xref: /openbmc/linux/fs/btrfs/send.c (revision e2f1cf25)
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 
38 static int g_verbose = 0;
39 
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
41 
42 /*
43  * A fs_path is a helper to dynamically build path names with unknown size.
44  * It reallocates the internal buffer on demand.
45  * It allows fast adding of path elements on the right side (normal path) and
46  * fast adding to the left side (reversed path). A reversed path can also be
47  * unreversed if needed.
48  */
49 struct fs_path {
50 	union {
51 		struct {
52 			char *start;
53 			char *end;
54 
55 			char *buf;
56 			unsigned short buf_len:15;
57 			unsigned short reversed:1;
58 			char inline_buf[];
59 		};
60 		/*
61 		 * Average path length does not exceed 200 bytes, we'll have
62 		 * better packing in the slab and higher chance to satisfy
63 		 * a allocation later during send.
64 		 */
65 		char pad[256];
66 	};
67 };
68 #define FS_PATH_INLINE_SIZE \
69 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
70 
71 
72 /* reused for each extent */
73 struct clone_root {
74 	struct btrfs_root *root;
75 	u64 ino;
76 	u64 offset;
77 
78 	u64 found_refs;
79 };
80 
81 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
82 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
83 
84 struct send_ctx {
85 	struct file *send_filp;
86 	loff_t send_off;
87 	char *send_buf;
88 	u32 send_size;
89 	u32 send_max_size;
90 	u64 total_send_size;
91 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
92 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
93 
94 	struct btrfs_root *send_root;
95 	struct btrfs_root *parent_root;
96 	struct clone_root *clone_roots;
97 	int clone_roots_cnt;
98 
99 	/* current state of the compare_tree call */
100 	struct btrfs_path *left_path;
101 	struct btrfs_path *right_path;
102 	struct btrfs_key *cmp_key;
103 
104 	/*
105 	 * infos of the currently processed inode. In case of deleted inodes,
106 	 * these are the values from the deleted inode.
107 	 */
108 	u64 cur_ino;
109 	u64 cur_inode_gen;
110 	int cur_inode_new;
111 	int cur_inode_new_gen;
112 	int cur_inode_deleted;
113 	u64 cur_inode_size;
114 	u64 cur_inode_mode;
115 	u64 cur_inode_rdev;
116 	u64 cur_inode_last_extent;
117 
118 	u64 send_progress;
119 
120 	struct list_head new_refs;
121 	struct list_head deleted_refs;
122 
123 	struct radix_tree_root name_cache;
124 	struct list_head name_cache_list;
125 	int name_cache_size;
126 
127 	struct file_ra_state ra;
128 
129 	char *read_buf;
130 
131 	/*
132 	 * We process inodes by their increasing order, so if before an
133 	 * incremental send we reverse the parent/child relationship of
134 	 * directories such that a directory with a lower inode number was
135 	 * the parent of a directory with a higher inode number, and the one
136 	 * becoming the new parent got renamed too, we can't rename/move the
137 	 * directory with lower inode number when we finish processing it - we
138 	 * must process the directory with higher inode number first, then
139 	 * rename/move it and then rename/move the directory with lower inode
140 	 * number. Example follows.
141 	 *
142 	 * Tree state when the first send was performed:
143 	 *
144 	 * .
145 	 * |-- a                   (ino 257)
146 	 *     |-- b               (ino 258)
147 	 *         |
148 	 *         |
149 	 *         |-- c           (ino 259)
150 	 *         |   |-- d       (ino 260)
151 	 *         |
152 	 *         |-- c2          (ino 261)
153 	 *
154 	 * Tree state when the second (incremental) send is performed:
155 	 *
156 	 * .
157 	 * |-- a                   (ino 257)
158 	 *     |-- b               (ino 258)
159 	 *         |-- c2          (ino 261)
160 	 *             |-- d2      (ino 260)
161 	 *                 |-- cc  (ino 259)
162 	 *
163 	 * The sequence of steps that lead to the second state was:
164 	 *
165 	 * mv /a/b/c/d /a/b/c2/d2
166 	 * mv /a/b/c /a/b/c2/d2/cc
167 	 *
168 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
169 	 * before we move "d", which has higher inode number.
170 	 *
171 	 * So we just memorize which move/rename operations must be performed
172 	 * later when their respective parent is processed and moved/renamed.
173 	 */
174 
175 	/* Indexed by parent directory inode number. */
176 	struct rb_root pending_dir_moves;
177 
178 	/*
179 	 * Reverse index, indexed by the inode number of a directory that
180 	 * is waiting for the move/rename of its immediate parent before its
181 	 * own move/rename can be performed.
182 	 */
183 	struct rb_root waiting_dir_moves;
184 
185 	/*
186 	 * A directory that is going to be rm'ed might have a child directory
187 	 * which is in the pending directory moves index above. In this case,
188 	 * the directory can only be removed after the move/rename of its child
189 	 * is performed. Example:
190 	 *
191 	 * Parent snapshot:
192 	 *
193 	 * .                        (ino 256)
194 	 * |-- a/                   (ino 257)
195 	 *     |-- b/               (ino 258)
196 	 *         |-- c/           (ino 259)
197 	 *         |   |-- x/       (ino 260)
198 	 *         |
199 	 *         |-- y/           (ino 261)
200 	 *
201 	 * Send snapshot:
202 	 *
203 	 * .                        (ino 256)
204 	 * |-- a/                   (ino 257)
205 	 *     |-- b/               (ino 258)
206 	 *         |-- YY/          (ino 261)
207 	 *              |-- x/      (ino 260)
208 	 *
209 	 * Sequence of steps that lead to the send snapshot:
210 	 * rm -f /a/b/c/foo.txt
211 	 * mv /a/b/y /a/b/YY
212 	 * mv /a/b/c/x /a/b/YY
213 	 * rmdir /a/b/c
214 	 *
215 	 * When the child is processed, its move/rename is delayed until its
216 	 * parent is processed (as explained above), but all other operations
217 	 * like update utimes, chown, chgrp, etc, are performed and the paths
218 	 * that it uses for those operations must use the orphanized name of
219 	 * its parent (the directory we're going to rm later), so we need to
220 	 * memorize that name.
221 	 *
222 	 * Indexed by the inode number of the directory to be deleted.
223 	 */
224 	struct rb_root orphan_dirs;
225 };
226 
227 struct pending_dir_move {
228 	struct rb_node node;
229 	struct list_head list;
230 	u64 parent_ino;
231 	u64 ino;
232 	u64 gen;
233 	bool is_orphan;
234 	struct list_head update_refs;
235 };
236 
237 struct waiting_dir_move {
238 	struct rb_node node;
239 	u64 ino;
240 	/*
241 	 * There might be some directory that could not be removed because it
242 	 * was waiting for this directory inode to be moved first. Therefore
243 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
244 	 */
245 	u64 rmdir_ino;
246 	bool orphanized;
247 };
248 
249 struct orphan_dir_info {
250 	struct rb_node node;
251 	u64 ino;
252 	u64 gen;
253 };
254 
255 struct name_cache_entry {
256 	struct list_head list;
257 	/*
258 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
259 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
260 	 * more then one inum would fall into the same entry, we use radix_list
261 	 * to store the additional entries. radix_list is also used to store
262 	 * entries where two entries have the same inum but different
263 	 * generations.
264 	 */
265 	struct list_head radix_list;
266 	u64 ino;
267 	u64 gen;
268 	u64 parent_ino;
269 	u64 parent_gen;
270 	int ret;
271 	int need_later_update;
272 	int name_len;
273 	char name[];
274 };
275 
276 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
277 
278 static struct waiting_dir_move *
279 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
280 
281 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
282 
283 static int need_send_hole(struct send_ctx *sctx)
284 {
285 	return (sctx->parent_root && !sctx->cur_inode_new &&
286 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
287 		S_ISREG(sctx->cur_inode_mode));
288 }
289 
290 static void fs_path_reset(struct fs_path *p)
291 {
292 	if (p->reversed) {
293 		p->start = p->buf + p->buf_len - 1;
294 		p->end = p->start;
295 		*p->start = 0;
296 	} else {
297 		p->start = p->buf;
298 		p->end = p->start;
299 		*p->start = 0;
300 	}
301 }
302 
303 static struct fs_path *fs_path_alloc(void)
304 {
305 	struct fs_path *p;
306 
307 	p = kmalloc(sizeof(*p), GFP_NOFS);
308 	if (!p)
309 		return NULL;
310 	p->reversed = 0;
311 	p->buf = p->inline_buf;
312 	p->buf_len = FS_PATH_INLINE_SIZE;
313 	fs_path_reset(p);
314 	return p;
315 }
316 
317 static struct fs_path *fs_path_alloc_reversed(void)
318 {
319 	struct fs_path *p;
320 
321 	p = fs_path_alloc();
322 	if (!p)
323 		return NULL;
324 	p->reversed = 1;
325 	fs_path_reset(p);
326 	return p;
327 }
328 
329 static void fs_path_free(struct fs_path *p)
330 {
331 	if (!p)
332 		return;
333 	if (p->buf != p->inline_buf)
334 		kfree(p->buf);
335 	kfree(p);
336 }
337 
338 static int fs_path_len(struct fs_path *p)
339 {
340 	return p->end - p->start;
341 }
342 
343 static int fs_path_ensure_buf(struct fs_path *p, int len)
344 {
345 	char *tmp_buf;
346 	int path_len;
347 	int old_buf_len;
348 
349 	len++;
350 
351 	if (p->buf_len >= len)
352 		return 0;
353 
354 	if (len > PATH_MAX) {
355 		WARN_ON(1);
356 		return -ENOMEM;
357 	}
358 
359 	path_len = p->end - p->start;
360 	old_buf_len = p->buf_len;
361 
362 	/*
363 	 * First time the inline_buf does not suffice
364 	 */
365 	if (p->buf == p->inline_buf) {
366 		tmp_buf = kmalloc(len, GFP_NOFS);
367 		if (tmp_buf)
368 			memcpy(tmp_buf, p->buf, old_buf_len);
369 	} else {
370 		tmp_buf = krealloc(p->buf, len, GFP_NOFS);
371 	}
372 	if (!tmp_buf)
373 		return -ENOMEM;
374 	p->buf = tmp_buf;
375 	/*
376 	 * The real size of the buffer is bigger, this will let the fast path
377 	 * happen most of the time
378 	 */
379 	p->buf_len = ksize(p->buf);
380 
381 	if (p->reversed) {
382 		tmp_buf = p->buf + old_buf_len - path_len - 1;
383 		p->end = p->buf + p->buf_len - 1;
384 		p->start = p->end - path_len;
385 		memmove(p->start, tmp_buf, path_len + 1);
386 	} else {
387 		p->start = p->buf;
388 		p->end = p->start + path_len;
389 	}
390 	return 0;
391 }
392 
393 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
394 				   char **prepared)
395 {
396 	int ret;
397 	int new_len;
398 
399 	new_len = p->end - p->start + name_len;
400 	if (p->start != p->end)
401 		new_len++;
402 	ret = fs_path_ensure_buf(p, new_len);
403 	if (ret < 0)
404 		goto out;
405 
406 	if (p->reversed) {
407 		if (p->start != p->end)
408 			*--p->start = '/';
409 		p->start -= name_len;
410 		*prepared = p->start;
411 	} else {
412 		if (p->start != p->end)
413 			*p->end++ = '/';
414 		*prepared = p->end;
415 		p->end += name_len;
416 		*p->end = 0;
417 	}
418 
