1 /* 2 * Copyright (C) 2012 Alexander Block. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/bsearch.h> 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/sort.h> 23 #include <linux/mount.h> 24 #include <linux/xattr.h> 25 #include <linux/posix_acl_xattr.h> 26 #include <linux/radix-tree.h> 27 #include <linux/crc32c.h> 28 #include <linux/vmalloc.h> 29 30 #include "send.h" 31 #include "backref.h" 32 #include "locking.h" 33 #include "disk-io.h" 34 #include "btrfs_inode.h" 35 #include "transaction.h" 36 37 static int g_verbose = 0; 38 39 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__) 40 41 /* 42 * A fs_path is a helper to dynamically build path names with unknown size. 43 * It reallocates the internal buffer on demand. 44 * It allows fast adding of path elements on the right side (normal path) and 45 * fast adding to the left side (reversed path). A reversed path can also be 46 * unreversed if needed. 47 */ 48 struct fs_path { 49 union { 50 struct { 51 char *start; 52 char *end; 53 char *prepared; 54 55 char *buf; 56 int buf_len; 57 int reversed:1; 58 int virtual_mem:1; 59 char inline_buf[]; 60 }; 61 char pad[PAGE_SIZE]; 62 }; 63 }; 64 #define FS_PATH_INLINE_SIZE \ 65 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 66 67 68 /* reused for each extent */ 69 struct clone_root { 70 struct btrfs_root *root; 71 u64 ino; 72 u64 offset; 73 74 u64 found_refs; 75 }; 76 77 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 78 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 79 80 struct send_ctx { 81 struct file *send_filp; 82 loff_t send_off; 83 char *send_buf; 84 u32 send_size; 85 u32 send_max_size; 86 u64 total_send_size; 87 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 88 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 89 90 struct vfsmount *mnt; 91 92 struct btrfs_root *send_root; 93 struct btrfs_root *parent_root; 94 struct clone_root *clone_roots; 95 int clone_roots_cnt; 96 97 /* current state of the compare_tree call */ 98 struct btrfs_path *left_path; 99 struct btrfs_path *right_path; 100 struct btrfs_key *cmp_key; 101 102 /* 103 * infos of the currently processed inode. In case of deleted inodes, 104 * these are the values from the deleted inode. 105 */ 106 u64 cur_ino; 107 u64 cur_inode_gen; 108 int cur_inode_new; 109 int cur_inode_new_gen; 110 int cur_inode_deleted; 111 u64 cur_inode_size; 112 u64 cur_inode_mode; 113 114 u64 send_progress; 115 116 struct list_head new_refs; 117 struct list_head deleted_refs; 118 119 struct radix_tree_root name_cache; 120 struct list_head name_cache_list; 121 int name_cache_size; 122 123 struct file *cur_inode_filp; 124 char *read_buf; 125 }; 126 127 struct name_cache_entry { 128 struct list_head list; 129 /* 130 * radix_tree has only 32bit entries but we need to handle 64bit inums. 131 * We use the lower 32bit of the 64bit inum to store it in the tree. If 132 * more then one inum would fall into the same entry, we use radix_list 133 * to store the additional entries. radix_list is also used to store 134 * entries where two entries have the same inum but different 135 * generations. 136 */ 137 struct list_head radix_list; 138 u64 ino; 139 u64 gen; 140 u64 parent_ino; 141 u64 parent_gen; 142 int ret; 143 int need_later_update; 144 int name_len; 145 char name[]; 146 }; 147 148 static void fs_path_reset(struct fs_path *p) 149 { 150 if (p->reversed) { 151 p->start = p->buf + p->buf_len - 1; 152 p->end = p->start; 153 *p->start = 0; 154 } else { 155 p->start = p->buf; 156 p->end = p->start; 157 *p->start = 0; 158 } 159 } 160 161 static struct fs_path *fs_path_alloc(void) 162 { 163 struct fs_path *p; 164 165 p = kmalloc(sizeof(*p), GFP_NOFS); 166 if (!p) 167 return NULL; 168 p->reversed = 0; 169 p->virtual_mem = 0; 170 p->buf = p->inline_buf; 171 p->buf_len = FS_PATH_INLINE_SIZE; 172 fs_path_reset(p); 173 return p; 174 } 175 176 static struct fs_path *fs_path_alloc_reversed(void) 177 { 178 struct fs_path *p; 179 180 p = fs_path_alloc(); 181 if (!p) 182 return NULL; 183 p->reversed = 1; 184 fs_path_reset(p); 185 return p; 186 } 187 188 static void fs_path_free(struct fs_path *p) 189 { 190 if (!p) 191 return; 192 if (p->buf != p->inline_buf) { 193 if (p->virtual_mem) 194 vfree(p->buf); 195 else 196 kfree(p->buf); 197 } 198 kfree(p); 199 } 200 201 static int fs_path_len(struct fs_path *p) 202 { 203 return p->end - p->start; 204 } 205 206 static int fs_path_ensure_buf(struct fs_path *p, int len) 207 { 208 char *tmp_buf; 209 int path_len; 210 int old_buf_len; 211 212 len++; 213 214 if (p->buf_len >= len) 215 return 0; 216 217 path_len = p->end - p->start; 218 old_buf_len = p->buf_len; 219 len = PAGE_ALIGN(len); 220 221 if (p->buf == p->inline_buf) { 222 tmp_buf = kmalloc(len, GFP_NOFS); 223 if (!tmp_buf) { 224 tmp_buf = vmalloc(len); 225 if (!tmp_buf) 226 return -ENOMEM; 227 p->virtual_mem = 1; 228 } 229 memcpy(tmp_buf, p->buf, p->buf_len); 230 p->buf = tmp_buf; 231 p->buf_len = len; 232 } else { 233 if (p->virtual_mem) { 234 tmp_buf = vmalloc(len); 235 if (!tmp_buf) 236 return -ENOMEM; 237 memcpy(tmp_buf, p->buf, p->buf_len); 238 vfree(p->buf); 239 } else { 240 tmp_buf = krealloc(p->buf, len, GFP_NOFS); 241 if (!tmp_buf) { 242 tmp_buf = vmalloc(len); 243 if (!tmp_buf) 244 return -ENOMEM; 245 memcpy(tmp_buf, p->buf, p->buf_len); 246 kfree(p->buf); 247 p->virtual_mem = 1; 248 } 249 } 250 p->buf = tmp_buf; 251 p->buf_len = len; 252 } 253 if (p->reversed) { 254 tmp_buf = p->buf + old_buf_len - path_len - 1; 255 p->end = p->buf + p->buf_len - 1; 256 p->start = p->end - path_len; 257 memmove(p->start, tmp_buf, path_len + 1); 258 } else { 259 p->start = p->buf; 260 p->end = p->start + path_len; 261 } 262 return 0; 263 } 264 265 static int fs_path_prepare_for_add(struct fs_path *p, int name_len) 266 { 267 int ret; 268 int new_len; 269 270 new_len = p->end - p->start + name_len; 271 if (p->start != p->end) 272 new_len++; 273 ret = fs_path_ensure_buf(p, new_len); 274 if (ret < 0) 275 goto out; 276 277 if (p->reversed) { 278 if (p->start != p->end) 279 *--p->start = '/'; 280 p->start -= name_len; 281 p->prepared = p->start; 282 } else { 283 if (p->start != p->end) 284 *p->end++ = '/'; 285 p->prepared = p->end; 286 p->end += name_len; 287 *p->end = 0; 288 } 289 290 out: 291 return ret; 292 } 293 294 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 295 { 296 int ret; 297 298 ret = fs_path_prepare_for_add(p, name_len); 299 if (ret < 0) 300 goto out; 301 memcpy(p->prepared, name, name_len); 302 p->prepared = NULL; 303 304 out: 305 return ret; 306 } 307 308 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 309 { 310 int ret; 311 312 ret = fs_path_prepare_for_add(p, p2->end - p2->start); 313 if (ret < 0) 314 goto out; 315 memcpy(p->prepared, p2->start, p2->end - p2->start); 316 p->prepared = NULL; 317 318 out: 319 return ret; 320 } 321 322 static int fs_path_add_from_extent_buffer(struct fs_path *p, 323 struct extent_buffer *eb, 324 unsigned long off, int len) 325 { 326 int ret; 327 328 ret = fs_path_prepare_for_add(p, len); 329 if (ret < 0) 330 goto out; 331 332 read_extent_buffer(eb, p->prepared, off, len); 333 p->prepared = NULL; 334 335 out: 336 return ret; 337 } 338 339 #if 0 340 static void fs_path_remove(struct fs_path *p) 341 { 342 BUG_ON(p->reversed); 343 while (p->start != p->end && *p->end != '/') 344 p->end--; 345 *p->end = 0; 346 } 347 #endif 348 349 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 350 { 351 int ret; 352 353 p->reversed = from->reversed; 354 fs_path_reset(p); 355 356 ret = fs_path_add_path(p, from); 357 358 return ret; 359 } 360 361 362 static void fs_path_unreverse(struct fs_path *p) 363 { 364 char *tmp; 365 int len; 366 367 if (!p->reversed) 368 return; 369 370 tmp = p->start; 371 len = p->end - p->start; 372 p->start = p->buf; 373 p->end = p->start + len; 374 memmove(p->start, tmp, len + 1); 375 p->reversed = 0; 376 } 377 378 static struct btrfs_path *alloc_path_for_send(void) 379 { 380 struct btrfs_path *path; 381 382 path = btrfs_alloc_path(); 383 if (!path) 384 return NULL; 385 path->search_commit_root = 1; 386 path->skip_locking = 1; 387 return path; 388 } 389 390 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 391 { 392 int ret; 393 mm_segment_t old_fs; 394 u32 pos = 0; 395 396 old_fs = get_fs(); 397 set_fs(KERNEL_DS); 398 399 while (pos < len) { 400 ret = vfs_write(filp, (char *)buf + pos, len - pos, off); 401 /* TODO handle that correctly */ 402 /*if (ret == -ERESTARTSYS) { 403 continue; 404 }*/ 405 if (ret < 0) 406 goto out; 407 if (ret == 0) { 408 ret = -EIO; 409 goto out; 410 } 411 pos += ret; 412 } 413 414 ret = 0; 415 416 out: 417 set_fs(old_fs); 418 return ret; 419 } 420 421 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 422 { 423 struct btrfs_tlv_header *hdr; 424 int total_len = sizeof(*hdr) + len; 425 int left = sctx->send_max_size - sctx->send_size; 426 427 if (unlikely(left < total_len)) 428 return -EOVERFLOW; 429 430 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 431 hdr->tlv_type = cpu_to_le16(attr); 432 hdr->tlv_len = cpu_to_le16(len); 433 memcpy(hdr + 1, data, len); 434 sctx->send_size += total_len; 435 436 return 0; 437 } 438 439 #if 0 440 static int tlv_put_u8(struct send_ctx *sctx, u16 attr, u8 value) 441 { 442 return tlv_put(sctx, attr, &value, sizeof(value)); 443 } 444 445 static int tlv_put_u16(struct send_ctx *sctx, u16 attr, u16 value) 446 { 447 __le16 tmp = cpu_to_le16(value); 448 return tlv_put(sctx, attr, &tmp, sizeof(tmp)); 449 } 450 451 static int tlv_put_u32(struct send_ctx *sctx, u16 attr, u32 value) 452 { 453 __le32 tmp = cpu_to_le32(value); 454 return tlv_put(sctx, attr, &tmp, sizeof(tmp)); 455 } 456 #endif 457 458 static int tlv_put_u64(struct send_ctx *sctx, u16 attr, u64 value) 459 { 460 __le64 tmp = cpu_to_le64(value); 461 return tlv_put(sctx, attr, &tmp, sizeof(tmp)); 462 } 463 464 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 465 const char *str, int len) 466 { 467 if (len == -1) 468 len = strlen(str); 469 return tlv_put(sctx, attr, str, len); 470 } 471 472 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 473 const u8 *uuid) 474 { 475 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 476 } 477 478 #if 0 479 static int tlv_put_timespec(struct send_ctx *sctx, u16 attr, 480 struct timespec *ts) 481 { 482 struct btrfs_timespec bts; 483 bts.sec = cpu_to_le64(ts->tv_sec); 484 bts.nsec = cpu_to_le32(ts->tv_nsec); 485 return tlv_put(sctx, attr, &bts, sizeof(bts)); 486 } 487 #endif 488 489 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 490 struct extent_buffer *eb, 491 struct btrfs_timespec *ts) 492 { 493 struct btrfs_timespec bts; 494 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 495 return tlv_put(sctx, attr, &bts, sizeof(bts)); 496 } 497 498 499 #define TLV_PUT(sctx, attrtype, attrlen, data) \ 500 do { \ 501 ret = tlv_put(sctx, attrtype, attrlen, data); \ 502 if (ret < 0) \ 503 goto tlv_put_failure; \ 504 } while (0) 505 506 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 507 do { \ 508 ret = tlv_put_u##bits(sctx, attrtype, value); \ 509 if (ret < 0) \ 510 goto tlv_put_failure; \ 511 } while (0) 512 513 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 514 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 515 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 516 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 517 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 518 do { \ 519 ret = tlv_put_string(sctx, attrtype, str, len); \ 520 if (ret < 0) \ 521 goto tlv_put_failure; \ 522 } while (0) 523 #define TLV_PUT_PATH(sctx, attrtype, p) \ 524 do { \ 525 ret = tlv_put_string(sctx, attrtype, p->start, \ 526 p->end - p->start); \ 527 if (ret < 0) \ 528 goto tlv_put_failure; \ 529 } while(0) 530 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 531 do { \ 532 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 533 if (ret < 0) \ 534 goto tlv_put_failure; \ 535 } while (0) 536 #define TLV_PUT_TIMESPEC(sctx, attrtype, ts) \ 537 do { \ 538 ret = tlv_put_timespec(sctx, attrtype, ts); \ 539 if (ret < 0) \ 540 goto tlv_put_failure; \ 541 } while (0) 542 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 543 do { \ 544 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 545 if (ret < 0) \ 546 goto tlv_put_failure; \ 547 } while (0) 548 549 static int send_header(struct send_ctx *sctx) 550 { 551 struct btrfs_stream_header hdr; 552 553 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 554 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 555 556 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 557 &sctx->send_off); 558 } 559 560 /* 561 * For each command/item we want to send to userspace, we call this function. 562 */ 563 static int begin_cmd(struct send_ctx *sctx, int cmd) 564 { 565 struct btrfs_cmd_header *hdr; 566 567 if (!sctx->send_buf) { 568 WARN_ON(1); 569 return -EINVAL; 570 } 571 572 BUG_ON(sctx->send_size); 573 574 sctx->send_size += sizeof(*hdr); 575 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 576 hdr->cmd = cpu_to_le16(cmd); 577 578 return 0; 579 } 580 581 static int send_cmd(struct send_ctx *sctx) 582 { 583 int ret; 584 struct btrfs_cmd_header *hdr; 585 u32 crc; 586 587 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 588 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr)); 589 hdr->crc = 0; 590 591 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 592 hdr->crc = cpu_to_le32(crc); 593 594 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 595 &sctx->send_off); 596 597 sctx->total_send_size += sctx->send_size; 598 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size; 599 sctx->send_size = 0; 600 601 return ret; 602 } 603 604 /* 605 * Sends a move instruction to user space 606 */ 607 static int send_rename(struct send_ctx *sctx, 608 struct fs_path *from, struct fs_path *to) 609 { 610 int ret; 611 612 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start); 613 614 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 615 if (ret < 0) 616 goto out; 617 618 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 619 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 620 621 ret = send_cmd(sctx); 622 623 tlv_put_failure: 624 out: 625 return ret; 626 } 627 628 /* 629 * Sends a link instruction to user space 630 */ 631 static int send_link(struct send_ctx *sctx, 632 struct fs_path *path, struct fs_path *lnk) 633 { 634 int ret; 635 636 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start); 637 638 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 639 if (ret < 0) 640 goto out; 641 642 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 643 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 644 645 ret = send_cmd(sctx); 646 647 tlv_put_failure: 648 out: 649 return ret; 650 } 651 652 /* 653 * Sends an unlink instruction to user space 654 */ 655 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 656 { 657 int ret; 658 659 verbose_printk("btrfs: send_unlink %s\n", path->start); 660 661 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 662 if (ret < 0) 663 goto out; 664 665 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 666 667 ret = send_cmd(sctx); 668 669 tlv_put_failure: 670 out: 671 return ret; 672 } 673 674 /* 675 * Sends a rmdir instruction to user space 676 */ 677 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 678 { 679 int ret; 680 681 verbose_printk("btrfs: send_rmdir %s\n", path->start); 682 683 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 684 if (ret < 0) 685 goto out; 686 687 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 688 689 ret = send_cmd(sctx); 690 691 tlv_put_failure: 692 out: 693 return ret; 694 } 695 696 /* 697 * Helper function to retrieve some fields from an inode item. 698 */ 699 static int get_inode_info(struct btrfs_root *root, 700 u64 ino, u64 *size, u64 *gen, 701 u64 *mode, u64 *uid, u64 *gid, 702 u64 *rdev) 703 { 704 int ret; 705 struct btrfs_inode_item *ii; 706 struct btrfs_key key; 707 struct btrfs_path *path; 708 709 path = alloc_path_for_send(); 710 if (!path) 711 return -ENOMEM; 712 713 key.objectid = ino; 714 key.type = BTRFS_INODE_ITEM_KEY; 715 key.offset = 0; 716 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 717 if (ret < 0) 718 goto out; 719 if (ret) { 720 ret = -ENOENT; 721 goto out; 722 } 723 724 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 725 struct btrfs_inode_item); 726 if (size) 727 *size = btrfs_inode_size(path->nodes[0], ii); 728 if (gen) 729 *gen = btrfs_inode_generation(path->nodes[0], ii); 730 if (mode) 731 *mode = btrfs_inode_mode(path->nodes[0], ii); 732 if (uid) 733 *uid = btrfs_inode_uid(path->nodes[0], ii); 734 if (gid) 735 *gid = btrfs_inode_gid(path->nodes[0], ii); 736 if (rdev) 737 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 738 739 out: 740 btrfs_free_path(path); 741 return ret; 742 } 743 744 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 745 struct fs_path *p, 746 void *ctx); 747 748 /* 749 * Helper function to iterate the entries in ONE btrfs_inode_ref or 750 * btrfs_inode_extref. 