (wdm) {
2305 			ret = get_first_ref(sctx->parent_root, ino,
2306 					    &parent_inode, &parent_gen, name);
2307 		} else {
2308 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2309 							&parent_inode,
2310 							&parent_gen, name);
2311 			if (ret)
2312 				stop = 1;
2313 		}
2314 
2315 		if (ret < 0)
2316 			goto out;
2317 
2318 		ret = fs_path_add_path(dest, name);
2319 		if (ret < 0)
2320 			goto out;
2321 
2322 		ino = parent_inode;
2323 		gen = parent_gen;
2324 	}
2325 
2326 out:
2327 	fs_path_free(name);
2328 	if (!ret)
2329 		fs_path_unreverse(dest);
2330 	return ret;
2331 }
2332 
2333 /*
2334  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2335  */
2336 static int send_subvol_begin(struct send_ctx *sctx)
2337 {
2338 	int ret;
2339 	struct btrfs_root *send_root = sctx->send_root;
2340 	struct btrfs_root *parent_root = sctx->parent_root;
2341 	struct btrfs_path *path;
2342 	struct btrfs_key key;
2343 	struct btrfs_root_ref *ref;
2344 	struct extent_buffer *leaf;
2345 	char *name = NULL;
2346 	int namelen;
2347 
2348 	path = btrfs_alloc_path();
2349 	if (!path)
2350 		return -ENOMEM;
2351 
2352 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2353 	if (!name) {
2354 		btrfs_free_path(path);
2355 		return -ENOMEM;
2356 	}
2357 
2358 	key.objectid = send_root->objectid;
2359 	key.type = BTRFS_ROOT_BACKREF_KEY;
2360 	key.offset = 0;
2361 
2362 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2363 				&key, path, 1, 0);
2364 	if (ret < 0)
2365 		goto out;
2366 	if (ret) {
2367 		ret = -ENOENT;
2368 		goto out;
2369 	}
2370 
2371 	leaf = path->nodes[0];
2372 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2373 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2374 	    key.objectid != send_root->objectid) {
2375 		ret = -ENOENT;
2376 		goto out;
2377 	}
2378 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2379 	namelen = btrfs_root_ref_name_len(leaf, ref);
2380 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2381 	btrfs_release_path(path);
2382 
2383 	if (parent_root) {
2384 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2385 		if (ret < 0)
2386 			goto out;
2387 	} else {
2388 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2389 		if (ret < 0)
2390 			goto out;
2391 	}
2392 
2393 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2394 
2395 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2396 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2397 			    sctx->send_root->root_item.received_uuid);
2398 	else
2399 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2400 			    sctx->send_root->root_item.uuid);
2401 
2402 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2403 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2404 	if (parent_root) {
2405 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2406 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2407 				     parent_root->root_item.received_uuid);
2408 		else
2409 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2410 				     parent_root->root_item.uuid);
2411 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2412 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2413 	}
2414 
2415 	ret = send_cmd(sctx);
2416 
2417 tlv_put_failure:
2418 out:
2419 	btrfs_free_path(path);
2420 	kfree(name);
2421 	return ret;
2422 }
2423 
2424 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2425 {
2426 	int ret = 0;
2427 	struct fs_path *p;
2428 
2429 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2430 
2431 	p = fs_path_alloc();
2432 	if (!p)
2433 		return -ENOMEM;
2434 
2435 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2436 	if (ret < 0)
2437 		goto out;
2438 
2439 	ret = get_cur_path(sctx, ino, gen, p);
2440 	if (ret < 0)
2441 		goto out;
2442 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2443 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2444 
2445 	ret = send_cmd(sctx);
2446 
2447 tlv_put_failure:
2448 out:
2449 	fs_path_free(p);
2450 	return ret;
2451 }
2452 
2453 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2454 {
2455 	int ret = 0;
2456 	struct fs_path *p;
2457 
2458 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2459 
2460 	p = fs_path_alloc();
2461 	if (!p)
2462 		return -ENOMEM;
2463 
2464 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2465 	if (ret < 0)
2466 		goto out;
2467 
2468 	ret = get_cur_path(sctx, ino, gen, p);
2469 	if (ret < 0)
2470 		goto out;
2471 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2472 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2473 
2474 	ret = send_cmd(sctx);
2475 
2476 tlv_put_failure:
2477 out:
2478 	fs_path_free(p);
2479 	return ret;
2480 }
2481 
2482 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2483 {
2484 	int ret = 0;
2485 	struct fs_path *p;
2486 
2487 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2488 
2489 	p = fs_path_alloc();
2490 	if (!p)
2491 		return -ENOMEM;
2492 
2493 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2494 	if (ret < 0)
2495 		goto out;
2496 
2497 	ret = get_cur_path(sctx, ino, gen, p);
2498 	if (ret < 0)
2499 		goto out;
2500 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2501 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2502 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2503 
2504 	ret = send_cmd(sctx);
2505 
2506 tlv_put_failure:
2507 out:
2508 	fs_path_free(p);
2509 	return ret;
2510 }
2511 
2512 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2513 {
2514 	int ret = 0;
2515 	struct fs_path *p = NULL;
2516 	struct btrfs_inode_item *ii;
2517 	struct btrfs_path *path = NULL;
2518 	struct extent_buffer *eb;
2519 	struct btrfs_key key;
2520 	int slot;
2521 
2522 verbose_printk("btrfs: send_utimes %llu\n", ino);
2523 
2524 	p = fs_path_alloc();
2525 	if (!p)
2526 		return -ENOMEM;
2527 
2528 	path = alloc_path_for_send();
2529 	if (!path) {
2530 		ret = -ENOMEM;
2531 		goto out;
2532 	}
2533 
2534 	key.objectid = ino;
2535 	key.type = BTRFS_INODE_ITEM_KEY;
2536 	key.offset = 0;
2537 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2538 	if (ret > 0)
2539 		ret = -ENOENT;
2540 	if (ret < 0)
2541 		goto out;
2542 
2543 	eb = path->nodes[0];
2544 	slot = path->slots[0];
2545 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2546 
2547 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2548 	if (ret < 0)
2549 		goto out;
2550 
2551 	ret = get_cur_path(sctx, ino, gen, p);
2552 	if (ret < 0)
2553 		goto out;
2554 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2555 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2556 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2557 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2558 	/* TODO Add otime support when the otime patches get into upstream */
2559 
2560 	ret = send_cmd(sctx);
2561 
2562 tlv_put_failure:
2563 out:
2564 	fs_path_free(p);
2565 	btrfs_free_path(path);
2566 	return ret;
2567 }
2568 
2569 /*
2570  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2571  * a valid path yet because we did not process the refs yet. So, the inode
2572  * is created as orphan.
2573  */
2574 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2575 {
2576 	int ret = 0;
2577 	struct fs_path *p;
2578 	int cmd;
2579 	u64 gen;
2580 	u64 mode;
2581 	u64 rdev;
2582 
2583 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2584 
2585 	p = fs_path_alloc();
2586 	if (!p)
2587 		return -ENOMEM;
2588 
2589 	if (ino != sctx->cur_ino) {
2590 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2591 				     NULL, NULL, &rdev);
2592 		if (ret < 0)
2593 			goto out;
2594 	} else {
2595 		gen = sctx->cur_inode_gen;
2596 		mode = sctx->cur_inode_mode;
2597 		rdev = sctx->cur_inode_rdev;
2598 	}
2599 
2600 	if (S_ISREG(mode)) {
2601 		cmd = BTRFS_SEND_C_MKFILE;
2602 	} else if (S_ISDIR(mode)) {
2603 		cmd = BTRFS_SEND_C_MKDIR;
2604 	} else if (S_ISLNK(mode)) {
2605 		cmd = BTRFS_SEND_C_SYMLINK;
2606 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2607 		cmd = BTRFS_SEND_C_MKNOD;
2608 	} else if (S_ISFIFO(mode)) {
2609 		cmd = BTRFS_SEND_C_MKFIFO;
2610 	} else if (S_ISSOCK(mode)) {
2611 		cmd = BTRFS_SEND_C_MKSOCK;
2612 	} else {
2613 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2614 				(int)(mode & S_IFMT));
2615 		ret = -ENOTSUPP;
2616 		goto out;
2617 	}
2618 
2619 	ret = begin_cmd(sctx, cmd);
2620 	if (ret < 0)
2621 		goto out;
2622 
2623 	ret = gen_unique_name(sctx, ino, gen, p);
2624 	if (ret < 0)
2625 		goto out;
2626 
2627 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2628 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2629 
2630 	if (S_ISLNK(mode)) {
2631 		fs_path_reset(p);
2632 		ret = read_symlink(sctx->send_root, ino, p);
2633 		if (ret < 0)
2634 			goto out;
2635 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2636 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2637 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2638 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2639 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2640 	}
2641 
2642 	ret = send_cmd(sctx);
2643 	if (ret < 0)
2644 		goto out;
2645 
2646 
2647 tlv_put_failure:
2648 out:
2649 	fs_path_free(p);
2650 	return ret;
2651 }
2652 
2653 /*
2654  * We need some special handling for inodes that get processed before the parent
2655  * directory got created. See process_recorded_refs for details.
2656  * This function does the check if we already created the dir out of order.
2657  */
2658 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2659 {
2660 	int ret = 0;
2661 	struct btrfs_path *path = NULL;
2662 	struct btrfs_key key;
2663 	struct btrfs_key found_key;
2664 	struct btrfs_key di_key;
2665 	struct extent_buffer *eb;
2666 	struct btrfs_dir_item *di;
2667 	int slot;
2668 
2669 	path = alloc_path_for_send();
2670 	if (!path) {
2671 		ret = -ENOMEM;
2672 		goto out;
2673 	}
2674 
2675 	key.objectid = dir;
2676 	key.type = BTRFS_DIR_INDEX_KEY;
2677 	key.offset = 0;
2678 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2679 	if (ret < 0)
2680 		goto out;
2681 
2682 	while (1) {
2683 		eb = path->nodes[0];
2684 		slot = path->slots[0];
2685 		if (slot >= btrfs_header_nritems(eb)) {
2686 			ret = btrfs_next_leaf(sctx->send_root, path);
2687 			if (ret < 0) {
2688 				goto out;
2689 			} else if (ret > 0) {
2690 				ret = 0;
2691 				break;
2692 			}
2693 			continue;
2694 		}
2695 
2696 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2697 		if (found_key.objectid != key.objectid ||
2698 		    found_key.type != key.type) {
2699 			ret = 0;
2700 			goto out;
2701 		}
2702 
2703 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2704 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2705 
2706 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2707 		    di_key.objectid < sctx->send_progress) {
2708 			ret = 1;
2709 			goto out;
2710 		}
2711 
2712 		path->slots[0]++;
2713 	}
2714 
2715 out:
2716 	btrfs_free_path(path);
2717 	return ret;
2718 }
2719 
2720 /*
2721  * Only creates the inode if it is:
2722  * 1. Not a directory
2723  * 2. Or a directory which was not created already due to out of order
2724  *    directories. See did_create_dir and process_recorded_refs for details.
2725  */
2726 static int send_create_inode_if_needed(struct send_ctx *sctx)
2727 {
2728 	int ret;
2729 
2730 	if (S_ISDIR(sctx->cur_inode_mode)) {
2731 		ret = did_create_dir(sctx, sctx->cur_ino);
2732 		if (ret < 0)
2733 			goto out;
2734 		if (ret) {
2735 			ret = 0;
2736 			goto out;
2737 		}
2738 	}
2739 
2740 	ret = send_create_inode(sctx, sctx->cur_ino);
2741 	if (ret < 0)
2742 		goto out;
2743 
2744 out:
2745 	return ret;
2746 }
2747 
2748 struct recorded_ref {
2749 	struct list_head list;
2750 	char *dir_path;
2751 	char *name;
2752 	struct fs_path *full_path;
2753 	u64 dir;
2754 	u64 dir_gen;
2755 	int dir_path_len;
2756 	int name_len;
2757 };
2758 
2759 /*
2760  * We need to process new refs before deleted refs, but compare_tree gives us
2761  * everything mixed. So we first record all refs and later process them.
2762  * This function is a helper to record one ref.
2763  */
2764 static int __record_ref(struct list_head *head, u64 dir,
2765 		      u64 dir_gen, struct fs_path *path)
2766 {
2767 	struct recorded_ref *ref;
2768 
2769 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2770 	if (!ref)
2771 		return -ENOMEM;
2772 
2773 	ref->dir = dir;
2774 	ref->dir_gen = dir_gen;
2775 	ref->full_path = path;
2776 
2777 	ref->name = (char *)kbasename(ref->full_path->start);
2778 	ref->name_len = ref->full_path->end - ref->name;
2779 	ref->dir_path = ref->full_path->start;
2780 	if (ref->name == ref->full_path->start)
2781 		ref->dir_path_len = 0;
2782 	else
2783 		ref->dir_path_len = ref->full_path->end -
2784 				ref->full_path->start - 1 - ref->name_len;
2785 
2786 	list_add_tail(&ref->list, head);
2787 	return 0;
2788 }
2789 
2790 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2791 {
2792 	struct recorded_ref *new;
2793 
2794 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2795 	if (!new)
2796 		return -ENOMEM;
2797 
2798 	new->dir = ref->dir;
2799 	new->dir_gen = ref->dir_gen;
2800 	new->full_path = NULL;
2801 	INIT_LIST_HEAD(&new->list);
2802 	list_add_tail(&new->list, list);
2803 	return 0;
2804 }
2805 
2806 static void __free_recorded_refs(struct list_head *head)
2807 {
2808 	struct recorded_ref *cur;
2809 
2810 	while (!list_empty(head)) {
2811 		cur = list_entry(head->next, struct recorded_ref, list);
2812 		fs_path_free(cur->full_path);
2813 		list_del(&cur->list);
2814 		kfree(cur);
2815 	}
2816 }
2817 
2818 static void free_recorded_refs(struct send_ctx *sctx)
2819 {
2820 	__free_recorded_refs(&sctx->new_refs);
2821 	__free_recorded_refs(&sctx->deleted_refs);
2822 }
2823 
2824 /*
2825  * Renames/moves a file/dir to its orphan name. Used when the first
2826  * ref of an unprocessed inode gets overwritten and for all non empty
2827  * directories.
2828  */
2829 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2830 			  struct fs_path *path)
2831 {
2832 	int ret;
2833 	struct fs_path *orphan;
2834 
2835 	orphan = fs_path_alloc();
2836 	if (!orphan)
2837 		return -ENOMEM;
2838 
2839 	ret = gen_unique_name(sctx, ino, gen, orphan);
2840 	if (ret < 0)
2841 		goto out;
2842 
2843 	ret = send_rename(sctx, path, orphan);
2844 
2845 out:
2846 	fs_path_free(orphan);
2847 	return ret;
2848 }
2849 
2850 static struct orphan_dir_info *
2851 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2852 {
2853 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2854 	struct rb_node *parent = NULL;
2855 	struct orphan_dir_info *entry, *odi;
2856 
2857 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2858 	if (!odi)
2859 		return ERR_PTR(-ENOMEM);
2860 	odi->ino = dir_ino;
2861 	odi->gen = 0;
2862 
2863 	while (*p) {
2864 		parent = *p;
2865 		entry = rb_entry(parent, struct orphan_dir_info, node);
2866 		if (dir_ino < entry->ino) {
2867 			p = &(*p)->rb_left;
2868 		} else if (dir_ino > entry->ino) {
2869 			p = &(*p)->rb_right;
2870 		} else {
2871 			kfree(odi);
2872 			return entry;
2873 		}
2874 	}
2875 
2876 	rb_link_node(&odi->node, parent, p);
2877 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2878 	return odi;
2879 }
2880 
2881 static struct orphan_dir_info *
2882 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2883 {
2884 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2885 	struct orphan_dir_info *entry;
2886 
2887 	while (n) {
2888 		entry = rb_entry(n, struct orphan_dir_info, node);
2889 		if (dir_ino < entry->ino)
2890 			n = n->rb_left;
2891 		else if (dir_ino > entry->ino)
2892 			n = n->rb_right;
2893 		else
2894 			return entry;
2895 	}
2896 	return NULL;
2897 }
2898 
2899 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2900 {
2901 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2902 
2903 	return odi != NULL;
2904 }
2905 
2906 static void free_orphan_dir_info(struct send_ctx *sctx,
2907 				 struct orphan_dir_info *odi)
2908 {
2909 	if (!odi)
2910 		return;
2911 	rb_erase(&odi->node, &sctx->orphan_dirs);
2912 	kfree(odi);
2913 }
2914 
2915 /*
2916  * Returns 1 if a directory can be removed at this point in time.
