xref: /openbmc/linux/fs/btrfs/send.c (revision ee8a99bd)
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/crc32c.h>
28 #include <linux/vmalloc.h>
29 
30 #include "send.h"
31 #include "backref.h"
32 #include "locking.h"
33 #include "disk-io.h"
34 #include "btrfs_inode.h"
35 #include "transaction.h"
36 
37 static int g_verbose = 0;
38 
39 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
40 
41 /*
42  * A fs_path is a helper to dynamically build path names with unknown size.
43  * It reallocates the internal buffer on demand.
44  * It allows fast adding of path elements on the right side (normal path) and
45  * fast adding to the left side (reversed path). A reversed path can also be
46  * unreversed if needed.
47  */
48 struct fs_path {
49 	union {
50 		struct {
51 			char *start;
52 			char *end;
53 			char *prepared;
54 
55 			char *buf;
56 			int buf_len;
57 			int reversed:1;
58 			int virtual_mem:1;
59 			char inline_buf[];
60 		};
61 		char pad[PAGE_SIZE];
62 	};
63 };
64 #define FS_PATH_INLINE_SIZE \
65 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
66 
67 
68 /* reused for each extent */
69 struct clone_root {
70 	struct btrfs_root *root;
71 	u64 ino;
72 	u64 offset;
73 
74 	u64 found_refs;
75 };
76 
77 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
78 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
79 
80 struct send_ctx {
81 	struct file *send_filp;
82 	loff_t send_off;
83 	char *send_buf;
84 	u32 send_size;
85 	u32 send_max_size;
86 	u64 total_send_size;
87 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
88 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
89 
90 	struct vfsmount *mnt;
91 
92 	struct btrfs_root *send_root;
93 	struct btrfs_root *parent_root;
94 	struct clone_root *clone_roots;
95 	int clone_roots_cnt;
96 
97 	/* current state of the compare_tree call */
98 	struct btrfs_path *left_path;
99 	struct btrfs_path *right_path;
100 	struct btrfs_key *cmp_key;
101 
102 	/*
103 	 * infos of the currently processed inode. In case of deleted inodes,
104 	 * these are the values from the deleted inode.
105 	 */
106 	u64 cur_ino;
107 	u64 cur_inode_gen;
108 	int cur_inode_new;
109 	int cur_inode_new_gen;
110 	int cur_inode_deleted;
111 	u64 cur_inode_size;
112 	u64 cur_inode_mode;
113 
114 	u64 send_progress;
115 
116 	struct list_head new_refs;
117 	struct list_head deleted_refs;
118 
119 	struct radix_tree_root name_cache;
120 	struct list_head name_cache_list;
121 	int name_cache_size;
122 
123 	struct file *cur_inode_filp;
124 	char *read_buf;
125 };
126 
127 struct name_cache_entry {
128 	struct list_head list;
129 	/*
130 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
131 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
132 	 * more then one inum would fall into the same entry, we use radix_list
133 	 * to store the additional entries. radix_list is also used to store
134 	 * entries where two entries have the same inum but different
135 	 * generations.
136 	 */
137 	struct list_head radix_list;
138 	u64 ino;
139 	u64 gen;
140 	u64 parent_ino;
141 	u64 parent_gen;
142 	int ret;
143 	int need_later_update;
144 	int name_len;
145 	char name[];
146 };
147 
148 static void fs_path_reset(struct fs_path *p)
149 {
150 	if (p->reversed) {
151 		p->start = p->buf + p->buf_len - 1;
152 		p->end = p->start;
153 		*p->start = 0;
154 	} else {
155 		p->start = p->buf;
156 		p->end = p->start;
157 		*p->start = 0;
158 	}
159 }
160 
161 static struct fs_path *fs_path_alloc(void)
162 {
163 	struct fs_path *p;
164 
165 	p = kmalloc(sizeof(*p), GFP_NOFS);
166 	if (!p)
167 		return NULL;
168 	p->reversed = 0;
169 	p->virtual_mem = 0;
170 	p->buf = p->inline_buf;
171 	p->buf_len = FS_PATH_INLINE_SIZE;
172 	fs_path_reset(p);
173 	return p;
174 }
175 
176 static struct fs_path *fs_path_alloc_reversed(void)
177 {
178 	struct fs_path *p;
179 
180 	p = fs_path_alloc();
181 	if (!p)
182 		return NULL;
183 	p->reversed = 1;
184 	fs_path_reset(p);
185 	return p;
186 }
187 
188 static void fs_path_free(struct fs_path *p)
189 {
190 	if (!p)
191 		return;
192 	if (p->buf != p->inline_buf) {
193 		if (p->virtual_mem)
194 			vfree(p->buf);
195 		else
196 			kfree(p->buf);
197 	}
198 	kfree(p);
199 }
200 
201 static int fs_path_len(struct fs_path *p)
202 {
203 	return p->end - p->start;
204 }
205 
206 static int fs_path_ensure_buf(struct fs_path *p, int len)
207 {
208 	char *tmp_buf;
209 	int path_len;
210 	int old_buf_len;
211 
212 	len++;
213 
214 	if (p->buf_len >= len)
215 		return 0;
216 
217 	path_len = p->end - p->start;
218 	old_buf_len = p->buf_len;
219 	len = PAGE_ALIGN(len);
220 
221 	if (p->buf == p->inline_buf) {
222 		tmp_buf = kmalloc(len, GFP_NOFS);
223 		if (!tmp_buf) {
224 			tmp_buf = vmalloc(len);
225 			if (!tmp_buf)
226 				return -ENOMEM;
227 			p->virtual_mem = 1;
228 		}
229 		memcpy(tmp_buf, p->buf, p->buf_len);
230 		p->buf = tmp_buf;
231 		p->buf_len = len;
232 	} else {
233 		if (p->virtual_mem) {
234 			tmp_buf = vmalloc(len);
235 			if (!tmp_buf)
236 				return -ENOMEM;
237 			memcpy(tmp_buf, p->buf, p->buf_len);
238 			vfree(p->buf);
239 		} else {
240 			tmp_buf = krealloc(p->buf, len, GFP_NOFS);
241 			if (!tmp_buf) {
242 				tmp_buf = vmalloc(len);
243 				if (!tmp_buf)
244 					return -ENOMEM;
245 				memcpy(tmp_buf, p->buf, p->buf_len);
246 				kfree(p->buf);
247 				p->virtual_mem = 1;
248 			}
249 		}
250 		p->buf = tmp_buf;
251 		p->buf_len = len;
252 	}
253 	if (p->reversed) {
254 		tmp_buf = p->buf + old_buf_len - path_len - 1;
255 		p->end = p->buf + p->buf_len - 1;
256 		p->start = p->end - path_len;
257 		memmove(p->start, tmp_buf, path_len + 1);
258 	} else {
259 		p->start = p->buf;
260 		p->end = p->start + path_len;
261 	}
262 	return 0;
263 }
264 
265 static int fs_path_prepare_for_add(struct fs_path *p, int name_len)
266 {
267 	int ret;
268 	int new_len;
269 
270 	new_len = p->end - p->start + name_len;
271 	if (p->start != p->end)
272 		new_len++;
273 	ret = fs_path_ensure_buf(p, new_len);
274 	if (ret < 0)
275 		goto out;
276 
277 	if (p->reversed) {
278 		if (p->start != p->end)
279 			*--p->start = '/';
280 		p->start -= name_len;
281 		p->prepared = p->start;
282 	} else {
283 		if (p->start != p->end)
284 			*p->end++ = '/';
285 		p->prepared = p->end;
286 		p->end += name_len;
287 		*p->end = 0;
288 	}
289 
290 out:
291 	return ret;
292 }
293 
294 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
295 {
296 	int ret;
297 
298 	ret = fs_path_prepare_for_add(p, name_len);
299 	if (ret < 0)
300 		goto out;
301 	memcpy(p->prepared, name, name_len);
302 	p->prepared = NULL;
303 
304 out:
305 	return ret;
306 }
307 
308 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
309 {
310 	int ret;
311 
312 	ret = fs_path_prepare_for_add(p, p2->end - p2->start);
313 	if (ret < 0)
314 		goto out;
315 	memcpy(p->prepared, p2->start, p2->end - p2->start);
316 	p->prepared = NULL;
317 
318 out:
319 	return ret;
320 }
321 
322 static int fs_path_add_from_extent_buffer(struct fs_path *p,
323 					  struct extent_buffer *eb,
324 					  unsigned long off, int len)
325 {
326 	int ret;
327 
328 	ret = fs_path_prepare_for_add(p, len);
329 	if (ret < 0)
330 		goto out;
331 
332 	read_extent_buffer(eb, p->prepared, off, len);
333 	p->prepared = NULL;
334 
335 out:
336 	return ret;
337 }
338 
339 #if 0
340 static void fs_path_remove(struct fs_path *p)
341 {
342 	BUG_ON(p->reversed);
343 	while (p->start != p->end && *p->end != '/')
344 		p->end--;
345 	*p->end = 0;
346 }
347 #endif
348 
349 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
350 {
351 	int ret;
352 
353 	p->reversed = from->reversed;
354 	fs_path_reset(p);
355 
356 	ret = fs_path_add_path(p, from);
357 
358 	return ret;
359 }
360 
361 
362 static void fs_path_unreverse(struct fs_path *p)
363 {
364 	char *tmp;
365 	int len;
366 
367 	if (!p->reversed)
368 		return;
369 
370 	tmp = p->start;
371 	len = p->end - p->start;
372 	p->start = p->buf;
373 	p->end = p->start + len;
374 	memmove(p->start, tmp, len + 1);
375 	p->reversed = 0;
376 }
377 
378 static struct btrfs_path *alloc_path_for_send(void)
379 {
380 	struct btrfs_path *path;
381 
382 	path = btrfs_alloc_path();
383 	if (!path)
384 		return NULL;
385 	path->search_commit_root = 1;
386 	path->skip_locking = 1;
387 	return path;
388 }
389 
390 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
391 {
392 	int ret;
393 	mm_segment_t old_fs;
394 	u32 pos = 0;
395 
396 	old_fs = get_fs();
397 	set_fs(KERNEL_DS);
398 
399 	while (pos < len) {
400 		ret = vfs_write(filp, (char *)buf + pos, len - pos, off);
401 		/* TODO handle that correctly */
402 		/*if (ret == -ERESTARTSYS) {
403 			continue;
404 		}*/
405 		if (ret < 0)
406 			goto out;
407 		if (ret == 0) {
408 			ret = -EIO;
409 			goto out;
410 		}
411 		pos += ret;
412 	}
413 
414 	ret = 0;
415 
416 out:
417 	set_fs(old_fs);
418 	return ret;
419 }
420 
421 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
422 {
423 	struct btrfs_tlv_header *hdr;
424 	int total_len = sizeof(*hdr) + len;
425 	int left = sctx->send_max_size - sctx->send_size;
426 
427 	if (unlikely(left < total_len))
428 		return -EOVERFLOW;
429 
430 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
431 	hdr->tlv_type = cpu_to_le16(attr);
432 	hdr->tlv_len = cpu_to_le16(len);
433 	memcpy(hdr + 1, data, len);
434 	sctx->send_size += total_len;
435 
436 	return 0;
437 }
438 
439 #if 0
440 static int tlv_put_u8(struct send_ctx *sctx, u16 attr, u8 value)
441 {
442 	return tlv_put(sctx, attr, &value, sizeof(value));
443 }
444 
445 static int tlv_put_u16(struct send_ctx *sctx, u16 attr, u16 value)
446 {
447 	__le16 tmp = cpu_to_le16(value);
448 	return tlv_put(sctx, attr, &tmp, sizeof(tmp));
449 }
450 
451 static int tlv_put_u32(struct send_ctx *sctx, u16 attr, u32 value)
452 {
453 	__le32 tmp = cpu_to_le32(value);
454 	return tlv_put(sctx, attr, &tmp, sizeof(tmp));
455 }
456 #endif
457 
458 static int tlv_put_u64(struct send_ctx *sctx, u16 attr, u64 value)
459 {
460 	__le64 tmp = cpu_to_le64(value);
461 	return tlv_put(sctx, attr, &tmp, sizeof(tmp));
462 }
463 
464 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
465 			  const char *str, int len)
466 {
467 	if (len == -1)
468 		len = strlen(str);
469 	return tlv_put(sctx, attr, str, len);
470 }
471 
472 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
473 			const u8 *uuid)
474 {
475 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
476 }
477 
478 #if 0
479 static int tlv_put_timespec(struct send_ctx *sctx, u16 attr,
480 			    struct timespec *ts)
481 {
482 	struct btrfs_timespec bts;
483 	bts.sec = cpu_to_le64(ts->tv_sec);
484 	bts.nsec = cpu_to_le32(ts->tv_nsec);
485 	return tlv_put(sctx, attr, &bts, sizeof(bts));
486 }
487 #endif
488 
489 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
490 				  struct extent_buffer *eb,
491 				  struct btrfs_timespec *ts)
492 {
493 	struct btrfs_timespec bts;
494 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
495 	return tlv_put(sctx, attr, &bts, sizeof(bts));
496 }
497 
498 
499 #define TLV_PUT(sctx, attrtype, attrlen, data) \
500 	do { \
501 		ret = tlv_put(sctx, attrtype, attrlen, data); \
502 		if (ret < 0) \
503 			goto tlv_put_failure; \
504 	} while (0)
505 
506 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
507 	do { \
508 		ret = tlv_put_u##bits(sctx, attrtype, value); \
509 		if (ret < 0) \
510 			goto tlv_put_failure; \
511 	} while (0)
512 
513 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
514 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
515 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
516 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
517 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
518 	do { \
519 		ret = tlv_put_string(sctx, attrtype, str, len); \
520 		if (ret < 0) \
521 			goto tlv_put_failure; \
522 	} while (0)
523 #define TLV_PUT_PATH(sctx, attrtype, p) \
524 	do { \
525 		ret = tlv_put_string(sctx, attrtype, p->start, \
526 			p->end - p->start); \
527 		if (ret < 0) \
528 			goto tlv_put_failure; \
529 	} while(0)
530 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
531 	do { \
532 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
533 		if (ret < 0) \
534 			goto tlv_put_failure; \
535 	} while (0)
536 #define TLV_PUT_TIMESPEC(sctx, attrtype, ts) \
537 	do { \
538 		ret = tlv_put_timespec(sctx, attrtype, ts); \
539 		if (ret < 0) \
540 			goto tlv_put_failure; \
541 	} while (0)
542 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
543 	do { \
544 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
545 		if (ret < 0) \
546 			goto tlv_put_failure; \
547 	} while (0)
548 
549 static int send_header(struct send_ctx *sctx)
550 {
551 	struct btrfs_stream_header hdr;
552 
553 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
554 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
555 
556 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
557 					&sctx->send_off);
558 }
559 
560 /*
561  * For each command/item we want to send to userspace, we call this function.
562  */
563 static int begin_cmd(struct send_ctx *sctx, int cmd)
564 {
565 	struct btrfs_cmd_header *hdr;
566 
567 	if (!sctx->send_buf) {
568 		WARN_ON(1);
569 		return -EINVAL;
570 	}
571 
572 	BUG_ON(sctx->send_size);
573 
574 	sctx->send_size += sizeof(*hdr);
575 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
576 	hdr->cmd = cpu_to_le16(cmd);
577 
578 	return 0;
579 }
580 
581 static int send_cmd(struct send_ctx *sctx)
582 {
583 	int ret;
584 	struct btrfs_cmd_header *hdr;
585 	u32 crc;
586 
587 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
588 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
589 	hdr->crc = 0;
590 
591 	crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
592 	hdr->crc = cpu_to_le32(crc);
593 
594 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
595 					&sctx->send_off);
596 
597 	sctx->total_send_size += sctx->send_size;
598 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
599 	sctx->send_size = 0;
600 
601 	return ret;
602 }
603 
604 /*
605  * Sends a move instruction to user space
606  */
607 static int send_rename(struct send_ctx *sctx,
608 		     struct fs_path *from, struct fs_path *to)
609 {
610 	int ret;
611 
612 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
613 
614 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
615 	if (ret < 0)
616 		goto out;
617 
618 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
619 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
620 
621 	ret = send_cmd(sctx);
622 
623 tlv_put_failure:
624 out:
625 	return ret;
626 }
627 
628 /*
629  * Sends a link instruction to user space
630  */
631 static int send_link(struct send_ctx *sctx,
632 		     struct fs_path *path, struct fs_path *lnk)
633 {
634 	int ret;
635 
636 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
637 
638 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
639 	if (ret < 0)
640 		goto out;
641 
642 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
643 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
644 
645 	ret = send_cmd(sctx);
646 
647 tlv_put_failure:
648 out:
649 	return ret;
650 }
651 
652 /*
653  * Sends an unlink instruction to user space
654  */
655 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
656 {
657 	int ret;
658 
659 verbose_printk("btrfs: send_unlink %s\n", path->start);
660 
661 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
662 	if (ret < 0)
663 		goto out;
664 
665 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
666 
667 	ret = send_cmd(sctx);
668 
669 tlv_put_failure:
670 out:
671 	return ret;
672 }
673 
674 /*
675  * Sends a rmdir instruction to user space
676  */
677 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
678 {
679 	int ret;
680 
681 verbose_printk("btrfs: send_rmdir %s\n", path->start);
682 
683 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
684 	if (ret < 0)
685 		goto out;
686 
687 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
688 
689 	ret = send_cmd(sctx);
690 
691 tlv_put_failure:
692 out:
693 	return ret;
694 }
695 
696 /*
697  * Helper function to retrieve some fields from an inode item.