419 out:
420 	return ret;
421 }
422 
423 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
424 {
425 	int ret;
426 	char *prepared;
427 
428 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
429 	if (ret < 0)
430 		goto out;
431 	memcpy(prepared, name, name_len);
432 
433 out:
434 	return ret;
435 }
436 
437 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
438 {
439 	int ret;
440 	char *prepared;
441 
442 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
443 	if (ret < 0)
444 		goto out;
445 	memcpy(prepared, p2->start, p2->end - p2->start);
446 
447 out:
448 	return ret;
449 }
450 
451 static int fs_path_add_from_extent_buffer(struct fs_path *p,
452 					  struct extent_buffer *eb,
453 					  unsigned long off, int len)
454 {
455 	int ret;
456 	char *prepared;
457 
458 	ret = fs_path_prepare_for_add(p, len, &prepared);
459 	if (ret < 0)
460 		goto out;
461 
462 	read_extent_buffer(eb, prepared, off, len);
463 
464 out:
465 	return ret;
466 }
467 
468 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
469 {
470 	int ret;
471 
472 	p->reversed = from->reversed;
473 	fs_path_reset(p);
474 
475 	ret = fs_path_add_path(p, from);
476 
477 	return ret;
478 }
479 
480 
481 static void fs_path_unreverse(struct fs_path *p)
482 {
483 	char *tmp;
484 	int len;
485 
486 	if (!p->reversed)
487 		return;
488 
489 	tmp = p->start;
490 	len = p->end - p->start;
491 	p->start = p->buf;
492 	p->end = p->start + len;
493 	memmove(p->start, tmp, len + 1);
494 	p->reversed = 0;
495 }
496 
497 static struct btrfs_path *alloc_path_for_send(void)
498 {
499 	struct btrfs_path *path;
500 
501 	path = btrfs_alloc_path();
502 	if (!path)
503 		return NULL;
504 	path->search_commit_root = 1;
505 	path->skip_locking = 1;
506 	path->need_commit_sem = 1;
507 	return path;
508 }
509 
510 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
511 {
512 	int ret;
513 	mm_segment_t old_fs;
514 	u32 pos = 0;
515 
516 	old_fs = get_fs();
517 	set_fs(KERNEL_DS);
518 
519 	while (pos < len) {
520 		ret = vfs_write(filp, (__force const char __user *)buf + pos,
521 				len - pos, off);
522 		/* TODO handle that correctly */
523 		/*if (ret == -ERESTARTSYS) {
524 			continue;
525 		}*/
526 		if (ret < 0)
527 			goto out;
528 		if (ret == 0) {
529 			ret = -EIO;
530 			goto out;
531 		}
532 		pos += ret;
533 	}
534 
535 	ret = 0;
536 
537 out:
538 	set_fs(old_fs);
539 	return ret;
540 }
541 
542 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
543 {
544 	struct btrfs_tlv_header *hdr;
545 	int total_len = sizeof(*hdr) + len;
546 	int left = sctx->send_max_size - sctx->send_size;
547 
548 	if (unlikely(left < total_len))
549 		return -EOVERFLOW;
550 
551 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
552 	hdr->tlv_type = cpu_to_le16(attr);
553 	hdr->tlv_len = cpu_to_le16(len);
554 	memcpy(hdr + 1, data, len);
555 	sctx->send_size += total_len;
556 
557 	return 0;
558 }
559 
560 #define TLV_PUT_DEFINE_INT(bits) \
561 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
562 			u##bits attr, u##bits value)			\
563 	{								\
564 		__le##bits __tmp = cpu_to_le##bits(value);		\
565 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
566 	}
567 
568 TLV_PUT_DEFINE_INT(64)
569 
570 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
571 			  const char *str, int len)
572 {
573 	if (len == -1)
574 		len = strlen(str);
575 	return tlv_put(sctx, attr, str, len);
576 }
577 
578 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
579 			const u8 *uuid)
580 {
581 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
582 }
583 
584 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
585 				  struct extent_buffer *eb,
586 				  struct btrfs_timespec *ts)
587 {
588 	struct btrfs_timespec bts;
589 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
590 	return tlv_put(sctx, attr, &bts, sizeof(bts));
591 }
592 
593 
594 #define TLV_PUT(sctx, attrtype, attrlen, data) \
595 	do { \
596 		ret = tlv_put(sctx, attrtype, attrlen, data); \
597 		if (ret < 0) \
598 			goto tlv_put_failure; \
599 	} while (0)
600 
601 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
602 	do { \
603 		ret = tlv_put_u##bits(sctx, attrtype, value); \
604 		if (ret < 0) \
605 			goto tlv_put_failure; \
606 	} while (0)
607 
608 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
609 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
610 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
611 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
612 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
613 	do { \
614 		ret = tlv_put_string(sctx, attrtype, str, len); \
615 		if (ret < 0) \
616 			goto tlv_put_failure; \
617 	} while (0)
618 #define TLV_PUT_PATH(sctx, attrtype, p) \
619 	do { \
620 		ret = tlv_put_string(sctx, attrtype, p->start, \
621 			p->end - p->start); \
622 		if (ret < 0) \
623 			goto tlv_put_failure; \
624 	} while(0)
625 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
626 	do { \
627 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
628 		if (ret < 0) \
629 			goto tlv_put_failure; \
630 	} while (0)
631 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
632 	do { \
633 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
634 		if (ret < 0) \
635 			goto tlv_put_failure; \
636 	} while (0)
637 
638 static int send_header(struct send_ctx *sctx)
639 {
640 	struct btrfs_stream_header hdr;
641 
642 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
643 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
644 
645 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
646 					&sctx->send_off);
647 }
648 
649 /*
650  * For each command/item we want to send to userspace, we call this function.
651  */
652 static int begin_cmd(struct send_ctx *sctx, int cmd)
653 {
654 	struct btrfs_cmd_header *hdr;
655 
656 	if (WARN_ON(!sctx->send_buf))
657 		return -EINVAL;
658 
659 	BUG_ON(sctx->send_size);
660 
661 	sctx->send_size += sizeof(*hdr);
662 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
663 	hdr->cmd = cpu_to_le16(cmd);
664 
665 	return 0;
666 }
667 
668 static int send_cmd(struct send_ctx *sctx)
669 {
670 	int ret;
671 	struct btrfs_cmd_header *hdr;
672 	u32 crc;
673 
674 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
675 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
676 	hdr->crc = 0;
677 
678 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
679 	hdr->crc = cpu_to_le32(crc);
680 
681 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
682 					&sctx->send_off);
683 
684 	sctx->total_send_size += sctx->send_size;
685 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
686 	sctx->send_size = 0;
687 
688 	return ret;
689 }
690 
691 /*
692  * Sends a move instruction to user space
693  */
694 static int send_rename(struct send_ctx *sctx,
695 		     struct fs_path *from, struct fs_path *to)
696 {
697 	int ret;
698 
699 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
700 
701 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
702 	if (ret < 0)
703 		goto out;
704 
705 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
706 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
707 
708 	ret = send_cmd(sctx);
709 
710 tlv_put_failure:
711 out:
712 	return ret;
713 }
714 
715 /*
716  * Sends a link instruction to user space
717  */
718 static int send_link(struct send_ctx *sctx,
719 		     struct fs_path *path, struct fs_path *lnk)
720 {
721 	int ret;
722 
723 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
724 
725 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
726 	if (ret < 0)
727 		goto out;
728 
729 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
730 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
731 
732 	ret = send_cmd(sctx);
733 
734 tlv_put_failure:
735 out:
736 	return ret;
737 }
738 
739 /*
740  * Sends an unlink instruction to user space
741  */
742 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
743 {
744 	int ret;
745 
746 verbose_printk("btrfs: send_unlink %s\n", path->start);
747 
748 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
749 	if (ret < 0)
750 		goto out;
751 
752 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
753 
754 	ret = send_cmd(sctx);
755 
756 tlv_put_failure:
757 out:
758 	return ret;
759 }
760 
761 /*
762  * Sends a rmdir instruction to user space
763  */
764 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
765 {
766 	int ret;
767 
768 verbose_printk("btrfs: send_rmdir %s\n", path->start);
769 
770 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
771 	if (ret < 0)
772 		goto out;
773 
774 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
775 
776 	ret = send_cmd(sctx);
777 
778 tlv_put_failure:
779 out:
780 	return ret;
781 }
782 
783 /*
784  * Helper function to retrieve some fields from an inode item.
785  */
786 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
787 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
788 			  u64 *gid, u64 *rdev)
789 {
790 	int ret;
791 	struct btrfs_inode_item *ii;
792 	struct btrfs_key key;
793 
794 	key.objectid = ino;
795 	key.type = BTRFS_INODE_ITEM_KEY;
796 	key.offset = 0;
797 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
798 	if (ret) {
799 		if (ret > 0)
800 			ret = -ENOENT;
801 		return ret;
802 	}
803 
804 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
805 			struct btrfs_inode_item);
806 	if (size)
807 		*size = btrfs_inode_size(path->nodes[0], ii);
808 	if (gen)
809 		*gen = btrfs_inode_generation(path->nodes[0], ii);
810 	if (mode)
811 		*mode = btrfs_inode_mode(path->nodes[0], ii);
812 	if (uid)
813 		*uid = btrfs_inode_uid(path->nodes[0], ii);
814 	if (gid)
815 		*gid = btrfs_inode_gid(path->nodes[0], ii);
816 	if (rdev)
817 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
818 
819 	return ret;
820 }
821 
822 static int get_inode_info(struct btrfs_root *root,
823 			  u64 ino, u64 *size, u64 *gen,
824 			  u64 *mode, u64 *uid, u64 *gid,
825 			  u64 *rdev)
826 {
827 	struct btrfs_path *path;
828 	int ret;
829 
830 	path = alloc_path_for_send();
831 	if (!path)
832 		return -ENOMEM;
833 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
834 			       rdev);
835 	btrfs_free_path(path);
836 	return ret;
837 }
838 
839 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
840 				   struct fs_path *p,
841 				   void *ctx);
842 
843 /*
844  * Helper function to iterate the entries in ONE btrfs_inode_ref or
845  * btrfs_inode_extref.
846  * The iterate callback may return a non zero value to stop iteration. This can
847  * be a negative value for error codes or 1 to simply stop it.
848  *
849  * path must point to the INODE_REF or INODE_EXTREF when called.
