1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/fs.h> 8 #include <linux/file.h> 9 #include <linux/sort.h> 10 #include <linux/mount.h> 11 #include <linux/xattr.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/radix-tree.h> 14 #include <linux/vmalloc.h> 15 #include <linux/string.h> 16 #include <linux/compat.h> 17 #include <linux/crc32c.h> 18 19 #include "send.h" 20 #include "ctree.h" 21 #include "backref.h" 22 #include "locking.h" 23 #include "disk-io.h" 24 #include "btrfs_inode.h" 25 #include "transaction.h" 26 #include "compression.h" 27 #include "xattr.h" 28 #include "print-tree.h" 29 30 /* 31 * Maximum number of references an extent can have in order for us to attempt to 32 * issue clone operations instead of write operations. This currently exists to 33 * avoid hitting limitations of the backreference walking code (taking a lot of 34 * time and using too much memory for extents with large number of references). 35 */ 36 #define SEND_MAX_EXTENT_REFS 64 37 38 /* 39 * A fs_path is a helper to dynamically build path names with unknown size. 40 * It reallocates the internal buffer on demand. 41 * It allows fast adding of path elements on the right side (normal path) and 42 * fast adding to the left side (reversed path). A reversed path can also be 43 * unreversed if needed. 44 */ 45 struct fs_path { 46 union { 47 struct { 48 char *start; 49 char *end; 50 51 char *buf; 52 unsigned short buf_len:15; 53 unsigned short reversed:1; 54 char inline_buf[]; 55 }; 56 /* 57 * Average path length does not exceed 200 bytes, we'll have 58 * better packing in the slab and higher chance to satisfy 59 * a allocation later during send. 60 */ 61 char pad[256]; 62 }; 63 }; 64 #define FS_PATH_INLINE_SIZE \ 65 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 66 67 68 /* reused for each extent */ 69 struct clone_root { 70 struct btrfs_root *root; 71 u64 ino; 72 u64 offset; 73 74 u64 found_refs; 75 }; 76 77 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 78 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 79 80 struct send_ctx { 81 struct file *send_filp; 82 loff_t send_off; 83 char *send_buf; 84 u32 send_size; 85 u32 send_max_size; 86 /* 87 * Whether BTRFS_SEND_A_DATA attribute was already added to current 88 * command (since protocol v2, data must be the last attribute). 89 */ 90 bool put_data; 91 struct page **send_buf_pages; 92 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 93 /* Protocol version compatibility requested */ 94 u32 proto; 95 96 struct btrfs_root *send_root; 97 struct btrfs_root *parent_root; 98 struct clone_root *clone_roots; 99 int clone_roots_cnt; 100 101 /* current state of the compare_tree call */ 102 struct btrfs_path *left_path; 103 struct btrfs_path *right_path; 104 struct btrfs_key *cmp_key; 105 106 /* 107 * Keep track of the generation of the last transaction that was used 108 * for relocating a block group. This is periodically checked in order 109 * to detect if a relocation happened since the last check, so that we 110 * don't operate on stale extent buffers for nodes (level >= 1) or on 111 * stale disk_bytenr values of file extent items. 112 */ 113 u64 last_reloc_trans; 114 115 /* 116 * infos of the currently processed inode. In case of deleted inodes, 117 * these are the values from the deleted inode. 118 */ 119 u64 cur_ino; 120 u64 cur_inode_gen; 121 u64 cur_inode_size; 122 u64 cur_inode_mode; 123 u64 cur_inode_rdev; 124 u64 cur_inode_last_extent; 125 u64 cur_inode_next_write_offset; 126 bool cur_inode_new; 127 bool cur_inode_new_gen; 128 bool cur_inode_deleted; 129 bool ignore_cur_inode; 130 131 u64 send_progress; 132 133 struct list_head new_refs; 134 struct list_head deleted_refs; 135 136 struct radix_tree_root name_cache; 137 struct list_head name_cache_list; 138 int name_cache_size; 139 140 /* 141 * The inode we are currently processing. It's not NULL only when we 142 * need to issue write commands for data extents from this inode. 143 */ 144 struct inode *cur_inode; 145 struct file_ra_state ra; 146 u64 page_cache_clear_start; 147 bool clean_page_cache; 148 149 /* 150 * We process inodes by their increasing order, so if before an 151 * incremental send we reverse the parent/child relationship of 152 * directories such that a directory with a lower inode number was 153 * the parent of a directory with a higher inode number, and the one 154 * becoming the new parent got renamed too, we can't rename/move the 155 * directory with lower inode number when we finish processing it - we 156 * must process the directory with higher inode number first, then 157 * rename/move it and then rename/move the directory with lower inode 158 * number. Example follows. 159 * 160 * Tree state when the first send was performed: 161 * 162 * . 163 * |-- a (ino 257) 164 * |-- b (ino 258) 165 * | 166 * | 167 * |-- c (ino 259) 168 * | |-- d (ino 260) 169 * | 170 * |-- c2 (ino 261) 171 * 172 * Tree state when the second (incremental) send is performed: 173 * 174 * . 175 * |-- a (ino 257) 176 * |-- b (ino 258) 177 * |-- c2 (ino 261) 178 * |-- d2 (ino 260) 179 * |-- cc (ino 259) 180 * 181 * The sequence of steps that lead to the second state was: 182 * 183 * mv /a/b/c/d /a/b/c2/d2 184 * mv /a/b/c /a/b/c2/d2/cc 185 * 186 * "c" has lower inode number, but we can't move it (2nd mv operation) 187 * before we move "d", which has higher inode number. 188 * 189 * So we just memorize which move/rename operations must be performed 190 * later when their respective parent is processed and moved/renamed. 191 */ 192 193 /* Indexed by parent directory inode number. */ 194 struct rb_root pending_dir_moves; 195 196 /* 197 * Reverse index, indexed by the inode number of a directory that 198 * is waiting for the move/rename of its immediate parent before its 199 * own move/rename can be performed. 200 */ 201 struct rb_root waiting_dir_moves; 202 203 /* 204 * A directory that is going to be rm'ed might have a child directory 205 * which is in the pending directory moves index above. In this case, 206 * the directory can only be removed after the move/rename of its child 207 * is performed. Example: 208 * 209 * Parent snapshot: 210 * 211 * . (ino 256) 212 * |-- a/ (ino 257) 213 * |-- b/ (ino 258) 214 * |-- c/ (ino 259) 215 * | |-- x/ (ino 260) 216 * | 217 * |-- y/ (ino 261) 218 * 219 * Send snapshot: 220 * 221 * . (ino 256) 222 * |-- a/ (ino 257) 223 * |-- b/ (ino 258) 224 * |-- YY/ (ino 261) 225 * |-- x/ (ino 260) 226 * 227 * Sequence of steps that lead to the send snapshot: 228 * rm -f /a/b/c/foo.txt 229 * mv /a/b/y /a/b/YY 230 * mv /a/b/c/x /a/b/YY 231 * rmdir /a/b/c 232 * 233 * When the child is processed, its move/rename is delayed until its 234 * parent is processed (as explained above), but all other operations 235 * like update utimes, chown, chgrp, etc, are performed and the paths 236 * that it uses for those operations must use the orphanized name of 237 * its parent (the directory we're going to rm later), so we need to 238 * memorize that name. 239 * 240 * Indexed by the inode number of the directory to be deleted. 241 */ 242 struct rb_root orphan_dirs; 243 244 struct rb_root rbtree_new_refs; 245 struct rb_root rbtree_deleted_refs; 246 }; 247 248 struct pending_dir_move { 249 struct rb_node node; 250 struct list_head list; 251 u64 parent_ino; 252 u64 ino; 253 u64 gen; 254 struct list_head update_refs; 255 }; 256 257 struct waiting_dir_move { 258 struct rb_node node; 259 u64 ino; 260 /* 261 * There might be some directory that could not be removed because it 262 * was waiting for this directory inode to be moved first. Therefore 263 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 264 */ 265 u64 rmdir_ino; 266 u64 rmdir_gen; 267 bool orphanized; 268 }; 269 270 struct orphan_dir_info { 271 struct rb_node node; 272 u64 ino; 273 u64 gen; 274 u64 last_dir_index_offset; 275 }; 276 277 struct name_cache_entry { 278 struct list_head list; 279 /* 280 * radix_tree has only 32bit entries but we need to handle 64bit inums. 281 * We use the lower 32bit of the 64bit inum to store it in the tree. If 282 * more then one inum would fall into the same entry, we use radix_list 283 * to store the additional entries. radix_list is also used to store 284 * entries where two entries have the same inum but different 285 * generations. 286 */ 287 struct list_head radix_list; 288 u64 ino; 289 u64 gen; 290 u64 parent_ino; 291 u64 parent_gen; 292 int ret; 293 int need_later_update; 294 int name_len; 295 char name[]; 296 }; 297 298 #define ADVANCE 1 299 #define ADVANCE_ONLY_NEXT -1 300 301 enum btrfs_compare_tree_result { 302 BTRFS_COMPARE_TREE_NEW, 303 BTRFS_COMPARE_TREE_DELETED, 304 BTRFS_COMPARE_TREE_CHANGED, 305 BTRFS_COMPARE_TREE_SAME, 306 }; 307 308 __cold 309 static void inconsistent_snapshot_error(struct send_ctx *sctx, 310 enum btrfs_compare_tree_result result, 311 const char *what) 312 { 313 const char *result_string; 314 315 switch (result) { 316 case BTRFS_COMPARE_TREE_NEW: 317 result_string = "new"; 318 break; 319 case BTRFS_COMPARE_TREE_DELETED: 320 result_string = "deleted"; 321 break; 322 case BTRFS_COMPARE_TREE_CHANGED: 323 result_string = "updated"; 324 break; 325 case BTRFS_COMPARE_TREE_SAME: 326 ASSERT(0); 327 result_string = "unchanged"; 328 break; 329 default: 330 ASSERT(0); 331 result_string = "unexpected"; 332 } 333 334 btrfs_err(sctx->send_root->fs_info, 335 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 336 result_string, what, sctx->cmp_key->objectid, 337 sctx->send_root->root_key.objectid, 338 (sctx->parent_root ? 339 sctx->parent_root->root_key.objectid : 0)); 340 } 341 342 __maybe_unused 343 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd) 344 { 345 switch (sctx->proto) { 346 case 1: return cmd <= BTRFS_SEND_C_MAX_V1; 347 case 2: return cmd <= BTRFS_SEND_C_MAX_V2; 348 default: return false; 349 } 350 } 351 352 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 353 354 static struct waiting_dir_move * 355 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 356 357 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); 358 359 static int need_send_hole(struct send_ctx *sctx) 360 { 361 return (sctx->parent_root && !sctx->cur_inode_new && 362 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 363 S_ISREG(sctx->cur_inode_mode)); 364 } 365 366 static void fs_path_reset(struct fs_path *p) 367 { 368 if (p->reversed) { 369 p->start = p->buf + p->buf_len - 1; 370 p->end = p->start; 371 *p->start = 0; 372 } else { 373 p->start = p->buf; 374 p->end = p->start; 375 *p->start = 0; 376 } 377 } 378 379 static struct fs_path *fs_path_alloc(void) 380 { 381 struct fs_path *p; 382 383 p = kmalloc(sizeof(*p), GFP_KERNEL); 384 if (!p) 385 return NULL; 386 p->reversed = 0; 387 p->buf = p->inline_buf; 388 p->buf_len = FS_PATH_INLINE_SIZE; 389 fs_path_reset(p); 390 return p; 391 } 392 393 static struct fs_path *fs_path_alloc_reversed(void) 394 { 395 struct fs_path *p; 396 397 p = fs_path_alloc(); 398 if (!p) 399 return NULL; 400 p->reversed = 1; 401 fs_path_reset(p); 402 return p; 403 } 404 405 static void fs_path_free(struct fs_path *p) 406 { 407 if (!p) 408 return; 409 if (p->buf != p->inline_buf) 410 kfree(p->buf); 411 kfree(p); 412 } 413 414 static int fs_path_len(struct fs_path *p) 415 { 416 return p->end - p->start; 417 } 418 419 static int fs_path_ensure_buf(struct fs_path *p, int len) 420 { 421 char *tmp_buf; 422 int path_len; 423 int old_buf_len; 424 425 len++; 426 427 if (p->buf_len >= len) 428 return 0; 429 430 if (len > PATH_MAX) { 431 WARN_ON(1); 432 return -ENOMEM; 433 } 434 435 path_len = p->end - p->start; 436 old_buf_len = p->buf_len; 437 438 /* 439 * First time the inline_buf does not suffice 440 */ 441 if (p->buf == p->inline_buf) { 442 tmp_buf = kmalloc(len, GFP_KERNEL); 443 if (tmp_buf) 444 memcpy(tmp_buf, p->buf, old_buf_len); 445 } else { 446 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 447 } 448 if (!tmp_buf) 449 return -ENOMEM; 450 p->buf = tmp_buf; 451 /* 452 * The real size of the buffer is bigger, this will let the fast path 453 * happen most of the time 454 */ 455 p->buf_len = ksize(p->buf); 456 457 if (p->reversed) { 458 tmp_buf = p->buf + old_buf_len - path_len - 1; 459 p->end = p->buf + p->buf_len - 1; 460 p->start = p->end - path_len; 461 memmove(p->start, tmp_buf, path_len + 1); 462 } else { 463 p->start = p->buf; 464 p->end = p->start + path_len; 465 } 466 return 0; 467 } 468 469 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 470 char **prepared) 471 { 472 int ret; 473 int new_len; 474 475 new_len = p->end - p->start + name_len; 476 if (p->start != p->end) 477 new_len++; 478 ret = fs_path_ensure_buf(p, new_len); 479 if (ret < 0) 480 goto out; 481 482 if (p->reversed) { 483 if (p->start != p->end) 484 *--p->start = '/'; 485 p->start -= name_len; 486 *prepared = p->start; 487 } else { 488 if (p->start != p->end) 489 *p->end++ = '/'; 490 *prepared = p->end; 491 p->end += name_len; 492 *p->end = 0; 493 } 494 495 out: 496 return ret; 497 } 498 499 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 500 { 501 int ret; 502 char *prepared; 503 504 ret = fs_path_prepare_for_add(p, name_len, &prepared); 505 if (ret < 0) 506 goto out; 507 memcpy(prepared, name, name_len); 508 509 out: 510 return ret; 511 } 512 513 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 514 { 515 int ret; 516 char *prepared; 517 518 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 519 if (ret < 0) 520 goto out; 521 memcpy(prepared, p2->start, p2->end - p2->start); 522 523 out: 524 return ret; 525 } 526 527 static int fs_path_add_from_extent_buffer(struct fs_path *p, 528 struct extent_buffer *eb, 529 unsigned long off, int len) 530 { 531 int ret; 532 char *prepared; 533 534 ret = fs_path_prepare_for_add(p, len, &prepared); 535 if (ret < 0) 536 goto out; 537 538 read_extent_buffer(eb, prepared, off, len); 539 540 out: 541 return ret; 542 } 543 544 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 545 { 546 p->reversed = from->reversed; 547 fs_path_reset(p); 548 549 return fs_path_add_path(p, from); 550 } 551 552 static void fs_path_unreverse(struct fs_path *p) 553 { 554 char *tmp; 555 int len; 556 557 if (!p->reversed) 558 return; 559 560 tmp = p->start; 561 len = p->end - p->start; 562 p->start = p->buf; 563 p->end = p->start + len; 564 memmove(p->start, tmp, len + 1); 565 p->reversed = 0; 566 } 567 568 static struct btrfs_path *alloc_path_for_send(void) 569 { 570 struct btrfs_path *path; 571 572 path = btrfs_alloc_path(); 573 if (!path) 574 return NULL; 575 path->search_commit_root = 1; 576 path->skip_locking = 1; 577 path->need_commit_sem = 1; 578 return path; 579 } 580 581 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 582 { 583 int ret; 584 u32 pos = 0; 585 586 while (pos < len) { 587 ret = kernel_write(filp, buf + pos, len - pos, off); 588 if (ret < 0) 589 return ret; 590 if (ret == 0) 591 return -EIO; 592 pos += ret; 593 } 594 595 return 0; 596 } 597 598 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 599 { 600 struct btrfs_tlv_header *hdr; 601 int total_len = sizeof(*hdr) + len; 602 int left = sctx->send_max_size - sctx->send_size; 603 604 if (WARN_ON_ONCE(sctx->put_data)) 605 return -EINVAL; 606 607 if (unlikely(left < total_len)) 608 return -EOVERFLOW; 609 610 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 611 put_unaligned_le16(attr, &hdr->tlv_type); 612 put_unaligned_le16(len, &hdr->tlv_len); 613 memcpy(hdr + 1, data, len); 614 sctx->send_size += total_len; 615 616 return 0; 617 } 618 619 #define TLV_PUT_DEFINE_INT(bits) \ 620 static int tlv_put_u##bits(struct send_ctx *sctx, \ 621 u##bits attr, u##bits value) \ 622 { \ 623 __le##bits __tmp = cpu_to_le##bits(value); \ 624 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 625 } 626 627 TLV_PUT_DEFINE_INT(32) 628 TLV_PUT_DEFINE_INT(64) 629 630 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 631 const char *str, int len) 632 { 633 if (len == -1) 634 len = strlen(str); 635 return tlv_put(sctx, attr, str, len); 636 } 637 638 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 639 const u8 *uuid) 640 { 641 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 642 } 643 644 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 645 struct extent_buffer *eb, 646 struct btrfs_timespec *ts) 647 { 648 struct btrfs_timespec bts; 649 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 650 return tlv_put(sctx, attr, &bts, sizeof(bts)); 651 } 652 653 654 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 655 do { \ 656 ret = tlv_put(sctx, attrtype, data, attrlen); \ 657 if (ret < 0) \ 658 goto tlv_put_failure; \ 659 } while (0) 660 661 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 662 do { \ 663 ret = tlv_put_u##bits(sctx, attrtype, value); \ 664 if (ret < 0) \ 665 goto tlv_put_failure; \ 666 } while (0) 667 668 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 669 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 670 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 671 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 672 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 673 do { \ 674 ret = tlv_put_string(sctx, attrtype, str, len); \ 675 if (ret < 0) \ 676 goto tlv_put_failure; \ 677 } while (0) 678 #define TLV_PUT_PATH(sctx, attrtype, p) \ 679 do { \ 680 ret = tlv_put_string(sctx, attrtype, p->start, \ 681 p->end - p->start); \ 682 if (ret < 0) \ 683 goto tlv_put_failure; \ 684 } while(0) 685 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 686 do { \ 687 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 688 if (ret < 0) \ 689 goto tlv_put_failure; \ 690 } while (0) 691 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 692 do { \ 693 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 694 if (ret < 0) \ 695 goto tlv_put_failure; \ 696 } while (0) 697 698 static int send_header(struct send_ctx *sctx) 699 { 700 struct btrfs_stream_header hdr; 701 702 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 703 hdr.version = cpu_to_le32(sctx->proto); 704 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 705 &sctx->send_off); 706 } 707 708 /* 709 * For each command/item we want to send to userspace, we call this function. 710 */ 711 static int begin_cmd(struct send_ctx *sctx, int cmd) 712 { 713 struct btrfs_cmd_header *hdr; 714 715 if (WARN_ON(!sctx->send_buf)) 716 return -EINVAL; 717 718 BUG_ON(sctx->send_size); 719 720 sctx->send_size += sizeof(*hdr); 721 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 722 put_unaligned_le16(cmd, &hdr->cmd); 723 724 return 0; 725 } 726 727 static int send_cmd(struct send_ctx *sctx) 728 { 729 int ret; 730 struct btrfs_cmd_header *hdr; 731 u32 crc; 732 733 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 734 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 735 put_unaligned_le32(0, &hdr->crc); 736 737 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 738 put_unaligned_le32(crc, &hdr->crc); 739 740 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 741 &sctx->send_off); 742 743 sctx->send_size = 0; 744 sctx->put_data = false; 745 746 return ret; 747 } 748 749 /* 750 * Sends a move instruction to user space 751 */ 752 static int send_rename(struct send_ctx *sctx, 753 struct fs_path *from, struct fs_path *to) 754 { 755 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 756 int ret; 757 758 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 759 760 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 761 if (ret < 0) 762 goto out; 763 764 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 765 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 766 767 ret = send_cmd(sctx); 768 769 tlv_put_failure: 770 out: 771 return ret; 772 } 773 774 /* 775 * Sends a link instruction to user space 776 */ 777 static int send_link(struct send_ctx *sctx, 778 struct fs_path *path, struct fs_path *lnk) 779 { 780 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 781 int ret; 782 783 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 784 785 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 786 if (ret < 0) 787 goto out; 788 789 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 790 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 791 792 ret = send_cmd(sctx); 793 794 tlv_put_failure: 795 out: 796 return ret; 797 } 798 799 /* 800 * Sends an unlink instruction to user space 801 */ 802 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 803 { 804 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 805 int ret; 806 807 btrfs_debug(fs_info, "send_unlink %s", path->start); 808 809 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 810 if (ret < 0) 811 goto out; 812 813 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 814 815 ret = send_cmd(sctx); 816 817 tlv_put_failure: 818 out: 819 return ret; 820 } 821 822 /* 823 * Sends a rmdir instruction to user space 824 */ 825 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 826 { 827 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 828 int ret; 829 830 btrfs_debug(fs_info, "send_rmdir %s", path->start); 831 832 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 833 if (ret < 0) 834 goto out; 835 836 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 837 838 ret = send_cmd(sctx); 839 840 tlv_put_failure: 841 out: 842 return ret; 843 } 844 845 /* 846 * Helper function to retrieve some fields from an inode item. 847 */ 848 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 849 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 850 u64 *gid, u64 *rdev, u64 *fileattr) 851 { 852 int ret; 853 struct btrfs_inode_item *ii; 854 struct btrfs_key key; 855 856 key.objectid = ino; 857 key.type = BTRFS_INODE_ITEM_KEY; 858 key.offset = 0; 859 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 860 if (ret) { 861 if (ret > 0) 862 ret = -ENOENT; 863 return ret; 864 } 865 866 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 867 struct btrfs_inode_item); 868 if (size) 869 *size = btrfs_inode_size(path->nodes[0], ii); 870 if (gen) 871 *gen = btrfs_inode_generation(path->nodes[0], ii); 872 if (mode) 873 *mode = btrfs_inode_mode(path->nodes[0], ii); 874 if (uid) 875 *uid = btrfs_inode_uid(path->nodes[0], ii); 876 if (gid) 877 *gid = btrfs_inode_gid(path->nodes[0], ii); 878 if (rdev) 879 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 880 /* 881 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's 882 * otherwise logically split to 32/32 parts. 883 */ 884 if (fileattr) 885 *fileattr = btrfs_inode_flags(path->nodes[0], ii); 886 887 return ret; 888 } 889 890 static int get_inode_info(struct btrfs_root *root, 891 u64 ino, u64 *size, u64 *gen, 892 u64 *mode, u64 *uid, u64 *gid, 893 u64 *rdev, u64 *fileattr) 894 { 895 struct btrfs_path *path; 896 int ret; 897 898 path = alloc_path_for_send(); 899 if (!path) 900 return -ENOMEM; 901 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 902 rdev, fileattr); 903 btrfs_free_path(path); 904 return ret; 905 } 906 907 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 908 struct fs_path *p, 909 void *ctx); 910 911 /* 912 * Helper function to iterate the entries in ONE btrfs_inode_ref or 913 * btrfs_inode_extref. 914 * The iterate callback may return a non zero value to stop iteration. This can 915 * be a negative value for error codes or 1 to simply stop it. 916 * 917 * path must point to the INODE_REF or INODE_EXTREF when called. 918 */ 919 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 920 struct btrfs_key *found_key, int resolve, 921 iterate_inode_ref_t iterate, void *ctx) 922 { 923 struct extent_buffer *eb = path->nodes[0]; 924 struct btrfs_inode_ref *iref; 925 struct btrfs_inode_extref *extref; 926 struct btrfs_path *tmp_path; 927 struct fs_path *p; 928 u32 cur = 0; 929 u32 total; 930 int slot = path->slots[0]; 931 u32 name_len; 932 char *start; 933 int ret = 0; 934 int num = 0; 935 int index; 936 u64 dir; 937 unsigned long name_off; 938 unsigned long elem_size; 939 unsigned long ptr; 940 941 p = fs_path_alloc_reversed(); 942 if (!p) 943 return -ENOMEM; 944 945 tmp_path = alloc_path_for_send(); 946 if (!tmp_path) { 947 fs_path_free(p); 948 return -ENOMEM; 949 } 950 951 952 if (found_key->type == BTRFS_INODE_REF_KEY) { 953 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 954 struct btrfs_inode_ref); 955 total = btrfs_item_size(eb, slot); 956 elem_size = sizeof(*iref); 957 } else { 958 ptr = btrfs_item_ptr_offset(eb, slot); 959 total = btrfs_item_size(eb, slot); 960 elem_size = sizeof(*extref); 961 } 962 963 while (cur < total) { 964 fs_path_reset(p); 965 966 if (found_key->type == BTRFS_INODE_REF_KEY) { 967 iref = (struct btrfs_inode_ref *)(ptr + cur); 968 name_len = btrfs_inode_ref_name_len(eb, iref); 969 name_off = (unsigned long)(iref + 1); 970 index = btrfs_inode_ref_index(eb, iref); 971 dir = found_key->offset; 972 } else { 973 extref = (struct btrfs_inode_extref *)(ptr + cur); 974 name_len = btrfs_inode_extref_name_len(eb, extref); 975 name_off = (unsigned long)&extref->name; 976 index = btrfs_inode_extref_index(eb, extref); 977 dir = btrfs_inode_extref_parent(eb, extref); 978 } 979 980 if (resolve) { 981 start = btrfs_ref_to_path(root, tmp_path, name_len, 982 name_off, eb, dir, 983 p->buf, p->buf_len); 984 if (IS_ERR(start)) { 985 ret = PTR_ERR(start); 986 goto out; 987 } 988 if (start < p->buf) { 989 /* overflow , try again with larger buffer */ 990 ret = fs_path_ensure_buf(p, 991 p->buf_len + p->buf - start); 992 if (ret < 0) 993 goto out; 994 start = btrfs_ref_to_path(root, tmp_path, 995 name_len, name_off, 996 eb, dir, 997 p->buf, p->buf_len); 998 if (IS_ERR(start)) { 999 ret = PTR_ERR(start); 1000 goto out; 1001 } 1002 BUG_ON(start < p->buf); 1003 } 1004 p->start = start; 1005 } else { 1006 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 1007 name_len); 1008 if (ret < 0) 1009 goto out; 1010 } 1011 1012 cur += elem_size + name_len; 1013 ret = iterate(num, dir, index, p, ctx); 1014 if (ret) 1015 goto out; 1016 num++; 1017 } 1018 1019 out: 1020 btrfs_free_path(tmp_path); 1021 fs_path_free(p); 1022 return ret; 1023 } 1024 1025 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 1026 const char *name, int name_len, 1027 const char *data, int data_len, 1028 void *ctx); 1029 1030 /* 1031 * Helper function to iterate the entries in ONE btrfs_dir_item. 1032 * The iterate callback may return a non zero value to stop iteration. This can 1033 * be a negative value for error codes or 1 to simply stop it. 1034 * 1035 * path must point to the dir item when called. 1036 */ 1037 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1038 iterate_dir_item_t iterate, void *ctx) 1039 { 1040 int ret = 0; 1041 struct extent_buffer *eb; 1042 struct btrfs_dir_item *di; 1043 struct btrfs_key di_key; 1044 char *buf = NULL; 1045 int buf_len; 1046 u32 name_len; 1047 u32 data_len; 1048 u32 cur; 1049 u32 len; 1050 u32 total; 1051 int slot; 1052 int num; 1053 1054 /* 1055 * Start with a small buffer (1 page). If later we end up needing more 1056 * space, which can happen for xattrs on a fs with a leaf size greater 1057 * then the page size, attempt to increase the buffer. Typically xattr 1058 * values are small. 1059 */ 1060 buf_len = PATH_MAX; 1061 buf = kmalloc(buf_len, GFP_KERNEL); 1062 if (!buf) { 1063 ret = -ENOMEM; 1064 goto out; 1065 } 1066 1067 eb = path->nodes[0]; 1068 slot = path->slots[0]; 1069 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1070 cur = 0; 1071 len = 0; 1072 total = btrfs_item_size(eb, slot); 1073 1074 num = 0; 1075 while (cur < total) { 1076 name_len = btrfs_dir_name_len(eb, di); 1077 data_len = btrfs_dir_data_len(eb, di); 1078 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1079 1080 if (btrfs_dir_type(eb, di) == BTRFS_FT_XATTR) { 1081 if (name_len > XATTR_NAME_MAX) { 1082 ret = -ENAMETOOLONG; 1083 goto out; 1084 } 1085 if (name_len + data_len > 1086 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1087 ret = -E2BIG; 1088 goto out; 1089 } 1090 } else { 1091 /* 1092 * Path too long 1093 */ 1094 if (name_len + data_len > PATH_MAX) { 1095 ret = -ENAMETOOLONG; 1096 goto out; 1097 } 1098 } 1099 1100 if (name_len + data_len > buf_len) { 1101 buf_len = name_len + data_len; 1102 if (is_vmalloc_addr(buf)) { 1103 vfree(buf); 1104 buf = NULL; 1105 } else { 1106 char *tmp = krealloc(buf, buf_len, 1107 GFP_KERNEL | __GFP_NOWARN); 1108 1109 if (!tmp) 1110 kfree(buf); 1111 buf = tmp; 1112 } 1113 if (!buf) { 1114 buf = kvmalloc(buf_len, GFP_KERNEL); 1115 if (!buf) { 1116 ret = -ENOMEM; 1117 goto out; 1118 } 1119 } 1120 } 1121 1122 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1123 name_len + data_len); 1124 1125 len = sizeof(*di) + name_len + data_len; 1126 di = (struct btrfs_dir_item *)((char *)di + len); 1127 cur += len; 1128 1129 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1130 data_len, ctx); 1131 if (ret < 0) 1132 goto out; 1133 if (ret) { 1134 ret = 0; 1135 goto out; 1136 } 1137 1138 num++; 1139 } 1140 1141 out: 1142 kvfree(buf); 1143 return ret; 1144 } 1145 1146 static int __copy_first_ref(int num, u64 dir, int index, 1147 struct fs_path *p, void *ctx) 1148 { 1149 int ret; 1150 struct fs_path *pt = ctx; 1151 1152 ret = fs_path_copy(pt, p); 1153 if (ret < 0) 1154 return ret; 1155 1156 /* we want the first only */ 1157 return 1; 1158 } 1159 1160 /* 1161 * Retrieve the first path of an inode. If an inode has more then one 1162 * ref/hardlink, this is ignored. 