2917  * We check this by iterating all dir items and checking if the inode behind
2918  * the dir item was already processed.
2919  */
2920 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2921 		     u64 send_progress)
2922 {
2923 	int ret = 0;
2924 	struct btrfs_root *root = sctx->parent_root;
2925 	struct btrfs_path *path;
2926 	struct btrfs_key key;
2927 	struct btrfs_key found_key;
2928 	struct btrfs_key loc;
2929 	struct btrfs_dir_item *di;
2930 
2931 	/*
2932 	 * Don't try to rmdir the top/root subvolume dir.
2933 	 */
2934 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2935 		return 0;
2936 
2937 	path = alloc_path_for_send();
2938 	if (!path)
2939 		return -ENOMEM;
2940 
2941 	key.objectid = dir;
2942 	key.type = BTRFS_DIR_INDEX_KEY;
2943 	key.offset = 0;
2944 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2945 	if (ret < 0)
2946 		goto out;
2947 
2948 	while (1) {
2949 		struct waiting_dir_move *dm;
2950 
2951 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2952 			ret = btrfs_next_leaf(root, path);
2953 			if (ret < 0)
2954 				goto out;
2955 			else if (ret > 0)
2956 				break;
2957 			continue;
2958 		}
2959 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2960 				      path->slots[0]);
2961 		if (found_key.objectid != key.objectid ||
2962 		    found_key.type != key.type)
2963 			break;
2964 
2965 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2966 				struct btrfs_dir_item);
2967 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2968 
2969 		dm = get_waiting_dir_move(sctx, loc.objectid);
2970 		if (dm) {
2971 			struct orphan_dir_info *odi;
2972 
2973 			odi = add_orphan_dir_info(sctx, dir);
2974 			if (IS_ERR(odi)) {
2975 				ret = PTR_ERR(odi);
2976 				goto out;
2977 			}
2978 			odi->gen = dir_gen;
2979 			dm->rmdir_ino = dir;
2980 			ret = 0;
2981 			goto out;
2982 		}
2983 
2984 		if (loc.objectid > send_progress) {
2985 			struct orphan_dir_info *odi;
2986 
2987 			odi = get_orphan_dir_info(sctx, dir);
2988 			free_orphan_dir_info(sctx, odi);
2989 			ret = 0;
2990 			goto out;
2991 		}
2992 
2993 		path->slots[0]++;
2994 	}
2995 
2996 	ret = 1;
2997 
2998 out:
2999 	btrfs_free_path(path);
3000 	return ret;
3001 }
3002 
3003 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3004 {
3005 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3006 
3007 	return entry != NULL;
3008 }
3009 
3010 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3011 {
3012 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3013 	struct rb_node *parent = NULL;
3014 	struct waiting_dir_move *entry, *dm;
3015 
3016 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3017 	if (!dm)
3018 		return -ENOMEM;
3019 	dm->ino = ino;
3020 	dm->rmdir_ino = 0;
3021 	dm->orphanized = orphanized;
3022 
3023 	while (*p) {
3024 		parent = *p;
3025 		entry = rb_entry(parent, struct waiting_dir_move, node);
3026 		if (ino < entry->ino) {
3027 			p = &(*p)->rb_left;
3028 		} else if (ino > entry->ino) {
3029 			p = &(*p)->rb_right;
3030 		} else {
3031 			kfree(dm);
3032 			return -EEXIST;
3033 		}
3034 	}
3035 
3036 	rb_link_node(&dm->node, parent, p);
3037 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3038 	return 0;
3039 }
3040 
3041 static struct waiting_dir_move *
3042 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3043 {
3044 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3045 	struct waiting_dir_move *entry;
3046 
3047 	while (n) {
3048 		entry = rb_entry(n, struct waiting_dir_move, node);
3049 		if (ino < entry->ino)
3050 			n = n->rb_left;
3051 		else if (ino > entry->ino)
3052 			n = n->rb_right;
3053 		else
3054 			return entry;
3055 	}
3056 	return NULL;
3057 }
3058 
3059 static void free_waiting_dir_move(struct send_ctx *sctx,
3060 				  struct waiting_dir_move *dm)
3061 {
3062 	if (!dm)
3063 		return;
3064 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3065 	kfree(dm);
3066 }
3067 
3068 static int add_pending_dir_move(struct send_ctx *sctx,
3069 				u64 ino,
3070 				u64 ino_gen,
3071 				u64 parent_ino,
3072 				struct list_head *new_refs,
3073 				struct list_head *deleted_refs,
3074 				const bool is_orphan)
3075 {
3076 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3077 	struct rb_node *parent = NULL;
3078 	struct pending_dir_move *entry = NULL, *pm;
3079 	struct recorded_ref *cur;
3080 	int exists = 0;
3081 	int ret;
3082 
3083 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3084 	if (!pm)
3085 		return -ENOMEM;
3086 	pm->parent_ino = parent_ino;
3087 	pm->ino = ino;
3088 	pm->gen = ino_gen;
3089 	INIT_LIST_HEAD(&pm->list);
3090 	INIT_LIST_HEAD(&pm->update_refs);
3091 	RB_CLEAR_NODE(&pm->node);
3092 
3093 	while (*p) {
3094 		parent = *p;
3095 		entry = rb_entry(parent, struct pending_dir_move, node);
3096 		if (parent_ino < entry->parent_ino) {
3097 			p = &(*p)->rb_left;
3098 		} else if (parent_ino > entry->parent_ino) {
3099 			p = &(*p)->rb_right;
3100 		} else {
3101 			exists = 1;
3102 			break;
3103 		}
3104 	}
3105 
3106 	list_for_each_entry(cur, deleted_refs, list) {
3107 		ret = dup_ref(cur, &pm->update_refs);
3108 		if (ret < 0)
3109 			goto out;
3110 	}
3111 	list_for_each_entry(cur, new_refs, list) {
3112 		ret = dup_ref(cur, &pm->update_refs);
3113 		if (ret < 0)
3114 			goto out;
3115 	}
3116 
3117 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3118 	if (ret)
3119 		goto out;
3120 
3121 	if (exists) {
3122 		list_add_tail(&pm->list, &entry->list);
3123 	} else {
3124 		rb_link_node(&pm->node, parent, p);
3125 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3126 	}
3127 	ret = 0;
3128 out:
3129 	if (ret) {
3130 		__free_recorded_refs(&pm->update_refs);
3131 		kfree(pm);
3132 	}
3133 	return ret;
3134 }
3135 
3136 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3137 						      u64 parent_ino)
3138 {
3139 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3140 	struct pending_dir_move *entry;
3141 
3142 	while (n) {
3143 		entry = rb_entry(n, struct pending_dir_move, node);
3144 		if (parent_ino < entry->parent_ino)
3145 			n = n->rb_left;
3146 		else if (parent_ino > entry->parent_ino)
3147 			n = n->rb_right;
3148 		else
3149 			return entry;
3150 	}
3151 	return NULL;
3152 }
3153 
3154 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3155 		     u64 ino, u64 gen, u64 *ancestor_ino)
3156 {
3157 	int ret = 0;
3158 	u64 parent_inode = 0;
3159 	u64 parent_gen = 0;
3160 	u64 start_ino = ino;
3161 
3162 	*ancestor_ino = 0;
3163 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3164 		fs_path_reset(name);
3165 
3166 		if (is_waiting_for_rm(sctx, ino))
3167 			break;
3168 		if (is_waiting_for_move(sctx, ino)) {
3169 			if (*ancestor_ino == 0)
3170 				*ancestor_ino = ino;
3171 			ret = get_first_ref(sctx->parent_root, ino,
3172 					    &parent_inode, &parent_gen, name);
3173 		} else {
3174 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3175 							&parent_inode,
3176 							&parent_gen, name);
3177 			if (ret > 0) {
3178 				ret = 0;
3179 				break;
3180 			}
3181 		}
3182 		if (ret < 0)
3183 			break;
3184 		if (parent_inode == start_ino) {
3185 			ret = 1;
3186 			if (*ancestor_ino == 0)
3187 				*ancestor_ino = ino;
3188 			break;
3189 		}
3190 		ino = parent_inode;
3191 		gen = parent_gen;
3192 	}
3193 	return ret;
3194 }
3195 
3196 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3197 {
3198 	struct fs_path *from_path = NULL;
3199 	struct fs_path *to_path = NULL;
3200 	struct fs_path *name = NULL;
3201 	u64 orig_progress = sctx->send_progress;
3202 	struct recorded_ref *cur;
3203 	u64 parent_ino, parent_gen;
3204 	struct waiting_dir_move *dm = NULL;
3205 	u64 rmdir_ino = 0;
3206 	u64 ancestor;
3207 	bool is_orphan;
3208 	int ret;
3209 
3210 	name = fs_path_alloc();
3211 	from_path = fs_path_alloc();
3212 	if (!name || !from_path) {
3213 		ret = -ENOMEM;
3214 		goto out;
3215 	}
3216 
3217 	dm = get_waiting_dir_move(sctx, pm->ino);
3218 	ASSERT(dm);
3219 	rmdir_ino = dm->rmdir_ino;
3220 	is_orphan = dm->orphanized;
3221 	free_waiting_dir_move(sctx, dm);
3222 
3223 	if (is_orphan) {
3224 		ret = gen_unique_name(sctx, pm->ino,
3225 				      pm->gen, from_path);
3226 	} else {
3227 		ret = get_first_ref(sctx->parent_root, pm->ino,
3228 				    &parent_ino, &parent_gen, name);
3229 		if (ret < 0)
3230 			goto out;
3231 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3232 				   from_path);
3233 		if (ret < 0)
3234 			goto out;
3235 		ret = fs_path_add_path(from_path, name);
3236 	}
3237 	if (ret < 0)
3238 		goto out;
3239 
3240 	sctx->send_progress = sctx->cur_ino + 1;
3241 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3242 	if (ret < 0)
3243 		goto out;
3244 	if (ret) {
3245 		LIST_HEAD(deleted_refs);
3246 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3247 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3248 					   &pm->update_refs, &deleted_refs,
3249 					   is_orphan);
3250 		if (ret < 0)
3251 			goto out;
3252 		if (rmdir_ino) {
3253 			dm = get_waiting_dir_move(sctx, pm->ino);
3254 			ASSERT(dm);
3255 			dm->rmdir_ino = rmdir_ino;
3256 		}
3257 		goto out;
3258 	}
3259 	fs_path_reset(name);
3260 	to_path = name;
3261 	name = NULL;
3262 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3263 	if (ret < 0)
3264 		goto out;
3265 
3266 	ret = send_rename(sctx, from_path, to_path);
3267 	if (ret < 0)
3268 		goto out;
3269 
3270 	if (rmdir_ino) {
3271 		struct orphan_dir_info *odi;
3272 
3273 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3274 		if (!odi) {
3275 			/* already deleted */
3276 			goto finish;
3277 		}
3278 		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
3279 		if (ret < 0)
3280 			goto out;
3281 		if (!ret)
3282 			goto finish;
3283 
3284 		name = fs_path_alloc();
3285 		if (!name) {
3286 			ret = -ENOMEM;
3287 			goto out;
3288 		}
3289 		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3290 		if (ret < 0)
3291 			goto out;
3292 		ret = send_rmdir(sctx, name);
3293 		if (ret < 0)
3294 			goto out;
3295 		free_orphan_dir_info(sctx, odi);
3296 	}
3297 
3298 finish:
3299 	ret = send_utimes(sctx, pm->ino, pm->gen);
3300 	if (ret < 0)
3301 		goto out;
3302 
3303 	/*
3304 	 * After rename/move, need to update the utimes of both new parent(s)
3305 	 * and old parent(s).
3306 	 */
3307 	list_for_each_entry(cur, &pm->update_refs, list) {
3308 		/*
3309 		 * The parent inode might have been deleted in the send snapshot
3310 		 */
3311 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3312 				     NULL, NULL, NULL, NULL, NULL);
3313 		if (ret == -ENOENT) {
3314 			ret = 0;
3315 			continue;
3316 		}
3317 		if (ret < 0)
3318 			goto out;
3319 
3320 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3321 		if (ret < 0)
3322 			goto out;
3323 	}
3324 
3325 out:
3326 	fs_path_free(name);
3327 	fs_path_free(from_path);
3328 	fs_path_free(to_path);
3329 	sctx->send_progress = orig_progress;
3330 
3331 	return ret;
3332 }
3333 
3334 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3335 {
3336 	if (!list_empty(&m->list))
3337 		list_del(&m->list);
3338 	if (!RB_EMPTY_NODE(&m->node))
3339 		rb_erase(&m->node, &sctx->pending_dir_moves);
3340 	__free_recorded_refs(&m->update_refs);
3341 	kfree(m);
3342 }
3343 
3344 static void tail_append_pending_moves(struct pending_dir_move *moves,
3345 				      struct list_head *stack)
3346 {
3347 	if (list_empty(&moves->list)) {
3348 		list_add_tail(&moves->list, stack);
3349 	} else {
3350 		LIST_HEAD(list);
3351 		list_splice_init(&moves->list, &list);
3352 		list_add_tail(&moves->list, stack);
3353 		list_splice_tail(&list, stack);
3354 	}
3355 }
3356 
3357 static int apply_children_dir_moves(struct send_ctx *sctx)
3358 {
3359 	struct pending_dir_move *pm;
3360 	struct list_head stack;
3361 	u64 parent_ino = sctx->cur_ino;
3362 	int ret = 0;
3363 
3364 	pm = get_pending_dir_moves(sctx, parent_ino);
3365 	if (!pm)
3366 		return 0;
3367 
3368 	INIT_LIST_HEAD(&stack);
3369 	tail_append_pending_moves(pm, &stack);
3370 
3371 	while (!list_empty(&stack)) {
3372 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3373 		parent_ino = pm->ino;
3374 		ret = apply_dir_move(sctx, pm);
3375 		free_pending_move(sctx, pm);
3376 		if (ret)
3377 			goto out;
3378 		pm = get_pending_dir_moves(sctx, parent_ino);
3379 		if (pm)
3380 			tail_append_pending_moves(pm, &stack);
3381 	}
3382 	return 0;
3383 
3384 out:
3385 	while (!list_empty(&stack)) {
3386 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3387 		free_pending_move(sctx, pm);
3388 	}
3389 	return ret;
3390 }
3391 
3392 /*
3393  * We might need to delay a directory rename even when no ancestor directory
3394  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3395  * renamed. This happens when we rename a directory to the old name (the name
3396  * in the parent root) of some other unrelated directory that got its rename
3397  * delayed due to some ancestor with higher number that got renamed.