751 * The iterate callback may return a non zero value to stop iteration. This can 752 * be a negative value for error codes or 1 to simply stop it. 753 * 754 * path must point to the INODE_REF or INODE_EXTREF when called. 755 */ 756 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 757 struct btrfs_key *found_key, int resolve, 758 iterate_inode_ref_t iterate, void *ctx) 759 { 760 struct extent_buffer *eb = path->nodes[0]; 761 struct btrfs_item *item; 762 struct btrfs_inode_ref *iref; 763 struct btrfs_inode_extref *extref; 764 struct btrfs_path *tmp_path; 765 struct fs_path *p; 766 u32 cur = 0; 767 u32 total; 768 int slot = path->slots[0]; 769 u32 name_len; 770 char *start; 771 int ret = 0; 772 int num = 0; 773 int index; 774 u64 dir; 775 unsigned long name_off; 776 unsigned long elem_size; 777 unsigned long ptr; 778 779 p = fs_path_alloc_reversed(); 780 if (!p) 781 return -ENOMEM; 782 783 tmp_path = alloc_path_for_send(); 784 if (!tmp_path) { 785 fs_path_free(p); 786 return -ENOMEM; 787 } 788 789 790 if (found_key->type == BTRFS_INODE_REF_KEY) { 791 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 792 struct btrfs_inode_ref); 793 item = btrfs_item_nr(eb, slot); 794 total = btrfs_item_size(eb, item); 795 elem_size = sizeof(*iref); 796 } else { 797 ptr = btrfs_item_ptr_offset(eb, slot); 798 total = btrfs_item_size_nr(eb, slot); 799 elem_size = sizeof(*extref); 800 } 801 802 while (cur < total) { 803 fs_path_reset(p); 804 805 if (found_key->type == BTRFS_INODE_REF_KEY) { 806 iref = (struct btrfs_inode_ref *)(ptr + cur); 807 name_len = btrfs_inode_ref_name_len(eb, iref); 808 name_off = (unsigned long)(iref + 1); 809 index = btrfs_inode_ref_index(eb, iref); 810 dir = found_key->offset; 811 } else { 812 extref = (struct btrfs_inode_extref *)(ptr + cur); 813 name_len = btrfs_inode_extref_name_len(eb, extref); 814 name_off = (unsigned long)&extref->name; 815 index = btrfs_inode_extref_index(eb, extref); 816 dir = btrfs_inode_extref_parent(eb, extref); 817 } 818 819 if (resolve) { 820 start = btrfs_ref_to_path(root, tmp_path, name_len, 821 name_off, eb, dir, 822 p->buf, p->buf_len); 823 if (IS_ERR(start)) { 824 ret = PTR_ERR(start); 825 goto out; 826 } 827 if (start < p->buf) { 828 /* overflow , try again with larger buffer */ 829 ret = fs_path_ensure_buf(p, 830 p->buf_len + p->buf - start); 831 if (ret < 0) 832 goto out; 833 start = btrfs_ref_to_path(root, tmp_path, 834 name_len, name_off, 835 eb, dir, 836 p->buf, p->buf_len); 837 if (IS_ERR(start)) { 838 ret = PTR_ERR(start); 839 goto out; 840 } 841 BUG_ON(start < p->buf); 842 } 843 p->start = start; 844 } else { 845 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 846 name_len); 847 if (ret < 0) 848 goto out; 849 } 850 851 cur += elem_size + name_len; 852 ret = iterate(num, dir, index, p, ctx); 853 if (ret) 854 goto out; 855 num++; 856 } 857 858 out: 859 btrfs_free_path(tmp_path); 860 fs_path_free(p); 861 return ret; 862 } 863 864 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 865 const char *name, int name_len, 866 const char *data, int data_len, 867 u8 type, void *ctx); 868 869 /* 870 * Helper function to iterate the entries in ONE btrfs_dir_item. 871 * The iterate callback may return a non zero value to stop iteration. This can 872 * be a negative value for error codes or 1 to simply stop it. 873 * 874 * path must point to the dir item when called. 875 */ 876 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 877 struct btrfs_key *found_key, 878 iterate_dir_item_t iterate, void *ctx) 879 { 880 int ret = 0; 881 struct extent_buffer *eb; 882 struct btrfs_item *item; 883 struct btrfs_dir_item *di; 884 struct btrfs_key di_key; 885 char *buf = NULL; 886 char *buf2 = NULL; 887 int buf_len; 888 int buf_virtual = 0; 889 u32 name_len; 890 u32 data_len; 891 u32 cur; 892 u32 len; 893 u32 total; 894 int slot; 895 int num; 896 u8 type; 897 898 buf_len = PAGE_SIZE; 899 buf = kmalloc(buf_len, GFP_NOFS); 900 if (!buf) { 901 ret = -ENOMEM; 902 goto out; 903 } 904 905 eb = path->nodes[0]; 906 slot = path->slots[0]; 907 item = btrfs_item_nr(eb, slot); 908 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 909 cur = 0; 910 len = 0; 911 total = btrfs_item_size(eb, item); 912 913 num = 0; 914 while (cur < total) { 915 name_len = btrfs_dir_name_len(eb, di); 916 data_len = btrfs_dir_data_len(eb, di); 917 type = btrfs_dir_type(eb, di); 918 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 919 920 if (name_len + data_len > buf_len) { 921 buf_len = PAGE_ALIGN(name_len + data_len); 922 if (buf_virtual) { 923 buf2 = vmalloc(buf_len); 924 if (!buf2) { 925 ret = -ENOMEM; 926 goto out; 927 } 928 vfree(buf); 929 } else { 930 buf2 = krealloc(buf, buf_len, GFP_NOFS); 931 if (!buf2) { 932 buf2 = vmalloc(buf_len); 933 if (!buf2) { 934 ret = -ENOMEM; 935 goto out; 936 } 937 kfree(buf); 938 buf_virtual = 1; 939 } 940 } 941 942 buf = buf2; 943 buf2 = NULL; 944 } 945 946 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 947 name_len + data_len); 948 949 len = sizeof(*di) + name_len + data_len; 950 di = (struct btrfs_dir_item *)((char *)di + len); 951 cur += len; 952 953 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 954 data_len, type, ctx); 955 if (ret < 0) 956 goto out; 957 if (ret) { 958 ret = 0; 959 goto out; 960 } 961 962 num++; 963 } 964 965 out: 966 if (buf_virtual) 967 vfree(buf); 968 else 969 kfree(buf); 970 return ret; 971 } 972 973 static int __copy_first_ref(int num, u64 dir, int index, 974 struct fs_path *p, void *ctx) 975 { 976 int ret; 977 struct fs_path *pt = ctx; 978 979 ret = fs_path_copy(pt, p); 980 if (ret < 0) 981 return ret; 982 983 /* we want the first only */ 984 return 1; 985 } 986 987 /* 988 * Retrieve the first path of an inode. If an inode has more then one 989 * ref/hardlink, this is ignored. 990 */ 991 static int get_inode_path(struct btrfs_root *root, 992 u64 ino, struct fs_path *path) 993 { 994 int ret; 995 struct btrfs_key key, found_key; 996 struct btrfs_path *p; 997 998 p = alloc_path_for_send(); 999 if (!p) 1000 return -ENOMEM; 1001 1002 fs_path_reset(path); 1003 1004 key.objectid = ino; 1005 key.type = BTRFS_INODE_REF_KEY; 1006 key.offset = 0; 1007 1008 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1009 if (ret < 0) 1010 goto out; 1011 if (ret) { 1012 ret = 1; 1013 goto out; 1014 } 1015 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1016 if (found_key.objectid != ino || 1017 (found_key.type != BTRFS_INODE_REF_KEY && 1018 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1019 ret = -ENOENT; 1020 goto out; 1021 } 1022 1023 ret = iterate_inode_ref(root, p, &found_key, 1, 1024 __copy_first_ref, path); 1025 if (ret < 0) 1026 goto out; 1027 ret = 0; 1028 1029 out: 1030 btrfs_free_path(p); 1031 return ret; 1032 } 1033 1034 struct backref_ctx { 1035 struct send_ctx *sctx; 1036 1037 /* number of total found references */ 1038 u64 found; 1039 1040 /* 1041 * used for clones found in send_root. clones found behind cur_objectid 1042 * and cur_offset are not considered as allowed clones. 1043 */ 1044 u64 cur_objectid; 1045 u64 cur_offset; 1046 1047 /* may be truncated in case it's the last extent in a file */ 1048 u64 extent_len; 1049 1050 /* Just to check for bugs in backref resolving */ 1051 int found_itself; 1052 }; 1053 1054 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1055 { 1056 u64 root = (u64)(uintptr_t)key; 1057 struct clone_root *cr = (struct clone_root *)elt; 1058 1059 if (root < cr->root->objectid) 1060 return -1; 1061 if (root > cr->root->objectid) 1062 return 1; 1063 return 0; 1064 } 1065 1066 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1067 { 1068 struct clone_root *cr1 = (struct clone_root *)e1; 1069 struct clone_root *cr2 = (struct clone_root *)e2; 1070 1071 if (cr1->root->objectid < cr2->root->objectid) 1072 return -1; 1073 if (cr1->root->objectid > cr2->root->objectid) 1074 return 1; 1075 return 0; 1076 } 1077 1078 /* 1079 * Called for every backref that is found for the current extent. 1080 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1081 */ 1082 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1083 { 1084 struct backref_ctx *bctx = ctx_; 1085 struct clone_root *found; 1086 int ret; 1087 u64 i_size; 1088 1089 /* First check if the root is in the list of accepted clone sources */ 1090 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1091 bctx->sctx->clone_roots_cnt, 1092 sizeof(struct clone_root), 1093 __clone_root_cmp_bsearch); 1094 if (!found) 1095 return 0; 1096 1097 if (found->root == bctx->sctx->send_root && 1098 ino == bctx->cur_objectid && 1099 offset == bctx->cur_offset) { 1100 bctx->found_itself = 1; 1101 } 1102 1103 /* 1104 * There are inodes that have extents that lie behind its i_size. Don't 1105 * accept clones from these extents. 1106 */ 1107 ret = get_inode_info(found->root, ino, &i_size, NULL, NULL, NULL, NULL, 1108 NULL); 1109 if (ret < 0) 1110 return ret; 1111 1112 if (offset + bctx->extent_len > i_size) 1113 return 0; 1114 1115 /* 1116 * Make sure we don't consider clones from send_root that are 1117 * behind the current inode/offset. 1118 */ 1119 if (found->root == bctx->sctx->send_root) { 1120 /* 1121 * TODO for the moment we don't accept clones from the inode 1122 * that is currently send. We may change this when 1123 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same 1124 * file. 1125 */ 1126 if (ino >= bctx->cur_objectid) 1127 return 0; 1128 #if 0 1129 if (ino > bctx->cur_objectid) 1130 return 0; 1131 if (offset + bctx->extent_len > bctx->cur_offset) 1132 return 0; 1133 #endif 1134 } 1135 1136 bctx->found++; 1137 found->found_refs++; 1138 if (ino < found->ino) { 1139 found->ino = ino; 1140 found->offset = offset; 1141 } else if (found->ino == ino) { 1142 /* 1143 * same extent found more then once in the same file. 1144 */ 1145 if (found->offset > offset + bctx->extent_len) 1146 found->offset = offset; 1147 } 1148 1149 return 0; 1150 } 1151 1152 /* 1153 * Given an inode, offset and extent item, it finds a good clone for a clone 1154 * instruction. Returns -ENOENT when none could be found. The function makes 1155 * sure that the returned clone is usable at the point where sending is at the 1156 * moment. This means, that no clones are accepted which lie behind the current 1157 * inode+offset. 1158 * 1159 * path must point to the extent item when called. 1160 */ 1161 static int find_extent_clone(struct send_ctx *sctx, 1162 struct btrfs_path *path, 1163 u64 ino, u64 data_offset, 1164 u64 ino_size, 1165 struct clone_root **found) 1166 { 1167 int ret; 1168 int extent_type; 1169 u64 logical; 1170 u64 disk_byte; 1171 u64 num_bytes; 1172 u64 extent_item_pos; 1173 u64 flags = 0; 1174 struct btrfs_file_extent_item *fi; 1175 struct extent_buffer *eb = path->nodes[0]; 1176 struct backref_ctx *backref_ctx = NULL; 1177 struct clone_root *cur_clone_root; 1178 struct btrfs_key found_key; 1179 struct btrfs_path *tmp_path; 1180 int compressed; 1181 u32 i; 1182 1183 tmp_path = alloc_path_for_send(); 1184 if (!tmp_path) 1185 return -ENOMEM; 1186 1187 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS); 1188 if (!backref_ctx) { 1189 ret = -ENOMEM; 1190 goto out; 1191 } 1192 1193 if (data_offset >= ino_size) { 1194 /* 1195 * There may be extents that lie behind the file's size. 1196 * I at least had this in combination with snapshotting while 1197 * writing large files. 1198 */ 1199 ret = 0; 1200 goto out; 1201 } 1202 1203 fi = btrfs_item_ptr(eb, path->slots[0], 1204 struct btrfs_file_extent_item); 1205 extent_type = btrfs_file_extent_type(eb, fi); 1206 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1207 ret = -ENOENT; 1208 goto out; 1209 } 1210 compressed = btrfs_file_extent_compression(eb, fi); 1211 1212 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1213 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1214 if (disk_byte == 0) { 1215 ret = -ENOENT; 1216 goto out; 1217 } 1218 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1219 1220 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path, 1221 &found_key, &flags); 1222 btrfs_release_path(tmp_path); 1223 1224 if (ret < 0) 1225 goto out; 1226 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1227 ret = -EIO; 1228 goto out; 1229 } 1230 1231 /* 1232 * Setup the clone roots. 1233 */ 1234 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1235 cur_clone_root = sctx->clone_roots + i; 1236 cur_clone_root->ino = (u64)-1; 1237 cur_clone_root->offset = 0; 1238 cur_clone_root->found_refs = 0; 1239 } 1240 1241 backref_ctx->sctx = sctx; 1242 backref_ctx->found = 0; 1243 backref_ctx->cur_objectid = ino; 1244 backref_ctx->cur_offset = data_offset; 1245 backref_ctx->found_itself = 0; 1246 backref_ctx->extent_len = num_bytes; 1247 1248 /* 1249 * The last extent of a file may be too large due to page alignment. 1250 * We need to adjust extent_len in this case so that the checks in 1251 * __iterate_backrefs work. 1252 */ 1253 if (data_offset + num_bytes >= ino_size) 1254 backref_ctx->extent_len = ino_size - data_offset; 1255 1256 /* 1257 * Now collect all backrefs. 