1163 */ 1164 static int get_inode_path(struct btrfs_root *root, 1165 u64 ino, struct fs_path *path) 1166 { 1167 int ret; 1168 struct btrfs_key key, found_key; 1169 struct btrfs_path *p; 1170 1171 p = alloc_path_for_send(); 1172 if (!p) 1173 return -ENOMEM; 1174 1175 fs_path_reset(path); 1176 1177 key.objectid = ino; 1178 key.type = BTRFS_INODE_REF_KEY; 1179 key.offset = 0; 1180 1181 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1182 if (ret < 0) 1183 goto out; 1184 if (ret) { 1185 ret = 1; 1186 goto out; 1187 } 1188 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1189 if (found_key.objectid != ino || 1190 (found_key.type != BTRFS_INODE_REF_KEY && 1191 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1192 ret = -ENOENT; 1193 goto out; 1194 } 1195 1196 ret = iterate_inode_ref(root, p, &found_key, 1, 1197 __copy_first_ref, path); 1198 if (ret < 0) 1199 goto out; 1200 ret = 0; 1201 1202 out: 1203 btrfs_free_path(p); 1204 return ret; 1205 } 1206 1207 struct backref_ctx { 1208 struct send_ctx *sctx; 1209 1210 /* number of total found references */ 1211 u64 found; 1212 1213 /* 1214 * used for clones found in send_root. clones found behind cur_objectid 1215 * and cur_offset are not considered as allowed clones. 1216 */ 1217 u64 cur_objectid; 1218 u64 cur_offset; 1219 1220 /* may be truncated in case it's the last extent in a file */ 1221 u64 extent_len; 1222 1223 /* Just to check for bugs in backref resolving */ 1224 int found_itself; 1225 }; 1226 1227 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1228 { 1229 u64 root = (u64)(uintptr_t)key; 1230 const struct clone_root *cr = elt; 1231 1232 if (root < cr->root->root_key.objectid) 1233 return -1; 1234 if (root > cr->root->root_key.objectid) 1235 return 1; 1236 return 0; 1237 } 1238 1239 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1240 { 1241 const struct clone_root *cr1 = e1; 1242 const struct clone_root *cr2 = e2; 1243 1244 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid) 1245 return -1; 1246 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid) 1247 return 1; 1248 return 0; 1249 } 1250 1251 /* 1252 * Called for every backref that is found for the current extent. 1253 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1254 */ 1255 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1256 { 1257 struct backref_ctx *bctx = ctx_; 1258 struct clone_root *found; 1259 1260 /* First check if the root is in the list of accepted clone sources */ 1261 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1262 bctx->sctx->clone_roots_cnt, 1263 sizeof(struct clone_root), 1264 __clone_root_cmp_bsearch); 1265 if (!found) 1266 return 0; 1267 1268 if (found->root == bctx->sctx->send_root && 1269 ino == bctx->cur_objectid && 1270 offset == bctx->cur_offset) { 1271 bctx->found_itself = 1; 1272 } 1273 1274 /* 1275 * Make sure we don't consider clones from send_root that are 1276 * behind the current inode/offset. 1277 */ 1278 if (found->root == bctx->sctx->send_root) { 1279 /* 1280 * If the source inode was not yet processed we can't issue a 1281 * clone operation, as the source extent does not exist yet at 1282 * the destination of the stream. 1283 */ 1284 if (ino > bctx->cur_objectid) 1285 return 0; 1286 /* 1287 * We clone from the inode currently being sent as long as the 1288 * source extent is already processed, otherwise we could try 1289 * to clone from an extent that does not exist yet at the 1290 * destination of the stream. 1291 */ 1292 if (ino == bctx->cur_objectid && 1293 offset + bctx->extent_len > 1294 bctx->sctx->cur_inode_next_write_offset) 1295 return 0; 1296 } 1297 1298 bctx->found++; 1299 found->found_refs++; 1300 if (ino < found->ino) { 1301 found->ino = ino; 1302 found->offset = offset; 1303 } else if (found->ino == ino) { 1304 /* 1305 * same extent found more then once in the same file. 1306 */ 1307 if (found->offset > offset + bctx->extent_len) 1308 found->offset = offset; 1309 } 1310 1311 return 0; 1312 } 1313 1314 /* 1315 * Given an inode, offset and extent item, it finds a good clone for a clone 1316 * instruction. Returns -ENOENT when none could be found. The function makes 1317 * sure that the returned clone is usable at the point where sending is at the 1318 * moment. This means, that no clones are accepted which lie behind the current 1319 * inode+offset. 1320 * 1321 * path must point to the extent item when called. 1322 */ 1323 static int find_extent_clone(struct send_ctx *sctx, 1324 struct btrfs_path *path, 1325 u64 ino, u64 data_offset, 1326 u64 ino_size, 1327 struct clone_root **found) 1328 { 1329 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1330 int ret; 1331 int extent_type; 1332 u64 logical; 1333 u64 disk_byte; 1334 u64 num_bytes; 1335 u64 extent_item_pos; 1336 u64 flags = 0; 1337 struct btrfs_file_extent_item *fi; 1338 struct extent_buffer *eb = path->nodes[0]; 1339 struct backref_ctx backref_ctx = {0}; 1340 struct clone_root *cur_clone_root; 1341 struct btrfs_key found_key; 1342 struct btrfs_path *tmp_path; 1343 struct btrfs_extent_item *ei; 1344 int compressed; 1345 u32 i; 1346 1347 tmp_path = alloc_path_for_send(); 1348 if (!tmp_path) 1349 return -ENOMEM; 1350 1351 /* We only use this path under the commit sem */ 1352 tmp_path->need_commit_sem = 0; 1353 1354 if (data_offset >= ino_size) { 1355 /* 1356 * There may be extents that lie behind the file's size. 1357 * I at least had this in combination with snapshotting while 1358 * writing large files. 1359 */ 1360 ret = 0; 1361 goto out; 1362 } 1363 1364 fi = btrfs_item_ptr(eb, path->slots[0], 1365 struct btrfs_file_extent_item); 1366 extent_type = btrfs_file_extent_type(eb, fi); 1367 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1368 ret = -ENOENT; 1369 goto out; 1370 } 1371 compressed = btrfs_file_extent_compression(eb, fi); 1372 1373 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1374 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1375 if (disk_byte == 0) { 1376 ret = -ENOENT; 1377 goto out; 1378 } 1379 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1380 1381 down_read(&fs_info->commit_root_sem); 1382 ret = extent_from_logical(fs_info, disk_byte, tmp_path, 1383 &found_key, &flags); 1384 up_read(&fs_info->commit_root_sem); 1385 1386 if (ret < 0) 1387 goto out; 1388 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1389 ret = -EIO; 1390 goto out; 1391 } 1392 1393 ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0], 1394 struct btrfs_extent_item); 1395 /* 1396 * Backreference walking (iterate_extent_inodes() below) is currently 1397 * too expensive when an extent has a large number of references, both 1398 * in time spent and used memory. So for now just fallback to write 1399 * operations instead of clone operations when an extent has more than 1400 * a certain amount of references. 1401 */ 1402 if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) { 1403 ret = -ENOENT; 1404 goto out; 1405 } 1406 btrfs_release_path(tmp_path); 1407 1408 /* 1409 * Setup the clone roots. 1410 */ 1411 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1412 cur_clone_root = sctx->clone_roots + i; 1413 cur_clone_root->ino = (u64)-1; 1414 cur_clone_root->offset = 0; 1415 cur_clone_root->found_refs = 0; 1416 } 1417 1418 backref_ctx.sctx = sctx; 1419 backref_ctx.found = 0; 1420 backref_ctx.cur_objectid = ino; 1421 backref_ctx.cur_offset = data_offset; 1422 backref_ctx.found_itself = 0; 1423 backref_ctx.extent_len = num_bytes; 1424 1425 /* 1426 * The last extent of a file may be too large due to page alignment. 1427 * We need to adjust extent_len in this case so that the checks in 1428 * __iterate_backrefs work. 1429 */ 1430 if (data_offset + num_bytes >= ino_size) 1431 backref_ctx.extent_len = ino_size - data_offset; 1432 1433 /* 1434 * Now collect all backrefs. 1435 */ 1436 if (compressed == BTRFS_COMPRESS_NONE) 1437 extent_item_pos = logical - found_key.objectid; 1438 else 1439 extent_item_pos = 0; 1440 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1441 extent_item_pos, 1, __iterate_backrefs, 1442 &backref_ctx, false); 1443 1444 if (ret < 0) 1445 goto out; 1446 1447 down_read(&fs_info->commit_root_sem); 1448 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 1449 /* 1450 * A transaction commit for a transaction in which block group 1451 * relocation was done just happened. 1452 * The disk_bytenr of the file extent item we processed is 1453 * possibly stale, referring to the extent's location before 1454 * relocation. So act as if we haven't found any clone sources 1455 * and fallback to write commands, which will read the correct 1456 * data from the new extent location. Otherwise we will fail 1457 * below because we haven't found our own back reference or we 1458 * could be getting incorrect sources in case the old extent 1459 * was already reallocated after the relocation. 1460 */ 1461 up_read(&fs_info->commit_root_sem); 1462 ret = -ENOENT; 1463 goto out; 1464 } 1465 up_read(&fs_info->commit_root_sem); 1466 1467 if (!backref_ctx.found_itself) { 1468 /* found a bug in backref code? */ 1469 ret = -EIO; 1470 btrfs_err(fs_info, 1471 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu", 1472 ino, data_offset, disk_byte, found_key.objectid); 1473 goto out; 1474 } 1475 1476 btrfs_debug(fs_info, 1477 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1478 data_offset, ino, num_bytes, logical); 1479 1480 if (!backref_ctx.found) 1481 btrfs_debug(fs_info, "no clones found"); 1482 1483 cur_clone_root = NULL; 1484 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1485 if (sctx->clone_roots[i].found_refs) { 1486 if (!cur_clone_root) 1487 cur_clone_root = sctx->clone_roots + i; 1488 else if (sctx->clone_roots[i].root == sctx->send_root) 1489 /* prefer clones from send_root over others */ 1490 cur_clone_root = sctx->clone_roots + i; 1491 } 1492 1493 } 1494 1495 if (cur_clone_root) { 1496 *found = cur_clone_root; 1497 ret = 0; 1498 } else { 1499 ret = -ENOENT; 1500 } 1501 1502 out: 1503 btrfs_free_path(tmp_path); 1504 return ret; 1505 } 1506 1507 static int read_symlink(struct btrfs_root *root, 1508 u64 ino, 1509 struct fs_path *dest) 1510 { 1511 int ret; 1512 struct btrfs_path *path; 1513 struct btrfs_key key; 1514 struct btrfs_file_extent_item *ei; 1515 u8 type; 1516 u8 compression; 1517 unsigned long off; 1518 int len; 1519 1520 path = alloc_path_for_send(); 1521 if (!path) 1522 return -ENOMEM; 1523 1524 key.objectid = ino; 1525 key.type = BTRFS_EXTENT_DATA_KEY; 1526 key.offset = 0; 1527 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1528 if (ret < 0) 1529 goto out; 1530 if (ret) { 1531 /* 1532 * An empty symlink inode. Can happen in rare error paths when 1533 * creating a symlink (transaction committed before the inode 1534 * eviction handler removed the symlink inode items and a crash 1535 * happened in between or the subvol was snapshoted in between). 1536 * Print an informative message to dmesg/syslog so that the user 1537 * can delete the symlink. 1538 */ 1539 btrfs_err(root->fs_info, 1540 "Found empty symlink inode %llu at root %llu", 1541 ino, root->root_key.objectid); 1542 ret = -EIO; 1543 goto out; 1544 } 1545 1546 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1547 struct btrfs_file_extent_item); 1548 type = btrfs_file_extent_type(path->nodes[0], ei); 1549 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1550 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1551 BUG_ON(compression); 1552 1553 off = btrfs_file_extent_inline_start(ei); 1554 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1555 1556 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1557 1558 out: 1559 btrfs_free_path(path); 1560 return ret; 1561 } 1562 1563 /* 1564 * Helper function to generate a file name that is unique in the root of 1565 * send_root and parent_root. This is used to generate names for orphan inodes. 1566 */ 1567 static int gen_unique_name(struct send_ctx *sctx, 1568 u64 ino, u64 gen, 1569 struct fs_path *dest) 1570 { 1571 int ret = 0; 1572 struct btrfs_path *path; 1573 struct btrfs_dir_item *di; 1574 char tmp[64]; 1575 int len; 1576 u64 idx = 0; 1577 1578 path = alloc_path_for_send(); 1579 if (!path) 1580 return -ENOMEM; 1581 1582 while (1) { 1583 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1584 ino, gen, idx); 1585 ASSERT(len < sizeof(tmp)); 1586 1587 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1588 path, BTRFS_FIRST_FREE_OBJECTID, 1589 tmp, strlen(tmp), 0); 1590 btrfs_release_path(path); 1591 if (IS_ERR(di)) { 1592 ret = PTR_ERR(di); 1593 goto out; 1594 } 1595 if (di) { 1596 /* not unique, try again */ 1597 idx++; 1598 continue; 1599 } 1600 1601 if (!sctx->parent_root) { 1602 /* unique */ 1603 ret = 0; 1604 break; 1605 } 1606 1607 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1608 path, BTRFS_FIRST_FREE_OBJECTID, 1609 tmp, strlen(tmp), 0); 1610 btrfs_release_path(path); 1611 if (IS_ERR(di)) { 1612 ret = PTR_ERR(di); 1613 goto out; 1614 } 1615 if (di) { 1616 /* not unique, try again */ 1617 idx++; 1618 continue; 1619 } 1620 /* unique */ 1621 break; 1622 } 1623 1624 ret = fs_path_add(dest, tmp, strlen(tmp)); 1625 1626 out: 1627 btrfs_free_path(path); 1628 return ret; 1629 } 1630 1631 enum inode_state { 1632 inode_state_no_change, 1633 inode_state_will_create, 1634 inode_state_did_create, 1635 inode_state_will_delete, 1636 inode_state_did_delete, 1637 }; 1638 1639 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1640 { 1641 int ret; 1642 int left_ret; 1643 int right_ret; 1644 u64 left_gen; 1645 u64 right_gen; 1646 1647 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1648 NULL, NULL, NULL); 1649 if (ret < 0 && ret != -ENOENT) 1650 goto out; 1651 left_ret = ret; 1652 1653 if (!sctx->parent_root) { 1654 right_ret = -ENOENT; 1655 } else { 1656 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1657 NULL, NULL, NULL, NULL, NULL); 1658 if (ret < 0 && ret != -ENOENT) 1659 goto out; 1660 right_ret = ret; 1661 } 1662 1663 if (!left_ret && !right_ret) { 1664 if (left_gen == gen && right_gen == gen) { 1665 ret = inode_state_no_change; 1666 } else if (left_gen == gen) { 1667 if (ino < sctx->send_progress) 1668 ret = inode_state_did_create; 1669 else 1670 ret = inode_state_will_create; 1671 } else if (right_gen == gen) { 1672 if (ino < sctx->send_progress) 1673 ret = inode_state_did_delete; 1674 else 1675 ret = inode_state_will_delete; 1676 } else { 1677 ret = -ENOENT; 1678 } 1679 } else if (!left_ret) { 1680 if (left_gen == gen) { 1681 if (ino < sctx->send_progress) 1682 ret = inode_state_did_create; 1683 else 1684 ret = inode_state_will_create; 1685 } else { 1686 ret = -ENOENT; 1687 } 1688 } else if (!right_ret) { 1689 if (right_gen == gen) { 1690 if (ino < sctx->send_progress) 1691 ret = inode_state_did_delete; 1692 else 1693 ret = inode_state_will_delete; 1694 } else { 1695 ret = -ENOENT; 1696 } 1697 } else { 1698 ret = -ENOENT; 1699 } 1700 1701 out: 1702 return ret; 1703 } 1704 1705 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1706 { 1707 int ret; 1708 1709 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1710 return 1; 1711 1712 ret = get_cur_inode_state(sctx, ino, gen); 1713 if (ret < 0) 1714 goto out; 1715 1716 if (ret == inode_state_no_change || 1717 ret == inode_state_did_create || 1718 ret == inode_state_will_delete) 1719 ret = 1; 1720 else 1721 ret = 0; 1722 1723 out: 1724 return ret; 1725 } 1726 1727 /* 1728 * Helper function to lookup a dir item in a dir. 1729 */ 1730 static int lookup_dir_item_inode(struct btrfs_root *root, 1731 u64 dir, const char *name, int name_len, 1732 u64 *found_inode) 1733 { 1734 int ret = 0; 1735 struct btrfs_dir_item *di; 1736 struct btrfs_key key; 1737 struct btrfs_path *path; 1738 1739 path = alloc_path_for_send(); 1740 if (!path) 1741 return -ENOMEM; 1742 1743 di = btrfs_lookup_dir_item(NULL, root, path, 1744 dir, name, name_len, 0); 1745 if (IS_ERR_OR_NULL(di)) { 1746 ret = di ? PTR_ERR(di) : -ENOENT; 1747 goto out; 1748 } 1749 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1750 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1751 ret = -ENOENT; 1752 goto out; 1753 } 1754 *found_inode = key.objectid; 1755 1756 out: 1757 btrfs_free_path(path); 1758 return ret; 1759 } 1760 1761 /* 1762 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1763 * generation of the parent dir and the name of the dir entry. 1764 */ 1765 static int get_first_ref(struct btrfs_root *root, u64 ino, 1766 u64 *dir, u64 *dir_gen, struct fs_path *name) 1767 { 1768 int ret; 1769 struct btrfs_key key; 1770 struct btrfs_key found_key; 1771 struct btrfs_path *path; 1772 int len; 1773 u64 parent_dir; 1774 1775 path = alloc_path_for_send(); 1776 if (!path) 1777 return -ENOMEM; 1778 1779 key.objectid = ino; 1780 key.type = BTRFS_INODE_REF_KEY; 1781 key.offset = 0; 1782 1783 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1784 if (ret < 0) 1785 goto out; 1786 if (!ret) 1787 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1788 path->slots[0]); 1789 if (ret || found_key.objectid != ino || 1790 (found_key.type != BTRFS_INODE_REF_KEY && 1791 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1792 ret = -ENOENT; 1793 goto out; 1794 } 1795 1796 if (found_key.type == BTRFS_INODE_REF_KEY) { 1797 struct btrfs_inode_ref *iref; 1798 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1799 struct btrfs_inode_ref); 1800 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1801 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1802 (unsigned long)(iref + 1), 1803 len); 1804 parent_dir = found_key.offset; 1805 } else { 1806 struct btrfs_inode_extref *extref; 1807 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1808 struct btrfs_inode_extref); 1809 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1810 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1811 (unsigned long)&extref->name, len); 1812 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1813 } 1814 if (ret < 0) 1815 goto out; 1816 btrfs_release_path(path); 1817 1818 if (dir_gen) { 1819 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1820 NULL, NULL, NULL, NULL); 1821 if (ret < 0) 1822 goto out; 1823 } 1824 1825 *dir = parent_dir; 1826 1827 out: 1828 btrfs_free_path(path); 1829 return ret; 1830 } 1831 1832 static int is_first_ref(struct btrfs_root *root, 1833 u64 ino, u64 dir, 1834 const char *name, int name_len) 1835 { 1836 int ret; 1837 struct fs_path *tmp_name; 1838 u64 tmp_dir; 1839 1840 tmp_name = fs_path_alloc(); 1841 if (!tmp_name) 1842 return -ENOMEM; 1843 1844 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1845 if (ret < 0) 1846 goto out; 1847 1848 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1849 ret = 0; 1850 goto out; 1851 } 1852 1853 ret = !memcmp(tmp_name->start, name, name_len); 1854 1855 out: 1856 fs_path_free(tmp_name); 1857 return ret; 1858 } 1859 1860 /* 1861 * Used by process_recorded_refs to determine if a new ref would overwrite an 1862 * already existing ref. In case it detects an overwrite, it returns the 1863 * inode/gen in who_ino/who_gen. 1864 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1865 * to make sure later references to the overwritten inode are possible. 1866 * Orphanizing is however only required for the first ref of an inode. 1867 * process_recorded_refs does an additional is_first_ref check to see if 1868 * orphanizing is really required. 1869 */ 1870 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1871 const char *name, int name_len, 1872 u64 *who_ino, u64 *who_gen, u64 *who_mode) 1873 { 1874 int ret = 0; 1875 u64 gen; 1876 u64 other_inode = 0; 1877 1878 if (!sctx->parent_root) 1879 goto out; 1880 1881 ret = is_inode_existent(sctx, dir, dir_gen); 1882 if (ret <= 0) 1883 goto out; 1884 1885 /* 1886 * If we have a parent root we need to verify that the parent dir was 1887 * not deleted and then re-created, if it was then we have no overwrite 1888 * and we can just unlink this entry. 1889 */ 1890 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) { 1891 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1892 NULL, NULL, NULL, NULL); 1893 if (ret < 0 && ret != -ENOENT) 1894 goto out; 1895 if (ret) { 1896 ret = 0; 1897 goto out; 1898 } 1899 if (gen != dir_gen) 1900 goto out; 1901 } 1902 1903 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1904 &other_inode); 1905 if (ret < 0 && ret != -ENOENT) 1906 goto out; 1907 if (ret) { 1908 ret = 0; 1909 goto out; 1910 } 1911 1912 /* 1913 * Check if the overwritten ref was already processed. If yes, the ref 1914 * was already unlinked/moved, so we can safely assume that we will not 1915 * overwrite anything at this point in time. 1916 */ 1917 if (other_inode > sctx->send_progress || 1918 is_waiting_for_move(sctx, other_inode)) { 1919 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1920 who_gen, who_mode, NULL, NULL, NULL, NULL); 1921 if (ret < 0) 1922 goto out; 1923 1924 ret = 1; 1925 *who_ino = other_inode; 1926 } else { 1927 ret = 0; 1928 } 1929 1930 out: 1931 return ret; 1932 } 1933 1934 /* 1935 * Checks if the ref was overwritten by an already processed inode. This is 1936 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1937 * thus the orphan name needs be used. 1938 * process_recorded_refs also uses it to avoid unlinking of refs that were 1939 * overwritten. 1940 */ 1941 static int did_overwrite_ref(struct send_ctx *sctx, 1942 u64 dir, u64 dir_gen, 1943 u64 ino, u64 ino_gen, 1944 const char *name, int name_len) 1945 { 1946 int ret = 0; 1947 u64 gen; 1948 u64 ow_inode; 1949 1950 if (!sctx->parent_root) 1951 goto out; 1952 1953 ret = is_inode_existent(sctx, dir, dir_gen); 1954 if (ret <= 0) 1955 goto out; 1956 1957 if (dir != BTRFS_FIRST_FREE_OBJECTID) { 1958 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, 1959 NULL, NULL, NULL, NULL); 1960 if (ret < 0 && ret != -ENOENT) 1961 goto out; 1962 if (ret) { 1963 ret = 0; 1964 goto out; 1965 } 1966 if (gen != dir_gen) 1967 goto out; 1968 } 1969 1970 /* check if the ref was overwritten by another ref */ 1971 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1972 &ow_inode); 1973 if (ret < 0 && ret != -ENOENT) 1974 goto out; 1975 if (ret) { 1976 /* was never and will never be overwritten */ 1977 ret = 0; 1978 goto out; 1979 } 1980 1981 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1982 NULL, NULL, NULL); 1983 if (ret < 0) 1984 goto out; 1985 1986 if (ow_inode == ino && gen == ino_gen) { 1987 ret = 0; 1988 goto out; 1989 } 1990 1991 /* 1992 * We know that it is or will be overwritten. Check this now. 1993 * The current inode being processed might have been the one that caused 1994 * inode 'ino' to be orphanized, therefore check if ow_inode matches 1995 * the current inode being processed. 1996 */ 1997 if ((ow_inode < sctx->send_progress) || 1998 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 1999 gen == sctx->cur_inode_gen)) 2000 ret = 1; 2001 else 2002 ret = 0; 2003 2004 out: 2005 return ret; 2006 } 2007 2008 /* 2009 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 2010 * that got overwritten. This is used by process_recorded_refs to determine 2011 * if it has to use the path as returned by get_cur_path or the orphan name. 2012 */ 2013 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 2014 { 2015 int ret = 0; 2016 struct fs_path *name = NULL; 2017 u64 dir; 2018 u64 dir_gen; 2019 2020 if (!sctx->parent_root) 2021 goto out; 2022 2023 name = fs_path_alloc(); 2024 if (!name) 2025 return -ENOMEM; 2026 2027 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2028 if (ret < 0) 2029 goto out; 2030 2031 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2032 name->start, fs_path_len(name)); 2033 2034 out: 2035 fs_path_free(name); 2036 return ret; 2037 } 2038 2039 /* 2040 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 2041 * so we need to do some special handling in case we have clashes. This function 2042 * takes care of this with the help of name_cache_entry::radix_list. 2043 * In case of error, nce is kfreed. 2044 */ 2045 static int name_cache_insert(struct send_ctx *sctx, 2046 struct name_cache_entry *nce) 2047 { 2048 int ret = 0; 2049 struct list_head *nce_head; 2050 2051 nce_head = radix_tree_lookup(&sctx->name_cache, 2052 (unsigned long)nce->ino); 2053 if (!nce_head) { 2054 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 2055 if (!nce_head) { 2056 kfree(nce); 2057 return -ENOMEM; 2058 } 2059 INIT_LIST_HEAD(nce_head); 2060 2061 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 2062 if (ret < 0) { 2063 kfree(nce_head); 2064 kfree(nce); 2065 return ret; 2066 } 2067 } 2068 list_add_tail(&nce->radix_list, nce_head); 2069 list_add_tail(&nce->list, &sctx->name_cache_list); 2070 sctx->name_cache_size++; 2071 2072 return ret; 2073 } 2074 2075 static void name_cache_delete(struct send_ctx *sctx, 2076 struct name_cache_entry *nce) 2077 { 2078 struct list_head *nce_head; 2079 2080 nce_head = radix_tree_lookup(&sctx->name_cache, 2081 (unsigned long)nce->ino); 2082 if (!nce_head) { 2083 btrfs_err(sctx->send_root->fs_info, 2084 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2085 nce->ino, sctx->name_cache_size); 2086 } 2087 2088 list_del(&nce->radix_list); 2089 list_del(&nce->list); 2090 sctx->name_cache_size--; 2091 2092 /* 2093 * We may not get to the final release of nce_head if the lookup fails 2094 */ 2095 if (nce_head && list_empty(nce_head)) { 2096 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2097 kfree(nce_head); 2098 } 2099 } 2100 2101 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2102 u64 ino, u64 gen) 2103 { 2104 struct list_head *nce_head; 2105 struct name_cache_entry *cur; 2106 2107 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2108 if (!nce_head) 2109 return NULL; 2110 2111 list_for_each_entry(cur, nce_head, radix_list) { 2112 if (cur->ino == ino && cur->gen == gen) 2113 return cur; 2114 } 2115 return NULL; 2116 } 2117 2118 /* 2119 * Remove some entries from the beginning of name_cache_list. 2120 */ 2121 static void name_cache_clean_unused(struct send_ctx *sctx) 2122 { 2123 struct name_cache_entry *nce; 2124 2125 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2126 return; 2127 2128 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2129 nce = list_entry(sctx->name_cache_list.next, 2130 struct name_cache_entry, list); 2131 name_cache_delete(sctx, nce); 2132 kfree(nce); 2133 } 2134 } 2135 2136 static void name_cache_free(struct send_ctx *sctx) 2137 { 2138 struct name_cache_entry *nce; 2139 2140 while (!list_empty(&sctx->name_cache_list)) { 2141 nce = list_entry(sctx->name_cache_list.next, 2142 struct name_cache_entry, list); 2143 name_cache_delete(sctx, nce); 2144 kfree(nce); 2145 } 2146 } 2147 2148 /* 2149 * Used by get_cur_path for each ref up to the root. 2150 * Returns 0 if it succeeded. 2151 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2152 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2153 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2154 * Returns <0 in case of error. 2155 */ 2156 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2157 u64 ino, u64 gen, 2158 u64 *parent_ino, 2159 u64 *parent_gen, 2160 struct fs_path *dest) 2161 { 2162 int ret; 2163 int nce_ret; 2164 struct name_cache_entry *nce = NULL; 2165 2166 /* 2167 * First check if we already did a call to this function with the same 2168 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2169 * return the cached result. 