850  */
851 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
852 			     struct btrfs_key *found_key, int resolve,
853 			     iterate_inode_ref_t iterate, void *ctx)
854 {
855 	struct extent_buffer *eb = path->nodes[0];
856 	struct btrfs_item *item;
857 	struct btrfs_inode_ref *iref;
858 	struct btrfs_inode_extref *extref;
859 	struct btrfs_path *tmp_path;
860 	struct fs_path *p;
861 	u32 cur = 0;
862 	u32 total;
863 	int slot = path->slots[0];
864 	u32 name_len;
865 	char *start;
866 	int ret = 0;
867 	int num = 0;
868 	int index;
869 	u64 dir;
870 	unsigned long name_off;
871 	unsigned long elem_size;
872 	unsigned long ptr;
873 
874 	p = fs_path_alloc_reversed();
875 	if (!p)
876 		return -ENOMEM;
877 
878 	tmp_path = alloc_path_for_send();
879 	if (!tmp_path) {
880 		fs_path_free(p);
881 		return -ENOMEM;
882 	}
883 
884 
885 	if (found_key->type == BTRFS_INODE_REF_KEY) {
886 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
887 						    struct btrfs_inode_ref);
888 		item = btrfs_item_nr(slot);
889 		total = btrfs_item_size(eb, item);
890 		elem_size = sizeof(*iref);
891 	} else {
892 		ptr = btrfs_item_ptr_offset(eb, slot);
893 		total = btrfs_item_size_nr(eb, slot);
894 		elem_size = sizeof(*extref);
895 	}
896 
897 	while (cur < total) {
898 		fs_path_reset(p);
899 
900 		if (found_key->type == BTRFS_INODE_REF_KEY) {
901 			iref = (struct btrfs_inode_ref *)(ptr + cur);
902 			name_len = btrfs_inode_ref_name_len(eb, iref);
903 			name_off = (unsigned long)(iref + 1);
904 			index = btrfs_inode_ref_index(eb, iref);
905 			dir = found_key->offset;
906 		} else {
907 			extref = (struct btrfs_inode_extref *)(ptr + cur);
908 			name_len = btrfs_inode_extref_name_len(eb, extref);
909 			name_off = (unsigned long)&extref->name;
910 			index = btrfs_inode_extref_index(eb, extref);
911 			dir = btrfs_inode_extref_parent(eb, extref);
912 		}
913 
914 		if (resolve) {
915 			start = btrfs_ref_to_path(root, tmp_path, name_len,
916 						  name_off, eb, dir,
917 						  p->buf, p->buf_len);
918 			if (IS_ERR(start)) {
919 				ret = PTR_ERR(start);
920 				goto out;
921 			}
922 			if (start < p->buf) {
923 				/* overflow , try again with larger buffer */
924 				ret = fs_path_ensure_buf(p,
925 						p->buf_len + p->buf - start);
926 				if (ret < 0)
927 					goto out;
928 				start = btrfs_ref_to_path(root, tmp_path,
929 							  name_len, name_off,
930 							  eb, dir,
931 							  p->buf, p->buf_len);
932 				if (IS_ERR(start)) {
933 					ret = PTR_ERR(start);
934 					goto out;
935 				}
936 				BUG_ON(start < p->buf);
937 			}
938 			p->start = start;
939 		} else {
940 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
941 							     name_len);
942 			if (ret < 0)
943 				goto out;
944 		}
945 
946 		cur += elem_size + name_len;
947 		ret = iterate(num, dir, index, p, ctx);
948 		if (ret)
949 			goto out;
950 		num++;
951 	}
952 
953 out:
954 	btrfs_free_path(tmp_path);
955 	fs_path_free(p);
956 	return ret;
957 }
958 
959 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
960 				  const char *name, int name_len,
961 				  const char *data, int data_len,
962 				  u8 type, void *ctx);
963 
964 /*
965  * Helper function to iterate the entries in ONE btrfs_dir_item.
966  * The iterate callback may return a non zero value to stop iteration. This can
967  * be a negative value for error codes or 1 to simply stop it.
968  *
969  * path must point to the dir item when called.
970  */
971 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
972 			    struct btrfs_key *found_key,
973 			    iterate_dir_item_t iterate, void *ctx)
974 {
975 	int ret = 0;
976 	struct extent_buffer *eb;
977 	struct btrfs_item *item;
978 	struct btrfs_dir_item *di;
979 	struct btrfs_key di_key;
980 	char *buf = NULL;
981 	int buf_len;
982 	u32 name_len;
983 	u32 data_len;
984 	u32 cur;
985 	u32 len;
986 	u32 total;
987 	int slot;
988 	int num;
989 	u8 type;
990 
991 	/*
992 	 * Start with a small buffer (1 page). If later we end up needing more
993 	 * space, which can happen for xattrs on a fs with a leaf size greater
994 	 * then the page size, attempt to increase the buffer. Typically xattr
995 	 * values are small.
996 	 */
997 	buf_len = PATH_MAX;
998 	buf = kmalloc(buf_len, GFP_NOFS);
999 	if (!buf) {
1000 		ret = -ENOMEM;
1001 		goto out;
1002 	}
1003 
1004 	eb = path->nodes[0];
1005 	slot = path->slots[0];
1006 	item = btrfs_item_nr(slot);
1007 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1008 	cur = 0;
1009 	len = 0;
1010 	total = btrfs_item_size(eb, item);
1011 
1012 	num = 0;
1013 	while (cur < total) {
1014 		name_len = btrfs_dir_name_len(eb, di);
1015 		data_len = btrfs_dir_data_len(eb, di);
1016 		type = btrfs_dir_type(eb, di);
1017 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1018 
1019 		if (type == BTRFS_FT_XATTR) {
1020 			if (name_len > XATTR_NAME_MAX) {
1021 				ret = -ENAMETOOLONG;
1022 				goto out;
1023 			}
1024 			if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
1025 				ret = -E2BIG;
1026 				goto out;
1027 			}
1028 		} else {
1029 			/*
1030 			 * Path too long
1031 			 */
1032 			if (name_len + data_len > PATH_MAX) {
1033 				ret = -ENAMETOOLONG;
1034 				goto out;
1035 			}
1036 		}
1037 
1038 		if (name_len + data_len > buf_len) {
1039 			buf_len = name_len + data_len;
1040 			if (is_vmalloc_addr(buf)) {
1041 				vfree(buf);
1042 				buf = NULL;
1043 			} else {
1044 				char *tmp = krealloc(buf, buf_len,
1045 						     GFP_NOFS | __GFP_NOWARN);
1046 
1047 				if (!tmp)
1048 					kfree(buf);
1049 				buf = tmp;
1050 			}
1051 			if (!buf) {
1052 				buf = vmalloc(buf_len);
1053 				if (!buf) {
1054 					ret = -ENOMEM;
1055 					goto out;
1056 				}
1057 			}
1058 		}
1059 
1060 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1061 				name_len + data_len);
1062 
1063 		len = sizeof(*di) + name_len + data_len;
1064 		di = (struct btrfs_dir_item *)((char *)di + len);
1065 		cur += len;
1066 
1067 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1068 				data_len, type, ctx);
1069 		if (ret < 0)
1070 			goto out;
1071 		if (ret) {
1072 			ret = 0;
1073 			goto out;
1074 		}
1075 
1076 		num++;
1077 	}
1078 
1079 out:
1080 	kvfree(buf);
1081 	return ret;
1082 }
1083 
1084 static int __copy_first_ref(int num, u64 dir, int index,
1085 			    struct fs_path *p, void *ctx)
1086 {
1087 	int ret;
1088 	struct fs_path *pt = ctx;
1089 
1090 	ret = fs_path_copy(pt, p);
1091 	if (ret < 0)
1092 		return ret;
1093 
1094 	/* we want the first only */
1095 	return 1;
1096 }
1097 
1098 /*
1099  * Retrieve the first path of an inode. If an inode has more then one
1100  * ref/hardlink, this is ignored.
1101  */
1102 static int get_inode_path(struct btrfs_root *root,
1103 			  u64 ino, struct fs_path *path)
1104 {
1105 	int ret;
1106 	struct btrfs_key key, found_key;
1107 	struct btrfs_path *p;
1108 
1109 	p = alloc_path_for_send();
1110 	if (!p)
1111 		return -ENOMEM;
1112 
1113 	fs_path_reset(path);
1114 
1115 	key.objectid = ino;
1116 	key.type = BTRFS_INODE_REF_KEY;
1117 	key.offset = 0;
1118 
1119 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1120 	if (ret < 0)
1121 		goto out;
1122 	if (ret) {
1123 		ret = 1;
1124 		goto out;
1125 	}
1126 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1127 	if (found_key.objectid != ino ||
1128 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1129 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1130 		ret = -ENOENT;
1131 		goto out;
1132 	}
1133 
1134 	ret = iterate_inode_ref(root, p, &found_key, 1,
1135 				__copy_first_ref, path);
1136 	if (ret < 0)
1137 		goto out;
1138 	ret = 0;
1139 
1140 out:
1141 	btrfs_free_path(p);
1142 	return ret;
1143 }
1144 
1145 struct backref_ctx {
1146 	struct send_ctx *sctx;
1147 
1148 	struct btrfs_path *path;
1149 	/* number of total found references */
1150 	u64 found;
1151 
1152 	/*
1153 	 * used for clones found in send_root. clones found behind cur_objectid
1154 	 * and cur_offset are not considered as allowed clones.
1155 	 */
1156 	u64 cur_objectid;
1157 	u64 cur_offset;
1158 
1159 	/* may be truncated in case it's the last extent in a file */
1160 	u64 extent_len;
1161 
1162 	/* data offset in the file extent item */
1163 	u64 data_offset;
1164 
1165 	/* Just to check for bugs in backref resolving */
1166 	int found_itself;
1167 };
1168 
1169 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1170 {
1171 	u64 root = (u64)(uintptr_t)key;
1172 	struct clone_root *cr = (struct clone_root *)elt;
1173 
1174 	if (root < cr->root->objectid)
1175 		return -1;
1176 	if (root > cr->root->objectid)
1177 		return 1;
1178 	return 0;
1179 }
1180 
1181 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1182 {
1183 	struct clone_root *cr1 = (struct clone_root *)e1;
1184 	struct clone_root *cr2 = (struct clone_root *)e2;
1185 
1186 	if (cr1->root->objectid < cr2->root->objectid)
1187 		return -1;
1188 	if (cr1->root->objectid > cr2->root->objectid)
1189 		return 1;
1190 	return 0;
1191 }
1192 
1193 /*
1194  * Called for every backref that is found for the current extent.
1195  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1196  */
1197 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1198 {
1199 	struct backref_ctx *bctx = ctx_;
1200 	struct clone_root *found;
1201 	int ret;
1202 	u64 i_size;
1203 
1204 	/* First check if the root is in the list of accepted clone sources */
1205 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1206 			bctx->sctx->clone_roots_cnt,
1207 			sizeof(struct clone_root),
1208 			__clone_root_cmp_bsearch);
1209 	if (!found)
1210 		return 0;
1211 
1212 	if (found->root == bctx->sctx->send_root &&
1213 	    ino == bctx->cur_objectid &&
1214 	    offset == bctx->cur_offset) {
1215 		bctx->found_itself = 1;
1216 	}
1217 
1218 	/*
1219 	 * There are inodes that have extents that lie behind its i_size. Don't
1220 	 * accept clones from these extents.
1221 	 */
1222 	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1223 			       NULL, NULL, NULL);
1224 	btrfs_release_path(bctx->path);
1225 	if (ret < 0)
1226 		return ret;
1227 
1228 	if (offset + bctx->data_offset + bctx->extent_len > i_size)
1229 		return 0;
1230 
1231 	/*
1232 	 * Make sure we don't consider clones from send_root that are
1233 	 * behind the current inode/offset.
1234 	 */
1235 	if (found->root == bctx->sctx->send_root) {
1236 		/*
1237 		 * TODO for the moment we don't accept clones from the inode
1238 		 * that is currently send. We may change this when
1239 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1240 		 * file.
1241 		 */
1242 		if (ino >= bctx->cur_objectid)
1243 			return 0;
1244 #if 0
1245 		if (ino > bctx->cur_objectid)
1246 			return 0;
1247 		if (offset + bctx->extent_len > bctx->cur_offset)
1248 			return 0;
1249 #endif
1250 	}
1251 
1252 	bctx->found++;
1253 	found->found_refs++;
1254 	if (ino < found->ino) {
1255 		found->ino = ino;
1256 		found->offset = offset;
1257 	} else if (found->ino == ino) {
1258 		/*
1259 		 * same extent found more then once in the same file.
1260 		 */
1261 		if (found->offset > offset + bctx->extent_len)
1262 			found->offset = offset;
1263 	}
1264 
1265 	return 0;
1266 }
1267 
1268 /*
1269  * Given an inode, offset and extent item, it finds a good clone for a clone
1270  * instruction. Returns -ENOENT when none could be found. The function makes
1271  * sure that the returned clone is usable at the point where sending is at the
1272  * moment. This means, that no clones are accepted which lie behind the current
1273  * inode+offset.