1258 */ 1259 if (compressed == BTRFS_COMPRESS_NONE) 1260 extent_item_pos = logical - found_key.objectid; 1261 else 1262 extent_item_pos = 0; 1263 1264 extent_item_pos = logical - found_key.objectid; 1265 ret = iterate_extent_inodes(sctx->send_root->fs_info, 1266 found_key.objectid, extent_item_pos, 1, 1267 __iterate_backrefs, backref_ctx); 1268 1269 if (ret < 0) 1270 goto out; 1271 1272 if (!backref_ctx->found_itself) { 1273 /* found a bug in backref code? */ 1274 ret = -EIO; 1275 printk(KERN_ERR "btrfs: ERROR did not find backref in " 1276 "send_root. inode=%llu, offset=%llu, " 1277 "disk_byte=%llu found extent=%llu\n", 1278 ino, data_offset, disk_byte, found_key.objectid); 1279 goto out; 1280 } 1281 1282 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, " 1283 "ino=%llu, " 1284 "num_bytes=%llu, logical=%llu\n", 1285 data_offset, ino, num_bytes, logical); 1286 1287 if (!backref_ctx->found) 1288 verbose_printk("btrfs: no clones found\n"); 1289 1290 cur_clone_root = NULL; 1291 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1292 if (sctx->clone_roots[i].found_refs) { 1293 if (!cur_clone_root) 1294 cur_clone_root = sctx->clone_roots + i; 1295 else if (sctx->clone_roots[i].root == sctx->send_root) 1296 /* prefer clones from send_root over others */ 1297 cur_clone_root = sctx->clone_roots + i; 1298 } 1299 1300 } 1301 1302 if (cur_clone_root) { 1303 *found = cur_clone_root; 1304 ret = 0; 1305 } else { 1306 ret = -ENOENT; 1307 } 1308 1309 out: 1310 btrfs_free_path(tmp_path); 1311 kfree(backref_ctx); 1312 return ret; 1313 } 1314 1315 static int read_symlink(struct btrfs_root *root, 1316 u64 ino, 1317 struct fs_path *dest) 1318 { 1319 int ret; 1320 struct btrfs_path *path; 1321 struct btrfs_key key; 1322 struct btrfs_file_extent_item *ei; 1323 u8 type; 1324 u8 compression; 1325 unsigned long off; 1326 int len; 1327 1328 path = alloc_path_for_send(); 1329 if (!path) 1330 return -ENOMEM; 1331 1332 key.objectid = ino; 1333 key.type = BTRFS_EXTENT_DATA_KEY; 1334 key.offset = 0; 1335 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1336 if (ret < 0) 1337 goto out; 1338 BUG_ON(ret); 1339 1340 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1341 struct btrfs_file_extent_item); 1342 type = btrfs_file_extent_type(path->nodes[0], ei); 1343 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1344 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1345 BUG_ON(compression); 1346 1347 off = btrfs_file_extent_inline_start(ei); 1348 len = btrfs_file_extent_inline_len(path->nodes[0], ei); 1349 1350 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1351 1352 out: 1353 btrfs_free_path(path); 1354 return ret; 1355 } 1356 1357 /* 1358 * Helper function to generate a file name that is unique in the root of 1359 * send_root and parent_root. This is used to generate names for orphan inodes. 1360 */ 1361 static int gen_unique_name(struct send_ctx *sctx, 1362 u64 ino, u64 gen, 1363 struct fs_path *dest) 1364 { 1365 int ret = 0; 1366 struct btrfs_path *path; 1367 struct btrfs_dir_item *di; 1368 char tmp[64]; 1369 int len; 1370 u64 idx = 0; 1371 1372 path = alloc_path_for_send(); 1373 if (!path) 1374 return -ENOMEM; 1375 1376 while (1) { 1377 len = snprintf(tmp, sizeof(tmp) - 1, "o%llu-%llu-%llu", 1378 ino, gen, idx); 1379 if (len >= sizeof(tmp)) { 1380 /* should really not happen */ 1381 ret = -EOVERFLOW; 1382 goto out; 1383 } 1384 1385 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1386 path, BTRFS_FIRST_FREE_OBJECTID, 1387 tmp, strlen(tmp), 0); 1388 btrfs_release_path(path); 1389 if (IS_ERR(di)) { 1390 ret = PTR_ERR(di); 1391 goto out; 1392 } 1393 if (di) { 1394 /* not unique, try again */ 1395 idx++; 1396 continue; 1397 } 1398 1399 if (!sctx->parent_root) { 1400 /* unique */ 1401 ret = 0; 1402 break; 1403 } 1404 1405 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1406 path, BTRFS_FIRST_FREE_OBJECTID, 1407 tmp, strlen(tmp), 0); 1408 btrfs_release_path(path); 1409 if (IS_ERR(di)) { 1410 ret = PTR_ERR(di); 1411 goto out; 1412 } 1413 if (di) { 1414 /* not unique, try again */ 1415 idx++; 1416 continue; 1417 } 1418 /* unique */ 1419 break; 1420 } 1421 1422 ret = fs_path_add(dest, tmp, strlen(tmp)); 1423 1424 out: 1425 btrfs_free_path(path); 1426 return ret; 1427 } 1428 1429 enum inode_state { 1430 inode_state_no_change, 1431 inode_state_will_create, 1432 inode_state_did_create, 1433 inode_state_will_delete, 1434 inode_state_did_delete, 1435 }; 1436 1437 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1438 { 1439 int ret; 1440 int left_ret; 1441 int right_ret; 1442 u64 left_gen; 1443 u64 right_gen; 1444 1445 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1446 NULL, NULL); 1447 if (ret < 0 && ret != -ENOENT) 1448 goto out; 1449 left_ret = ret; 1450 1451 if (!sctx->parent_root) { 1452 right_ret = -ENOENT; 1453 } else { 1454 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1455 NULL, NULL, NULL, NULL); 1456 if (ret < 0 && ret != -ENOENT) 1457 goto out; 1458 right_ret = ret; 1459 } 1460 1461 if (!left_ret && !right_ret) { 1462 if (left_gen == gen && right_gen == gen) { 1463 ret = inode_state_no_change; 1464 } else if (left_gen == gen) { 1465 if (ino < sctx->send_progress) 1466 ret = inode_state_did_create; 1467 else 1468 ret = inode_state_will_create; 1469 } else if (right_gen == gen) { 1470 if (ino < sctx->send_progress) 1471 ret = inode_state_did_delete; 1472 else 1473 ret = inode_state_will_delete; 1474 } else { 1475 ret = -ENOENT; 1476 } 1477 } else if (!left_ret) { 1478 if (left_gen == gen) { 1479 if (ino < sctx->send_progress) 1480 ret = inode_state_did_create; 1481 else 1482 ret = inode_state_will_create; 1483 } else { 1484 ret = -ENOENT; 1485 } 1486 } else if (!right_ret) { 1487 if (right_gen == gen) { 1488 if (ino < sctx->send_progress) 1489 ret = inode_state_did_delete; 1490 else 1491 ret = inode_state_will_delete; 1492 } else { 1493 ret = -ENOENT; 1494 } 1495 } else { 1496 ret = -ENOENT; 1497 } 1498 1499 out: 1500 return ret; 1501 } 1502 1503 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1504 { 1505 int ret; 1506 1507 ret = get_cur_inode_state(sctx, ino, gen); 1508 if (ret < 0) 1509 goto out; 1510 1511 if (ret == inode_state_no_change || 1512 ret == inode_state_did_create || 1513 ret == inode_state_will_delete) 1514 ret = 1; 1515 else 1516 ret = 0; 1517 1518 out: 1519 return ret; 1520 } 1521 1522 /* 1523 * Helper function to lookup a dir item in a dir. 1524 */ 1525 static int lookup_dir_item_inode(struct btrfs_root *root, 1526 u64 dir, const char *name, int name_len, 1527 u64 *found_inode, 1528 u8 *found_type) 1529 { 1530 int ret = 0; 1531 struct btrfs_dir_item *di; 1532 struct btrfs_key key; 1533 struct btrfs_path *path; 1534 1535 path = alloc_path_for_send(); 1536 if (!path) 1537 return -ENOMEM; 1538 1539 di = btrfs_lookup_dir_item(NULL, root, path, 1540 dir, name, name_len, 0); 1541 if (!di) { 1542 ret = -ENOENT; 1543 goto out; 1544 } 1545 if (IS_ERR(di)) { 1546 ret = PTR_ERR(di); 1547 goto out; 1548 } 1549 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1550 *found_inode = key.objectid; 1551 *found_type = btrfs_dir_type(path->nodes[0], di); 1552 1553 out: 1554 btrfs_free_path(path); 1555 return ret; 1556 } 1557 1558 /* 1559 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1560 * generation of the parent dir and the name of the dir entry. 1561 */ 1562 static int get_first_ref(struct btrfs_root *root, u64 ino, 1563 u64 *dir, u64 *dir_gen, struct fs_path *name) 1564 { 1565 int ret; 1566 struct btrfs_key key; 1567 struct btrfs_key found_key; 1568 struct btrfs_path *path; 1569 int len; 1570 u64 parent_dir; 1571 1572 path = alloc_path_for_send(); 1573 if (!path) 1574 return -ENOMEM; 1575 1576 key.objectid = ino; 1577 key.type = BTRFS_INODE_REF_KEY; 1578 key.offset = 0; 1579 1580 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1581 if (ret < 0) 1582 goto out; 1583 if (!ret) 1584 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1585 path->slots[0]); 1586 if (ret || found_key.objectid != ino || 1587 (found_key.type != BTRFS_INODE_REF_KEY && 1588 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1589 ret = -ENOENT; 1590 goto out; 1591 } 1592 1593 if (key.type == BTRFS_INODE_REF_KEY) { 1594 struct btrfs_inode_ref *iref; 1595 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1596 struct btrfs_inode_ref); 1597 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1598 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1599 (unsigned long)(iref + 1), 1600 len); 1601 parent_dir = found_key.offset; 1602 } else { 1603 struct btrfs_inode_extref *extref; 1604 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1605 struct btrfs_inode_extref); 1606 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1607 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1608 (unsigned long)&extref->name, len); 1609 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1610 } 1611 if (ret < 0) 1612 goto out; 1613 btrfs_release_path(path); 1614 1615 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, NULL, 1616 NULL, NULL); 1617 if (ret < 0) 1618 goto out; 1619 1620 *dir = parent_dir; 1621 1622 out: 1623 btrfs_free_path(path); 1624 return ret; 1625 } 1626 1627 static int is_first_ref(struct btrfs_root *root, 1628 u64 ino, u64 dir, 1629 const char *name, int name_len) 1630 { 1631 int ret; 1632 struct fs_path *tmp_name; 1633 u64 tmp_dir; 1634 u64 tmp_dir_gen; 1635 1636 tmp_name = fs_path_alloc(); 1637 if (!tmp_name) 1638 return -ENOMEM; 1639 1640 ret = get_first_ref(root, ino, &tmp_dir, &tmp_dir_gen, tmp_name); 1641 if (ret < 0) 1642 goto out; 1643 1644 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1645 ret = 0; 1646 goto out; 1647 } 1648 1649 ret = !memcmp(tmp_name->start, name, name_len); 1650 1651 out: 1652 fs_path_free(tmp_name); 1653 return ret; 1654 } 1655 1656 /* 1657 * Used by process_recorded_refs to determine if a new ref would overwrite an 1658 * already existing ref. In case it detects an overwrite, it returns the 1659 * inode/gen in who_ino/who_gen. 1660 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1661 * to make sure later references to the overwritten inode are possible. 1662 * Orphanizing is however only required for the first ref of an inode. 1663 * process_recorded_refs does an additional is_first_ref check to see if 1664 * orphanizing is really required. 1665 */ 1666 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1667 const char *name, int name_len, 1668 u64 *who_ino, u64 *who_gen) 1669 { 1670 int ret = 0; 1671 u64 other_inode = 0; 1672 u8 other_type = 0; 1673 1674 if (!sctx->parent_root) 1675 goto out; 1676 1677 ret = is_inode_existent(sctx, dir, dir_gen); 1678 if (ret <= 0) 1679 goto out; 1680 1681 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1682 &other_inode, &other_type); 1683 if (ret < 0 && ret != -ENOENT) 1684 goto out; 1685 if (ret) { 1686 ret = 0; 1687 goto out; 1688 } 1689 1690 /* 1691 * Check if the overwritten ref was already processed. If yes, the ref 1692 * was already unlinked/moved, so we can safely assume that we will not 1693 * overwrite anything at this point in time. 1694 */ 1695 if (other_inode > sctx->send_progress) { 1696 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1697 who_gen, NULL, NULL, NULL, NULL); 1698 if (ret < 0) 1699 goto out; 1700 1701 ret = 1; 1702 *who_ino = other_inode; 1703 } else { 1704 ret = 0; 1705 } 1706 1707 out: 1708 return ret; 1709 } 1710 1711 /* 1712 * Checks if the ref was overwritten by an already processed inode. This is 1713 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1714 * thus the orphan name needs be used. 1715 * process_recorded_refs also uses it to avoid unlinking of refs that were 1716 * overwritten. 1717 */ 1718 static int did_overwrite_ref(struct send_ctx *sctx, 1719 u64 dir, u64 dir_gen, 1720 u64 ino, u64 ino_gen, 1721 const char *name, int name_len) 1722 { 1723 int ret = 0; 1724 u64 gen; 1725 u64 ow_inode; 1726 u8 other_type; 1727 1728 if (!sctx->parent_root) 1729 goto out; 1730 1731 ret = is_inode_existent(sctx, dir, dir_gen); 1732 if (ret <= 0) 1733 goto out; 1734 1735 /* check if the ref was overwritten by another ref */ 1736 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1737 &ow_inode, &other_type); 1738 if (ret < 0 && ret != -ENOENT) 1739 goto out; 1740 if (ret) { 1741 /* was never and will never be overwritten */ 1742 ret = 0; 1743 goto out; 1744 } 1745 1746 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1747 NULL, NULL); 1748 if (ret < 0) 1749 goto out; 1750 1751 if (ow_inode == ino && gen == ino_gen) { 1752 ret = 0; 1753 goto out; 1754 } 1755 1756 /* we know that it is or will be overwritten. check this now */ 1757 if (ow_inode < sctx->send_progress) 1758 ret = 1; 1759 else 1760 ret = 0; 1761 1762 out: 1763 return ret; 1764 } 1765 1766 /* 1767 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1768 * that got overwritten. This is used by process_recorded_refs to determine 1769 * if it has to use the path as returned by get_cur_path or the orphan name. 1770 */ 1771 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1772 { 1773 int ret = 0; 1774 struct fs_path *name = NULL; 1775 u64 dir; 1776 u64 dir_gen; 1777 1778 if (!sctx->parent_root) 1779 goto out; 1780 1781 name = fs_path_alloc(); 1782 if (!name) 1783 return -ENOMEM; 1784 1785 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 1786 if (ret < 0) 1787 goto out; 1788 1789 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 1790 name->start, fs_path_len(name)); 1791 1792 out: 1793 fs_path_free(name); 1794 return ret; 1795 } 1796 1797 /* 1798 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 1799 * so we need to do some special handling in case we have clashes. This function 1800 * takes care of this with the help of name_cache_entry::radix_list. 1801 * In case of error, nce is kfreed. 1802 */ 1803 static int name_cache_insert(struct send_ctx *sctx, 1804 struct name_cache_entry *nce) 1805 { 1806 int ret = 0; 1807 struct list_head *nce_head; 1808 1809 nce_head = radix_tree_lookup(&sctx->name_cache, 1810 (unsigned long)nce->ino); 1811 if (!nce_head) { 1812 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS); 1813 if (!nce_head) { 1814 kfree(nce); 1815 return -ENOMEM; 1816 } 1817 INIT_LIST_HEAD(nce_head); 1818 1819 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 1820 if (ret < 0) { 1821 kfree(nce_head); 1822 kfree(nce); 1823 return ret; 1824 } 1825 } 1826 list_add_tail(&nce->radix_list, nce_head); 1827 list_add_tail(&nce->list, &sctx->name_cache_list); 1828 sctx->name_cache_size++; 1829 1830 return ret; 1831 } 1832 1833 static void name_cache_delete(struct send_ctx *sctx, 1834 struct name_cache_entry *nce) 1835 { 1836 struct list_head *nce_head; 1837 1838 nce_head = radix_tree_lookup(&sctx->name_cache, 1839 (unsigned long)nce->ino); 1840 BUG_ON(!nce_head); 1841 1842 list_del(&nce->radix_list); 1843 list_del(&nce->list); 1844 sctx->name_cache_size--; 1845 1846 if (list_empty(nce_head)) { 1847 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 1848 kfree(nce_head); 1849 } 1850 } 1851 1852 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 1853 u64 ino, u64 gen) 1854 { 1855 struct list_head *nce_head; 1856 struct name_cache_entry *cur; 1857 1858 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 1859 if (!nce_head) 1860 return NULL; 1861 1862 list_for_each_entry(cur, nce_head, radix_list) { 1863 if (cur->ino == ino && cur->gen == gen) 1864 return cur; 1865 } 1866 return NULL; 1867 } 1868 1869 /* 1870 * Removes the entry from the list and adds it back to the end. This marks the 1871 * entry as recently used so that name_cache_clean_unused does not remove it. 1872 */ 1873 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 1874 { 1875 list_del(&nce->list); 1876 list_add_tail(&nce->list, &sctx->name_cache_list); 1877 } 1878 1879 /* 1880 * Remove some entries from the beginning of name_cache_list. 1881 */ 1882 static void name_cache_clean_unused(struct send_ctx *sctx) 1883 { 1884 struct name_cache_entry *nce; 1885 1886 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 1887 return; 1888 1889 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 1890 nce = list_entry(sctx->name_cache_list.next, 1891 struct name_cache_entry, list); 1892 name_cache_delete(sctx, nce); 1893 kfree(nce); 1894 } 1895 } 1896 1897 static void name_cache_free(struct send_ctx *sctx) 1898 { 1899 struct name_cache_entry *nce; 1900 1901 while (!list_empty(&sctx->name_cache_list)) { 1902 nce = list_entry(sctx->name_cache_list.next, 1903 struct name_cache_entry, list); 1904 name_cache_delete(sctx, nce); 1905 kfree(nce); 1906 } 1907 } 1908 1909 /* 1910 * Used by get_cur_path for each ref up to the root. 1911 * Returns 0 if it succeeded. 