2170 */ 2171 nce = name_cache_search(sctx, ino, gen); 2172 if (nce) { 2173 if (ino < sctx->send_progress && nce->need_later_update) { 2174 name_cache_delete(sctx, nce); 2175 kfree(nce); 2176 nce = NULL; 2177 } else { 2178 /* 2179 * Removes the entry from the list and adds it back to 2180 * the end. This marks the entry as recently used so 2181 * that name_cache_clean_unused does not remove it. 2182 */ 2183 list_move_tail(&nce->list, &sctx->name_cache_list); 2184 2185 *parent_ino = nce->parent_ino; 2186 *parent_gen = nce->parent_gen; 2187 ret = fs_path_add(dest, nce->name, nce->name_len); 2188 if (ret < 0) 2189 goto out; 2190 ret = nce->ret; 2191 goto out; 2192 } 2193 } 2194 2195 /* 2196 * If the inode is not existent yet, add the orphan name and return 1. 2197 * This should only happen for the parent dir that we determine in 2198 * record_new_ref_if_needed(). 2199 */ 2200 ret = is_inode_existent(sctx, ino, gen); 2201 if (ret < 0) 2202 goto out; 2203 2204 if (!ret) { 2205 ret = gen_unique_name(sctx, ino, gen, dest); 2206 if (ret < 0) 2207 goto out; 2208 ret = 1; 2209 goto out_cache; 2210 } 2211 2212 /* 2213 * Depending on whether the inode was already processed or not, use 2214 * send_root or parent_root for ref lookup. 2215 */ 2216 if (ino < sctx->send_progress) 2217 ret = get_first_ref(sctx->send_root, ino, 2218 parent_ino, parent_gen, dest); 2219 else 2220 ret = get_first_ref(sctx->parent_root, ino, 2221 parent_ino, parent_gen, dest); 2222 if (ret < 0) 2223 goto out; 2224 2225 /* 2226 * Check if the ref was overwritten by an inode's ref that was processed 2227 * earlier. If yes, treat as orphan and return 1. 2228 */ 2229 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2230 dest->start, dest->end - dest->start); 2231 if (ret < 0) 2232 goto out; 2233 if (ret) { 2234 fs_path_reset(dest); 2235 ret = gen_unique_name(sctx, ino, gen, dest); 2236 if (ret < 0) 2237 goto out; 2238 ret = 1; 2239 } 2240 2241 out_cache: 2242 /* 2243 * Store the result of the lookup in the name cache. 2244 */ 2245 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2246 if (!nce) { 2247 ret = -ENOMEM; 2248 goto out; 2249 } 2250 2251 nce->ino = ino; 2252 nce->gen = gen; 2253 nce->parent_ino = *parent_ino; 2254 nce->parent_gen = *parent_gen; 2255 nce->name_len = fs_path_len(dest); 2256 nce->ret = ret; 2257 strcpy(nce->name, dest->start); 2258 2259 if (ino < sctx->send_progress) 2260 nce->need_later_update = 0; 2261 else 2262 nce->need_later_update = 1; 2263 2264 nce_ret = name_cache_insert(sctx, nce); 2265 if (nce_ret < 0) 2266 ret = nce_ret; 2267 name_cache_clean_unused(sctx); 2268 2269 out: 2270 return ret; 2271 } 2272 2273 /* 2274 * Magic happens here. This function returns the first ref to an inode as it 2275 * would look like while receiving the stream at this point in time. 2276 * We walk the path up to the root. For every inode in between, we check if it 2277 * was already processed/sent. If yes, we continue with the parent as found 2278 * in send_root. If not, we continue with the parent as found in parent_root. 2279 * If we encounter an inode that was deleted at this point in time, we use the 2280 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2281 * that were not created yet and overwritten inodes/refs. 2282 * 2283 * When do we have orphan inodes: 2284 * 1. When an inode is freshly created and thus no valid refs are available yet 2285 * 2. When a directory lost all it's refs (deleted) but still has dir items 2286 * inside which were not processed yet (pending for move/delete). If anyone 2287 * tried to get the path to the dir items, it would get a path inside that 2288 * orphan directory. 2289 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2290 * of an unprocessed inode. If in that case the first ref would be 2291 * overwritten, the overwritten inode gets "orphanized". Later when we 2292 * process this overwritten inode, it is restored at a new place by moving 2293 * the orphan inode. 2294 * 2295 * sctx->send_progress tells this function at which point in time receiving 2296 * would be. 2297 */ 2298 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2299 struct fs_path *dest) 2300 { 2301 int ret = 0; 2302 struct fs_path *name = NULL; 2303 u64 parent_inode = 0; 2304 u64 parent_gen = 0; 2305 int stop = 0; 2306 2307 name = fs_path_alloc(); 2308 if (!name) { 2309 ret = -ENOMEM; 2310 goto out; 2311 } 2312 2313 dest->reversed = 1; 2314 fs_path_reset(dest); 2315 2316 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2317 struct waiting_dir_move *wdm; 2318 2319 fs_path_reset(name); 2320 2321 if (is_waiting_for_rm(sctx, ino, gen)) { 2322 ret = gen_unique_name(sctx, ino, gen, name); 2323 if (ret < 0) 2324 goto out; 2325 ret = fs_path_add_path(dest, name); 2326 break; 2327 } 2328 2329 wdm = get_waiting_dir_move(sctx, ino); 2330 if (wdm && wdm->orphanized) { 2331 ret = gen_unique_name(sctx, ino, gen, name); 2332 stop = 1; 2333 } else if (wdm) { 2334 ret = get_first_ref(sctx->parent_root, ino, 2335 &parent_inode, &parent_gen, name); 2336 } else { 2337 ret = __get_cur_name_and_parent(sctx, ino, gen, 2338 &parent_inode, 2339 &parent_gen, name); 2340 if (ret) 2341 stop = 1; 2342 } 2343 2344 if (ret < 0) 2345 goto out; 2346 2347 ret = fs_path_add_path(dest, name); 2348 if (ret < 0) 2349 goto out; 2350 2351 ino = parent_inode; 2352 gen = parent_gen; 2353 } 2354 2355 out: 2356 fs_path_free(name); 2357 if (!ret) 2358 fs_path_unreverse(dest); 2359 return ret; 2360 } 2361 2362 /* 2363 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2364 */ 2365 static int send_subvol_begin(struct send_ctx *sctx) 2366 { 2367 int ret; 2368 struct btrfs_root *send_root = sctx->send_root; 2369 struct btrfs_root *parent_root = sctx->parent_root; 2370 struct btrfs_path *path; 2371 struct btrfs_key key; 2372 struct btrfs_root_ref *ref; 2373 struct extent_buffer *leaf; 2374 char *name = NULL; 2375 int namelen; 2376 2377 path = btrfs_alloc_path(); 2378 if (!path) 2379 return -ENOMEM; 2380 2381 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2382 if (!name) { 2383 btrfs_free_path(path); 2384 return -ENOMEM; 2385 } 2386 2387 key.objectid = send_root->root_key.objectid; 2388 key.type = BTRFS_ROOT_BACKREF_KEY; 2389 key.offset = 0; 2390 2391 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2392 &key, path, 1, 0); 2393 if (ret < 0) 2394 goto out; 2395 if (ret) { 2396 ret = -ENOENT; 2397 goto out; 2398 } 2399 2400 leaf = path->nodes[0]; 2401 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2402 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2403 key.objectid != send_root->root_key.objectid) { 2404 ret = -ENOENT; 2405 goto out; 2406 } 2407 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2408 namelen = btrfs_root_ref_name_len(leaf, ref); 2409 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2410 btrfs_release_path(path); 2411 2412 if (parent_root) { 2413 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2414 if (ret < 0) 2415 goto out; 2416 } else { 2417 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2418 if (ret < 0) 2419 goto out; 2420 } 2421 2422 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2423 2424 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2425 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2426 sctx->send_root->root_item.received_uuid); 2427 else 2428 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2429 sctx->send_root->root_item.uuid); 2430 2431 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2432 btrfs_root_ctransid(&sctx->send_root->root_item)); 2433 if (parent_root) { 2434 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2435 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2436 parent_root->root_item.received_uuid); 2437 else 2438 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2439 parent_root->root_item.uuid); 2440 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2441 btrfs_root_ctransid(&sctx->parent_root->root_item)); 2442 } 2443 2444 ret = send_cmd(sctx); 2445 2446 tlv_put_failure: 2447 out: 2448 btrfs_free_path(path); 2449 kfree(name); 2450 return ret; 2451 } 2452 2453 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2454 { 2455 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2456 int ret = 0; 2457 struct fs_path *p; 2458 2459 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2460 2461 p = fs_path_alloc(); 2462 if (!p) 2463 return -ENOMEM; 2464 2465 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2466 if (ret < 0) 2467 goto out; 2468 2469 ret = get_cur_path(sctx, ino, gen, p); 2470 if (ret < 0) 2471 goto out; 2472 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2473 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2474 2475 ret = send_cmd(sctx); 2476 2477 tlv_put_failure: 2478 out: 2479 fs_path_free(p); 2480 return ret; 2481 } 2482 2483 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2484 { 2485 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2486 int ret = 0; 2487 struct fs_path *p; 2488 2489 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2490 2491 p = fs_path_alloc(); 2492 if (!p) 2493 return -ENOMEM; 2494 2495 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2496 if (ret < 0) 2497 goto out; 2498 2499 ret = get_cur_path(sctx, ino, gen, p); 2500 if (ret < 0) 2501 goto out; 2502 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2503 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2504 2505 ret = send_cmd(sctx); 2506 2507 tlv_put_failure: 2508 out: 2509 fs_path_free(p); 2510 return ret; 2511 } 2512 2513 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr) 2514 { 2515 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2516 int ret = 0; 2517 struct fs_path *p; 2518 2519 if (sctx->proto < 2) 2520 return 0; 2521 2522 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr); 2523 2524 p = fs_path_alloc(); 2525 if (!p) 2526 return -ENOMEM; 2527 2528 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR); 2529 if (ret < 0) 2530 goto out; 2531 2532 ret = get_cur_path(sctx, ino, gen, p); 2533 if (ret < 0) 2534 goto out; 2535 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2536 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr); 2537 2538 ret = send_cmd(sctx); 2539 2540 tlv_put_failure: 2541 out: 2542 fs_path_free(p); 2543 return ret; 2544 } 2545 2546 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2547 { 2548 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2549 int ret = 0; 2550 struct fs_path *p; 2551 2552 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2553 ino, uid, gid); 2554 2555 p = fs_path_alloc(); 2556 if (!p) 2557 return -ENOMEM; 2558 2559 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2560 if (ret < 0) 2561 goto out; 2562 2563 ret = get_cur_path(sctx, ino, gen, p); 2564 if (ret < 0) 2565 goto out; 2566 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2567 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2568 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2569 2570 ret = send_cmd(sctx); 2571 2572 tlv_put_failure: 2573 out: 2574 fs_path_free(p); 2575 return ret; 2576 } 2577 2578 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2579 { 2580 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2581 int ret = 0; 2582 struct fs_path *p = NULL; 2583 struct btrfs_inode_item *ii; 2584 struct btrfs_path *path = NULL; 2585 struct extent_buffer *eb; 2586 struct btrfs_key key; 2587 int slot; 2588 2589 btrfs_debug(fs_info, "send_utimes %llu", ino); 2590 2591 p = fs_path_alloc(); 2592 if (!p) 2593 return -ENOMEM; 2594 2595 path = alloc_path_for_send(); 2596 if (!path) { 2597 ret = -ENOMEM; 2598 goto out; 2599 } 2600 2601 key.objectid = ino; 2602 key.type = BTRFS_INODE_ITEM_KEY; 2603 key.offset = 0; 2604 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2605 if (ret > 0) 2606 ret = -ENOENT; 2607 if (ret < 0) 2608 goto out; 2609 2610 eb = path->nodes[0]; 2611 slot = path->slots[0]; 2612 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2613 2614 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2615 if (ret < 0) 2616 goto out; 2617 2618 ret = get_cur_path(sctx, ino, gen, p); 2619 if (ret < 0) 2620 goto out; 2621 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2622 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2623 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2624 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2625 if (sctx->proto >= 2) 2626 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime); 2627 2628 ret = send_cmd(sctx); 2629 2630 tlv_put_failure: 2631 out: 2632 fs_path_free(p); 2633 btrfs_free_path(path); 2634 return ret; 2635 } 2636 2637 /* 2638 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2639 * a valid path yet because we did not process the refs yet. So, the inode 2640 * is created as orphan. 2641 */ 2642 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2643 { 2644 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2645 int ret = 0; 2646 struct fs_path *p; 2647 int cmd; 2648 u64 gen; 2649 u64 mode; 2650 u64 rdev; 2651 2652 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2653 2654 p = fs_path_alloc(); 2655 if (!p) 2656 return -ENOMEM; 2657 2658 if (ino != sctx->cur_ino) { 2659 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2660 NULL, NULL, &rdev, NULL); 2661 if (ret < 0) 2662 goto out; 2663 } else { 2664 gen = sctx->cur_inode_gen; 2665 mode = sctx->cur_inode_mode; 2666 rdev = sctx->cur_inode_rdev; 2667 } 2668 2669 if (S_ISREG(mode)) { 2670 cmd = BTRFS_SEND_C_MKFILE; 2671 } else if (S_ISDIR(mode)) { 2672 cmd = BTRFS_SEND_C_MKDIR; 2673 } else if (S_ISLNK(mode)) { 2674 cmd = BTRFS_SEND_C_SYMLINK; 2675 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2676 cmd = BTRFS_SEND_C_MKNOD; 2677 } else if (S_ISFIFO(mode)) { 2678 cmd = BTRFS_SEND_C_MKFIFO; 2679 } else if (S_ISSOCK(mode)) { 2680 cmd = BTRFS_SEND_C_MKSOCK; 2681 } else { 2682 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2683 (int)(mode & S_IFMT)); 2684 ret = -EOPNOTSUPP; 2685 goto out; 2686 } 2687 2688 ret = begin_cmd(sctx, cmd); 2689 if (ret < 0) 2690 goto out; 2691 2692 ret = gen_unique_name(sctx, ino, gen, p); 2693 if (ret < 0) 2694 goto out; 2695 2696 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2697 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2698 2699 if (S_ISLNK(mode)) { 2700 fs_path_reset(p); 2701 ret = read_symlink(sctx->send_root, ino, p); 2702 if (ret < 0) 2703 goto out; 2704 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2705 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2706 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2707 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2708 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2709 } 2710 2711 ret = send_cmd(sctx); 2712 if (ret < 0) 2713 goto out; 2714 2715 2716 tlv_put_failure: 2717 out: 2718 fs_path_free(p); 2719 return ret; 2720 } 2721 2722 /* 2723 * We need some special handling for inodes that get processed before the parent 2724 * directory got created. See process_recorded_refs for details. 2725 * This function does the check if we already created the dir out of order. 2726 */ 2727 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2728 { 2729 int ret = 0; 2730 int iter_ret = 0; 2731 struct btrfs_path *path = NULL; 2732 struct btrfs_key key; 2733 struct btrfs_key found_key; 2734 struct btrfs_key di_key; 2735 struct btrfs_dir_item *di; 2736 2737 path = alloc_path_for_send(); 2738 if (!path) 2739 return -ENOMEM; 2740 2741 key.objectid = dir; 2742 key.type = BTRFS_DIR_INDEX_KEY; 2743 key.offset = 0; 2744 2745 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) { 2746 struct extent_buffer *eb = path->nodes[0]; 2747 2748 if (found_key.objectid != key.objectid || 2749 found_key.type != key.type) { 2750 ret = 0; 2751 break; 2752 } 2753 2754 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item); 2755 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2756 2757 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2758 di_key.objectid < sctx->send_progress) { 2759 ret = 1; 2760 break; 2761 } 2762 } 2763 /* Catch error found during iteration */ 2764 if (iter_ret < 0) 2765 ret = iter_ret; 2766 2767 btrfs_free_path(path); 2768 return ret; 2769 } 2770 2771 /* 2772 * Only creates the inode if it is: 2773 * 1. Not a directory 2774 * 2. Or a directory which was not created already due to out of order 2775 * directories. See did_create_dir and process_recorded_refs for details. 2776 */ 2777 static int send_create_inode_if_needed(struct send_ctx *sctx) 2778 { 2779 int ret; 2780 2781 if (S_ISDIR(sctx->cur_inode_mode)) { 2782 ret = did_create_dir(sctx, sctx->cur_ino); 2783 if (ret < 0) 2784 return ret; 2785 else if (ret > 0) 2786 return 0; 2787 } 2788 2789 return send_create_inode(sctx, sctx->cur_ino); 2790 } 2791 2792 struct recorded_ref { 2793 struct list_head list; 2794 char *name; 2795 struct fs_path *full_path; 2796 u64 dir; 2797 u64 dir_gen; 2798 int name_len; 2799 struct rb_node node; 2800 struct rb_root *root; 2801 }; 2802 2803 static struct recorded_ref *recorded_ref_alloc(void) 2804 { 2805 struct recorded_ref *ref; 2806 2807 ref = kzalloc(sizeof(*ref), GFP_KERNEL); 2808 if (!ref) 2809 return NULL; 2810 RB_CLEAR_NODE(&ref->node); 2811 INIT_LIST_HEAD(&ref->list); 2812 return ref; 2813 } 2814 2815 static void recorded_ref_free(struct recorded_ref *ref) 2816 { 2817 if (!ref) 2818 return; 2819 if (!RB_EMPTY_NODE(&ref->node)) 2820 rb_erase(&ref->node, ref->root); 2821 list_del(&ref->list); 2822 fs_path_free(ref->full_path); 2823 kfree(ref); 2824 } 2825 2826 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 2827 { 2828 ref->full_path = path; 2829 ref->name = (char *)kbasename(ref->full_path->start); 2830 ref->name_len = ref->full_path->end - ref->name; 2831 } 2832 2833 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2834 { 2835 struct recorded_ref *new; 2836 2837 new = recorded_ref_alloc(); 2838 if (!new) 2839 return -ENOMEM; 2840 2841 new->dir = ref->dir; 2842 new->dir_gen = ref->dir_gen; 2843 list_add_tail(&new->list, list); 2844 return 0; 2845 } 2846 2847 static void __free_recorded_refs(struct list_head *head) 2848 { 2849 struct recorded_ref *cur; 2850 2851 while (!list_empty(head)) { 2852 cur = list_entry(head->next, struct recorded_ref, list); 2853 recorded_ref_free(cur); 2854 } 2855 } 2856 2857 static void free_recorded_refs(struct send_ctx *sctx) 2858 { 2859 __free_recorded_refs(&sctx->new_refs); 2860 __free_recorded_refs(&sctx->deleted_refs); 2861 } 2862 2863 /* 2864 * Renames/moves a file/dir to its orphan name. Used when the first 2865 * ref of an unprocessed inode gets overwritten and for all non empty 2866 * directories. 2867 */ 2868 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2869 struct fs_path *path) 2870 { 2871 int ret; 2872 struct fs_path *orphan; 2873 2874 orphan = fs_path_alloc(); 2875 if (!orphan) 2876 return -ENOMEM; 2877 2878 ret = gen_unique_name(sctx, ino, gen, orphan); 2879 if (ret < 0) 2880 goto out; 2881 2882 ret = send_rename(sctx, path, orphan); 2883 2884 out: 2885 fs_path_free(orphan); 2886 return ret; 2887 } 2888 2889 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, 2890 u64 dir_ino, u64 dir_gen) 2891 { 2892 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2893 struct rb_node *parent = NULL; 2894 struct orphan_dir_info *entry, *odi; 2895 2896 while (*p) { 2897 parent = *p; 2898 entry = rb_entry(parent, struct orphan_dir_info, node); 2899 if (dir_ino < entry->ino) 2900 p = &(*p)->rb_left; 2901 else if (dir_ino > entry->ino) 2902 p = &(*p)->rb_right; 2903 else if (dir_gen < entry->gen) 2904 p = &(*p)->rb_left; 2905 else if (dir_gen > entry->gen) 2906 p = &(*p)->rb_right; 2907 else 2908 return entry; 2909 } 2910 2911 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 2912 if (!odi) 2913 return ERR_PTR(-ENOMEM); 2914 odi->ino = dir_ino; 2915 odi->gen = dir_gen; 2916 odi->last_dir_index_offset = 0; 2917 2918 rb_link_node(&odi->node, parent, p); 2919 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2920 return odi; 2921 } 2922 2923 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, 2924 u64 dir_ino, u64 gen) 2925 { 2926 struct rb_node *n = sctx->orphan_dirs.rb_node; 2927 struct orphan_dir_info *entry; 2928 2929 while (n) { 2930 entry = rb_entry(n, struct orphan_dir_info, node); 2931 if (dir_ino < entry->ino) 2932 n = n->rb_left; 2933 else if (dir_ino > entry->ino) 2934 n = n->rb_right; 2935 else if (gen < entry->gen) 2936 n = n->rb_left; 2937 else if (gen > entry->gen) 2938 n = n->rb_right; 2939 else 2940 return entry; 2941 } 2942 return NULL; 2943 } 2944 2945 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) 2946 { 2947 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); 2948 2949 return odi != NULL; 2950 } 2951 2952 static void free_orphan_dir_info(struct send_ctx *sctx, 2953 struct orphan_dir_info *odi) 2954 { 2955 if (!odi) 2956 return; 2957 rb_erase(&odi->node, &sctx->orphan_dirs); 2958 kfree(odi); 2959 } 2960 2961 /* 2962 * Returns 1 if a directory can be removed at this point in time. 2963 * We check this by iterating all dir items and checking if the inode behind 2964 * the dir item was already processed. 2965 */ 2966 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2967 u64 send_progress) 2968 { 2969 int ret = 0; 2970 int iter_ret = 0; 2971 struct btrfs_root *root = sctx->parent_root; 2972 struct btrfs_path *path; 2973 struct btrfs_key key; 2974 struct btrfs_key found_key; 2975 struct btrfs_key loc; 2976 struct btrfs_dir_item *di; 2977 struct orphan_dir_info *odi = NULL; 2978 2979 /* 2980 * Don't try to rmdir the top/root subvolume dir. 2981 */ 2982 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2983 return 0; 2984 2985 path = alloc_path_for_send(); 2986 if (!path) 2987 return -ENOMEM; 2988 2989 key.objectid = dir; 2990 key.type = BTRFS_DIR_INDEX_KEY; 2991 key.offset = 0; 2992 2993 odi = get_orphan_dir_info(sctx, dir, dir_gen); 2994 if (odi) 2995 key.offset = odi->last_dir_index_offset; 2996 2997 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 2998 struct waiting_dir_move *dm; 2999 3000 if (found_key.objectid != key.objectid || 3001 found_key.type != key.type) 3002 break; 3003 3004 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3005 struct btrfs_dir_item); 3006 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3007 3008 dm = get_waiting_dir_move(sctx, loc.objectid); 3009 if (dm) { 3010 odi = add_orphan_dir_info(sctx, dir, dir_gen); 3011 if (IS_ERR(odi)) { 3012 ret = PTR_ERR(odi); 3013 goto out; 3014 } 3015 odi->gen = dir_gen; 3016 odi->last_dir_index_offset = found_key.offset; 3017 dm->rmdir_ino = dir; 3018 dm->rmdir_gen = dir_gen; 3019 ret = 0; 3020 goto out; 3021 } 3022 3023 if (loc.objectid > send_progress) { 3024 odi = add_orphan_dir_info(sctx, dir, dir_gen); 3025 if (IS_ERR(odi)) { 3026 ret = PTR_ERR(odi); 3027 goto out; 3028 } 3029 odi->gen = dir_gen; 3030 odi->last_dir_index_offset = found_key.offset; 3031 ret = 0; 3032 goto out; 3033 } 3034 } 3035 if (iter_ret < 0) { 3036 ret = iter_ret; 3037 goto out; 3038 } 3039 free_orphan_dir_info(sctx, odi); 3040 3041 ret = 1; 3042 3043 out: 3044 btrfs_free_path(path); 3045 return ret; 3046 } 3047 3048 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3049 { 3050 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3051 3052 return entry != NULL; 3053 } 3054 3055 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3056 { 3057 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3058 struct rb_node *parent = NULL; 3059 struct waiting_dir_move *entry, *dm; 3060 3061 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3062 if (!dm) 3063 return -ENOMEM; 3064 dm->ino = ino; 3065 dm->rmdir_ino = 0; 3066 dm->rmdir_gen = 0; 3067 dm->orphanized = orphanized; 3068 3069 while (*p) { 3070 parent = *p; 3071 entry = rb_entry(parent, struct waiting_dir_move, node); 3072 if (ino < entry->ino) { 3073 p = &(*p)->rb_left; 3074 } else if (ino > entry->ino) { 3075 p = &(*p)->rb_right; 3076 } else { 3077 kfree(dm); 3078 return -EEXIST; 3079 } 3080 } 3081 3082 rb_link_node(&dm->node, parent, p); 3083 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3084 return 0; 3085 } 3086 3087 static struct waiting_dir_move * 3088 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3089 { 3090 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3091 struct waiting_dir_move *entry; 3092 3093 while (n) { 3094 entry = rb_entry(n, struct waiting_dir_move, node); 3095 if (ino < entry->ino) 3096 n = n->rb_left; 3097 else if (ino > entry->ino) 3098 n = n->rb_right; 3099 else 3100 return entry; 3101 } 3102 return NULL; 3103 } 3104 3105 static void free_waiting_dir_move(struct send_ctx *sctx, 3106 struct waiting_dir_move *dm) 3107 { 3108 if (!dm) 3109 return; 3110 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3111 kfree(dm); 3112 } 3113 3114 static int add_pending_dir_move(struct send_ctx *sctx, 3115 u64 ino, 3116 u64 ino_gen, 3117 u64 parent_ino, 3118 struct list_head *new_refs, 3119 struct list_head *deleted_refs, 3120 const bool is_orphan) 3121 { 3122 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3123 struct rb_node *parent = NULL; 3124 struct pending_dir_move *entry = NULL, *pm; 3125 struct recorded_ref *cur; 3126 int exists = 0; 3127 int ret; 3128 3129 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3130 if (!pm) 3131 return -ENOMEM; 3132 pm->parent_ino = parent_ino; 3133 pm->ino = ino; 3134 pm->gen = ino_gen; 3135 INIT_LIST_HEAD(&pm->list); 3136 INIT_LIST_HEAD(&pm->update_refs); 3137 RB_CLEAR_NODE(&pm->node); 3138 3139 while (*p) { 3140 parent = *p; 3141 entry = rb_entry(parent, struct pending_dir_move, node); 3142 if (parent_ino < entry->parent_ino) { 3143 p = &(*p)->rb_left; 3144 } else if (parent_ino > entry->parent_ino) { 3145 p = &(*p)->rb_right; 3146 } else { 3147 exists = 1; 3148 break; 3149 } 3150 } 3151 3152 list_for_each_entry(cur, deleted_refs, list) { 3153 ret = dup_ref(cur, &pm->update_refs); 3154 if (ret < 0) 3155 goto out; 3156 } 3157 list_for_each_entry(cur, new_refs, list) { 3158 ret = dup_ref(cur, &pm->update_refs); 3159 if (ret < 0) 3160 goto out; 3161 } 3162 3163 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3164 if (ret) 3165 goto out; 3166 3167 if (exists) { 3168 list_add_tail(&pm->list, &entry->list); 3169 } else { 3170 rb_link_node(&pm->node, parent, p); 3171 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3172 } 3173 ret = 0; 3174 out: 3175 if (ret) { 3176 __free_recorded_refs(&pm->update_refs); 3177 kfree(pm); 3178 } 3179 return ret; 3180 } 3181 3182 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3183 u64 parent_ino) 3184 { 3185 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3186 struct pending_dir_move *entry; 3187 3188 while (n) { 3189 entry = rb_entry(n, struct pending_dir_move, node); 3190 if (parent_ino < entry->parent_ino) 3191 n = n->rb_left; 3192 else if (parent_ino > entry->parent_ino) 3193 n = n->rb_right; 3194 else 3195 return entry; 3196 } 3197 return NULL; 3198 } 3199 3200 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3201 u64 ino, u64 gen, u64 *ancestor_ino) 3202 { 3203 int ret = 0; 3204 u64 parent_inode = 0; 3205 u64 parent_gen = 0; 3206 u64 start_ino = ino; 3207 3208 *ancestor_ino = 0; 3209 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3210 fs_path_reset(name); 3211 3212 if (is_waiting_for_rm(sctx, ino, gen)) 3213 break; 3214 if (is_waiting_for_move(sctx, ino)) { 3215 if (*ancestor_ino == 0) 3216 *ancestor_ino = ino; 3217 ret = get_first_ref(sctx->parent_root, ino, 3218 &parent_inode, &parent_gen, name); 3219 } else { 3220 ret = __get_cur_name_and_parent(sctx, ino, gen, 3221 &parent_inode, 3222 &parent_gen, name); 3223 if (ret > 0) { 3224 ret = 0; 3225 break; 3226 } 3227 } 3228 if (ret < 0) 3229 break; 3230 if (parent_inode == start_ino) { 3231 ret = 1; 3232 if (*ancestor_ino == 0) 3233 *ancestor_ino = ino; 3234 break; 3235 } 3236 ino = parent_inode; 3237 gen = parent_gen; 3238 } 3239 return ret; 3240 } 3241 3242 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3243 { 3244 struct fs_path *from_path = NULL; 3245 struct fs_path *to_path = NULL; 3246 struct fs_path *name = NULL; 3247 u64 orig_progress = sctx->send_progress; 3248 struct recorded_ref *cur; 3249 u64 parent_ino, parent_gen; 3250 struct waiting_dir_move *dm = NULL; 3251 u64 rmdir_ino = 0; 3252 u64 rmdir_gen; 3253 u64 ancestor; 3254 bool is_orphan; 3255 int ret; 3256 3257 name = fs_path_alloc(); 3258 from_path = fs_path_alloc(); 3259 if (!name || !from_path) { 3260 ret = -ENOMEM; 3261 goto out; 3262 } 3263 3264 dm = get_waiting_dir_move(sctx, pm->ino); 3265 ASSERT(dm); 3266 rmdir_ino = dm->rmdir_ino; 3267 rmdir_gen = dm->rmdir_gen; 3268 is_orphan = dm->orphanized; 3269 free_waiting_dir_move(sctx, dm); 3270 3271 if (is_orphan) { 3272 ret = gen_unique_name(sctx, pm->ino, 3273 pm->gen, from_path); 3274 } else { 3275 ret = get_first_ref(sctx->parent_root, pm->ino, 3276 &parent_ino, &parent_gen, name); 3277 if (ret < 0) 3278 goto out; 3279 ret = get_cur_path(sctx, parent_ino, parent_gen, 3280 from_path); 3281 if (ret < 0) 3282 goto out; 3283 ret = fs_path_add_path(from_path, name); 3284 } 3285 if (ret < 0) 3286 goto out; 3287 3288 sctx->send_progress = sctx->cur_ino + 1; 3289 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3290 if (ret < 0) 3291 goto out; 3292 if (ret) { 3293 LIST_HEAD(deleted_refs); 3294 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3295 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3296 &pm->update_refs, &deleted_refs, 3297 is_orphan); 3298 if (ret < 0) 3299 goto out; 3300 if (rmdir_ino) { 3301 dm = get_waiting_dir_move(sctx, pm->ino); 3302 ASSERT(dm); 3303 dm->rmdir_ino = rmdir_ino; 3304 dm->rmdir_gen = rmdir_gen; 3305 } 3306 goto out; 3307 } 3308 fs_path_reset(name); 3309 to_path = name; 3310 name = NULL; 3311 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3312 if (ret < 0) 3313 goto out; 3314 3315 ret = send_rename(sctx, from_path, to_path); 3316 if (ret < 0) 3317 goto out; 3318 3319 if (rmdir_ino) { 3320 struct orphan_dir_info *odi; 3321 u64 gen; 3322 3323 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); 3324 if (!odi) { 3325 /* already deleted */ 3326 goto finish; 3327 } 3328 gen = odi->gen; 3329 3330 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino); 3331 if (ret < 0) 3332 goto out; 3333 if (!ret) 3334 goto finish; 3335 3336 name = fs_path_alloc(); 3337 if (!name) { 3338 ret = -ENOMEM; 3339 goto out; 3340 } 3341 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3342 if (ret < 0) 3343 goto out; 3344 ret = send_rmdir(sctx, name); 3345 if (ret < 0) 3346 goto out; 3347 } 3348 3349 finish: 3350 ret = send_utimes(sctx, pm->ino, pm->gen); 3351 if (ret < 0) 3352 goto out; 3353 3354 /* 3355 * After rename/move, need to update the utimes of both new parent(s) 3356 * and old parent(s). 