3398  *
3399  * Example:
3400  *
3401  * Parent snapshot:
3402  * .                                       (ino 256)
3403  * |---- a/                                (ino 257)
3404  * |     |---- file                        (ino 260)
3405  * |
3406  * |---- b/                                (ino 258)
3407  * |---- c/                                (ino 259)
3408  *
3409  * Send snapshot:
3410  * .                                       (ino 256)
3411  * |---- a/                                (ino 258)
3412  * |---- x/                                (ino 259)
3413  *       |---- y/                          (ino 257)
3414  *             |----- file                 (ino 260)
3415  *
3416  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3417  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3418  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3419  * must issue is:
3420  *
3421  * 1 - rename 259 from 'c' to 'x'
3422  * 2 - rename 257 from 'a' to 'x/y'
3423  * 3 - rename 258 from 'b' to 'a'
3424  *
3425  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3426  * be done right away and < 0 on error.
3427  */
3428 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3429 				  struct recorded_ref *parent_ref,
3430 				  const bool is_orphan)
3431 {
3432 	struct btrfs_path *path;
3433 	struct btrfs_key key;
3434 	struct btrfs_key di_key;
3435 	struct btrfs_dir_item *di;
3436 	u64 left_gen;
3437 	u64 right_gen;
3438 	int ret = 0;
3439 	struct waiting_dir_move *wdm;
3440 
3441 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3442 		return 0;
3443 
3444 	path = alloc_path_for_send();
3445 	if (!path)
3446 		return -ENOMEM;
3447 
3448 	key.objectid = parent_ref->dir;
3449 	key.type = BTRFS_DIR_ITEM_KEY;
3450 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3451 
3452 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3453 	if (ret < 0) {
3454 		goto out;
3455 	} else if (ret > 0) {
3456 		ret = 0;
3457 		goto out;
3458 	}
3459 
3460 	di = btrfs_match_dir_item_name(sctx->parent_root, path,
3461 				       parent_ref->name, parent_ref->name_len);
3462 	if (!di) {
3463 		ret = 0;
3464 		goto out;
3465 	}
3466 	/*
3467 	 * di_key.objectid has the number of the inode that has a dentry in the
3468 	 * parent directory with the same name that sctx->cur_ino is being
3469 	 * renamed to. We need to check if that inode is in the send root as
3470 	 * well and if it is currently marked as an inode with a pending rename,
3471 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3472 	 * that it happens after that other inode is renamed.
3473 	 */
3474 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3475 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3476 		ret = 0;
3477 		goto out;
3478 	}
3479 
3480 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3481 			     &left_gen, NULL, NULL, NULL, NULL);
3482 	if (ret < 0)
3483 		goto out;
3484 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3485 			     &right_gen, NULL, NULL, NULL, NULL);
3486 	if (ret < 0) {
3487 		if (ret == -ENOENT)
3488 			ret = 0;
3489 		goto out;
3490 	}
3491 
3492 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3493 	if (right_gen != left_gen) {
3494 		ret = 0;
3495 		goto out;
3496 	}
3497 
3498 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3499 	if (wdm && !wdm->orphanized) {
3500 		ret = add_pending_dir_move(sctx,
3501 					   sctx->cur_ino,
3502 					   sctx->cur_inode_gen,
3503 					   di_key.objectid,
3504 					   &sctx->new_refs,
3505 					   &sctx->deleted_refs,
3506 					   is_orphan);
3507 		if (!ret)
3508 			ret = 1;
3509 	}
3510 out:
3511 	btrfs_free_path(path);
3512 	return ret;
3513 }
3514 
3515 /*
3516  * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3517  * Return 1 if true, 0 if false and < 0 on error.
3518  */
3519 static int is_ancestor(struct btrfs_root *root,
3520 		       const u64 ino1,
3521 		       const u64 ino1_gen,
3522 		       const u64 ino2,
3523 		       struct fs_path *fs_path)
3524 {
3525 	u64 ino = ino2;
3526 
3527 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3528 		int ret;
3529 		u64 parent;
3530 		u64 parent_gen;
3531 
3532 		fs_path_reset(fs_path);
3533 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3534 		if (ret < 0) {
3535 			if (ret == -ENOENT && ino == ino2)
3536 				ret = 0;
3537 			return ret;
3538 		}
3539 		if (parent == ino1)
3540 			return parent_gen == ino1_gen ? 1 : 0;
3541 		ino = parent;
3542 	}
3543 	return 0;
3544 }
3545 
3546 static int wait_for_parent_move(struct send_ctx *sctx,
3547 				struct recorded_ref *parent_ref,
3548 				const bool is_orphan)
3549 {
3550 	int ret = 0;
3551 	u64 ino = parent_ref->dir;
3552 	u64 parent_ino_before, parent_ino_after;
3553 	struct fs_path *path_before = NULL;
3554 	struct fs_path *path_after = NULL;
3555 	int len1, len2;
3556 
3557 	path_after = fs_path_alloc();
3558 	path_before = fs_path_alloc();
3559 	if (!path_after || !path_before) {
3560 		ret = -ENOMEM;
3561 		goto out;
3562 	}
3563 
3564 	/*
3565 	 * Our current directory inode may not yet be renamed/moved because some
3566 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3567 	 * such ancestor exists and make sure our own rename/move happens after
3568 	 * that ancestor is processed to avoid path build infinite loops (done
3569 	 * at get_cur_path()).
3570 	 */
3571 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3572 		if (is_waiting_for_move(sctx, ino)) {
3573 			/*
3574 			 * If the current inode is an ancestor of ino in the
3575 			 * parent root, we need to delay the rename of the
3576 			 * current inode, otherwise don't delayed the rename
3577 			 * because we can end up with a circular dependency
3578 			 * of renames, resulting in some directories never
3579 			 * getting the respective rename operations issued in
3580 			 * the send stream or getting into infinite path build
3581 			 * loops.
3582 			 */
3583 			ret = is_ancestor(sctx->parent_root,
3584 					  sctx->cur_ino, sctx->cur_inode_gen,
3585 					  ino, path_before);
3586 			if (ret)
3587 				break;
3588 		}
3589 
3590 		fs_path_reset(path_before);
3591 		fs_path_reset(path_after);
3592 
3593 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3594 				    NULL, path_after);
3595 		if (ret < 0)
3596 			goto out;
3597 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3598 				    NULL, path_before);
3599 		if (ret < 0 && ret != -ENOENT) {
3600 			goto out;
3601 		} else if (ret == -ENOENT) {
3602 			ret = 0;
3603 			break;
3604 		}
3605 
3606 		len1 = fs_path_len(path_before);
3607 		len2 = fs_path_len(path_after);
3608 		if (ino > sctx->cur_ino &&
3609 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3610 		     memcmp(path_before->start, path_after->start, len1))) {
3611 			ret = 1;
3612 			break;
3613 		}
3614 		ino = parent_ino_after;
3615 	}
3616 
3617 out:
3618 	fs_path_free(path_before);
3619 	fs_path_free(path_after);
3620 
3621 	if (ret == 1) {
3622 		ret = add_pending_dir_move(sctx,
3623 					   sctx->cur_ino,
3624 					   sctx->cur_inode_gen,
3625 					   ino,
3626 					   &sctx->new_refs,
3627 					   &sctx->deleted_refs,
3628 					   is_orphan);
3629 		if (!ret)
3630 			ret = 1;
3631 	}
3632 
3633 	return ret;
3634 }
3635 
3636 /*
3637  * This does all the move/link/unlink/rmdir magic.
3638  */
3639 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3640 {
3641 	int ret = 0;
3642 	struct recorded_ref *cur;
3643 	struct recorded_ref *cur2;
3644 	struct list_head check_dirs;
3645 	struct fs_path *valid_path = NULL;
3646 	u64 ow_inode = 0;
3647 	u64 ow_gen;
3648 	int did_overwrite = 0;
3649 	int is_orphan = 0;
3650 	u64 last_dir_ino_rm = 0;
3651 	bool can_rename = true;
3652 
3653 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3654 
3655 	/*
3656 	 * This should never happen as the root dir always has the same ref
3657 	 * which is always '..'
3658 	 */
3659 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3660 	INIT_LIST_HEAD(&check_dirs);
3661 
3662 	valid_path = fs_path_alloc();
3663 	if (!valid_path) {
3664 		ret = -ENOMEM;
3665 		goto out;
3666 	}
3667 
3668 	/*
3669 	 * First, check if the first ref of the current inode was overwritten
3670 	 * before. If yes, we know that the current inode was already orphanized
3671 	 * and thus use the orphan name. If not, we can use get_cur_path to
3672 	 * get the path of the first ref as it would like while receiving at
3673 	 * this point in time.
3674 	 * New inodes are always orphan at the beginning, so force to use the
3675 	 * orphan name in this case.
3676 	 * The first ref is stored in valid_path and will be updated if it
3677 	 * gets moved around.
3678 	 */
3679 	if (!sctx->cur_inode_new) {
3680 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3681 				sctx->cur_inode_gen);
3682 		if (ret < 0)
3683 			goto out;
3684 		if (ret)
3685 			did_overwrite = 1;
3686 	}
3687 	if (sctx->cur_inode_new || did_overwrite) {
3688 		ret = gen_unique_name(sctx, sctx->cur_ino,
3689 				sctx->cur_inode_gen, valid_path);
3690 		if (ret < 0)
3691 			goto out;
3692 		is_orphan = 1;
3693 	} else {
3694 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3695 				valid_path);
3696 		if (ret < 0)
3697 			goto out;
3698 	}
3699 
3700 	list_for_each_entry(cur, &sctx->new_refs, list) {
3701 		/*
3702 		 * We may have refs where the parent directory does not exist
3703 		 * yet. This happens if the parent directories inum is higher
3704 		 * the the current inum. To handle this case, we create the
3705 		 * parent directory out of order. But we need to check if this
3706 		 * did already happen before due to other refs in the same dir.
3707 		 */
3708 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3709 		if (ret < 0)
3710 			goto out;
3711 		if (ret == inode_state_will_create) {
3712 			ret = 0;
3713 			/*
3714 			 * First check if any of the current inodes refs did
3715 			 * already create the dir.
3716 			 */
3717 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3718 				if (cur == cur2)
3719 					break;
3720 				if (cur2->dir == cur->dir) {
3721 					ret = 1;
3722 					break;
3723 				}
3724 			}
3725 
3726 			/*
3727 			 * If that did not happen, check if a previous inode
3728 			 * did already create the dir.
3729 			 */
3730 			if (!ret)
3731 				ret = did_create_dir(sctx, cur->dir);
3732 			if (ret < 0)
3733 				goto out;
3734 			if (!ret) {
3735 				ret = send_create_inode(sctx, cur->dir);
3736 				if (ret < 0)
3737 					goto out;
3738 			}
3739 		}
3740 
3741 		/*
3742 		 * Check if this new ref would overwrite the first ref of
3743 		 * another unprocessed inode. If yes, orphanize the
3744 		 * overwritten inode. If we find an overwritten ref that is
3745 		 * not the first ref, simply unlink it.
3746 		 */
3747 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3748 				cur->name, cur->name_len,
3749 				&ow_inode, &ow_gen);
3750 		if (ret < 0)
3751 			goto out;
3752 		if (ret) {
3753 			ret = is_first_ref(sctx->parent_root,
3754 					   ow_inode, cur->dir, cur->name,
3755 					   cur->name_len);
3756 			if (ret < 0)
3757 				goto out;
3758 			if (ret) {
3759 				struct name_cache_entry *nce;
3760 				struct waiting_dir_move *wdm;
3761 
3762 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3763 						cur->full_path);
3764 				if (ret < 0)
3765 					goto out;
3766 
3767 				/*
3768 				 * If ow_inode has its rename operation delayed
3769 				 * make sure that its orphanized name is used in
3770 				 * the source path when performing its rename
3771 				 * operation.
3772 				 */
3773 				if (is_waiting_for_move(sctx, ow_inode)) {
3774 					wdm = get_waiting_dir_move(sctx,
3775 								   ow_inode);
3776 					ASSERT(wdm);
3777 					wdm->orphanized = true;
3778 				}
3779 
3780 				/*
3781 				 * Make sure we clear our orphanized inode's
3782 				 * name from the name cache. This is because the
3783 				 * inode ow_inode might be an ancestor of some
3784 				 * other inode that will be orphanized as well
3785 				 * later and has an inode number greater than
3786 				 * sctx->send_progress. We need to prevent
3787 				 * future name lookups from using the old name
3788 				 * and get instead the orphan name.
3789 				 */
3790 				nce = name_cache_search(sctx, ow_inode, ow_gen);
3791 				if (nce) {
3792 					name_cache_delete(sctx, nce);
3793 					kfree(nce);
3794 				}
3795 
3796 				/*
3797 				 * ow_inode might currently be an ancestor of
3798 				 * cur_ino, therefore compute valid_path (the
3799 				 * current path of cur_ino) again because it
3800 				 * might contain the pre-orphanization name of
3801 				 * ow_inode, which is no longer valid.
3802 				 */
3803 				fs_path_reset(valid_path);
3804 				ret = get_cur_path(sctx, sctx->cur_ino,
3805 					   sctx->cur_inode_gen, valid_path);
3806 				if (ret < 0)
3807 					goto out;
3808 			} else {
3809 				ret = send_unlink(sctx, cur->full_path);
3810 				if (ret < 0)
3811 					goto out;
3812 			}
3813 		}
3814 
3815 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3816 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3817 			if (ret < 0)
3818 				goto out;
3819 			if (ret == 1) {
3820 				can_rename = false;
3821 				*pending_move = 1;
3822 			}
3823 		}
3824 
3825 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3826 		    can_rename) {
3827 			ret = wait_for_parent_move(sctx, cur, is_orphan);
3828 			if (ret < 0)
3829 				goto out;
3830 			if (ret == 1) {
3831 				can_rename = false;
3832 				*pending_move = 1;
3833 			}
3834 		}
3835 
3836 		/*
3837 		 * link/move the ref to the new place. If we have an orphan
3838 		 * inode, move it and update valid_path. If not, link or move
3839 		 * it depending on the inode mode.
3840 		 */
3841 		if (is_orphan && can_rename) {
3842 			ret = send_rename(sctx, valid_path, cur->full_path);
3843 			if (ret < 0)
3844 				goto out;
3845 			is_orphan = 0;
3846 			ret = fs_path_copy(valid_path, cur->full_path);
3847 			if (ret < 0)
3848 				goto out;
3849 		} else if (can_rename) {
3850 			if (S_ISDIR(sctx->cur_inode_mode)) {
3851 				/*
3852 				 * Dirs can't be linked, so move it. For moved
3853 				 * dirs, we always have one new and one deleted
3854 				 * ref. The deleted ref is ignored later.
3855 				 */
3856 				ret = send_rename(sctx, valid_path,
3857 						  cur->full_path);
3858 				if (!ret)
3859 					ret = fs_path_copy(valid_path,
3860 							   cur->full_path);
3861 				if (ret < 0)
3862 					goto out;
3863 			} else {
3864 				ret = send_link(sctx, cur->full_path,
3865 						valid_path);
3866 				if (ret < 0)
3867 					goto out;
3868 			}
3869 		}
3870 		ret = dup_ref(cur, &check_dirs);
3871 		if (ret < 0)
3872 			goto out;
3873 	}
3874 
3875 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3876 		/*
3877 		 * Check if we can already rmdir the directory. If not,
3878 		 * orphanize it. For every dir item inside that gets deleted
3879 		 * later, we do this check again and rmdir it then if possible.