1912 * Returns 1 if the inode is not existent or got overwritten. In that case, the 1913 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 1914 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 1915 * Returns <0 in case of error. 1916 */ 1917 static int __get_cur_name_and_parent(struct send_ctx *sctx, 1918 u64 ino, u64 gen, 1919 u64 *parent_ino, 1920 u64 *parent_gen, 1921 struct fs_path *dest) 1922 { 1923 int ret; 1924 int nce_ret; 1925 struct btrfs_path *path = NULL; 1926 struct name_cache_entry *nce = NULL; 1927 1928 /* 1929 * First check if we already did a call to this function with the same 1930 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 1931 * return the cached result. 1932 */ 1933 nce = name_cache_search(sctx, ino, gen); 1934 if (nce) { 1935 if (ino < sctx->send_progress && nce->need_later_update) { 1936 name_cache_delete(sctx, nce); 1937 kfree(nce); 1938 nce = NULL; 1939 } else { 1940 name_cache_used(sctx, nce); 1941 *parent_ino = nce->parent_ino; 1942 *parent_gen = nce->parent_gen; 1943 ret = fs_path_add(dest, nce->name, nce->name_len); 1944 if (ret < 0) 1945 goto out; 1946 ret = nce->ret; 1947 goto out; 1948 } 1949 } 1950 1951 path = alloc_path_for_send(); 1952 if (!path) 1953 return -ENOMEM; 1954 1955 /* 1956 * If the inode is not existent yet, add the orphan name and return 1. 1957 * This should only happen for the parent dir that we determine in 1958 * __record_new_ref 1959 */ 1960 ret = is_inode_existent(sctx, ino, gen); 1961 if (ret < 0) 1962 goto out; 1963 1964 if (!ret) { 1965 ret = gen_unique_name(sctx, ino, gen, dest); 1966 if (ret < 0) 1967 goto out; 1968 ret = 1; 1969 goto out_cache; 1970 } 1971 1972 /* 1973 * Depending on whether the inode was already processed or not, use 1974 * send_root or parent_root for ref lookup. 1975 */ 1976 if (ino < sctx->send_progress) 1977 ret = get_first_ref(sctx->send_root, ino, 1978 parent_ino, parent_gen, dest); 1979 else 1980 ret = get_first_ref(sctx->parent_root, ino, 1981 parent_ino, parent_gen, dest); 1982 if (ret < 0) 1983 goto out; 1984 1985 /* 1986 * Check if the ref was overwritten by an inode's ref that was processed 1987 * earlier. If yes, treat as orphan and return 1. 1988 */ 1989 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 1990 dest->start, dest->end - dest->start); 1991 if (ret < 0) 1992 goto out; 1993 if (ret) { 1994 fs_path_reset(dest); 1995 ret = gen_unique_name(sctx, ino, gen, dest); 1996 if (ret < 0) 1997 goto out; 1998 ret = 1; 1999 } 2000 2001 out_cache: 2002 /* 2003 * Store the result of the lookup in the name cache. 2004 */ 2005 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS); 2006 if (!nce) { 2007 ret = -ENOMEM; 2008 goto out; 2009 } 2010 2011 nce->ino = ino; 2012 nce->gen = gen; 2013 nce->parent_ino = *parent_ino; 2014 nce->parent_gen = *parent_gen; 2015 nce->name_len = fs_path_len(dest); 2016 nce->ret = ret; 2017 strcpy(nce->name, dest->start); 2018 2019 if (ino < sctx->send_progress) 2020 nce->need_later_update = 0; 2021 else 2022 nce->need_later_update = 1; 2023 2024 nce_ret = name_cache_insert(sctx, nce); 2025 if (nce_ret < 0) 2026 ret = nce_ret; 2027 name_cache_clean_unused(sctx); 2028 2029 out: 2030 btrfs_free_path(path); 2031 return ret; 2032 } 2033 2034 /* 2035 * Magic happens here. This function returns the first ref to an inode as it 2036 * would look like while receiving the stream at this point in time. 2037 * We walk the path up to the root. For every inode in between, we check if it 2038 * was already processed/sent. If yes, we continue with the parent as found 2039 * in send_root. If not, we continue with the parent as found in parent_root. 2040 * If we encounter an inode that was deleted at this point in time, we use the 2041 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2042 * that were not created yet and overwritten inodes/refs. 2043 * 2044 * When do we have have orphan inodes: 2045 * 1. When an inode is freshly created and thus no valid refs are available yet 2046 * 2. When a directory lost all it's refs (deleted) but still has dir items 2047 * inside which were not processed yet (pending for move/delete). If anyone 2048 * tried to get the path to the dir items, it would get a path inside that 2049 * orphan directory. 2050 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2051 * of an unprocessed inode. If in that case the first ref would be 2052 * overwritten, the overwritten inode gets "orphanized". Later when we 2053 * process this overwritten inode, it is restored at a new place by moving 2054 * the orphan inode. 2055 * 2056 * sctx->send_progress tells this function at which point in time receiving 2057 * would be. 2058 */ 2059 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2060 struct fs_path *dest) 2061 { 2062 int ret = 0; 2063 struct fs_path *name = NULL; 2064 u64 parent_inode = 0; 2065 u64 parent_gen = 0; 2066 int stop = 0; 2067 2068 name = fs_path_alloc(); 2069 if (!name) { 2070 ret = -ENOMEM; 2071 goto out; 2072 } 2073 2074 dest->reversed = 1; 2075 fs_path_reset(dest); 2076 2077 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2078 fs_path_reset(name); 2079 2080 ret = __get_cur_name_and_parent(sctx, ino, gen, 2081 &parent_inode, &parent_gen, name); 2082 if (ret < 0) 2083 goto out; 2084 if (ret) 2085 stop = 1; 2086 2087 ret = fs_path_add_path(dest, name); 2088 if (ret < 0) 2089 goto out; 2090 2091 ino = parent_inode; 2092 gen = parent_gen; 2093 } 2094 2095 out: 2096 fs_path_free(name); 2097 if (!ret) 2098 fs_path_unreverse(dest); 2099 return ret; 2100 } 2101 2102 /* 2103 * Called for regular files when sending extents data. Opens a struct file 2104 * to read from the file. 2105 */ 2106 static int open_cur_inode_file(struct send_ctx *sctx) 2107 { 2108 int ret = 0; 2109 struct btrfs_key key; 2110 struct path path; 2111 struct inode *inode; 2112 struct dentry *dentry; 2113 struct file *filp; 2114 int new = 0; 2115 2116 if (sctx->cur_inode_filp) 2117 goto out; 2118 2119 key.objectid = sctx->cur_ino; 2120 key.type = BTRFS_INODE_ITEM_KEY; 2121 key.offset = 0; 2122 2123 inode = btrfs_iget(sctx->send_root->fs_info->sb, &key, sctx->send_root, 2124 &new); 2125 if (IS_ERR(inode)) { 2126 ret = PTR_ERR(inode); 2127 goto out; 2128 } 2129 2130 dentry = d_obtain_alias(inode); 2131 inode = NULL; 2132 if (IS_ERR(dentry)) { 2133 ret = PTR_ERR(dentry); 2134 goto out; 2135 } 2136 2137 path.mnt = sctx->mnt; 2138 path.dentry = dentry; 2139 filp = dentry_open(&path, O_RDONLY | O_LARGEFILE, current_cred()); 2140 dput(dentry); 2141 dentry = NULL; 2142 if (IS_ERR(filp)) { 2143 ret = PTR_ERR(filp); 2144 goto out; 2145 } 2146 sctx->cur_inode_filp = filp; 2147 2148 out: 2149 /* 2150 * no xxxput required here as every vfs op 2151 * does it by itself on failure 2152 */ 2153 return ret; 2154 } 2155 2156 /* 2157 * Closes the struct file that was created in open_cur_inode_file 2158 */ 2159 static int close_cur_inode_file(struct send_ctx *sctx) 2160 { 2161 int ret = 0; 2162 2163 if (!sctx->cur_inode_filp) 2164 goto out; 2165 2166 ret = filp_close(sctx->cur_inode_filp, NULL); 2167 sctx->cur_inode_filp = NULL; 2168 2169 out: 2170 return ret; 2171 } 2172 2173 /* 2174 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2175 */ 2176 static int send_subvol_begin(struct send_ctx *sctx) 2177 { 2178 int ret; 2179 struct btrfs_root *send_root = sctx->send_root; 2180 struct btrfs_root *parent_root = sctx->parent_root; 2181 struct btrfs_path *path; 2182 struct btrfs_key key; 2183 struct btrfs_root_ref *ref; 2184 struct extent_buffer *leaf; 2185 char *name = NULL; 2186 int namelen; 2187 2188 path = alloc_path_for_send(); 2189 if (!path) 2190 return -ENOMEM; 2191 2192 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS); 2193 if (!name) { 2194 btrfs_free_path(path); 2195 return -ENOMEM; 2196 } 2197 2198 key.objectid = send_root->objectid; 2199 key.type = BTRFS_ROOT_BACKREF_KEY; 2200 key.offset = 0; 2201 2202 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2203 &key, path, 1, 0); 2204 if (ret < 0) 2205 goto out; 2206 if (ret) { 2207 ret = -ENOENT; 2208 goto out; 2209 } 2210 2211 leaf = path->nodes[0]; 2212 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2213 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2214 key.objectid != send_root->objectid) { 2215 ret = -ENOENT; 2216 goto out; 2217 } 2218 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2219 namelen = btrfs_root_ref_name_len(leaf, ref); 2220 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2221 btrfs_release_path(path); 2222 2223 if (parent_root) { 2224 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2225 if (ret < 0) 2226 goto out; 2227 } else { 2228 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2229 if (ret < 0) 2230 goto out; 2231 } 2232 2233 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2234 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2235 sctx->send_root->root_item.uuid); 2236 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2237 sctx->send_root->root_item.ctransid); 2238 if (parent_root) { 2239 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2240 sctx->parent_root->root_item.uuid); 2241 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2242 sctx->parent_root->root_item.ctransid); 2243 } 2244 2245 ret = send_cmd(sctx); 2246 2247 tlv_put_failure: 2248 out: 2249 btrfs_free_path(path); 2250 kfree(name); 2251 return ret; 2252 } 2253 2254 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2255 { 2256 int ret = 0; 2257 struct fs_path *p; 2258 2259 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size); 2260 2261 p = fs_path_alloc(); 2262 if (!p) 2263 return -ENOMEM; 2264 2265 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2266 if (ret < 0) 2267 goto out; 2268 2269 ret = get_cur_path(sctx, ino, gen, p); 2270 if (ret < 0) 2271 goto out; 2272 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2273 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2274 2275 ret = send_cmd(sctx); 2276 2277 tlv_put_failure: 2278 out: 2279 fs_path_free(p); 2280 return ret; 2281 } 2282 2283 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2284 { 2285 int ret = 0; 2286 struct fs_path *p; 2287 2288 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode); 2289 2290 p = fs_path_alloc(); 2291 if (!p) 2292 return -ENOMEM; 2293 2294 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2295 if (ret < 0) 2296 goto out; 2297 2298 ret = get_cur_path(sctx, ino, gen, p); 2299 if (ret < 0) 2300 goto out; 2301 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2302 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2303 2304 ret = send_cmd(sctx); 2305 2306 tlv_put_failure: 2307 out: 2308 fs_path_free(p); 2309 return ret; 2310 } 2311 2312 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2313 { 2314 int ret = 0; 2315 struct fs_path *p; 2316 2317 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid); 2318 2319 p = fs_path_alloc(); 2320 if (!p) 2321 return -ENOMEM; 2322 2323 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2324 if (ret < 0) 2325 goto out; 2326 2327 ret = get_cur_path(sctx, ino, gen, p); 2328 if (ret < 0) 2329 goto out; 2330 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2331 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2332 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2333 2334 ret = send_cmd(sctx); 2335 2336 tlv_put_failure: 2337 out: 2338 fs_path_free(p); 2339 return ret; 2340 } 2341 2342 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2343 { 2344 int ret = 0; 2345 struct fs_path *p = NULL; 2346 struct btrfs_inode_item *ii; 2347 struct btrfs_path *path = NULL; 2348 struct extent_buffer *eb; 2349 struct btrfs_key key; 2350 int slot; 2351 2352 verbose_printk("btrfs: send_utimes %llu\n", ino); 2353 2354 p = fs_path_alloc(); 2355 if (!p) 2356 return -ENOMEM; 2357 2358 path = alloc_path_for_send(); 2359 if (!path) { 2360 ret = -ENOMEM; 2361 goto out; 2362 } 2363 2364 key.objectid = ino; 2365 key.type = BTRFS_INODE_ITEM_KEY; 2366 key.offset = 0; 2367 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2368 if (ret < 0) 2369 goto out; 2370 2371 eb = path->nodes[0]; 2372 slot = path->slots[0]; 2373 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2374 2375 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2376 if (ret < 0) 2377 goto out; 2378 2379 ret = get_cur_path(sctx, ino, gen, p); 2380 if (ret < 0) 2381 goto out; 2382 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2383 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, 2384 btrfs_inode_atime(ii)); 2385 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, 2386 btrfs_inode_mtime(ii)); 2387 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, 2388 btrfs_inode_ctime(ii)); 2389 /* TODO Add otime support when the otime patches get into upstream */ 2390 2391 ret = send_cmd(sctx); 2392 2393 tlv_put_failure: 2394 out: 2395 fs_path_free(p); 2396 btrfs_free_path(path); 2397 return ret; 2398 } 2399 2400 /* 2401 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2402 * a valid path yet because we did not process the refs yet. So, the inode 2403 * is created as orphan. 2404 */ 2405 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2406 { 2407 int ret = 0; 2408 struct fs_path *p; 2409 int cmd; 2410 u64 gen; 2411 u64 mode; 2412 u64 rdev; 2413 2414 verbose_printk("btrfs: send_create_inode %llu\n", ino); 2415 2416 p = fs_path_alloc(); 2417 if (!p) 2418 return -ENOMEM; 2419 2420 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, NULL, 2421 NULL, &rdev); 2422 if (ret < 0) 2423 goto out; 2424 2425 if (S_ISREG(mode)) { 2426 cmd = BTRFS_SEND_C_MKFILE; 2427 } else if (S_ISDIR(mode)) { 2428 cmd = BTRFS_SEND_C_MKDIR; 2429 } else if (S_ISLNK(mode)) { 2430 cmd = BTRFS_SEND_C_SYMLINK; 2431 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2432 cmd = BTRFS_SEND_C_MKNOD; 2433 } else if (S_ISFIFO(mode)) { 2434 cmd = BTRFS_SEND_C_MKFIFO; 2435 } else if (S_ISSOCK(mode)) { 2436 cmd = BTRFS_SEND_C_MKSOCK; 2437 } else { 2438 printk(KERN_WARNING "btrfs: unexpected inode type %o", 2439 (int)(mode & S_IFMT)); 2440 ret = -ENOTSUPP; 2441 goto out; 2442 } 2443 2444 ret = begin_cmd(sctx, cmd); 2445 if (ret < 0) 2446 goto out; 2447 2448 ret = gen_unique_name(sctx, ino, gen, p); 2449 if (ret < 0) 2450 goto out; 2451 2452 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2453 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2454 2455 if (S_ISLNK(mode)) { 2456 fs_path_reset(p); 2457 ret = read_symlink(sctx->send_root, ino, p); 2458 if (ret < 0) 2459 goto out; 2460 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2461 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2462 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2463 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2464 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2465 } 2466 2467 ret = send_cmd(sctx); 2468 if (ret < 0) 2469 goto out; 2470 2471 2472 tlv_put_failure: 2473 out: 2474 fs_path_free(p); 2475 return ret; 2476 } 2477 2478 /* 2479 * We need some special handling for inodes that get processed before the parent 2480 * directory got created. See process_recorded_refs for details. 