3357 */ 3358 list_for_each_entry(cur, &pm->update_refs, list) { 3359 /* 3360 * The parent inode might have been deleted in the send snapshot 3361 */ 3362 ret = get_inode_info(sctx->send_root, cur->dir, NULL, 3363 NULL, NULL, NULL, NULL, NULL, NULL); 3364 if (ret == -ENOENT) { 3365 ret = 0; 3366 continue; 3367 } 3368 if (ret < 0) 3369 goto out; 3370 3371 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3372 if (ret < 0) 3373 goto out; 3374 } 3375 3376 out: 3377 fs_path_free(name); 3378 fs_path_free(from_path); 3379 fs_path_free(to_path); 3380 sctx->send_progress = orig_progress; 3381 3382 return ret; 3383 } 3384 3385 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3386 { 3387 if (!list_empty(&m->list)) 3388 list_del(&m->list); 3389 if (!RB_EMPTY_NODE(&m->node)) 3390 rb_erase(&m->node, &sctx->pending_dir_moves); 3391 __free_recorded_refs(&m->update_refs); 3392 kfree(m); 3393 } 3394 3395 static void tail_append_pending_moves(struct send_ctx *sctx, 3396 struct pending_dir_move *moves, 3397 struct list_head *stack) 3398 { 3399 if (list_empty(&moves->list)) { 3400 list_add_tail(&moves->list, stack); 3401 } else { 3402 LIST_HEAD(list); 3403 list_splice_init(&moves->list, &list); 3404 list_add_tail(&moves->list, stack); 3405 list_splice_tail(&list, stack); 3406 } 3407 if (!RB_EMPTY_NODE(&moves->node)) { 3408 rb_erase(&moves->node, &sctx->pending_dir_moves); 3409 RB_CLEAR_NODE(&moves->node); 3410 } 3411 } 3412 3413 static int apply_children_dir_moves(struct send_ctx *sctx) 3414 { 3415 struct pending_dir_move *pm; 3416 struct list_head stack; 3417 u64 parent_ino = sctx->cur_ino; 3418 int ret = 0; 3419 3420 pm = get_pending_dir_moves(sctx, parent_ino); 3421 if (!pm) 3422 return 0; 3423 3424 INIT_LIST_HEAD(&stack); 3425 tail_append_pending_moves(sctx, pm, &stack); 3426 3427 while (!list_empty(&stack)) { 3428 pm = list_first_entry(&stack, struct pending_dir_move, list); 3429 parent_ino = pm->ino; 3430 ret = apply_dir_move(sctx, pm); 3431 free_pending_move(sctx, pm); 3432 if (ret) 3433 goto out; 3434 pm = get_pending_dir_moves(sctx, parent_ino); 3435 if (pm) 3436 tail_append_pending_moves(sctx, pm, &stack); 3437 } 3438 return 0; 3439 3440 out: 3441 while (!list_empty(&stack)) { 3442 pm = list_first_entry(&stack, struct pending_dir_move, list); 3443 free_pending_move(sctx, pm); 3444 } 3445 return ret; 3446 } 3447 3448 /* 3449 * We might need to delay a directory rename even when no ancestor directory 3450 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3451 * renamed. This happens when we rename a directory to the old name (the name 3452 * in the parent root) of some other unrelated directory that got its rename 3453 * delayed due to some ancestor with higher number that got renamed. 3454 * 3455 * Example: 3456 * 3457 * Parent snapshot: 3458 * . (ino 256) 3459 * |---- a/ (ino 257) 3460 * | |---- file (ino 260) 3461 * | 3462 * |---- b/ (ino 258) 3463 * |---- c/ (ino 259) 3464 * 3465 * Send snapshot: 3466 * . (ino 256) 3467 * |---- a/ (ino 258) 3468 * |---- x/ (ino 259) 3469 * |---- y/ (ino 257) 3470 * |----- file (ino 260) 3471 * 3472 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3473 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3474 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3475 * must issue is: 3476 * 3477 * 1 - rename 259 from 'c' to 'x' 3478 * 2 - rename 257 from 'a' to 'x/y' 3479 * 3 - rename 258 from 'b' to 'a' 3480 * 3481 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3482 * be done right away and < 0 on error. 3483 */ 3484 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3485 struct recorded_ref *parent_ref, 3486 const bool is_orphan) 3487 { 3488 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3489 struct btrfs_path *path; 3490 struct btrfs_key key; 3491 struct btrfs_key di_key; 3492 struct btrfs_dir_item *di; 3493 u64 left_gen; 3494 u64 right_gen; 3495 int ret = 0; 3496 struct waiting_dir_move *wdm; 3497 3498 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3499 return 0; 3500 3501 path = alloc_path_for_send(); 3502 if (!path) 3503 return -ENOMEM; 3504 3505 key.objectid = parent_ref->dir; 3506 key.type = BTRFS_DIR_ITEM_KEY; 3507 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3508 3509 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3510 if (ret < 0) { 3511 goto out; 3512 } else if (ret > 0) { 3513 ret = 0; 3514 goto out; 3515 } 3516 3517 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3518 parent_ref->name_len); 3519 if (!di) { 3520 ret = 0; 3521 goto out; 3522 } 3523 /* 3524 * di_key.objectid has the number of the inode that has a dentry in the 3525 * parent directory with the same name that sctx->cur_ino is being 3526 * renamed to. We need to check if that inode is in the send root as 3527 * well and if it is currently marked as an inode with a pending rename, 3528 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3529 * that it happens after that other inode is renamed. 3530 */ 3531 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3532 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3533 ret = 0; 3534 goto out; 3535 } 3536 3537 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3538 &left_gen, NULL, NULL, NULL, NULL, NULL); 3539 if (ret < 0) 3540 goto out; 3541 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3542 &right_gen, NULL, NULL, NULL, NULL, NULL); 3543 if (ret < 0) { 3544 if (ret == -ENOENT) 3545 ret = 0; 3546 goto out; 3547 } 3548 3549 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3550 if (right_gen != left_gen) { 3551 ret = 0; 3552 goto out; 3553 } 3554 3555 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3556 if (wdm && !wdm->orphanized) { 3557 ret = add_pending_dir_move(sctx, 3558 sctx->cur_ino, 3559 sctx->cur_inode_gen, 3560 di_key.objectid, 3561 &sctx->new_refs, 3562 &sctx->deleted_refs, 3563 is_orphan); 3564 if (!ret) 3565 ret = 1; 3566 } 3567 out: 3568 btrfs_free_path(path); 3569 return ret; 3570 } 3571 3572 /* 3573 * Check if inode ino2, or any of its ancestors, is inode ino1. 3574 * Return 1 if true, 0 if false and < 0 on error. 3575 */ 3576 static int check_ino_in_path(struct btrfs_root *root, 3577 const u64 ino1, 3578 const u64 ino1_gen, 3579 const u64 ino2, 3580 const u64 ino2_gen, 3581 struct fs_path *fs_path) 3582 { 3583 u64 ino = ino2; 3584 3585 if (ino1 == ino2) 3586 return ino1_gen == ino2_gen; 3587 3588 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3589 u64 parent; 3590 u64 parent_gen; 3591 int ret; 3592 3593 fs_path_reset(fs_path); 3594 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3595 if (ret < 0) 3596 return ret; 3597 if (parent == ino1) 3598 return parent_gen == ino1_gen; 3599 ino = parent; 3600 } 3601 return 0; 3602 } 3603 3604 /* 3605 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any 3606 * possible path (in case ino2 is not a directory and has multiple hard links). 3607 * Return 1 if true, 0 if false and < 0 on error. 3608 */ 3609 static int is_ancestor(struct btrfs_root *root, 3610 const u64 ino1, 3611 const u64 ino1_gen, 3612 const u64 ino2, 3613 struct fs_path *fs_path) 3614 { 3615 bool free_fs_path = false; 3616 int ret = 0; 3617 int iter_ret = 0; 3618 struct btrfs_path *path = NULL; 3619 struct btrfs_key key; 3620 3621 if (!fs_path) { 3622 fs_path = fs_path_alloc(); 3623 if (!fs_path) 3624 return -ENOMEM; 3625 free_fs_path = true; 3626 } 3627 3628 path = alloc_path_for_send(); 3629 if (!path) { 3630 ret = -ENOMEM; 3631 goto out; 3632 } 3633 3634 key.objectid = ino2; 3635 key.type = BTRFS_INODE_REF_KEY; 3636 key.offset = 0; 3637 3638 btrfs_for_each_slot(root, &key, &key, path, iter_ret) { 3639 struct extent_buffer *leaf = path->nodes[0]; 3640 int slot = path->slots[0]; 3641 u32 cur_offset = 0; 3642 u32 item_size; 3643 3644 if (key.objectid != ino2) 3645 break; 3646 if (key.type != BTRFS_INODE_REF_KEY && 3647 key.type != BTRFS_INODE_EXTREF_KEY) 3648 break; 3649 3650 item_size = btrfs_item_size(leaf, slot); 3651 while (cur_offset < item_size) { 3652 u64 parent; 3653 u64 parent_gen; 3654 3655 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3656 unsigned long ptr; 3657 struct btrfs_inode_extref *extref; 3658 3659 ptr = btrfs_item_ptr_offset(leaf, slot); 3660 extref = (struct btrfs_inode_extref *) 3661 (ptr + cur_offset); 3662 parent = btrfs_inode_extref_parent(leaf, 3663 extref); 3664 cur_offset += sizeof(*extref); 3665 cur_offset += btrfs_inode_extref_name_len(leaf, 3666 extref); 3667 } else { 3668 parent = key.offset; 3669 cur_offset = item_size; 3670 } 3671 3672 ret = get_inode_info(root, parent, NULL, &parent_gen, 3673 NULL, NULL, NULL, NULL, NULL); 3674 if (ret < 0) 3675 goto out; 3676 ret = check_ino_in_path(root, ino1, ino1_gen, 3677 parent, parent_gen, fs_path); 3678 if (ret) 3679 goto out; 3680 } 3681 } 3682 ret = 0; 3683 if (iter_ret < 0) 3684 ret = iter_ret; 3685 3686 out: 3687 btrfs_free_path(path); 3688 if (free_fs_path) 3689 fs_path_free(fs_path); 3690 return ret; 3691 } 3692 3693 static int wait_for_parent_move(struct send_ctx *sctx, 3694 struct recorded_ref *parent_ref, 3695 const bool is_orphan) 3696 { 3697 int ret = 0; 3698 u64 ino = parent_ref->dir; 3699 u64 ino_gen = parent_ref->dir_gen; 3700 u64 parent_ino_before, parent_ino_after; 3701 struct fs_path *path_before = NULL; 3702 struct fs_path *path_after = NULL; 3703 int len1, len2; 3704 3705 path_after = fs_path_alloc(); 3706 path_before = fs_path_alloc(); 3707 if (!path_after || !path_before) { 3708 ret = -ENOMEM; 3709 goto out; 3710 } 3711 3712 /* 3713 * Our current directory inode may not yet be renamed/moved because some 3714 * ancestor (immediate or not) has to be renamed/moved first. So find if 3715 * such ancestor exists and make sure our own rename/move happens after 3716 * that ancestor is processed to avoid path build infinite loops (done 3717 * at get_cur_path()). 3718 */ 3719 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3720 u64 parent_ino_after_gen; 3721 3722 if (is_waiting_for_move(sctx, ino)) { 3723 /* 3724 * If the current inode is an ancestor of ino in the 3725 * parent root, we need to delay the rename of the 3726 * current inode, otherwise don't delayed the rename 3727 * because we can end up with a circular dependency 3728 * of renames, resulting in some directories never 3729 * getting the respective rename operations issued in 3730 * the send stream or getting into infinite path build 3731 * loops. 3732 */ 3733 ret = is_ancestor(sctx->parent_root, 3734 sctx->cur_ino, sctx->cur_inode_gen, 3735 ino, path_before); 3736 if (ret) 3737 break; 3738 } 3739 3740 fs_path_reset(path_before); 3741 fs_path_reset(path_after); 3742 3743 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3744 &parent_ino_after_gen, path_after); 3745 if (ret < 0) 3746 goto out; 3747 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3748 NULL, path_before); 3749 if (ret < 0 && ret != -ENOENT) { 3750 goto out; 3751 } else if (ret == -ENOENT) { 3752 ret = 0; 3753 break; 3754 } 3755 3756 len1 = fs_path_len(path_before); 3757 len2 = fs_path_len(path_after); 3758 if (ino > sctx->cur_ino && 3759 (parent_ino_before != parent_ino_after || len1 != len2 || 3760 memcmp(path_before->start, path_after->start, len1))) { 3761 u64 parent_ino_gen; 3762 3763 ret = get_inode_info(sctx->parent_root, ino, NULL, 3764 &parent_ino_gen, NULL, NULL, NULL, 3765 NULL, NULL); 3766 if (ret < 0) 3767 goto out; 3768 if (ino_gen == parent_ino_gen) { 3769 ret = 1; 3770 break; 3771 } 3772 } 3773 ino = parent_ino_after; 3774 ino_gen = parent_ino_after_gen; 3775 } 3776 3777 out: 3778 fs_path_free(path_before); 3779 fs_path_free(path_after); 3780 3781 if (ret == 1) { 3782 ret = add_pending_dir_move(sctx, 3783 sctx->cur_ino, 3784 sctx->cur_inode_gen, 3785 ino, 3786 &sctx->new_refs, 3787 &sctx->deleted_refs, 3788 is_orphan); 3789 if (!ret) 3790 ret = 1; 3791 } 3792 3793 return ret; 3794 } 3795 3796 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3797 { 3798 int ret; 3799 struct fs_path *new_path; 3800 3801 /* 3802 * Our reference's name member points to its full_path member string, so 3803 * we use here a new path. 3804 */ 3805 new_path = fs_path_alloc(); 3806 if (!new_path) 3807 return -ENOMEM; 3808 3809 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 3810 if (ret < 0) { 3811 fs_path_free(new_path); 3812 return ret; 3813 } 3814 ret = fs_path_add(new_path, ref->name, ref->name_len); 3815 if (ret < 0) { 3816 fs_path_free(new_path); 3817 return ret; 3818 } 3819 3820 fs_path_free(ref->full_path); 3821 set_ref_path(ref, new_path); 3822 3823 return 0; 3824 } 3825 3826 /* 3827 * When processing the new references for an inode we may orphanize an existing 3828 * directory inode because its old name conflicts with one of the new references 3829 * of the current inode. Later, when processing another new reference of our 3830 * inode, we might need to orphanize another inode, but the path we have in the 3831 * reference reflects the pre-orphanization name of the directory we previously 3832 * orphanized. For example: 3833 * 3834 * parent snapshot looks like: 3835 * 3836 * . (ino 256) 3837 * |----- f1 (ino 257) 3838 * |----- f2 (ino 258) 3839 * |----- d1/ (ino 259) 3840 * |----- d2/ (ino 260) 3841 * 3842 * send snapshot looks like: 3843 * 3844 * . (ino 256) 3845 * |----- d1 (ino 258) 3846 * |----- f2/ (ino 259) 3847 * |----- f2_link/ (ino 260) 3848 * | |----- f1 (ino 257) 3849 * | 3850 * |----- d2 (ino 258) 3851 * 3852 * When processing inode 257 we compute the name for inode 259 as "d1", and we 3853 * cache it in the name cache. Later when we start processing inode 258, when 3854 * collecting all its new references we set a full path of "d1/d2" for its new 3855 * reference with name "d2". When we start processing the new references we 3856 * start by processing the new reference with name "d1", and this results in 3857 * orphanizing inode 259, since its old reference causes a conflict. Then we 3858 * move on the next new reference, with name "d2", and we find out we must 3859 * orphanize inode 260, as its old reference conflicts with ours - but for the 3860 * orphanization we use a source path corresponding to the path we stored in the 3861 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 3862 * receiver fail since the path component "d1/" no longer exists, it was renamed 3863 * to "o259-6-0/" when processing the previous new reference. So in this case we 3864 * must recompute the path in the new reference and use it for the new 3865 * orphanization operation. 3866 */ 3867 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3868 { 3869 char *name; 3870 int ret; 3871 3872 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 3873 if (!name) 3874 return -ENOMEM; 3875 3876 fs_path_reset(ref->full_path); 3877 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 3878 if (ret < 0) 3879 goto out; 3880 3881 ret = fs_path_add(ref->full_path, name, ref->name_len); 3882 if (ret < 0) 3883 goto out; 3884 3885 /* Update the reference's base name pointer. */ 3886 set_ref_path(ref, ref->full_path); 3887 out: 3888 kfree(name); 3889 return ret; 3890 } 3891 3892 /* 3893 * This does all the move/link/unlink/rmdir magic. 3894 */ 3895 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3896 { 3897 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 3898 int ret = 0; 3899 struct recorded_ref *cur; 3900 struct recorded_ref *cur2; 3901 struct list_head check_dirs; 3902 struct fs_path *valid_path = NULL; 3903 u64 ow_inode = 0; 3904 u64 ow_gen; 3905 u64 ow_mode; 3906 int did_overwrite = 0; 3907 int is_orphan = 0; 3908 u64 last_dir_ino_rm = 0; 3909 bool can_rename = true; 3910 bool orphanized_dir = false; 3911 bool orphanized_ancestor = false; 3912 3913 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 3914 3915 /* 3916 * This should never happen as the root dir always has the same ref 3917 * which is always '..' 3918 */ 3919 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3920 INIT_LIST_HEAD(&check_dirs); 3921 3922 valid_path = fs_path_alloc(); 3923 if (!valid_path) { 3924 ret = -ENOMEM; 3925 goto out; 3926 } 3927 3928 /* 3929 * First, check if the first ref of the current inode was overwritten 3930 * before. If yes, we know that the current inode was already orphanized 3931 * and thus use the orphan name. If not, we can use get_cur_path to 3932 * get the path of the first ref as it would like while receiving at 3933 * this point in time. 3934 * New inodes are always orphan at the beginning, so force to use the 3935 * orphan name in this case. 3936 * The first ref is stored in valid_path and will be updated if it 3937 * gets moved around. 3938 */ 3939 if (!sctx->cur_inode_new) { 3940 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3941 sctx->cur_inode_gen); 3942 if (ret < 0) 3943 goto out; 3944 if (ret) 3945 did_overwrite = 1; 3946 } 3947 if (sctx->cur_inode_new || did_overwrite) { 3948 ret = gen_unique_name(sctx, sctx->cur_ino, 3949 sctx->cur_inode_gen, valid_path); 3950 if (ret < 0) 3951 goto out; 3952 is_orphan = 1; 3953 } else { 3954 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3955 valid_path); 3956 if (ret < 0) 3957 goto out; 3958 } 3959 3960 /* 3961 * Before doing any rename and link operations, do a first pass on the 3962 * new references to orphanize any unprocessed inodes that may have a 3963 * reference that conflicts with one of the new references of the current 3964 * inode. This needs to happen first because a new reference may conflict 3965 * with the old reference of a parent directory, so we must make sure 3966 * that the path used for link and rename commands don't use an 3967 * orphanized name when an ancestor was not yet orphanized. 3968 * 3969 * Example: 3970 * 3971 * Parent snapshot: 3972 * 3973 * . (ino 256) 3974 * |----- testdir/ (ino 259) 3975 * | |----- a (ino 257) 3976 * | 3977 * |----- b (ino 258) 3978 * 3979 * Send snapshot: 3980 * 3981 * . (ino 256) 3982 * |----- testdir_2/ (ino 259) 3983 * | |----- a (ino 260) 3984 * | 3985 * |----- testdir (ino 257) 3986 * |----- b (ino 257) 3987 * |----- b2 (ino 258) 3988 * 3989 * Processing the new reference for inode 257 with name "b" may happen 3990 * before processing the new reference with name "testdir". If so, we 3991 * must make sure that by the time we send a link command to create the 3992 * hard link "b", inode 259 was already orphanized, since the generated 3993 * path in "valid_path" already contains the orphanized name for 259. 3994 * We are processing inode 257, so only later when processing 259 we do 3995 * the rename operation to change its temporary (orphanized) name to 3996 * "testdir_2". 3997 */ 3998 list_for_each_entry(cur, &sctx->new_refs, list) { 3999 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4000 if (ret < 0) 4001 goto out; 4002 if (ret == inode_state_will_create) 4003 continue; 4004 4005 /* 4006 * Check if this new ref would overwrite the first ref of another 4007 * unprocessed inode. If yes, orphanize the overwritten inode. 4008 * If we find an overwritten ref that is not the first ref, 4009 * simply unlink it. 4010 */ 4011 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4012 cur->name, cur->name_len, 4013 &ow_inode, &ow_gen, &ow_mode); 4014 if (ret < 0) 4015 goto out; 4016 if (ret) { 4017 ret = is_first_ref(sctx->parent_root, 4018 ow_inode, cur->dir, cur->name, 4019 cur->name_len); 4020 if (ret < 0) 4021 goto out; 4022 if (ret) { 4023 struct name_cache_entry *nce; 4024 struct waiting_dir_move *wdm; 4025 4026 if (orphanized_dir) { 4027 ret = refresh_ref_path(sctx, cur); 4028 if (ret < 0) 4029 goto out; 4030 } 4031 4032 ret = orphanize_inode(sctx, ow_inode, ow_gen, 4033 cur->full_path); 4034 if (ret < 0) 4035 goto out; 4036 if (S_ISDIR(ow_mode)) 4037 orphanized_dir = true; 4038 4039 /* 4040 * If ow_inode has its rename operation delayed 4041 * make sure that its orphanized name is used in 4042 * the source path when performing its rename 4043 * operation. 4044 */ 4045 if (is_waiting_for_move(sctx, ow_inode)) { 4046 wdm = get_waiting_dir_move(sctx, 4047 ow_inode); 4048 ASSERT(wdm); 4049 wdm->orphanized = true; 4050 } 4051 4052 /* 4053 * Make sure we clear our orphanized inode's 4054 * name from the name cache. This is because the 4055 * inode ow_inode might be an ancestor of some 4056 * other inode that will be orphanized as well 4057 * later and has an inode number greater than 4058 * sctx->send_progress. We need to prevent 4059 * future name lookups from using the old name 4060 * and get instead the orphan name. 4061 */ 4062 nce = name_cache_search(sctx, ow_inode, ow_gen); 4063 if (nce) { 4064 name_cache_delete(sctx, nce); 4065 kfree(nce); 4066 } 4067 4068 /* 4069 * ow_inode might currently be an ancestor of 4070 * cur_ino, therefore compute valid_path (the 4071 * current path of cur_ino) again because it 4072 * might contain the pre-orphanization name of 4073 * ow_inode, which is no longer valid. 4074 */ 4075 ret = is_ancestor(sctx->parent_root, 4076 ow_inode, ow_gen, 4077 sctx->cur_ino, NULL); 4078 if (ret > 0) { 4079 orphanized_ancestor = true; 4080 fs_path_reset(valid_path); 4081 ret = get_cur_path(sctx, sctx->cur_ino, 4082 sctx->cur_inode_gen, 4083 valid_path); 4084 } 4085 if (ret < 0) 4086 goto out; 4087 } else { 4088 /* 4089 * If we previously orphanized a directory that 4090 * collided with a new reference that we already 4091 * processed, recompute the current path because 4092 * that directory may be part of the path. 4093 */ 4094 if (orphanized_dir) { 4095 ret = refresh_ref_path(sctx, cur); 4096 if (ret < 0) 4097 goto out; 4098 } 4099 ret = send_unlink(sctx, cur->full_path); 4100 if (ret < 0) 4101 goto out; 4102 } 4103 } 4104 4105 } 4106 4107 list_for_each_entry(cur, &sctx->new_refs, list) { 4108 /* 4109 * We may have refs where the parent directory does not exist 4110 * yet. This happens if the parent directories inum is higher 4111 * than the current inum. To handle this case, we create the 4112 * parent directory out of order. But we need to check if this 4113 * did already happen before due to other refs in the same dir. 4114 */ 4115 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4116 if (ret < 0) 4117 goto out; 4118 if (ret == inode_state_will_create) { 4119 ret = 0; 4120 /* 4121 * First check if any of the current inodes refs did 4122 * already create the dir. 4123 */ 4124 list_for_each_entry(cur2, &sctx->new_refs, list) { 4125 if (cur == cur2) 4126 break; 4127 if (cur2->dir == cur->dir) { 4128 ret = 1; 4129 break; 4130 } 4131 } 4132 4133 /* 4134 * If that did not happen, check if a previous inode 4135 * did already create the dir. 4136 */ 4137 if (!ret) 4138 ret = did_create_dir(sctx, cur->dir); 4139 if (ret < 0) 4140 goto out; 4141 if (!ret) { 4142 ret = send_create_inode(sctx, cur->dir); 4143 if (ret < 0) 4144 goto out; 4145 } 4146 } 4147 4148 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4149 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4150 if (ret < 0) 4151 goto out; 4152 if (ret == 1) { 4153 can_rename = false; 4154 *pending_move = 1; 4155 } 4156 } 4157 4158 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4159 can_rename) { 4160 ret = wait_for_parent_move(sctx, cur, is_orphan); 4161 if (ret < 0) 4162 goto out; 4163 if (ret == 1) { 4164 can_rename = false; 4165 *pending_move = 1; 4166 } 4167 } 4168 4169 /* 4170 * link/move the ref to the new place. If we have an orphan 4171 * inode, move it and update valid_path. If not, link or move 4172 * it depending on the inode mode. 4173 */ 4174 if (is_orphan && can_rename) { 4175 ret = send_rename(sctx, valid_path, cur->full_path); 4176 if (ret < 0) 4177 goto out; 4178 is_orphan = 0; 4179 ret = fs_path_copy(valid_path, cur->full_path); 4180 if (ret < 0) 4181 goto out; 4182 } else if (can_rename) { 4183 if (S_ISDIR(sctx->cur_inode_mode)) { 4184 /* 4185 * Dirs can't be linked, so move it. For moved 4186 * dirs, we always have one new and one deleted 4187 * ref. The deleted ref is ignored later. 4188 */ 4189 ret = send_rename(sctx, valid_path, 4190 cur->full_path); 4191 if (!ret) 4192 ret = fs_path_copy(valid_path, 4193 cur->full_path); 4194 if (ret < 0) 4195 goto out; 4196 } else { 4197 /* 4198 * We might have previously orphanized an inode 4199 * which is an ancestor of our current inode, 4200 * so our reference's full path, which was 4201 * computed before any such orphanizations, must 4202 * be updated. 4203 */ 4204 if (orphanized_dir) { 4205 ret = update_ref_path(sctx, cur); 4206 if (ret < 0) 4207 goto out; 4208 } 4209 ret = send_link(sctx, cur->full_path, 4210 valid_path); 4211 if (ret < 0) 4212 goto out; 4213 } 4214 } 4215 ret = dup_ref(cur, &check_dirs); 4216 if (ret < 0) 4217 goto out; 4218 } 4219 4220 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4221 /* 4222 * Check if we can already rmdir the directory. If not, 4223 * orphanize it. For every dir item inside that gets deleted 4224 * later, we do this check again and rmdir it then if possible. 4225 * See the use of check_dirs for more details. 4226 */ 4227 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4228 sctx->cur_ino); 4229 if (ret < 0) 4230 goto out; 4231 if (ret) { 4232 ret = send_rmdir(sctx, valid_path); 4233 if (ret < 0) 4234 goto out; 4235 } else if (!is_orphan) { 4236 ret = orphanize_inode(sctx, sctx->cur_ino, 4237 sctx->cur_inode_gen, valid_path); 4238 if (ret < 0) 4239 goto out; 4240 is_orphan = 1; 4241 } 4242 4243 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4244 ret = dup_ref(cur, &check_dirs); 4245 if (ret < 0) 4246 goto out; 4247 } 4248 } else if (S_ISDIR(sctx->cur_inode_mode) && 4249 !list_empty(&sctx->deleted_refs)) { 4250 /* 4251 * We have a moved dir. Add the old parent to check_dirs 4252 */ 4253 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4254 list); 4255 ret = dup_ref(cur, &check_dirs); 4256 if (ret < 0) 4257 goto out; 4258 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4259 /* 4260 * We have a non dir inode. Go through all deleted refs and 4261 * unlink them if they were not already overwritten by other 4262 * inodes. 