3880 		 * See the use of check_dirs for more details.
3881 		 */
3882 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3883 				sctx->cur_ino);
3884 		if (ret < 0)
3885 			goto out;
3886 		if (ret) {
3887 			ret = send_rmdir(sctx, valid_path);
3888 			if (ret < 0)
3889 				goto out;
3890 		} else if (!is_orphan) {
3891 			ret = orphanize_inode(sctx, sctx->cur_ino,
3892 					sctx->cur_inode_gen, valid_path);
3893 			if (ret < 0)
3894 				goto out;
3895 			is_orphan = 1;
3896 		}
3897 
3898 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3899 			ret = dup_ref(cur, &check_dirs);
3900 			if (ret < 0)
3901 				goto out;
3902 		}
3903 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
3904 		   !list_empty(&sctx->deleted_refs)) {
3905 		/*
3906 		 * We have a moved dir. Add the old parent to check_dirs
3907 		 */
3908 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3909 				list);
3910 		ret = dup_ref(cur, &check_dirs);
3911 		if (ret < 0)
3912 			goto out;
3913 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
3914 		/*
3915 		 * We have a non dir inode. Go through all deleted refs and
3916 		 * unlink them if they were not already overwritten by other
3917 		 * inodes.
3918 		 */
3919 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3920 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3921 					sctx->cur_ino, sctx->cur_inode_gen,
3922 					cur->name, cur->name_len);
3923 			if (ret < 0)
3924 				goto out;
3925 			if (!ret) {
3926 				ret = send_unlink(sctx, cur->full_path);
3927 				if (ret < 0)
3928 					goto out;
3929 			}
3930 			ret = dup_ref(cur, &check_dirs);
3931 			if (ret < 0)
3932 				goto out;
3933 		}
3934 		/*
3935 		 * If the inode is still orphan, unlink the orphan. This may
3936 		 * happen when a previous inode did overwrite the first ref
3937 		 * of this inode and no new refs were added for the current
3938 		 * inode. Unlinking does not mean that the inode is deleted in
3939 		 * all cases. There may still be links to this inode in other
3940 		 * places.
3941 		 */
3942 		if (is_orphan) {
3943 			ret = send_unlink(sctx, valid_path);
3944 			if (ret < 0)
3945 				goto out;
3946 		}
3947 	}
3948 
3949 	/*
3950 	 * We did collect all parent dirs where cur_inode was once located. We
3951 	 * now go through all these dirs and check if they are pending for
3952 	 * deletion and if it's finally possible to perform the rmdir now.
3953 	 * We also update the inode stats of the parent dirs here.
3954 	 */
3955 	list_for_each_entry(cur, &check_dirs, list) {
3956 		/*
3957 		 * In case we had refs into dirs that were not processed yet,
3958 		 * we don't need to do the utime and rmdir logic for these dirs.
3959 		 * The dir will be processed later.
3960 		 */
3961 		if (cur->dir > sctx->cur_ino)
3962 			continue;
3963 
3964 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3965 		if (ret < 0)
3966 			goto out;
3967 
3968 		if (ret == inode_state_did_create ||
3969 		    ret == inode_state_no_change) {
3970 			/* TODO delayed utimes */
3971 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3972 			if (ret < 0)
3973 				goto out;
3974 		} else if (ret == inode_state_did_delete &&
3975 			   cur->dir != last_dir_ino_rm) {
3976 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3977 					sctx->cur_ino);
3978 			if (ret < 0)
3979 				goto out;
3980 			if (ret) {
3981 				ret = get_cur_path(sctx, cur->dir,
3982 						   cur->dir_gen, valid_path);
3983 				if (ret < 0)
3984 					goto out;
3985 				ret = send_rmdir(sctx, valid_path);
3986 				if (ret < 0)
3987 					goto out;
3988 				last_dir_ino_rm = cur->dir;
3989 			}
3990 		}
3991 	}
3992 
3993 	ret = 0;
3994 
3995 out:
3996 	__free_recorded_refs(&check_dirs);
3997 	free_recorded_refs(sctx);
3998 	fs_path_free(valid_path);
3999 	return ret;
4000 }
4001 
4002 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
4003 		      struct fs_path *name, void *ctx, struct list_head *refs)
4004 {
4005 	int ret = 0;
4006 	struct send_ctx *sctx = ctx;
4007 	struct fs_path *p;
4008 	u64 gen;
4009 
4010 	p = fs_path_alloc();
4011 	if (!p)
4012 		return -ENOMEM;
4013 
4014 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4015 			NULL, NULL);
4016 	if (ret < 0)
4017 		goto out;
4018 
4019 	ret = get_cur_path(sctx, dir, gen, p);
4020 	if (ret < 0)
4021 		goto out;
4022 	ret = fs_path_add_path(p, name);
4023 	if (ret < 0)
4024 		goto out;
4025 
4026 	ret = __record_ref(refs, dir, gen, p);
4027 
4028 out:
4029 	if (ret)
4030 		fs_path_free(p);
4031 	return ret;
4032 }
4033 
4034 static int __record_new_ref(int num, u64 dir, int index,
4035 			    struct fs_path *name,
4036 			    void *ctx)
4037 {
4038 	struct send_ctx *sctx = ctx;
4039 	return record_ref(sctx->send_root, num, dir, index, name,
4040 			  ctx, &sctx->new_refs);
4041 }
4042 
4043 
4044 static int __record_deleted_ref(int num, u64 dir, int index,
4045 				struct fs_path *name,
4046 				void *ctx)
4047 {
4048 	struct send_ctx *sctx = ctx;
4049 	return record_ref(sctx->parent_root, num, dir, index, name,
4050 			  ctx, &sctx->deleted_refs);
4051 }
4052 
4053 static int record_new_ref(struct send_ctx *sctx)
4054 {
4055 	int ret;
4056 
4057 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4058 				sctx->cmp_key, 0, __record_new_ref, sctx);
4059 	if (ret < 0)
4060 		goto out;
4061 	ret = 0;
4062 
4063 out:
4064 	return ret;
4065 }
4066 
4067 static int record_deleted_ref(struct send_ctx *sctx)
4068 {
4069 	int ret;
4070 
4071 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4072 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4073 	if (ret < 0)
4074 		goto out;
4075 	ret = 0;
4076 
4077 out:
4078 	return ret;
4079 }
4080 
4081 struct find_ref_ctx {
4082 	u64 dir;
4083 	u64 dir_gen;
4084 	struct btrfs_root *root;
4085 	struct fs_path *name;
4086 	int found_idx;
4087 };
4088 
4089 static int __find_iref(int num, u64 dir, int index,
4090 		       struct fs_path *name,
4091 		       void *ctx_)
4092 {
4093 	struct find_ref_ctx *ctx = ctx_;
4094 	u64 dir_gen;
4095 	int ret;
4096 
4097 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4098 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4099 		/*
4100 		 * To avoid doing extra lookups we'll only do this if everything
4101 		 * else matches.
4102 		 */
4103 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4104 				     NULL, NULL, NULL);
4105 		if (ret)
4106 			return ret;
4107 		if (dir_gen != ctx->dir_gen)
4108 			return 0;
4109 		ctx->found_idx = num;
4110 		return 1;
4111 	}
4112 	return 0;
4113 }
4114 
4115 static int find_iref(struct btrfs_root *root,
4116 		     struct btrfs_path *path,
4117 		     struct btrfs_key *key,
4118 		     u64 dir, u64 dir_gen, struct fs_path *name)
4119 {
4120 	int ret;
4121 	struct find_ref_ctx ctx;
4122 
4123 	ctx.dir = dir;
4124 	ctx.name = name;
4125 	ctx.dir_gen = dir_gen;
4126 	ctx.found_idx = -1;
4127 	ctx.root = root;
4128 
4129 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4130 	if (ret < 0)
4131 		return ret;
4132 
4133 	if (ctx.found_idx == -1)
4134 		return -ENOENT;
4135 
4136 	return ctx.found_idx;
4137 }
4138 
4139 static int __record_changed_new_ref(int num, u64 dir, int index,
4140 				    struct fs_path *name,
4141 				    void *ctx)
4142 {
4143 	u64 dir_gen;
4144 	int ret;
4145 	struct send_ctx *sctx = ctx;
4146 
4147 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4148 			     NULL, NULL, NULL);
4149 	if (ret)
4150 		return ret;
4151 
4152 	ret = find_iref(sctx->parent_root, sctx->right_path,
4153 			sctx->cmp_key, dir, dir_gen, name);
4154 	if (ret == -ENOENT)
4155 		ret = __record_new_ref(num, dir, index, name, sctx);
4156 	else if (ret > 0)
4157 		ret = 0;
4158 
4159 	return ret;
4160 }
4161 
4162 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4163 					struct fs_path *name,
4164 					void *ctx)
4165 {
4166 	u64 dir_gen;
4167 	int ret;
4168 	struct send_ctx *sctx = ctx;
4169 
4170 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4171 			     NULL, NULL, NULL);
4172 	if (ret)
4173 		return ret;
4174 
4175 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4176 			dir, dir_gen, name);
4177 	if (ret == -ENOENT)
4178 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4179 	else if (ret > 0)
4180 		ret = 0;
4181 
4182 	return ret;
4183 }
4184 
4185 static int record_changed_ref(struct send_ctx *sctx)
4186 {
4187 	int ret = 0;
4188 
4189 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4190 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4191 	if (ret < 0)
4192 		goto out;
4193 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4194 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4195 	if (ret < 0)
4196 		goto out;
4197 	ret = 0;
4198 
4199 out:
4200 	return ret;
4201 }
4202 
4203 /*
4204  * Record and process all refs at once. Needed when an inode changes the
4205  * generation number, which means that it was deleted and recreated.
4206  */
4207 static int process_all_refs(struct send_ctx *sctx,
4208 			    enum btrfs_compare_tree_result cmd)
4209 {
4210 	int ret;
4211 	struct btrfs_root *root;
4212 	struct btrfs_path *path;
4213 	struct btrfs_key key;
4214 	struct btrfs_key found_key;
4215 	struct extent_buffer *eb;
4216 	int slot;
4217 	iterate_inode_ref_t cb;
4218 	int pending_move = 0;
4219 
4220 	path = alloc_path_for_send();
4221 	if (!path)
4222 		return -ENOMEM;
4223 
4224 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4225 		root = sctx->send_root;
4226 		cb = __record_new_ref;
4227 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4228 		root = sctx->parent_root;
4229 		cb = __record_deleted_ref;
4230 	} else {
4231 		btrfs_err(sctx->send_root->fs_info,
4232 				"Wrong command %d in process_all_refs", cmd);
4233 		ret = -EINVAL;
4234 		goto out;
4235 	}
4236 
4237 	key.objectid = sctx->cmp_key->objectid;
4238 	key.type = BTRFS_INODE_REF_KEY;
4239 	key.offset = 0;
4240 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4241 	if (ret < 0)
4242 		goto out;
4243 
4244 	while (1) {
4245 		eb = path->nodes[0];
4246 		slot = path->slots[0];
4247 		if (slot >= btrfs_header_nritems(eb)) {
4248 			ret = btrfs_next_leaf(root, path);
4249 			if (ret < 0)
4250 				goto out;
4251 			else if (ret > 0)
4252 				break;
4253 			continue;
4254 		}
4255 
4256 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4257 
4258 		if (found_key.objectid != key.objectid ||
4259 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4260 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4261 			break;
4262 
4263 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4264 		if (ret < 0)
4265 			goto out;
4266 
4267 		path->slots[0]++;
4268 	}
4269 	btrfs_release_path(path);
4270 
4271 	ret = process_recorded_refs(sctx, &pending_move);
4272 	/* Only applicable to an incremental send. */
4273 	ASSERT(pending_move == 0);
4274 
4275 out:
4276 	btrfs_free_path(path);
4277 	return ret;
4278 }
4279 
4280 static int send_set_xattr(struct send_ctx *sctx,
4281 			  struct fs_path *path,
4282 			  const char *name, int name_len,
4283 			  const char *data, int data_len)
4284 {
4285 	int ret = 0;
4286 
4287 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4288 	if (ret < 0)
4289 		goto out;
4290 
4291 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4292 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4293 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4294 
4295 	ret = send_cmd(sctx);
4296 
4297 tlv_put_failure:
4298 out:
4299 	return ret;
4300 }
4301 
4302 static int send_remove_xattr(struct send_ctx *sctx,
4303 			  struct fs_path *path,
4304 			  const char *name, int name_len)
4305 {
4306 	int ret = 0;
4307 
4308 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4309 	if (ret < 0)
4310 		goto out;
4311 
4312 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4313 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4314 
4315 	ret = send_cmd(sctx);
4316 
4317 tlv_put_failure:
4318 out:
4319 	return ret;
4320 }
4321 
4322 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4323 			       const char *name, int name_len,
4324 			       const char *data, int data_len,
4325 			       u8 type, void *ctx)
4326 {
4327 	int ret;
4328 	struct send_ctx *sctx = ctx;
4329 	struct fs_path *p;
4330 	posix_acl_xattr_header dummy_acl;
4331 
4332 	p = fs_path_alloc();
4333 	if (!p)
4334 		return -ENOMEM;
4335 
4336 	/*
4337 	 * This hack is needed because empty acls are stored as zero byte
4338 	 * data in xattrs. Problem with that is, that receiving these zero byte
4339 	 * acls will fail later. To fix this, we send a dummy acl list that
4340 	 * only contains the version number and no entries.