2481 * This function does the check if we already created the dir out of order. 2482 */ 2483 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2484 { 2485 int ret = 0; 2486 struct btrfs_path *path = NULL; 2487 struct btrfs_key key; 2488 struct btrfs_key found_key; 2489 struct btrfs_key di_key; 2490 struct extent_buffer *eb; 2491 struct btrfs_dir_item *di; 2492 int slot; 2493 2494 path = alloc_path_for_send(); 2495 if (!path) { 2496 ret = -ENOMEM; 2497 goto out; 2498 } 2499 2500 key.objectid = dir; 2501 key.type = BTRFS_DIR_INDEX_KEY; 2502 key.offset = 0; 2503 while (1) { 2504 ret = btrfs_search_slot_for_read(sctx->send_root, &key, path, 2505 1, 0); 2506 if (ret < 0) 2507 goto out; 2508 if (!ret) { 2509 eb = path->nodes[0]; 2510 slot = path->slots[0]; 2511 btrfs_item_key_to_cpu(eb, &found_key, slot); 2512 } 2513 if (ret || found_key.objectid != key.objectid || 2514 found_key.type != key.type) { 2515 ret = 0; 2516 goto out; 2517 } 2518 2519 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2520 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2521 2522 if (di_key.objectid < sctx->send_progress) { 2523 ret = 1; 2524 goto out; 2525 } 2526 2527 key.offset = found_key.offset + 1; 2528 btrfs_release_path(path); 2529 } 2530 2531 out: 2532 btrfs_free_path(path); 2533 return ret; 2534 } 2535 2536 /* 2537 * Only creates the inode if it is: 2538 * 1. Not a directory 2539 * 2. Or a directory which was not created already due to out of order 2540 * directories. See did_create_dir and process_recorded_refs for details. 2541 */ 2542 static int send_create_inode_if_needed(struct send_ctx *sctx) 2543 { 2544 int ret; 2545 2546 if (S_ISDIR(sctx->cur_inode_mode)) { 2547 ret = did_create_dir(sctx, sctx->cur_ino); 2548 if (ret < 0) 2549 goto out; 2550 if (ret) { 2551 ret = 0; 2552 goto out; 2553 } 2554 } 2555 2556 ret = send_create_inode(sctx, sctx->cur_ino); 2557 if (ret < 0) 2558 goto out; 2559 2560 out: 2561 return ret; 2562 } 2563 2564 struct recorded_ref { 2565 struct list_head list; 2566 char *dir_path; 2567 char *name; 2568 struct fs_path *full_path; 2569 u64 dir; 2570 u64 dir_gen; 2571 int dir_path_len; 2572 int name_len; 2573 }; 2574 2575 /* 2576 * We need to process new refs before deleted refs, but compare_tree gives us 2577 * everything mixed. So we first record all refs and later process them. 2578 * This function is a helper to record one ref. 2579 */ 2580 static int record_ref(struct list_head *head, u64 dir, 2581 u64 dir_gen, struct fs_path *path) 2582 { 2583 struct recorded_ref *ref; 2584 char *tmp; 2585 2586 ref = kmalloc(sizeof(*ref), GFP_NOFS); 2587 if (!ref) 2588 return -ENOMEM; 2589 2590 ref->dir = dir; 2591 ref->dir_gen = dir_gen; 2592 ref->full_path = path; 2593 2594 tmp = strrchr(ref->full_path->start, '/'); 2595 if (!tmp) { 2596 ref->name_len = ref->full_path->end - ref->full_path->start; 2597 ref->name = ref->full_path->start; 2598 ref->dir_path_len = 0; 2599 ref->dir_path = ref->full_path->start; 2600 } else { 2601 tmp++; 2602 ref->name_len = ref->full_path->end - tmp; 2603 ref->name = tmp; 2604 ref->dir_path = ref->full_path->start; 2605 ref->dir_path_len = ref->full_path->end - 2606 ref->full_path->start - 1 - ref->name_len; 2607 } 2608 2609 list_add_tail(&ref->list, head); 2610 return 0; 2611 } 2612 2613 static void __free_recorded_refs(struct list_head *head) 2614 { 2615 struct recorded_ref *cur; 2616 2617 while (!list_empty(head)) { 2618 cur = list_entry(head->next, struct recorded_ref, list); 2619 fs_path_free(cur->full_path); 2620 list_del(&cur->list); 2621 kfree(cur); 2622 } 2623 } 2624 2625 static void free_recorded_refs(struct send_ctx *sctx) 2626 { 2627 __free_recorded_refs(&sctx->new_refs); 2628 __free_recorded_refs(&sctx->deleted_refs); 2629 } 2630 2631 /* 2632 * Renames/moves a file/dir to its orphan name. Used when the first 2633 * ref of an unprocessed inode gets overwritten and for all non empty 2634 * directories. 2635 */ 2636 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2637 struct fs_path *path) 2638 { 2639 int ret; 2640 struct fs_path *orphan; 2641 2642 orphan = fs_path_alloc(); 2643 if (!orphan) 2644 return -ENOMEM; 2645 2646 ret = gen_unique_name(sctx, ino, gen, orphan); 2647 if (ret < 0) 2648 goto out; 2649 2650 ret = send_rename(sctx, path, orphan); 2651 2652 out: 2653 fs_path_free(orphan); 2654 return ret; 2655 } 2656 2657 /* 2658 * Returns 1 if a directory can be removed at this point in time. 2659 * We check this by iterating all dir items and checking if the inode behind 2660 * the dir item was already processed. 2661 */ 2662 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 send_progress) 2663 { 2664 int ret = 0; 2665 struct btrfs_root *root = sctx->parent_root; 2666 struct btrfs_path *path; 2667 struct btrfs_key key; 2668 struct btrfs_key found_key; 2669 struct btrfs_key loc; 2670 struct btrfs_dir_item *di; 2671 2672 /* 2673 * Don't try to rmdir the top/root subvolume dir. 2674 */ 2675 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2676 return 0; 2677 2678 path = alloc_path_for_send(); 2679 if (!path) 2680 return -ENOMEM; 2681 2682 key.objectid = dir; 2683 key.type = BTRFS_DIR_INDEX_KEY; 2684 key.offset = 0; 2685 2686 while (1) { 2687 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 2688 if (ret < 0) 2689 goto out; 2690 if (!ret) { 2691 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2692 path->slots[0]); 2693 } 2694 if (ret || found_key.objectid != key.objectid || 2695 found_key.type != key.type) { 2696 break; 2697 } 2698 2699 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2700 struct btrfs_dir_item); 2701 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2702 2703 if (loc.objectid > send_progress) { 2704 ret = 0; 2705 goto out; 2706 } 2707 2708 btrfs_release_path(path); 2709 key.offset = found_key.offset + 1; 2710 } 2711 2712 ret = 1; 2713 2714 out: 2715 btrfs_free_path(path); 2716 return ret; 2717 } 2718 2719 /* 2720 * This does all the move/link/unlink/rmdir magic. 2721 */ 2722 static int process_recorded_refs(struct send_ctx *sctx) 2723 { 2724 int ret = 0; 2725 struct recorded_ref *cur; 2726 struct recorded_ref *cur2; 2727 struct ulist *check_dirs = NULL; 2728 struct ulist_iterator uit; 2729 struct ulist_node *un; 2730 struct fs_path *valid_path = NULL; 2731 u64 ow_inode = 0; 2732 u64 ow_gen; 2733 int did_overwrite = 0; 2734 int is_orphan = 0; 2735 2736 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino); 2737 2738 /* 2739 * This should never happen as the root dir always has the same ref 2740 * which is always '..' 2741 */ 2742 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 2743 2744 valid_path = fs_path_alloc(); 2745 if (!valid_path) { 2746 ret = -ENOMEM; 2747 goto out; 2748 } 2749 2750 check_dirs = ulist_alloc(GFP_NOFS); 2751 if (!check_dirs) { 2752 ret = -ENOMEM; 2753 goto out; 2754 } 2755 2756 /* 2757 * First, check if the first ref of the current inode was overwritten 2758 * before. If yes, we know that the current inode was already orphanized 2759 * and thus use the orphan name. If not, we can use get_cur_path to 2760 * get the path of the first ref as it would like while receiving at 2761 * this point in time. 2762 * New inodes are always orphan at the beginning, so force to use the 2763 * orphan name in this case. 2764 * The first ref is stored in valid_path and will be updated if it 2765 * gets moved around. 2766 */ 2767 if (!sctx->cur_inode_new) { 2768 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 2769 sctx->cur_inode_gen); 2770 if (ret < 0) 2771 goto out; 2772 if (ret) 2773 did_overwrite = 1; 2774 } 2775 if (sctx->cur_inode_new || did_overwrite) { 2776 ret = gen_unique_name(sctx, sctx->cur_ino, 2777 sctx->cur_inode_gen, valid_path); 2778 if (ret < 0) 2779 goto out; 2780 is_orphan = 1; 2781 } else { 2782 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 2783 valid_path); 2784 if (ret < 0) 2785 goto out; 2786 } 2787 2788 list_for_each_entry(cur, &sctx->new_refs, list) { 2789 /* 2790 * We may have refs where the parent directory does not exist 2791 * yet. This happens if the parent directories inum is higher 2792 * the the current inum. To handle this case, we create the 2793 * parent directory out of order. But we need to check if this 2794 * did already happen before due to other refs in the same dir. 2795 */ 2796 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 2797 if (ret < 0) 2798 goto out; 2799 if (ret == inode_state_will_create) { 2800 ret = 0; 2801 /* 2802 * First check if any of the current inodes refs did 2803 * already create the dir. 2804 */ 2805 list_for_each_entry(cur2, &sctx->new_refs, list) { 2806 if (cur == cur2) 2807 break; 2808 if (cur2->dir == cur->dir) { 2809 ret = 1; 2810 break; 2811 } 2812 } 2813 2814 /* 2815 * If that did not happen, check if a previous inode 2816 * did already create the dir. 2817 */ 2818 if (!ret) 2819 ret = did_create_dir(sctx, cur->dir); 2820 if (ret < 0) 2821 goto out; 2822 if (!ret) { 2823 ret = send_create_inode(sctx, cur->dir); 2824 if (ret < 0) 2825 goto out; 2826 } 2827 } 2828 2829 /* 2830 * Check if this new ref would overwrite the first ref of 2831 * another unprocessed inode. If yes, orphanize the 2832 * overwritten inode. If we find an overwritten ref that is 2833 * not the first ref, simply unlink it. 2834 */ 2835 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 2836 cur->name, cur->name_len, 2837 &ow_inode, &ow_gen); 2838 if (ret < 0) 2839 goto out; 2840 if (ret) { 2841 ret = is_first_ref(sctx->parent_root, 2842 ow_inode, cur->dir, cur->name, 2843 cur->name_len); 2844 if (ret < 0) 2845 goto out; 2846 if (ret) { 2847 ret = orphanize_inode(sctx, ow_inode, ow_gen, 2848 cur->full_path); 2849 if (ret < 0) 2850 goto out; 2851 } else { 2852 ret = send_unlink(sctx, cur->full_path); 2853 if (ret < 0) 2854 goto out; 2855 } 2856 } 2857 2858 /* 2859 * link/move the ref to the new place. If we have an orphan 2860 * inode, move it and update valid_path. If not, link or move 2861 * it depending on the inode mode. 2862 */ 2863 if (is_orphan) { 2864 ret = send_rename(sctx, valid_path, cur->full_path); 2865 if (ret < 0) 2866 goto out; 2867 is_orphan = 0; 2868 ret = fs_path_copy(valid_path, cur->full_path); 2869 if (ret < 0) 2870 goto out; 2871 } else { 2872 if (S_ISDIR(sctx->cur_inode_mode)) { 2873 /* 2874 * Dirs can't be linked, so move it. For moved 2875 * dirs, we always have one new and one deleted 2876 * ref. The deleted ref is ignored later. 2877 */ 2878 ret = send_rename(sctx, valid_path, 2879 cur->full_path); 2880 if (ret < 0) 2881 goto out; 2882 ret = fs_path_copy(valid_path, cur->full_path); 2883 if (ret < 0) 2884 goto out; 2885 } else { 2886 ret = send_link(sctx, cur->full_path, 2887 valid_path); 2888 if (ret < 0) 2889 goto out; 2890 } 2891 } 2892 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen, 2893 GFP_NOFS); 2894 if (ret < 0) 2895 goto out; 2896 } 2897 2898 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 2899 /* 2900 * Check if we can already rmdir the directory. If not, 2901 * orphanize it. For every dir item inside that gets deleted 2902 * later, we do this check again and rmdir it then if possible. 2903 * See the use of check_dirs for more details. 2904 */ 2905 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_ino); 2906 if (ret < 0) 2907 goto out; 2908 if (ret) { 2909 ret = send_rmdir(sctx, valid_path); 2910 if (ret < 0) 2911 goto out; 2912 } else if (!is_orphan) { 2913 ret = orphanize_inode(sctx, sctx->cur_ino, 2914 sctx->cur_inode_gen, valid_path); 2915 if (ret < 0) 2916 goto out; 2917 is_orphan = 1; 2918 } 2919 2920 list_for_each_entry(cur, &sctx->deleted_refs, list) { 2921 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen, 2922 GFP_NOFS); 2923 if (ret < 0) 2924 goto out; 2925 } 2926 } else if (S_ISDIR(sctx->cur_inode_mode) && 2927 !list_empty(&sctx->deleted_refs)) { 2928 /* 2929 * We have a moved dir. Add the old parent to check_dirs 2930 */ 2931 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 2932 list); 2933 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen, 2934 GFP_NOFS); 2935 if (ret < 0) 2936 goto out; 2937 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 2938 /* 2939 * We have a non dir inode. Go through all deleted refs and 2940 * unlink them if they were not already overwritten by other 2941 * inodes. 2942 */ 2943 list_for_each_entry(cur, &sctx->deleted_refs, list) { 2944 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 2945 sctx->cur_ino, sctx->cur_inode_gen, 2946 cur->name, cur->name_len); 2947 if (ret < 0) 2948 goto out; 2949 if (!ret) { 2950 ret = send_unlink(sctx, cur->full_path); 2951 if (ret < 0) 2952 goto out; 2953 } 2954 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen, 2955 GFP_NOFS); 2956 if (ret < 0) 2957 goto out; 2958 } 2959 2960 /* 2961 * If the inode is still orphan, unlink the orphan. This may 2962 * happen when a previous inode did overwrite the first ref 2963 * of this inode and no new refs were added for the current 2964 * inode. Unlinking does not mean that the inode is deleted in 2965 * all cases. There may still be links to this inode in other 2966 * places. 2967 */ 2968 if (is_orphan) { 2969 ret = send_unlink(sctx, valid_path); 2970 if (ret < 0) 2971 goto out; 2972 } 2973 } 2974 2975 /* 2976 * We did collect all parent dirs where cur_inode was once located. We 2977 * now go through all these dirs and check if they are pending for 2978 * deletion and if it's finally possible to perform the rmdir now. 2979 * We also update the inode stats of the parent dirs here. 2980 */ 2981 ULIST_ITER_INIT(&uit); 2982 while ((un = ulist_next(check_dirs, &uit))) { 2983 /* 2984 * In case we had refs into dirs that were not processed yet, 2985 * we don't need to do the utime and rmdir logic for these dirs. 2986 * The dir will be processed later. 