1274  *
1275  * path must point to the extent item when called.
1276  */
1277 static int find_extent_clone(struct send_ctx *sctx,
1278 			     struct btrfs_path *path,
1279 			     u64 ino, u64 data_offset,
1280 			     u64 ino_size,
1281 			     struct clone_root **found)
1282 {
1283 	int ret;
1284 	int extent_type;
1285 	u64 logical;
1286 	u64 disk_byte;
1287 	u64 num_bytes;
1288 	u64 extent_item_pos;
1289 	u64 flags = 0;
1290 	struct btrfs_file_extent_item *fi;
1291 	struct extent_buffer *eb = path->nodes[0];
1292 	struct backref_ctx *backref_ctx = NULL;
1293 	struct clone_root *cur_clone_root;
1294 	struct btrfs_key found_key;
1295 	struct btrfs_path *tmp_path;
1296 	int compressed;
1297 	u32 i;
1298 
1299 	tmp_path = alloc_path_for_send();
1300 	if (!tmp_path)
1301 		return -ENOMEM;
1302 
1303 	/* We only use this path under the commit sem */
1304 	tmp_path->need_commit_sem = 0;
1305 
1306 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1307 	if (!backref_ctx) {
1308 		ret = -ENOMEM;
1309 		goto out;
1310 	}
1311 
1312 	backref_ctx->path = tmp_path;
1313 
1314 	if (data_offset >= ino_size) {
1315 		/*
1316 		 * There may be extents that lie behind the file's size.
1317 		 * I at least had this in combination with snapshotting while
1318 		 * writing large files.
1319 		 */
1320 		ret = 0;
1321 		goto out;
1322 	}
1323 
1324 	fi = btrfs_item_ptr(eb, path->slots[0],
1325 			struct btrfs_file_extent_item);
1326 	extent_type = btrfs_file_extent_type(eb, fi);
1327 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1328 		ret = -ENOENT;
1329 		goto out;
1330 	}
1331 	compressed = btrfs_file_extent_compression(eb, fi);
1332 
1333 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1334 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1335 	if (disk_byte == 0) {
1336 		ret = -ENOENT;
1337 		goto out;
1338 	}
1339 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1340 
1341 	down_read(&sctx->send_root->fs_info->commit_root_sem);
1342 	ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1343 				  &found_key, &flags);
1344 	up_read(&sctx->send_root->fs_info->commit_root_sem);
1345 	btrfs_release_path(tmp_path);
1346 
1347 	if (ret < 0)
1348 		goto out;
1349 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1350 		ret = -EIO;
1351 		goto out;
1352 	}
1353 
1354 	/*
1355 	 * Setup the clone roots.
1356 	 */
1357 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1358 		cur_clone_root = sctx->clone_roots + i;
1359 		cur_clone_root->ino = (u64)-1;
1360 		cur_clone_root->offset = 0;
1361 		cur_clone_root->found_refs = 0;
1362 	}
1363 
1364 	backref_ctx->sctx = sctx;
1365 	backref_ctx->found = 0;
1366 	backref_ctx->cur_objectid = ino;
1367 	backref_ctx->cur_offset = data_offset;
1368 	backref_ctx->found_itself = 0;
1369 	backref_ctx->extent_len = num_bytes;
1370 	/*
1371 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1372 	 * offsets that already take into account the data offset, but not for
1373 	 * compressed extents, since the offset is logical and not relative to
1374 	 * the physical extent locations. We must take this into account to
1375 	 * avoid sending clone offsets that go beyond the source file's size,
1376 	 * which would result in the clone ioctl failing with -EINVAL on the
1377 	 * receiving end.
1378 	 */
1379 	if (compressed == BTRFS_COMPRESS_NONE)
1380 		backref_ctx->data_offset = 0;
1381 	else
1382 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1383 
1384 	/*
1385 	 * The last extent of a file may be too large due to page alignment.
1386 	 * We need to adjust extent_len in this case so that the checks in
1387 	 * __iterate_backrefs work.
1388 	 */
1389 	if (data_offset + num_bytes >= ino_size)
1390 		backref_ctx->extent_len = ino_size - data_offset;
1391 
1392 	/*
1393 	 * Now collect all backrefs.
1394 	 */
1395 	if (compressed == BTRFS_COMPRESS_NONE)
1396 		extent_item_pos = logical - found_key.objectid;
1397 	else
1398 		extent_item_pos = 0;
1399 	ret = iterate_extent_inodes(sctx->send_root->fs_info,
1400 					found_key.objectid, extent_item_pos, 1,
1401 					__iterate_backrefs, backref_ctx);
1402 
1403 	if (ret < 0)
1404 		goto out;
1405 
1406 	if (!backref_ctx->found_itself) {
1407 		/* found a bug in backref code? */
1408 		ret = -EIO;
1409 		btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1410 				"send_root. inode=%llu, offset=%llu, "
1411 				"disk_byte=%llu found extent=%llu",
1412 				ino, data_offset, disk_byte, found_key.objectid);
1413 		goto out;
1414 	}
1415 
1416 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1417 		"ino=%llu, "
1418 		"num_bytes=%llu, logical=%llu\n",
1419 		data_offset, ino, num_bytes, logical);
1420 
1421 	if (!backref_ctx->found)
1422 		verbose_printk("btrfs:    no clones found\n");
1423 
1424 	cur_clone_root = NULL;
1425 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1426 		if (sctx->clone_roots[i].found_refs) {
1427 			if (!cur_clone_root)
1428 				cur_clone_root = sctx->clone_roots + i;
1429 			else if (sctx->clone_roots[i].root == sctx->send_root)
1430 				/* prefer clones from send_root over others */
1431 				cur_clone_root = sctx->clone_roots + i;
1432 		}
1433 
1434 	}
1435 
1436 	if (cur_clone_root) {
1437 		if (compressed != BTRFS_COMPRESS_NONE) {
1438 			/*
1439 			 * Offsets given by iterate_extent_inodes() are relative
1440 			 * to the start of the extent, we need to add logical
1441 			 * offset from the file extent item.
1442 			 * (See why at backref.c:check_extent_in_eb())
1443 			 */
1444 			cur_clone_root->offset += btrfs_file_extent_offset(eb,
1445 									   fi);
1446 		}
1447 		*found = cur_clone_root;
1448 		ret = 0;
1449 	} else {
1450 		ret = -ENOENT;
1451 	}
1452 
1453 out:
1454 	btrfs_free_path(tmp_path);
1455 	kfree(backref_ctx);
1456 	return ret;
1457 }
1458 
1459 static int read_symlink(struct btrfs_root *root,
1460 			u64 ino,
1461 			struct fs_path *dest)
1462 {
1463 	int ret;
1464 	struct btrfs_path *path;
1465 	struct btrfs_key key;
1466 	struct btrfs_file_extent_item *ei;
1467 	u8 type;
1468 	u8 compression;
1469 	unsigned long off;
1470 	int len;
1471 
1472 	path = alloc_path_for_send();
1473 	if (!path)
1474 		return -ENOMEM;
1475 
1476 	key.objectid = ino;
1477 	key.type = BTRFS_EXTENT_DATA_KEY;
1478 	key.offset = 0;
1479 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1480 	if (ret < 0)
1481 		goto out;
1482 	BUG_ON(ret);
1483 
1484 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1485 			struct btrfs_file_extent_item);
1486 	type = btrfs_file_extent_type(path->nodes[0], ei);
1487 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1488 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1489 	BUG_ON(compression);
1490 
1491 	off = btrfs_file_extent_inline_start(ei);
1492 	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1493 
1494 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1495 
1496 out:
1497 	btrfs_free_path(path);
1498 	return ret;
1499 }
1500 
1501 /*
1502  * Helper function to generate a file name that is unique in the root of
1503  * send_root and parent_root. This is used to generate names for orphan inodes.
1504  */
1505 static int gen_unique_name(struct send_ctx *sctx,
1506 			   u64 ino, u64 gen,
1507 			   struct fs_path *dest)
1508 {
1509 	int ret = 0;
1510 	struct btrfs_path *path;
1511 	struct btrfs_dir_item *di;
1512 	char tmp[64];
1513 	int len;
1514 	u64 idx = 0;
1515 
1516 	path = alloc_path_for_send();
1517 	if (!path)
1518 		return -ENOMEM;
1519 
1520 	while (1) {
1521 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1522 				ino, gen, idx);
1523 		ASSERT(len < sizeof(tmp));
1524 
1525 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1526 				path, BTRFS_FIRST_FREE_OBJECTID,
1527 				tmp, strlen(tmp), 0);
1528 		btrfs_release_path(path);
1529 		if (IS_ERR(di)) {
1530 			ret = PTR_ERR(di);
1531 			goto out;
1532 		}
1533 		if (di) {
1534 			/* not unique, try again */
1535 			idx++;
1536 			continue;
1537 		}
1538 
1539 		if (!sctx->parent_root) {
1540 			/* unique */
1541 			ret = 0;
1542 			break;
1543 		}
1544 
1545 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1546 				path, BTRFS_FIRST_FREE_OBJECTID,
1547 				tmp, strlen(tmp), 0);
1548 		btrfs_release_path(path);
1549 		if (IS_ERR(di)) {
1550 			ret = PTR_ERR(di);
1551 			goto out;
1552 		}
1553 		if (di) {
1554 			/* not unique, try again */
1555 			idx++;
1556 			continue;
1557 		}
1558 		/* unique */
1559 		break;
1560 	}
1561 
1562 	ret = fs_path_add(dest, tmp, strlen(tmp));
1563 
1564 out:
1565 	btrfs_free_path(path);
1566 	return ret;
1567 }
1568 
1569 enum inode_state {
1570 	inode_state_no_change,
1571 	inode_state_will_create,
1572 	inode_state_did_create,
1573 	inode_state_will_delete,
1574 	inode_state_did_delete,
1575 };
1576 
1577 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1578 {
1579 	int ret;
1580 	int left_ret;
1581 	int right_ret;
1582 	u64 left_gen;
1583 	u64 right_gen;
1584 
1585 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1586 			NULL, NULL);
1587 	if (ret < 0 && ret != -ENOENT)
1588 		goto out;
1589 	left_ret = ret;
1590 
1591 	if (!sctx->parent_root) {
1592 		right_ret = -ENOENT;
1593 	} else {
1594 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1595 				NULL, NULL, NULL, NULL);
1596 		if (ret < 0 && ret != -ENOENT)
1597 			goto out;
1598 		right_ret = ret;
1599 	}
1600 
1601 	if (!left_ret && !right_ret) {
1602 		if (left_gen == gen && right_gen == gen) {
1603 			ret = inode_state_no_change;
1604 		} else if (left_gen == gen) {
1605 			if (ino < sctx->send_progress)
1606 				ret = inode_state_did_create;
1607 			else
1608 				ret = inode_state_will_create;
1609 		} else if (right_gen == gen) {
1610 			if (ino < sctx->send_progress)
1611 				ret = inode_state_did_delete;
1612 			else
1613 				ret = inode_state_will_delete;
1614 		} else  {
1615 			ret = -ENOENT;
1616 		}
1617 	} else if (!left_ret) {
1618 		if (left_gen == gen) {
1619 			if (ino < sctx->send_progress)
1620 				ret = inode_state_did_create;
1621 			else
1622 				ret = inode_state_will_create;
1623 		} else {
1624 			ret = -ENOENT;
1625 		}
1626 	} else if (!right_ret) {
1627 		if (right_gen == gen) {
1628 			if (ino < sctx->send_progress)
1629 				ret = inode_state_did_delete;
1630 			else
1631 				ret = inode_state_will_delete;
1632 		} else {
1633 			ret = -ENOENT;
1634 		}
1635 	} else {
1636 		ret = -ENOENT;
1637 	}
1638 
1639 out:
1640 	return ret;
1641 }
1642 
1643 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1644 {
1645 	int ret;
1646 
1647 	ret = get_cur_inode_state(sctx, ino, gen);
1648 	if (ret < 0)
1649 		goto out;
1650 
1651 	if (ret == inode_state_no_change ||
1652 	    ret == inode_state_did_create ||
1653 	    ret == inode_state_will_delete)
1654 		ret = 1;
1655 	else
1656 		ret = 0;
1657 
1658 out:
1659 	return ret;
1660 }
1661 
1662 /*
1663  * Helper function to lookup a dir item in a dir.