698  */
699 static int get_inode_info(struct btrfs_root *root,
700 			  u64 ino, u64 *size, u64 *gen,
701 			  u64 *mode, u64 *uid, u64 *gid,
702 			  u64 *rdev)
703 {
704 	int ret;
705 	struct btrfs_inode_item *ii;
706 	struct btrfs_key key;
707 	struct btrfs_path *path;
708 
709 	path = alloc_path_for_send();
710 	if (!path)
711 		return -ENOMEM;
712 
713 	key.objectid = ino;
714 	key.type = BTRFS_INODE_ITEM_KEY;
715 	key.offset = 0;
716 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
717 	if (ret < 0)
718 		goto out;
719 	if (ret) {
720 		ret = -ENOENT;
721 		goto out;
722 	}
723 
724 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
725 			struct btrfs_inode_item);
726 	if (size)
727 		*size = btrfs_inode_size(path->nodes[0], ii);
728 	if (gen)
729 		*gen = btrfs_inode_generation(path->nodes[0], ii);
730 	if (mode)
731 		*mode = btrfs_inode_mode(path->nodes[0], ii);
732 	if (uid)
733 		*uid = btrfs_inode_uid(path->nodes[0], ii);
734 	if (gid)
735 		*gid = btrfs_inode_gid(path->nodes[0], ii);
736 	if (rdev)
737 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
738 
739 out:
740 	btrfs_free_path(path);
741 	return ret;
742 }
743 
744 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
745 				   struct fs_path *p,
746 				   void *ctx);
747 
748 /*
749  * Helper function to iterate the entries in ONE btrfs_inode_ref or
750  * btrfs_inode_extref.
751  * The iterate callback may return a non zero value to stop iteration. This can
752  * be a negative value for error codes or 1 to simply stop it.
753  *
754  * path must point to the INODE_REF or INODE_EXTREF when called.
755  */
756 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
757 			     struct btrfs_key *found_key, int resolve,
758 			     iterate_inode_ref_t iterate, void *ctx)
759 {
760 	struct extent_buffer *eb = path->nodes[0];
761 	struct btrfs_item *item;
762 	struct btrfs_inode_ref *iref;
763 	struct btrfs_inode_extref *extref;
764 	struct btrfs_path *tmp_path;
765 	struct fs_path *p;
766 	u32 cur = 0;
767 	u32 total;
768 	int slot = path->slots[0];
769 	u32 name_len;
770 	char *start;
771 	int ret = 0;
772 	int num = 0;
773 	int index;
774 	u64 dir;
775 	unsigned long name_off;
776 	unsigned long elem_size;
777 	unsigned long ptr;
778 
779 	p = fs_path_alloc_reversed();
780 	if (!p)
781 		return -ENOMEM;
782 
783 	tmp_path = alloc_path_for_send();
784 	if (!tmp_path) {
785 		fs_path_free(p);
786 		return -ENOMEM;
787 	}
788 
789 
790 	if (found_key->type == BTRFS_INODE_REF_KEY) {
791 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
792 						    struct btrfs_inode_ref);
793 		item = btrfs_item_nr(eb, slot);
794 		total = btrfs_item_size(eb, item);
795 		elem_size = sizeof(*iref);
796 	} else {
797 		ptr = btrfs_item_ptr_offset(eb, slot);
798 		total = btrfs_item_size_nr(eb, slot);
799 		elem_size = sizeof(*extref);
800 	}
801 
802 	while (cur < total) {
803 		fs_path_reset(p);
804 
805 		if (found_key->type == BTRFS_INODE_REF_KEY) {
806 			iref = (struct btrfs_inode_ref *)(ptr + cur);
807 			name_len = btrfs_inode_ref_name_len(eb, iref);
808 			name_off = (unsigned long)(iref + 1);
809 			index = btrfs_inode_ref_index(eb, iref);
810 			dir = found_key->offset;
811 		} else {
812 			extref = (struct btrfs_inode_extref *)(ptr + cur);
813 			name_len = btrfs_inode_extref_name_len(eb, extref);
814 			name_off = (unsigned long)&extref->name;
815 			index = btrfs_inode_extref_index(eb, extref);
816 			dir = btrfs_inode_extref_parent(eb, extref);
817 		}
818 
819 		if (resolve) {
820 			start = btrfs_ref_to_path(root, tmp_path, name_len,
821 						  name_off, eb, dir,
822 						  p->buf, p->buf_len);
823 			if (IS_ERR(start)) {
824 				ret = PTR_ERR(start);
825 				goto out;
826 			}
827 			if (start < p->buf) {
828 				/* overflow , try again with larger buffer */
829 				ret = fs_path_ensure_buf(p,
830 						p->buf_len + p->buf - start);
831 				if (ret < 0)
832 					goto out;
833 				start = btrfs_ref_to_path(root, tmp_path,
834 							  name_len, name_off,
835 							  eb, dir,
836 							  p->buf, p->buf_len);
837 				if (IS_ERR(start)) {
838 					ret = PTR_ERR(start);
839 					goto out;
840 				}
841 				BUG_ON(start < p->buf);
842 			}
843 			p->start = start;
844 		} else {
845 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
846 							     name_len);
847 			if (ret < 0)
848 				goto out;
849 		}
850 
851 		cur += elem_size + name_len;
852 		ret = iterate(num, dir, index, p, ctx);
853 		if (ret)
854 			goto out;
855 		num++;
856 	}
857 
858 out:
859 	btrfs_free_path(tmp_path);
860 	fs_path_free(p);
861 	return ret;
862 }
863 
864 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
865 				  const char *name, int name_len,
866 				  const char *data, int data_len,
867 				  u8 type, void *ctx);
868 
869 /*
870  * Helper function to iterate the entries in ONE btrfs_dir_item.
871  * The iterate callback may return a non zero value to stop iteration. This can
872  * be a negative value for error codes or 1 to simply stop it.
873  *
874  * path must point to the dir item when called.
875  */
876 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
877 			    struct btrfs_key *found_key,
878 			    iterate_dir_item_t iterate, void *ctx)
879 {
880 	int ret = 0;
881 	struct extent_buffer *eb;
882 	struct btrfs_item *item;
883 	struct btrfs_dir_item *di;
884 	struct btrfs_key di_key;
885 	char *buf = NULL;
886 	char *buf2 = NULL;
887 	int buf_len;
888 	int buf_virtual = 0;
889 	u32 name_len;
890 	u32 data_len;
891 	u32 cur;
892 	u32 len;
893 	u32 total;
894 	int slot;
895 	int num;
896 	u8 type;
897 
898 	buf_len = PAGE_SIZE;
899 	buf = kmalloc(buf_len, GFP_NOFS);
900 	if (!buf) {
901 		ret = -ENOMEM;
902 		goto out;
903 	}
904 
905 	eb = path->nodes[0];
906 	slot = path->slots[0];
907 	item = btrfs_item_nr(eb, slot);
908 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
909 	cur = 0;
910 	len = 0;
911 	total = btrfs_item_size(eb, item);
912 
913 	num = 0;
914 	while (cur < total) {
915 		name_len = btrfs_dir_name_len(eb, di);
916 		data_len = btrfs_dir_data_len(eb, di);
917 		type = btrfs_dir_type(eb, di);
918 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
919 
920 		if (name_len + data_len > buf_len) {
921 			buf_len = PAGE_ALIGN(name_len + data_len);
922 			if (buf_virtual) {
923 				buf2 = vmalloc(buf_len);
924 				if (!buf2) {
925 					ret = -ENOMEM;
926 					goto out;
927 				}
928 				vfree(buf);
929 			} else {
930 				buf2 = krealloc(buf, buf_len, GFP_NOFS);
931 				if (!buf2) {
932 					buf2 = vmalloc(buf_len);
933 					if (!buf2) {
934 						ret = -ENOMEM;
935 						goto out;
936 					}
937 					kfree(buf);
938 					buf_virtual = 1;
939 				}
940 			}
941 
942 			buf = buf2;
943 			buf2 = NULL;
944 		}
945 
946 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
947 				name_len + data_len);
948 
949 		len = sizeof(*di) + name_len + data_len;
950 		di = (struct btrfs_dir_item *)((char *)di + len);
951 		cur += len;
952 
953 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
954 				data_len, type, ctx);
955 		if (ret < 0)
956 			goto out;
957 		if (ret) {
958 			ret = 0;
959 			goto out;
960 		}
961 
962 		num++;
963 	}
964 
965 out:
966 	if (buf_virtual)
967 		vfree(buf);
968 	else
969 		kfree(buf);
970 	return ret;
971 }
972 
973 static int __copy_first_ref(int num, u64 dir, int index,
974 			    struct fs_path *p, void *ctx)
975 {
976 	int ret;
977 	struct fs_path *pt = ctx;
978 
979 	ret = fs_path_copy(pt, p);
980 	if (ret < 0)
981 		return ret;
982 
983 	/* we want the first only */
984 	return 1;
985 }
986 
987 /*
988  * Retrieve the first path of an inode. If an inode has more then one
989  * ref/hardlink, this is ignored.
990  */
991 static int get_inode_path(struct btrfs_root *root,
992 			  u64 ino, struct fs_path *path)
993 {
994 	int ret;
995 	struct btrfs_key key, found_key;
996 	struct btrfs_path *p;
997 
998 	p = alloc_path_for_send();
999 	if (!p)
1000 		return -ENOMEM;
1001 
1002 	fs_path_reset(path);
1003 
1004 	key.objectid = ino;
1005 	key.type = BTRFS_INODE_REF_KEY;
1006 	key.offset = 0;
1007 
1008 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1009 	if (ret < 0)
1010 		goto out;
1011 	if (ret) {
1012 		ret = 1;
1013 		goto out;
1014 	}
1015 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1016 	if (found_key.objectid != ino ||
1017 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1018 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1019 		ret = -ENOENT;
1020 		goto out;
1021 	}
1022 
1023 	ret = iterate_inode_ref(root, p, &found_key, 1,
1024 				__copy_first_ref, path);
1025 	if (ret < 0)
1026 		goto out;
1027 	ret = 0;
1028 
1029 out:
1030 	btrfs_free_path(p);
1031 	return ret;
1032 }
1033 
1034 struct backref_ctx {
1035 	struct send_ctx *sctx;
1036 
1037 	/* number of total found references */
1038 	u64 found;
1039 
1040 	/*
1041 	 * used for clones found in send_root. clones found behind cur_objectid
1042 	 * and cur_offset are not considered as allowed clones.
1043 	 */
1044 	u64 cur_objectid;
1045 	u64 cur_offset;
1046 
1047 	/* may be truncated in case it's the last extent in a file */
1048 	u64 extent_len;
1049 
1050 	/* Just to check for bugs in backref resolving */
1051 	int found_itself;
1052 };
1053 
1054 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1055 {
1056 	u64 root = (u64)(uintptr_t)key;
1057 	struct clone_root *cr = (struct clone_root *)elt;
1058 
1059 	if (root < cr->root->objectid)
1060 		return -1;
1061 	if (root > cr->root->objectid)
1062 		return 1;
1063 	return 0;
1064 }
1065 
1066 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1067 {
1068 	struct clone_root *cr1 = (struct clone_root *)e1;
1069 	struct clone_root *cr2 = (struct clone_root *)e2;
1070 
1071 	if (cr1->root->objectid < cr2->root->objectid)
1072 		return -1;
1073 	if (cr1->root->objectid > cr2->root->objectid)
1074 		return 1;
1075 	return 0;
1076 }
1077 
1078 /*
1079  * Called for every backref that is found for the current extent.
1080  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1081  */
1082 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1083 {
1084 	struct backref_ctx *bctx = ctx_;
1085 	struct clone_root *found;
1086 	int ret;
1087 	u64 i_size;
1088 
1089 	/* First check if the root is in the list of accepted clone sources */
1090 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1091 			bctx->sctx->clone_roots_cnt,
1092 			sizeof(struct clone_root),
1093 			__clone_root_cmp_bsearch);
1094 	if (!found)
1095 		return 0;
1096 
1097 	if (found->root == bctx->sctx->send_root &&
1098 	    ino == bctx->cur_objectid &&
1099 	    offset == bctx->cur_offset) {
1100 		bctx->found_itself = 1;
1101 	}
1102 
1103 	/*
1104 	 * There are inodes that have extents that lie behind its i_size. Don't
1105 	 * accept clones from these extents.
1106 	 */
1107 	ret = get_inode_info(found->root, ino, &i_size, NULL, NULL, NULL, NULL,
1108 			NULL);
1109 	if (ret < 0)
1110 		return ret;
1111 
1112 	if (offset + bctx->extent_len > i_size)
1113 		return 0;
1114 
1115 	/*
1116 	 * Make sure we don't consider clones from send_root that are
1117 	 * behind the current inode/offset.
1118 	 */
1119 	if (found->root == bctx->sctx->send_root) {
1120 		/*
1121 		 * TODO for the moment we don't accept clones from the inode
1122 		 * that is currently send. We may change this when
1123 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1124 		 * file.
1125 		 */
1126 		if (ino >= bctx->cur_objectid)
1127 			return 0;
1128 #if 0
1129 		if (ino > bctx->cur_objectid)
1130 			return 0;
1131 		if (offset + bctx->extent_len > bctx->cur_offset)
1132 			return 0;
1133 #endif
1134 	}
1135 
1136 	bctx->found++;
1137 	found->found_refs++;
1138 	if (ino < found->ino) {
1139 		found->ino = ino;
1140 		found->offset = offset;
1141 	} else if (found->ino == ino) {
1142 		/*
1143 		 * same extent found more then once in the same file.
1144 		 */
1145 		if (found->offset > offset + bctx->extent_len)
1146 			found->offset = offset;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 /*
1153  * Given an inode, offset and extent item, it finds a good clone for a clone
1154  * instruction. Returns -ENOENT when none could be found. The function makes
1155  * sure that the returned clone is usable at the point where sending is at the
1156  * moment. This means, that no clones are accepted which lie behind the current
1157  * inode+offset.
1158  *
1159  * path must point to the extent item when called.
1160  */
1161 static int find_extent_clone(struct send_ctx *sctx,
1162 			     struct btrfs_path *path,
1163 			     u64 ino, u64 data_offset,
1164 			     u64 ino_size,
1165 			     struct clone_root **found)
1166 {
1167 	int ret;
1168 	int extent_type;
1169 	u64 logical;
1170 	u64 disk_byte;
1171 	u64 num_bytes;
1172 	u64 extent_item_pos;
1173 	u64 flags = 0;
1174 	struct btrfs_file_extent_item *fi;
1175 	struct extent_buffer *eb = path->nodes[0];
1176 	struct backref_ctx *backref_ctx = NULL;
1177 	struct clone_root *cur_clone_root;
1178 	struct btrfs_key found_key;
1179 	struct btrfs_path *tmp_path;
1180 	int compressed;
1181 	u32 i;
1182 
1183 	tmp_path = alloc_path_for_send();
1184 	if (!tmp_path)
1185 		return -ENOMEM;
1186 
1187 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1188 	if (!backref_ctx) {
1189 		ret = -ENOMEM;
1190 		goto out;
1191 	}
1192 
1193 	if (data_offset >= ino_size) {
1194 		/*
1195 		 * There may be extents that lie behind the file's size.
1196 		 * I at least had this in combination with snapshotting while
1197 		 * writing large files.
1198 		 */
1199 		ret = 0;
1200 		goto out;
1201 	}
1202 
1203 	fi = btrfs_item_ptr(eb, path->slots[0],
1204 			struct btrfs_file_extent_item);
1205 	extent_type = btrfs_file_extent_type(eb, fi);
1206 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1207 		ret = -ENOENT;
1208 		goto out;
1209 	}
1210 	compressed = btrfs_file_extent_compression(eb, fi);
1211 
1212 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1213 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1214 	if (disk_byte == 0) {
1215 		ret = -ENOENT;
1216 		goto out;
1217 	}
1218 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1219 
1220 	ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1221 				  &found_key, &flags);
1222 	btrfs_release_path(tmp_path);
1223 
1224 	if (ret < 0)
1225 		goto out;
1226 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1227 		ret = -EIO;
1228 		goto out;
1229 	}
1230 
1231 	/*
1232 	 * Setup the clone roots.
1233 	 */
1234 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1235 		cur_clone_root = sctx->clone_roots + i;
1236 		cur_clone_root->ino = (u64)-1;
1237 		cur_clone_root->offset = 0;
1238 		cur_clone_root->found_refs = 0;
1239 	}
1240 
1241 	backref_ctx->sctx = sctx;
1242 	backref_ctx->found = 0;
1243 	backref_ctx->cur_objectid = ino;
1244 	backref_ctx->cur_offset = data_offset;
1245 	backref_ctx->found_itself = 0;
1246 	backref_ctx->extent_len = num_bytes;
1247 
1248 	/*
1249 	 * The last extent of a file may be too large due to page alignment.
1250 	 * We need to adjust extent_len in this case so that the checks in
1251 	 * __iterate_backrefs work.
1252 	 */
1253 	if (data_offset + num_bytes >= ino_size)
1254 		backref_ctx->extent_len = ino_size - data_offset;
1255 
1256 	/*
1257 	 * Now collect all backrefs.