2987 */ 2988 if (un->val > sctx->cur_ino) 2989 continue; 2990 2991 ret = get_cur_inode_state(sctx, un->val, un->aux); 2992 if (ret < 0) 2993 goto out; 2994 2995 if (ret == inode_state_did_create || 2996 ret == inode_state_no_change) { 2997 /* TODO delayed utimes */ 2998 ret = send_utimes(sctx, un->val, un->aux); 2999 if (ret < 0) 3000 goto out; 3001 } else if (ret == inode_state_did_delete) { 3002 ret = can_rmdir(sctx, un->val, sctx->cur_ino); 3003 if (ret < 0) 3004 goto out; 3005 if (ret) { 3006 ret = get_cur_path(sctx, un->val, un->aux, 3007 valid_path); 3008 if (ret < 0) 3009 goto out; 3010 ret = send_rmdir(sctx, valid_path); 3011 if (ret < 0) 3012 goto out; 3013 } 3014 } 3015 } 3016 3017 ret = 0; 3018 3019 out: 3020 free_recorded_refs(sctx); 3021 ulist_free(check_dirs); 3022 fs_path_free(valid_path); 3023 return ret; 3024 } 3025 3026 static int __record_new_ref(int num, u64 dir, int index, 3027 struct fs_path *name, 3028 void *ctx) 3029 { 3030 int ret = 0; 3031 struct send_ctx *sctx = ctx; 3032 struct fs_path *p; 3033 u64 gen; 3034 3035 p = fs_path_alloc(); 3036 if (!p) 3037 return -ENOMEM; 3038 3039 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, NULL, 3040 NULL, NULL); 3041 if (ret < 0) 3042 goto out; 3043 3044 ret = get_cur_path(sctx, dir, gen, p); 3045 if (ret < 0) 3046 goto out; 3047 ret = fs_path_add_path(p, name); 3048 if (ret < 0) 3049 goto out; 3050 3051 ret = record_ref(&sctx->new_refs, dir, gen, p); 3052 3053 out: 3054 if (ret) 3055 fs_path_free(p); 3056 return ret; 3057 } 3058 3059 static int __record_deleted_ref(int num, u64 dir, int index, 3060 struct fs_path *name, 3061 void *ctx) 3062 { 3063 int ret = 0; 3064 struct send_ctx *sctx = ctx; 3065 struct fs_path *p; 3066 u64 gen; 3067 3068 p = fs_path_alloc(); 3069 if (!p) 3070 return -ENOMEM; 3071 3072 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, NULL, 3073 NULL, NULL); 3074 if (ret < 0) 3075 goto out; 3076 3077 ret = get_cur_path(sctx, dir, gen, p); 3078 if (ret < 0) 3079 goto out; 3080 ret = fs_path_add_path(p, name); 3081 if (ret < 0) 3082 goto out; 3083 3084 ret = record_ref(&sctx->deleted_refs, dir, gen, p); 3085 3086 out: 3087 if (ret) 3088 fs_path_free(p); 3089 return ret; 3090 } 3091 3092 static int record_new_ref(struct send_ctx *sctx) 3093 { 3094 int ret; 3095 3096 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 3097 sctx->cmp_key, 0, __record_new_ref, sctx); 3098 if (ret < 0) 3099 goto out; 3100 ret = 0; 3101 3102 out: 3103 return ret; 3104 } 3105 3106 static int record_deleted_ref(struct send_ctx *sctx) 3107 { 3108 int ret; 3109 3110 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 3111 sctx->cmp_key, 0, __record_deleted_ref, sctx); 3112 if (ret < 0) 3113 goto out; 3114 ret = 0; 3115 3116 out: 3117 return ret; 3118 } 3119 3120 struct find_ref_ctx { 3121 u64 dir; 3122 struct fs_path *name; 3123 int found_idx; 3124 }; 3125 3126 static int __find_iref(int num, u64 dir, int index, 3127 struct fs_path *name, 3128 void *ctx_) 3129 { 3130 struct find_ref_ctx *ctx = ctx_; 3131 3132 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 3133 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 3134 ctx->found_idx = num; 3135 return 1; 3136 } 3137 return 0; 3138 } 3139 3140 static int find_iref(struct btrfs_root *root, 3141 struct btrfs_path *path, 3142 struct btrfs_key *key, 3143 u64 dir, struct fs_path *name) 3144 { 3145 int ret; 3146 struct find_ref_ctx ctx; 3147 3148 ctx.dir = dir; 3149 ctx.name = name; 3150 ctx.found_idx = -1; 3151 3152 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 3153 if (ret < 0) 3154 return ret; 3155 3156 if (ctx.found_idx == -1) 3157 return -ENOENT; 3158 3159 return ctx.found_idx; 3160 } 3161 3162 static int __record_changed_new_ref(int num, u64 dir, int index, 3163 struct fs_path *name, 3164 void *ctx) 3165 { 3166 int ret; 3167 struct send_ctx *sctx = ctx; 3168 3169 ret = find_iref(sctx->parent_root, sctx->right_path, 3170 sctx->cmp_key, dir, name); 3171 if (ret == -ENOENT) 3172 ret = __record_new_ref(num, dir, index, name, sctx); 3173 else if (ret > 0) 3174 ret = 0; 3175 3176 return ret; 3177 } 3178 3179 static int __record_changed_deleted_ref(int num, u64 dir, int index, 3180 struct fs_path *name, 3181 void *ctx) 3182 { 3183 int ret; 3184 struct send_ctx *sctx = ctx; 3185 3186 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 3187 dir, name); 3188 if (ret == -ENOENT) 3189 ret = __record_deleted_ref(num, dir, index, name, sctx); 3190 else if (ret > 0) 3191 ret = 0; 3192 3193 return ret; 3194 } 3195 3196 static int record_changed_ref(struct send_ctx *sctx) 3197 { 3198 int ret = 0; 3199 3200 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 3201 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 3202 if (ret < 0) 3203 goto out; 3204 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 3205 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 3206 if (ret < 0) 3207 goto out; 3208 ret = 0; 3209 3210 out: 3211 return ret; 3212 } 3213 3214 /* 3215 * Record and process all refs at once. Needed when an inode changes the 3216 * generation number, which means that it was deleted and recreated. 3217 */ 3218 static int process_all_refs(struct send_ctx *sctx, 3219 enum btrfs_compare_tree_result cmd) 3220 { 3221 int ret; 3222 struct btrfs_root *root; 3223 struct btrfs_path *path; 3224 struct btrfs_key key; 3225 struct btrfs_key found_key; 3226 struct extent_buffer *eb; 3227 int slot; 3228 iterate_inode_ref_t cb; 3229 3230 path = alloc_path_for_send(); 3231 if (!path) 3232 return -ENOMEM; 3233 3234 if (cmd == BTRFS_COMPARE_TREE_NEW) { 3235 root = sctx->send_root; 3236 cb = __record_new_ref; 3237 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 3238 root = sctx->parent_root; 3239 cb = __record_deleted_ref; 3240 } else { 3241 BUG(); 3242 } 3243 3244 key.objectid = sctx->cmp_key->objectid; 3245 key.type = BTRFS_INODE_REF_KEY; 3246 key.offset = 0; 3247 while (1) { 3248 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 3249 if (ret < 0) 3250 goto out; 3251 if (ret) 3252 break; 3253 3254 eb = path->nodes[0]; 3255 slot = path->slots[0]; 3256 btrfs_item_key_to_cpu(eb, &found_key, slot); 3257 3258 if (found_key.objectid != key.objectid || 3259 (found_key.type != BTRFS_INODE_REF_KEY && 3260 found_key.type != BTRFS_INODE_EXTREF_KEY)) 3261 break; 3262 3263 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 3264 btrfs_release_path(path); 3265 if (ret < 0) 3266 goto out; 3267 3268 key.offset = found_key.offset + 1; 3269 } 3270 btrfs_release_path(path); 3271 3272 ret = process_recorded_refs(sctx); 3273 3274 out: 3275 btrfs_free_path(path); 3276 return ret; 3277 } 3278 3279 static int send_set_xattr(struct send_ctx *sctx, 3280 struct fs_path *path, 3281 const char *name, int name_len, 3282 const char *data, int data_len) 3283 { 3284 int ret = 0; 3285 3286 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 3287 if (ret < 0) 3288 goto out; 3289 3290 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 3291 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 3292 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 3293 3294 ret = send_cmd(sctx); 3295 3296 tlv_put_failure: 3297 out: 3298 return ret; 3299 } 3300 3301 static int send_remove_xattr(struct send_ctx *sctx, 3302 struct fs_path *path, 3303 const char *name, int name_len) 3304 { 3305 int ret = 0; 3306 3307 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 3308 if (ret < 0) 3309 goto out; 3310 3311 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 3312 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 3313 3314 ret = send_cmd(sctx); 3315 3316 tlv_put_failure: 3317 out: 3318 return ret; 3319 } 3320 3321 static int __process_new_xattr(int num, struct btrfs_key *di_key, 3322 const char *name, int name_len, 3323 const char *data, int data_len, 3324 u8 type, void *ctx) 3325 { 3326 int ret; 3327 struct send_ctx *sctx = ctx; 3328 struct fs_path *p; 3329 posix_acl_xattr_header dummy_acl; 3330 3331 p = fs_path_alloc(); 3332 if (!p) 3333 return -ENOMEM; 3334 3335 /* 3336 * This hack is needed because empty acl's are stored as zero byte 3337 * data in xattrs. Problem with that is, that receiving these zero byte 3338 * acl's will fail later. To fix this, we send a dummy acl list that 3339 * only contains the version number and no entries. 3340 */ 3341 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 3342 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 3343 if (data_len == 0) { 3344 dummy_acl.a_version = 3345 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 3346 data = (char *)&dummy_acl; 3347 data_len = sizeof(dummy_acl); 3348 } 3349 } 3350 3351 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 3352 if (ret < 0) 3353 goto out; 3354 3355 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 3356 3357 out: 3358 fs_path_free(p); 3359 return ret; 3360 } 3361 3362 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 3363 const char *name, int name_len, 3364 const char *data, int data_len, 3365 u8 type, void *ctx) 3366 { 3367 int ret; 3368 struct send_ctx *sctx = ctx; 3369 struct fs_path *p; 3370 3371 p = fs_path_alloc(); 3372 if (!p) 3373 return -ENOMEM; 3374 3375 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 3376 if (ret < 0) 3377 goto out; 3378 3379 ret = send_remove_xattr(sctx, p, name, name_len); 3380 3381 out: 3382 fs_path_free(p); 3383 return ret; 3384 } 3385 3386 static int process_new_xattr(struct send_ctx *sctx) 3387 { 3388 int ret = 0; 3389 3390 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 3391 sctx->cmp_key, __process_new_xattr, sctx); 3392 3393 return ret; 3394 } 3395 3396 static int process_deleted_xattr(struct send_ctx *sctx) 3397 { 3398 int ret; 3399 3400 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 3401 sctx->cmp_key, __process_deleted_xattr, sctx); 3402 3403 return ret; 3404 } 3405 3406 struct find_xattr_ctx { 3407 const char *name; 3408 int name_len; 3409 int found_idx; 3410 char *found_data; 3411 int found_data_len; 3412 }; 3413 3414 static int __find_xattr(int num, struct btrfs_key *di_key, 3415 const char *name, int name_len, 3416 const char *data, int data_len, 3417 u8 type, void *vctx) 3418 { 3419 struct find_xattr_ctx *ctx = vctx; 3420 3421 if (name_len == ctx->name_len && 3422 strncmp(name, ctx->name, name_len) == 0) { 3423 ctx->found_idx = num; 3424 ctx->found_data_len = data_len; 3425 ctx->found_data = kmemdup(data, data_len, GFP_NOFS); 3426 if (!ctx->found_data) 3427 return -ENOMEM; 3428 return 1; 3429 } 3430 return 0; 3431 } 3432 3433 static int find_xattr(struct btrfs_root *root, 3434 struct btrfs_path *path, 3435 struct btrfs_key *key, 3436 const char *name, int name_len, 3437 char **data, int *data_len) 3438 { 3439 int ret; 3440 struct find_xattr_ctx ctx; 3441 3442 ctx.name = name; 3443 ctx.name_len = name_len; 3444 ctx.found_idx = -1; 3445 ctx.found_data = NULL; 3446 ctx.found_data_len = 0; 3447 3448 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx); 3449 if (ret < 0) 3450 return ret; 3451 3452 if (ctx.found_idx == -1) 3453 return -ENOENT; 3454 if (data) { 3455 *data = ctx.found_data; 3456 *data_len = ctx.found_data_len; 3457 } else { 3458 kfree(ctx.found_data); 3459 } 3460 return ctx.found_idx; 3461 } 3462 3463 3464 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 3465 const char *name, int name_len, 3466 const char *data, int data_len, 3467 u8 type, void *ctx) 3468 { 3469 int ret; 3470 struct send_ctx *sctx = ctx; 3471 char *found_data = NULL; 3472 int found_data_len = 0; 3473 3474 ret = find_xattr(sctx->parent_root, sctx->right_path, 3475 sctx->cmp_key, name, name_len, &found_data, 3476 &found_data_len); 3477 if (ret == -ENOENT) { 3478 ret = __process_new_xattr(num, di_key, name, name_len, data, 3479 data_len, type, ctx); 3480 } else if (ret >= 0) { 3481 if (data_len != found_data_len || 3482 memcmp(data, found_data, data_len)) { 3483 ret = __process_new_xattr(num, di_key, name, name_len, 3484 data, data_len, type, ctx); 3485 } else { 3486 ret = 0; 3487 } 3488 } 3489 3490 kfree(found_data); 3491 return ret; 3492 } 3493 3494 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 3495 const char *name, int name_len, 3496 const char *data, int data_len, 3497 u8 type, void *ctx) 3498 { 3499 int ret; 3500 struct send_ctx *sctx = ctx; 3501 3502 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 3503 name, name_len, NULL, NULL); 3504 if (ret == -ENOENT) 3505 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 3506 data_len, type, ctx); 3507 else if (ret >= 0) 3508 ret = 0; 3509 3510 return ret; 3511 } 3512 3513 static int process_changed_xattr(struct send_ctx *sctx) 3514 { 3515 int ret = 0; 3516 3517 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 3518 sctx->cmp_key, __process_changed_new_xattr, sctx); 3519 if (ret < 0) 3520 goto out; 3521 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 3522 sctx->cmp_key, __process_changed_deleted_xattr, sctx); 3523 3524 out: 3525 return ret; 3526 } 3527 3528 static int process_all_new_xattrs(struct send_ctx *sctx) 3529 { 3530 int ret; 3531 struct btrfs_root *root; 3532 struct btrfs_path *path; 3533 struct btrfs_key key; 3534 struct btrfs_key found_key; 3535 struct extent_buffer *eb; 3536 int slot; 3537 3538 path = alloc_path_for_send(); 3539 if (!path) 3540 return -ENOMEM; 3541 3542 root = sctx->send_root; 3543 3544 key.objectid = sctx->cmp_key->objectid; 3545 key.type = BTRFS_XATTR_ITEM_KEY; 3546 key.offset = 0; 3547 while (1) { 3548 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 3549 if (ret < 0) 3550 goto out; 3551 if (ret) { 3552 ret = 0; 3553 goto out; 3554 } 3555 3556 eb = path->nodes[0]; 3557 slot = path->slots[0]; 3558 btrfs_item_key_to_cpu(eb, &found_key, slot); 3559 3560 if (found_key.objectid != key.objectid || 3561 found_key.type != key.type) { 3562 ret = 0; 3563 goto out; 3564 } 3565 3566 ret = iterate_dir_item(root, path, &found_key, 3567 __process_new_xattr, sctx); 3568 if (ret < 0) 3569 goto out; 3570 3571 btrfs_release_path(path); 3572 key.offset = found_key.offset + 1; 3573 } 3574 3575 out: 3576 btrfs_free_path(path); 3577 return ret; 3578 } 3579 3580 /* 3581 * Read some bytes from the current inode/file and send a write command to 3582 * user space. 3583 */ 3584 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 3585 { 3586 int ret = 0; 3587 struct fs_path *p; 3588 loff_t pos = offset; 3589 int num_read = 0; 3590 mm_segment_t old_fs; 3591 3592 p = fs_path_alloc(); 3593 if (!p) 3594 return -ENOMEM; 3595 3596 /* 3597 * vfs normally only accepts user space buffers for security reasons. 3598 * we only read from the file and also only provide the read_buf buffer 3599 * to vfs. As this buffer does not come from a user space call, it's 3600 * ok to temporary allow kernel space buffers. 3601 */ 3602 old_fs = get_fs(); 3603 set_fs(KERNEL_DS); 3604 3605 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len); 3606 3607 ret = open_cur_inode_file(sctx); 3608 if (ret < 0) 3609 goto out; 3610 3611 ret = vfs_read(sctx->cur_inode_filp, sctx->read_buf, len, &pos); 3612 if (ret < 0) 3613 goto out; 3614 num_read = ret; 3615 if (!num_read) 3616 goto out; 3617 3618 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 3619 if (ret < 0) 3620 goto out; 3621 3622 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 3623 if (ret < 0) 3624 goto out; 3625 3626 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 3627 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 3628 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read); 3629 3630 ret = send_cmd(sctx); 3631 3632 tlv_put_failure: 3633 out: 3634 fs_path_free(p); 3635 set_fs(old_fs); 3636 if (ret < 0) 3637 return ret; 3638 return num_read; 3639 } 3640 3641 /* 3642 * Send a clone command to user space. 