4263 */ 4264 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4265 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4266 sctx->cur_ino, sctx->cur_inode_gen, 4267 cur->name, cur->name_len); 4268 if (ret < 0) 4269 goto out; 4270 if (!ret) { 4271 /* 4272 * If we orphanized any ancestor before, we need 4273 * to recompute the full path for deleted names, 4274 * since any such path was computed before we 4275 * processed any references and orphanized any 4276 * ancestor inode. 4277 */ 4278 if (orphanized_ancestor) { 4279 ret = update_ref_path(sctx, cur); 4280 if (ret < 0) 4281 goto out; 4282 } 4283 ret = send_unlink(sctx, cur->full_path); 4284 if (ret < 0) 4285 goto out; 4286 } 4287 ret = dup_ref(cur, &check_dirs); 4288 if (ret < 0) 4289 goto out; 4290 } 4291 /* 4292 * If the inode is still orphan, unlink the orphan. This may 4293 * happen when a previous inode did overwrite the first ref 4294 * of this inode and no new refs were added for the current 4295 * inode. Unlinking does not mean that the inode is deleted in 4296 * all cases. There may still be links to this inode in other 4297 * places. 4298 */ 4299 if (is_orphan) { 4300 ret = send_unlink(sctx, valid_path); 4301 if (ret < 0) 4302 goto out; 4303 } 4304 } 4305 4306 /* 4307 * We did collect all parent dirs where cur_inode was once located. We 4308 * now go through all these dirs and check if they are pending for 4309 * deletion and if it's finally possible to perform the rmdir now. 4310 * We also update the inode stats of the parent dirs here. 4311 */ 4312 list_for_each_entry(cur, &check_dirs, list) { 4313 /* 4314 * In case we had refs into dirs that were not processed yet, 4315 * we don't need to do the utime and rmdir logic for these dirs. 4316 * The dir will be processed later. 4317 */ 4318 if (cur->dir > sctx->cur_ino) 4319 continue; 4320 4321 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4322 if (ret < 0) 4323 goto out; 4324 4325 if (ret == inode_state_did_create || 4326 ret == inode_state_no_change) { 4327 /* TODO delayed utimes */ 4328 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 4329 if (ret < 0) 4330 goto out; 4331 } else if (ret == inode_state_did_delete && 4332 cur->dir != last_dir_ino_rm) { 4333 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 4334 sctx->cur_ino); 4335 if (ret < 0) 4336 goto out; 4337 if (ret) { 4338 ret = get_cur_path(sctx, cur->dir, 4339 cur->dir_gen, valid_path); 4340 if (ret < 0) 4341 goto out; 4342 ret = send_rmdir(sctx, valid_path); 4343 if (ret < 0) 4344 goto out; 4345 last_dir_ino_rm = cur->dir; 4346 } 4347 } 4348 } 4349 4350 ret = 0; 4351 4352 out: 4353 __free_recorded_refs(&check_dirs); 4354 free_recorded_refs(sctx); 4355 fs_path_free(valid_path); 4356 return ret; 4357 } 4358 4359 static int rbtree_ref_comp(const void *k, const struct rb_node *node) 4360 { 4361 const struct recorded_ref *data = k; 4362 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node); 4363 int result; 4364 4365 if (data->dir > ref->dir) 4366 return 1; 4367 if (data->dir < ref->dir) 4368 return -1; 4369 if (data->dir_gen > ref->dir_gen) 4370 return 1; 4371 if (data->dir_gen < ref->dir_gen) 4372 return -1; 4373 if (data->name_len > ref->name_len) 4374 return 1; 4375 if (data->name_len < ref->name_len) 4376 return -1; 4377 result = strcmp(data->name, ref->name); 4378 if (result > 0) 4379 return 1; 4380 if (result < 0) 4381 return -1; 4382 return 0; 4383 } 4384 4385 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent) 4386 { 4387 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node); 4388 4389 return rbtree_ref_comp(entry, parent) < 0; 4390 } 4391 4392 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs, 4393 struct fs_path *name, u64 dir, u64 dir_gen, 4394 struct send_ctx *sctx) 4395 { 4396 int ret = 0; 4397 struct fs_path *path = NULL; 4398 struct recorded_ref *ref = NULL; 4399 4400 path = fs_path_alloc(); 4401 if (!path) { 4402 ret = -ENOMEM; 4403 goto out; 4404 } 4405 4406 ref = recorded_ref_alloc(); 4407 if (!ref) { 4408 ret = -ENOMEM; 4409 goto out; 4410 } 4411 4412 ret = get_cur_path(sctx, dir, dir_gen, path); 4413 if (ret < 0) 4414 goto out; 4415 ret = fs_path_add_path(path, name); 4416 if (ret < 0) 4417 goto out; 4418 4419 ref->dir = dir; 4420 ref->dir_gen = dir_gen; 4421 set_ref_path(ref, path); 4422 list_add_tail(&ref->list, refs); 4423 rb_add(&ref->node, root, rbtree_ref_less); 4424 ref->root = root; 4425 out: 4426 if (ret) { 4427 if (path && (!ref || !ref->full_path)) 4428 fs_path_free(path); 4429 recorded_ref_free(ref); 4430 } 4431 return ret; 4432 } 4433 4434 static int record_new_ref_if_needed(int num, u64 dir, int index, 4435 struct fs_path *name, void *ctx) 4436 { 4437 int ret = 0; 4438 struct send_ctx *sctx = ctx; 4439 struct rb_node *node = NULL; 4440 struct recorded_ref data; 4441 struct recorded_ref *ref; 4442 u64 dir_gen; 4443 4444 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 4445 NULL, NULL, NULL, NULL); 4446 if (ret < 0) 4447 goto out; 4448 4449 data.dir = dir; 4450 data.dir_gen = dir_gen; 4451 set_ref_path(&data, name); 4452 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp); 4453 if (node) { 4454 ref = rb_entry(node, struct recorded_ref, node); 4455 recorded_ref_free(ref); 4456 } else { 4457 ret = record_ref_in_tree(&sctx->rbtree_new_refs, 4458 &sctx->new_refs, name, dir, dir_gen, 4459 sctx); 4460 } 4461 out: 4462 return ret; 4463 } 4464 4465 static int record_deleted_ref_if_needed(int num, u64 dir, int index, 4466 struct fs_path *name, void *ctx) 4467 { 4468 int ret = 0; 4469 struct send_ctx *sctx = ctx; 4470 struct rb_node *node = NULL; 4471 struct recorded_ref data; 4472 struct recorded_ref *ref; 4473 u64 dir_gen; 4474 4475 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 4476 NULL, NULL, NULL, NULL); 4477 if (ret < 0) 4478 goto out; 4479 4480 data.dir = dir; 4481 data.dir_gen = dir_gen; 4482 set_ref_path(&data, name); 4483 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp); 4484 if (node) { 4485 ref = rb_entry(node, struct recorded_ref, node); 4486 recorded_ref_free(ref); 4487 } else { 4488 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs, 4489 &sctx->deleted_refs, name, dir, 4490 dir_gen, sctx); 4491 } 4492 out: 4493 return ret; 4494 } 4495 4496 static int record_new_ref(struct send_ctx *sctx) 4497 { 4498 int ret; 4499 4500 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4501 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4502 if (ret < 0) 4503 goto out; 4504 ret = 0; 4505 4506 out: 4507 return ret; 4508 } 4509 4510 static int record_deleted_ref(struct send_ctx *sctx) 4511 { 4512 int ret; 4513 4514 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4515 sctx->cmp_key, 0, record_deleted_ref_if_needed, 4516 sctx); 4517 if (ret < 0) 4518 goto out; 4519 ret = 0; 4520 4521 out: 4522 return ret; 4523 } 4524 4525 static int record_changed_ref(struct send_ctx *sctx) 4526 { 4527 int ret = 0; 4528 4529 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4530 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4531 if (ret < 0) 4532 goto out; 4533 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4534 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx); 4535 if (ret < 0) 4536 goto out; 4537 ret = 0; 4538 4539 out: 4540 return ret; 4541 } 4542 4543 /* 4544 * Record and process all refs at once. Needed when an inode changes the 4545 * generation number, which means that it was deleted and recreated. 4546 */ 4547 static int process_all_refs(struct send_ctx *sctx, 4548 enum btrfs_compare_tree_result cmd) 4549 { 4550 int ret = 0; 4551 int iter_ret = 0; 4552 struct btrfs_root *root; 4553 struct btrfs_path *path; 4554 struct btrfs_key key; 4555 struct btrfs_key found_key; 4556 iterate_inode_ref_t cb; 4557 int pending_move = 0; 4558 4559 path = alloc_path_for_send(); 4560 if (!path) 4561 return -ENOMEM; 4562 4563 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4564 root = sctx->send_root; 4565 cb = record_new_ref_if_needed; 4566 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4567 root = sctx->parent_root; 4568 cb = record_deleted_ref_if_needed; 4569 } else { 4570 btrfs_err(sctx->send_root->fs_info, 4571 "Wrong command %d in process_all_refs", cmd); 4572 ret = -EINVAL; 4573 goto out; 4574 } 4575 4576 key.objectid = sctx->cmp_key->objectid; 4577 key.type = BTRFS_INODE_REF_KEY; 4578 key.offset = 0; 4579 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 4580 if (found_key.objectid != key.objectid || 4581 (found_key.type != BTRFS_INODE_REF_KEY && 4582 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4583 break; 4584 4585 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4586 if (ret < 0) 4587 goto out; 4588 } 4589 /* Catch error found during iteration */ 4590 if (iter_ret < 0) { 4591 ret = iter_ret; 4592 goto out; 4593 } 4594 btrfs_release_path(path); 4595 4596 /* 4597 * We don't actually care about pending_move as we are simply 4598 * re-creating this inode and will be rename'ing it into place once we 4599 * rename the parent directory. 4600 */ 4601 ret = process_recorded_refs(sctx, &pending_move); 4602 out: 4603 btrfs_free_path(path); 4604 return ret; 4605 } 4606 4607 static int send_set_xattr(struct send_ctx *sctx, 4608 struct fs_path *path, 4609 const char *name, int name_len, 4610 const char *data, int data_len) 4611 { 4612 int ret = 0; 4613 4614 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4615 if (ret < 0) 4616 goto out; 4617 4618 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4619 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4620 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4621 4622 ret = send_cmd(sctx); 4623 4624 tlv_put_failure: 4625 out: 4626 return ret; 4627 } 4628 4629 static int send_remove_xattr(struct send_ctx *sctx, 4630 struct fs_path *path, 4631 const char *name, int name_len) 4632 { 4633 int ret = 0; 4634 4635 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4636 if (ret < 0) 4637 goto out; 4638 4639 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4640 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4641 4642 ret = send_cmd(sctx); 4643 4644 tlv_put_failure: 4645 out: 4646 return ret; 4647 } 4648 4649 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4650 const char *name, int name_len, const char *data, 4651 int data_len, void *ctx) 4652 { 4653 int ret; 4654 struct send_ctx *sctx = ctx; 4655 struct fs_path *p; 4656 struct posix_acl_xattr_header dummy_acl; 4657 4658 /* Capabilities are emitted by finish_inode_if_needed */ 4659 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4660 return 0; 4661 4662 p = fs_path_alloc(); 4663 if (!p) 4664 return -ENOMEM; 4665 4666 /* 4667 * This hack is needed because empty acls are stored as zero byte 4668 * data in xattrs. Problem with that is, that receiving these zero byte 4669 * acls will fail later. To fix this, we send a dummy acl list that 4670 * only contains the version number and no entries. 4671 */ 4672 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4673 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4674 if (data_len == 0) { 4675 dummy_acl.a_version = 4676 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4677 data = (char *)&dummy_acl; 4678 data_len = sizeof(dummy_acl); 4679 } 4680 } 4681 4682 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4683 if (ret < 0) 4684 goto out; 4685 4686 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4687 4688 out: 4689 fs_path_free(p); 4690 return ret; 4691 } 4692 4693 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4694 const char *name, int name_len, 4695 const char *data, int data_len, void *ctx) 4696 { 4697 int ret; 4698 struct send_ctx *sctx = ctx; 4699 struct fs_path *p; 4700 4701 p = fs_path_alloc(); 4702 if (!p) 4703 return -ENOMEM; 4704 4705 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4706 if (ret < 0) 4707 goto out; 4708 4709 ret = send_remove_xattr(sctx, p, name, name_len); 4710 4711 out: 4712 fs_path_free(p); 4713 return ret; 4714 } 4715 4716 static int process_new_xattr(struct send_ctx *sctx) 4717 { 4718 int ret = 0; 4719 4720 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4721 __process_new_xattr, sctx); 4722 4723 return ret; 4724 } 4725 4726 static int process_deleted_xattr(struct send_ctx *sctx) 4727 { 4728 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4729 __process_deleted_xattr, sctx); 4730 } 4731 4732 struct find_xattr_ctx { 4733 const char *name; 4734 int name_len; 4735 int found_idx; 4736 char *found_data; 4737 int found_data_len; 4738 }; 4739 4740 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name, 4741 int name_len, const char *data, int data_len, void *vctx) 4742 { 4743 struct find_xattr_ctx *ctx = vctx; 4744 4745 if (name_len == ctx->name_len && 4746 strncmp(name, ctx->name, name_len) == 0) { 4747 ctx->found_idx = num; 4748 ctx->found_data_len = data_len; 4749 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4750 if (!ctx->found_data) 4751 return -ENOMEM; 4752 return 1; 4753 } 4754 return 0; 4755 } 4756 4757 static int find_xattr(struct btrfs_root *root, 4758 struct btrfs_path *path, 4759 struct btrfs_key *key, 4760 const char *name, int name_len, 4761 char **data, int *data_len) 4762 { 4763 int ret; 4764 struct find_xattr_ctx ctx; 4765 4766 ctx.name = name; 4767 ctx.name_len = name_len; 4768 ctx.found_idx = -1; 4769 ctx.found_data = NULL; 4770 ctx.found_data_len = 0; 4771 4772 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 4773 if (ret < 0) 4774 return ret; 4775 4776 if (ctx.found_idx == -1) 4777 return -ENOENT; 4778 if (data) { 4779 *data = ctx.found_data; 4780 *data_len = ctx.found_data_len; 4781 } else { 4782 kfree(ctx.found_data); 4783 } 4784 return ctx.found_idx; 4785 } 4786 4787 4788 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4789 const char *name, int name_len, 4790 const char *data, int data_len, 4791 void *ctx) 4792 { 4793 int ret; 4794 struct send_ctx *sctx = ctx; 4795 char *found_data = NULL; 4796 int found_data_len = 0; 4797 4798 ret = find_xattr(sctx->parent_root, sctx->right_path, 4799 sctx->cmp_key, name, name_len, &found_data, 4800 &found_data_len); 4801 if (ret == -ENOENT) { 4802 ret = __process_new_xattr(num, di_key, name, name_len, data, 4803 data_len, ctx); 4804 } else if (ret >= 0) { 4805 if (data_len != found_data_len || 4806 memcmp(data, found_data, data_len)) { 4807 ret = __process_new_xattr(num, di_key, name, name_len, 4808 data, data_len, ctx); 4809 } else { 4810 ret = 0; 4811 } 4812 } 4813 4814 kfree(found_data); 4815 return ret; 4816 } 4817 4818 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4819 const char *name, int name_len, 4820 const char *data, int data_len, 4821 void *ctx) 4822 { 4823 int ret; 4824 struct send_ctx *sctx = ctx; 4825 4826 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4827 name, name_len, NULL, NULL); 4828 if (ret == -ENOENT) 4829 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4830 data_len, ctx); 4831 else if (ret >= 0) 4832 ret = 0; 4833 4834 return ret; 4835 } 4836 4837 static int process_changed_xattr(struct send_ctx *sctx) 4838 { 4839 int ret = 0; 4840 4841 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4842 __process_changed_new_xattr, sctx); 4843 if (ret < 0) 4844 goto out; 4845 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4846 __process_changed_deleted_xattr, sctx); 4847 4848 out: 4849 return ret; 4850 } 4851 4852 static int process_all_new_xattrs(struct send_ctx *sctx) 4853 { 4854 int ret = 0; 4855 int iter_ret = 0; 4856 struct btrfs_root *root; 4857 struct btrfs_path *path; 4858 struct btrfs_key key; 4859 struct btrfs_key found_key; 4860 4861 path = alloc_path_for_send(); 4862 if (!path) 4863 return -ENOMEM; 4864 4865 root = sctx->send_root; 4866 4867 key.objectid = sctx->cmp_key->objectid; 4868 key.type = BTRFS_XATTR_ITEM_KEY; 4869 key.offset = 0; 4870 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 4871 if (found_key.objectid != key.objectid || 4872 found_key.type != key.type) { 4873 ret = 0; 4874 break; 4875 } 4876 4877 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 4878 if (ret < 0) 4879 break; 4880 } 4881 /* Catch error found during iteration */ 4882 if (iter_ret < 0) 4883 ret = iter_ret; 4884 4885 btrfs_free_path(path); 4886 return ret; 4887 } 4888 4889 static inline u64 max_send_read_size(const struct send_ctx *sctx) 4890 { 4891 return sctx->send_max_size - SZ_16K; 4892 } 4893 4894 static int put_data_header(struct send_ctx *sctx, u32 len) 4895 { 4896 if (WARN_ON_ONCE(sctx->put_data)) 4897 return -EINVAL; 4898 sctx->put_data = true; 4899 if (sctx->proto >= 2) { 4900 /* 4901 * Since v2, the data attribute header doesn't include a length, 4902 * it is implicitly to the end of the command. 4903 */ 4904 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len) 4905 return -EOVERFLOW; 4906 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size); 4907 sctx->send_size += sizeof(__le16); 4908 } else { 4909 struct btrfs_tlv_header *hdr; 4910 4911 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) 4912 return -EOVERFLOW; 4913 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 4914 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 4915 put_unaligned_le16(len, &hdr->tlv_len); 4916 sctx->send_size += sizeof(*hdr); 4917 } 4918 return 0; 4919 } 4920 4921 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 4922 { 4923 struct btrfs_root *root = sctx->send_root; 4924 struct btrfs_fs_info *fs_info = root->fs_info; 4925 struct page *page; 4926 pgoff_t index = offset >> PAGE_SHIFT; 4927 pgoff_t last_index; 4928 unsigned pg_offset = offset_in_page(offset); 4929 int ret; 4930 4931 ret = put_data_header(sctx, len); 4932 if (ret) 4933 return ret; 4934 4935 last_index = (offset + len - 1) >> PAGE_SHIFT; 4936 4937 while (index <= last_index) { 4938 unsigned cur_len = min_t(unsigned, len, 4939 PAGE_SIZE - pg_offset); 4940 4941 page = find_lock_page(sctx->cur_inode->i_mapping, index); 4942 if (!page) { 4943 page_cache_sync_readahead(sctx->cur_inode->i_mapping, 4944 &sctx->ra, NULL, index, 4945 last_index + 1 - index); 4946 4947 page = find_or_create_page(sctx->cur_inode->i_mapping, 4948 index, GFP_KERNEL); 4949 if (!page) { 4950 ret = -ENOMEM; 4951 break; 4952 } 4953 } 4954 4955 if (PageReadahead(page)) 4956 page_cache_async_readahead(sctx->cur_inode->i_mapping, 4957 &sctx->ra, NULL, page_folio(page), 4958 index, last_index + 1 - index); 4959 4960 if (!PageUptodate(page)) { 4961 btrfs_read_folio(NULL, page_folio(page)); 4962 lock_page(page); 4963 if (!PageUptodate(page)) { 4964 unlock_page(page); 4965 btrfs_err(fs_info, 4966 "send: IO error at offset %llu for inode %llu root %llu", 4967 page_offset(page), sctx->cur_ino, 4968 sctx->send_root->root_key.objectid); 4969 put_page(page); 4970 ret = -EIO; 4971 break; 4972 } 4973 } 4974 4975 memcpy_from_page(sctx->send_buf + sctx->send_size, page, 4976 pg_offset, cur_len); 4977 unlock_page(page); 4978 put_page(page); 4979 index++; 4980 pg_offset = 0; 4981 len -= cur_len; 4982 sctx->send_size += cur_len; 4983 } 4984 4985 return ret; 4986 } 4987 4988 /* 4989 * Read some bytes from the current inode/file and send a write command to 4990 * user space. 4991 */ 4992 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 4993 { 4994 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4995 int ret = 0; 4996 struct fs_path *p; 4997 4998 p = fs_path_alloc(); 4999 if (!p) 5000 return -ENOMEM; 5001 5002 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 5003 5004 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5005 if (ret < 0) 5006 goto out; 5007 5008 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5009 if (ret < 0) 5010 goto out; 5011 5012 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5013 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5014 ret = put_file_data(sctx, offset, len); 5015 if (ret < 0) 5016 goto out; 5017 5018 ret = send_cmd(sctx); 5019 5020 tlv_put_failure: 5021 out: 5022 fs_path_free(p); 5023 return ret; 5024 } 5025 5026 /* 5027 * Send a clone command to user space. 5028 */ 5029 static int send_clone(struct send_ctx *sctx, 5030 u64 offset, u32 len, 5031 struct clone_root *clone_root) 5032 { 5033 int ret = 0; 5034 struct fs_path *p; 5035 u64 gen; 5036 5037 btrfs_debug(sctx->send_root->fs_info, 5038 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 5039 offset, len, clone_root->root->root_key.objectid, 5040 clone_root->ino, clone_root->offset); 5041 5042 p = fs_path_alloc(); 5043 if (!p) 5044 return -ENOMEM; 5045 5046 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5047 if (ret < 0) 5048 goto out; 5049 5050 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5051 if (ret < 0) 5052 goto out; 5053 5054 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5055 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5056 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5057 5058 if (clone_root->root == sctx->send_root) { 5059 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 5060 &gen, NULL, NULL, NULL, NULL, NULL); 5061 if (ret < 0) 5062 goto out; 5063 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5064 } else { 5065 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5066 } 5067 if (ret < 0) 5068 goto out; 5069 5070 /* 5071 * If the parent we're using has a received_uuid set then use that as 5072 * our clone source as that is what we will look for when doing a 5073 * receive. 5074 * 5075 * This covers the case that we create a snapshot off of a received 5076 * subvolume and then use that as the parent and try to receive on a 5077 * different host. 5078 */ 5079 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5080 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5081 clone_root->root->root_item.received_uuid); 5082 else 5083 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5084 clone_root->root->root_item.uuid); 5085 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5086 btrfs_root_ctransid(&clone_root->root->root_item)); 5087 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5088 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5089 clone_root->offset); 5090 5091 ret = send_cmd(sctx); 5092 5093 tlv_put_failure: 5094 out: 5095 fs_path_free(p); 5096 return ret; 5097 } 5098 5099 /* 5100 * Send an update extent command to user space. 5101 */ 5102 static int send_update_extent(struct send_ctx *sctx, 5103 u64 offset, u32 len) 5104 { 5105 int ret = 0; 5106 struct fs_path *p; 5107 5108 p = fs_path_alloc(); 5109 if (!p) 5110 return -ENOMEM; 5111 5112 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5113 if (ret < 0) 5114 goto out; 5115 5116 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5117 if (ret < 0) 5118 goto out; 5119 5120 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5121 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5122 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5123 5124 ret = send_cmd(sctx); 5125 5126 tlv_put_failure: 5127 out: 5128 fs_path_free(p); 5129 return ret; 5130 } 5131 5132 static int send_hole(struct send_ctx *sctx, u64 end) 5133 { 5134 struct fs_path *p = NULL; 5135 u64 read_size = max_send_read_size(sctx); 5136 u64 offset = sctx->cur_inode_last_extent; 5137 int ret = 0; 5138 5139 /* 5140 * A hole that starts at EOF or beyond it. Since we do not yet support 5141 * fallocate (for extent preallocation and hole punching), sending a 5142 * write of zeroes starting at EOF or beyond would later require issuing 5143 * a truncate operation which would undo the write and achieve nothing. 5144 */ 5145 if (offset >= sctx->cur_inode_size) 5146 return 0; 5147 5148 /* 5149 * Don't go beyond the inode's i_size due to prealloc extents that start 5150 * after the i_size. 5151 */ 5152 end = min_t(u64, end, sctx->cur_inode_size); 5153 5154 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5155 return send_update_extent(sctx, offset, end - offset); 5156 5157 p = fs_path_alloc(); 5158 if (!p) 5159 return -ENOMEM; 5160 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5161 if (ret < 0) 5162 goto tlv_put_failure; 5163 while (offset < end) { 5164 u64 len = min(end - offset, read_size); 5165 5166 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5167 if (ret < 0) 5168 break; 5169 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5170 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5171 ret = put_data_header(sctx, len); 5172 if (ret < 0) 5173 break; 5174 memset(sctx->send_buf + sctx->send_size, 0, len); 5175 sctx->send_size += len; 5176 ret = send_cmd(sctx); 5177 if (ret < 0) 5178 break; 5179 offset += len; 5180 } 5181 sctx->cur_inode_next_write_offset = offset; 5182 tlv_put_failure: 5183 fs_path_free(p); 5184 return ret; 5185 } 5186 5187 static int send_encoded_inline_extent(struct send_ctx *sctx, 5188 struct btrfs_path *path, u64 offset, 5189 u64 len) 5190 { 5191 struct btrfs_root *root = sctx->send_root; 5192 struct btrfs_fs_info *fs_info = root->fs_info; 5193 struct inode *inode; 5194 struct fs_path *fspath; 5195 struct extent_buffer *leaf = path->nodes[0]; 5196 struct btrfs_key key; 5197 struct btrfs_file_extent_item *ei; 5198 u64 ram_bytes; 5199 size_t inline_size; 5200 int ret; 5201 5202 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root); 5203 if (IS_ERR(inode)) 5204 return PTR_ERR(inode); 5205 5206 fspath = fs_path_alloc(); 5207 if (!fspath) { 5208 ret = -ENOMEM; 5209 goto out; 5210 } 5211 5212 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5213 if (ret < 0) 5214 goto out; 5215 5216 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5217 if (ret < 0) 5218 goto out; 5219 5220 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5221 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5222 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei); 5223 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 5224 5225 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5226 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5227 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5228 min(key.offset + ram_bytes - offset, len)); 5229 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes); 5230 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset); 5231 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5232 btrfs_file_extent_compression(leaf, ei)); 5233 if (ret < 0) 5234 goto out; 5235 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5236 5237 ret = put_data_header(sctx, inline_size); 5238 if (ret < 0) 5239 goto out; 5240 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size, 5241 btrfs_file_extent_inline_start(ei), inline_size); 5242 sctx->send_size += inline_size; 5243 5244 ret = send_cmd(sctx); 5245 5246 tlv_put_failure: 5247 out: 5248 fs_path_free(fspath); 5249 iput(inode); 5250 return ret; 5251 } 5252 5253 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path, 5254 u64 offset, u64 len) 5255 { 5256 struct btrfs_root *root = sctx->send_root; 5257 struct btrfs_fs_info *fs_info = root->fs_info; 5258 struct inode *inode; 5259 struct fs_path *fspath; 5260 struct extent_buffer *leaf = path->nodes[0]; 5261 struct btrfs_key key; 5262 struct btrfs_file_extent_item *ei; 5263 u64 disk_bytenr, disk_num_bytes; 5264 u32 data_offset; 5265 struct btrfs_cmd_header *hdr; 5266 u32 crc; 5267 int ret; 5268 5269 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root); 5270 if (IS_ERR(inode)) 5271 return PTR_ERR(inode); 5272 5273 fspath = fs_path_alloc(); 5274 if (!fspath) { 5275 ret = -ENOMEM; 5276 goto out; 5277 } 5278 5279 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5280 if (ret < 0) 5281 goto out; 5282 5283 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5284 if (ret < 0) 5285 goto out; 5286 5287 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5288 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5289 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 5290 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei); 5291 5292 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5293 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5294 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5295 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset, 5296 len)); 5297 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, 5298 btrfs_file_extent_ram_bytes(leaf, ei)); 5299 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, 5300 offset - key.offset + btrfs_file_extent_offset(leaf, ei)); 5301 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5302 btrfs_file_extent_compression(leaf, ei)); 5303 if (ret < 0) 5304 goto out; 5305 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5306 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0); 5307 5308 ret = put_data_header(sctx, disk_num_bytes); 5309 if (ret < 0) 5310 goto out; 5311 5312 /* 5313 * We want to do I/O directly into the send buffer, so get the next page 5314 * boundary in the send buffer. This means that there may be a gap 5315 * between the beginning of the command and the file data. 5316 */ 5317 data_offset = ALIGN(sctx->send_size, PAGE_SIZE); 5318 if (data_offset > sctx->send_max_size || 5319 sctx->send_max_size - data_offset < disk_num_bytes) { 5320 ret = -EOVERFLOW; 5321 goto out; 5322 } 5323 5324 /* 5325 * Note that send_buf is a mapping of send_buf_pages, so this is really 5326 * reading into send_buf. 5327 */ 5328 ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset, 5329 disk_bytenr, disk_num_bytes, 5330 sctx->send_buf_pages + 5331 (data_offset >> PAGE_SHIFT)); 5332 if (ret) 5333 goto out; 5334 5335 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 5336 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr)); 5337 hdr->crc = 0; 5338 crc = btrfs_crc32c(0, sctx->send_buf, sctx->send_size); 5339 crc = btrfs_crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes); 5340 hdr->crc = cpu_to_le32(crc); 5341 5342 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 5343 &sctx->send_off); 5344 if (!ret) { 5345 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset, 5346 disk_num_bytes, &sctx->send_off); 5347 } 5348 sctx->send_size = 0; 5349 sctx->put_data = false; 5350 5351 tlv_put_failure: 5352 out: 5353 fs_path_free(fspath); 5354 iput(inode); 5355 return ret; 5356 } 5357 5358 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path, 5359 const u64 offset, const u64 len) 5360 { 5361 const u64 end = offset + len; 5362 struct extent_buffer *leaf = path->nodes[0]; 5363 struct btrfs_file_extent_item *ei; 5364 u64 read_size = max_send_read_size(sctx); 5365 u64 sent = 0; 5366 5367 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5368 return send_update_extent(sctx, offset, len); 5369 5370 ei = btrfs_item_ptr(leaf, path->slots[0], 5371 struct btrfs_file_extent_item); 5372 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) && 5373 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 5374 bool is_inline = (btrfs_file_extent_type(leaf, ei) == 5375 BTRFS_FILE_EXTENT_INLINE); 5376 5377 /* 5378 * Send the compressed extent unless the compressed data is 5379 * larger than the decompressed data. This can happen if we're 5380 * not sending the entire extent, either because it has been 5381 * partially overwritten/truncated or because this is a part of 5382 * the extent that we couldn't clone in clone_range(). 