1258 	 */
1259 	if (compressed == BTRFS_COMPRESS_NONE)
1260 		extent_item_pos = logical - found_key.objectid;
1261 	else
1262 		extent_item_pos = 0;
1263 
1264 	extent_item_pos = logical - found_key.objectid;
1265 	ret = iterate_extent_inodes(sctx->send_root->fs_info,
1266 					found_key.objectid, extent_item_pos, 1,
1267 					__iterate_backrefs, backref_ctx);
1268 
1269 	if (ret < 0)
1270 		goto out;
1271 
1272 	if (!backref_ctx->found_itself) {
1273 		/* found a bug in backref code? */
1274 		ret = -EIO;
1275 		printk(KERN_ERR "btrfs: ERROR did not find backref in "
1276 				"send_root. inode=%llu, offset=%llu, "
1277 				"disk_byte=%llu found extent=%llu\n",
1278 				ino, data_offset, disk_byte, found_key.objectid);
1279 		goto out;
1280 	}
1281 
1282 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1283 		"ino=%llu, "
1284 		"num_bytes=%llu, logical=%llu\n",
1285 		data_offset, ino, num_bytes, logical);
1286 
1287 	if (!backref_ctx->found)
1288 		verbose_printk("btrfs:    no clones found\n");
1289 
1290 	cur_clone_root = NULL;
1291 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1292 		if (sctx->clone_roots[i].found_refs) {
1293 			if (!cur_clone_root)
1294 				cur_clone_root = sctx->clone_roots + i;
1295 			else if (sctx->clone_roots[i].root == sctx->send_root)
1296 				/* prefer clones from send_root over others */
1297 				cur_clone_root = sctx->clone_roots + i;
1298 		}
1299 
1300 	}
1301 
1302 	if (cur_clone_root) {
1303 		*found = cur_clone_root;
1304 		ret = 0;
1305 	} else {
1306 		ret = -ENOENT;
1307 	}
1308 
1309 out:
1310 	btrfs_free_path(tmp_path);
1311 	kfree(backref_ctx);
1312 	return ret;
1313 }
1314 
1315 static int read_symlink(struct btrfs_root *root,
1316 			u64 ino,
1317 			struct fs_path *dest)
1318 {
1319 	int ret;
1320 	struct btrfs_path *path;
1321 	struct btrfs_key key;
1322 	struct btrfs_file_extent_item *ei;
1323 	u8 type;
1324 	u8 compression;
1325 	unsigned long off;
1326 	int len;
1327 
1328 	path = alloc_path_for_send();
1329 	if (!path)
1330 		return -ENOMEM;
1331 
1332 	key.objectid = ino;
1333 	key.type = BTRFS_EXTENT_DATA_KEY;
1334 	key.offset = 0;
1335 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1336 	if (ret < 0)
1337 		goto out;
1338 	BUG_ON(ret);
1339 
1340 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1341 			struct btrfs_file_extent_item);
1342 	type = btrfs_file_extent_type(path->nodes[0], ei);
1343 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1344 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1345 	BUG_ON(compression);
1346 
1347 	off = btrfs_file_extent_inline_start(ei);
1348 	len = btrfs_file_extent_inline_len(path->nodes[0], ei);
1349 
1350 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1351 
1352 out:
1353 	btrfs_free_path(path);
1354 	return ret;
1355 }
1356 
1357 /*
1358  * Helper function to generate a file name that is unique in the root of
1359  * send_root and parent_root. This is used to generate names for orphan inodes.
1360  */
1361 static int gen_unique_name(struct send_ctx *sctx,
1362 			   u64 ino, u64 gen,
1363 			   struct fs_path *dest)
1364 {
1365 	int ret = 0;
1366 	struct btrfs_path *path;
1367 	struct btrfs_dir_item *di;
1368 	char tmp[64];
1369 	int len;
1370 	u64 idx = 0;
1371 
1372 	path = alloc_path_for_send();
1373 	if (!path)
1374 		return -ENOMEM;
1375 
1376 	while (1) {
1377 		len = snprintf(tmp, sizeof(tmp) - 1, "o%llu-%llu-%llu",
1378 				ino, gen, idx);
1379 		if (len >= sizeof(tmp)) {
1380 			/* should really not happen */
1381 			ret = -EOVERFLOW;
1382 			goto out;
1383 		}
1384 
1385 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1386 				path, BTRFS_FIRST_FREE_OBJECTID,
1387 				tmp, strlen(tmp), 0);
1388 		btrfs_release_path(path);
1389 		if (IS_ERR(di)) {
1390 			ret = PTR_ERR(di);
1391 			goto out;
1392 		}
1393 		if (di) {
1394 			/* not unique, try again */
1395 			idx++;
1396 			continue;
1397 		}
1398 
1399 		if (!sctx->parent_root) {
1400 			/* unique */
1401 			ret = 0;
1402 			break;
1403 		}
1404 
1405 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1406 				path, BTRFS_FIRST_FREE_OBJECTID,
1407 				tmp, strlen(tmp), 0);
1408 		btrfs_release_path(path);
1409 		if (IS_ERR(di)) {
1410 			ret = PTR_ERR(di);
1411 			goto out;
1412 		}
1413 		if (di) {
1414 			/* not unique, try again */
1415 			idx++;
1416 			continue;
1417 		}
1418 		/* unique */
1419 		break;
1420 	}
1421 
1422 	ret = fs_path_add(dest, tmp, strlen(tmp));
1423 
1424 out:
1425 	btrfs_free_path(path);
1426 	return ret;
1427 }
1428 
1429 enum inode_state {
1430 	inode_state_no_change,
1431 	inode_state_will_create,
1432 	inode_state_did_create,
1433 	inode_state_will_delete,
1434 	inode_state_did_delete,
1435 };
1436 
1437 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1438 {
1439 	int ret;
1440 	int left_ret;
1441 	int right_ret;
1442 	u64 left_gen;
1443 	u64 right_gen;
1444 
1445 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1446 			NULL, NULL);
1447 	if (ret < 0 && ret != -ENOENT)
1448 		goto out;
1449 	left_ret = ret;
1450 
1451 	if (!sctx->parent_root) {
1452 		right_ret = -ENOENT;
1453 	} else {
1454 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1455 				NULL, NULL, NULL, NULL);
1456 		if (ret < 0 && ret != -ENOENT)
1457 			goto out;
1458 		right_ret = ret;
1459 	}
1460 
1461 	if (!left_ret && !right_ret) {
1462 		if (left_gen == gen && right_gen == gen) {
1463 			ret = inode_state_no_change;
1464 		} else if (left_gen == gen) {
1465 			if (ino < sctx->send_progress)
1466 				ret = inode_state_did_create;
1467 			else
1468 				ret = inode_state_will_create;
1469 		} else if (right_gen == gen) {
1470 			if (ino < sctx->send_progress)
1471 				ret = inode_state_did_delete;
1472 			else
1473 				ret = inode_state_will_delete;
1474 		} else  {
1475 			ret = -ENOENT;
1476 		}
1477 	} else if (!left_ret) {
1478 		if (left_gen == gen) {
1479 			if (ino < sctx->send_progress)
1480 				ret = inode_state_did_create;
1481 			else
1482 				ret = inode_state_will_create;
1483 		} else {
1484 			ret = -ENOENT;
1485 		}
1486 	} else if (!right_ret) {
1487 		if (right_gen == gen) {
1488 			if (ino < sctx->send_progress)
1489 				ret = inode_state_did_delete;
1490 			else
1491 				ret = inode_state_will_delete;
1492 		} else {
1493 			ret = -ENOENT;
1494 		}
1495 	} else {
1496 		ret = -ENOENT;
1497 	}
1498 
1499 out:
1500 	return ret;
1501 }
1502 
1503 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1504 {
1505 	int ret;
1506 
1507 	ret = get_cur_inode_state(sctx, ino, gen);
1508 	if (ret < 0)
1509 		goto out;
1510 
1511 	if (ret == inode_state_no_change ||
1512 	    ret == inode_state_did_create ||
1513 	    ret == inode_state_will_delete)
1514 		ret = 1;
1515 	else
1516 		ret = 0;
1517 
1518 out:
1519 	return ret;
1520 }
1521 
1522 /*
1523  * Helper function to lookup a dir item in a dir.
1524  */
1525 static int lookup_dir_item_inode(struct btrfs_root *root,
1526 				 u64 dir, const char *name, int name_len,
1527 				 u64 *found_inode,
1528 				 u8 *found_type)
1529 {
1530 	int ret = 0;
1531 	struct btrfs_dir_item *di;
1532 	struct btrfs_key key;
1533 	struct btrfs_path *path;
1534 
1535 	path = alloc_path_for_send();
1536 	if (!path)
1537 		return -ENOMEM;
1538 
1539 	di = btrfs_lookup_dir_item(NULL, root, path,
1540 			dir, name, name_len, 0);
1541 	if (!di) {
1542 		ret = -ENOENT;
1543 		goto out;
1544 	}
1545 	if (IS_ERR(di)) {
1546 		ret = PTR_ERR(di);
1547 		goto out;
1548 	}
1549 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1550 	*found_inode = key.objectid;
1551 	*found_type = btrfs_dir_type(path->nodes[0], di);
1552 
1553 out:
1554 	btrfs_free_path(path);
1555 	return ret;
1556 }
1557 
1558 /*
1559  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1560  * generation of the parent dir and the name of the dir entry.
1561  */
1562 static int get_first_ref(struct btrfs_root *root, u64 ino,
1563 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1564 {
1565 	int ret;
1566 	struct btrfs_key key;
1567 	struct btrfs_key found_key;
1568 	struct btrfs_path *path;
1569 	int len;
1570 	u64 parent_dir;
1571 
1572 	path = alloc_path_for_send();
1573 	if (!path)
1574 		return -ENOMEM;
1575 
1576 	key.objectid = ino;
1577 	key.type = BTRFS_INODE_REF_KEY;
1578 	key.offset = 0;
1579 
1580 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1581 	if (ret < 0)
1582 		goto out;
1583 	if (!ret)
1584 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1585 				path->slots[0]);
1586 	if (ret || found_key.objectid != ino ||
1587 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1588 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1589 		ret = -ENOENT;
1590 		goto out;
1591 	}
1592 
1593 	if (key.type == BTRFS_INODE_REF_KEY) {
1594 		struct btrfs_inode_ref *iref;
1595 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1596 				      struct btrfs_inode_ref);
1597 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1598 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1599 						     (unsigned long)(iref + 1),
1600 						     len);
1601 		parent_dir = found_key.offset;
1602 	} else {
1603 		struct btrfs_inode_extref *extref;
1604 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1605 					struct btrfs_inode_extref);
1606 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1607 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1608 					(unsigned long)&extref->name, len);
1609 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1610 	}
1611 	if (ret < 0)
1612 		goto out;
1613 	btrfs_release_path(path);
1614 
1615 	ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, NULL,
1616 			NULL, NULL);
1617 	if (ret < 0)
1618 		goto out;
1619 
1620 	*dir = parent_dir;
1621 
1622 out:
1623 	btrfs_free_path(path);
1624 	return ret;
1625 }
1626 
1627 static int is_first_ref(struct btrfs_root *root,
1628 			u64 ino, u64 dir,
1629 			const char *name, int name_len)
1630 {
1631 	int ret;
1632 	struct fs_path *tmp_name;
1633 	u64 tmp_dir;
1634 	u64 tmp_dir_gen;
1635 
1636 	tmp_name = fs_path_alloc();
1637 	if (!tmp_name)
1638 		return -ENOMEM;
1639 
1640 	ret = get_first_ref(root, ino, &tmp_dir, &tmp_dir_gen, tmp_name);
1641 	if (ret < 0)
1642 		goto out;
1643 
1644 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1645 		ret = 0;
1646 		goto out;
1647 	}
1648 
1649 	ret = !memcmp(tmp_name->start, name, name_len);
1650 
1651 out:
1652 	fs_path_free(tmp_name);
1653 	return ret;
1654 }
1655 
1656 /*
1657  * Used by process_recorded_refs to determine if a new ref would overwrite an
1658  * already existing ref. In case it detects an overwrite, it returns the
1659  * inode/gen in who_ino/who_gen.
1660  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1661  * to make sure later references to the overwritten inode are possible.
1662  * Orphanizing is however only required for the first ref of an inode.
1663  * process_recorded_refs does an additional is_first_ref check to see if
1664  * orphanizing is really required.
1665  */
1666 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1667 			      const char *name, int name_len,
1668 			      u64 *who_ino, u64 *who_gen)
1669 {
1670 	int ret = 0;
1671 	u64 other_inode = 0;
1672 	u8 other_type = 0;
1673 
1674 	if (!sctx->parent_root)
1675 		goto out;
1676 
1677 	ret = is_inode_existent(sctx, dir, dir_gen);
1678 	if (ret <= 0)
1679 		goto out;
1680 
1681 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1682 			&other_inode, &other_type);
1683 	if (ret < 0 && ret != -ENOENT)
1684 		goto out;
1685 	if (ret) {
1686 		ret = 0;
1687 		goto out;
1688 	}
1689 
1690 	/*
1691 	 * Check if the overwritten ref was already processed. If yes, the ref
1692 	 * was already unlinked/moved, so we can safely assume that we will not
1693 	 * overwrite anything at this point in time.
1694 	 */
1695 	if (other_inode > sctx->send_progress) {
1696 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1697 				who_gen, NULL, NULL, NULL, NULL);
1698 		if (ret < 0)
1699 			goto out;
1700 
1701 		ret = 1;
1702 		*who_ino = other_inode;
1703 	} else {
1704 		ret = 0;
1705 	}
1706 
1707 out:
1708 	return ret;
1709 }
1710 
1711 /*
1712  * Checks if the ref was overwritten by an already processed inode. This is
1713  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1714  * thus the orphan name needs be used.
1715  * process_recorded_refs also uses it to avoid unlinking of refs that were
1716  * overwritten.
1717  */
1718 static int did_overwrite_ref(struct send_ctx *sctx,
1719 			    u64 dir, u64 dir_gen,
1720 			    u64 ino, u64 ino_gen,
1721 			    const char *name, int name_len)
1722 {
1723 	int ret = 0;
1724 	u64 gen;
1725 	u64 ow_inode;
1726 	u8 other_type;
1727 
1728 	if (!sctx->parent_root)
1729 		goto out;
1730 
1731 	ret = is_inode_existent(sctx, dir, dir_gen);
1732 	if (ret <= 0)
1733 		goto out;
1734 
1735 	/* check if the ref was overwritten by another ref */
1736 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1737 			&ow_inode, &other_type);
1738 	if (ret < 0 && ret != -ENOENT)
1739 		goto out;
1740 	if (ret) {
1741 		/* was never and will never be overwritten */
1742 		ret = 0;
1743 		goto out;
1744 	}
1745 
1746 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1747 			NULL, NULL);
1748 	if (ret < 0)
1749 		goto out;
1750 
1751 	if (ow_inode == ino && gen == ino_gen) {
1752 		ret = 0;
1753 		goto out;
1754 	}
1755 
1756 	/* we know that it is or will be overwritten. check this now */
1757 	if (ow_inode < sctx->send_progress)
1758 		ret = 1;
1759 	else
1760 		ret = 0;
1761 
1762 out:
1763 	return ret;
1764 }
1765 
1766 /*
1767  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1768  * that got overwritten. This is used by process_recorded_refs to determine
1769  * if it has to use the path as returned by get_cur_path or the orphan name.
1770  */
1771 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1772 {
1773 	int ret = 0;
1774 	struct fs_path *name = NULL;
1775 	u64 dir;
1776 	u64 dir_gen;
1777 
1778 	if (!sctx->parent_root)
1779 		goto out;
1780 
1781 	name = fs_path_alloc();
1782 	if (!name)
1783 		return -ENOMEM;
1784 
1785 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1786 	if (ret < 0)
1787 		goto out;
1788 
1789 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1790 			name->start, fs_path_len(name));
1791 
1792 out:
1793 	fs_path_free(name);
1794 	return ret;
1795 }
1796 
1797 /*
1798  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1799  * so we need to do some special handling in case we have clashes. This function
1800  * takes care of this with the help of name_cache_entry::radix_list.
1801  * In case of error, nce is kfreed.
1802  */
1803 static int name_cache_insert(struct send_ctx *sctx,
1804 			     struct name_cache_entry *nce)
1805 {
1806 	int ret = 0;
1807 	struct list_head *nce_head;
1808 
1809 	nce_head = radix_tree_lookup(&sctx->name_cache,
1810 			(unsigned long)nce->ino);
1811 	if (!nce_head) {
1812 		nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1813 		if (!nce_head) {
1814 			kfree(nce);
1815 			return -ENOMEM;
1816 		}
1817 		INIT_LIST_HEAD(nce_head);
1818 
1819 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1820 		if (ret < 0) {
1821 			kfree(nce_head);
1822 			kfree(nce);
1823 			return ret;
1824 		}
1825 	}
1826 	list_add_tail(&nce->radix_list, nce_head);
1827 	list_add_tail(&nce->list, &sctx->name_cache_list);
1828 	sctx->name_cache_size++;
1829 
1830 	return ret;
1831 }
1832 
1833 static void name_cache_delete(struct send_ctx *sctx,
1834 			      struct name_cache_entry *nce)
1835 {
1836 	struct list_head *nce_head;
1837 
1838 	nce_head = radix_tree_lookup(&sctx->name_cache,
1839 			(unsigned long)nce->ino);
1840 	BUG_ON(!nce_head);
1841 
1842 	list_del(&nce->radix_list);
1843 	list_del(&nce->list);
1844 	sctx->name_cache_size--;
1845 
1846 	if (list_empty(nce_head)) {
1847 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
1848 		kfree(nce_head);
1849 	}
1850 }
1851 
1852 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
1853 						    u64 ino, u64 gen)
1854 {
1855 	struct list_head *nce_head;
1856 	struct name_cache_entry *cur;
1857 
1858 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
1859 	if (!nce_head)
1860 		return NULL;
1861 
1862 	list_for_each_entry(cur, nce_head, radix_list) {
1863 		if (cur->ino == ino && cur->gen == gen)
1864 			return cur;
1865 	}
1866 	return NULL;
1867 }
1868 
1869 /*
1870  * Removes the entry from the list and adds it back to the end. This marks the
1871  * entry as recently used so that name_cache_clean_unused does not remove it.