1664  */
1665 static int lookup_dir_item_inode(struct btrfs_root *root,
1666 				 u64 dir, const char *name, int name_len,
1667 				 u64 *found_inode,
1668 				 u8 *found_type)
1669 {
1670 	int ret = 0;
1671 	struct btrfs_dir_item *di;
1672 	struct btrfs_key key;
1673 	struct btrfs_path *path;
1674 
1675 	path = alloc_path_for_send();
1676 	if (!path)
1677 		return -ENOMEM;
1678 
1679 	di = btrfs_lookup_dir_item(NULL, root, path,
1680 			dir, name, name_len, 0);
1681 	if (!di) {
1682 		ret = -ENOENT;
1683 		goto out;
1684 	}
1685 	if (IS_ERR(di)) {
1686 		ret = PTR_ERR(di);
1687 		goto out;
1688 	}
1689 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1690 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1691 		ret = -ENOENT;
1692 		goto out;
1693 	}
1694 	*found_inode = key.objectid;
1695 	*found_type = btrfs_dir_type(path->nodes[0], di);
1696 
1697 out:
1698 	btrfs_free_path(path);
1699 	return ret;
1700 }
1701 
1702 /*
1703  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1704  * generation of the parent dir and the name of the dir entry.
1705  */
1706 static int get_first_ref(struct btrfs_root *root, u64 ino,
1707 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1708 {
1709 	int ret;
1710 	struct btrfs_key key;
1711 	struct btrfs_key found_key;
1712 	struct btrfs_path *path;
1713 	int len;
1714 	u64 parent_dir;
1715 
1716 	path = alloc_path_for_send();
1717 	if (!path)
1718 		return -ENOMEM;
1719 
1720 	key.objectid = ino;
1721 	key.type = BTRFS_INODE_REF_KEY;
1722 	key.offset = 0;
1723 
1724 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1725 	if (ret < 0)
1726 		goto out;
1727 	if (!ret)
1728 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1729 				path->slots[0]);
1730 	if (ret || found_key.objectid != ino ||
1731 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1732 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1733 		ret = -ENOENT;
1734 		goto out;
1735 	}
1736 
1737 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1738 		struct btrfs_inode_ref *iref;
1739 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1740 				      struct btrfs_inode_ref);
1741 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1742 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1743 						     (unsigned long)(iref + 1),
1744 						     len);
1745 		parent_dir = found_key.offset;
1746 	} else {
1747 		struct btrfs_inode_extref *extref;
1748 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1749 					struct btrfs_inode_extref);
1750 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1751 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1752 					(unsigned long)&extref->name, len);
1753 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1754 	}
1755 	if (ret < 0)
1756 		goto out;
1757 	btrfs_release_path(path);
1758 
1759 	if (dir_gen) {
1760 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1761 				     NULL, NULL, NULL);
1762 		if (ret < 0)
1763 			goto out;
1764 	}
1765 
1766 	*dir = parent_dir;
1767 
1768 out:
1769 	btrfs_free_path(path);
1770 	return ret;
1771 }
1772 
1773 static int is_first_ref(struct btrfs_root *root,
1774 			u64 ino, u64 dir,
1775 			const char *name, int name_len)
1776 {
1777 	int ret;
1778 	struct fs_path *tmp_name;
1779 	u64 tmp_dir;
1780 
1781 	tmp_name = fs_path_alloc();
1782 	if (!tmp_name)
1783 		return -ENOMEM;
1784 
1785 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1786 	if (ret < 0)
1787 		goto out;
1788 
1789 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1790 		ret = 0;
1791 		goto out;
1792 	}
1793 
1794 	ret = !memcmp(tmp_name->start, name, name_len);
1795 
1796 out:
1797 	fs_path_free(tmp_name);
1798 	return ret;
1799 }
1800 
1801 /*
1802  * Used by process_recorded_refs to determine if a new ref would overwrite an
1803  * already existing ref. In case it detects an overwrite, it returns the
1804  * inode/gen in who_ino/who_gen.
1805  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1806  * to make sure later references to the overwritten inode are possible.
1807  * Orphanizing is however only required for the first ref of an inode.
1808  * process_recorded_refs does an additional is_first_ref check to see if
1809  * orphanizing is really required.
1810  */
1811 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1812 			      const char *name, int name_len,
1813 			      u64 *who_ino, u64 *who_gen)
1814 {
1815 	int ret = 0;
1816 	u64 gen;
1817 	u64 other_inode = 0;
1818 	u8 other_type = 0;
1819 
1820 	if (!sctx->parent_root)
1821 		goto out;
1822 
1823 	ret = is_inode_existent(sctx, dir, dir_gen);
1824 	if (ret <= 0)
1825 		goto out;
1826 
1827 	/*
1828 	 * If we have a parent root we need to verify that the parent dir was
1829 	 * not delted and then re-created, if it was then we have no overwrite
1830 	 * and we can just unlink this entry.
1831 	 */
1832 	if (sctx->parent_root) {
1833 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1834 				     NULL, NULL, NULL);
1835 		if (ret < 0 && ret != -ENOENT)
1836 			goto out;
1837 		if (ret) {
1838 			ret = 0;
1839 			goto out;
1840 		}
1841 		if (gen != dir_gen)
1842 			goto out;
1843 	}
1844 
1845 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1846 			&other_inode, &other_type);
1847 	if (ret < 0 && ret != -ENOENT)
1848 		goto out;
1849 	if (ret) {
1850 		ret = 0;
1851 		goto out;
1852 	}
1853 
1854 	/*
1855 	 * Check if the overwritten ref was already processed. If yes, the ref
1856 	 * was already unlinked/moved, so we can safely assume that we will not
1857 	 * overwrite anything at this point in time.
1858 	 */
1859 	if (other_inode > sctx->send_progress) {
1860 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1861 				who_gen, NULL, NULL, NULL, NULL);
1862 		if (ret < 0)
1863 			goto out;
1864 
1865 		ret = 1;
1866 		*who_ino = other_inode;
1867 	} else {
1868 		ret = 0;
1869 	}
1870 
1871 out:
1872 	return ret;
1873 }
1874 
1875 /*
1876  * Checks if the ref was overwritten by an already processed inode. This is
1877  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1878  * thus the orphan name needs be used.
1879  * process_recorded_refs also uses it to avoid unlinking of refs that were
1880  * overwritten.
1881  */
1882 static int did_overwrite_ref(struct send_ctx *sctx,
1883 			    u64 dir, u64 dir_gen,
1884 			    u64 ino, u64 ino_gen,
1885 			    const char *name, int name_len)
1886 {
1887 	int ret = 0;
1888 	u64 gen;
1889 	u64 ow_inode;
1890 	u8 other_type;
1891 
1892 	if (!sctx->parent_root)
1893 		goto out;
1894 
1895 	ret = is_inode_existent(sctx, dir, dir_gen);
1896 	if (ret <= 0)
1897 		goto out;
1898 
1899 	/* check if the ref was overwritten by another ref */
1900 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1901 			&ow_inode, &other_type);
1902 	if (ret < 0 && ret != -ENOENT)
1903 		goto out;
1904 	if (ret) {
1905 		/* was never and will never be overwritten */
1906 		ret = 0;
1907 		goto out;
1908 	}
1909 
1910 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1911 			NULL, NULL);
1912 	if (ret < 0)
1913 		goto out;
1914 
1915 	if (ow_inode == ino && gen == ino_gen) {
1916 		ret = 0;
1917 		goto out;
1918 	}
1919 
1920 	/*
1921 	 * We know that it is or will be overwritten. Check this now.
1922 	 * The current inode being processed might have been the one that caused
1923 	 * inode 'ino' to be orphanized, therefore ow_inode can actually be the
1924 	 * same as sctx->send_progress.
1925 	 */
1926 	if (ow_inode <= sctx->send_progress)
1927 		ret = 1;
1928 	else
1929 		ret = 0;
1930 
1931 out:
1932 	return ret;
1933 }
1934 
1935 /*
1936  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1937  * that got overwritten. This is used by process_recorded_refs to determine
1938  * if it has to use the path as returned by get_cur_path or the orphan name.
1939  */
1940 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1941 {
1942 	int ret = 0;
1943 	struct fs_path *name = NULL;
1944 	u64 dir;
1945 	u64 dir_gen;
1946 
1947 	if (!sctx->parent_root)
1948 		goto out;
1949 
1950 	name = fs_path_alloc();
1951 	if (!name)
1952 		return -ENOMEM;
1953 
1954 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1955 	if (ret < 0)
1956 		goto out;
1957 
1958 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1959 			name->start, fs_path_len(name));
1960 
1961 out:
1962 	fs_path_free(name);
1963 	return ret;
1964 }
1965 
1966 /*
1967  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1968  * so we need to do some special handling in case we have clashes. This function
1969  * takes care of this with the help of name_cache_entry::radix_list.
1970  * In case of error, nce is kfreed.
1971  */
1972 static int name_cache_insert(struct send_ctx *sctx,
1973 			     struct name_cache_entry *nce)
1974 {
1975 	int ret = 0;
1976 	struct list_head *nce_head;
1977 
1978 	nce_head = radix_tree_lookup(&sctx->name_cache,
1979 			(unsigned long)nce->ino);
1980 	if (!nce_head) {
1981 		nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1982 		if (!nce_head) {
1983 			kfree(nce);
1984 			return -ENOMEM;
1985 		}
1986 		INIT_LIST_HEAD(nce_head);
1987 
1988 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1989 		if (ret < 0) {
1990 			kfree(nce_head);
1991 			kfree(nce);
1992 			return ret;
1993 		}
1994 	}
1995 	list_add_tail(&nce->radix_list, nce_head);
1996 	list_add_tail(&nce->list, &sctx->name_cache_list);
1997 	sctx->name_cache_size++;
1998 
1999 	return ret;
2000 }
2001 
2002 static void name_cache_delete(struct send_ctx *sctx,
2003 			      struct name_cache_entry *nce)
2004 {
2005 	struct list_head *nce_head;
2006 
2007 	nce_head = radix_tree_lookup(&sctx->name_cache,
2008 			(unsigned long)nce->ino);
2009 	if (!nce_head) {
2010 		btrfs_err(sctx->send_root->fs_info,
2011 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2012 			nce->ino, sctx->name_cache_size);
2013 	}
2014 
2015 	list_del(&nce->radix_list);
2016 	list_del(&nce->list);
2017 	sctx->name_cache_size--;
2018 
2019 	/*
2020 	 * We may not get to the final release of nce_head if the lookup fails
2021 	 */
2022 	if (nce_head && list_empty(nce_head)) {
2023 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2024 		kfree(nce_head);
2025 	}
2026 }
2027 
2028 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2029 						    u64 ino, u64 gen)
2030 {
2031 	struct list_head *nce_head;
2032 	struct name_cache_entry *cur;
2033 
2034 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2035 	if (!nce_head)
2036 		return NULL;
2037 
2038 	list_for_each_entry(cur, nce_head, radix_list) {
2039 		if (cur->ino == ino && cur->gen == gen)
2040 			return cur;
2041 	}
2042 	return NULL;
2043 }
2044 
2045 /*
2046  * Removes the entry from the list and adds it back to the end. This marks the
2047  * entry as recently used so that name_cache_clean_unused does not remove it.