3643 */ 3644 static int send_clone(struct send_ctx *sctx, 3645 u64 offset, u32 len, 3646 struct clone_root *clone_root) 3647 { 3648 int ret = 0; 3649 struct fs_path *p; 3650 u64 gen; 3651 3652 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, " 3653 "clone_inode=%llu, clone_offset=%llu\n", offset, len, 3654 clone_root->root->objectid, clone_root->ino, 3655 clone_root->offset); 3656 3657 p = fs_path_alloc(); 3658 if (!p) 3659 return -ENOMEM; 3660 3661 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 3662 if (ret < 0) 3663 goto out; 3664 3665 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 3666 if (ret < 0) 3667 goto out; 3668 3669 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 3670 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 3671 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 3672 3673 if (clone_root->root == sctx->send_root) { 3674 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 3675 &gen, NULL, NULL, NULL, NULL); 3676 if (ret < 0) 3677 goto out; 3678 ret = get_cur_path(sctx, clone_root->ino, gen, p); 3679 } else { 3680 ret = get_inode_path(clone_root->root, clone_root->ino, p); 3681 } 3682 if (ret < 0) 3683 goto out; 3684 3685 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 3686 clone_root->root->root_item.uuid); 3687 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 3688 clone_root->root->root_item.ctransid); 3689 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 3690 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 3691 clone_root->offset); 3692 3693 ret = send_cmd(sctx); 3694 3695 tlv_put_failure: 3696 out: 3697 fs_path_free(p); 3698 return ret; 3699 } 3700 3701 /* 3702 * Send an update extent command to user space. 3703 */ 3704 static int send_update_extent(struct send_ctx *sctx, 3705 u64 offset, u32 len) 3706 { 3707 int ret = 0; 3708 struct fs_path *p; 3709 3710 p = fs_path_alloc(); 3711 if (!p) 3712 return -ENOMEM; 3713 3714 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 3715 if (ret < 0) 3716 goto out; 3717 3718 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 3719 if (ret < 0) 3720 goto out; 3721 3722 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 3723 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 3724 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 3725 3726 ret = send_cmd(sctx); 3727 3728 tlv_put_failure: 3729 out: 3730 fs_path_free(p); 3731 return ret; 3732 } 3733 3734 static int send_write_or_clone(struct send_ctx *sctx, 3735 struct btrfs_path *path, 3736 struct btrfs_key *key, 3737 struct clone_root *clone_root) 3738 { 3739 int ret = 0; 3740 struct btrfs_file_extent_item *ei; 3741 u64 offset = key->offset; 3742 u64 pos = 0; 3743 u64 len; 3744 u32 l; 3745 u8 type; 3746 3747 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3748 struct btrfs_file_extent_item); 3749 type = btrfs_file_extent_type(path->nodes[0], ei); 3750 if (type == BTRFS_FILE_EXTENT_INLINE) { 3751 len = btrfs_file_extent_inline_len(path->nodes[0], ei); 3752 /* 3753 * it is possible the inline item won't cover the whole page, 3754 * but there may be items after this page. Make 3755 * sure to send the whole thing 3756 */ 3757 len = PAGE_CACHE_ALIGN(len); 3758 } else { 3759 len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3760 } 3761 3762 if (offset + len > sctx->cur_inode_size) 3763 len = sctx->cur_inode_size - offset; 3764 if (len == 0) { 3765 ret = 0; 3766 goto out; 3767 } 3768 3769 if (clone_root) { 3770 ret = send_clone(sctx, offset, len, clone_root); 3771 } else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) { 3772 ret = send_update_extent(sctx, offset, len); 3773 } else { 3774 while (pos < len) { 3775 l = len - pos; 3776 if (l > BTRFS_SEND_READ_SIZE) 3777 l = BTRFS_SEND_READ_SIZE; 3778 ret = send_write(sctx, pos + offset, l); 3779 if (ret < 0) 3780 goto out; 3781 if (!ret) 3782 break; 3783 pos += ret; 3784 } 3785 ret = 0; 3786 } 3787 out: 3788 return ret; 3789 } 3790 3791 static int is_extent_unchanged(struct send_ctx *sctx, 3792 struct btrfs_path *left_path, 3793 struct btrfs_key *ekey) 3794 { 3795 int ret = 0; 3796 struct btrfs_key key; 3797 struct btrfs_path *path = NULL; 3798 struct extent_buffer *eb; 3799 int slot; 3800 struct btrfs_key found_key; 3801 struct btrfs_file_extent_item *ei; 3802 u64 left_disknr; 3803 u64 right_disknr; 3804 u64 left_offset; 3805 u64 right_offset; 3806 u64 left_offset_fixed; 3807 u64 left_len; 3808 u64 right_len; 3809 u64 left_gen; 3810 u64 right_gen; 3811 u8 left_type; 3812 u8 right_type; 3813 3814 path = alloc_path_for_send(); 3815 if (!path) 3816 return -ENOMEM; 3817 3818 eb = left_path->nodes[0]; 3819 slot = left_path->slots[0]; 3820 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 3821 left_type = btrfs_file_extent_type(eb, ei); 3822 3823 if (left_type != BTRFS_FILE_EXTENT_REG) { 3824 ret = 0; 3825 goto out; 3826 } 3827 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 3828 left_len = btrfs_file_extent_num_bytes(eb, ei); 3829 left_offset = btrfs_file_extent_offset(eb, ei); 3830 left_gen = btrfs_file_extent_generation(eb, ei); 3831 3832 /* 3833 * Following comments will refer to these graphics. L is the left 3834 * extents which we are checking at the moment. 1-8 are the right 3835 * extents that we iterate. 3836 * 3837 * |-----L-----| 3838 * |-1-|-2a-|-3-|-4-|-5-|-6-| 3839 * 3840 * |-----L-----| 3841 * |--1--|-2b-|...(same as above) 3842 * 3843 * Alternative situation. Happens on files where extents got split. 3844 * |-----L-----| 3845 * |-----------7-----------|-6-| 3846 * 3847 * Alternative situation. Happens on files which got larger. 3848 * |-----L-----| 3849 * |-8-| 3850 * Nothing follows after 8. 3851 */ 3852 3853 key.objectid = ekey->objectid; 3854 key.type = BTRFS_EXTENT_DATA_KEY; 3855 key.offset = ekey->offset; 3856 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 3857 if (ret < 0) 3858 goto out; 3859 if (ret) { 3860 ret = 0; 3861 goto out; 3862 } 3863 3864 /* 3865 * Handle special case where the right side has no extents at all. 3866 */ 3867 eb = path->nodes[0]; 3868 slot = path->slots[0]; 3869 btrfs_item_key_to_cpu(eb, &found_key, slot); 3870 if (found_key.objectid != key.objectid || 3871 found_key.type != key.type) { 3872 ret = 0; 3873 goto out; 3874 } 3875 3876 /* 3877 * We're now on 2a, 2b or 7. 3878 */ 3879 key = found_key; 3880 while (key.offset < ekey->offset + left_len) { 3881 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 3882 right_type = btrfs_file_extent_type(eb, ei); 3883 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 3884 right_len = btrfs_file_extent_num_bytes(eb, ei); 3885 right_offset = btrfs_file_extent_offset(eb, ei); 3886 right_gen = btrfs_file_extent_generation(eb, ei); 3887 3888 if (right_type != BTRFS_FILE_EXTENT_REG) { 3889 ret = 0; 3890 goto out; 3891 } 3892 3893 /* 3894 * Are we at extent 8? If yes, we know the extent is changed. 3895 * This may only happen on the first iteration. 3896 */ 3897 if (found_key.offset + right_len <= ekey->offset) { 3898 ret = 0; 3899 goto out; 3900 } 3901 3902 left_offset_fixed = left_offset; 3903 if (key.offset < ekey->offset) { 3904 /* Fix the right offset for 2a and 7. */ 3905 right_offset += ekey->offset - key.offset; 3906 } else { 3907 /* Fix the left offset for all behind 2a and 2b */ 3908 left_offset_fixed += key.offset - ekey->offset; 3909 } 3910 3911 /* 3912 * Check if we have the same extent. 3913 */ 3914 if (left_disknr != right_disknr || 3915 left_offset_fixed != right_offset || 3916 left_gen != right_gen) { 3917 ret = 0; 3918 goto out; 3919 } 3920 3921 /* 3922 * Go to the next extent. 3923 */ 3924 ret = btrfs_next_item(sctx->parent_root, path); 3925 if (ret < 0) 3926 goto out; 3927 if (!ret) { 3928 eb = path->nodes[0]; 3929 slot = path->slots[0]; 3930 btrfs_item_key_to_cpu(eb, &found_key, slot); 3931 } 3932 if (ret || found_key.objectid != key.objectid || 3933 found_key.type != key.type) { 3934 key.offset += right_len; 3935 break; 3936 } 3937 if (found_key.offset != key.offset + right_len) { 3938 ret = 0; 3939 goto out; 3940 } 3941 key = found_key; 3942 } 3943 3944 /* 3945 * We're now behind the left extent (treat as unchanged) or at the end 3946 * of the right side (treat as changed). 3947 */ 3948 if (key.offset >= ekey->offset + left_len) 3949 ret = 1; 3950 else 3951 ret = 0; 3952 3953 3954 out: 3955 btrfs_free_path(path); 3956 return ret; 3957 } 3958 3959 static int process_extent(struct send_ctx *sctx, 3960 struct btrfs_path *path, 3961 struct btrfs_key *key) 3962 { 3963 int ret = 0; 3964 struct clone_root *found_clone = NULL; 3965 3966 if (S_ISLNK(sctx->cur_inode_mode)) 3967 return 0; 3968 3969 if (sctx->parent_root && !sctx->cur_inode_new) { 3970 ret = is_extent_unchanged(sctx, path, key); 3971 if (ret < 0) 3972 goto out; 3973 if (ret) { 3974 ret = 0; 3975 goto out; 3976 } 3977 } 3978 3979 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 3980 sctx->cur_inode_size, &found_clone); 3981 if (ret != -ENOENT && ret < 0) 3982 goto out; 3983 3984 ret = send_write_or_clone(sctx, path, key, found_clone); 3985 3986 out: 3987 return ret; 3988 } 3989 3990 static int process_all_extents(struct send_ctx *sctx) 3991 { 3992 int ret; 3993 struct btrfs_root *root; 3994 struct btrfs_path *path; 3995 struct btrfs_key key; 3996 struct btrfs_key found_key; 3997 struct extent_buffer *eb; 3998 int slot; 3999 4000 root = sctx->send_root; 4001 path = alloc_path_for_send(); 4002 if (!path) 4003 return -ENOMEM; 4004 4005 key.objectid = sctx->cmp_key->objectid; 4006 key.type = BTRFS_EXTENT_DATA_KEY; 4007 key.offset = 0; 4008 while (1) { 4009 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 4010 if (ret < 0) 4011 goto out; 4012 if (ret) { 4013 ret = 0; 4014 goto out; 4015 } 4016 4017 eb = path->nodes[0]; 4018 slot = path->slots[0]; 4019 btrfs_item_key_to_cpu(eb, &found_key, slot); 4020 4021 if (found_key.objectid != key.objectid || 4022 found_key.type != key.type) { 4023 ret = 0; 4024 goto out; 4025 } 4026 4027 ret = process_extent(sctx, path, &found_key); 4028 if (ret < 0) 4029 goto out; 4030 4031 btrfs_release_path(path); 4032 key.offset = found_key.offset + 1; 4033 } 4034 4035 out: 4036 btrfs_free_path(path); 4037 return ret; 4038 } 4039 4040 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end) 4041 { 4042 int ret = 0; 4043 4044 if (sctx->cur_ino == 0) 4045 goto out; 4046 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 4047 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 4048 goto out; 4049 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 4050 goto out; 4051 4052 ret = process_recorded_refs(sctx); 4053 if (ret < 0) 4054 goto out; 4055 4056 /* 4057 * We have processed the refs and thus need to advance send_progress. 4058 * Now, calls to get_cur_xxx will take the updated refs of the current 4059 * inode into account. 4060 */ 4061 sctx->send_progress = sctx->cur_ino + 1; 4062 4063 out: 4064 return ret; 4065 } 4066 4067 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 4068 { 4069 int ret = 0; 4070 u64 left_mode; 4071 u64 left_uid; 4072 u64 left_gid; 4073 u64 right_mode; 4074 u64 right_uid; 4075 u64 right_gid; 4076 int need_chmod = 0; 4077 int need_chown = 0; 4078 4079 ret = process_recorded_refs_if_needed(sctx, at_end); 4080 if (ret < 0) 4081 goto out; 4082 4083 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 4084 goto out; 4085 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 4086 goto out; 4087 4088 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 4089 &left_mode, &left_uid, &left_gid, NULL); 4090 if (ret < 0) 4091 goto out; 4092 4093 if (!sctx->parent_root || sctx->cur_inode_new) { 4094 need_chown = 1; 4095 if (!S_ISLNK(sctx->cur_inode_mode)) 4096 need_chmod = 1; 4097 } else { 4098 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 4099 NULL, NULL, &right_mode, &right_uid, 4100 &right_gid, NULL); 4101 if (ret < 0) 4102 goto out; 4103 4104 if (left_uid != right_uid || left_gid != right_gid) 4105 need_chown = 1; 4106 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 4107 need_chmod = 1; 4108 } 4109 4110 if (S_ISREG(sctx->cur_inode_mode)) { 4111 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4112 sctx->cur_inode_size); 4113 if (ret < 0) 4114 goto out; 4115 } 4116 4117 if (need_chown) { 4118 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4119 left_uid, left_gid); 4120 if (ret < 0) 4121 goto out; 4122 } 4123 if (need_chmod) { 4124 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4125 left_mode); 4126 if (ret < 0) 4127 goto out; 4128 } 4129 4130 /* 4131 * Need to send that every time, no matter if it actually changed 4132 * between the two trees as we have done changes to the inode before. 4133 */ 4134 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 4135 if (ret < 0) 4136 goto out; 4137 4138 out: 4139 return ret; 4140 } 4141 4142 static int changed_inode(struct send_ctx *sctx, 4143 enum btrfs_compare_tree_result result) 4144 { 4145 int ret = 0; 4146 struct btrfs_key *key = sctx->cmp_key; 4147 struct btrfs_inode_item *left_ii = NULL; 4148 struct btrfs_inode_item *right_ii = NULL; 4149 u64 left_gen = 0; 4150 u64 right_gen = 0; 4151 4152 ret = close_cur_inode_file(sctx); 4153 if (ret < 0) 4154 goto out; 4155 4156 sctx->cur_ino = key->objectid; 4157 sctx->cur_inode_new_gen = 0; 4158 4159 /* 4160 * Set send_progress to current inode. This will tell all get_cur_xxx 4161 * functions that the current inode's refs are not updated yet. Later, 4162 * when process_recorded_refs is finished, it is set to cur_ino + 1. 4163 */ 4164 sctx->send_progress = sctx->cur_ino; 4165 4166 if (result == BTRFS_COMPARE_TREE_NEW || 4167 result == BTRFS_COMPARE_TREE_CHANGED) { 4168 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 4169 sctx->left_path->slots[0], 4170 struct btrfs_inode_item); 4171 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 4172 left_ii); 4173 } else { 4174 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 4175 sctx->right_path->slots[0], 4176 struct btrfs_inode_item); 4177 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 4178 right_ii); 4179 } 4180 if (result == BTRFS_COMPARE_TREE_CHANGED) { 4181 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 4182 sctx->right_path->slots[0], 4183 struct btrfs_inode_item); 4184 4185 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 4186 right_ii); 4187 4188 /* 4189 * The cur_ino = root dir case is special here. We can't treat 4190 * the inode as deleted+reused because it would generate a 4191 * stream that tries to delete/mkdir the root dir. 4192 */ 4193 if (left_gen != right_gen && 4194 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 4195 sctx->cur_inode_new_gen = 1; 4196 } 4197 4198 if (result == BTRFS_COMPARE_TREE_NEW) { 4199 sctx->cur_inode_gen = left_gen; 4200 sctx->cur_inode_new = 1; 4201 sctx->cur_inode_deleted = 0; 4202 sctx->cur_inode_size = btrfs_inode_size( 4203 sctx->left_path->nodes[0], left_ii); 4204 sctx->cur_inode_mode = btrfs_inode_mode( 4205 sctx->left_path->nodes[0], left_ii); 4206 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 4207 ret = send_create_inode_if_needed(sctx); 4208 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 4209 sctx->cur_inode_gen = right_gen; 4210 sctx->cur_inode_new = 0; 4211 sctx->cur_inode_deleted = 1; 4212 sctx->cur_inode_size = btrfs_inode_size( 4213 sctx->right_path->nodes[0], right_ii); 4214 sctx->cur_inode_mode = btrfs_inode_mode( 4215 sctx->right_path->nodes[0], right_ii); 4216 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 4217 /* 4218 * We need to do some special handling in case the inode was 4219 * reported as changed with a changed generation number. This 4220 * means that the original inode was deleted and new inode 4221 * reused the same inum. So we have to treat the old inode as 4222 * deleted and the new one as new. 4223 */ 4224 if (sctx->cur_inode_new_gen) { 4225 /* 4226 * First, process the inode as if it was deleted. 