1872  */
1873 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
1874 {
1875 	list_del(&nce->list);
1876 	list_add_tail(&nce->list, &sctx->name_cache_list);
1877 }
1878 
1879 /*
1880  * Remove some entries from the beginning of name_cache_list.
1881  */
1882 static void name_cache_clean_unused(struct send_ctx *sctx)
1883 {
1884 	struct name_cache_entry *nce;
1885 
1886 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
1887 		return;
1888 
1889 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
1890 		nce = list_entry(sctx->name_cache_list.next,
1891 				struct name_cache_entry, list);
1892 		name_cache_delete(sctx, nce);
1893 		kfree(nce);
1894 	}
1895 }
1896 
1897 static void name_cache_free(struct send_ctx *sctx)
1898 {
1899 	struct name_cache_entry *nce;
1900 
1901 	while (!list_empty(&sctx->name_cache_list)) {
1902 		nce = list_entry(sctx->name_cache_list.next,
1903 				struct name_cache_entry, list);
1904 		name_cache_delete(sctx, nce);
1905 		kfree(nce);
1906 	}
1907 }
1908 
1909 /*
1910  * Used by get_cur_path for each ref up to the root.
1911  * Returns 0 if it succeeded.
1912  * Returns 1 if the inode is not existent or got overwritten. In that case, the
1913  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
1914  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
1915  * Returns <0 in case of error.
1916  */
1917 static int __get_cur_name_and_parent(struct send_ctx *sctx,
1918 				     u64 ino, u64 gen,
1919 				     u64 *parent_ino,
1920 				     u64 *parent_gen,
1921 				     struct fs_path *dest)
1922 {
1923 	int ret;
1924 	int nce_ret;
1925 	struct btrfs_path *path = NULL;
1926 	struct name_cache_entry *nce = NULL;
1927 
1928 	/*
1929 	 * First check if we already did a call to this function with the same
1930 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
1931 	 * return the cached result.
1932 	 */
1933 	nce = name_cache_search(sctx, ino, gen);
1934 	if (nce) {
1935 		if (ino < sctx->send_progress && nce->need_later_update) {
1936 			name_cache_delete(sctx, nce);
1937 			kfree(nce);
1938 			nce = NULL;
1939 		} else {
1940 			name_cache_used(sctx, nce);
1941 			*parent_ino = nce->parent_ino;
1942 			*parent_gen = nce->parent_gen;
1943 			ret = fs_path_add(dest, nce->name, nce->name_len);
1944 			if (ret < 0)
1945 				goto out;
1946 			ret = nce->ret;
1947 			goto out;
1948 		}
1949 	}
1950 
1951 	path = alloc_path_for_send();
1952 	if (!path)
1953 		return -ENOMEM;
1954 
1955 	/*
1956 	 * If the inode is not existent yet, add the orphan name and return 1.
1957 	 * This should only happen for the parent dir that we determine in
1958 	 * __record_new_ref
1959 	 */
1960 	ret = is_inode_existent(sctx, ino, gen);
1961 	if (ret < 0)
1962 		goto out;
1963 
1964 	if (!ret) {
1965 		ret = gen_unique_name(sctx, ino, gen, dest);
1966 		if (ret < 0)
1967 			goto out;
1968 		ret = 1;
1969 		goto out_cache;
1970 	}
1971 
1972 	/*
1973 	 * Depending on whether the inode was already processed or not, use
1974 	 * send_root or parent_root for ref lookup.
1975 	 */
1976 	if (ino < sctx->send_progress)
1977 		ret = get_first_ref(sctx->send_root, ino,
1978 				    parent_ino, parent_gen, dest);
1979 	else
1980 		ret = get_first_ref(sctx->parent_root, ino,
1981 				    parent_ino, parent_gen, dest);
1982 	if (ret < 0)
1983 		goto out;
1984 
1985 	/*
1986 	 * Check if the ref was overwritten by an inode's ref that was processed
1987 	 * earlier. If yes, treat as orphan and return 1.
1988 	 */
1989 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
1990 			dest->start, dest->end - dest->start);
1991 	if (ret < 0)
1992 		goto out;
1993 	if (ret) {
1994 		fs_path_reset(dest);
1995 		ret = gen_unique_name(sctx, ino, gen, dest);
1996 		if (ret < 0)
1997 			goto out;
1998 		ret = 1;
1999 	}
2000 
2001 out_cache:
2002 	/*
2003 	 * Store the result of the lookup in the name cache.
2004 	 */
2005 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2006 	if (!nce) {
2007 		ret = -ENOMEM;
2008 		goto out;
2009 	}
2010 
2011 	nce->ino = ino;
2012 	nce->gen = gen;
2013 	nce->parent_ino = *parent_ino;
2014 	nce->parent_gen = *parent_gen;
2015 	nce->name_len = fs_path_len(dest);
2016 	nce->ret = ret;
2017 	strcpy(nce->name, dest->start);
2018 
2019 	if (ino < sctx->send_progress)
2020 		nce->need_later_update = 0;
2021 	else
2022 		nce->need_later_update = 1;
2023 
2024 	nce_ret = name_cache_insert(sctx, nce);
2025 	if (nce_ret < 0)
2026 		ret = nce_ret;
2027 	name_cache_clean_unused(sctx);
2028 
2029 out:
2030 	btrfs_free_path(path);
2031 	return ret;
2032 }
2033 
2034 /*
2035  * Magic happens here. This function returns the first ref to an inode as it
2036  * would look like while receiving the stream at this point in time.
2037  * We walk the path up to the root. For every inode in between, we check if it
2038  * was already processed/sent. If yes, we continue with the parent as found
2039  * in send_root. If not, we continue with the parent as found in parent_root.
2040  * If we encounter an inode that was deleted at this point in time, we use the
2041  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2042  * that were not created yet and overwritten inodes/refs.
2043  *
2044  * When do we have have orphan inodes:
2045  * 1. When an inode is freshly created and thus no valid refs are available yet
2046  * 2. When a directory lost all it's refs (deleted) but still has dir items
2047  *    inside which were not processed yet (pending for move/delete). If anyone
2048  *    tried to get the path to the dir items, it would get a path inside that
2049  *    orphan directory.
2050  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2051  *    of an unprocessed inode. If in that case the first ref would be
2052  *    overwritten, the overwritten inode gets "orphanized". Later when we
2053  *    process this overwritten inode, it is restored at a new place by moving
2054  *    the orphan inode.
2055  *
2056  * sctx->send_progress tells this function at which point in time receiving
2057  * would be.
2058  */
2059 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2060 			struct fs_path *dest)
2061 {
2062 	int ret = 0;
2063 	struct fs_path *name = NULL;
2064 	u64 parent_inode = 0;
2065 	u64 parent_gen = 0;
2066 	int stop = 0;
2067 
2068 	name = fs_path_alloc();
2069 	if (!name) {
2070 		ret = -ENOMEM;
2071 		goto out;
2072 	}
2073 
2074 	dest->reversed = 1;
2075 	fs_path_reset(dest);
2076 
2077 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2078 		fs_path_reset(name);
2079 
2080 		ret = __get_cur_name_and_parent(sctx, ino, gen,
2081 				&parent_inode, &parent_gen, name);
2082 		if (ret < 0)
2083 			goto out;
2084 		if (ret)
2085 			stop = 1;
2086 
2087 		ret = fs_path_add_path(dest, name);
2088 		if (ret < 0)
2089 			goto out;
2090 
2091 		ino = parent_inode;
2092 		gen = parent_gen;
2093 	}
2094 
2095 out:
2096 	fs_path_free(name);
2097 	if (!ret)
2098 		fs_path_unreverse(dest);
2099 	return ret;
2100 }
2101 
2102 /*
2103  * Called for regular files when sending extents data. Opens a struct file
2104  * to read from the file.
2105  */
2106 static int open_cur_inode_file(struct send_ctx *sctx)
2107 {
2108 	int ret = 0;
2109 	struct btrfs_key key;
2110 	struct path path;
2111 	struct inode *inode;
2112 	struct dentry *dentry;
2113 	struct file *filp;
2114 	int new = 0;
2115 
2116 	if (sctx->cur_inode_filp)
2117 		goto out;
2118 
2119 	key.objectid = sctx->cur_ino;
2120 	key.type = BTRFS_INODE_ITEM_KEY;
2121 	key.offset = 0;
2122 
2123 	inode = btrfs_iget(sctx->send_root->fs_info->sb, &key, sctx->send_root,
2124 			&new);
2125 	if (IS_ERR(inode)) {
2126 		ret = PTR_ERR(inode);
2127 		goto out;
2128 	}
2129 
2130 	dentry = d_obtain_alias(inode);
2131 	inode = NULL;
2132 	if (IS_ERR(dentry)) {
2133 		ret = PTR_ERR(dentry);
2134 		goto out;
2135 	}
2136 
2137 	path.mnt = sctx->mnt;
2138 	path.dentry = dentry;
2139 	filp = dentry_open(&path, O_RDONLY | O_LARGEFILE, current_cred());
2140 	dput(dentry);
2141 	dentry = NULL;
2142 	if (IS_ERR(filp)) {
2143 		ret = PTR_ERR(filp);
2144 		goto out;
2145 	}
2146 	sctx->cur_inode_filp = filp;
2147 
2148 out:
2149 	/*
2150 	 * no xxxput required here as every vfs op
2151 	 * does it by itself on failure
2152 	 */
2153 	return ret;
2154 }
2155 
2156 /*
2157  * Closes the struct file that was created in open_cur_inode_file
2158  */
2159 static int close_cur_inode_file(struct send_ctx *sctx)
2160 {
2161 	int ret = 0;
2162 
2163 	if (!sctx->cur_inode_filp)
2164 		goto out;
2165 
2166 	ret = filp_close(sctx->cur_inode_filp, NULL);
2167 	sctx->cur_inode_filp = NULL;
2168 
2169 out:
2170 	return ret;
2171 }
2172 
2173 /*
2174  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2175  */
2176 static int send_subvol_begin(struct send_ctx *sctx)
2177 {
2178 	int ret;
2179 	struct btrfs_root *send_root = sctx->send_root;
2180 	struct btrfs_root *parent_root = sctx->parent_root;
2181 	struct btrfs_path *path;
2182 	struct btrfs_key key;
2183 	struct btrfs_root_ref *ref;
2184 	struct extent_buffer *leaf;
2185 	char *name = NULL;
2186 	int namelen;
2187 
2188 	path = alloc_path_for_send();
2189 	if (!path)
2190 		return -ENOMEM;
2191 
2192 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2193 	if (!name) {
2194 		btrfs_free_path(path);
2195 		return -ENOMEM;
2196 	}
2197 
2198 	key.objectid = send_root->objectid;
2199 	key.type = BTRFS_ROOT_BACKREF_KEY;
2200 	key.offset = 0;
2201 
2202 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2203 				&key, path, 1, 0);
2204 	if (ret < 0)
2205 		goto out;
2206 	if (ret) {
2207 		ret = -ENOENT;
2208 		goto out;
2209 	}
2210 
2211 	leaf = path->nodes[0];
2212 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2213 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2214 	    key.objectid != send_root->objectid) {
2215 		ret = -ENOENT;
2216 		goto out;
2217 	}
2218 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2219 	namelen = btrfs_root_ref_name_len(leaf, ref);
2220 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2221 	btrfs_release_path(path);
2222 
2223 	if (parent_root) {
2224 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2225 		if (ret < 0)
2226 			goto out;
2227 	} else {
2228 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2229 		if (ret < 0)
2230 			goto out;
2231 	}
2232 
2233 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2234 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2235 			sctx->send_root->root_item.uuid);
2236 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2237 			sctx->send_root->root_item.ctransid);
2238 	if (parent_root) {
2239 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2240 				sctx->parent_root->root_item.uuid);
2241 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2242 				sctx->parent_root->root_item.ctransid);
2243 	}
2244 
2245 	ret = send_cmd(sctx);
2246 
2247 tlv_put_failure:
2248 out:
2249 	btrfs_free_path(path);
2250 	kfree(name);
2251 	return ret;
2252 }
2253 
2254 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2255 {
2256 	int ret = 0;
2257 	struct fs_path *p;
2258 
2259 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2260 
2261 	p = fs_path_alloc();
2262 	if (!p)
2263 		return -ENOMEM;
2264 
2265 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2266 	if (ret < 0)
2267 		goto out;
2268 
2269 	ret = get_cur_path(sctx, ino, gen, p);
2270 	if (ret < 0)
2271 		goto out;
2272 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2273 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2274 
2275 	ret = send_cmd(sctx);
2276 
2277 tlv_put_failure:
2278 out:
2279 	fs_path_free(p);
2280 	return ret;
2281 }
2282 
2283 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2284 {
2285 	int ret = 0;
2286 	struct fs_path *p;
2287 
2288 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2289 
2290 	p = fs_path_alloc();
2291 	if (!p)
2292 		return -ENOMEM;
2293 
2294 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2295 	if (ret < 0)
2296 		goto out;
2297 
2298 	ret = get_cur_path(sctx, ino, gen, p);
2299 	if (ret < 0)
2300 		goto out;
2301 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2302 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2303 
2304 	ret = send_cmd(sctx);
2305 
2306 tlv_put_failure:
2307 out:
2308 	fs_path_free(p);
2309 	return ret;
2310 }
2311 
2312 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2313 {
2314 	int ret = 0;
2315 	struct fs_path *p;
2316 
2317 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2318 
2319 	p = fs_path_alloc();
2320 	if (!p)
2321 		return -ENOMEM;
2322 
2323 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2324 	if (ret < 0)
2325 		goto out;
2326 
2327 	ret = get_cur_path(sctx, ino, gen, p);
2328 	if (ret < 0)
2329 		goto out;
2330 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2331 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2332 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2333 
2334 	ret = send_cmd(sctx);
2335 
2336 tlv_put_failure:
2337 out:
2338 	fs_path_free(p);
2339 	return ret;
2340 }
2341 
2342 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2343 {
2344 	int ret = 0;
2345 	struct fs_path *p = NULL;
2346 	struct btrfs_inode_item *ii;
2347 	struct btrfs_path *path = NULL;
2348 	struct extent_buffer *eb;
2349 	struct btrfs_key key;
2350 	int slot;
2351 
2352 verbose_printk("btrfs: send_utimes %llu\n", ino);
2353 
2354 	p = fs_path_alloc();
2355 	if (!p)
2356 		return -ENOMEM;
2357 
2358 	path = alloc_path_for_send();
2359 	if (!path) {
2360 		ret = -ENOMEM;
2361 		goto out;
2362 	}
2363 
2364 	key.objectid = ino;
2365 	key.type = BTRFS_INODE_ITEM_KEY;
2366 	key.offset = 0;
2367 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2368 	if (ret < 0)
2369 		goto out;
2370 
2371 	eb = path->nodes[0];
2372 	slot = path->slots[0];
2373 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2374 
2375 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2376 	if (ret < 0)
2377 		goto out;
2378 
2379 	ret = get_cur_path(sctx, ino, gen, p);
2380 	if (ret < 0)
2381 		goto out;
2382 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2383 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb,
2384 			btrfs_inode_atime(ii));
2385 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb,
2386 			btrfs_inode_mtime(ii));
2387 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb,
2388 			btrfs_inode_ctime(ii));
2389 	/* TODO Add otime support when the otime patches get into upstream */
2390 
2391 	ret = send_cmd(sctx);
2392 
2393 tlv_put_failure:
2394 out:
2395 	fs_path_free(p);
2396 	btrfs_free_path(path);
2397 	return ret;
2398 }
2399 
2400 /*
2401  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2402  * a valid path yet because we did not process the refs yet. So, the inode
2403  * is created as orphan.
2404  */
2405 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2406 {
2407 	int ret = 0;
2408 	struct fs_path *p;
2409 	int cmd;
2410 	u64 gen;
2411 	u64 mode;
2412 	u64 rdev;
2413 
2414 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2415 
2416 	p = fs_path_alloc();
2417 	if (!p)
2418 		return -ENOMEM;
2419 
2420 	ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, NULL,
2421 			NULL, &rdev);
2422 	if (ret < 0)
2423 		goto out;
2424 
2425 	if (S_ISREG(mode)) {
2426 		cmd = BTRFS_SEND_C_MKFILE;
2427 	} else if (S_ISDIR(mode)) {
2428 		cmd = BTRFS_SEND_C_MKDIR;
2429 	} else if (S_ISLNK(mode)) {
2430 		cmd = BTRFS_SEND_C_SYMLINK;
2431 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2432 		cmd = BTRFS_SEND_C_MKNOD;
2433 	} else if (S_ISFIFO(mode)) {
2434 		cmd = BTRFS_SEND_C_MKFIFO;
2435 	} else if (S_ISSOCK(mode)) {
2436 		cmd = BTRFS_SEND_C_MKSOCK;
2437 	} else {
2438 		printk(KERN_WARNING "btrfs: unexpected inode type %o",
2439 				(int)(mode & S_IFMT));
2440 		ret = -ENOTSUPP;
2441 		goto out;
2442 	}
2443 
2444 	ret = begin_cmd(sctx, cmd);
2445 	if (ret < 0)
2446 		goto out;
2447 
2448 	ret = gen_unique_name(sctx, ino, gen, p);
2449 	if (ret < 0)
2450 		goto out;
2451 
2452 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2453 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2454 
2455 	if (S_ISLNK(mode)) {
2456 		fs_path_reset(p);
2457 		ret = read_symlink(sctx->send_root, ino, p);
2458 		if (ret < 0)
2459 			goto out;
2460 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2461 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2462 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2463 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2464 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2465 	}
2466 
2467 	ret = send_cmd(sctx);
2468 	if (ret < 0)
2469 		goto out;
2470 
2471 
2472 tlv_put_failure:
2473 out:
2474 	fs_path_free(p);
2475 	return ret;
2476 }
2477 
2478 /*
2479  * We need some special handling for inodes that get processed before the parent
2480  * directory got created. See process_recorded_refs for details.