4341 	 */
4342 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4343 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4344 		if (data_len == 0) {
4345 			dummy_acl.a_version =
4346 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4347 			data = (char *)&dummy_acl;
4348 			data_len = sizeof(dummy_acl);
4349 		}
4350 	}
4351 
4352 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4353 	if (ret < 0)
4354 		goto out;
4355 
4356 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4357 
4358 out:
4359 	fs_path_free(p);
4360 	return ret;
4361 }
4362 
4363 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4364 				   const char *name, int name_len,
4365 				   const char *data, int data_len,
4366 				   u8 type, void *ctx)
4367 {
4368 	int ret;
4369 	struct send_ctx *sctx = ctx;
4370 	struct fs_path *p;
4371 
4372 	p = fs_path_alloc();
4373 	if (!p)
4374 		return -ENOMEM;
4375 
4376 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4377 	if (ret < 0)
4378 		goto out;
4379 
4380 	ret = send_remove_xattr(sctx, p, name, name_len);
4381 
4382 out:
4383 	fs_path_free(p);
4384 	return ret;
4385 }
4386 
4387 static int process_new_xattr(struct send_ctx *sctx)
4388 {
4389 	int ret = 0;
4390 
4391 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4392 			       sctx->cmp_key, __process_new_xattr, sctx);
4393 
4394 	return ret;
4395 }
4396 
4397 static int process_deleted_xattr(struct send_ctx *sctx)
4398 {
4399 	int ret;
4400 
4401 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4402 			       sctx->cmp_key, __process_deleted_xattr, sctx);
4403 
4404 	return ret;
4405 }
4406 
4407 struct find_xattr_ctx {
4408 	const char *name;
4409 	int name_len;
4410 	int found_idx;
4411 	char *found_data;
4412 	int found_data_len;
4413 };
4414 
4415 static int __find_xattr(int num, struct btrfs_key *di_key,
4416 			const char *name, int name_len,
4417 			const char *data, int data_len,
4418 			u8 type, void *vctx)
4419 {
4420 	struct find_xattr_ctx *ctx = vctx;
4421 
4422 	if (name_len == ctx->name_len &&
4423 	    strncmp(name, ctx->name, name_len) == 0) {
4424 		ctx->found_idx = num;
4425 		ctx->found_data_len = data_len;
4426 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4427 		if (!ctx->found_data)
4428 			return -ENOMEM;
4429 		return 1;
4430 	}
4431 	return 0;
4432 }
4433 
4434 static int find_xattr(struct btrfs_root *root,
4435 		      struct btrfs_path *path,
4436 		      struct btrfs_key *key,
4437 		      const char *name, int name_len,
4438 		      char **data, int *data_len)
4439 {
4440 	int ret;
4441 	struct find_xattr_ctx ctx;
4442 
4443 	ctx.name = name;
4444 	ctx.name_len = name_len;
4445 	ctx.found_idx = -1;
4446 	ctx.found_data = NULL;
4447 	ctx.found_data_len = 0;
4448 
4449 	ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4450 	if (ret < 0)
4451 		return ret;
4452 
4453 	if (ctx.found_idx == -1)
4454 		return -ENOENT;
4455 	if (data) {
4456 		*data = ctx.found_data;
4457 		*data_len = ctx.found_data_len;
4458 	} else {
4459 		kfree(ctx.found_data);
4460 	}
4461 	return ctx.found_idx;
4462 }
4463 
4464 
4465 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4466 				       const char *name, int name_len,
4467 				       const char *data, int data_len,
4468 				       u8 type, void *ctx)
4469 {
4470 	int ret;
4471 	struct send_ctx *sctx = ctx;
4472 	char *found_data = NULL;
4473 	int found_data_len  = 0;
4474 
4475 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4476 			 sctx->cmp_key, name, name_len, &found_data,
4477 			 &found_data_len);
4478 	if (ret == -ENOENT) {
4479 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4480 				data_len, type, ctx);
4481 	} else if (ret >= 0) {
4482 		if (data_len != found_data_len ||
4483 		    memcmp(data, found_data, data_len)) {
4484 			ret = __process_new_xattr(num, di_key, name, name_len,
4485 					data, data_len, type, ctx);
4486 		} else {
4487 			ret = 0;
4488 		}
4489 	}
4490 
4491 	kfree(found_data);
4492 	return ret;
4493 }
4494 
4495 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4496 					   const char *name, int name_len,
4497 					   const char *data, int data_len,
4498 					   u8 type, void *ctx)
4499 {
4500 	int ret;
4501 	struct send_ctx *sctx = ctx;
4502 
4503 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4504 			 name, name_len, NULL, NULL);
4505 	if (ret == -ENOENT)
4506 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4507 				data_len, type, ctx);
4508 	else if (ret >= 0)
4509 		ret = 0;
4510 
4511 	return ret;
4512 }
4513 
4514 static int process_changed_xattr(struct send_ctx *sctx)
4515 {
4516 	int ret = 0;
4517 
4518 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4519 			sctx->cmp_key, __process_changed_new_xattr, sctx);
4520 	if (ret < 0)
4521 		goto out;
4522 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4523 			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4524 
4525 out:
4526 	return ret;
4527 }
4528 
4529 static int process_all_new_xattrs(struct send_ctx *sctx)
4530 {
4531 	int ret;
4532 	struct btrfs_root *root;
4533 	struct btrfs_path *path;
4534 	struct btrfs_key key;
4535 	struct btrfs_key found_key;
4536 	struct extent_buffer *eb;
4537 	int slot;
4538 
4539 	path = alloc_path_for_send();
4540 	if (!path)
4541 		return -ENOMEM;
4542 
4543 	root = sctx->send_root;
4544 
4545 	key.objectid = sctx->cmp_key->objectid;
4546 	key.type = BTRFS_XATTR_ITEM_KEY;
4547 	key.offset = 0;
4548 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4549 	if (ret < 0)
4550 		goto out;
4551 
4552 	while (1) {
4553 		eb = path->nodes[0];
4554 		slot = path->slots[0];
4555 		if (slot >= btrfs_header_nritems(eb)) {
4556 			ret = btrfs_next_leaf(root, path);
4557 			if (ret < 0) {
4558 				goto out;
4559 			} else if (ret > 0) {
4560 				ret = 0;
4561 				break;
4562 			}
4563 			continue;
4564 		}
4565 
4566 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4567 		if (found_key.objectid != key.objectid ||
4568 		    found_key.type != key.type) {
4569 			ret = 0;
4570 			goto out;
4571 		}
4572 
4573 		ret = iterate_dir_item(root, path, &found_key,
4574 				       __process_new_xattr, sctx);
4575 		if (ret < 0)
4576 			goto out;
4577 
4578 		path->slots[0]++;
4579 	}
4580 
4581 out:
4582 	btrfs_free_path(path);
4583 	return ret;
4584 }
4585 
4586 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4587 {
4588 	struct btrfs_root *root = sctx->send_root;
4589 	struct btrfs_fs_info *fs_info = root->fs_info;
4590 	struct inode *inode;
4591 	struct page *page;
4592 	char *addr;
4593 	struct btrfs_key key;
4594 	pgoff_t index = offset >> PAGE_SHIFT;
4595 	pgoff_t last_index;
4596 	unsigned pg_offset = offset & ~PAGE_MASK;
4597 	ssize_t ret = 0;
4598 
4599 	key.objectid = sctx->cur_ino;
4600 	key.type = BTRFS_INODE_ITEM_KEY;
4601 	key.offset = 0;
4602 
4603 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4604 	if (IS_ERR(inode))
4605 		return PTR_ERR(inode);
4606 
4607 	if (offset + len > i_size_read(inode)) {
4608 		if (offset > i_size_read(inode))
4609 			len = 0;
4610 		else
4611 			len = offset - i_size_read(inode);
4612 	}
4613 	if (len == 0)
4614 		goto out;
4615 
4616 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4617 
4618 	/* initial readahead */
4619 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4620 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4621 	btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4622 		       last_index - index + 1);
4623 
4624 	while (index <= last_index) {
4625 		unsigned cur_len = min_t(unsigned, len,
4626 					 PAGE_SIZE - pg_offset);
4627 		page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL);
4628 		if (!page) {
4629 			ret = -ENOMEM;
4630 			break;
4631 		}
4632 
4633 		if (!PageUptodate(page)) {
4634 			btrfs_readpage(NULL, page);
4635 			lock_page(page);
4636 			if (!PageUptodate(page)) {
4637 				unlock_page(page);
4638 				put_page(page);
4639 				ret = -EIO;
4640 				break;
4641 			}
4642 		}
4643 
4644 		addr = kmap(page);
4645 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4646 		kunmap(page);
4647 		unlock_page(page);
4648 		put_page(page);
4649 		index++;
4650 		pg_offset = 0;
4651 		len -= cur_len;
4652 		ret += cur_len;
4653 	}
4654 out:
4655 	iput(inode);
4656 	return ret;
4657 }
4658 
4659 /*
4660  * Read some bytes from the current inode/file and send a write command to
4661  * user space.
4662  */
4663 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4664 {
4665 	int ret = 0;
4666 	struct fs_path *p;
4667 	ssize_t num_read = 0;
4668 
4669 	p = fs_path_alloc();
4670 	if (!p)
4671 		return -ENOMEM;
4672 
4673 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4674 
4675 	num_read = fill_read_buf(sctx, offset, len);
4676 	if (num_read <= 0) {
4677 		if (num_read < 0)
4678 			ret = num_read;
4679 		goto out;
4680 	}
4681 
4682 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4683 	if (ret < 0)
4684 		goto out;
4685 
4686 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4687 	if (ret < 0)
4688 		goto out;
4689 
4690 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4691 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4692 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4693 
4694 	ret = send_cmd(sctx);
4695 
4696 tlv_put_failure:
4697 out:
4698 	fs_path_free(p);
4699 	if (ret < 0)
4700 		return ret;
4701 	return num_read;
4702 }
4703 
4704 /*
4705  * Send a clone command to user space.
4706  */
4707 static int send_clone(struct send_ctx *sctx,
4708 		      u64 offset, u32 len,
4709 		      struct clone_root *clone_root)
4710 {
4711 	int ret = 0;
4712 	struct fs_path *p;
4713 	u64 gen;
4714 
4715 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4716 	       "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4717 		clone_root->root->objectid, clone_root->ino,
4718 		clone_root->offset);
4719 
4720 	p = fs_path_alloc();
4721 	if (!p)
4722 		return -ENOMEM;
4723 
4724 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4725 	if (ret < 0)
4726 		goto out;
4727 
4728 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4729 	if (ret < 0)
4730 		goto out;
4731 
4732 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4733 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4734 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4735 
4736 	if (clone_root->root == sctx->send_root) {
4737 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4738 				&gen, NULL, NULL, NULL, NULL);
4739 		if (ret < 0)
4740 			goto out;
4741 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4742 	} else {
4743 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4744 	}
4745 	if (ret < 0)
4746 		goto out;
4747 
4748 	/*
4749 	 * If the parent we're using has a received_uuid set then use that as
4750 	 * our clone source as that is what we will look for when doing a
4751 	 * receive.
4752 	 *
4753 	 * This covers the case that we create a snapshot off of a received
4754 	 * subvolume and then use that as the parent and try to receive on a
4755 	 * different host.
4756 	 */
4757 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4758 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4759 			     clone_root->root->root_item.received_uuid);
4760 	else
4761 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4762 			     clone_root->root->root_item.uuid);
4763 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4764 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4765 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4766 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4767 			clone_root->offset);
4768 
4769 	ret = send_cmd(sctx);
4770 
4771 tlv_put_failure:
4772 out:
4773 	fs_path_free(p);
4774 	return ret;
4775 }
4776 
4777 /*
4778  * Send an update extent command to user space.
4779  */
4780 static int send_update_extent(struct send_ctx *sctx,
4781 			      u64 offset, u32 len)
4782 {
4783 	int ret = 0;
4784 	struct fs_path *p;
4785 
4786 	p = fs_path_alloc();
4787 	if (!p)
4788 		return -ENOMEM;
4789 
4790 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4791 	if (ret < 0)
4792 		goto out;
4793 
4794 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4795 	if (ret < 0)
4796 		goto out;
4797 
4798 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4799 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4800 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4801 
4802 	ret = send_cmd(sctx);
4803 
4804 tlv_put_failure:
4805 out:
4806 	fs_path_free(p);
4807 	return ret;
4808 }
4809 
4810 static int send_hole(struct send_ctx *sctx, u64 end)
4811 {
4812 	struct fs_path *p = NULL;
4813 	u64 offset = sctx->cur_inode_last_extent;
4814 	u64 len;
4815 	int ret = 0;
4816 
4817 	p = fs_path_alloc();
4818 	if (!p)
4819 		return -ENOMEM;
4820 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4821 	if (ret < 0)
4822 		goto tlv_put_failure;
4823 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4824 	while (offset < end) {
4825 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4826 
4827 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4828 		if (ret < 0)
4829 			break;
4830 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4831 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4832 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4833 		ret = send_cmd(sctx);
4834 		if (ret < 0)
4835 			break;
4836 		offset += len;
4837 	}
4838 tlv_put_failure:
4839 	fs_path_free(p);
4840 	return ret;
4841 }
4842 
4843 static int send_extent_data(struct send_ctx *sctx,
4844 			    const u64 offset,
4845 			    const u64 len)
4846 {
4847 	u64 sent = 0;
4848 
4849 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4850 		return send_update_extent(sctx, offset, len);
4851 
4852 	while (sent < len) {
4853 		u64 size = len - sent;
4854 		int ret;
4855 
4856 		if (size > BTRFS_SEND_READ_SIZE)
4857 			size = BTRFS_SEND_READ_SIZE;
4858 		ret = send_write(sctx, offset + sent, size);
4859 		if (ret < 0)
4860 			return ret;
4861 		if (!ret)
4862 			break;
4863 		sent += ret;
4864 	}
4865 	return 0;
4866 }
4867 
4868 static int clone_range(struct send_ctx *sctx,
4869 		       struct clone_root *clone_root,
4870 		       const u64 disk_byte,
4871 		       u64 data_offset,
4872 		       u64 offset,
4873 		       u64 len)
4874 {
4875 	struct btrfs_path *path;
4876 	struct btrfs_key key;
4877 	int ret;
4878 
4879 	path = alloc_path_for_send();
4880 	if (!path)
4881 		return -ENOMEM;
4882 
4883 	/*
4884 	 * We can't send a clone operation for the entire range if we find
4885 	 * extent items in the respective range in the source file that
4886 	 * refer to different extents or if we find holes.
4887 	 * So check for that and do a mix of clone and regular write/copy
4888 	 * operations if needed.
4889 	 *
4890 	 * Example:
4891 	 *
4892 	 * mkfs.btrfs -f /dev/sda
4893 	 * mount /dev/sda /mnt
4894 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4895 	 * cp --reflink=always /mnt/foo /mnt/bar
4896 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4897 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
4898 	 *
4899 	 * If when we send the snapshot and we are processing file bar (which
4900 	 * has a higher inode number than foo) we blindly send a clone operation
4901 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4902 	 * a file bar that matches the content of file foo - iow, doesn't match
4903 	 * the content from bar in the original filesystem.
4904 	 */
4905 	key.objectid = clone_root->ino;
4906 	key.type = BTRFS_EXTENT_DATA_KEY;
4907 	key.offset = clone_root->offset;
4908 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
4909 	if (ret < 0)
4910 		goto out;
4911 	if (ret > 0 && path->slots[0] > 0) {
4912 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4913 		if (key.objectid == clone_root->ino &&
4914 		    key.type == BTRFS_EXTENT_DATA_KEY)
4915 			path->slots[0]--;
4916 	}
4917 
4918 	while (true) {
4919 		struct extent_buffer *leaf = path->nodes[0];
4920 		int slot = path->slots[0];
4921 		struct btrfs_file_extent_item *ei;
4922 		u8 type;
4923 		u64 ext_len;
4924 		u64 clone_len;
4925 
4926 		if (slot >= btrfs_header_nritems(leaf)) {
4927 			ret = btrfs_next_leaf(clone_root->root, path);
4928 			if (ret < 0)
4929 				goto out;
4930 			else if (ret > 0)
4931 				break;
4932 			continue;
4933 		}
4934 
4935 		btrfs_item_key_to_cpu(leaf, &key, slot);
4936 
4937 		/*
4938 		 * We might have an implicit trailing hole (NO_HOLES feature
4939 		 * enabled). We deal with it after leaving this loop.