5383 */ 5384 if (is_inline && 5385 btrfs_file_extent_inline_item_len(leaf, 5386 path->slots[0]) <= len) { 5387 return send_encoded_inline_extent(sctx, path, offset, 5388 len); 5389 } else if (!is_inline && 5390 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) { 5391 return send_encoded_extent(sctx, path, offset, len); 5392 } 5393 } 5394 5395 if (sctx->cur_inode == NULL) { 5396 struct btrfs_root *root = sctx->send_root; 5397 5398 sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root); 5399 if (IS_ERR(sctx->cur_inode)) { 5400 int err = PTR_ERR(sctx->cur_inode); 5401 5402 sctx->cur_inode = NULL; 5403 return err; 5404 } 5405 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 5406 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping); 5407 5408 /* 5409 * It's very likely there are no pages from this inode in the page 5410 * cache, so after reading extents and sending their data, we clean 5411 * the page cache to avoid trashing the page cache (adding pressure 5412 * to the page cache and forcing eviction of other data more useful 5413 * for applications). 5414 * 5415 * We decide if we should clean the page cache simply by checking 5416 * if the inode's mapping nrpages is 0 when we first open it, and 5417 * not by using something like filemap_range_has_page() before 5418 * reading an extent because when we ask the readahead code to 5419 * read a given file range, it may (and almost always does) read 5420 * pages from beyond that range (see the documentation for 5421 * page_cache_sync_readahead()), so it would not be reliable, 5422 * because after reading the first extent future calls to 5423 * filemap_range_has_page() would return true because the readahead 5424 * on the previous extent resulted in reading pages of the current 5425 * extent as well. 5426 */ 5427 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0); 5428 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE); 5429 } 5430 5431 while (sent < len) { 5432 u64 size = min(len - sent, read_size); 5433 int ret; 5434 5435 ret = send_write(sctx, offset + sent, size); 5436 if (ret < 0) 5437 return ret; 5438 sent += size; 5439 } 5440 5441 if (sctx->clean_page_cache && IS_ALIGNED(end, PAGE_SIZE)) { 5442 /* 5443 * Always operate only on ranges that are a multiple of the page 5444 * size. This is not only to prevent zeroing parts of a page in 5445 * the case of subpage sector size, but also to guarantee we evict 5446 * pages, as passing a range that is smaller than page size does 5447 * not evict the respective page (only zeroes part of its content). 5448 * 5449 * Always start from the end offset of the last range cleared. 5450 * This is because the readahead code may (and very often does) 5451 * reads pages beyond the range we request for readahead. So if 5452 * we have an extent layout like this: 5453 * 5454 * [ extent A ] [ extent B ] [ extent C ] 5455 * 5456 * When we ask page_cache_sync_readahead() to read extent A, it 5457 * may also trigger reads for pages of extent B. If we are doing 5458 * an incremental send and extent B has not changed between the 5459 * parent and send snapshots, some or all of its pages may end 5460 * up being read and placed in the page cache. So when truncating 5461 * the page cache we always start from the end offset of the 5462 * previously processed extent up to the end of the current 5463 * extent. 5464 */ 5465 truncate_inode_pages_range(&sctx->cur_inode->i_data, 5466 sctx->page_cache_clear_start, 5467 end - 1); 5468 sctx->page_cache_clear_start = end; 5469 } 5470 5471 return 0; 5472 } 5473 5474 /* 5475 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5476 * found, call send_set_xattr function to emit it. 5477 * 5478 * Return 0 if there isn't a capability, or when the capability was emitted 5479 * successfully, or < 0 if an error occurred. 5480 */ 5481 static int send_capabilities(struct send_ctx *sctx) 5482 { 5483 struct fs_path *fspath = NULL; 5484 struct btrfs_path *path; 5485 struct btrfs_dir_item *di; 5486 struct extent_buffer *leaf; 5487 unsigned long data_ptr; 5488 char *buf = NULL; 5489 int buf_len; 5490 int ret = 0; 5491 5492 path = alloc_path_for_send(); 5493 if (!path) 5494 return -ENOMEM; 5495 5496 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5497 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5498 if (!di) { 5499 /* There is no xattr for this inode */ 5500 goto out; 5501 } else if (IS_ERR(di)) { 5502 ret = PTR_ERR(di); 5503 goto out; 5504 } 5505 5506 leaf = path->nodes[0]; 5507 buf_len = btrfs_dir_data_len(leaf, di); 5508 5509 fspath = fs_path_alloc(); 5510 buf = kmalloc(buf_len, GFP_KERNEL); 5511 if (!fspath || !buf) { 5512 ret = -ENOMEM; 5513 goto out; 5514 } 5515 5516 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5517 if (ret < 0) 5518 goto out; 5519 5520 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5521 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5522 5523 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS, 5524 strlen(XATTR_NAME_CAPS), buf, buf_len); 5525 out: 5526 kfree(buf); 5527 fs_path_free(fspath); 5528 btrfs_free_path(path); 5529 return ret; 5530 } 5531 5532 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path, 5533 struct clone_root *clone_root, const u64 disk_byte, 5534 u64 data_offset, u64 offset, u64 len) 5535 { 5536 struct btrfs_path *path; 5537 struct btrfs_key key; 5538 int ret; 5539 u64 clone_src_i_size = 0; 5540 5541 /* 5542 * Prevent cloning from a zero offset with a length matching the sector 5543 * size because in some scenarios this will make the receiver fail. 5544 * 5545 * For example, if in the source filesystem the extent at offset 0 5546 * has a length of sectorsize and it was written using direct IO, then 5547 * it can never be an inline extent (even if compression is enabled). 5548 * Then this extent can be cloned in the original filesystem to a non 5549 * zero file offset, but it may not be possible to clone in the 5550 * destination filesystem because it can be inlined due to compression 5551 * on the destination filesystem (as the receiver's write operations are 5552 * always done using buffered IO). The same happens when the original 5553 * filesystem does not have compression enabled but the destination 5554 * filesystem has. 5555 */ 5556 if (clone_root->offset == 0 && 5557 len == sctx->send_root->fs_info->sectorsize) 5558 return send_extent_data(sctx, dst_path, offset, len); 5559 5560 path = alloc_path_for_send(); 5561 if (!path) 5562 return -ENOMEM; 5563 5564 /* 5565 * There are inodes that have extents that lie behind its i_size. Don't 5566 * accept clones from these extents. 5567 */ 5568 ret = __get_inode_info(clone_root->root, path, clone_root->ino, 5569 &clone_src_i_size, NULL, NULL, NULL, NULL, NULL, 5570 NULL); 5571 btrfs_release_path(path); 5572 if (ret < 0) 5573 goto out; 5574 5575 /* 5576 * We can't send a clone operation for the entire range if we find 5577 * extent items in the respective range in the source file that 5578 * refer to different extents or if we find holes. 5579 * So check for that and do a mix of clone and regular write/copy 5580 * operations if needed. 5581 * 5582 * Example: 5583 * 5584 * mkfs.btrfs -f /dev/sda 5585 * mount /dev/sda /mnt 5586 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5587 * cp --reflink=always /mnt/foo /mnt/bar 5588 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5589 * btrfs subvolume snapshot -r /mnt /mnt/snap 5590 * 5591 * If when we send the snapshot and we are processing file bar (which 5592 * has a higher inode number than foo) we blindly send a clone operation 5593 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5594 * a file bar that matches the content of file foo - iow, doesn't match 5595 * the content from bar in the original filesystem. 5596 */ 5597 key.objectid = clone_root->ino; 5598 key.type = BTRFS_EXTENT_DATA_KEY; 5599 key.offset = clone_root->offset; 5600 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5601 if (ret < 0) 5602 goto out; 5603 if (ret > 0 && path->slots[0] > 0) { 5604 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5605 if (key.objectid == clone_root->ino && 5606 key.type == BTRFS_EXTENT_DATA_KEY) 5607 path->slots[0]--; 5608 } 5609 5610 while (true) { 5611 struct extent_buffer *leaf = path->nodes[0]; 5612 int slot = path->slots[0]; 5613 struct btrfs_file_extent_item *ei; 5614 u8 type; 5615 u64 ext_len; 5616 u64 clone_len; 5617 u64 clone_data_offset; 5618 5619 if (slot >= btrfs_header_nritems(leaf)) { 5620 ret = btrfs_next_leaf(clone_root->root, path); 5621 if (ret < 0) 5622 goto out; 5623 else if (ret > 0) 5624 break; 5625 continue; 5626 } 5627 5628 btrfs_item_key_to_cpu(leaf, &key, slot); 5629 5630 /* 5631 * We might have an implicit trailing hole (NO_HOLES feature 5632 * enabled). We deal with it after leaving this loop. 5633 */ 5634 if (key.objectid != clone_root->ino || 5635 key.type != BTRFS_EXTENT_DATA_KEY) 5636 break; 5637 5638 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5639 type = btrfs_file_extent_type(leaf, ei); 5640 if (type == BTRFS_FILE_EXTENT_INLINE) { 5641 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5642 ext_len = PAGE_ALIGN(ext_len); 5643 } else { 5644 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5645 } 5646 5647 if (key.offset + ext_len <= clone_root->offset) 5648 goto next; 5649 5650 if (key.offset > clone_root->offset) { 5651 /* Implicit hole, NO_HOLES feature enabled. */ 5652 u64 hole_len = key.offset - clone_root->offset; 5653 5654 if (hole_len > len) 5655 hole_len = len; 5656 ret = send_extent_data(sctx, dst_path, offset, 5657 hole_len); 5658 if (ret < 0) 5659 goto out; 5660 5661 len -= hole_len; 5662 if (len == 0) 5663 break; 5664 offset += hole_len; 5665 clone_root->offset += hole_len; 5666 data_offset += hole_len; 5667 } 5668 5669 if (key.offset >= clone_root->offset + len) 5670 break; 5671 5672 if (key.offset >= clone_src_i_size) 5673 break; 5674 5675 if (key.offset + ext_len > clone_src_i_size) 5676 ext_len = clone_src_i_size - key.offset; 5677 5678 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 5679 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 5680 clone_root->offset = key.offset; 5681 if (clone_data_offset < data_offset && 5682 clone_data_offset + ext_len > data_offset) { 5683 u64 extent_offset; 5684 5685 extent_offset = data_offset - clone_data_offset; 5686 ext_len -= extent_offset; 5687 clone_data_offset += extent_offset; 5688 clone_root->offset += extent_offset; 5689 } 5690 } 5691 5692 clone_len = min_t(u64, ext_len, len); 5693 5694 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5695 clone_data_offset == data_offset) { 5696 const u64 src_end = clone_root->offset + clone_len; 5697 const u64 sectorsize = SZ_64K; 5698 5699 /* 5700 * We can't clone the last block, when its size is not 5701 * sector size aligned, into the middle of a file. If we 5702 * do so, the receiver will get a failure (-EINVAL) when 5703 * trying to clone or will silently corrupt the data in 5704 * the destination file if it's on a kernel without the 5705 * fix introduced by commit ac765f83f1397646 5706 * ("Btrfs: fix data corruption due to cloning of eof 5707 * block). 5708 * 5709 * So issue a clone of the aligned down range plus a 5710 * regular write for the eof block, if we hit that case. 5711 * 5712 * Also, we use the maximum possible sector size, 64K, 5713 * because we don't know what's the sector size of the 5714 * filesystem that receives the stream, so we have to 5715 * assume the largest possible sector size. 5716 */ 5717 if (src_end == clone_src_i_size && 5718 !IS_ALIGNED(src_end, sectorsize) && 5719 offset + clone_len < sctx->cur_inode_size) { 5720 u64 slen; 5721 5722 slen = ALIGN_DOWN(src_end - clone_root->offset, 5723 sectorsize); 5724 if (slen > 0) { 5725 ret = send_clone(sctx, offset, slen, 5726 clone_root); 5727 if (ret < 0) 5728 goto out; 5729 } 5730 ret = send_extent_data(sctx, dst_path, 5731 offset + slen, 5732 clone_len - slen); 5733 } else { 5734 ret = send_clone(sctx, offset, clone_len, 5735 clone_root); 5736 } 5737 } else { 5738 ret = send_extent_data(sctx, dst_path, offset, 5739 clone_len); 5740 } 5741 5742 if (ret < 0) 5743 goto out; 5744 5745 len -= clone_len; 5746 if (len == 0) 5747 break; 5748 offset += clone_len; 5749 clone_root->offset += clone_len; 5750 5751 /* 5752 * If we are cloning from the file we are currently processing, 5753 * and using the send root as the clone root, we must stop once 5754 * the current clone offset reaches the current eof of the file 5755 * at the receiver, otherwise we would issue an invalid clone 5756 * operation (source range going beyond eof) and cause the 5757 * receiver to fail. So if we reach the current eof, bail out 5758 * and fallback to a regular write. 5759 */ 5760 if (clone_root->root == sctx->send_root && 5761 clone_root->ino == sctx->cur_ino && 5762 clone_root->offset >= sctx->cur_inode_next_write_offset) 5763 break; 5764 5765 data_offset += clone_len; 5766 next: 5767 path->slots[0]++; 5768 } 5769 5770 if (len > 0) 5771 ret = send_extent_data(sctx, dst_path, offset, len); 5772 else 5773 ret = 0; 5774 out: 5775 btrfs_free_path(path); 5776 return ret; 5777 } 5778 5779 static int send_write_or_clone(struct send_ctx *sctx, 5780 struct btrfs_path *path, 5781 struct btrfs_key *key, 5782 struct clone_root *clone_root) 5783 { 5784 int ret = 0; 5785 u64 offset = key->offset; 5786 u64 end; 5787 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 5788 5789 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 5790 if (offset >= end) 5791 return 0; 5792 5793 if (clone_root && IS_ALIGNED(end, bs)) { 5794 struct btrfs_file_extent_item *ei; 5795 u64 disk_byte; 5796 u64 data_offset; 5797 5798 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5799 struct btrfs_file_extent_item); 5800 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 5801 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 5802 ret = clone_range(sctx, path, clone_root, disk_byte, 5803 data_offset, offset, end - offset); 5804 } else { 5805 ret = send_extent_data(sctx, path, offset, end - offset); 5806 } 5807 sctx->cur_inode_next_write_offset = end; 5808 return ret; 5809 } 5810 5811 static int is_extent_unchanged(struct send_ctx *sctx, 5812 struct btrfs_path *left_path, 5813 struct btrfs_key *ekey) 5814 { 5815 int ret = 0; 5816 struct btrfs_key key; 5817 struct btrfs_path *path = NULL; 5818 struct extent_buffer *eb; 5819 int slot; 5820 struct btrfs_key found_key; 5821 struct btrfs_file_extent_item *ei; 5822 u64 left_disknr; 5823 u64 right_disknr; 5824 u64 left_offset; 5825 u64 right_offset; 5826 u64 left_offset_fixed; 5827 u64 left_len; 5828 u64 right_len; 5829 u64 left_gen; 5830 u64 right_gen; 5831 u8 left_type; 5832 u8 right_type; 5833 5834 path = alloc_path_for_send(); 5835 if (!path) 5836 return -ENOMEM; 5837 5838 eb = left_path->nodes[0]; 5839 slot = left_path->slots[0]; 5840 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5841 left_type = btrfs_file_extent_type(eb, ei); 5842 5843 if (left_type != BTRFS_FILE_EXTENT_REG) { 5844 ret = 0; 5845 goto out; 5846 } 5847 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5848 left_len = btrfs_file_extent_num_bytes(eb, ei); 5849 left_offset = btrfs_file_extent_offset(eb, ei); 5850 left_gen = btrfs_file_extent_generation(eb, ei); 5851 5852 /* 5853 * Following comments will refer to these graphics. L is the left 5854 * extents which we are checking at the moment. 1-8 are the right 5855 * extents that we iterate. 5856 * 5857 * |-----L-----| 5858 * |-1-|-2a-|-3-|-4-|-5-|-6-| 5859 * 5860 * |-----L-----| 5861 * |--1--|-2b-|...(same as above) 5862 * 5863 * Alternative situation. Happens on files where extents got split. 5864 * |-----L-----| 5865 * |-----------7-----------|-6-| 5866 * 5867 * Alternative situation. Happens on files which got larger. 5868 * |-----L-----| 5869 * |-8-| 5870 * Nothing follows after 8. 5871 */ 5872 5873 key.objectid = ekey->objectid; 5874 key.type = BTRFS_EXTENT_DATA_KEY; 5875 key.offset = ekey->offset; 5876 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 5877 if (ret < 0) 5878 goto out; 5879 if (ret) { 5880 ret = 0; 5881 goto out; 5882 } 5883 5884 /* 5885 * Handle special case where the right side has no extents at all. 5886 */ 5887 eb = path->nodes[0]; 5888 slot = path->slots[0]; 5889 btrfs_item_key_to_cpu(eb, &found_key, slot); 5890 if (found_key.objectid != key.objectid || 5891 found_key.type != key.type) { 5892 /* If we're a hole then just pretend nothing changed */ 5893 ret = (left_disknr) ? 0 : 1; 5894 goto out; 5895 } 5896 5897 /* 5898 * We're now on 2a, 2b or 7. 5899 */ 5900 key = found_key; 5901 while (key.offset < ekey->offset + left_len) { 5902 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5903 right_type = btrfs_file_extent_type(eb, ei); 5904 if (right_type != BTRFS_FILE_EXTENT_REG && 5905 right_type != BTRFS_FILE_EXTENT_INLINE) { 5906 ret = 0; 5907 goto out; 5908 } 5909 5910 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5911 right_len = btrfs_file_extent_ram_bytes(eb, ei); 5912 right_len = PAGE_ALIGN(right_len); 5913 } else { 5914 right_len = btrfs_file_extent_num_bytes(eb, ei); 5915 } 5916 5917 /* 5918 * Are we at extent 8? If yes, we know the extent is changed. 5919 * This may only happen on the first iteration. 5920 */ 5921 if (found_key.offset + right_len <= ekey->offset) { 5922 /* If we're a hole just pretend nothing changed */ 5923 ret = (left_disknr) ? 0 : 1; 5924 goto out; 5925 } 5926 5927 /* 5928 * We just wanted to see if when we have an inline extent, what 5929 * follows it is a regular extent (wanted to check the above 5930 * condition for inline extents too). This should normally not 5931 * happen but it's possible for example when we have an inline 5932 * compressed extent representing data with a size matching 5933 * the page size (currently the same as sector size). 5934 */ 5935 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5936 ret = 0; 5937 goto out; 5938 } 5939 5940 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5941 right_offset = btrfs_file_extent_offset(eb, ei); 5942 right_gen = btrfs_file_extent_generation(eb, ei); 5943 5944 left_offset_fixed = left_offset; 5945 if (key.offset < ekey->offset) { 5946 /* Fix the right offset for 2a and 7. */ 5947 right_offset += ekey->offset - key.offset; 5948 } else { 5949 /* Fix the left offset for all behind 2a and 2b */ 5950 left_offset_fixed += key.offset - ekey->offset; 5951 } 5952 5953 /* 5954 * Check if we have the same extent. 5955 */ 5956 if (left_disknr != right_disknr || 5957 left_offset_fixed != right_offset || 5958 left_gen != right_gen) { 5959 ret = 0; 5960 goto out; 5961 } 5962 5963 /* 5964 * Go to the next extent. 5965 */ 5966 ret = btrfs_next_item(sctx->parent_root, path); 5967 if (ret < 0) 5968 goto out; 5969 if (!ret) { 5970 eb = path->nodes[0]; 5971 slot = path->slots[0]; 5972 btrfs_item_key_to_cpu(eb, &found_key, slot); 5973 } 5974 if (ret || found_key.objectid != key.objectid || 5975 found_key.type != key.type) { 5976 key.offset += right_len; 5977 break; 5978 } 5979 if (found_key.offset != key.offset + right_len) { 5980 ret = 0; 5981 goto out; 5982 } 5983 key = found_key; 5984 } 5985 5986 /* 5987 * We're now behind the left extent (treat as unchanged) or at the end 5988 * of the right side (treat as changed). 5989 */ 5990 if (key.offset >= ekey->offset + left_len) 5991 ret = 1; 5992 else 5993 ret = 0; 5994 5995 5996 out: 5997 btrfs_free_path(path); 5998 return ret; 5999 } 6000 6001 static int get_last_extent(struct send_ctx *sctx, u64 offset) 6002 { 6003 struct btrfs_path *path; 6004 struct btrfs_root *root = sctx->send_root; 6005 struct btrfs_key key; 6006 int ret; 6007 6008 path = alloc_path_for_send(); 6009 if (!path) 6010 return -ENOMEM; 6011 6012 sctx->cur_inode_last_extent = 0; 6013 6014 key.objectid = sctx->cur_ino; 6015 key.type = BTRFS_EXTENT_DATA_KEY; 6016 key.offset = offset; 6017 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 6018 if (ret < 0) 6019 goto out; 6020 ret = 0; 6021 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 6022 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 6023 goto out; 6024 6025 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6026 out: 6027 btrfs_free_path(path); 6028 return ret; 6029 } 6030 6031 static int range_is_hole_in_parent(struct send_ctx *sctx, 6032 const u64 start, 6033 const u64 end) 6034 { 6035 struct btrfs_path *path; 6036 struct btrfs_key key; 6037 struct btrfs_root *root = sctx->parent_root; 6038 u64 search_start = start; 6039 int ret; 6040 6041 path = alloc_path_for_send(); 6042 if (!path) 6043 return -ENOMEM; 6044 6045 key.objectid = sctx->cur_ino; 6046 key.type = BTRFS_EXTENT_DATA_KEY; 6047 key.offset = search_start; 6048 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6049 if (ret < 0) 6050 goto out; 6051 if (ret > 0 && path->slots[0] > 0) 6052 path->slots[0]--; 6053 6054 while (search_start < end) { 6055 struct extent_buffer *leaf = path->nodes[0]; 6056 int slot = path->slots[0]; 6057 struct btrfs_file_extent_item *fi; 6058 u64 extent_end; 6059 6060 if (slot >= btrfs_header_nritems(leaf)) { 6061 ret = btrfs_next_leaf(root, path); 6062 if (ret < 0) 6063 goto out; 6064 else if (ret > 0) 6065 break; 6066 continue; 6067 } 6068 6069 btrfs_item_key_to_cpu(leaf, &key, slot); 6070 if (key.objectid < sctx->cur_ino || 6071 key.type < BTRFS_EXTENT_DATA_KEY) 6072 goto next; 6073 if (key.objectid > sctx->cur_ino || 6074 key.type > BTRFS_EXTENT_DATA_KEY || 6075 key.offset >= end) 6076 break; 6077 6078 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6079 extent_end = btrfs_file_extent_end(path); 6080 if (extent_end <= start) 6081 goto next; 6082 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 6083 search_start = extent_end; 6084 goto next; 6085 } 6086 ret = 0; 6087 goto out; 6088 next: 6089 path->slots[0]++; 6090 } 6091 ret = 1; 6092 out: 6093 btrfs_free_path(path); 6094 return ret; 6095 } 6096 6097 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 6098 struct btrfs_key *key) 6099 { 6100 int ret = 0; 6101 6102 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 6103 return 0; 6104 6105 if (sctx->cur_inode_last_extent == (u64)-1) { 6106 ret = get_last_extent(sctx, key->offset - 1); 6107 if (ret) 6108 return ret; 6109 } 6110 6111 if (path->slots[0] == 0 && 6112 sctx->cur_inode_last_extent < key->offset) { 6113 /* 6114 * We might have skipped entire leafs that contained only 6115 * file extent items for our current inode. These leafs have 6116 * a generation number smaller (older) than the one in the 6117 * current leaf and the leaf our last extent came from, and 6118 * are located between these 2 leafs. 6119 */ 6120 ret = get_last_extent(sctx, key->offset - 1); 6121 if (ret) 6122 return ret; 6123 } 6124 6125 if (sctx->cur_inode_last_extent < key->offset) { 6126 ret = range_is_hole_in_parent(sctx, 6127 sctx->cur_inode_last_extent, 6128 key->offset); 6129 if (ret < 0) 6130 return ret; 6131 else if (ret == 0) 6132 ret = send_hole(sctx, key->offset); 6133 else 6134 ret = 0; 6135 } 6136 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6137 return ret; 6138 } 6139 6140 static int process_extent(struct send_ctx *sctx, 6141 struct btrfs_path *path, 6142 struct btrfs_key *key) 6143 { 6144 struct clone_root *found_clone = NULL; 6145 int ret = 0; 6146 6147 if (S_ISLNK(sctx->cur_inode_mode)) 6148 return 0; 6149 6150 if (sctx->parent_root && !sctx->cur_inode_new) { 6151 ret = is_extent_unchanged(sctx, path, key); 6152 if (ret < 0) 6153 goto out; 6154 if (ret) { 6155 ret = 0; 6156 goto out_hole; 6157 } 6158 } else { 6159 struct btrfs_file_extent_item *ei; 6160 u8 type; 6161 6162 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6163 struct btrfs_file_extent_item); 6164 type = btrfs_file_extent_type(path->nodes[0], ei); 6165 if (type == BTRFS_FILE_EXTENT_PREALLOC || 6166 type == BTRFS_FILE_EXTENT_REG) { 6167 /* 6168 * The send spec does not have a prealloc command yet, 6169 * so just leave a hole for prealloc'ed extents until 6170 * we have enough commands queued up to justify rev'ing 6171 * the send spec. 6172 */ 6173 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 6174 ret = 0; 6175 goto out; 6176 } 6177 6178 /* Have a hole, just skip it. */ 6179 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 6180 ret = 0; 6181 goto out; 6182 } 6183 } 6184 } 6185 6186 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 6187 sctx->cur_inode_size, &found_clone); 6188 if (ret != -ENOENT && ret < 0) 6189 goto out; 6190 6191 ret = send_write_or_clone(sctx, path, key, found_clone); 6192 if (ret) 6193 goto out; 6194 out_hole: 6195 ret = maybe_send_hole(sctx, path, key); 6196 out: 6197 return ret; 6198 } 6199 6200 static int process_all_extents(struct send_ctx *sctx) 6201 { 6202 int ret = 0; 6203 int iter_ret = 0; 6204 struct btrfs_root *root; 6205 struct btrfs_path *path; 6206 struct btrfs_key key; 6207 struct btrfs_key found_key; 6208 6209 root = sctx->send_root; 6210 path = alloc_path_for_send(); 6211 if (!path) 6212 return -ENOMEM; 6213 6214 key.objectid = sctx->cmp_key->objectid; 6215 key.type = BTRFS_EXTENT_DATA_KEY; 6216 key.offset = 0; 6217 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 6218 if (found_key.objectid != key.objectid || 6219 found_key.type != key.type) { 6220 ret = 0; 6221 break; 6222 } 6223 6224 ret = process_extent(sctx, path, &found_key); 6225 if (ret < 0) 6226 break; 6227 } 6228 /* Catch error found during iteration */ 6229 if (iter_ret < 0) 6230 ret = iter_ret; 6231 6232 btrfs_free_path(path); 6233 return ret; 6234 } 6235 6236 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 6237 int *pending_move, 6238 int *refs_processed) 6239 { 6240 int ret = 0; 6241 6242 if (sctx->cur_ino == 0) 6243 goto out; 6244 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 6245 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 6246 goto out; 6247 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 6248 goto out; 6249 6250 ret = process_recorded_refs(sctx, pending_move); 6251 if (ret < 0) 6252 goto out; 6253 6254 *refs_processed = 1; 6255 out: 6256 return ret; 6257 } 6258 6259 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 6260 { 6261 int ret = 0; 6262 u64 left_mode; 6263 u64 left_uid; 6264 u64 left_gid; 6265 u64 left_fileattr; 6266 u64 right_mode; 6267 u64 right_uid; 6268 u64 right_gid; 6269 u64 right_fileattr; 6270 int need_chmod = 0; 6271 int need_chown = 0; 6272 bool need_fileattr = false; 6273 int need_truncate = 1; 6274 int pending_move = 0; 6275 int refs_processed = 0; 6276 6277 if (sctx->ignore_cur_inode) 6278 return 0; 6279 6280 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 6281 &refs_processed); 6282 if (ret < 0) 6283 goto out; 6284 6285 /* 6286 * We have processed the refs and thus need to advance send_progress. 