2481  * This function does the check if we already created the dir out of order.
2482  */
2483 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2484 {
2485 	int ret = 0;
2486 	struct btrfs_path *path = NULL;
2487 	struct btrfs_key key;
2488 	struct btrfs_key found_key;
2489 	struct btrfs_key di_key;
2490 	struct extent_buffer *eb;
2491 	struct btrfs_dir_item *di;
2492 	int slot;
2493 
2494 	path = alloc_path_for_send();
2495 	if (!path) {
2496 		ret = -ENOMEM;
2497 		goto out;
2498 	}
2499 
2500 	key.objectid = dir;
2501 	key.type = BTRFS_DIR_INDEX_KEY;
2502 	key.offset = 0;
2503 	while (1) {
2504 		ret = btrfs_search_slot_for_read(sctx->send_root, &key, path,
2505 				1, 0);
2506 		if (ret < 0)
2507 			goto out;
2508 		if (!ret) {
2509 			eb = path->nodes[0];
2510 			slot = path->slots[0];
2511 			btrfs_item_key_to_cpu(eb, &found_key, slot);
2512 		}
2513 		if (ret || found_key.objectid != key.objectid ||
2514 		    found_key.type != key.type) {
2515 			ret = 0;
2516 			goto out;
2517 		}
2518 
2519 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2520 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2521 
2522 		if (di_key.objectid < sctx->send_progress) {
2523 			ret = 1;
2524 			goto out;
2525 		}
2526 
2527 		key.offset = found_key.offset + 1;
2528 		btrfs_release_path(path);
2529 	}
2530 
2531 out:
2532 	btrfs_free_path(path);
2533 	return ret;
2534 }
2535 
2536 /*
2537  * Only creates the inode if it is:
2538  * 1. Not a directory
2539  * 2. Or a directory which was not created already due to out of order
2540  *    directories. See did_create_dir and process_recorded_refs for details.
2541  */
2542 static int send_create_inode_if_needed(struct send_ctx *sctx)
2543 {
2544 	int ret;
2545 
2546 	if (S_ISDIR(sctx->cur_inode_mode)) {
2547 		ret = did_create_dir(sctx, sctx->cur_ino);
2548 		if (ret < 0)
2549 			goto out;
2550 		if (ret) {
2551 			ret = 0;
2552 			goto out;
2553 		}
2554 	}
2555 
2556 	ret = send_create_inode(sctx, sctx->cur_ino);
2557 	if (ret < 0)
2558 		goto out;
2559 
2560 out:
2561 	return ret;
2562 }
2563 
2564 struct recorded_ref {
2565 	struct list_head list;
2566 	char *dir_path;
2567 	char *name;
2568 	struct fs_path *full_path;
2569 	u64 dir;
2570 	u64 dir_gen;
2571 	int dir_path_len;
2572 	int name_len;
2573 };
2574 
2575 /*
2576  * We need to process new refs before deleted refs, but compare_tree gives us
2577  * everything mixed. So we first record all refs and later process them.
2578  * This function is a helper to record one ref.
2579  */
2580 static int record_ref(struct list_head *head, u64 dir,
2581 		      u64 dir_gen, struct fs_path *path)
2582 {
2583 	struct recorded_ref *ref;
2584 	char *tmp;
2585 
2586 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
2587 	if (!ref)
2588 		return -ENOMEM;
2589 
2590 	ref->dir = dir;
2591 	ref->dir_gen = dir_gen;
2592 	ref->full_path = path;
2593 
2594 	tmp = strrchr(ref->full_path->start, '/');
2595 	if (!tmp) {
2596 		ref->name_len = ref->full_path->end - ref->full_path->start;
2597 		ref->name = ref->full_path->start;
2598 		ref->dir_path_len = 0;
2599 		ref->dir_path = ref->full_path->start;
2600 	} else {
2601 		tmp++;
2602 		ref->name_len = ref->full_path->end - tmp;
2603 		ref->name = tmp;
2604 		ref->dir_path = ref->full_path->start;
2605 		ref->dir_path_len = ref->full_path->end -
2606 				ref->full_path->start - 1 - ref->name_len;
2607 	}
2608 
2609 	list_add_tail(&ref->list, head);
2610 	return 0;
2611 }
2612 
2613 static void __free_recorded_refs(struct list_head *head)
2614 {
2615 	struct recorded_ref *cur;
2616 
2617 	while (!list_empty(head)) {
2618 		cur = list_entry(head->next, struct recorded_ref, list);
2619 		fs_path_free(cur->full_path);
2620 		list_del(&cur->list);
2621 		kfree(cur);
2622 	}
2623 }
2624 
2625 static void free_recorded_refs(struct send_ctx *sctx)
2626 {
2627 	__free_recorded_refs(&sctx->new_refs);
2628 	__free_recorded_refs(&sctx->deleted_refs);
2629 }
2630 
2631 /*
2632  * Renames/moves a file/dir to its orphan name. Used when the first
2633  * ref of an unprocessed inode gets overwritten and for all non empty
2634  * directories.
2635  */
2636 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2637 			  struct fs_path *path)
2638 {
2639 	int ret;
2640 	struct fs_path *orphan;
2641 
2642 	orphan = fs_path_alloc();
2643 	if (!orphan)
2644 		return -ENOMEM;
2645 
2646 	ret = gen_unique_name(sctx, ino, gen, orphan);
2647 	if (ret < 0)
2648 		goto out;
2649 
2650 	ret = send_rename(sctx, path, orphan);
2651 
2652 out:
2653 	fs_path_free(orphan);
2654 	return ret;
2655 }
2656 
2657 /*
2658  * Returns 1 if a directory can be removed at this point in time.
2659  * We check this by iterating all dir items and checking if the inode behind
2660  * the dir item was already processed.
2661  */
2662 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 send_progress)
2663 {
2664 	int ret = 0;
2665 	struct btrfs_root *root = sctx->parent_root;
2666 	struct btrfs_path *path;
2667 	struct btrfs_key key;
2668 	struct btrfs_key found_key;
2669 	struct btrfs_key loc;
2670 	struct btrfs_dir_item *di;
2671 
2672 	/*
2673 	 * Don't try to rmdir the top/root subvolume dir.
2674 	 */
2675 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2676 		return 0;
2677 
2678 	path = alloc_path_for_send();
2679 	if (!path)
2680 		return -ENOMEM;
2681 
2682 	key.objectid = dir;
2683 	key.type = BTRFS_DIR_INDEX_KEY;
2684 	key.offset = 0;
2685 
2686 	while (1) {
2687 		ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2688 		if (ret < 0)
2689 			goto out;
2690 		if (!ret) {
2691 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2692 					path->slots[0]);
2693 		}
2694 		if (ret || found_key.objectid != key.objectid ||
2695 		    found_key.type != key.type) {
2696 			break;
2697 		}
2698 
2699 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2700 				struct btrfs_dir_item);
2701 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2702 
2703 		if (loc.objectid > send_progress) {
2704 			ret = 0;
2705 			goto out;
2706 		}
2707 
2708 		btrfs_release_path(path);
2709 		key.offset = found_key.offset + 1;
2710 	}
2711 
2712 	ret = 1;
2713 
2714 out:
2715 	btrfs_free_path(path);
2716 	return ret;
2717 }
2718 
2719 /*
2720  * This does all the move/link/unlink/rmdir magic.
2721  */
2722 static int process_recorded_refs(struct send_ctx *sctx)
2723 {
2724 	int ret = 0;
2725 	struct recorded_ref *cur;
2726 	struct recorded_ref *cur2;
2727 	struct ulist *check_dirs = NULL;
2728 	struct ulist_iterator uit;
2729 	struct ulist_node *un;
2730 	struct fs_path *valid_path = NULL;
2731 	u64 ow_inode = 0;
2732 	u64 ow_gen;
2733 	int did_overwrite = 0;
2734 	int is_orphan = 0;
2735 
2736 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
2737 
2738 	/*
2739 	 * This should never happen as the root dir always has the same ref
2740 	 * which is always '..'
2741 	 */
2742 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
2743 
2744 	valid_path = fs_path_alloc();
2745 	if (!valid_path) {
2746 		ret = -ENOMEM;
2747 		goto out;
2748 	}
2749 
2750 	check_dirs = ulist_alloc(GFP_NOFS);
2751 	if (!check_dirs) {
2752 		ret = -ENOMEM;
2753 		goto out;
2754 	}
2755 
2756 	/*
2757 	 * First, check if the first ref of the current inode was overwritten
2758 	 * before. If yes, we know that the current inode was already orphanized
2759 	 * and thus use the orphan name. If not, we can use get_cur_path to
2760 	 * get the path of the first ref as it would like while receiving at
2761 	 * this point in time.
2762 	 * New inodes are always orphan at the beginning, so force to use the
2763 	 * orphan name in this case.
2764 	 * The first ref is stored in valid_path and will be updated if it
2765 	 * gets moved around.
2766 	 */
2767 	if (!sctx->cur_inode_new) {
2768 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
2769 				sctx->cur_inode_gen);
2770 		if (ret < 0)
2771 			goto out;
2772 		if (ret)
2773 			did_overwrite = 1;
2774 	}
2775 	if (sctx->cur_inode_new || did_overwrite) {
2776 		ret = gen_unique_name(sctx, sctx->cur_ino,
2777 				sctx->cur_inode_gen, valid_path);
2778 		if (ret < 0)
2779 			goto out;
2780 		is_orphan = 1;
2781 	} else {
2782 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
2783 				valid_path);
2784 		if (ret < 0)
2785 			goto out;
2786 	}
2787 
2788 	list_for_each_entry(cur, &sctx->new_refs, list) {
2789 		/*
2790 		 * We may have refs where the parent directory does not exist
2791 		 * yet. This happens if the parent directories inum is higher
2792 		 * the the current inum. To handle this case, we create the
2793 		 * parent directory out of order. But we need to check if this
2794 		 * did already happen before due to other refs in the same dir.
2795 		 */
2796 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
2797 		if (ret < 0)
2798 			goto out;
2799 		if (ret == inode_state_will_create) {
2800 			ret = 0;
2801 			/*
2802 			 * First check if any of the current inodes refs did
2803 			 * already create the dir.
2804 			 */
2805 			list_for_each_entry(cur2, &sctx->new_refs, list) {
2806 				if (cur == cur2)
2807 					break;
2808 				if (cur2->dir == cur->dir) {
2809 					ret = 1;
2810 					break;
2811 				}
2812 			}
2813 
2814 			/*
2815 			 * If that did not happen, check if a previous inode
2816 			 * did already create the dir.
2817 			 */
2818 			if (!ret)
2819 				ret = did_create_dir(sctx, cur->dir);
2820 			if (ret < 0)
2821 				goto out;
2822 			if (!ret) {
2823 				ret = send_create_inode(sctx, cur->dir);
2824 				if (ret < 0)
2825 					goto out;
2826 			}
2827 		}
2828 
2829 		/*
2830 		 * Check if this new ref would overwrite the first ref of
2831 		 * another unprocessed inode. If yes, orphanize the
2832 		 * overwritten inode. If we find an overwritten ref that is
2833 		 * not the first ref, simply unlink it.
2834 		 */
2835 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
2836 				cur->name, cur->name_len,
2837 				&ow_inode, &ow_gen);
2838 		if (ret < 0)
2839 			goto out;
2840 		if (ret) {
2841 			ret = is_first_ref(sctx->parent_root,
2842 					   ow_inode, cur->dir, cur->name,
2843 					   cur->name_len);
2844 			if (ret < 0)
2845 				goto out;
2846 			if (ret) {
2847 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
2848 						cur->full_path);
2849 				if (ret < 0)
2850 					goto out;
2851 			} else {
2852 				ret = send_unlink(sctx, cur->full_path);
2853 				if (ret < 0)
2854 					goto out;
2855 			}
2856 		}
2857 
2858 		/*
2859 		 * link/move the ref to the new place. If we have an orphan
2860 		 * inode, move it and update valid_path. If not, link or move
2861 		 * it depending on the inode mode.
2862 		 */
2863 		if (is_orphan) {
2864 			ret = send_rename(sctx, valid_path, cur->full_path);
2865 			if (ret < 0)
2866 				goto out;
2867 			is_orphan = 0;
2868 			ret = fs_path_copy(valid_path, cur->full_path);
2869 			if (ret < 0)
2870 				goto out;
2871 		} else {
2872 			if (S_ISDIR(sctx->cur_inode_mode)) {
2873 				/*
2874 				 * Dirs can't be linked, so move it. For moved
2875 				 * dirs, we always have one new and one deleted
2876 				 * ref. The deleted ref is ignored later.
2877 				 */
2878 				ret = send_rename(sctx, valid_path,
2879 						cur->full_path);
2880 				if (ret < 0)
2881 					goto out;
2882 				ret = fs_path_copy(valid_path, cur->full_path);
2883 				if (ret < 0)
2884 					goto out;
2885 			} else {
2886 				ret = send_link(sctx, cur->full_path,
2887 						valid_path);
2888 				if (ret < 0)
2889 					goto out;
2890 			}
2891 		}
2892 		ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2893 				GFP_NOFS);
2894 		if (ret < 0)
2895 			goto out;
2896 	}
2897 
2898 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
2899 		/*
2900 		 * Check if we can already rmdir the directory. If not,
2901 		 * orphanize it. For every dir item inside that gets deleted
2902 		 * later, we do this check again and rmdir it then if possible.
2903 		 * See the use of check_dirs for more details.
2904 		 */
2905 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_ino);
2906 		if (ret < 0)
2907 			goto out;
2908 		if (ret) {
2909 			ret = send_rmdir(sctx, valid_path);
2910 			if (ret < 0)
2911 				goto out;
2912 		} else if (!is_orphan) {
2913 			ret = orphanize_inode(sctx, sctx->cur_ino,
2914 					sctx->cur_inode_gen, valid_path);
2915 			if (ret < 0)
2916 				goto out;
2917 			is_orphan = 1;
2918 		}
2919 
2920 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
2921 			ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2922 					GFP_NOFS);
2923 			if (ret < 0)
2924 				goto out;
2925 		}
2926 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
2927 		   !list_empty(&sctx->deleted_refs)) {
2928 		/*
2929 		 * We have a moved dir. Add the old parent to check_dirs
2930 		 */
2931 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
2932 				list);
2933 		ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2934 				GFP_NOFS);
2935 		if (ret < 0)
2936 			goto out;
2937 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
2938 		/*
2939 		 * We have a non dir inode. Go through all deleted refs and
2940 		 * unlink them if they were not already overwritten by other
2941 		 * inodes.
2942 		 */
2943 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
2944 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
2945 					sctx->cur_ino, sctx->cur_inode_gen,
2946 					cur->name, cur->name_len);
2947 			if (ret < 0)
2948 				goto out;
2949 			if (!ret) {
2950 				ret = send_unlink(sctx, cur->full_path);
2951 				if (ret < 0)
2952 					goto out;
2953 			}
2954 			ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2955 					GFP_NOFS);
2956 			if (ret < 0)
2957 				goto out;
2958 		}
2959 
2960 		/*
2961 		 * If the inode is still orphan, unlink the orphan. This may
2962 		 * happen when a previous inode did overwrite the first ref
2963 		 * of this inode and no new refs were added for the current
2964 		 * inode. Unlinking does not mean that the inode is deleted in
2965 		 * all cases. There may still be links to this inode in other
2966 		 * places.
2967 		 */
2968 		if (is_orphan) {
2969 			ret = send_unlink(sctx, valid_path);
2970 			if (ret < 0)
2971 				goto out;
2972 		}
2973 	}
2974 
2975 	/*
2976 	 * We did collect all parent dirs where cur_inode was once located. We
2977 	 * now go through all these dirs and check if they are pending for
2978 	 * deletion and if it's finally possible to perform the rmdir now.
2979 	 * We also update the inode stats of the parent dirs here.
2980 	 */
2981 	ULIST_ITER_INIT(&uit);
2982 	while ((un = ulist_next(check_dirs, &uit))) {
2983 		/*
2984 		 * In case we had refs into dirs that were not processed yet,
2985 		 * we don't need to do the utime and rmdir logic for these dirs.
2986 		 * The dir will be processed later.