4940 		 */
4941 		if (key.objectid != clone_root->ino ||
4942 		    key.type != BTRFS_EXTENT_DATA_KEY)
4943 			break;
4944 
4945 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4946 		type = btrfs_file_extent_type(leaf, ei);
4947 		if (type == BTRFS_FILE_EXTENT_INLINE) {
4948 			ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
4949 			ext_len = PAGE_ALIGN(ext_len);
4950 		} else {
4951 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
4952 		}
4953 
4954 		if (key.offset + ext_len <= clone_root->offset)
4955 			goto next;
4956 
4957 		if (key.offset > clone_root->offset) {
4958 			/* Implicit hole, NO_HOLES feature enabled. */
4959 			u64 hole_len = key.offset - clone_root->offset;
4960 
4961 			if (hole_len > len)
4962 				hole_len = len;
4963 			ret = send_extent_data(sctx, offset, hole_len);
4964 			if (ret < 0)
4965 				goto out;
4966 
4967 			len -= hole_len;
4968 			if (len == 0)
4969 				break;
4970 			offset += hole_len;
4971 			clone_root->offset += hole_len;
4972 			data_offset += hole_len;
4973 		}
4974 
4975 		if (key.offset >= clone_root->offset + len)
4976 			break;
4977 
4978 		clone_len = min_t(u64, ext_len, len);
4979 
4980 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
4981 		    btrfs_file_extent_offset(leaf, ei) == data_offset)
4982 			ret = send_clone(sctx, offset, clone_len, clone_root);
4983 		else
4984 			ret = send_extent_data(sctx, offset, clone_len);
4985 
4986 		if (ret < 0)
4987 			goto out;
4988 
4989 		len -= clone_len;
4990 		if (len == 0)
4991 			break;
4992 		offset += clone_len;
4993 		clone_root->offset += clone_len;
4994 		data_offset += clone_len;
4995 next:
4996 		path->slots[0]++;
4997 	}
4998 
4999 	if (len > 0)
5000 		ret = send_extent_data(sctx, offset, len);
5001 	else
5002 		ret = 0;
5003 out:
5004 	btrfs_free_path(path);
5005 	return ret;
5006 }
5007 
5008 static int send_write_or_clone(struct send_ctx *sctx,
5009 			       struct btrfs_path *path,
5010 			       struct btrfs_key *key,
5011 			       struct clone_root *clone_root)
5012 {
5013 	int ret = 0;
5014 	struct btrfs_file_extent_item *ei;
5015 	u64 offset = key->offset;
5016 	u64 len;
5017 	u8 type;
5018 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5019 
5020 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5021 			struct btrfs_file_extent_item);
5022 	type = btrfs_file_extent_type(path->nodes[0], ei);
5023 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5024 		len = btrfs_file_extent_inline_len(path->nodes[0],
5025 						   path->slots[0], ei);
5026 		/*
5027 		 * it is possible the inline item won't cover the whole page,
5028 		 * but there may be items after this page.  Make
5029 		 * sure to send the whole thing
5030 		 */
5031 		len = PAGE_ALIGN(len);
5032 	} else {
5033 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5034 	}
5035 
5036 	if (offset + len > sctx->cur_inode_size)
5037 		len = sctx->cur_inode_size - offset;
5038 	if (len == 0) {
5039 		ret = 0;
5040 		goto out;
5041 	}
5042 
5043 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
5044 		u64 disk_byte;
5045 		u64 data_offset;
5046 
5047 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5048 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5049 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5050 				  offset, len);
5051 	} else {
5052 		ret = send_extent_data(sctx, offset, len);
5053 	}
5054 out:
5055 	return ret;
5056 }
5057 
5058 static int is_extent_unchanged(struct send_ctx *sctx,
5059 			       struct btrfs_path *left_path,
5060 			       struct btrfs_key *ekey)
5061 {
5062 	int ret = 0;
5063 	struct btrfs_key key;
5064 	struct btrfs_path *path = NULL;
5065 	struct extent_buffer *eb;
5066 	int slot;
5067 	struct btrfs_key found_key;
5068 	struct btrfs_file_extent_item *ei;
5069 	u64 left_disknr;
5070 	u64 right_disknr;
5071 	u64 left_offset;
5072 	u64 right_offset;
5073 	u64 left_offset_fixed;
5074 	u64 left_len;
5075 	u64 right_len;
5076 	u64 left_gen;
5077 	u64 right_gen;
5078 	u8 left_type;
5079 	u8 right_type;
5080 
5081 	path = alloc_path_for_send();
5082 	if (!path)
5083 		return -ENOMEM;
5084 
5085 	eb = left_path->nodes[0];
5086 	slot = left_path->slots[0];
5087 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5088 	left_type = btrfs_file_extent_type(eb, ei);
5089 
5090 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5091 		ret = 0;
5092 		goto out;
5093 	}
5094 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5095 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5096 	left_offset = btrfs_file_extent_offset(eb, ei);
5097 	left_gen = btrfs_file_extent_generation(eb, ei);
5098 
5099 	/*
5100 	 * Following comments will refer to these graphics. L is the left
5101 	 * extents which we are checking at the moment. 1-8 are the right
5102 	 * extents that we iterate.
5103 	 *
5104 	 *       |-----L-----|
5105 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5106 	 *
5107 	 *       |-----L-----|
5108 	 * |--1--|-2b-|...(same as above)
5109 	 *
5110 	 * Alternative situation. Happens on files where extents got split.
5111 	 *       |-----L-----|
5112 	 * |-----------7-----------|-6-|
5113 	 *
5114 	 * Alternative situation. Happens on files which got larger.
5115 	 *       |-----L-----|
5116 	 * |-8-|
5117 	 * Nothing follows after 8.
5118 	 */
5119 
5120 	key.objectid = ekey->objectid;
5121 	key.type = BTRFS_EXTENT_DATA_KEY;
5122 	key.offset = ekey->offset;
5123 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5124 	if (ret < 0)
5125 		goto out;
5126 	if (ret) {
5127 		ret = 0;
5128 		goto out;
5129 	}
5130 
5131 	/*
5132 	 * Handle special case where the right side has no extents at all.
5133 	 */
5134 	eb = path->nodes[0];
5135 	slot = path->slots[0];
5136 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5137 	if (found_key.objectid != key.objectid ||
5138 	    found_key.type != key.type) {
5139 		/* If we're a hole then just pretend nothing changed */
5140 		ret = (left_disknr) ? 0 : 1;
5141 		goto out;
5142 	}
5143 
5144 	/*
5145 	 * We're now on 2a, 2b or 7.
5146 	 */
5147 	key = found_key;
5148 	while (key.offset < ekey->offset + left_len) {
5149 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5150 		right_type = btrfs_file_extent_type(eb, ei);
5151 		if (right_type != BTRFS_FILE_EXTENT_REG) {
5152 			ret = 0;
5153 			goto out;
5154 		}
5155 
5156 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5157 		right_len = btrfs_file_extent_num_bytes(eb, ei);
5158 		right_offset = btrfs_file_extent_offset(eb, ei);
5159 		right_gen = btrfs_file_extent_generation(eb, ei);
5160 
5161 		/*
5162 		 * Are we at extent 8? If yes, we know the extent is changed.
5163 		 * This may only happen on the first iteration.
5164 		 */
5165 		if (found_key.offset + right_len <= ekey->offset) {
5166 			/* If we're a hole just pretend nothing changed */
5167 			ret = (left_disknr) ? 0 : 1;
5168 			goto out;
5169 		}
5170 
5171 		left_offset_fixed = left_offset;
5172 		if (key.offset < ekey->offset) {
5173 			/* Fix the right offset for 2a and 7. */
5174 			right_offset += ekey->offset - key.offset;
5175 		} else {
5176 			/* Fix the left offset for all behind 2a and 2b */
5177 			left_offset_fixed += key.offset - ekey->offset;
5178 		}
5179 
5180 		/*
5181 		 * Check if we have the same extent.
5182 		 */
5183 		if (left_disknr != right_disknr ||
5184 		    left_offset_fixed != right_offset ||
5185 		    left_gen != right_gen) {
5186 			ret = 0;
5187 			goto out;
5188 		}
5189 
5190 		/*
5191 		 * Go to the next extent.
5192 		 */
5193 		ret = btrfs_next_item(sctx->parent_root, path);
5194 		if (ret < 0)
5195 			goto out;
5196 		if (!ret) {
5197 			eb = path->nodes[0];
5198 			slot = path->slots[0];
5199 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5200 		}
5201 		if (ret || found_key.objectid != key.objectid ||
5202 		    found_key.type != key.type) {
5203 			key.offset += right_len;
5204 			break;
5205 		}
5206 		if (found_key.offset != key.offset + right_len) {
5207 			ret = 0;
5208 			goto out;
5209 		}
5210 		key = found_key;
5211 	}
5212 
5213 	/*
5214 	 * We're now behind the left extent (treat as unchanged) or at the end
5215 	 * of the right side (treat as changed).
5216 	 */
5217 	if (key.offset >= ekey->offset + left_len)
5218 		ret = 1;
5219 	else
5220 		ret = 0;
5221 
5222 
5223 out:
5224 	btrfs_free_path(path);
5225 	return ret;
5226 }
5227 
5228 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5229 {
5230 	struct btrfs_path *path;
5231 	struct btrfs_root *root = sctx->send_root;
5232 	struct btrfs_file_extent_item *fi;
5233 	struct btrfs_key key;
5234 	u64 extent_end;
5235 	u8 type;
5236 	int ret;
5237 
5238 	path = alloc_path_for_send();
5239 	if (!path)
5240 		return -ENOMEM;
5241 
5242 	sctx->cur_inode_last_extent = 0;
5243 
5244 	key.objectid = sctx->cur_ino;
5245 	key.type = BTRFS_EXTENT_DATA_KEY;
5246 	key.offset = offset;
5247 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5248 	if (ret < 0)
5249 		goto out;
5250 	ret = 0;
5251 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5252 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5253 		goto out;
5254 
5255 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5256 			    struct btrfs_file_extent_item);
5257 	type = btrfs_file_extent_type(path->nodes[0], fi);
5258 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5259 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5260 							path->slots[0], fi);
5261 		extent_end = ALIGN(key.offset + size,
5262 				   sctx->send_root->sectorsize);
5263 	} else {
5264 		extent_end = key.offset +
5265 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5266 	}
5267 	sctx->cur_inode_last_extent = extent_end;
5268 out:
5269 	btrfs_free_path(path);
5270 	return ret;
5271 }
5272 
5273 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5274 			   struct btrfs_key *key)
5275 {
5276 	struct btrfs_file_extent_item *fi;
5277 	u64 extent_end;
5278 	u8 type;
5279 	int ret = 0;
5280 
5281 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5282 		return 0;
5283 
5284 	if (sctx->cur_inode_last_extent == (u64)-1) {
5285 		ret = get_last_extent(sctx, key->offset - 1);
5286 		if (ret)
5287 			return ret;
5288 	}
5289 
5290 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5291 			    struct btrfs_file_extent_item);
5292 	type = btrfs_file_extent_type(path->nodes[0], fi);
5293 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5294 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5295 							path->slots[0], fi);
5296 		extent_end = ALIGN(key->offset + size,
5297 				   sctx->send_root->sectorsize);
5298 	} else {
5299 		extent_end = key->offset +
5300 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5301 	}
5302 
5303 	if (path->slots[0] == 0 &&
5304 	    sctx->cur_inode_last_extent < key->offset) {
5305 		/*
5306 		 * We might have skipped entire leafs that contained only
5307 		 * file extent items for our current inode. These leafs have
5308 		 * a generation number smaller (older) than the one in the
5309 		 * current leaf and the leaf our last extent came from, and
5310 		 * are located between these 2 leafs.
5311 		 */
5312 		ret = get_last_extent(sctx, key->offset - 1);
5313 		if (ret)
5314 			return ret;
5315 	}
5316 
5317 	if (sctx->cur_inode_last_extent < key->offset)
5318 		ret = send_hole(sctx, key->offset);
5319 	sctx->cur_inode_last_extent = extent_end;
5320 	return ret;
5321 }
5322 
5323 static int process_extent(struct send_ctx *sctx,
5324 			  struct btrfs_path *path,
5325 			  struct btrfs_key *key)
5326 {
5327 	struct clone_root *found_clone = NULL;
5328 	int ret = 0;
5329 
5330 	if (S_ISLNK(sctx->cur_inode_mode))
5331 		return 0;
5332 
5333 	if (sctx->parent_root && !sctx->cur_inode_new) {
5334 		ret = is_extent_unchanged(sctx, path, key);
5335 		if (ret < 0)
5336 			goto out;
5337 		if (ret) {
5338 			ret = 0;
5339 			goto out_hole;
5340 		}
5341 	} else {
5342 		struct btrfs_file_extent_item *ei;
5343 		u8 type;
5344 
5345 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5346 				    struct btrfs_file_extent_item);
5347 		type = btrfs_file_extent_type(path->nodes[0], ei);
5348 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5349 		    type == BTRFS_FILE_EXTENT_REG) {
5350 			/*
5351 			 * The send spec does not have a prealloc command yet,
5352 			 * so just leave a hole for prealloc'ed extents until
5353 			 * we have enough commands queued up to justify rev'ing
5354 			 * the send spec.
5355 			 */
5356 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5357 				ret = 0;
5358 				goto out;
5359 			}
5360 
5361 			/* Have a hole, just skip it. */
5362 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5363 				ret = 0;
5364 				goto out;
5365 			}
5366 		}
5367 	}
5368 
5369 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5370 			sctx->cur_inode_size, &found_clone);
5371 	if (ret != -ENOENT && ret < 0)
5372 		goto out;
5373 
5374 	ret = send_write_or_clone(sctx, path, key, found_clone);
5375 	if (ret)
5376 		goto out;
5377 out_hole:
5378 	ret = maybe_send_hole(sctx, path, key);
5379 out:
5380 	return ret;
5381 }
5382 
5383 static int process_all_extents(struct send_ctx *sctx)
5384 {
5385 	int ret;
5386 	struct btrfs_root *root;
5387 	struct btrfs_path *path;
5388 	struct btrfs_key key;
5389 	struct btrfs_key found_key;
5390 	struct extent_buffer *eb;
5391 	int slot;
5392 
5393 	root = sctx->send_root;
5394 	path = alloc_path_for_send();
5395 	if (!path)
5396 		return -ENOMEM;
5397 
5398 	key.objectid = sctx->cmp_key->objectid;
5399 	key.type = BTRFS_EXTENT_DATA_KEY;
5400 	key.offset = 0;
5401 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5402 	if (ret < 0)
5403 		goto out;
5404 
5405 	while (1) {
5406 		eb = path->nodes[0];
5407 		slot = path->slots[0];
5408 
5409 		if (slot >= btrfs_header_nritems(eb)) {
5410 			ret = btrfs_next_leaf(root, path);
5411 			if (ret < 0) {
5412 				goto out;
5413 			} else if (ret > 0) {
5414 				ret = 0;
5415 				break;
5416 			}
5417 			continue;
5418 		}
5419 
5420 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5421 
5422 		if (found_key.objectid != key.objectid ||
5423 		    found_key.type != key.type) {
5424 			ret = 0;
5425 			goto out;
5426 		}
5427 
5428 		ret = process_extent(sctx, path, &found_key);
5429 		if (ret < 0)
5430 			goto out;
5431 
5432 		path->slots[0]++;
5433 	}
5434 
5435 out:
5436 	btrfs_free_path(path);
5437 	return ret;
5438 }
5439 
5440 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5441 					   int *pending_move,
5442 					   int *refs_processed)
5443 {
5444 	int ret = 0;
5445 
5446 	if (sctx->cur_ino == 0)
5447 		goto out;
5448 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5449 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5450 		goto out;
5451 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5452 		goto out;
5453 
5454 	ret = process_recorded_refs(sctx, pending_move);
5455 	if (ret < 0)
5456 		goto out;
5457 
5458 	*refs_processed = 1;
5459 out:
5460 	return ret;
5461 }
5462 
5463 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5464 {
5465 	int ret = 0;
5466 	u64 left_mode;
5467 	u64 left_uid;
5468 	u64 left_gid;
5469 	u64 right_mode;
5470 	u64 right_uid;
5471 	u64 right_gid;
5472 	int need_chmod = 0;
5473 	int need_chown = 0;
5474 	int pending_move = 0;
5475 	int refs_processed = 0;
5476 
5477 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5478 					      &refs_processed);
5479 	if (ret < 0)
5480 		goto out;
5481 
5482 	/*
5483 	 * We have processed the refs and thus need to advance send_progress.