6287 * Now, calls to get_cur_xxx will take the updated refs of the current 6288 * inode into account. 6289 * 6290 * On the other hand, if our current inode is a directory and couldn't 6291 * be moved/renamed because its parent was renamed/moved too and it has 6292 * a higher inode number, we can only move/rename our current inode 6293 * after we moved/renamed its parent. Therefore in this case operate on 6294 * the old path (pre move/rename) of our current inode, and the 6295 * move/rename will be performed later. 6296 */ 6297 if (refs_processed && !pending_move) 6298 sctx->send_progress = sctx->cur_ino + 1; 6299 6300 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 6301 goto out; 6302 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 6303 goto out; 6304 6305 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 6306 &left_mode, &left_uid, &left_gid, NULL, &left_fileattr); 6307 if (ret < 0) 6308 goto out; 6309 6310 if (!sctx->parent_root || sctx->cur_inode_new) { 6311 need_chown = 1; 6312 if (!S_ISLNK(sctx->cur_inode_mode)) 6313 need_chmod = 1; 6314 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 6315 need_truncate = 0; 6316 } else { 6317 u64 old_size; 6318 6319 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 6320 &old_size, NULL, &right_mode, &right_uid, 6321 &right_gid, NULL, &right_fileattr); 6322 if (ret < 0) 6323 goto out; 6324 6325 if (left_uid != right_uid || left_gid != right_gid) 6326 need_chown = 1; 6327 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 6328 need_chmod = 1; 6329 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr) 6330 need_fileattr = true; 6331 if ((old_size == sctx->cur_inode_size) || 6332 (sctx->cur_inode_size > old_size && 6333 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 6334 need_truncate = 0; 6335 } 6336 6337 if (S_ISREG(sctx->cur_inode_mode)) { 6338 if (need_send_hole(sctx)) { 6339 if (sctx->cur_inode_last_extent == (u64)-1 || 6340 sctx->cur_inode_last_extent < 6341 sctx->cur_inode_size) { 6342 ret = get_last_extent(sctx, (u64)-1); 6343 if (ret) 6344 goto out; 6345 } 6346 if (sctx->cur_inode_last_extent < 6347 sctx->cur_inode_size) { 6348 ret = send_hole(sctx, sctx->cur_inode_size); 6349 if (ret) 6350 goto out; 6351 } 6352 } 6353 if (need_truncate) { 6354 ret = send_truncate(sctx, sctx->cur_ino, 6355 sctx->cur_inode_gen, 6356 sctx->cur_inode_size); 6357 if (ret < 0) 6358 goto out; 6359 } 6360 } 6361 6362 if (need_chown) { 6363 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6364 left_uid, left_gid); 6365 if (ret < 0) 6366 goto out; 6367 } 6368 if (need_chmod) { 6369 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6370 left_mode); 6371 if (ret < 0) 6372 goto out; 6373 } 6374 if (need_fileattr) { 6375 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6376 left_fileattr); 6377 if (ret < 0) 6378 goto out; 6379 } 6380 6381 ret = send_capabilities(sctx); 6382 if (ret < 0) 6383 goto out; 6384 6385 /* 6386 * If other directory inodes depended on our current directory 6387 * inode's move/rename, now do their move/rename operations. 6388 */ 6389 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6390 ret = apply_children_dir_moves(sctx); 6391 if (ret) 6392 goto out; 6393 /* 6394 * Need to send that every time, no matter if it actually 6395 * changed between the two trees as we have done changes to 6396 * the inode before. If our inode is a directory and it's 6397 * waiting to be moved/renamed, we will send its utimes when 6398 * it's moved/renamed, therefore we don't need to do it here. 6399 */ 6400 sctx->send_progress = sctx->cur_ino + 1; 6401 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6402 if (ret < 0) 6403 goto out; 6404 } 6405 6406 out: 6407 return ret; 6408 } 6409 6410 struct parent_paths_ctx { 6411 struct list_head *refs; 6412 struct send_ctx *sctx; 6413 }; 6414 6415 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name, 6416 void *ctx) 6417 { 6418 struct parent_paths_ctx *ppctx = ctx; 6419 6420 /* 6421 * Pass 0 as the generation for the directory, we don't care about it 6422 * here as we have no new references to add, we just want to delete all 6423 * references for an inode. 6424 */ 6425 return record_ref_in_tree(&ppctx->sctx->rbtree_deleted_refs, ppctx->refs, 6426 name, dir, 0, ppctx->sctx); 6427 } 6428 6429 /* 6430 * Issue unlink operations for all paths of the current inode found in the 6431 * parent snapshot. 6432 */ 6433 static int btrfs_unlink_all_paths(struct send_ctx *sctx) 6434 { 6435 LIST_HEAD(deleted_refs); 6436 struct btrfs_path *path; 6437 struct btrfs_root *root = sctx->parent_root; 6438 struct btrfs_key key; 6439 struct btrfs_key found_key; 6440 struct parent_paths_ctx ctx; 6441 int iter_ret = 0; 6442 int ret; 6443 6444 path = alloc_path_for_send(); 6445 if (!path) 6446 return -ENOMEM; 6447 6448 key.objectid = sctx->cur_ino; 6449 key.type = BTRFS_INODE_REF_KEY; 6450 key.offset = 0; 6451 6452 ctx.refs = &deleted_refs; 6453 ctx.sctx = sctx; 6454 6455 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 6456 if (found_key.objectid != key.objectid) 6457 break; 6458 if (found_key.type != key.type && 6459 found_key.type != BTRFS_INODE_EXTREF_KEY) 6460 break; 6461 6462 ret = iterate_inode_ref(root, path, &found_key, 1, 6463 record_parent_ref, &ctx); 6464 if (ret < 0) 6465 goto out; 6466 } 6467 /* Catch error found during iteration */ 6468 if (iter_ret < 0) { 6469 ret = iter_ret; 6470 goto out; 6471 } 6472 6473 while (!list_empty(&deleted_refs)) { 6474 struct recorded_ref *ref; 6475 6476 ref = list_first_entry(&deleted_refs, struct recorded_ref, list); 6477 ret = send_unlink(sctx, ref->full_path); 6478 if (ret < 0) 6479 goto out; 6480 recorded_ref_free(ref); 6481 } 6482 ret = 0; 6483 out: 6484 btrfs_free_path(path); 6485 if (ret) 6486 __free_recorded_refs(&deleted_refs); 6487 return ret; 6488 } 6489 6490 static void close_current_inode(struct send_ctx *sctx) 6491 { 6492 u64 i_size; 6493 6494 if (sctx->cur_inode == NULL) 6495 return; 6496 6497 i_size = i_size_read(sctx->cur_inode); 6498 6499 /* 6500 * If we are doing an incremental send, we may have extents between the 6501 * last processed extent and the i_size that have not been processed 6502 * because they haven't changed but we may have read some of their pages 6503 * through readahead, see the comments at send_extent_data(). 6504 */ 6505 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size) 6506 truncate_inode_pages_range(&sctx->cur_inode->i_data, 6507 sctx->page_cache_clear_start, 6508 round_up(i_size, PAGE_SIZE) - 1); 6509 6510 iput(sctx->cur_inode); 6511 sctx->cur_inode = NULL; 6512 } 6513 6514 static int changed_inode(struct send_ctx *sctx, 6515 enum btrfs_compare_tree_result result) 6516 { 6517 int ret = 0; 6518 struct btrfs_key *key = sctx->cmp_key; 6519 struct btrfs_inode_item *left_ii = NULL; 6520 struct btrfs_inode_item *right_ii = NULL; 6521 u64 left_gen = 0; 6522 u64 right_gen = 0; 6523 6524 close_current_inode(sctx); 6525 6526 sctx->cur_ino = key->objectid; 6527 sctx->cur_inode_new_gen = false; 6528 sctx->cur_inode_last_extent = (u64)-1; 6529 sctx->cur_inode_next_write_offset = 0; 6530 sctx->ignore_cur_inode = false; 6531 6532 /* 6533 * Set send_progress to current inode. This will tell all get_cur_xxx 6534 * functions that the current inode's refs are not updated yet. Later, 6535 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6536 */ 6537 sctx->send_progress = sctx->cur_ino; 6538 6539 if (result == BTRFS_COMPARE_TREE_NEW || 6540 result == BTRFS_COMPARE_TREE_CHANGED) { 6541 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6542 sctx->left_path->slots[0], 6543 struct btrfs_inode_item); 6544 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6545 left_ii); 6546 } else { 6547 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6548 sctx->right_path->slots[0], 6549 struct btrfs_inode_item); 6550 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6551 right_ii); 6552 } 6553 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6554 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6555 sctx->right_path->slots[0], 6556 struct btrfs_inode_item); 6557 6558 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6559 right_ii); 6560 6561 /* 6562 * The cur_ino = root dir case is special here. We can't treat 6563 * the inode as deleted+reused because it would generate a 6564 * stream that tries to delete/mkdir the root dir. 6565 */ 6566 if (left_gen != right_gen && 6567 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6568 sctx->cur_inode_new_gen = true; 6569 } 6570 6571 /* 6572 * Normally we do not find inodes with a link count of zero (orphans) 6573 * because the most common case is to create a snapshot and use it 6574 * for a send operation. However other less common use cases involve 6575 * using a subvolume and send it after turning it to RO mode just 6576 * after deleting all hard links of a file while holding an open 6577 * file descriptor against it or turning a RO snapshot into RW mode, 6578 * keep an open file descriptor against a file, delete it and then 6579 * turn the snapshot back to RO mode before using it for a send 6580 * operation. So if we find such cases, ignore the inode and all its 6581 * items completely if it's a new inode, or if it's a changed inode 6582 * make sure all its previous paths (from the parent snapshot) are all 6583 * unlinked and all other the inode items are ignored. 6584 */ 6585 if (result == BTRFS_COMPARE_TREE_NEW || 6586 result == BTRFS_COMPARE_TREE_CHANGED) { 6587 u32 nlinks; 6588 6589 nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6590 if (nlinks == 0) { 6591 sctx->ignore_cur_inode = true; 6592 if (result == BTRFS_COMPARE_TREE_CHANGED) 6593 ret = btrfs_unlink_all_paths(sctx); 6594 goto out; 6595 } 6596 } 6597 6598 if (result == BTRFS_COMPARE_TREE_NEW) { 6599 sctx->cur_inode_gen = left_gen; 6600 sctx->cur_inode_new = true; 6601 sctx->cur_inode_deleted = false; 6602 sctx->cur_inode_size = btrfs_inode_size( 6603 sctx->left_path->nodes[0], left_ii); 6604 sctx->cur_inode_mode = btrfs_inode_mode( 6605 sctx->left_path->nodes[0], left_ii); 6606 sctx->cur_inode_rdev = btrfs_inode_rdev( 6607 sctx->left_path->nodes[0], left_ii); 6608 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6609 ret = send_create_inode_if_needed(sctx); 6610 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6611 sctx->cur_inode_gen = right_gen; 6612 sctx->cur_inode_new = false; 6613 sctx->cur_inode_deleted = true; 6614 sctx->cur_inode_size = btrfs_inode_size( 6615 sctx->right_path->nodes[0], right_ii); 6616 sctx->cur_inode_mode = btrfs_inode_mode( 6617 sctx->right_path->nodes[0], right_ii); 6618 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6619 /* 6620 * We need to do some special handling in case the inode was 6621 * reported as changed with a changed generation number. This 6622 * means that the original inode was deleted and new inode 6623 * reused the same inum. So we have to treat the old inode as 6624 * deleted and the new one as new. 6625 */ 6626 if (sctx->cur_inode_new_gen) { 6627 /* 6628 * First, process the inode as if it was deleted. 6629 */ 6630 sctx->cur_inode_gen = right_gen; 6631 sctx->cur_inode_new = false; 6632 sctx->cur_inode_deleted = true; 6633 sctx->cur_inode_size = btrfs_inode_size( 6634 sctx->right_path->nodes[0], right_ii); 6635 sctx->cur_inode_mode = btrfs_inode_mode( 6636 sctx->right_path->nodes[0], right_ii); 6637 ret = process_all_refs(sctx, 6638 BTRFS_COMPARE_TREE_DELETED); 6639 if (ret < 0) 6640 goto out; 6641 6642 /* 6643 * Now process the inode as if it was new. 6644 */ 6645 sctx->cur_inode_gen = left_gen; 6646 sctx->cur_inode_new = true; 6647 sctx->cur_inode_deleted = false; 6648 sctx->cur_inode_size = btrfs_inode_size( 6649 sctx->left_path->nodes[0], left_ii); 6650 sctx->cur_inode_mode = btrfs_inode_mode( 6651 sctx->left_path->nodes[0], left_ii); 6652 sctx->cur_inode_rdev = btrfs_inode_rdev( 6653 sctx->left_path->nodes[0], left_ii); 6654 ret = send_create_inode_if_needed(sctx); 6655 if (ret < 0) 6656 goto out; 6657 6658 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 6659 if (ret < 0) 6660 goto out; 6661 /* 6662 * Advance send_progress now as we did not get into 6663 * process_recorded_refs_if_needed in the new_gen case. 6664 */ 6665 sctx->send_progress = sctx->cur_ino + 1; 6666 6667 /* 6668 * Now process all extents and xattrs of the inode as if 6669 * they were all new. 6670 */ 6671 ret = process_all_extents(sctx); 6672 if (ret < 0) 6673 goto out; 6674 ret = process_all_new_xattrs(sctx); 6675 if (ret < 0) 6676 goto out; 6677 } else { 6678 sctx->cur_inode_gen = left_gen; 6679 sctx->cur_inode_new = false; 6680 sctx->cur_inode_new_gen = false; 6681 sctx->cur_inode_deleted = false; 6682 sctx->cur_inode_size = btrfs_inode_size( 6683 sctx->left_path->nodes[0], left_ii); 6684 sctx->cur_inode_mode = btrfs_inode_mode( 6685 sctx->left_path->nodes[0], left_ii); 6686 } 6687 } 6688 6689 out: 6690 return ret; 6691 } 6692 6693 /* 6694 * We have to process new refs before deleted refs, but compare_trees gives us 6695 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 6696 * first and later process them in process_recorded_refs. 6697 * For the cur_inode_new_gen case, we skip recording completely because 6698 * changed_inode did already initiate processing of refs. The reason for this is 6699 * that in this case, compare_tree actually compares the refs of 2 different 6700 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 6701 * refs of the right tree as deleted and all refs of the left tree as new. 6702 */ 6703 static int changed_ref(struct send_ctx *sctx, 6704 enum btrfs_compare_tree_result result) 6705 { 6706 int ret = 0; 6707 6708 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6709 inconsistent_snapshot_error(sctx, result, "reference"); 6710 return -EIO; 6711 } 6712 6713 if (!sctx->cur_inode_new_gen && 6714 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 6715 if (result == BTRFS_COMPARE_TREE_NEW) 6716 ret = record_new_ref(sctx); 6717 else if (result == BTRFS_COMPARE_TREE_DELETED) 6718 ret = record_deleted_ref(sctx); 6719 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6720 ret = record_changed_ref(sctx); 6721 } 6722 6723 return ret; 6724 } 6725 6726 /* 6727 * Process new/deleted/changed xattrs. We skip processing in the 6728 * cur_inode_new_gen case because changed_inode did already initiate processing 6729 * of xattrs. The reason is the same as in changed_ref 6730 */ 6731 static int changed_xattr(struct send_ctx *sctx, 6732 enum btrfs_compare_tree_result result) 6733 { 6734 int ret = 0; 6735 6736 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6737 inconsistent_snapshot_error(sctx, result, "xattr"); 6738 return -EIO; 6739 } 6740 6741 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6742 if (result == BTRFS_COMPARE_TREE_NEW) 6743 ret = process_new_xattr(sctx); 6744 else if (result == BTRFS_COMPARE_TREE_DELETED) 6745 ret = process_deleted_xattr(sctx); 6746 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6747 ret = process_changed_xattr(sctx); 6748 } 6749 6750 return ret; 6751 } 6752 6753 /* 6754 * Process new/deleted/changed extents. We skip processing in the 6755 * cur_inode_new_gen case because changed_inode did already initiate processing 6756 * of extents. The reason is the same as in changed_ref 6757 */ 6758 static int changed_extent(struct send_ctx *sctx, 6759 enum btrfs_compare_tree_result result) 6760 { 6761 int ret = 0; 6762 6763 /* 6764 * We have found an extent item that changed without the inode item 6765 * having changed. This can happen either after relocation (where the 6766 * disk_bytenr of an extent item is replaced at 6767 * relocation.c:replace_file_extents()) or after deduplication into a 6768 * file in both the parent and send snapshots (where an extent item can 6769 * get modified or replaced with a new one). Note that deduplication 6770 * updates the inode item, but it only changes the iversion (sequence 6771 * field in the inode item) of the inode, so if a file is deduplicated 6772 * the same amount of times in both the parent and send snapshots, its 6773 * iversion becomes the same in both snapshots, whence the inode item is 6774 * the same on both snapshots. 6775 */ 6776 if (sctx->cur_ino != sctx->cmp_key->objectid) 6777 return 0; 6778 6779 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6780 if (result != BTRFS_COMPARE_TREE_DELETED) 6781 ret = process_extent(sctx, sctx->left_path, 6782 sctx->cmp_key); 6783 } 6784 6785 return ret; 6786 } 6787 6788 static int dir_changed(struct send_ctx *sctx, u64 dir) 6789 { 6790 u64 orig_gen, new_gen; 6791 int ret; 6792 6793 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 6794 NULL, NULL, NULL); 6795 if (ret) 6796 return ret; 6797 6798 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 6799 NULL, NULL, NULL, NULL); 6800 if (ret) 6801 return ret; 6802 6803 return (orig_gen != new_gen) ? 1 : 0; 6804 } 6805 6806 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 6807 struct btrfs_key *key) 6808 { 6809 struct btrfs_inode_extref *extref; 6810 struct extent_buffer *leaf; 6811 u64 dirid = 0, last_dirid = 0; 6812 unsigned long ptr; 6813 u32 item_size; 6814 u32 cur_offset = 0; 6815 int ref_name_len; 6816 int ret = 0; 6817 6818 /* Easy case, just check this one dirid */ 6819 if (key->type == BTRFS_INODE_REF_KEY) { 6820 dirid = key->offset; 6821 6822 ret = dir_changed(sctx, dirid); 6823 goto out; 6824 } 6825 6826 leaf = path->nodes[0]; 6827 item_size = btrfs_item_size(leaf, path->slots[0]); 6828 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 6829 while (cur_offset < item_size) { 6830 extref = (struct btrfs_inode_extref *)(ptr + 6831 cur_offset); 6832 dirid = btrfs_inode_extref_parent(leaf, extref); 6833 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 6834 cur_offset += ref_name_len + sizeof(*extref); 6835 if (dirid == last_dirid) 6836 continue; 6837 ret = dir_changed(sctx, dirid); 6838 if (ret) 6839 break; 6840 last_dirid = dirid; 6841 } 6842 out: 6843 return ret; 6844 } 6845 6846 /* 6847 * Updates compare related fields in sctx and simply forwards to the actual 6848 * changed_xxx functions. 6849 */ 6850 static int changed_cb(struct btrfs_path *left_path, 6851 struct btrfs_path *right_path, 6852 struct btrfs_key *key, 6853 enum btrfs_compare_tree_result result, 6854 struct send_ctx *sctx) 6855 { 6856 int ret = 0; 6857 6858 /* 6859 * We can not hold the commit root semaphore here. This is because in 6860 * the case of sending and receiving to the same filesystem, using a 6861 * pipe, could result in a deadlock: 6862 * 6863 * 1) The task running send blocks on the pipe because it's full; 6864 * 6865 * 2) The task running receive, which is the only consumer of the pipe, 6866 * is waiting for a transaction commit (for example due to a space 6867 * reservation when doing a write or triggering a transaction commit 6868 * when creating a subvolume); 6869 * 6870 * 3) The transaction is waiting to write lock the commit root semaphore, 6871 * but can not acquire it since it's being held at 1). 6872 * 6873 * Down this call chain we write to the pipe through kernel_write(). 6874 * The same type of problem can also happen when sending to a file that 6875 * is stored in the same filesystem - when reserving space for a write 6876 * into the file, we can trigger a transaction commit. 6877 * 6878 * Our caller has supplied us with clones of leaves from the send and 6879 * parent roots, so we're safe here from a concurrent relocation and 6880 * further reallocation of metadata extents while we are here. Below we 6881 * also assert that the leaves are clones. 6882 */ 6883 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem); 6884 6885 /* 6886 * We always have a send root, so left_path is never NULL. We will not 6887 * have a leaf when we have reached the end of the send root but have 6888 * not yet reached the end of the parent root. 6889 */ 6890 if (left_path->nodes[0]) 6891 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 6892 &left_path->nodes[0]->bflags)); 6893 /* 6894 * When doing a full send we don't have a parent root, so right_path is 6895 * NULL. When doing an incremental send, we may have reached the end of 6896 * the parent root already, so we don't have a leaf at right_path. 6897 */ 6898 if (right_path && right_path->nodes[0]) 6899 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 6900 &right_path->nodes[0]->bflags)); 6901 6902 if (result == BTRFS_COMPARE_TREE_SAME) { 6903 if (key->type == BTRFS_INODE_REF_KEY || 6904 key->type == BTRFS_INODE_EXTREF_KEY) { 6905 ret = compare_refs(sctx, left_path, key); 6906 if (!ret) 6907 return 0; 6908 if (ret < 0) 6909 return ret; 6910 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 6911 return maybe_send_hole(sctx, left_path, key); 6912 } else { 6913 return 0; 6914 } 6915 result = BTRFS_COMPARE_TREE_CHANGED; 6916 ret = 0; 6917 } 6918 6919 sctx->left_path = left_path; 6920 sctx->right_path = right_path; 6921 sctx->cmp_key = key; 6922 6923 ret = finish_inode_if_needed(sctx, 0); 6924 if (ret < 0) 6925 goto out; 6926 6927 /* Ignore non-FS objects */ 6928 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 6929 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 6930 goto out; 6931 6932 if (key->type == BTRFS_INODE_ITEM_KEY) { 6933 ret = changed_inode(sctx, result); 6934 } else if (!sctx->ignore_cur_inode) { 6935 if (key->type == BTRFS_INODE_REF_KEY || 6936 key->type == BTRFS_INODE_EXTREF_KEY) 6937 ret = changed_ref(sctx, result); 6938 else if (key->type == BTRFS_XATTR_ITEM_KEY) 6939 ret = changed_xattr(sctx, result); 6940 else if (key->type == BTRFS_EXTENT_DATA_KEY) 6941 ret = changed_extent(sctx, result); 6942 } 6943 6944 out: 6945 return ret; 6946 } 6947 6948 static int search_key_again(const struct send_ctx *sctx, 6949 struct btrfs_root *root, 6950 struct btrfs_path *path, 6951 const struct btrfs_key *key) 6952 { 6953 int ret; 6954 6955 if (!path->need_commit_sem) 6956 lockdep_assert_held_read(&root->fs_info->commit_root_sem); 6957 6958 /* 6959 * Roots used for send operations are readonly and no one can add, 6960 * update or remove keys from them, so we should be able to find our 6961 * key again. The only exception is deduplication, which can operate on 6962 * readonly roots and add, update or remove keys to/from them - but at 6963 * the moment we don't allow it to run in parallel with send. 6964 */ 6965 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 6966 ASSERT(ret <= 0); 6967 if (ret > 0) { 6968 btrfs_print_tree(path->nodes[path->lowest_level], false); 6969 btrfs_err(root->fs_info, 6970 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d", 6971 key->objectid, key->type, key->offset, 6972 (root == sctx->parent_root ? "parent" : "send"), 6973 root->root_key.objectid, path->lowest_level, 6974 path->slots[path->lowest_level]); 6975 return -EUCLEAN; 6976 } 6977 6978 return ret; 6979 } 6980 6981 static int full_send_tree(struct send_ctx *sctx) 6982 { 6983 int ret; 6984 struct btrfs_root *send_root = sctx->send_root; 6985 struct btrfs_key key; 6986 struct btrfs_fs_info *fs_info = send_root->fs_info; 6987 struct btrfs_path *path; 6988 6989 path = alloc_path_for_send(); 6990 if (!path) 6991 return -ENOMEM; 6992 path->reada = READA_FORWARD_ALWAYS; 6993 6994 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 6995 key.type = BTRFS_INODE_ITEM_KEY; 6996 key.offset = 0; 6997 6998 down_read(&fs_info->commit_root_sem); 6999 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7000 up_read(&fs_info->commit_root_sem); 7001 7002 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 7003 if (ret < 0) 7004 goto out; 7005 if (ret) 7006 goto out_finish; 7007 7008 while (1) { 7009 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 7010 7011 ret = changed_cb(path, NULL, &key, 7012 BTRFS_COMPARE_TREE_NEW, sctx); 7013 if (ret < 0) 7014 goto out; 7015 7016 down_read(&fs_info->commit_root_sem); 7017 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7018 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7019 up_read(&fs_info->commit_root_sem); 7020 /* 7021 * A transaction used for relocating a block group was 7022 * committed or is about to finish its commit. Release 7023 * our path (leaf) and restart the search, so that we 7024 * avoid operating on any file extent items that are 7025 * stale, with a disk_bytenr that reflects a pre 7026 * relocation value. This way we avoid as much as 7027 * possible to fallback to regular writes when checking 7028 * if we can clone file ranges. 7029 */ 7030 btrfs_release_path(path); 7031 ret = search_key_again(sctx, send_root, path, &key); 7032 if (ret < 0) 7033 goto out; 7034 } else { 7035 up_read(&fs_info->commit_root_sem); 7036 } 7037 7038 ret = btrfs_next_item(send_root, path); 7039 if (ret < 0) 7040 goto out; 7041 if (ret) { 7042 ret = 0; 7043 break; 7044 } 7045 } 7046 7047 out_finish: 7048 ret = finish_inode_if_needed(sctx, 1); 7049 7050 out: 7051 btrfs_free_path(path); 7052 return ret; 7053 } 7054 7055 static int replace_node_with_clone(struct btrfs_path *path, int level) 7056 { 7057 struct extent_buffer *clone; 7058 7059 clone = btrfs_clone_extent_buffer(path->nodes[level]); 7060 if (!clone) 7061 return -ENOMEM; 7062 7063 free_extent_buffer(path->nodes[level]); 7064 path->nodes[level] = clone; 7065 7066 return 0; 7067 } 7068 7069 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen) 7070 { 7071 struct extent_buffer *eb; 7072 struct extent_buffer *parent = path->nodes[*level]; 7073 int slot = path->slots[*level]; 7074 const int nritems = btrfs_header_nritems(parent); 7075 u64 reada_max; 7076 u64 reada_done = 0; 7077 7078 lockdep_assert_held_read(&parent->fs_info->commit_root_sem); 7079 7080 BUG_ON(*level == 0); 7081 eb = btrfs_read_node_slot(parent, slot); 7082 if (IS_ERR(eb)) 7083 return PTR_ERR(eb); 7084 7085 /* 7086 * Trigger readahead for the next leaves we will process, so that it is 7087 * very likely that when we need them they are already in memory and we 7088 * will not block on disk IO. For nodes we only do readahead for one, 7089 * since the time window between processing nodes is typically larger. 