2987 		 */
2988 		if (un->val > sctx->cur_ino)
2989 			continue;
2990 
2991 		ret = get_cur_inode_state(sctx, un->val, un->aux);
2992 		if (ret < 0)
2993 			goto out;
2994 
2995 		if (ret == inode_state_did_create ||
2996 		    ret == inode_state_no_change) {
2997 			/* TODO delayed utimes */
2998 			ret = send_utimes(sctx, un->val, un->aux);
2999 			if (ret < 0)
3000 				goto out;
3001 		} else if (ret == inode_state_did_delete) {
3002 			ret = can_rmdir(sctx, un->val, sctx->cur_ino);
3003 			if (ret < 0)
3004 				goto out;
3005 			if (ret) {
3006 				ret = get_cur_path(sctx, un->val, un->aux,
3007 						valid_path);
3008 				if (ret < 0)
3009 					goto out;
3010 				ret = send_rmdir(sctx, valid_path);
3011 				if (ret < 0)
3012 					goto out;
3013 			}
3014 		}
3015 	}
3016 
3017 	ret = 0;
3018 
3019 out:
3020 	free_recorded_refs(sctx);
3021 	ulist_free(check_dirs);
3022 	fs_path_free(valid_path);
3023 	return ret;
3024 }
3025 
3026 static int __record_new_ref(int num, u64 dir, int index,
3027 			    struct fs_path *name,
3028 			    void *ctx)
3029 {
3030 	int ret = 0;
3031 	struct send_ctx *sctx = ctx;
3032 	struct fs_path *p;
3033 	u64 gen;
3034 
3035 	p = fs_path_alloc();
3036 	if (!p)
3037 		return -ENOMEM;
3038 
3039 	ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, NULL,
3040 			NULL, NULL);
3041 	if (ret < 0)
3042 		goto out;
3043 
3044 	ret = get_cur_path(sctx, dir, gen, p);
3045 	if (ret < 0)
3046 		goto out;
3047 	ret = fs_path_add_path(p, name);
3048 	if (ret < 0)
3049 		goto out;
3050 
3051 	ret = record_ref(&sctx->new_refs, dir, gen, p);
3052 
3053 out:
3054 	if (ret)
3055 		fs_path_free(p);
3056 	return ret;
3057 }
3058 
3059 static int __record_deleted_ref(int num, u64 dir, int index,
3060 				struct fs_path *name,
3061 				void *ctx)
3062 {
3063 	int ret = 0;
3064 	struct send_ctx *sctx = ctx;
3065 	struct fs_path *p;
3066 	u64 gen;
3067 
3068 	p = fs_path_alloc();
3069 	if (!p)
3070 		return -ENOMEM;
3071 
3072 	ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, NULL,
3073 			NULL, NULL);
3074 	if (ret < 0)
3075 		goto out;
3076 
3077 	ret = get_cur_path(sctx, dir, gen, p);
3078 	if (ret < 0)
3079 		goto out;
3080 	ret = fs_path_add_path(p, name);
3081 	if (ret < 0)
3082 		goto out;
3083 
3084 	ret = record_ref(&sctx->deleted_refs, dir, gen, p);
3085 
3086 out:
3087 	if (ret)
3088 		fs_path_free(p);
3089 	return ret;
3090 }
3091 
3092 static int record_new_ref(struct send_ctx *sctx)
3093 {
3094 	int ret;
3095 
3096 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3097 				sctx->cmp_key, 0, __record_new_ref, sctx);
3098 	if (ret < 0)
3099 		goto out;
3100 	ret = 0;
3101 
3102 out:
3103 	return ret;
3104 }
3105 
3106 static int record_deleted_ref(struct send_ctx *sctx)
3107 {
3108 	int ret;
3109 
3110 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3111 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
3112 	if (ret < 0)
3113 		goto out;
3114 	ret = 0;
3115 
3116 out:
3117 	return ret;
3118 }
3119 
3120 struct find_ref_ctx {
3121 	u64 dir;
3122 	struct fs_path *name;
3123 	int found_idx;
3124 };
3125 
3126 static int __find_iref(int num, u64 dir, int index,
3127 		       struct fs_path *name,
3128 		       void *ctx_)
3129 {
3130 	struct find_ref_ctx *ctx = ctx_;
3131 
3132 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3133 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3134 		ctx->found_idx = num;
3135 		return 1;
3136 	}
3137 	return 0;
3138 }
3139 
3140 static int find_iref(struct btrfs_root *root,
3141 		     struct btrfs_path *path,
3142 		     struct btrfs_key *key,
3143 		     u64 dir, struct fs_path *name)
3144 {
3145 	int ret;
3146 	struct find_ref_ctx ctx;
3147 
3148 	ctx.dir = dir;
3149 	ctx.name = name;
3150 	ctx.found_idx = -1;
3151 
3152 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3153 	if (ret < 0)
3154 		return ret;
3155 
3156 	if (ctx.found_idx == -1)
3157 		return -ENOENT;
3158 
3159 	return ctx.found_idx;
3160 }
3161 
3162 static int __record_changed_new_ref(int num, u64 dir, int index,
3163 				    struct fs_path *name,
3164 				    void *ctx)
3165 {
3166 	int ret;
3167 	struct send_ctx *sctx = ctx;
3168 
3169 	ret = find_iref(sctx->parent_root, sctx->right_path,
3170 			sctx->cmp_key, dir, name);
3171 	if (ret == -ENOENT)
3172 		ret = __record_new_ref(num, dir, index, name, sctx);
3173 	else if (ret > 0)
3174 		ret = 0;
3175 
3176 	return ret;
3177 }
3178 
3179 static int __record_changed_deleted_ref(int num, u64 dir, int index,
3180 					struct fs_path *name,
3181 					void *ctx)
3182 {
3183 	int ret;
3184 	struct send_ctx *sctx = ctx;
3185 
3186 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
3187 			dir, name);
3188 	if (ret == -ENOENT)
3189 		ret = __record_deleted_ref(num, dir, index, name, sctx);
3190 	else if (ret > 0)
3191 		ret = 0;
3192 
3193 	return ret;
3194 }
3195 
3196 static int record_changed_ref(struct send_ctx *sctx)
3197 {
3198 	int ret = 0;
3199 
3200 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3201 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3202 	if (ret < 0)
3203 		goto out;
3204 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3205 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3206 	if (ret < 0)
3207 		goto out;
3208 	ret = 0;
3209 
3210 out:
3211 	return ret;
3212 }
3213 
3214 /*
3215  * Record and process all refs at once. Needed when an inode changes the
3216  * generation number, which means that it was deleted and recreated.
3217  */
3218 static int process_all_refs(struct send_ctx *sctx,
3219 			    enum btrfs_compare_tree_result cmd)
3220 {
3221 	int ret;
3222 	struct btrfs_root *root;
3223 	struct btrfs_path *path;
3224 	struct btrfs_key key;
3225 	struct btrfs_key found_key;
3226 	struct extent_buffer *eb;
3227 	int slot;
3228 	iterate_inode_ref_t cb;
3229 
3230 	path = alloc_path_for_send();
3231 	if (!path)
3232 		return -ENOMEM;
3233 
3234 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
3235 		root = sctx->send_root;
3236 		cb = __record_new_ref;
3237 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
3238 		root = sctx->parent_root;
3239 		cb = __record_deleted_ref;
3240 	} else {
3241 		BUG();
3242 	}
3243 
3244 	key.objectid = sctx->cmp_key->objectid;
3245 	key.type = BTRFS_INODE_REF_KEY;
3246 	key.offset = 0;
3247 	while (1) {
3248 		ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3249 		if (ret < 0)
3250 			goto out;
3251 		if (ret)
3252 			break;
3253 
3254 		eb = path->nodes[0];
3255 		slot = path->slots[0];
3256 		btrfs_item_key_to_cpu(eb, &found_key, slot);
3257 
3258 		if (found_key.objectid != key.objectid ||
3259 		    (found_key.type != BTRFS_INODE_REF_KEY &&
3260 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
3261 			break;
3262 
3263 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
3264 		btrfs_release_path(path);
3265 		if (ret < 0)
3266 			goto out;
3267 
3268 		key.offset = found_key.offset + 1;
3269 	}
3270 	btrfs_release_path(path);
3271 
3272 	ret = process_recorded_refs(sctx);
3273 
3274 out:
3275 	btrfs_free_path(path);
3276 	return ret;
3277 }
3278 
3279 static int send_set_xattr(struct send_ctx *sctx,
3280 			  struct fs_path *path,
3281 			  const char *name, int name_len,
3282 			  const char *data, int data_len)
3283 {
3284 	int ret = 0;
3285 
3286 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
3287 	if (ret < 0)
3288 		goto out;
3289 
3290 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3291 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3292 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
3293 
3294 	ret = send_cmd(sctx);
3295 
3296 tlv_put_failure:
3297 out:
3298 	return ret;
3299 }
3300 
3301 static int send_remove_xattr(struct send_ctx *sctx,
3302 			  struct fs_path *path,
3303 			  const char *name, int name_len)
3304 {
3305 	int ret = 0;
3306 
3307 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
3308 	if (ret < 0)
3309 		goto out;
3310 
3311 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3312 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3313 
3314 	ret = send_cmd(sctx);
3315 
3316 tlv_put_failure:
3317 out:
3318 	return ret;
3319 }
3320 
3321 static int __process_new_xattr(int num, struct btrfs_key *di_key,
3322 			       const char *name, int name_len,
3323 			       const char *data, int data_len,
3324 			       u8 type, void *ctx)
3325 {
3326 	int ret;
3327 	struct send_ctx *sctx = ctx;
3328 	struct fs_path *p;
3329 	posix_acl_xattr_header dummy_acl;
3330 
3331 	p = fs_path_alloc();
3332 	if (!p)
3333 		return -ENOMEM;
3334 
3335 	/*
3336 	 * This hack is needed because empty acl's are stored as zero byte
3337 	 * data in xattrs. Problem with that is, that receiving these zero byte
3338 	 * acl's will fail later. To fix this, we send a dummy acl list that
3339 	 * only contains the version number and no entries.
3340 	 */
3341 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
3342 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
3343 		if (data_len == 0) {
3344 			dummy_acl.a_version =
3345 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
3346 			data = (char *)&dummy_acl;
3347 			data_len = sizeof(dummy_acl);
3348 		}
3349 	}
3350 
3351 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3352 	if (ret < 0)
3353 		goto out;
3354 
3355 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
3356 
3357 out:
3358 	fs_path_free(p);
3359 	return ret;
3360 }
3361 
3362 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
3363 				   const char *name, int name_len,
3364 				   const char *data, int data_len,
3365 				   u8 type, void *ctx)
3366 {
3367 	int ret;
3368 	struct send_ctx *sctx = ctx;
3369 	struct fs_path *p;
3370 
3371 	p = fs_path_alloc();
3372 	if (!p)
3373 		return -ENOMEM;
3374 
3375 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3376 	if (ret < 0)
3377 		goto out;
3378 
3379 	ret = send_remove_xattr(sctx, p, name, name_len);
3380 
3381 out:
3382 	fs_path_free(p);
3383 	return ret;
3384 }
3385 
3386 static int process_new_xattr(struct send_ctx *sctx)
3387 {
3388 	int ret = 0;
3389 
3390 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
3391 			       sctx->cmp_key, __process_new_xattr, sctx);
3392 
3393 	return ret;
3394 }
3395 
3396 static int process_deleted_xattr(struct send_ctx *sctx)
3397 {
3398 	int ret;
3399 
3400 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
3401 			       sctx->cmp_key, __process_deleted_xattr, sctx);
3402 
3403 	return ret;
3404 }
3405 
3406 struct find_xattr_ctx {
3407 	const char *name;
3408 	int name_len;
3409 	int found_idx;
3410 	char *found_data;
3411 	int found_data_len;
3412 };
3413 
3414 static int __find_xattr(int num, struct btrfs_key *di_key,
3415 			const char *name, int name_len,
3416 			const char *data, int data_len,
3417 			u8 type, void *vctx)
3418 {
3419 	struct find_xattr_ctx *ctx = vctx;
3420 
3421 	if (name_len == ctx->name_len &&
3422 	    strncmp(name, ctx->name, name_len) == 0) {
3423 		ctx->found_idx = num;
3424 		ctx->found_data_len = data_len;
3425 		ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
3426 		if (!ctx->found_data)
3427 			return -ENOMEM;
3428 		return 1;
3429 	}
3430 	return 0;
3431 }
3432 
3433 static int find_xattr(struct btrfs_root *root,
3434 		      struct btrfs_path *path,
3435 		      struct btrfs_key *key,
3436 		      const char *name, int name_len,
3437 		      char **data, int *data_len)
3438 {
3439 	int ret;
3440 	struct find_xattr_ctx ctx;
3441 
3442 	ctx.name = name;
3443 	ctx.name_len = name_len;
3444 	ctx.found_idx = -1;
3445 	ctx.found_data = NULL;
3446 	ctx.found_data_len = 0;
3447 
3448 	ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
3449 	if (ret < 0)
3450 		return ret;
3451 
3452 	if (ctx.found_idx == -1)
3453 		return -ENOENT;
3454 	if (data) {
3455 		*data = ctx.found_data;
3456 		*data_len = ctx.found_data_len;
3457 	} else {
3458 		kfree(ctx.found_data);
3459 	}
3460 	return ctx.found_idx;
3461 }
3462 
3463 
3464 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
3465 				       const char *name, int name_len,
3466 				       const char *data, int data_len,
3467 				       u8 type, void *ctx)
3468 {
3469 	int ret;
3470 	struct send_ctx *sctx = ctx;
3471 	char *found_data = NULL;
3472 	int found_data_len  = 0;
3473 
3474 	ret = find_xattr(sctx->parent_root, sctx->right_path,
3475 			 sctx->cmp_key, name, name_len, &found_data,
3476 			 &found_data_len);
3477 	if (ret == -ENOENT) {
3478 		ret = __process_new_xattr(num, di_key, name, name_len, data,
3479 				data_len, type, ctx);
3480 	} else if (ret >= 0) {
3481 		if (data_len != found_data_len ||
3482 		    memcmp(data, found_data, data_len)) {
3483 			ret = __process_new_xattr(num, di_key, name, name_len,
3484 					data, data_len, type, ctx);
3485 		} else {
3486 			ret = 0;
3487 		}
3488 	}
3489 
3490 	kfree(found_data);
3491 	return ret;
3492 }
3493 
3494 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
3495 					   const char *name, int name_len,
3496 					   const char *data, int data_len,
3497 					   u8 type, void *ctx)
3498 {
3499 	int ret;
3500 	struct send_ctx *sctx = ctx;
3501 
3502 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
3503 			 name, name_len, NULL, NULL);
3504 	if (ret == -ENOENT)
3505 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
3506 				data_len, type, ctx);
3507 	else if (ret >= 0)
3508 		ret = 0;
3509 
3510 	return ret;
3511 }
3512 
3513 static int process_changed_xattr(struct send_ctx *sctx)
3514 {
3515 	int ret = 0;
3516 
3517 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
3518 			sctx->cmp_key, __process_changed_new_xattr, sctx);
3519 	if (ret < 0)
3520 		goto out;
3521 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
3522 			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
3523 
3524 out:
3525 	return ret;
3526 }
3527 
3528 static int process_all_new_xattrs(struct send_ctx *sctx)
3529 {
3530 	int ret;
3531 	struct btrfs_root *root;
3532 	struct btrfs_path *path;
3533 	struct btrfs_key key;
3534 	struct btrfs_key found_key;
3535 	struct extent_buffer *eb;
3536 	int slot;
3537 
3538 	path = alloc_path_for_send();
3539 	if (!path)
3540 		return -ENOMEM;
3541 
3542 	root = sctx->send_root;
3543 
3544 	key.objectid = sctx->cmp_key->objectid;
3545 	key.type = BTRFS_XATTR_ITEM_KEY;
3546 	key.offset = 0;
3547 	while (1) {
3548 		ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3549 		if (ret < 0)
3550 			goto out;
3551 		if (ret) {
3552 			ret = 0;
3553 			goto out;
3554 		}
3555 
3556 		eb = path->nodes[0];
3557 		slot = path->slots[0];
3558 		btrfs_item_key_to_cpu(eb, &found_key, slot);
3559 
3560 		if (found_key.objectid != key.objectid ||
3561 		    found_key.type != key.type) {
3562 			ret = 0;
3563 			goto out;
3564 		}
3565 
3566 		ret = iterate_dir_item(root, path, &found_key,
3567 				       __process_new_xattr, sctx);
3568 		if (ret < 0)
3569 			goto out;
3570 
3571 		btrfs_release_path(path);
3572 		key.offset = found_key.offset + 1;
3573 	}
3574 
3575 out:
3576 	btrfs_free_path(path);
3577 	return ret;
3578 }
3579 
3580 /*
3581  * Read some bytes from the current inode/file and send a write command to
3582  * user space.
3583  */
3584 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
3585 {
3586 	int ret = 0;
3587 	struct fs_path *p;
3588 	loff_t pos = offset;
3589 	int num_read = 0;
3590 	mm_segment_t old_fs;
3591 
3592 	p = fs_path_alloc();
3593 	if (!p)
3594 		return -ENOMEM;
3595 
3596 	/*
3597 	 * vfs normally only accepts user space buffers for security reasons.
3598 	 * we only read from the file and also only provide the read_buf buffer
3599 	 * to vfs. As this buffer does not come from a user space call, it's
3600 	 * ok to temporary allow kernel space buffers.
3601 	 */
3602 	old_fs = get_fs();
3603 	set_fs(KERNEL_DS);
3604 
3605 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
3606 
3607 	ret = open_cur_inode_file(sctx);
3608 	if (ret < 0)
3609 		goto out;
3610 
3611 	ret = vfs_read(sctx->cur_inode_filp, sctx->read_buf, len, &pos);
3612 	if (ret < 0)
3613 		goto out;
3614 	num_read = ret;
3615 	if (!num_read)
3616 		goto out;
3617 
3618 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
3619 	if (ret < 0)
3620 		goto out;
3621 
3622 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3623 	if (ret < 0)
3624 		goto out;
3625 
3626 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3627 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
3628 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
3629 
3630 	ret = send_cmd(sctx);
3631 
3632 tlv_put_failure:
3633 out:
3634 	fs_path_free(p);
3635 	set_fs(old_fs);
3636 	if (ret < 0)
3637 		return ret;
3638 	return num_read;
3639 }
3640 
3641 /*
3642  * Send a clone command to user space.