2048  */
2049 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2050 {
2051 	list_del(&nce->list);
2052 	list_add_tail(&nce->list, &sctx->name_cache_list);
2053 }
2054 
2055 /*
2056  * Remove some entries from the beginning of name_cache_list.
2057  */
2058 static void name_cache_clean_unused(struct send_ctx *sctx)
2059 {
2060 	struct name_cache_entry *nce;
2061 
2062 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2063 		return;
2064 
2065 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2066 		nce = list_entry(sctx->name_cache_list.next,
2067 				struct name_cache_entry, list);
2068 		name_cache_delete(sctx, nce);
2069 		kfree(nce);
2070 	}
2071 }
2072 
2073 static void name_cache_free(struct send_ctx *sctx)
2074 {
2075 	struct name_cache_entry *nce;
2076 
2077 	while (!list_empty(&sctx->name_cache_list)) {
2078 		nce = list_entry(sctx->name_cache_list.next,
2079 				struct name_cache_entry, list);
2080 		name_cache_delete(sctx, nce);
2081 		kfree(nce);
2082 	}
2083 }
2084 
2085 /*
2086  * Used by get_cur_path for each ref up to the root.
2087  * Returns 0 if it succeeded.
2088  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2089  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2090  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2091  * Returns <0 in case of error.
2092  */
2093 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2094 				     u64 ino, u64 gen,
2095 				     u64 *parent_ino,
2096 				     u64 *parent_gen,
2097 				     struct fs_path *dest)
2098 {
2099 	int ret;
2100 	int nce_ret;
2101 	struct name_cache_entry *nce = NULL;
2102 
2103 	/*
2104 	 * First check if we already did a call to this function with the same
2105 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2106 	 * return the cached result.
2107 	 */
2108 	nce = name_cache_search(sctx, ino, gen);
2109 	if (nce) {
2110 		if (ino < sctx->send_progress && nce->need_later_update) {
2111 			name_cache_delete(sctx, nce);
2112 			kfree(nce);
2113 			nce = NULL;
2114 		} else {
2115 			name_cache_used(sctx, nce);
2116 			*parent_ino = nce->parent_ino;
2117 			*parent_gen = nce->parent_gen;
2118 			ret = fs_path_add(dest, nce->name, nce->name_len);
2119 			if (ret < 0)
2120 				goto out;
2121 			ret = nce->ret;
2122 			goto out;
2123 		}
2124 	}
2125 
2126 	/*
2127 	 * If the inode is not existent yet, add the orphan name and return 1.
2128 	 * This should only happen for the parent dir that we determine in
2129 	 * __record_new_ref
2130 	 */
2131 	ret = is_inode_existent(sctx, ino, gen);
2132 	if (ret < 0)
2133 		goto out;
2134 
2135 	if (!ret) {
2136 		ret = gen_unique_name(sctx, ino, gen, dest);
2137 		if (ret < 0)
2138 			goto out;
2139 		ret = 1;
2140 		goto out_cache;
2141 	}
2142 
2143 	/*
2144 	 * Depending on whether the inode was already processed or not, use
2145 	 * send_root or parent_root for ref lookup.
2146 	 */
2147 	if (ino < sctx->send_progress)
2148 		ret = get_first_ref(sctx->send_root, ino,
2149 				    parent_ino, parent_gen, dest);
2150 	else
2151 		ret = get_first_ref(sctx->parent_root, ino,
2152 				    parent_ino, parent_gen, dest);
2153 	if (ret < 0)
2154 		goto out;
2155 
2156 	/*
2157 	 * Check if the ref was overwritten by an inode's ref that was processed
2158 	 * earlier. If yes, treat as orphan and return 1.
2159 	 */
2160 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2161 			dest->start, dest->end - dest->start);
2162 	if (ret < 0)
2163 		goto out;
2164 	if (ret) {
2165 		fs_path_reset(dest);
2166 		ret = gen_unique_name(sctx, ino, gen, dest);
2167 		if (ret < 0)
2168 			goto out;
2169 		ret = 1;
2170 	}
2171 
2172 out_cache:
2173 	/*
2174 	 * Store the result of the lookup in the name cache.
2175 	 */
2176 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2177 	if (!nce) {
2178 		ret = -ENOMEM;
2179 		goto out;
2180 	}
2181 
2182 	nce->ino = ino;
2183 	nce->gen = gen;
2184 	nce->parent_ino = *parent_ino;
2185 	nce->parent_gen = *parent_gen;
2186 	nce->name_len = fs_path_len(dest);
2187 	nce->ret = ret;
2188 	strcpy(nce->name, dest->start);
2189 
2190 	if (ino < sctx->send_progress)
2191 		nce->need_later_update = 0;
2192 	else
2193 		nce->need_later_update = 1;
2194 
2195 	nce_ret = name_cache_insert(sctx, nce);
2196 	if (nce_ret < 0)
2197 		ret = nce_ret;
2198 	name_cache_clean_unused(sctx);
2199 
2200 out:
2201 	return ret;
2202 }
2203 
2204 /*
2205  * Magic happens here. This function returns the first ref to an inode as it
2206  * would look like while receiving the stream at this point in time.
2207  * We walk the path up to the root. For every inode in between, we check if it
2208  * was already processed/sent. If yes, we continue with the parent as found
2209  * in send_root. If not, we continue with the parent as found in parent_root.
2210  * If we encounter an inode that was deleted at this point in time, we use the
2211  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2212  * that were not created yet and overwritten inodes/refs.
2213  *
2214  * When do we have have orphan inodes:
2215  * 1. When an inode is freshly created and thus no valid refs are available yet
2216  * 2. When a directory lost all it's refs (deleted) but still has dir items
2217  *    inside which were not processed yet (pending for move/delete). If anyone
2218  *    tried to get the path to the dir items, it would get a path inside that
2219  *    orphan directory.
2220  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2221  *    of an unprocessed inode. If in that case the first ref would be
2222  *    overwritten, the overwritten inode gets "orphanized". Later when we
2223  *    process this overwritten inode, it is restored at a new place by moving
2224  *    the orphan inode.
2225  *
2226  * sctx->send_progress tells this function at which point in time receiving
2227  * would be.
2228  */
2229 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2230 			struct fs_path *dest)
2231 {
2232 	int ret = 0;
2233 	struct fs_path *name = NULL;
2234 	u64 parent_inode = 0;
2235 	u64 parent_gen = 0;
2236 	int stop = 0;
2237 
2238 	name = fs_path_alloc();
2239 	if (!name) {
2240 		ret = -ENOMEM;
2241 		goto out;
2242 	}
2243 
2244 	dest->reversed = 1;
2245 	fs_path_reset(dest);
2246 
2247 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2248 		struct waiting_dir_move *wdm;
2249 
2250 		fs_path_reset(name);
2251 
2252 		if (is_waiting_for_rm(sctx, ino)) {
2253 			ret = gen_unique_name(sctx, ino, gen, name);
2254 			if (ret < 0)
2255 				goto out;
2256 			ret = fs_path_add_path(dest, name);
2257 			break;
2258 		}
2259 
2260 		wdm = get_waiting_dir_move(sctx, ino);
2261 		if (wdm && wdm->orphanized) {
2262 			ret = gen_unique_name(sctx, ino, gen, name);
2263 			stop = 1;
2264 		} else if (wdm) {
2265 			ret = get_first_ref(sctx->parent_root, ino,
2266 					    &parent_inode, &parent_gen, name);
2267 		} else {
2268 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2269 							&parent_inode,
2270 							&parent_gen, name);
2271 			if (ret)
2272 				stop = 1;
2273 		}
2274 
2275 		if (ret < 0)
2276 			goto out;
2277 
2278 		ret = fs_path_add_path(dest, name);
2279 		if (ret < 0)
2280 			goto out;
2281 
2282 		ino = parent_inode;
2283 		gen = parent_gen;
2284 	}
2285 
2286 out:
2287 	fs_path_free(name);
2288 	if (!ret)
2289 		fs_path_unreverse(dest);
2290 	return ret;
2291 }
2292 
2293 /*
2294  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2295  */
2296 static int send_subvol_begin(struct send_ctx *sctx)
2297 {
2298 	int ret;
2299 	struct btrfs_root *send_root = sctx->send_root;
2300 	struct btrfs_root *parent_root = sctx->parent_root;
2301 	struct btrfs_path *path;
2302 	struct btrfs_key key;
2303 	struct btrfs_root_ref *ref;
2304 	struct extent_buffer *leaf;
2305 	char *name = NULL;
2306 	int namelen;
2307 
2308 	path = btrfs_alloc_path();
2309 	if (!path)
2310 		return -ENOMEM;
2311 
2312 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2313 	if (!name) {
2314 		btrfs_free_path(path);
2315 		return -ENOMEM;
2316 	}
2317 
2318 	key.objectid = send_root->objectid;
2319 	key.type = BTRFS_ROOT_BACKREF_KEY;
2320 	key.offset = 0;
2321 
2322 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2323 				&key, path, 1, 0);
2324 	if (ret < 0)
2325 		goto out;
2326 	if (ret) {
2327 		ret = -ENOENT;
2328 		goto out;
2329 	}
2330 
2331 	leaf = path->nodes[0];
2332 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2333 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2334 	    key.objectid != send_root->objectid) {
2335 		ret = -ENOENT;
2336 		goto out;
2337 	}
2338 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2339 	namelen = btrfs_root_ref_name_len(leaf, ref);
2340 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2341 	btrfs_release_path(path);
2342 
2343 	if (parent_root) {
2344 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2345 		if (ret < 0)
2346 			goto out;
2347 	} else {
2348 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2349 		if (ret < 0)
2350 			goto out;
2351 	}
2352 
2353 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2354 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2355 			sctx->send_root->root_item.uuid);
2356 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2357 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2358 	if (parent_root) {
2359 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2360 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2361 				     parent_root->root_item.received_uuid);
2362 		else
2363 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2364 				     parent_root->root_item.uuid);
2365 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2366 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2367 	}
2368 
2369 	ret = send_cmd(sctx);
2370 
2371 tlv_put_failure:
2372 out:
2373 	btrfs_free_path(path);
2374 	kfree(name);
2375 	return ret;
2376 }
2377 
2378 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2379 {
2380 	int ret = 0;
2381 	struct fs_path *p;
2382 
2383 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2384 
2385 	p = fs_path_alloc();
2386 	if (!p)
2387 		return -ENOMEM;
2388 
2389 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2390 	if (ret < 0)
2391 		goto out;
2392 
2393 	ret = get_cur_path(sctx, ino, gen, p);
2394 	if (ret < 0)
2395 		goto out;
2396 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2397 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2398 
2399 	ret = send_cmd(sctx);
2400 
2401 tlv_put_failure:
2402 out:
2403 	fs_path_free(p);
2404 	return ret;
2405 }
2406 
2407 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2408 {
2409 	int ret = 0;
2410 	struct fs_path *p;
2411 
2412 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2413 
2414 	p = fs_path_alloc();
2415 	if (!p)
2416 		return -ENOMEM;
2417 
2418 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2419 	if (ret < 0)
2420 		goto out;
2421 
2422 	ret = get_cur_path(sctx, ino, gen, p);
2423 	if (ret < 0)
2424 		goto out;
2425 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2426 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2427 
2428 	ret = send_cmd(sctx);
2429 
2430 tlv_put_failure:
2431 out:
2432 	fs_path_free(p);
2433 	return ret;
2434 }
2435 
2436 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2437 {
2438 	int ret = 0;
2439 	struct fs_path *p;
2440 
2441 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2442 
2443 	p = fs_path_alloc();
2444 	if (!p)
2445 		return -ENOMEM;
2446 
2447 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2448 	if (ret < 0)
2449 		goto out;
2450 
2451 	ret = get_cur_path(sctx, ino, gen, p);
2452 	if (ret < 0)
2453 		goto out;
2454 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2455 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2456 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2457 
2458 	ret = send_cmd(sctx);
2459 
2460 tlv_put_failure:
2461 out:
2462 	fs_path_free(p);
2463 	return ret;
2464 }
2465 
2466 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2467 {
2468 	int ret = 0;
2469 	struct fs_path *p = NULL;
2470 	struct btrfs_inode_item *ii;
2471 	struct btrfs_path *path = NULL;
2472 	struct extent_buffer *eb;
2473 	struct btrfs_key key;
2474 	int slot;
2475 
2476 verbose_printk("btrfs: send_utimes %llu\n", ino);
2477 
2478 	p = fs_path_alloc();
2479 	if (!p)
2480 		return -ENOMEM;
2481 
2482 	path = alloc_path_for_send();
2483 	if (!path) {
2484 		ret = -ENOMEM;
2485 		goto out;
2486 	}
2487 
2488 	key.objectid = ino;
2489 	key.type = BTRFS_INODE_ITEM_KEY;
2490 	key.offset = 0;
2491 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2492 	if (ret < 0)
2493 		goto out;
2494 
2495 	eb = path->nodes[0];
2496 	slot = path->slots[0];
2497 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2498 
2499 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2500 	if (ret < 0)
2501 		goto out;
2502 
2503 	ret = get_cur_path(sctx, ino, gen, p);
2504 	if (ret < 0)
2505 		goto out;
2506 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2507 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2508 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2509 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2510 	/* TODO Add otime support when the otime patches get into upstream */
2511 
2512 	ret = send_cmd(sctx);
2513 
2514 tlv_put_failure:
2515 out:
2516 	fs_path_free(p);
2517 	btrfs_free_path(path);
2518 	return ret;
2519 }
2520 
2521 /*
2522  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2523  * a valid path yet because we did not process the refs yet. So, the inode
2524  * is created as orphan.