7090 */ 7091 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize); 7092 7093 for (slot++; slot < nritems && reada_done < reada_max; slot++) { 7094 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) { 7095 btrfs_readahead_node_child(parent, slot); 7096 reada_done += eb->fs_info->nodesize; 7097 } 7098 } 7099 7100 path->nodes[*level - 1] = eb; 7101 path->slots[*level - 1] = 0; 7102 (*level)--; 7103 7104 if (*level == 0) 7105 return replace_node_with_clone(path, 0); 7106 7107 return 0; 7108 } 7109 7110 static int tree_move_next_or_upnext(struct btrfs_path *path, 7111 int *level, int root_level) 7112 { 7113 int ret = 0; 7114 int nritems; 7115 nritems = btrfs_header_nritems(path->nodes[*level]); 7116 7117 path->slots[*level]++; 7118 7119 while (path->slots[*level] >= nritems) { 7120 if (*level == root_level) { 7121 path->slots[*level] = nritems - 1; 7122 return -1; 7123 } 7124 7125 /* move upnext */ 7126 path->slots[*level] = 0; 7127 free_extent_buffer(path->nodes[*level]); 7128 path->nodes[*level] = NULL; 7129 (*level)++; 7130 path->slots[*level]++; 7131 7132 nritems = btrfs_header_nritems(path->nodes[*level]); 7133 ret = 1; 7134 } 7135 return ret; 7136 } 7137 7138 /* 7139 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 7140 * or down. 7141 */ 7142 static int tree_advance(struct btrfs_path *path, 7143 int *level, int root_level, 7144 int allow_down, 7145 struct btrfs_key *key, 7146 u64 reada_min_gen) 7147 { 7148 int ret; 7149 7150 if (*level == 0 || !allow_down) { 7151 ret = tree_move_next_or_upnext(path, level, root_level); 7152 } else { 7153 ret = tree_move_down(path, level, reada_min_gen); 7154 } 7155 7156 /* 7157 * Even if we have reached the end of a tree, ret is -1, update the key 7158 * anyway, so that in case we need to restart due to a block group 7159 * relocation, we can assert that the last key of the root node still 7160 * exists in the tree. 7161 */ 7162 if (*level == 0) 7163 btrfs_item_key_to_cpu(path->nodes[*level], key, 7164 path->slots[*level]); 7165 else 7166 btrfs_node_key_to_cpu(path->nodes[*level], key, 7167 path->slots[*level]); 7168 7169 return ret; 7170 } 7171 7172 static int tree_compare_item(struct btrfs_path *left_path, 7173 struct btrfs_path *right_path, 7174 char *tmp_buf) 7175 { 7176 int cmp; 7177 int len1, len2; 7178 unsigned long off1, off2; 7179 7180 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]); 7181 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]); 7182 if (len1 != len2) 7183 return 1; 7184 7185 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 7186 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 7187 right_path->slots[0]); 7188 7189 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 7190 7191 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 7192 if (cmp) 7193 return 1; 7194 return 0; 7195 } 7196 7197 /* 7198 * A transaction used for relocating a block group was committed or is about to 7199 * finish its commit. Release our paths and restart the search, so that we are 7200 * not using stale extent buffers: 7201 * 7202 * 1) For levels > 0, we are only holding references of extent buffers, without 7203 * any locks on them, which does not prevent them from having been relocated 7204 * and reallocated after the last time we released the commit root semaphore. 7205 * The exception are the root nodes, for which we always have a clone, see 7206 * the comment at btrfs_compare_trees(); 7207 * 7208 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so 7209 * we are safe from the concurrent relocation and reallocation. However they 7210 * can have file extent items with a pre relocation disk_bytenr value, so we 7211 * restart the start from the current commit roots and clone the new leaves so 7212 * that we get the post relocation disk_bytenr values. Not doing so, could 7213 * make us clone the wrong data in case there are new extents using the old 7214 * disk_bytenr that happen to be shared. 7215 */ 7216 static int restart_after_relocation(struct btrfs_path *left_path, 7217 struct btrfs_path *right_path, 7218 const struct btrfs_key *left_key, 7219 const struct btrfs_key *right_key, 7220 int left_level, 7221 int right_level, 7222 const struct send_ctx *sctx) 7223 { 7224 int root_level; 7225 int ret; 7226 7227 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem); 7228 7229 btrfs_release_path(left_path); 7230 btrfs_release_path(right_path); 7231 7232 /* 7233 * Since keys can not be added or removed to/from our roots because they 7234 * are readonly and we do not allow deduplication to run in parallel 7235 * (which can add, remove or change keys), the layout of the trees should 7236 * not change. 7237 */ 7238 left_path->lowest_level = left_level; 7239 ret = search_key_again(sctx, sctx->send_root, left_path, left_key); 7240 if (ret < 0) 7241 return ret; 7242 7243 right_path->lowest_level = right_level; 7244 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key); 7245 if (ret < 0) 7246 return ret; 7247 7248 /* 7249 * If the lowest level nodes are leaves, clone them so that they can be 7250 * safely used by changed_cb() while not under the protection of the 7251 * commit root semaphore, even if relocation and reallocation happens in 7252 * parallel. 7253 */ 7254 if (left_level == 0) { 7255 ret = replace_node_with_clone(left_path, 0); 7256 if (ret < 0) 7257 return ret; 7258 } 7259 7260 if (right_level == 0) { 7261 ret = replace_node_with_clone(right_path, 0); 7262 if (ret < 0) 7263 return ret; 7264 } 7265 7266 /* 7267 * Now clone the root nodes (unless they happen to be the leaves we have 7268 * already cloned). This is to protect against concurrent snapshotting of 7269 * the send and parent roots (see the comment at btrfs_compare_trees()). 7270 */ 7271 root_level = btrfs_header_level(sctx->send_root->commit_root); 7272 if (root_level > 0) { 7273 ret = replace_node_with_clone(left_path, root_level); 7274 if (ret < 0) 7275 return ret; 7276 } 7277 7278 root_level = btrfs_header_level(sctx->parent_root->commit_root); 7279 if (root_level > 0) { 7280 ret = replace_node_with_clone(right_path, root_level); 7281 if (ret < 0) 7282 return ret; 7283 } 7284 7285 return 0; 7286 } 7287 7288 /* 7289 * This function compares two trees and calls the provided callback for 7290 * every changed/new/deleted item it finds. 7291 * If shared tree blocks are encountered, whole subtrees are skipped, making 7292 * the compare pretty fast on snapshotted subvolumes. 7293 * 7294 * This currently works on commit roots only. As commit roots are read only, 7295 * we don't do any locking. The commit roots are protected with transactions. 7296 * Transactions are ended and rejoined when a commit is tried in between. 7297 * 7298 * This function checks for modifications done to the trees while comparing. 7299 * If it detects a change, it aborts immediately. 7300 */ 7301 static int btrfs_compare_trees(struct btrfs_root *left_root, 7302 struct btrfs_root *right_root, struct send_ctx *sctx) 7303 { 7304 struct btrfs_fs_info *fs_info = left_root->fs_info; 7305 int ret; 7306 int cmp; 7307 struct btrfs_path *left_path = NULL; 7308 struct btrfs_path *right_path = NULL; 7309 struct btrfs_key left_key; 7310 struct btrfs_key right_key; 7311 char *tmp_buf = NULL; 7312 int left_root_level; 7313 int right_root_level; 7314 int left_level; 7315 int right_level; 7316 int left_end_reached = 0; 7317 int right_end_reached = 0; 7318 int advance_left = 0; 7319 int advance_right = 0; 7320 u64 left_blockptr; 7321 u64 right_blockptr; 7322 u64 left_gen; 7323 u64 right_gen; 7324 u64 reada_min_gen; 7325 7326 left_path = btrfs_alloc_path(); 7327 if (!left_path) { 7328 ret = -ENOMEM; 7329 goto out; 7330 } 7331 right_path = btrfs_alloc_path(); 7332 if (!right_path) { 7333 ret = -ENOMEM; 7334 goto out; 7335 } 7336 7337 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 7338 if (!tmp_buf) { 7339 ret = -ENOMEM; 7340 goto out; 7341 } 7342 7343 left_path->search_commit_root = 1; 7344 left_path->skip_locking = 1; 7345 right_path->search_commit_root = 1; 7346 right_path->skip_locking = 1; 7347 7348 /* 7349 * Strategy: Go to the first items of both trees. Then do 7350 * 7351 * If both trees are at level 0 7352 * Compare keys of current items 7353 * If left < right treat left item as new, advance left tree 7354 * and repeat 7355 * If left > right treat right item as deleted, advance right tree 7356 * and repeat 7357 * If left == right do deep compare of items, treat as changed if 7358 * needed, advance both trees and repeat 7359 * If both trees are at the same level but not at level 0 7360 * Compare keys of current nodes/leafs 7361 * If left < right advance left tree and repeat 7362 * If left > right advance right tree and repeat 7363 * If left == right compare blockptrs of the next nodes/leafs 7364 * If they match advance both trees but stay at the same level 7365 * and repeat 7366 * If they don't match advance both trees while allowing to go 7367 * deeper and repeat 7368 * If tree levels are different 7369 * Advance the tree that needs it and repeat 7370 * 7371 * Advancing a tree means: 7372 * If we are at level 0, try to go to the next slot. If that's not 7373 * possible, go one level up and repeat. Stop when we found a level 7374 * where we could go to the next slot. We may at this point be on a 7375 * node or a leaf. 7376 * 7377 * If we are not at level 0 and not on shared tree blocks, go one 7378 * level deeper. 7379 * 7380 * If we are not at level 0 and on shared tree blocks, go one slot to 7381 * the right if possible or go up and right. 7382 */ 7383 7384 down_read(&fs_info->commit_root_sem); 7385 left_level = btrfs_header_level(left_root->commit_root); 7386 left_root_level = left_level; 7387 /* 7388 * We clone the root node of the send and parent roots to prevent races 7389 * with snapshot creation of these roots. Snapshot creation COWs the 7390 * root node of a tree, so after the transaction is committed the old 7391 * extent can be reallocated while this send operation is still ongoing. 7392 * So we clone them, under the commit root semaphore, to be race free. 7393 */ 7394 left_path->nodes[left_level] = 7395 btrfs_clone_extent_buffer(left_root->commit_root); 7396 if (!left_path->nodes[left_level]) { 7397 ret = -ENOMEM; 7398 goto out_unlock; 7399 } 7400 7401 right_level = btrfs_header_level(right_root->commit_root); 7402 right_root_level = right_level; 7403 right_path->nodes[right_level] = 7404 btrfs_clone_extent_buffer(right_root->commit_root); 7405 if (!right_path->nodes[right_level]) { 7406 ret = -ENOMEM; 7407 goto out_unlock; 7408 } 7409 /* 7410 * Our right root is the parent root, while the left root is the "send" 7411 * root. We know that all new nodes/leaves in the left root must have 7412 * a generation greater than the right root's generation, so we trigger 7413 * readahead for those nodes and leaves of the left root, as we know we 7414 * will need to read them at some point. 7415 */ 7416 reada_min_gen = btrfs_header_generation(right_root->commit_root); 7417 7418 if (left_level == 0) 7419 btrfs_item_key_to_cpu(left_path->nodes[left_level], 7420 &left_key, left_path->slots[left_level]); 7421 else 7422 btrfs_node_key_to_cpu(left_path->nodes[left_level], 7423 &left_key, left_path->slots[left_level]); 7424 if (right_level == 0) 7425 btrfs_item_key_to_cpu(right_path->nodes[right_level], 7426 &right_key, right_path->slots[right_level]); 7427 else 7428 btrfs_node_key_to_cpu(right_path->nodes[right_level], 7429 &right_key, right_path->slots[right_level]); 7430 7431 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7432 7433 while (1) { 7434 if (need_resched() || 7435 rwsem_is_contended(&fs_info->commit_root_sem)) { 7436 up_read(&fs_info->commit_root_sem); 7437 cond_resched(); 7438 down_read(&fs_info->commit_root_sem); 7439 } 7440 7441 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7442 ret = restart_after_relocation(left_path, right_path, 7443 &left_key, &right_key, 7444 left_level, right_level, 7445 sctx); 7446 if (ret < 0) 7447 goto out_unlock; 7448 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7449 } 7450 7451 if (advance_left && !left_end_reached) { 7452 ret = tree_advance(left_path, &left_level, 7453 left_root_level, 7454 advance_left != ADVANCE_ONLY_NEXT, 7455 &left_key, reada_min_gen); 7456 if (ret == -1) 7457 left_end_reached = ADVANCE; 7458 else if (ret < 0) 7459 goto out_unlock; 7460 advance_left = 0; 7461 } 7462 if (advance_right && !right_end_reached) { 7463 ret = tree_advance(right_path, &right_level, 7464 right_root_level, 7465 advance_right != ADVANCE_ONLY_NEXT, 7466 &right_key, reada_min_gen); 7467 if (ret == -1) 7468 right_end_reached = ADVANCE; 7469 else if (ret < 0) 7470 goto out_unlock; 7471 advance_right = 0; 7472 } 7473 7474 if (left_end_reached && right_end_reached) { 7475 ret = 0; 7476 goto out_unlock; 7477 } else if (left_end_reached) { 7478 if (right_level == 0) { 7479 up_read(&fs_info->commit_root_sem); 7480 ret = changed_cb(left_path, right_path, 7481 &right_key, 7482 BTRFS_COMPARE_TREE_DELETED, 7483 sctx); 7484 if (ret < 0) 7485 goto out; 7486 down_read(&fs_info->commit_root_sem); 7487 } 7488 advance_right = ADVANCE; 7489 continue; 7490 } else if (right_end_reached) { 7491 if (left_level == 0) { 7492 up_read(&fs_info->commit_root_sem); 7493 ret = changed_cb(left_path, right_path, 7494 &left_key, 7495 BTRFS_COMPARE_TREE_NEW, 7496 sctx); 7497 if (ret < 0) 7498 goto out; 7499 down_read(&fs_info->commit_root_sem); 7500 } 7501 advance_left = ADVANCE; 7502 continue; 7503 } 7504 7505 if (left_level == 0 && right_level == 0) { 7506 up_read(&fs_info->commit_root_sem); 7507 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7508 if (cmp < 0) { 7509 ret = changed_cb(left_path, right_path, 7510 &left_key, 7511 BTRFS_COMPARE_TREE_NEW, 7512 sctx); 7513 advance_left = ADVANCE; 7514 } else if (cmp > 0) { 7515 ret = changed_cb(left_path, right_path, 7516 &right_key, 7517 BTRFS_COMPARE_TREE_DELETED, 7518 sctx); 7519 advance_right = ADVANCE; 7520 } else { 7521 enum btrfs_compare_tree_result result; 7522 7523 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 7524 ret = tree_compare_item(left_path, right_path, 7525 tmp_buf); 7526 if (ret) 7527 result = BTRFS_COMPARE_TREE_CHANGED; 7528 else 7529 result = BTRFS_COMPARE_TREE_SAME; 7530 ret = changed_cb(left_path, right_path, 7531 &left_key, result, sctx); 7532 advance_left = ADVANCE; 7533 advance_right = ADVANCE; 7534 } 7535 7536 if (ret < 0) 7537 goto out; 7538 down_read(&fs_info->commit_root_sem); 7539 } else if (left_level == right_level) { 7540 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7541 if (cmp < 0) { 7542 advance_left = ADVANCE; 7543 } else if (cmp > 0) { 7544 advance_right = ADVANCE; 7545 } else { 7546 left_blockptr = btrfs_node_blockptr( 7547 left_path->nodes[left_level], 7548 left_path->slots[left_level]); 7549 right_blockptr = btrfs_node_blockptr( 7550 right_path->nodes[right_level], 7551 right_path->slots[right_level]); 7552 left_gen = btrfs_node_ptr_generation( 7553 left_path->nodes[left_level], 7554 left_path->slots[left_level]); 7555 right_gen = btrfs_node_ptr_generation( 7556 right_path->nodes[right_level], 7557 right_path->slots[right_level]); 7558 if (left_blockptr == right_blockptr && 7559 left_gen == right_gen) { 7560 /* 7561 * As we're on a shared block, don't 7562 * allow to go deeper. 7563 */ 7564 advance_left = ADVANCE_ONLY_NEXT; 7565 advance_right = ADVANCE_ONLY_NEXT; 7566 } else { 7567 advance_left = ADVANCE; 7568 advance_right = ADVANCE; 7569 } 7570 } 7571 } else if (left_level < right_level) { 7572 advance_right = ADVANCE; 7573 } else { 7574 advance_left = ADVANCE; 7575 } 7576 } 7577 7578 out_unlock: 7579 up_read(&fs_info->commit_root_sem); 7580 out: 7581 btrfs_free_path(left_path); 7582 btrfs_free_path(right_path); 7583 kvfree(tmp_buf); 7584 return ret; 7585 } 7586 7587 static int send_subvol(struct send_ctx *sctx) 7588 { 7589 int ret; 7590 7591 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 7592 ret = send_header(sctx); 7593 if (ret < 0) 7594 goto out; 7595 } 7596 7597 ret = send_subvol_begin(sctx); 7598 if (ret < 0) 7599 goto out; 7600 7601 if (sctx->parent_root) { 7602 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); 7603 if (ret < 0) 7604 goto out; 7605 ret = finish_inode_if_needed(sctx, 1); 7606 if (ret < 0) 7607 goto out; 7608 } else { 7609 ret = full_send_tree(sctx); 7610 if (ret < 0) 7611 goto out; 7612 } 7613 7614 out: 7615 free_recorded_refs(sctx); 7616 return ret; 7617 } 7618 7619 /* 7620 * If orphan cleanup did remove any orphans from a root, it means the tree 7621 * was modified and therefore the commit root is not the same as the current 7622 * root anymore. This is a problem, because send uses the commit root and 7623 * therefore can see inode items that don't exist in the current root anymore, 7624 * and for example make calls to btrfs_iget, which will do tree lookups based 7625 * on the current root and not on the commit root. Those lookups will fail, 7626 * returning a -ESTALE error, and making send fail with that error. So make 7627 * sure a send does not see any orphans we have just removed, and that it will 7628 * see the same inodes regardless of whether a transaction commit happened 7629 * before it started (meaning that the commit root will be the same as the 7630 * current root) or not. 7631 */ 7632 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 7633 { 7634 int i; 7635 struct btrfs_trans_handle *trans = NULL; 7636 7637 again: 7638 if (sctx->parent_root && 7639 sctx->parent_root->node != sctx->parent_root->commit_root) 7640 goto commit_trans; 7641 7642 for (i = 0; i < sctx->clone_roots_cnt; i++) 7643 if (sctx->clone_roots[i].root->node != 7644 sctx->clone_roots[i].root->commit_root) 7645 goto commit_trans; 7646 7647 if (trans) 7648 return btrfs_end_transaction(trans); 7649 7650 return 0; 7651 7652 commit_trans: 7653 /* Use any root, all fs roots will get their commit roots updated. */ 7654 if (!trans) { 7655 trans = btrfs_join_transaction(sctx->send_root); 7656 if (IS_ERR(trans)) 7657 return PTR_ERR(trans); 7658 goto again; 7659 } 7660 7661 return btrfs_commit_transaction(trans); 7662 } 7663 7664 /* 7665 * Make sure any existing dellaloc is flushed for any root used by a send 7666 * operation so that we do not miss any data and we do not race with writeback 7667 * finishing and changing a tree while send is using the tree. This could 7668 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 7669 * a send operation then uses the subvolume. 7670 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 7671 */ 7672 static int flush_delalloc_roots(struct send_ctx *sctx) 7673 { 7674 struct btrfs_root *root = sctx->parent_root; 7675 int ret; 7676 int i; 7677 7678 if (root) { 7679 ret = btrfs_start_delalloc_snapshot(root, false); 7680 if (ret) 7681 return ret; 7682 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 7683 } 7684 7685 for (i = 0; i < sctx->clone_roots_cnt; i++) { 7686 root = sctx->clone_roots[i].root; 7687 ret = btrfs_start_delalloc_snapshot(root, false); 7688 if (ret) 7689 return ret; 7690 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 7691 } 7692 7693 return 0; 7694 } 7695 7696 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 7697 { 7698 spin_lock(&root->root_item_lock); 7699 root->send_in_progress--; 7700 /* 7701 * Not much left to do, we don't know why it's unbalanced and 7702 * can't blindly reset it to 0. 7703 */ 7704 if (root->send_in_progress < 0) 7705 btrfs_err(root->fs_info, 7706 "send_in_progress unbalanced %d root %llu", 7707 root->send_in_progress, root->root_key.objectid); 7708 spin_unlock(&root->root_item_lock); 7709 } 7710 7711 static void dedupe_in_progress_warn(const struct btrfs_root *root) 7712 { 7713 btrfs_warn_rl(root->fs_info, 7714 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 7715 root->root_key.objectid, root->dedupe_in_progress); 7716 } 7717 7718 long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg) 7719 { 7720 int ret = 0; 7721 struct btrfs_root *send_root = BTRFS_I(inode)->root; 7722 struct btrfs_fs_info *fs_info = send_root->fs_info; 7723 struct btrfs_root *clone_root; 7724 struct send_ctx *sctx = NULL; 7725 u32 i; 7726 u64 *clone_sources_tmp = NULL; 7727 int clone_sources_to_rollback = 0; 7728 size_t alloc_size; 7729 int sort_clone_roots = 0; 7730 7731 if (!capable(CAP_SYS_ADMIN)) 7732 return -EPERM; 7733 7734 /* 7735 * The subvolume must remain read-only during send, protect against 7736 * making it RW. This also protects against deletion. 7737 */ 7738 spin_lock(&send_root->root_item_lock); 7739 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) { 7740 dedupe_in_progress_warn(send_root); 7741 spin_unlock(&send_root->root_item_lock); 7742 return -EAGAIN; 7743 } 7744 send_root->send_in_progress++; 7745 spin_unlock(&send_root->root_item_lock); 7746 7747 /* 7748 * Userspace tools do the checks and warn the user if it's 7749 * not RO. 7750 */ 7751 if (!btrfs_root_readonly(send_root)) { 7752 ret = -EPERM; 7753 goto out; 7754 } 7755 7756 /* 7757 * Check that we don't overflow at later allocations, we request 7758 * clone_sources_count + 1 items, and compare to unsigned long inside 7759 * access_ok. 7760 */ 7761 if (arg->clone_sources_count > 7762 ULONG_MAX / sizeof(struct clone_root) - 1) { 7763 ret = -EINVAL; 7764 goto out; 7765 } 7766 7767 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 7768 ret = -EINVAL; 7769 goto out; 7770 } 7771 7772 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 7773 if (!sctx) { 7774 ret = -ENOMEM; 7775 goto out; 7776 } 7777 7778 INIT_LIST_HEAD(&sctx->new_refs); 7779 INIT_LIST_HEAD(&sctx->deleted_refs); 7780 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL); 7781 INIT_LIST_HEAD(&sctx->name_cache_list); 7782 7783 sctx->flags = arg->flags; 7784 7785 if (arg->flags & BTRFS_SEND_FLAG_VERSION) { 7786 if (arg->version > BTRFS_SEND_STREAM_VERSION) { 7787 ret = -EPROTO; 7788 goto out; 7789 } 7790 /* Zero means "use the highest version" */ 7791 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION; 7792 } else { 7793 sctx->proto = 1; 7794 } 7795 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) { 7796 ret = -EINVAL; 7797 goto out; 7798 } 7799 7800 sctx->send_filp = fget(arg->send_fd); 7801 if (!sctx->send_filp) { 7802 ret = -EBADF; 7803 goto out; 7804 } 7805 7806 sctx->send_root = send_root; 7807 /* 7808 * Unlikely but possible, if the subvolume is marked for deletion but 7809 * is slow to remove the directory entry, send can still be started 7810 */ 7811 if (btrfs_root_dead(sctx->send_root)) { 7812 ret = -EPERM; 7813 goto out; 7814 } 7815 7816 sctx->clone_roots_cnt = arg->clone_sources_count; 7817 7818 if (sctx->proto >= 2) { 7819 u32 send_buf_num_pages; 7820 7821 sctx->send_max_size = ALIGN(SZ_16K + BTRFS_MAX_COMPRESSED, PAGE_SIZE); 7822 sctx->send_buf = vmalloc(sctx->send_max_size); 7823 if (!sctx->send_buf) { 7824 ret = -ENOMEM; 7825 goto out; 7826 } 7827 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT; 7828 sctx->send_buf_pages = kcalloc(send_buf_num_pages, 7829 sizeof(*sctx->send_buf_pages), 7830 GFP_KERNEL); 7831 if (!sctx->send_buf_pages) { 7832 ret = -ENOMEM; 7833 goto out; 7834 } 7835 for (i = 0; i < send_buf_num_pages; i++) { 7836 sctx->send_buf_pages[i] = 7837 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT)); 7838 } 7839 } else { 7840 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1; 7841 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 7842 } 7843 if (!sctx->send_buf) { 7844 ret = -ENOMEM; 7845 goto out; 7846 } 7847 7848 sctx->pending_dir_moves = RB_ROOT; 7849 sctx->waiting_dir_moves = RB_ROOT; 7850 sctx->orphan_dirs = RB_ROOT; 7851 sctx->rbtree_new_refs = RB_ROOT; 7852 sctx->rbtree_deleted_refs = RB_ROOT; 7853 7854 sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots), 7855 arg->clone_sources_count + 1, 7856 GFP_KERNEL); 7857 if (!sctx->clone_roots) { 7858 ret = -ENOMEM; 7859 goto out; 7860 } 7861 7862 alloc_size = array_size(sizeof(*arg->clone_sources), 7863 arg->clone_sources_count); 7864 7865 if (arg->clone_sources_count) { 7866 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 7867 if (!clone_sources_tmp) { 7868 ret = -ENOMEM; 7869 goto out; 7870 } 7871 7872 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 7873 alloc_size); 7874 if (ret) { 7875 ret = -EFAULT; 7876 goto out; 7877 } 7878 7879 for (i = 0; i < arg->clone_sources_count; i++) { 7880 clone_root = btrfs_get_fs_root(fs_info, 7881 clone_sources_tmp[i], true); 7882 if (IS_ERR(clone_root)) { 7883 ret = PTR_ERR(clone_root); 7884 goto out; 7885 } 7886 spin_lock(&clone_root->root_item_lock); 7887 if (!btrfs_root_readonly(clone_root) || 7888 btrfs_root_dead(clone_root)) { 7889 spin_unlock(&clone_root->root_item_lock); 7890 btrfs_put_root(clone_root); 7891 ret = -EPERM; 7892 goto out; 7893 } 7894 if (clone_root->dedupe_in_progress) { 7895 dedupe_in_progress_warn(clone_root); 7896 spin_unlock(&clone_root->root_item_lock); 7897 btrfs_put_root(clone_root); 7898 ret = -EAGAIN; 7899 goto out; 7900 } 7901 clone_root->send_in_progress++; 7902 spin_unlock(&clone_root->root_item_lock); 7903 7904 sctx->clone_roots[i].root = clone_root; 7905 clone_sources_to_rollback = i + 1; 7906 } 7907 kvfree(clone_sources_tmp); 7908 clone_sources_tmp = NULL; 7909 } 7910 7911 if (arg->parent_root) { 7912 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, 7913 true); 7914 if (IS_ERR(sctx->parent_root)) { 7915 ret = PTR_ERR(sctx->parent_root); 7916 goto out; 7917 } 7918 7919 spin_lock(&sctx->parent_root->root_item_lock); 7920 sctx->parent_root->send_in_progress++; 7921 if (!btrfs_root_readonly(sctx->parent_root) || 7922 btrfs_root_dead(sctx->parent_root)) { 7923 spin_unlock(&sctx->parent_root->root_item_lock); 7924 ret = -EPERM; 7925 goto out; 7926 } 7927 if (sctx->parent_root->dedupe_in_progress) { 7928 dedupe_in_progress_warn(sctx->parent_root); 7929 spin_unlock(&sctx->parent_root->root_item_lock); 7930 ret = -EAGAIN; 7931 goto out; 7932 } 7933 spin_unlock(&sctx->parent_root->root_item_lock); 7934 } 7935 7936 /* 7937 * Clones from send_root are allowed, but only if the clone source 7938 * is behind the current send position. This is checked while searching 7939 * for possible clone sources. 7940 */ 7941 sctx->clone_roots[sctx->clone_roots_cnt++].root = 7942 btrfs_grab_root(sctx->send_root); 7943 7944 /* We do a bsearch later */ 7945 sort(sctx->clone_roots, sctx->clone_roots_cnt, 7946 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 7947 NULL); 7948 sort_clone_roots = 1; 7949 7950 ret = flush_delalloc_roots(sctx); 7951 if (ret) 7952 goto out; 7953 7954 ret = ensure_commit_roots_uptodate(sctx); 7955 if (ret) 7956 goto out; 7957 7958 ret = send_subvol(sctx); 7959 if (ret < 0) 7960 goto out; 7961 7962 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 7963 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 7964 if (ret < 0) 7965 goto out; 7966 ret = send_cmd(sctx); 7967 if (ret < 0) 7968 goto out; 7969 } 7970 7971 out: 7972 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 7973 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 7974 struct rb_node *n; 7975 struct pending_dir_move *pm; 7976 7977 n = rb_first(&sctx->pending_dir_moves); 7978 pm = rb_entry(n, struct pending_dir_move, node); 7979 while (!list_empty(&pm->list)) { 7980 struct pending_dir_move *pm2; 7981 7982 pm2 = list_first_entry(&pm->list, 7983 struct pending_dir_move, list); 7984 free_pending_move(sctx, pm2); 7985 } 7986 free_pending_move(sctx, pm); 7987 } 7988 7989 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 7990 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 7991 struct rb_node *n; 7992 struct waiting_dir_move *dm; 7993 7994 n = rb_first(&sctx->waiting_dir_moves); 7995 dm = rb_entry(n, struct waiting_dir_move, node); 7996 rb_erase(&dm->node, &sctx->waiting_dir_moves); 7997 kfree(dm); 7998 } 7999 8000 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 8001 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 8002 struct rb_node *n; 8003 struct orphan_dir_info *odi; 8004 8005 n = rb_first(&sctx->orphan_dirs); 8006 odi = rb_entry(n, struct orphan_dir_info, node); 8007 free_orphan_dir_info(sctx, odi); 8008 } 8009 8010 if (sort_clone_roots) { 8011 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8012 btrfs_root_dec_send_in_progress( 8013 sctx->clone_roots[i].root); 8014 btrfs_put_root(sctx->clone_roots[i].root); 8015 } 8016 } else { 8017 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 8018 btrfs_root_dec_send_in_progress( 8019 sctx->clone_roots[i].root); 8020 btrfs_put_root(sctx->clone_roots[i].root); 8021 } 8022 8023 btrfs_root_dec_send_in_progress(send_root); 8024 } 8025 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 8026 btrfs_root_dec_send_in_progress(sctx->parent_root); 8027 btrfs_put_root(sctx->parent_root); 8028 } 8029 8030 kvfree(clone_sources_tmp); 8031 8032 if (sctx) { 8033 if (sctx->send_filp) 8034 fput(sctx->send_filp); 8035 8036 kvfree(sctx->clone_roots); 8037 kfree(sctx->send_buf_pages); 8038 kvfree(sctx->send_buf); 8039 8040 name_cache_free(sctx); 8041 8042 close_current_inode(sctx); 8043 8044 kfree(sctx); 8045 } 8046 8047 return ret; 8048 } 8049