3643  */
3644 static int send_clone(struct send_ctx *sctx,
3645 		      u64 offset, u32 len,
3646 		      struct clone_root *clone_root)
3647 {
3648 	int ret = 0;
3649 	struct fs_path *p;
3650 	u64 gen;
3651 
3652 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
3653 	       "clone_inode=%llu, clone_offset=%llu\n", offset, len,
3654 		clone_root->root->objectid, clone_root->ino,
3655 		clone_root->offset);
3656 
3657 	p = fs_path_alloc();
3658 	if (!p)
3659 		return -ENOMEM;
3660 
3661 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
3662 	if (ret < 0)
3663 		goto out;
3664 
3665 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3666 	if (ret < 0)
3667 		goto out;
3668 
3669 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
3670 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
3671 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3672 
3673 	if (clone_root->root == sctx->send_root) {
3674 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
3675 				&gen, NULL, NULL, NULL, NULL);
3676 		if (ret < 0)
3677 			goto out;
3678 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
3679 	} else {
3680 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
3681 	}
3682 	if (ret < 0)
3683 		goto out;
3684 
3685 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
3686 			clone_root->root->root_item.uuid);
3687 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
3688 			clone_root->root->root_item.ctransid);
3689 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
3690 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
3691 			clone_root->offset);
3692 
3693 	ret = send_cmd(sctx);
3694 
3695 tlv_put_failure:
3696 out:
3697 	fs_path_free(p);
3698 	return ret;
3699 }
3700 
3701 /*
3702  * Send an update extent command to user space.
3703  */
3704 static int send_update_extent(struct send_ctx *sctx,
3705 			      u64 offset, u32 len)
3706 {
3707 	int ret = 0;
3708 	struct fs_path *p;
3709 
3710 	p = fs_path_alloc();
3711 	if (!p)
3712 		return -ENOMEM;
3713 
3714 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
3715 	if (ret < 0)
3716 		goto out;
3717 
3718 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3719 	if (ret < 0)
3720 		goto out;
3721 
3722 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3723 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
3724 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
3725 
3726 	ret = send_cmd(sctx);
3727 
3728 tlv_put_failure:
3729 out:
3730 	fs_path_free(p);
3731 	return ret;
3732 }
3733 
3734 static int send_write_or_clone(struct send_ctx *sctx,
3735 			       struct btrfs_path *path,
3736 			       struct btrfs_key *key,
3737 			       struct clone_root *clone_root)
3738 {
3739 	int ret = 0;
3740 	struct btrfs_file_extent_item *ei;
3741 	u64 offset = key->offset;
3742 	u64 pos = 0;
3743 	u64 len;
3744 	u32 l;
3745 	u8 type;
3746 
3747 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3748 			struct btrfs_file_extent_item);
3749 	type = btrfs_file_extent_type(path->nodes[0], ei);
3750 	if (type == BTRFS_FILE_EXTENT_INLINE) {
3751 		len = btrfs_file_extent_inline_len(path->nodes[0], ei);
3752 		/*
3753 		 * it is possible the inline item won't cover the whole page,
3754 		 * but there may be items after this page.  Make
3755 		 * sure to send the whole thing
3756 		 */
3757 		len = PAGE_CACHE_ALIGN(len);
3758 	} else {
3759 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3760 	}
3761 
3762 	if (offset + len > sctx->cur_inode_size)
3763 		len = sctx->cur_inode_size - offset;
3764 	if (len == 0) {
3765 		ret = 0;
3766 		goto out;
3767 	}
3768 
3769 	if (clone_root) {
3770 		ret = send_clone(sctx, offset, len, clone_root);
3771 	} else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
3772 		ret = send_update_extent(sctx, offset, len);
3773 	} else {
3774 		while (pos < len) {
3775 			l = len - pos;
3776 			if (l > BTRFS_SEND_READ_SIZE)
3777 				l = BTRFS_SEND_READ_SIZE;
3778 			ret = send_write(sctx, pos + offset, l);
3779 			if (ret < 0)
3780 				goto out;
3781 			if (!ret)
3782 				break;
3783 			pos += ret;
3784 		}
3785 		ret = 0;
3786 	}
3787 out:
3788 	return ret;
3789 }
3790 
3791 static int is_extent_unchanged(struct send_ctx *sctx,
3792 			       struct btrfs_path *left_path,
3793 			       struct btrfs_key *ekey)
3794 {
3795 	int ret = 0;
3796 	struct btrfs_key key;
3797 	struct btrfs_path *path = NULL;
3798 	struct extent_buffer *eb;
3799 	int slot;
3800 	struct btrfs_key found_key;
3801 	struct btrfs_file_extent_item *ei;
3802 	u64 left_disknr;
3803 	u64 right_disknr;
3804 	u64 left_offset;
3805 	u64 right_offset;
3806 	u64 left_offset_fixed;
3807 	u64 left_len;
3808 	u64 right_len;
3809 	u64 left_gen;
3810 	u64 right_gen;
3811 	u8 left_type;
3812 	u8 right_type;
3813 
3814 	path = alloc_path_for_send();
3815 	if (!path)
3816 		return -ENOMEM;
3817 
3818 	eb = left_path->nodes[0];
3819 	slot = left_path->slots[0];
3820 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
3821 	left_type = btrfs_file_extent_type(eb, ei);
3822 
3823 	if (left_type != BTRFS_FILE_EXTENT_REG) {
3824 		ret = 0;
3825 		goto out;
3826 	}
3827 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
3828 	left_len = btrfs_file_extent_num_bytes(eb, ei);
3829 	left_offset = btrfs_file_extent_offset(eb, ei);
3830 	left_gen = btrfs_file_extent_generation(eb, ei);
3831 
3832 	/*
3833 	 * Following comments will refer to these graphics. L is the left
3834 	 * extents which we are checking at the moment. 1-8 are the right
3835 	 * extents that we iterate.
3836 	 *
3837 	 *       |-----L-----|
3838 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
3839 	 *
3840 	 *       |-----L-----|
3841 	 * |--1--|-2b-|...(same as above)
3842 	 *
3843 	 * Alternative situation. Happens on files where extents got split.
3844 	 *       |-----L-----|
3845 	 * |-----------7-----------|-6-|
3846 	 *
3847 	 * Alternative situation. Happens on files which got larger.
3848 	 *       |-----L-----|
3849 	 * |-8-|
3850 	 * Nothing follows after 8.
3851 	 */
3852 
3853 	key.objectid = ekey->objectid;
3854 	key.type = BTRFS_EXTENT_DATA_KEY;
3855 	key.offset = ekey->offset;
3856 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
3857 	if (ret < 0)
3858 		goto out;
3859 	if (ret) {
3860 		ret = 0;
3861 		goto out;
3862 	}
3863 
3864 	/*
3865 	 * Handle special case where the right side has no extents at all.
3866 	 */
3867 	eb = path->nodes[0];
3868 	slot = path->slots[0];
3869 	btrfs_item_key_to_cpu(eb, &found_key, slot);
3870 	if (found_key.objectid != key.objectid ||
3871 	    found_key.type != key.type) {
3872 		ret = 0;
3873 		goto out;
3874 	}
3875 
3876 	/*
3877 	 * We're now on 2a, 2b or 7.
3878 	 */
3879 	key = found_key;
3880 	while (key.offset < ekey->offset + left_len) {
3881 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
3882 		right_type = btrfs_file_extent_type(eb, ei);
3883 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
3884 		right_len = btrfs_file_extent_num_bytes(eb, ei);
3885 		right_offset = btrfs_file_extent_offset(eb, ei);
3886 		right_gen = btrfs_file_extent_generation(eb, ei);
3887 
3888 		if (right_type != BTRFS_FILE_EXTENT_REG) {
3889 			ret = 0;
3890 			goto out;
3891 		}
3892 
3893 		/*
3894 		 * Are we at extent 8? If yes, we know the extent is changed.
3895 		 * This may only happen on the first iteration.
3896 		 */
3897 		if (found_key.offset + right_len <= ekey->offset) {
3898 			ret = 0;
3899 			goto out;
3900 		}
3901 
3902 		left_offset_fixed = left_offset;
3903 		if (key.offset < ekey->offset) {
3904 			/* Fix the right offset for 2a and 7. */
3905 			right_offset += ekey->offset - key.offset;
3906 		} else {
3907 			/* Fix the left offset for all behind 2a and 2b */
3908 			left_offset_fixed += key.offset - ekey->offset;
3909 		}
3910 
3911 		/*
3912 		 * Check if we have the same extent.
3913 		 */
3914 		if (left_disknr != right_disknr ||
3915 		    left_offset_fixed != right_offset ||
3916 		    left_gen != right_gen) {
3917 			ret = 0;
3918 			goto out;
3919 		}
3920 
3921 		/*
3922 		 * Go to the next extent.
3923 		 */
3924 		ret = btrfs_next_item(sctx->parent_root, path);
3925 		if (ret < 0)
3926 			goto out;
3927 		if (!ret) {
3928 			eb = path->nodes[0];
3929 			slot = path->slots[0];
3930 			btrfs_item_key_to_cpu(eb, &found_key, slot);
3931 		}
3932 		if (ret || found_key.objectid != key.objectid ||
3933 		    found_key.type != key.type) {
3934 			key.offset += right_len;
3935 			break;
3936 		}
3937 		if (found_key.offset != key.offset + right_len) {
3938 			ret = 0;
3939 			goto out;
3940 		}
3941 		key = found_key;
3942 	}
3943 
3944 	/*
3945 	 * We're now behind the left extent (treat as unchanged) or at the end
3946 	 * of the right side (treat as changed).
3947 	 */
3948 	if (key.offset >= ekey->offset + left_len)
3949 		ret = 1;
3950 	else
3951 		ret = 0;
3952 
3953 
3954 out:
3955 	btrfs_free_path(path);
3956 	return ret;
3957 }
3958 
3959 static int process_extent(struct send_ctx *sctx,
3960 			  struct btrfs_path *path,
3961 			  struct btrfs_key *key)
3962 {
3963 	int ret = 0;
3964 	struct clone_root *found_clone = NULL;
3965 
3966 	if (S_ISLNK(sctx->cur_inode_mode))
3967 		return 0;
3968 
3969 	if (sctx->parent_root && !sctx->cur_inode_new) {
3970 		ret = is_extent_unchanged(sctx, path, key);
3971 		if (ret < 0)
3972 			goto out;
3973 		if (ret) {
3974 			ret = 0;
3975 			goto out;
3976 		}
3977 	}
3978 
3979 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
3980 			sctx->cur_inode_size, &found_clone);
3981 	if (ret != -ENOENT && ret < 0)
3982 		goto out;
3983 
3984 	ret = send_write_or_clone(sctx, path, key, found_clone);
3985 
3986 out:
3987 	return ret;
3988 }
3989 
3990 static int process_all_extents(struct send_ctx *sctx)
3991 {
3992 	int ret;
3993 	struct btrfs_root *root;
3994 	struct btrfs_path *path;
3995 	struct btrfs_key key;
3996 	struct btrfs_key found_key;
3997 	struct extent_buffer *eb;
3998 	int slot;
3999 
4000 	root = sctx->send_root;
4001 	path = alloc_path_for_send();
4002 	if (!path)
4003 		return -ENOMEM;
4004 
4005 	key.objectid = sctx->cmp_key->objectid;
4006 	key.type = BTRFS_EXTENT_DATA_KEY;
4007 	key.offset = 0;
4008 	while (1) {
4009 		ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
4010 		if (ret < 0)
4011 			goto out;
4012 		if (ret) {
4013 			ret = 0;
4014 			goto out;
4015 		}
4016 
4017 		eb = path->nodes[0];
4018 		slot = path->slots[0];
4019 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4020 
4021 		if (found_key.objectid != key.objectid ||
4022 		    found_key.type != key.type) {
4023 			ret = 0;
4024 			goto out;
4025 		}
4026 
4027 		ret = process_extent(sctx, path, &found_key);
4028 		if (ret < 0)
4029 			goto out;
4030 
4031 		btrfs_release_path(path);
4032 		key.offset = found_key.offset + 1;
4033 	}
4034 
4035 out:
4036 	btrfs_free_path(path);
4037 	return ret;
4038 }
4039 
4040 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end)
4041 {
4042 	int ret = 0;
4043 
4044 	if (sctx->cur_ino == 0)
4045 		goto out;
4046 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
4047 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
4048 		goto out;
4049 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
4050 		goto out;
4051 
4052 	ret = process_recorded_refs(sctx);
4053 	if (ret < 0)
4054 		goto out;
4055 
4056 	/*
4057 	 * We have processed the refs and thus need to advance send_progress.
4058 	 * Now, calls to get_cur_xxx will take the updated refs of the current
4059 	 * inode into account.
4060 	 */
4061 	sctx->send_progress = sctx->cur_ino + 1;
4062 
4063 out:
4064 	return ret;
4065 }
4066 
4067 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
4068 {
4069 	int ret = 0;
4070 	u64 left_mode;
4071 	u64 left_uid;
4072 	u64 left_gid;
4073 	u64 right_mode;
4074 	u64 right_uid;
4075 	u64 right_gid;
4076 	int need_chmod = 0;
4077 	int need_chown = 0;
4078 
4079 	ret = process_recorded_refs_if_needed(sctx, at_end);
4080 	if (ret < 0)
4081 		goto out;
4082 
4083 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
4084 		goto out;
4085 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
4086 		goto out;
4087 
4088 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
4089 			&left_mode, &left_uid, &left_gid, NULL);
4090 	if (ret < 0)
4091 		goto out;
4092 
4093 	if (!sctx->parent_root || sctx->cur_inode_new) {
4094 		need_chown = 1;
4095 		if (!S_ISLNK(sctx->cur_inode_mode))
4096 			need_chmod = 1;
4097 	} else {
4098 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
4099 				NULL, NULL, &right_mode, &right_uid,
4100 				&right_gid, NULL);
4101 		if (ret < 0)
4102 			goto out;
4103 
4104 		if (left_uid != right_uid || left_gid != right_gid)
4105 			need_chown = 1;
4106 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
4107 			need_chmod = 1;
4108 	}
4109 
4110 	if (S_ISREG(sctx->cur_inode_mode)) {
4111 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4112 				sctx->cur_inode_size);
4113 		if (ret < 0)
4114 			goto out;
4115 	}
4116 
4117 	if (need_chown) {
4118 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4119 				left_uid, left_gid);
4120 		if (ret < 0)
4121 			goto out;
4122 	}
4123 	if (need_chmod) {
4124 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4125 				left_mode);
4126 		if (ret < 0)
4127 			goto out;
4128 	}
4129 
4130 	/*
4131 	 * Need to send that every time, no matter if it actually changed
4132 	 * between the two trees as we have done changes to the inode before.
4133 	 */
4134 	ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4135 	if (ret < 0)
4136 		goto out;
4137 
4138 out:
4139 	return ret;
4140 }
4141 
4142 static int changed_inode(struct send_ctx *sctx,
4143 			 enum btrfs_compare_tree_result result)
4144 {
4145 	int ret = 0;
4146 	struct btrfs_key *key = sctx->cmp_key;
4147 	struct btrfs_inode_item *left_ii = NULL;
4148 	struct btrfs_inode_item *right_ii = NULL;
4149 	u64 left_gen = 0;
4150 	u64 right_gen = 0;
4151 
4152 	ret = close_cur_inode_file(sctx);
4153 	if (ret < 0)
4154 		goto out;
4155 
4156 	sctx->cur_ino = key->objectid;
4157 	sctx->cur_inode_new_gen = 0;
4158 
4159 	/*
4160 	 * Set send_progress to current inode. This will tell all get_cur_xxx
4161 	 * functions that the current inode's refs are not updated yet. Later,
4162 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
4163 	 */
4164 	sctx->send_progress = sctx->cur_ino;
4165 
4166 	if (result == BTRFS_COMPARE_TREE_NEW ||
4167 	    result == BTRFS_COMPARE_TREE_CHANGED) {
4168 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
4169 				sctx->left_path->slots[0],
4170 				struct btrfs_inode_item);
4171 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
4172 				left_ii);
4173 	} else {
4174 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4175 				sctx->right_path->slots[0],
4176 				struct btrfs_inode_item);
4177 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4178 				right_ii);
4179 	}
4180 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
4181 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4182 				sctx->right_path->slots[0],
4183 				struct btrfs_inode_item);
4184 
4185 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4186 				right_ii);
4187 
4188 		/*
4189 		 * The cur_ino = root dir case is special here. We can't treat
4190 		 * the inode as deleted+reused because it would generate a
4191 		 * stream that tries to delete/mkdir the root dir.
4192 		 */
4193 		if (left_gen != right_gen &&
4194 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
4195 			sctx->cur_inode_new_gen = 1;
4196 	}
4197 
4198 	if (result == BTRFS_COMPARE_TREE_NEW) {
4199 		sctx->cur_inode_gen = left_gen;
4200 		sctx->cur_inode_new = 1;
4201 		sctx->cur_inode_deleted = 0;
4202 		sctx->cur_inode_size = btrfs_inode_size(
4203 				sctx->left_path->nodes[0], left_ii);
4204 		sctx->cur_inode_mode = btrfs_inode_mode(
4205 				sctx->left_path->nodes[0], left_ii);
4206 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
4207 			ret = send_create_inode_if_needed(sctx);
4208 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
4209 		sctx->cur_inode_gen = right_gen;
4210 		sctx->cur_inode_new = 0;
4211 		sctx->cur_inode_deleted = 1;
4212 		sctx->cur_inode_size = btrfs_inode_size(
4213 				sctx->right_path->nodes[0], right_ii);
4214 		sctx->cur_inode_mode = btrfs_inode_mode(
4215 				sctx->right_path->nodes[0], right_ii);
4216 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
4217 		/*
4218 		 * We need to do some special handling in case the inode was
4219 		 * reported as changed with a changed generation number. This
4220 		 * means that the original inode was deleted and new inode
4221 		 * reused the same inum. So we have to treat the old inode as
4222 		 * deleted and the new one as new.