4227 */ 4228 sctx->cur_inode_gen = right_gen; 4229 sctx->cur_inode_new = 0; 4230 sctx->cur_inode_deleted = 1; 4231 sctx->cur_inode_size = btrfs_inode_size( 4232 sctx->right_path->nodes[0], right_ii); 4233 sctx->cur_inode_mode = btrfs_inode_mode( 4234 sctx->right_path->nodes[0], right_ii); 4235 ret = process_all_refs(sctx, 4236 BTRFS_COMPARE_TREE_DELETED); 4237 if (ret < 0) 4238 goto out; 4239 4240 /* 4241 * Now process the inode as if it was new. 4242 */ 4243 sctx->cur_inode_gen = left_gen; 4244 sctx->cur_inode_new = 1; 4245 sctx->cur_inode_deleted = 0; 4246 sctx->cur_inode_size = btrfs_inode_size( 4247 sctx->left_path->nodes[0], left_ii); 4248 sctx->cur_inode_mode = btrfs_inode_mode( 4249 sctx->left_path->nodes[0], left_ii); 4250 ret = send_create_inode_if_needed(sctx); 4251 if (ret < 0) 4252 goto out; 4253 4254 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 4255 if (ret < 0) 4256 goto out; 4257 /* 4258 * Advance send_progress now as we did not get into 4259 * process_recorded_refs_if_needed in the new_gen case. 4260 */ 4261 sctx->send_progress = sctx->cur_ino + 1; 4262 4263 /* 4264 * Now process all extents and xattrs of the inode as if 4265 * they were all new. 4266 */ 4267 ret = process_all_extents(sctx); 4268 if (ret < 0) 4269 goto out; 4270 ret = process_all_new_xattrs(sctx); 4271 if (ret < 0) 4272 goto out; 4273 } else { 4274 sctx->cur_inode_gen = left_gen; 4275 sctx->cur_inode_new = 0; 4276 sctx->cur_inode_new_gen = 0; 4277 sctx->cur_inode_deleted = 0; 4278 sctx->cur_inode_size = btrfs_inode_size( 4279 sctx->left_path->nodes[0], left_ii); 4280 sctx->cur_inode_mode = btrfs_inode_mode( 4281 sctx->left_path->nodes[0], left_ii); 4282 } 4283 } 4284 4285 out: 4286 return ret; 4287 } 4288 4289 /* 4290 * We have to process new refs before deleted refs, but compare_trees gives us 4291 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 4292 * first and later process them in process_recorded_refs. 4293 * For the cur_inode_new_gen case, we skip recording completely because 4294 * changed_inode did already initiate processing of refs. The reason for this is 4295 * that in this case, compare_tree actually compares the refs of 2 different 4296 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 4297 * refs of the right tree as deleted and all refs of the left tree as new. 4298 */ 4299 static int changed_ref(struct send_ctx *sctx, 4300 enum btrfs_compare_tree_result result) 4301 { 4302 int ret = 0; 4303 4304 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 4305 4306 if (!sctx->cur_inode_new_gen && 4307 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 4308 if (result == BTRFS_COMPARE_TREE_NEW) 4309 ret = record_new_ref(sctx); 4310 else if (result == BTRFS_COMPARE_TREE_DELETED) 4311 ret = record_deleted_ref(sctx); 4312 else if (result == BTRFS_COMPARE_TREE_CHANGED) 4313 ret = record_changed_ref(sctx); 4314 } 4315 4316 return ret; 4317 } 4318 4319 /* 4320 * Process new/deleted/changed xattrs. We skip processing in the 4321 * cur_inode_new_gen case because changed_inode did already initiate processing 4322 * of xattrs. The reason is the same as in changed_ref 4323 */ 4324 static int changed_xattr(struct send_ctx *sctx, 4325 enum btrfs_compare_tree_result result) 4326 { 4327 int ret = 0; 4328 4329 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 4330 4331 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 4332 if (result == BTRFS_COMPARE_TREE_NEW) 4333 ret = process_new_xattr(sctx); 4334 else if (result == BTRFS_COMPARE_TREE_DELETED) 4335 ret = process_deleted_xattr(sctx); 4336 else if (result == BTRFS_COMPARE_TREE_CHANGED) 4337 ret = process_changed_xattr(sctx); 4338 } 4339 4340 return ret; 4341 } 4342 4343 /* 4344 * Process new/deleted/changed extents. We skip processing in the 4345 * cur_inode_new_gen case because changed_inode did already initiate processing 4346 * of extents. The reason is the same as in changed_ref 4347 */ 4348 static int changed_extent(struct send_ctx *sctx, 4349 enum btrfs_compare_tree_result result) 4350 { 4351 int ret = 0; 4352 4353 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 4354 4355 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 4356 if (result != BTRFS_COMPARE_TREE_DELETED) 4357 ret = process_extent(sctx, sctx->left_path, 4358 sctx->cmp_key); 4359 } 4360 4361 return ret; 4362 } 4363 4364 /* 4365 * Updates compare related fields in sctx and simply forwards to the actual 4366 * changed_xxx functions. 4367 */ 4368 static int changed_cb(struct btrfs_root *left_root, 4369 struct btrfs_root *right_root, 4370 struct btrfs_path *left_path, 4371 struct btrfs_path *right_path, 4372 struct btrfs_key *key, 4373 enum btrfs_compare_tree_result result, 4374 void *ctx) 4375 { 4376 int ret = 0; 4377 struct send_ctx *sctx = ctx; 4378 4379 sctx->left_path = left_path; 4380 sctx->right_path = right_path; 4381 sctx->cmp_key = key; 4382 4383 ret = finish_inode_if_needed(sctx, 0); 4384 if (ret < 0) 4385 goto out; 4386 4387 /* Ignore non-FS objects */ 4388 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 4389 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 4390 goto out; 4391 4392 if (key->type == BTRFS_INODE_ITEM_KEY) 4393 ret = changed_inode(sctx, result); 4394 else if (key->type == BTRFS_INODE_REF_KEY || 4395 key->type == BTRFS_INODE_EXTREF_KEY) 4396 ret = changed_ref(sctx, result); 4397 else if (key->type == BTRFS_XATTR_ITEM_KEY) 4398 ret = changed_xattr(sctx, result); 4399 else if (key->type == BTRFS_EXTENT_DATA_KEY) 4400 ret = changed_extent(sctx, result); 4401 4402 out: 4403 return ret; 4404 } 4405 4406 static int full_send_tree(struct send_ctx *sctx) 4407 { 4408 int ret; 4409 struct btrfs_trans_handle *trans = NULL; 4410 struct btrfs_root *send_root = sctx->send_root; 4411 struct btrfs_key key; 4412 struct btrfs_key found_key; 4413 struct btrfs_path *path; 4414 struct extent_buffer *eb; 4415 int slot; 4416 u64 start_ctransid; 4417 u64 ctransid; 4418 4419 path = alloc_path_for_send(); 4420 if (!path) 4421 return -ENOMEM; 4422 4423 spin_lock(&send_root->root_item_lock); 4424 start_ctransid = btrfs_root_ctransid(&send_root->root_item); 4425 spin_unlock(&send_root->root_item_lock); 4426 4427 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 4428 key.type = BTRFS_INODE_ITEM_KEY; 4429 key.offset = 0; 4430 4431 join_trans: 4432 /* 4433 * We need to make sure the transaction does not get committed 4434 * while we do anything on commit roots. Join a transaction to prevent 4435 * this. 4436 */ 4437 trans = btrfs_join_transaction(send_root); 4438 if (IS_ERR(trans)) { 4439 ret = PTR_ERR(trans); 4440 trans = NULL; 4441 goto out; 4442 } 4443 4444 /* 4445 * Make sure the tree has not changed after re-joining. We detect this 4446 * by comparing start_ctransid and ctransid. They should always match. 4447 */ 4448 spin_lock(&send_root->root_item_lock); 4449 ctransid = btrfs_root_ctransid(&send_root->root_item); 4450 spin_unlock(&send_root->root_item_lock); 4451 4452 if (ctransid != start_ctransid) { 4453 WARN(1, KERN_WARNING "btrfs: the root that you're trying to " 4454 "send was modified in between. This is " 4455 "probably a bug.\n"); 4456 ret = -EIO; 4457 goto out; 4458 } 4459 4460 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 4461 if (ret < 0) 4462 goto out; 4463 if (ret) 4464 goto out_finish; 4465 4466 while (1) { 4467 /* 4468 * When someone want to commit while we iterate, end the 4469 * joined transaction and rejoin. 4470 */ 4471 if (btrfs_should_end_transaction(trans, send_root)) { 4472 ret = btrfs_end_transaction(trans, send_root); 4473 trans = NULL; 4474 if (ret < 0) 4475 goto out; 4476 btrfs_release_path(path); 4477 goto join_trans; 4478 } 4479 4480 eb = path->nodes[0]; 4481 slot = path->slots[0]; 4482 btrfs_item_key_to_cpu(eb, &found_key, slot); 4483 4484 ret = changed_cb(send_root, NULL, path, NULL, 4485 &found_key, BTRFS_COMPARE_TREE_NEW, sctx); 4486 if (ret < 0) 4487 goto out; 4488 4489 key.objectid = found_key.objectid; 4490 key.type = found_key.type; 4491 key.offset = found_key.offset + 1; 4492 4493 ret = btrfs_next_item(send_root, path); 4494 if (ret < 0) 4495 goto out; 4496 if (ret) { 4497 ret = 0; 4498 break; 4499 } 4500 } 4501 4502 out_finish: 4503 ret = finish_inode_if_needed(sctx, 1); 4504 4505 out: 4506 btrfs_free_path(path); 4507 if (trans) { 4508 if (!ret) 4509 ret = btrfs_end_transaction(trans, send_root); 4510 else 4511 btrfs_end_transaction(trans, send_root); 4512 } 4513 return ret; 4514 } 4515 4516 static int send_subvol(struct send_ctx *sctx) 4517 { 4518 int ret; 4519 4520 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 4521 ret = send_header(sctx); 4522 if (ret < 0) 4523 goto out; 4524 } 4525 4526 ret = send_subvol_begin(sctx); 4527 if (ret < 0) 4528 goto out; 4529 4530 if (sctx->parent_root) { 4531 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, 4532 changed_cb, sctx); 4533 if (ret < 0) 4534 goto out; 4535 ret = finish_inode_if_needed(sctx, 1); 4536 if (ret < 0) 4537 goto out; 4538 } else { 4539 ret = full_send_tree(sctx); 4540 if (ret < 0) 4541 goto out; 4542 } 4543 4544 out: 4545 if (!ret) 4546 ret = close_cur_inode_file(sctx); 4547 else 4548 close_cur_inode_file(sctx); 4549 4550 free_recorded_refs(sctx); 4551 return ret; 4552 } 4553 4554 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_) 4555 { 4556 int ret = 0; 4557 struct btrfs_root *send_root; 4558 struct btrfs_root *clone_root; 4559 struct btrfs_fs_info *fs_info; 4560 struct btrfs_ioctl_send_args *arg = NULL; 4561 struct btrfs_key key; 4562 struct send_ctx *sctx = NULL; 4563 u32 i; 4564 u64 *clone_sources_tmp = NULL; 4565 4566 if (!capable(CAP_SYS_ADMIN)) 4567 return -EPERM; 4568 4569 send_root = BTRFS_I(file_inode(mnt_file))->root; 4570 fs_info = send_root->fs_info; 4571 4572 /* 4573 * This is done when we lookup the root, it should already be complete 4574 * by the time we get here. 4575 */ 4576 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE); 4577 4578 /* 4579 * If we just created this root we need to make sure that the orphan 4580 * cleanup has been done and committed since we search the commit root, 4581 * so check its commit root transid with our otransid and if they match 4582 * commit the transaction to make sure everything is updated. 4583 */ 4584 down_read(&send_root->fs_info->extent_commit_sem); 4585 if (btrfs_header_generation(send_root->commit_root) == 4586 btrfs_root_otransid(&send_root->root_item)) { 4587 struct btrfs_trans_handle *trans; 4588 4589 up_read(&send_root->fs_info->extent_commit_sem); 4590 4591 trans = btrfs_attach_transaction_barrier(send_root); 4592 if (IS_ERR(trans)) { 4593 if (PTR_ERR(trans) != -ENOENT) { 4594 ret = PTR_ERR(trans); 4595 goto out; 4596 } 4597 /* ENOENT means theres no transaction */ 4598 } else { 4599 ret = btrfs_commit_transaction(trans, send_root); 4600 if (ret) 4601 goto out; 4602 } 4603 } else { 4604 up_read(&send_root->fs_info->extent_commit_sem); 4605 } 4606 4607 arg = memdup_user(arg_, sizeof(*arg)); 4608 if (IS_ERR(arg)) { 4609 ret = PTR_ERR(arg); 4610 arg = NULL; 4611 goto out; 4612 } 4613 4614 if (!access_ok(VERIFY_READ, arg->clone_sources, 4615 sizeof(*arg->clone_sources * 4616 arg->clone_sources_count))) { 4617 ret = -EFAULT; 4618 goto out; 4619 } 4620 4621 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 4622 ret = -EINVAL; 4623 goto out; 4624 } 4625 4626 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS); 4627 if (!sctx) { 4628 ret = -ENOMEM; 4629 goto out; 4630 } 4631 4632 INIT_LIST_HEAD(&sctx->new_refs); 4633 INIT_LIST_HEAD(&sctx->deleted_refs); 4634 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS); 4635 INIT_LIST_HEAD(&sctx->name_cache_list); 4636 4637 sctx->flags = arg->flags; 4638 4639 sctx->send_filp = fget(arg->send_fd); 4640 if (!sctx->send_filp) { 4641 ret = -EBADF; 4642 goto out; 4643 } 4644 4645 sctx->mnt = mnt_file->f_path.mnt; 4646 4647 sctx->send_root = send_root; 4648 sctx->clone_roots_cnt = arg->clone_sources_count; 4649 4650 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 4651 sctx->send_buf = vmalloc(sctx->send_max_size); 4652 if (!sctx->send_buf) { 4653 ret = -ENOMEM; 4654 goto out; 4655 } 4656 4657 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE); 4658 if (!sctx->read_buf) { 4659 ret = -ENOMEM; 4660 goto out; 4661 } 4662 4663 sctx->clone_roots = vzalloc(sizeof(struct clone_root) * 4664 (arg->clone_sources_count + 1)); 4665 if (!sctx->clone_roots) { 4666 ret = -ENOMEM; 4667 goto out; 4668 } 4669 4670 if (arg->clone_sources_count) { 4671 clone_sources_tmp = vmalloc(arg->clone_sources_count * 4672 sizeof(*arg->clone_sources)); 4673 if (!clone_sources_tmp) { 4674 ret = -ENOMEM; 4675 goto out; 4676 } 4677 4678 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 4679 arg->clone_sources_count * 4680 sizeof(*arg->clone_sources)); 4681 if (ret) { 4682 ret = -EFAULT; 4683 goto out; 4684 } 4685 4686 for (i = 0; i < arg->clone_sources_count; i++) { 4687 key.objectid = clone_sources_tmp[i]; 4688 key.type = BTRFS_ROOT_ITEM_KEY; 4689 key.offset = (u64)-1; 4690 clone_root = btrfs_read_fs_root_no_name(fs_info, &key); 4691 if (IS_ERR(clone_root)) { 4692 ret = PTR_ERR(clone_root); 4693 goto out; 4694 } 4695 sctx->clone_roots[i].root = clone_root; 4696 } 4697 vfree(clone_sources_tmp); 4698 clone_sources_tmp = NULL; 4699 } 4700 4701 if (arg->parent_root) { 4702 key.objectid = arg->parent_root; 4703 key.type = BTRFS_ROOT_ITEM_KEY; 4704 key.offset = (u64)-1; 4705 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key); 4706 if (IS_ERR(sctx->parent_root)) { 4707 ret = PTR_ERR(sctx->parent_root); 4708 goto out; 4709 } 4710 } 4711 4712 /* 4713 * Clones from send_root are allowed, but only if the clone source 4714 * is behind the current send position. This is checked while searching 4715 * for possible clone sources. 4716 */ 4717 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root; 4718 4719 /* We do a bsearch later */ 4720 sort(sctx->clone_roots, sctx->clone_roots_cnt, 4721 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 4722 NULL); 4723 4724 ret = send_subvol(sctx); 4725 if (ret < 0) 4726 goto out; 4727 4728 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 4729 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 4730 if (ret < 0) 4731 goto out; 4732 ret = send_cmd(sctx); 4733 if (ret < 0) 4734 goto out; 4735 } 4736 4737 out: 4738 kfree(arg); 4739 vfree(clone_sources_tmp); 4740 4741 if (sctx) { 4742 if (sctx->send_filp) 4743 fput(sctx->send_filp); 4744 4745 vfree(sctx->clone_roots); 4746 vfree(sctx->send_buf); 4747 vfree(sctx->read_buf); 4748 4749 name_cache_free(sctx); 4750 4751 kfree(sctx); 4752 } 4753 4754 return ret; 4755 } 4756