2525  */
2526 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2527 {
2528 	int ret = 0;
2529 	struct fs_path *p;
2530 	int cmd;
2531 	u64 gen;
2532 	u64 mode;
2533 	u64 rdev;
2534 
2535 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2536 
2537 	p = fs_path_alloc();
2538 	if (!p)
2539 		return -ENOMEM;
2540 
2541 	if (ino != sctx->cur_ino) {
2542 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2543 				     NULL, NULL, &rdev);
2544 		if (ret < 0)
2545 			goto out;
2546 	} else {
2547 		gen = sctx->cur_inode_gen;
2548 		mode = sctx->cur_inode_mode;
2549 		rdev = sctx->cur_inode_rdev;
2550 	}
2551 
2552 	if (S_ISREG(mode)) {
2553 		cmd = BTRFS_SEND_C_MKFILE;
2554 	} else if (S_ISDIR(mode)) {
2555 		cmd = BTRFS_SEND_C_MKDIR;
2556 	} else if (S_ISLNK(mode)) {
2557 		cmd = BTRFS_SEND_C_SYMLINK;
2558 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2559 		cmd = BTRFS_SEND_C_MKNOD;
2560 	} else if (S_ISFIFO(mode)) {
2561 		cmd = BTRFS_SEND_C_MKFIFO;
2562 	} else if (S_ISSOCK(mode)) {
2563 		cmd = BTRFS_SEND_C_MKSOCK;
2564 	} else {
2565 		printk(KERN_WARNING "btrfs: unexpected inode type %o",
2566 				(int)(mode & S_IFMT));
2567 		ret = -ENOTSUPP;
2568 		goto out;
2569 	}
2570 
2571 	ret = begin_cmd(sctx, cmd);
2572 	if (ret < 0)
2573 		goto out;
2574 
2575 	ret = gen_unique_name(sctx, ino, gen, p);
2576 	if (ret < 0)
2577 		goto out;
2578 
2579 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2580 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2581 
2582 	if (S_ISLNK(mode)) {
2583 		fs_path_reset(p);
2584 		ret = read_symlink(sctx->send_root, ino, p);
2585 		if (ret < 0)
2586 			goto out;
2587 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2588 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2589 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2590 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2591 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2592 	}
2593 
2594 	ret = send_cmd(sctx);
2595 	if (ret < 0)
2596 		goto out;
2597 
2598 
2599 tlv_put_failure:
2600 out:
2601 	fs_path_free(p);
2602 	return ret;
2603 }
2604 
2605 /*
2606  * We need some special handling for inodes that get processed before the parent
2607  * directory got created. See process_recorded_refs for details.
2608  * This function does the check if we already created the dir out of order.
2609  */
2610 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2611 {
2612 	int ret = 0;
2613 	struct btrfs_path *path = NULL;
2614 	struct btrfs_key key;
2615 	struct btrfs_key found_key;
2616 	struct btrfs_key di_key;
2617 	struct extent_buffer *eb;
2618 	struct btrfs_dir_item *di;
2619 	int slot;
2620 
2621 	path = alloc_path_for_send();
2622 	if (!path) {
2623 		ret = -ENOMEM;
2624 		goto out;
2625 	}
2626 
2627 	key.objectid = dir;
2628 	key.type = BTRFS_DIR_INDEX_KEY;
2629 	key.offset = 0;
2630 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2631 	if (ret < 0)
2632 		goto out;
2633 
2634 	while (1) {
2635 		eb = path->nodes[0];
2636 		slot = path->slots[0];
2637 		if (slot >= btrfs_header_nritems(eb)) {
2638 			ret = btrfs_next_leaf(sctx->send_root, path);
2639 			if (ret < 0) {
2640 				goto out;
2641 			} else if (ret > 0) {
2642 				ret = 0;
2643 				break;
2644 			}
2645 			continue;
2646 		}
2647 
2648 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2649 		if (found_key.objectid != key.objectid ||
2650 		    found_key.type != key.type) {
2651 			ret = 0;
2652 			goto out;
2653 		}
2654 
2655 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2656 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2657 
2658 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2659 		    di_key.objectid < sctx->send_progress) {
2660 			ret = 1;
2661 			goto out;
2662 		}
2663 
2664 		path->slots[0]++;
2665 	}
2666 
2667 out:
2668 	btrfs_free_path(path);
2669 	return ret;
2670 }
2671 
2672 /*
2673  * Only creates the inode if it is:
2674  * 1. Not a directory
2675  * 2. Or a directory which was not created already due to out of order
2676  *    directories. See did_create_dir and process_recorded_refs for details.
2677  */
2678 static int send_create_inode_if_needed(struct send_ctx *sctx)
2679 {
2680 	int ret;
2681 
2682 	if (S_ISDIR(sctx->cur_inode_mode)) {
2683 		ret = did_create_dir(sctx, sctx->cur_ino);
2684 		if (ret < 0)
2685 			goto out;
2686 		if (ret) {
2687 			ret = 0;
2688 			goto out;
2689 		}
2690 	}
2691 
2692 	ret = send_create_inode(sctx, sctx->cur_ino);
2693 	if (ret < 0)
2694 		goto out;
2695 
2696 out:
2697 	return ret;
2698 }
2699 
2700 struct recorded_ref {
2701 	struct list_head list;
2702 	char *dir_path;
2703 	char *name;
2704 	struct fs_path *full_path;
2705 	u64 dir;
2706 	u64 dir_gen;
2707 	int dir_path_len;
2708 	int name_len;
2709 };
2710 
2711 /*
2712  * We need to process new refs before deleted refs, but compare_tree gives us
2713  * everything mixed. So we first record all refs and later process them.
2714  * This function is a helper to record one ref.
2715  */
2716 static int __record_ref(struct list_head *head, u64 dir,
2717 		      u64 dir_gen, struct fs_path *path)
2718 {
2719 	struct recorded_ref *ref;
2720 
2721 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
2722 	if (!ref)
2723 		return -ENOMEM;
2724 
2725 	ref->dir = dir;
2726 	ref->dir_gen = dir_gen;
2727 	ref->full_path = path;
2728 
2729 	ref->name = (char *)kbasename(ref->full_path->start);
2730 	ref->name_len = ref->full_path->end - ref->name;
2731 	ref->dir_path = ref->full_path->start;
2732 	if (ref->name == ref->full_path->start)
2733 		ref->dir_path_len = 0;
2734 	else
2735 		ref->dir_path_len = ref->full_path->end -
2736 				ref->full_path->start - 1 - ref->name_len;
2737 
2738 	list_add_tail(&ref->list, head);
2739 	return 0;
2740 }
2741 
2742 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2743 {
2744 	struct recorded_ref *new;
2745 
2746 	new = kmalloc(sizeof(*ref), GFP_NOFS);
2747 	if (!new)
2748 		return -ENOMEM;
2749 
2750 	new->dir = ref->dir;
2751 	new->dir_gen = ref->dir_gen;
2752 	new->full_path = NULL;
2753 	INIT_LIST_HEAD(&new->list);
2754 	list_add_tail(&new->list, list);
2755 	return 0;
2756 }
2757 
2758 static void __free_recorded_refs(struct list_head *head)
2759 {
2760 	struct recorded_ref *cur;
2761 
2762 	while (!list_empty(head)) {
2763 		cur = list_entry(head->next, struct recorded_ref, list);
2764 		fs_path_free(cur->full_path);
2765 		list_del(&cur->list);
2766 		kfree(cur);
2767 	}
2768 }
2769 
2770 static void free_recorded_refs(struct send_ctx *sctx)
2771 {
2772 	__free_recorded_refs(&sctx->new_refs);
2773 	__free_recorded_refs(&sctx->deleted_refs);
2774 }
2775 
2776 /*
2777  * Renames/moves a file/dir to its orphan name. Used when the first
2778  * ref of an unprocessed inode gets overwritten and for all non empty
2779  * directories.
2780  */
2781 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2782 			  struct fs_path *path)
2783 {
2784 	int ret;
2785 	struct fs_path *orphan;
2786 
2787 	orphan = fs_path_alloc();
2788 	if (!orphan)
2789 		return -ENOMEM;
2790 
2791 	ret = gen_unique_name(sctx, ino, gen, orphan);
2792 	if (ret < 0)
2793 		goto out;
2794 
2795 	ret = send_rename(sctx, path, orphan);
2796 
2797 out:
2798 	fs_path_free(orphan);
2799 	return ret;
2800 }
2801 
2802 static struct orphan_dir_info *
2803 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2804 {
2805 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2806 	struct rb_node *parent = NULL;
2807 	struct orphan_dir_info *entry, *odi;
2808 
2809 	odi = kmalloc(sizeof(*odi), GFP_NOFS);
2810 	if (!odi)
2811 		return ERR_PTR(-ENOMEM);
2812 	odi->ino = dir_ino;
2813 	odi->gen = 0;
2814 
2815 	while (*p) {
2816 		parent = *p;
2817 		entry = rb_entry(parent, struct orphan_dir_info, node);
2818 		if (dir_ino < entry->ino) {
2819 			p = &(*p)->rb_left;
2820 		} else if (dir_ino > entry->ino) {
2821 			p = &(*p)->rb_right;
2822 		} else {
2823 			kfree(odi);
2824 			return entry;
2825 		}
2826 	}
2827 
2828 	rb_link_node(&odi->node, parent, p);
2829 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2830 	return odi;
2831 }
2832 
2833 static struct orphan_dir_info *
2834 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2835 {
2836 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2837 	struct orphan_dir_info *entry;
2838 
2839 	while (n) {
2840 		entry = rb_entry(n, struct orphan_dir_info, node);
2841 		if (dir_ino < entry->ino)
2842 			n = n->rb_left;
2843 		else if (dir_ino > entry->ino)
2844 			n = n->rb_right;
2845 		else
2846 			return entry;
2847 	}
2848 	return NULL;
2849 }
2850 
2851 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2852 {
2853 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2854 
2855 	return odi != NULL;
2856 }
2857 
2858 static void free_orphan_dir_info(struct send_ctx *sctx,
2859 				 struct orphan_dir_info *odi)
2860 {
2861 	if (!odi)
2862 		return;
2863 	rb_erase(&odi->node, &sctx->orphan_dirs);
2864 	kfree(odi);
2865 }
2866 
2867 /*
2868  * Returns 1 if a directory can be removed at this point in time.