4223 		 */
4224 		if (sctx->cur_inode_new_gen) {
4225 			/*
4226 			 * First, process the inode as if it was deleted.
4227 			 */
4228 			sctx->cur_inode_gen = right_gen;
4229 			sctx->cur_inode_new = 0;
4230 			sctx->cur_inode_deleted = 1;
4231 			sctx->cur_inode_size = btrfs_inode_size(
4232 					sctx->right_path->nodes[0], right_ii);
4233 			sctx->cur_inode_mode = btrfs_inode_mode(
4234 					sctx->right_path->nodes[0], right_ii);
4235 			ret = process_all_refs(sctx,
4236 					BTRFS_COMPARE_TREE_DELETED);
4237 			if (ret < 0)
4238 				goto out;
4239 
4240 			/*
4241 			 * Now process the inode as if it was new.
4242 			 */
4243 			sctx->cur_inode_gen = left_gen;
4244 			sctx->cur_inode_new = 1;
4245 			sctx->cur_inode_deleted = 0;
4246 			sctx->cur_inode_size = btrfs_inode_size(
4247 					sctx->left_path->nodes[0], left_ii);
4248 			sctx->cur_inode_mode = btrfs_inode_mode(
4249 					sctx->left_path->nodes[0], left_ii);
4250 			ret = send_create_inode_if_needed(sctx);
4251 			if (ret < 0)
4252 				goto out;
4253 
4254 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
4255 			if (ret < 0)
4256 				goto out;
4257 			/*
4258 			 * Advance send_progress now as we did not get into
4259 			 * process_recorded_refs_if_needed in the new_gen case.
4260 			 */
4261 			sctx->send_progress = sctx->cur_ino + 1;
4262 
4263 			/*
4264 			 * Now process all extents and xattrs of the inode as if
4265 			 * they were all new.
4266 			 */
4267 			ret = process_all_extents(sctx);
4268 			if (ret < 0)
4269 				goto out;
4270 			ret = process_all_new_xattrs(sctx);
4271 			if (ret < 0)
4272 				goto out;
4273 		} else {
4274 			sctx->cur_inode_gen = left_gen;
4275 			sctx->cur_inode_new = 0;
4276 			sctx->cur_inode_new_gen = 0;
4277 			sctx->cur_inode_deleted = 0;
4278 			sctx->cur_inode_size = btrfs_inode_size(
4279 					sctx->left_path->nodes[0], left_ii);
4280 			sctx->cur_inode_mode = btrfs_inode_mode(
4281 					sctx->left_path->nodes[0], left_ii);
4282 		}
4283 	}
4284 
4285 out:
4286 	return ret;
4287 }
4288 
4289 /*
4290  * We have to process new refs before deleted refs, but compare_trees gives us
4291  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
4292  * first and later process them in process_recorded_refs.
4293  * For the cur_inode_new_gen case, we skip recording completely because
4294  * changed_inode did already initiate processing of refs. The reason for this is
4295  * that in this case, compare_tree actually compares the refs of 2 different
4296  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
4297  * refs of the right tree as deleted and all refs of the left tree as new.
4298  */
4299 static int changed_ref(struct send_ctx *sctx,
4300 		       enum btrfs_compare_tree_result result)
4301 {
4302 	int ret = 0;
4303 
4304 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4305 
4306 	if (!sctx->cur_inode_new_gen &&
4307 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
4308 		if (result == BTRFS_COMPARE_TREE_NEW)
4309 			ret = record_new_ref(sctx);
4310 		else if (result == BTRFS_COMPARE_TREE_DELETED)
4311 			ret = record_deleted_ref(sctx);
4312 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
4313 			ret = record_changed_ref(sctx);
4314 	}
4315 
4316 	return ret;
4317 }
4318 
4319 /*
4320  * Process new/deleted/changed xattrs. We skip processing in the
4321  * cur_inode_new_gen case because changed_inode did already initiate processing
4322  * of xattrs. The reason is the same as in changed_ref
4323  */
4324 static int changed_xattr(struct send_ctx *sctx,
4325 			 enum btrfs_compare_tree_result result)
4326 {
4327 	int ret = 0;
4328 
4329 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4330 
4331 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4332 		if (result == BTRFS_COMPARE_TREE_NEW)
4333 			ret = process_new_xattr(sctx);
4334 		else if (result == BTRFS_COMPARE_TREE_DELETED)
4335 			ret = process_deleted_xattr(sctx);
4336 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
4337 			ret = process_changed_xattr(sctx);
4338 	}
4339 
4340 	return ret;
4341 }
4342 
4343 /*
4344  * Process new/deleted/changed extents. We skip processing in the
4345  * cur_inode_new_gen case because changed_inode did already initiate processing
4346  * of extents. The reason is the same as in changed_ref
4347  */
4348 static int changed_extent(struct send_ctx *sctx,
4349 			  enum btrfs_compare_tree_result result)
4350 {
4351 	int ret = 0;
4352 
4353 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4354 
4355 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4356 		if (result != BTRFS_COMPARE_TREE_DELETED)
4357 			ret = process_extent(sctx, sctx->left_path,
4358 					sctx->cmp_key);
4359 	}
4360 
4361 	return ret;
4362 }
4363 
4364 /*
4365  * Updates compare related fields in sctx and simply forwards to the actual
4366  * changed_xxx functions.
4367  */
4368 static int changed_cb(struct btrfs_root *left_root,
4369 		      struct btrfs_root *right_root,
4370 		      struct btrfs_path *left_path,
4371 		      struct btrfs_path *right_path,
4372 		      struct btrfs_key *key,
4373 		      enum btrfs_compare_tree_result result,
4374 		      void *ctx)
4375 {
4376 	int ret = 0;
4377 	struct send_ctx *sctx = ctx;
4378 
4379 	sctx->left_path = left_path;
4380 	sctx->right_path = right_path;
4381 	sctx->cmp_key = key;
4382 
4383 	ret = finish_inode_if_needed(sctx, 0);
4384 	if (ret < 0)
4385 		goto out;
4386 
4387 	/* Ignore non-FS objects */
4388 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
4389 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
4390 		goto out;
4391 
4392 	if (key->type == BTRFS_INODE_ITEM_KEY)
4393 		ret = changed_inode(sctx, result);
4394 	else if (key->type == BTRFS_INODE_REF_KEY ||
4395 		 key->type == BTRFS_INODE_EXTREF_KEY)
4396 		ret = changed_ref(sctx, result);
4397 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
4398 		ret = changed_xattr(sctx, result);
4399 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
4400 		ret = changed_extent(sctx, result);
4401 
4402 out:
4403 	return ret;
4404 }
4405 
4406 static int full_send_tree(struct send_ctx *sctx)
4407 {
4408 	int ret;
4409 	struct btrfs_trans_handle *trans = NULL;
4410 	struct btrfs_root *send_root = sctx->send_root;
4411 	struct btrfs_key key;
4412 	struct btrfs_key found_key;
4413 	struct btrfs_path *path;
4414 	struct extent_buffer *eb;
4415 	int slot;
4416 	u64 start_ctransid;
4417 	u64 ctransid;
4418 
4419 	path = alloc_path_for_send();
4420 	if (!path)
4421 		return -ENOMEM;
4422 
4423 	spin_lock(&send_root->root_item_lock);
4424 	start_ctransid = btrfs_root_ctransid(&send_root->root_item);
4425 	spin_unlock(&send_root->root_item_lock);
4426 
4427 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
4428 	key.type = BTRFS_INODE_ITEM_KEY;
4429 	key.offset = 0;
4430 
4431 join_trans:
4432 	/*
4433 	 * We need to make sure the transaction does not get committed
4434 	 * while we do anything on commit roots. Join a transaction to prevent
4435 	 * this.
4436 	 */
4437 	trans = btrfs_join_transaction(send_root);
4438 	if (IS_ERR(trans)) {
4439 		ret = PTR_ERR(trans);
4440 		trans = NULL;
4441 		goto out;
4442 	}
4443 
4444 	/*
4445 	 * Make sure the tree has not changed after re-joining. We detect this
4446 	 * by comparing start_ctransid and ctransid. They should always match.
4447 	 */
4448 	spin_lock(&send_root->root_item_lock);
4449 	ctransid = btrfs_root_ctransid(&send_root->root_item);
4450 	spin_unlock(&send_root->root_item_lock);
4451 
4452 	if (ctransid != start_ctransid) {
4453 		WARN(1, KERN_WARNING "btrfs: the root that you're trying to "
4454 				     "send was modified in between. This is "
4455 				     "probably a bug.\n");
4456 		ret = -EIO;
4457 		goto out;
4458 	}
4459 
4460 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
4461 	if (ret < 0)
4462 		goto out;
4463 	if (ret)
4464 		goto out_finish;
4465 
4466 	while (1) {
4467 		/*
4468 		 * When someone want to commit while we iterate, end the
4469 		 * joined transaction and rejoin.
4470 		 */
4471 		if (btrfs_should_end_transaction(trans, send_root)) {
4472 			ret = btrfs_end_transaction(trans, send_root);
4473 			trans = NULL;
4474 			if (ret < 0)
4475 				goto out;
4476 			btrfs_release_path(path);
4477 			goto join_trans;
4478 		}
4479 
4480 		eb = path->nodes[0];
4481 		slot = path->slots[0];
4482 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4483 
4484 		ret = changed_cb(send_root, NULL, path, NULL,
4485 				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
4486 		if (ret < 0)
4487 			goto out;
4488 
4489 		key.objectid = found_key.objectid;
4490 		key.type = found_key.type;
4491 		key.offset = found_key.offset + 1;
4492 
4493 		ret = btrfs_next_item(send_root, path);
4494 		if (ret < 0)
4495 			goto out;
4496 		if (ret) {
4497 			ret  = 0;
4498 			break;
4499 		}
4500 	}
4501 
4502 out_finish:
4503 	ret = finish_inode_if_needed(sctx, 1);
4504 
4505 out:
4506 	btrfs_free_path(path);
4507 	if (trans) {
4508 		if (!ret)
4509 			ret = btrfs_end_transaction(trans, send_root);
4510 		else
4511 			btrfs_end_transaction(trans, send_root);
4512 	}
4513 	return ret;
4514 }
4515 
4516 static int send_subvol(struct send_ctx *sctx)
4517 {
4518 	int ret;
4519 
4520 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
4521 		ret = send_header(sctx);
4522 		if (ret < 0)
4523 			goto out;
4524 	}
4525 
4526 	ret = send_subvol_begin(sctx);
4527 	if (ret < 0)
4528 		goto out;
4529 
4530 	if (sctx->parent_root) {
4531 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
4532 				changed_cb, sctx);
4533 		if (ret < 0)
4534 			goto out;
4535 		ret = finish_inode_if_needed(sctx, 1);
4536 		if (ret < 0)
4537 			goto out;
4538 	} else {
4539 		ret = full_send_tree(sctx);
4540 		if (ret < 0)
4541 			goto out;
4542 	}
4543 
4544 out:
4545 	if (!ret)
4546 		ret = close_cur_inode_file(sctx);
4547 	else
4548 		close_cur_inode_file(sctx);
4549 
4550 	free_recorded_refs(sctx);
4551 	return ret;
4552 }
4553 
4554 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
4555 {
4556 	int ret = 0;
4557 	struct btrfs_root *send_root;
4558 	struct btrfs_root *clone_root;
4559 	struct btrfs_fs_info *fs_info;
4560 	struct btrfs_ioctl_send_args *arg = NULL;
4561 	struct btrfs_key key;
4562 	struct send_ctx *sctx = NULL;
4563 	u32 i;
4564 	u64 *clone_sources_tmp = NULL;
4565 
4566 	if (!capable(CAP_SYS_ADMIN))
4567 		return -EPERM;
4568 
4569 	send_root = BTRFS_I(file_inode(mnt_file))->root;
4570 	fs_info = send_root->fs_info;
4571 
4572 	/*
4573 	 * This is done when we lookup the root, it should already be complete
4574 	 * by the time we get here.
4575 	 */
4576 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
4577 
4578 	/*
4579 	 * If we just created this root we need to make sure that the orphan
4580 	 * cleanup has been done and committed since we search the commit root,
4581 	 * so check its commit root transid with our otransid and if they match
4582 	 * commit the transaction to make sure everything is updated.
4583 	 */
4584 	down_read(&send_root->fs_info->extent_commit_sem);
4585 	if (btrfs_header_generation(send_root->commit_root) ==
4586 	    btrfs_root_otransid(&send_root->root_item)) {
4587 		struct btrfs_trans_handle *trans;
4588 
4589 		up_read(&send_root->fs_info->extent_commit_sem);
4590 
4591 		trans = btrfs_attach_transaction_barrier(send_root);
4592 		if (IS_ERR(trans)) {
4593 			if (PTR_ERR(trans) != -ENOENT) {
4594 				ret = PTR_ERR(trans);
4595 				goto out;
4596 			}
4597 			/* ENOENT means theres no transaction */
4598 		} else {
4599 			ret = btrfs_commit_transaction(trans, send_root);
4600 			if (ret)
4601 				goto out;
4602 		}
4603 	} else {
4604 		up_read(&send_root->fs_info->extent_commit_sem);
4605 	}
4606 
4607 	arg = memdup_user(arg_, sizeof(*arg));
4608 	if (IS_ERR(arg)) {
4609 		ret = PTR_ERR(arg);
4610 		arg = NULL;
4611 		goto out;
4612 	}
4613 
4614 	if (!access_ok(VERIFY_READ, arg->clone_sources,
4615 			sizeof(*arg->clone_sources *
4616 			arg->clone_sources_count))) {
4617 		ret = -EFAULT;
4618 		goto out;
4619 	}
4620 
4621 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
4622 		ret = -EINVAL;
4623 		goto out;
4624 	}
4625 
4626 	sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
4627 	if (!sctx) {
4628 		ret = -ENOMEM;
4629 		goto out;
4630 	}
4631 
4632 	INIT_LIST_HEAD(&sctx->new_refs);
4633 	INIT_LIST_HEAD(&sctx->deleted_refs);
4634 	INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
4635 	INIT_LIST_HEAD(&sctx->name_cache_list);
4636 
4637 	sctx->flags = arg->flags;
4638 
4639 	sctx->send_filp = fget(arg->send_fd);
4640 	if (!sctx->send_filp) {
4641 		ret = -EBADF;
4642 		goto out;
4643 	}
4644 
4645 	sctx->mnt = mnt_file->f_path.mnt;
4646 
4647 	sctx->send_root = send_root;
4648 	sctx->clone_roots_cnt = arg->clone_sources_count;
4649 
4650 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
4651 	sctx->send_buf = vmalloc(sctx->send_max_size);
4652 	if (!sctx->send_buf) {
4653 		ret = -ENOMEM;
4654 		goto out;
4655 	}
4656 
4657 	sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
4658 	if (!sctx->read_buf) {
4659 		ret = -ENOMEM;
4660 		goto out;
4661 	}
4662 
4663 	sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
4664 			(arg->clone_sources_count + 1));
4665 	if (!sctx->clone_roots) {
4666 		ret = -ENOMEM;
4667 		goto out;
4668 	}
4669 
4670 	if (arg->clone_sources_count) {
4671 		clone_sources_tmp = vmalloc(arg->clone_sources_count *
4672 				sizeof(*arg->clone_sources));
4673 		if (!clone_sources_tmp) {
4674 			ret = -ENOMEM;
4675 			goto out;
4676 		}
4677 
4678 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
4679 				arg->clone_sources_count *
4680 				sizeof(*arg->clone_sources));
4681 		if (ret) {
4682 			ret = -EFAULT;
4683 			goto out;
4684 		}
4685 
4686 		for (i = 0; i < arg->clone_sources_count; i++) {
4687 			key.objectid = clone_sources_tmp[i];
4688 			key.type = BTRFS_ROOT_ITEM_KEY;
4689 			key.offset = (u64)-1;
4690 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
4691 			if (IS_ERR(clone_root)) {
4692 				ret = PTR_ERR(clone_root);
4693 				goto out;
4694 			}
4695 			sctx->clone_roots[i].root = clone_root;
4696 		}
4697 		vfree(clone_sources_tmp);
4698 		clone_sources_tmp = NULL;
4699 	}
4700 
4701 	if (arg->parent_root) {
4702 		key.objectid = arg->parent_root;
4703 		key.type = BTRFS_ROOT_ITEM_KEY;
4704 		key.offset = (u64)-1;
4705 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
4706 		if (IS_ERR(sctx->parent_root)) {
4707 			ret = PTR_ERR(sctx->parent_root);
4708 			goto out;
4709 		}
4710 	}
4711 
4712 	/*
4713 	 * Clones from send_root are allowed, but only if the clone source
4714 	 * is behind the current send position. This is checked while searching
4715 	 * for possible clone sources.
4716 	 */
4717 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
4718 
4719 	/* We do a bsearch later */
4720 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
4721 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
4722 			NULL);
4723 
4724 	ret = send_subvol(sctx);
4725 	if (ret < 0)
4726 		goto out;
4727 
4728 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
4729 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
4730 		if (ret < 0)
4731 			goto out;
4732 		ret = send_cmd(sctx);
4733 		if (ret < 0)
4734 			goto out;
4735 	}
4736 
4737 out:
4738 	kfree(arg);
4739 	vfree(clone_sources_tmp);
4740 
4741 	if (sctx) {
4742 		if (sctx->send_filp)
4743 			fput(sctx->send_filp);
4744 
4745 		vfree(sctx->clone_roots);
4746 		vfree(sctx->send_buf);
4747 		vfree(sctx->read_buf);
4748 
4749 		name_cache_free(sctx);
4750 
4751 		kfree(sctx);
4752 	}
4753 
4754 	return ret;
4755 }
4756