5484 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5485 	 * inode into account.
5486 	 *
5487 	 * On the other hand, if our current inode is a directory and couldn't
5488 	 * be moved/renamed because its parent was renamed/moved too and it has
5489 	 * a higher inode number, we can only move/rename our current inode
5490 	 * after we moved/renamed its parent. Therefore in this case operate on
5491 	 * the old path (pre move/rename) of our current inode, and the
5492 	 * move/rename will be performed later.
5493 	 */
5494 	if (refs_processed && !pending_move)
5495 		sctx->send_progress = sctx->cur_ino + 1;
5496 
5497 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5498 		goto out;
5499 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5500 		goto out;
5501 
5502 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5503 			&left_mode, &left_uid, &left_gid, NULL);
5504 	if (ret < 0)
5505 		goto out;
5506 
5507 	if (!sctx->parent_root || sctx->cur_inode_new) {
5508 		need_chown = 1;
5509 		if (!S_ISLNK(sctx->cur_inode_mode))
5510 			need_chmod = 1;
5511 	} else {
5512 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5513 				NULL, NULL, &right_mode, &right_uid,
5514 				&right_gid, NULL);
5515 		if (ret < 0)
5516 			goto out;
5517 
5518 		if (left_uid != right_uid || left_gid != right_gid)
5519 			need_chown = 1;
5520 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5521 			need_chmod = 1;
5522 	}
5523 
5524 	if (S_ISREG(sctx->cur_inode_mode)) {
5525 		if (need_send_hole(sctx)) {
5526 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5527 			    sctx->cur_inode_last_extent <
5528 			    sctx->cur_inode_size) {
5529 				ret = get_last_extent(sctx, (u64)-1);
5530 				if (ret)
5531 					goto out;
5532 			}
5533 			if (sctx->cur_inode_last_extent <
5534 			    sctx->cur_inode_size) {
5535 				ret = send_hole(sctx, sctx->cur_inode_size);
5536 				if (ret)
5537 					goto out;
5538 			}
5539 		}
5540 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5541 				sctx->cur_inode_size);
5542 		if (ret < 0)
5543 			goto out;
5544 	}
5545 
5546 	if (need_chown) {
5547 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5548 				left_uid, left_gid);
5549 		if (ret < 0)
5550 			goto out;
5551 	}
5552 	if (need_chmod) {
5553 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5554 				left_mode);
5555 		if (ret < 0)
5556 			goto out;
5557 	}
5558 
5559 	/*
5560 	 * If other directory inodes depended on our current directory
5561 	 * inode's move/rename, now do their move/rename operations.
5562 	 */
5563 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5564 		ret = apply_children_dir_moves(sctx);
5565 		if (ret)
5566 			goto out;
5567 		/*
5568 		 * Need to send that every time, no matter if it actually
5569 		 * changed between the two trees as we have done changes to
5570 		 * the inode before. If our inode is a directory and it's
5571 		 * waiting to be moved/renamed, we will send its utimes when
5572 		 * it's moved/renamed, therefore we don't need to do it here.
5573 		 */
5574 		sctx->send_progress = sctx->cur_ino + 1;
5575 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5576 		if (ret < 0)
5577 			goto out;
5578 	}
5579 
5580 out:
5581 	return ret;
5582 }
5583 
5584 static int changed_inode(struct send_ctx *sctx,
5585 			 enum btrfs_compare_tree_result result)
5586 {
5587 	int ret = 0;
5588 	struct btrfs_key *key = sctx->cmp_key;
5589 	struct btrfs_inode_item *left_ii = NULL;
5590 	struct btrfs_inode_item *right_ii = NULL;
5591 	u64 left_gen = 0;
5592 	u64 right_gen = 0;
5593 
5594 	sctx->cur_ino = key->objectid;
5595 	sctx->cur_inode_new_gen = 0;
5596 	sctx->cur_inode_last_extent = (u64)-1;
5597 
5598 	/*
5599 	 * Set send_progress to current inode. This will tell all get_cur_xxx
5600 	 * functions that the current inode's refs are not updated yet. Later,
5601 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5602 	 */
5603 	sctx->send_progress = sctx->cur_ino;
5604 
5605 	if (result == BTRFS_COMPARE_TREE_NEW ||
5606 	    result == BTRFS_COMPARE_TREE_CHANGED) {
5607 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5608 				sctx->left_path->slots[0],
5609 				struct btrfs_inode_item);
5610 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5611 				left_ii);
5612 	} else {
5613 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5614 				sctx->right_path->slots[0],
5615 				struct btrfs_inode_item);
5616 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5617 				right_ii);
5618 	}
5619 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
5620 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5621 				sctx->right_path->slots[0],
5622 				struct btrfs_inode_item);
5623 
5624 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5625 				right_ii);
5626 
5627 		/*
5628 		 * The cur_ino = root dir case is special here. We can't treat
5629 		 * the inode as deleted+reused because it would generate a
5630 		 * stream that tries to delete/mkdir the root dir.
5631 		 */
5632 		if (left_gen != right_gen &&
5633 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5634 			sctx->cur_inode_new_gen = 1;
5635 	}
5636 
5637 	if (result == BTRFS_COMPARE_TREE_NEW) {
5638 		sctx->cur_inode_gen = left_gen;
5639 		sctx->cur_inode_new = 1;
5640 		sctx->cur_inode_deleted = 0;
5641 		sctx->cur_inode_size = btrfs_inode_size(
5642 				sctx->left_path->nodes[0], left_ii);
5643 		sctx->cur_inode_mode = btrfs_inode_mode(
5644 				sctx->left_path->nodes[0], left_ii);
5645 		sctx->cur_inode_rdev = btrfs_inode_rdev(
5646 				sctx->left_path->nodes[0], left_ii);
5647 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5648 			ret = send_create_inode_if_needed(sctx);
5649 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
5650 		sctx->cur_inode_gen = right_gen;
5651 		sctx->cur_inode_new = 0;
5652 		sctx->cur_inode_deleted = 1;
5653 		sctx->cur_inode_size = btrfs_inode_size(
5654 				sctx->right_path->nodes[0], right_ii);
5655 		sctx->cur_inode_mode = btrfs_inode_mode(
5656 				sctx->right_path->nodes[0], right_ii);
5657 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5658 		/*
5659 		 * We need to do some special handling in case the inode was
5660 		 * reported as changed with a changed generation number. This
5661 		 * means that the original inode was deleted and new inode
5662 		 * reused the same inum. So we have to treat the old inode as
5663 		 * deleted and the new one as new.
5664 		 */
5665 		if (sctx->cur_inode_new_gen) {
5666 			/*
5667 			 * First, process the inode as if it was deleted.
5668 			 */
5669 			sctx->cur_inode_gen = right_gen;
5670 			sctx->cur_inode_new = 0;
5671 			sctx->cur_inode_deleted = 1;
5672 			sctx->cur_inode_size = btrfs_inode_size(
5673 					sctx->right_path->nodes[0], right_ii);
5674 			sctx->cur_inode_mode = btrfs_inode_mode(
5675 					sctx->right_path->nodes[0], right_ii);
5676 			ret = process_all_refs(sctx,
5677 					BTRFS_COMPARE_TREE_DELETED);
5678 			if (ret < 0)
5679 				goto out;
5680 
5681 			/*
5682 			 * Now process the inode as if it was new.
5683 			 */
5684 			sctx->cur_inode_gen = left_gen;
5685 			sctx->cur_inode_new = 1;
5686 			sctx->cur_inode_deleted = 0;
5687 			sctx->cur_inode_size = btrfs_inode_size(
5688 					sctx->left_path->nodes[0], left_ii);
5689 			sctx->cur_inode_mode = btrfs_inode_mode(
5690 					sctx->left_path->nodes[0], left_ii);
5691 			sctx->cur_inode_rdev = btrfs_inode_rdev(
5692 					sctx->left_path->nodes[0], left_ii);
5693 			ret = send_create_inode_if_needed(sctx);
5694 			if (ret < 0)
5695 				goto out;
5696 
5697 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5698 			if (ret < 0)
5699 				goto out;
5700 			/*
5701 			 * Advance send_progress now as we did not get into
5702 			 * process_recorded_refs_if_needed in the new_gen case.
5703 			 */
5704 			sctx->send_progress = sctx->cur_ino + 1;
5705 
5706 			/*
5707 			 * Now process all extents and xattrs of the inode as if
5708 			 * they were all new.
5709 			 */
5710 			ret = process_all_extents(sctx);
5711 			if (ret < 0)
5712 				goto out;
5713 			ret = process_all_new_xattrs(sctx);
5714 			if (ret < 0)
5715 				goto out;
5716 		} else {
5717 			sctx->cur_inode_gen = left_gen;
5718 			sctx->cur_inode_new = 0;
5719 			sctx->cur_inode_new_gen = 0;
5720 			sctx->cur_inode_deleted = 0;
5721 			sctx->cur_inode_size = btrfs_inode_size(
5722 					sctx->left_path->nodes[0], left_ii);
5723 			sctx->cur_inode_mode = btrfs_inode_mode(
5724 					sctx->left_path->nodes[0], left_ii);
5725 		}
5726 	}
5727 
5728 out:
5729 	return ret;
5730 }
5731 
5732 /*
5733  * We have to process new refs before deleted refs, but compare_trees gives us
5734  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5735  * first and later process them in process_recorded_refs.
5736  * For the cur_inode_new_gen case, we skip recording completely because
5737  * changed_inode did already initiate processing of refs. The reason for this is
5738  * that in this case, compare_tree actually compares the refs of 2 different
5739  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5740  * refs of the right tree as deleted and all refs of the left tree as new.
5741  */
5742 static int changed_ref(struct send_ctx *sctx,
5743 		       enum btrfs_compare_tree_result result)
5744 {
5745 	int ret = 0;
5746 
5747 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
5748 		inconsistent_snapshot_error(sctx, result, "reference");
5749 		return -EIO;
5750 	}
5751 
5752 	if (!sctx->cur_inode_new_gen &&
5753 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5754 		if (result == BTRFS_COMPARE_TREE_NEW)
5755 			ret = record_new_ref(sctx);
5756 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5757 			ret = record_deleted_ref(sctx);
5758 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5759 			ret = record_changed_ref(sctx);
5760 	}
5761 
5762 	return ret;
5763 }
5764 
5765 /*
5766  * Process new/deleted/changed xattrs. We skip processing in the
5767  * cur_inode_new_gen case because changed_inode did already initiate processing
5768  * of xattrs. The reason is the same as in changed_ref
5769  */
5770 static int changed_xattr(struct send_ctx *sctx,
5771 			 enum btrfs_compare_tree_result result)
5772 {
5773 	int ret = 0;
5774 
5775 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
5776 		inconsistent_snapshot_error(sctx, result, "xattr");
5777 		return -EIO;
5778 	}
5779 
5780 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5781 		if (result == BTRFS_COMPARE_TREE_NEW)
5782 			ret = process_new_xattr(sctx);
5783 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5784 			ret = process_deleted_xattr(sctx);
5785 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5786 			ret = process_changed_xattr(sctx);
5787 	}
5788 
5789 	return ret;
5790 }
5791 
5792 /*
5793  * Process new/deleted/changed extents. We skip processing in the
5794  * cur_inode_new_gen case because changed_inode did already initiate processing
5795  * of extents. The reason is the same as in changed_ref
5796  */
5797 static int changed_extent(struct send_ctx *sctx,
5798 			  enum btrfs_compare_tree_result result)
5799 {
5800 	int ret = 0;
5801 
5802 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
5803 		inconsistent_snapshot_error(sctx, result, "extent");
5804 		return -EIO;
5805 	}
5806 
5807 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5808 		if (result != BTRFS_COMPARE_TREE_DELETED)
5809 			ret = process_extent(sctx, sctx->left_path,
5810 					sctx->cmp_key);
5811 	}
5812 
5813 	return ret;
5814 }
5815 
5816 static int dir_changed(struct send_ctx *sctx, u64 dir)
5817 {
5818 	u64 orig_gen, new_gen;
5819 	int ret;
5820 
5821 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5822 			     NULL, NULL);
5823 	if (ret)
5824 		return ret;
5825 
5826 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5827 			     NULL, NULL, NULL);
5828 	if (ret)
5829 		return ret;
5830 
5831 	return (orig_gen != new_gen) ? 1 : 0;
5832 }
5833 
5834 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5835 			struct btrfs_key *key)
5836 {
5837 	struct btrfs_inode_extref *extref;
5838 	struct extent_buffer *leaf;
5839 	u64 dirid = 0, last_dirid = 0;
5840 	unsigned long ptr;
5841 	u32 item_size;
5842 	u32 cur_offset = 0;
5843 	int ref_name_len;
5844 	int ret = 0;
5845 
5846 	/* Easy case, just check this one dirid */
5847 	if (key->type == BTRFS_INODE_REF_KEY) {
5848 		dirid = key->offset;
5849 
5850 		ret = dir_changed(sctx, dirid);
5851 		goto out;
5852 	}
5853 
5854 	leaf = path->nodes[0];
5855 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5856 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5857 	while (cur_offset < item_size) {
5858 		extref = (struct btrfs_inode_extref *)(ptr +
5859 						       cur_offset);
5860 		dirid = btrfs_inode_extref_parent(leaf, extref);
5861 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5862 		cur_offset += ref_name_len + sizeof(*extref);
5863 		if (dirid == last_dirid)
5864 			continue;
5865 		ret = dir_changed(sctx, dirid);
5866 		if (ret)
5867 			break;
5868 		last_dirid = dirid;
5869 	}
5870 out:
5871 	return ret;
5872 }
5873 
5874 /*
5875  * Updates compare related fields in sctx and simply forwards to the actual
5876  * changed_xxx functions.
5877  */
5878 static int changed_cb(struct btrfs_root *left_root,
5879 		      struct btrfs_root *right_root,
5880 		      struct btrfs_path *left_path,
5881 		      struct btrfs_path *right_path,
5882 		      struct btrfs_key *key,
5883 		      enum btrfs_compare_tree_result result,
5884 		      void *ctx)
5885 {
5886 	int ret = 0;
5887 	struct send_ctx *sctx = ctx;
5888 
5889 	if (result == BTRFS_COMPARE_TREE_SAME) {
5890 		if (key->type == BTRFS_INODE_REF_KEY ||
5891 		    key->type == BTRFS_INODE_EXTREF_KEY) {
5892 			ret = compare_refs(sctx, left_path, key);
5893 			if (!ret)
5894 				return 0;
5895 			if (ret < 0)
5896 				return ret;
5897 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5898 			return maybe_send_hole(sctx, left_path, key);
5899 		} else {
5900 			return 0;
5901 		}
5902 		result = BTRFS_COMPARE_TREE_CHANGED;
5903 		ret = 0;
5904 	}
5905 
5906 	sctx->left_path = left_path;
5907 	sctx->right_path = right_path;
5908 	sctx->cmp_key = key;
5909 
5910 	ret = finish_inode_if_needed(sctx, 0);
5911 	if (ret < 0)
5912 		goto out;
5913 
5914 	/* Ignore non-FS objects */
5915 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5916 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5917 		goto out;
5918 
5919 	if (key->type == BTRFS_INODE_ITEM_KEY)
5920 		ret = changed_inode(sctx, result);
5921 	else if (key->type == BTRFS_INODE_REF_KEY ||
5922 		 key->type == BTRFS_INODE_EXTREF_KEY)
5923 		ret = changed_ref(sctx, result);
5924 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
5925 		ret = changed_xattr(sctx, result);
5926 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
5927 		ret = changed_extent(sctx, result);
5928 
5929 out:
5930 	return ret;
5931 }
5932 
5933 static int full_send_tree(struct send_ctx *sctx)
5934 {
5935 	int ret;
5936 	struct btrfs_root *send_root = sctx->send_root;
5937 	struct btrfs_key key;
5938 	struct btrfs_key found_key;
5939 	struct btrfs_path *path;
5940 	struct extent_buffer *eb;
5941 	int slot;
5942 
5943 	path = alloc_path_for_send();
5944 	if (!path)
5945 		return -ENOMEM;
5946 
5947 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5948 	key.type = BTRFS_INODE_ITEM_KEY;
5949 	key.offset = 0;
5950 
5951 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5952 	if (ret < 0)
5953 		goto out;
5954 	if (ret)
5955 		goto out_finish;
5956 
5957 	while (1) {
5958 		eb = path->nodes[0];
5959 		slot = path->slots[0];
5960 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5961 
5962 		ret = changed_cb(send_root, NULL, path, NULL,
5963 				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5964 		if (ret < 0)
5965 			goto out;
5966 
5967 		key.objectid = found_key.objectid;
5968 		key.type = found_key.type;
5969 		key.offset = found_key.offset + 1;
5970 
5971 		ret = btrfs_next_item(send_root, path);
5972 		if (ret < 0)
5973 			goto out;
5974 		if (ret) {
5975 			ret  = 0;
5976 			break;
5977 		}
5978 	}
5979 
5980 out_finish:
5981 	ret = finish_inode_if_needed(sctx, 1);
5982 
5983 out:
5984 	btrfs_free_path(path);
5985 	return ret;
5986 }
5987 
5988 static int send_subvol(struct send_ctx *sctx)
5989 {
5990 	int ret;
5991 
5992 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5993 		ret = send_header(sctx);
5994 		if (ret < 0)
5995 			goto out;
5996 	}
5997 
5998 	ret = send_subvol_begin(sctx);
5999 	if (ret < 0)
6000 		goto out;
6001 
6002 	if (sctx->parent_root) {
6003 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6004 				changed_cb, sctx);
6005 		if (ret < 0)
6006 			goto out;
6007 		ret = finish_inode_if_needed(sctx, 1);
6008 		if (ret < 0)
6009 			goto out;
6010 	} else {
6011 		ret = full_send_tree(sctx);
6012 		if (ret < 0)
6013 			goto out;
6014 	}
6015 
6016 out:
6017 	free_recorded_refs(sctx);
6018 	return ret;
6019 }
6020 
6021 /*
6022  * If orphan cleanup did remove any orphans from a root, it means the tree
6023  * was modified and therefore the commit root is not the same as the current
6024  * root anymore. This is a problem, because send uses the commit root and
6025  * therefore can see inode items that don't exist in the current root anymore,
6026  * and for example make calls to btrfs_iget, which will do tree lookups based
6027  * on the current root and not on the commit root. Those lookups will fail,
6028  * returning a -ESTALE error, and making send fail with that error. So make
6029  * sure a send does not see any orphans we have just removed, and that it will
6030  * see the same inodes regardless of whether a transaction commit happened
6031  * before it started (meaning that the commit root will be the same as the
6032  * current root) or not.
6033  */
6034 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6035 {
6036 	int i;
6037 	struct btrfs_trans_handle *trans = NULL;
6038 
6039 again:
6040 	if (sctx->parent_root &&
6041 	    sctx->parent_root->node != sctx->parent_root->commit_root)
6042 		goto commit_trans;
6043 
6044 	for (i = 0; i < sctx->clone_roots_cnt; i++)
6045 		if (sctx->clone_roots[i].root->node !=
6046 		    sctx->clone_roots[i].root->commit_root)
6047 			goto commit_trans;
6048 
6049 	if (trans)
6050 		return btrfs_end_transaction(trans, sctx->send_root);
6051 
6052 	return 0;
6053 
6054 commit_trans:
6055 	/* Use any root, all fs roots will get their commit roots updated. */
6056 	if (!trans) {
6057 		trans = btrfs_join_transaction(sctx->send_root);
6058 		if (IS_ERR(trans))
6059 			return PTR_ERR(trans);
6060 		goto again;
6061 	}
6062 
6063 	return btrfs_commit_transaction(trans, sctx->send_root);
6064 }
6065 
6066 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6067 {
6068 	spin_lock(&root->root_item_lock);
6069 	root->send_in_progress--;
6070 	/*
6071 	 * Not much left to do, we don't know why it's unbalanced and
6072 	 * can't blindly reset it to 0.
6073 	 */
6074 	if (root->send_in_progress < 0)
6075 		btrfs_err(root->fs_info,
6076 			"send_in_progres unbalanced %d root %llu",
6077 			root->send_in_progress, root->root_key.objectid);
6078 	spin_unlock(&root->root_item_lock);
6079 }
6080 
6081 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
6082 {
6083 	int ret = 0;
6084 	struct btrfs_root *send_root;
6085 	struct btrfs_root *clone_root;
6086 	struct btrfs_fs_info *fs_info;
6087 	struct btrfs_ioctl_send_args *arg = NULL;
6088 	struct btrfs_key key;
6089 	struct send_ctx *sctx = NULL;
6090 	u32 i;
6091 	u64 *clone_sources_tmp = NULL;
6092 	int clone_sources_to_rollback = 0;
6093 	unsigned alloc_size;
6094 	int sort_clone_roots = 0;
6095 	int index;
6096 
6097 	if (!capable(CAP_SYS_ADMIN))
6098 		return -EPERM;
6099 
6100 	send_root = BTRFS_I(file_inode(mnt_file))->root;
6101 	fs_info = send_root->fs_info;
6102 
6103 	/*
6104 	 * The subvolume must remain read-only during send, protect against
6105 	 * making it RW. This also protects against deletion.
6106 	 */
6107 	spin_lock(&send_root->root_item_lock);
6108 	send_root->send_in_progress++;
6109 	spin_unlock(&send_root->root_item_lock);
6110 
6111 	/*
6112 	 * This is done when we lookup the root, it should already be complete
6113 	 * by the time we get here.
6114 	 */
6115 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6116 
6117 	/*
6118 	 * Userspace tools do the checks and warn the user if it's
6119 	 * not RO.
6120 	 */
6121 	if (!btrfs_root_readonly(send_root)) {
6122 		ret = -EPERM;
6123 		goto out;
6124 	}
6125 
6126 	arg = memdup_user(arg_, sizeof(*arg));
6127 	if (IS_ERR(arg)) {
6128 		ret = PTR_ERR(arg);
6129 		arg = NULL;
6130 		goto out;
6131 	}
6132 
6133 	if (arg->clone_sources_count >
6134 	    ULLONG_MAX / sizeof(*arg->clone_sources)) {
6135 		ret = -EINVAL;
6136 		goto out;
6137 	}
6138 
6139 	if (!access_ok(VERIFY_READ, arg->clone_sources,
6140 			sizeof(*arg->clone_sources) *
6141 			arg->clone_sources_count)) {
6142 		ret = -EFAULT;
6143 		goto out;
6144 	}
6145 
6146 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6147 		ret = -EINVAL;
6148 		goto out;
6149 	}
6150 
6151 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6152 	if (!sctx) {
6153 		ret = -ENOMEM;
6154 		goto out;
6155 	}
6156 
6157 	INIT_LIST_HEAD(&sctx->new_refs);
6158 	INIT_LIST_HEAD(&sctx->deleted_refs);
6159 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6160 	INIT_LIST_HEAD(&sctx->name_cache_list);
6161 
6162 	sctx->flags = arg->flags;
6163 
6164 	sctx->send_filp = fget(arg->send_fd);
6165 	if (!sctx->send_filp) {
6166 		ret = -EBADF;
6167 		goto out;
6168 	}
6169 
6170 	sctx->send_root = send_root;
6171 	/*
6172 	 * Unlikely but possible, if the subvolume is marked for deletion but
6173 	 * is slow to remove the directory entry, send can still be started
6174 	 */
6175 	if (btrfs_root_dead(sctx->send_root)) {
6176 		ret = -EPERM;
6177 		goto out;
6178 	}
6179 
6180 	sctx->clone_roots_cnt = arg->clone_sources_count;
6181 
6182 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6183 	sctx->send_buf = kmalloc(sctx->send_max_size, GFP_KERNEL | __GFP_NOWARN);
6184 	if (!sctx->send_buf) {
6185 		sctx->send_buf = vmalloc(sctx->send_max_size);
6186 		if (!sctx->send_buf) {
6187 			ret = -ENOMEM;
6188 			goto out;
6189 		}
6190 	}
6191 
6192 	sctx->read_buf = kmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL | __GFP_NOWARN);
6193 	if (!sctx->read_buf) {
6194 		sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
6195 		if (!sctx->read_buf) {
6196 			ret = -ENOMEM;
6197 			goto out;
6198 		}
6199 	}
6200 
6201 	sctx->pending_dir_moves = RB_ROOT;
6202 	sctx->waiting_dir_moves = RB_ROOT;
6203 	sctx->orphan_dirs = RB_ROOT;
6204 
6205 	alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6206 
6207 	sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN);
6208 	if (!sctx->clone_roots) {
6209 		sctx->clone_roots = vzalloc(alloc_size);
6210 		if (!sctx->clone_roots) {
6211 			ret = -ENOMEM;
6212 			goto out;
6213 		}
6214 	}
6215 
6216 	alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6217 
6218 	if (arg->clone_sources_count) {
6219 		clone_sources_tmp = kmalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN);
6220 		if (!clone_sources_tmp) {
6221 			clone_sources_tmp = vmalloc(alloc_size);
6222 			if (!clone_sources_tmp) {
6223 				ret = -ENOMEM;
6224 				goto out;
6225 			}
6226 		}
6227 
6228 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6229 				alloc_size);
6230 		if (ret) {
6231 			ret = -EFAULT;
6232 			goto out;
6233 		}
6234 
6235 		for (i = 0; i < arg->clone_sources_count; i++) {
6236 			key.objectid = clone_sources_tmp[i];
6237 			key.type = BTRFS_ROOT_ITEM_KEY;
6238 			key.offset = (u64)-1;
6239 
6240 			index = srcu_read_lock(&fs_info->subvol_srcu);
6241 
6242 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6243 			if (IS_ERR(clone_root)) {
6244 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6245 				ret = PTR_ERR(clone_root);
6246 				goto out;
6247 			}
6248 			spin_lock(&clone_root->root_item_lock);
6249 			if (!btrfs_root_readonly(clone_root) ||
6250 			    btrfs_root_dead(clone_root)) {
6251 				spin_unlock(&clone_root->root_item_lock);
6252 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6253 				ret = -EPERM;
6254 				goto out;
6255 			}
6256 			clone_root->send_in_progress++;
6257 			spin_unlock(&clone_root->root_item_lock);
6258 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6259 
6260 			sctx->clone_roots[i].root = clone_root;
6261 			clone_sources_to_rollback = i + 1;
6262 		}
6263 		kvfree(clone_sources_tmp);
6264 		clone_sources_tmp = NULL;
6265 	}
6266 
6267 	if (arg->parent_root) {
6268 		key.objectid = arg->parent_root;
6269 		key.type = BTRFS_ROOT_ITEM_KEY;
6270 		key.offset = (u64)-1;
6271 
6272 		index = srcu_read_lock(&fs_info->subvol_srcu);
6273 
6274 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6275 		if (IS_ERR(sctx->parent_root)) {
6276 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6277 			ret = PTR_ERR(sctx->parent_root);
6278 			goto out;
6279 		}
6280 
6281 		spin_lock(&sctx->parent_root->root_item_lock);
6282 		sctx->parent_root->send_in_progress++;
6283 		if (!btrfs_root_readonly(sctx->parent_root) ||
6284 				btrfs_root_dead(sctx->parent_root)) {
6285 			spin_unlock(&sctx->parent_root->root_item_lock);
6286 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6287 			ret = -EPERM;
6288 			goto out;
6289 		}
6290 		spin_unlock(&sctx->parent_root->root_item_lock);
6291 
6292 		srcu_read_unlock(&fs_info->subvol_srcu, index);
6293 	}
6294 
6295 	/*
6296 	 * Clones from send_root are allowed, but only if the clone source
6297 	 * is behind the current send position. This is checked while searching
6298 	 * for possible clone sources.
6299 	 */
6300 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6301 
6302 	/* We do a bsearch later */
6303 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
6304 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6305 			NULL);
6306 	sort_clone_roots = 1;
6307 
6308 	ret = ensure_commit_roots_uptodate(sctx);
6309 	if (ret)
6310 		goto out;
6311 
6312 	current->journal_info = BTRFS_SEND_TRANS_STUB;
6313 	ret = send_subvol(sctx);
6314 	current->journal_info = NULL;
6315 	if (ret < 0)
6316 		goto out;
6317 
6318 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6319 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6320 		if (ret < 0)
6321 			goto out;
6322 		ret = send_cmd(sctx);
6323 		if (ret < 0)
6324 			goto out;
6325 	}
6326 
6327 out:
6328 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6329 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6330 		struct rb_node *n;
6331 		struct pending_dir_move *pm;
6332 
6333 		n = rb_first(&sctx->pending_dir_moves);
6334 		pm = rb_entry(n, struct pending_dir_move, node);
6335 		while (!list_empty(&pm->list)) {
6336 			struct pending_dir_move *pm2;
6337 
6338 			pm2 = list_first_entry(&pm->list,
6339 					       struct pending_dir_move, list);
6340 			free_pending_move(sctx, pm2);
6341 		}
6342 		free_pending_move(sctx, pm);
6343 	}
6344 
6345 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6346 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6347 		struct rb_node *n;
6348 		struct waiting_dir_move *dm;
6349 
6350 		n = rb_first(&sctx->waiting_dir_moves);
6351 		dm = rb_entry(n, struct waiting_dir_move, node);
6352 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
6353 		kfree(dm);
6354 	}
6355 
6356 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6357 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6358 		struct rb_node *n;
6359 		struct orphan_dir_info *odi;
6360 
6361 		n = rb_first(&sctx->orphan_dirs);
6362 		odi = rb_entry(n, struct orphan_dir_info, node);
6363 		free_orphan_dir_info(sctx, odi);
6364 	}
6365 
6366 	if (sort_clone_roots) {
6367 		for (i = 0; i < sctx->clone_roots_cnt; i++)
6368 			btrfs_root_dec_send_in_progress(
6369 					sctx->clone_roots[i].root);
6370 	} else {
6371 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6372 			btrfs_root_dec_send_in_progress(
6373 					sctx->clone_roots[i].root);
6374 
6375 		btrfs_root_dec_send_in_progress(send_root);
6376 	}
6377 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6378 		btrfs_root_dec_send_in_progress(sctx->parent_root);
6379 
6380 	kfree(arg);
6381 	kvfree(clone_sources_tmp);
6382 
6383 	if (sctx) {
6384 		if (sctx->send_filp)
6385 			fput(sctx->send_filp);
6386 
6387 		kvfree(sctx->clone_roots);
6388 		kvfree(sctx->send_buf);
6389 		kvfree(sctx->read_buf);
6390 
6391 		name_cache_free(sctx);
6392 
6393 		kfree(sctx);
6394 	}
6395 
6396 	return ret;
6397 }
6398