2869  * We check this by iterating all dir items and checking if the inode behind
2870  * the dir item was already processed.
2871  */
2872 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2873 		     u64 send_progress)
2874 {
2875 	int ret = 0;
2876 	struct btrfs_root *root = sctx->parent_root;
2877 	struct btrfs_path *path;
2878 	struct btrfs_key key;
2879 	struct btrfs_key found_key;
2880 	struct btrfs_key loc;
2881 	struct btrfs_dir_item *di;
2882 
2883 	/*
2884 	 * Don't try to rmdir the top/root subvolume dir.
2885 	 */
2886 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2887 		return 0;
2888 
2889 	path = alloc_path_for_send();
2890 	if (!path)
2891 		return -ENOMEM;
2892 
2893 	key.objectid = dir;
2894 	key.type = BTRFS_DIR_INDEX_KEY;
2895 	key.offset = 0;
2896 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2897 	if (ret < 0)
2898 		goto out;
2899 
2900 	while (1) {
2901 		struct waiting_dir_move *dm;
2902 
2903 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2904 			ret = btrfs_next_leaf(root, path);
2905 			if (ret < 0)
2906 				goto out;
2907 			else if (ret > 0)
2908 				break;
2909 			continue;
2910 		}
2911 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2912 				      path->slots[0]);
2913 		if (found_key.objectid != key.objectid ||
2914 		    found_key.type != key.type)
2915 			break;
2916 
2917 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2918 				struct btrfs_dir_item);
2919 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2920 
2921 		dm = get_waiting_dir_move(sctx, loc.objectid);
2922 		if (dm) {
2923 			struct orphan_dir_info *odi;
2924 
2925 			odi = add_orphan_dir_info(sctx, dir);
2926 			if (IS_ERR(odi)) {
2927 				ret = PTR_ERR(odi);
2928 				goto out;
2929 			}
2930 			odi->gen = dir_gen;
2931 			dm->rmdir_ino = dir;
2932 			ret = 0;
2933 			goto out;
2934 		}
2935 
2936 		if (loc.objectid > send_progress) {
2937 			ret = 0;
2938 			goto out;
2939 		}
2940 
2941 		path->slots[0]++;
2942 	}
2943 
2944 	ret = 1;
2945 
2946 out:
2947 	btrfs_free_path(path);
2948 	return ret;
2949 }
2950 
2951 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2952 {
2953 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2954 
2955 	return entry != NULL;
2956 }
2957 
2958 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
2959 {
2960 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2961 	struct rb_node *parent = NULL;
2962 	struct waiting_dir_move *entry, *dm;
2963 
2964 	dm = kmalloc(sizeof(*dm), GFP_NOFS);
2965 	if (!dm)
2966 		return -ENOMEM;
2967 	dm->ino = ino;
2968 	dm->rmdir_ino = 0;
2969 	dm->orphanized = orphanized;
2970 
2971 	while (*p) {
2972 		parent = *p;
2973 		entry = rb_entry(parent, struct waiting_dir_move, node);
2974 		if (ino < entry->ino) {
2975 			p = &(*p)->rb_left;
2976 		} else if (ino > entry->ino) {
2977 			p = &(*p)->rb_right;
2978 		} else {
2979 			kfree(dm);
2980 			return -EEXIST;
2981 		}
2982 	}
2983 
2984 	rb_link_node(&dm->node, parent, p);
2985 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2986 	return 0;
2987 }
2988 
2989 static struct waiting_dir_move *
2990 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2991 {
2992 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2993 	struct waiting_dir_move *entry;
2994 
2995 	while (n) {
2996 		entry = rb_entry(n, struct waiting_dir_move, node);
2997 		if (ino < entry->ino)
2998 			n = n->rb_left;
2999 		else if (ino > entry->ino)
3000 			n = n->rb_right;
3001 		else
3002 			return entry;
3003 	}
3004 	return NULL;
3005 }
3006 
3007 static void free_waiting_dir_move(struct send_ctx *sctx,
3008 				  struct waiting_dir_move *dm)
3009 {
3010 	if (!dm)
3011 		return;
3012 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3013 	kfree(dm);
3014 }
3015 
3016 static int add_pending_dir_move(struct send_ctx *sctx,
3017 				u64 ino,
3018 				u64 ino_gen,
3019 				u64 parent_ino,
3020 				struct list_head *new_refs,
3021 				struct list_head *deleted_refs,
3022 				const bool is_orphan)
3023 {
3024 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3025 	struct rb_node *parent = NULL;
3026 	struct pending_dir_move *entry = NULL, *pm;
3027 	struct recorded_ref *cur;
3028 	int exists = 0;
3029 	int ret;
3030 
3031 	pm = kmalloc(sizeof(*pm), GFP_NOFS);
3032 	if (!pm)
3033 		return -ENOMEM;
3034 	pm->parent_ino = parent_ino;
3035 	pm->ino = ino;
3036 	pm->gen = ino_gen;
3037 	pm->is_orphan = is_orphan;
3038 	INIT_LIST_HEAD(&pm->list);
3039 	INIT_LIST_HEAD(&pm->update_refs);
3040 	RB_CLEAR_NODE(&pm->node);
3041 
3042 	while (*p) {
3043 		parent = *p;
3044 		entry = rb_entry(parent, struct pending_dir_move, node);
3045 		if (parent_ino < entry->parent_ino) {
3046 			p = &(*p)->rb_left;
3047 		} else if (parent_ino > entry->parent_ino) {
3048 			p = &(*p)->rb_right;
3049 		} else {
3050 			exists = 1;
3051 			break;
3052 		}
3053 	}
3054 
3055 	list_for_each_entry(cur, deleted_refs, list) {
3056 		ret = dup_ref(cur, &pm->update_refs);
3057 		if (ret < 0)
3058 			goto out;
3059 	}
3060 	list_for_each_entry(cur, new_refs, list) {
3061 		ret = dup_ref(cur, &pm->update_refs);
3062 		if (ret < 0)
3063 			goto out;
3064 	}
3065 
3066 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3067 	if (ret)
3068 		goto out;
3069 
3070 	if (exists) {
3071 		list_add_tail(&pm->list, &entry->list);
3072 	} else {
3073 		rb_link_node(&pm->node, parent, p);
3074 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3075 	}
3076 	ret = 0;
3077 out:
3078 	if (ret) {
3079 		__free_recorded_refs(&pm->update_refs);
3080 		kfree(pm);
3081 	}
3082 	return ret;
3083 }
3084 
3085 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3086 						      u64 parent_ino)
3087 {
3088 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3089 	struct pending_dir_move *entry;
3090 
3091 	while (n) {
3092 		entry = rb_entry(n, struct pending_dir_move, node);
3093 		if (parent_ino < entry->parent_ino)
3094 			n = n->rb_left;
3095 		else if (parent_ino > entry->parent_ino)
3096 			n = n->rb_right;
3097 		else
3098 			return entry;
3099 	}
3100 	return NULL;
3101 }
3102 
3103 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3104 {
3105 	struct fs_path *from_path = NULL;
3106 	struct fs_path *to_path = NULL;
3107 	struct fs_path *name = NULL;
3108 	u64 orig_progress = sctx->send_progress;
3109 	struct recorded_ref *cur;
3110 	u64 parent_ino, parent_gen;
3111 	struct waiting_dir_move *dm = NULL;
3112 	u64 rmdir_ino = 0;
3113 	int ret;
3114 
3115 	name = fs_path_alloc();
3116 	from_path = fs_path_alloc();
3117 	if (!name || !from_path) {
3118 		ret = -ENOMEM;
3119 		goto out;
3120 	}
3121 
3122 	dm = get_waiting_dir_move(sctx, pm->ino);
3123 	ASSERT(dm);
3124 	rmdir_ino = dm->rmdir_ino;
3125 	free_waiting_dir_move(sctx, dm);
3126 
3127 	if (pm->is_orphan) {
3128 		ret = gen_unique_name(sctx, pm->ino,
3129 				      pm->gen, from_path);
3130 	} else {
3131 		ret = get_first_ref(sctx->parent_root, pm->ino,
3132 				    &parent_ino, &parent_gen, name);
3133 		if (ret < 0)
3134 			goto out;
3135 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3136 				   from_path);
3137 		if (ret < 0)
3138 			goto out;
3139 		ret = fs_path_add_path(from_path, name);
3140 	}
3141 	if (ret < 0)
3142 		goto out;
3143 
3144 	sctx->send_progress = sctx->cur_ino + 1;
3145 	fs_path_reset(name);
3146 	to_path = name;
3147 	name = NULL;
3148 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3149 	if (ret < 0)
3150 		goto out;
3151 
3152 	ret = send_rename(sctx, from_path, to_path);
3153 	if (ret < 0)
3154 		goto out;
3155 
3156 	if (rmdir_ino) {
3157 		struct orphan_dir_info *odi;
3158 
3159 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3160 		if (!odi) {
3161 			/* already deleted */
3162 			goto finish;
3163 		}
3164 		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3165 		if (ret < 0)
3166 			goto out;
3167 		if (!ret)
3168 			goto finish;
3169 
3170 		name = fs_path_alloc();
3171 		if (!name) {
3172 			ret = -ENOMEM;
3173 			goto out;
3174 		}
3175 		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3176 		if (ret < 0)
3177 			goto out;
3178 		ret = send_rmdir(sctx, name);
3179 		if (ret < 0)
3180 			goto out;
3181 		free_orphan_dir_info(sctx, odi);
3182 	}
3183 
3184 finish:
3185 	ret = send_utimes(sctx, pm->ino, pm->gen);
3186 	if (ret < 0)
3187 		goto out;
3188 
3189 	/*
3190 	 * After rename/move, need to update the utimes of both new parent(s)
3191 	 * and old parent(s).
3192 	 */
3193 	list_for_each_entry(cur, &pm->update_refs, list) {
3194 		if (cur->dir == rmdir_ino)
3195 			continue;
3196 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3197 		if (ret < 0)
3198 			goto out;
3199 	}
3200 
3201 out:
3202 	fs_path_free(name);
3203 	fs_path_free(from_path);
3204 	fs_path_free(to_path);
3205 	sctx->send_progress = orig_progress;
3206 
3207 	return ret;
3208 }
3209 
3210 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3211 {
3212 	if (!list_empty(&m->list))
3213 		list_del(&m->list);
3214 	if (!RB_EMPTY_NODE(&m->node))
3215 		rb_erase(&m->node, &sctx->pending_dir_moves);
3216 	__free_recorded_refs(&m->update_refs);
3217 	kfree(m);
3218 }
3219 
3220 static void tail_append_pending_moves(struct pending_dir_move *moves,
3221 				      struct list_head *stack)
3222 {
3223 	if (list_empty(&moves->list)) {
3224 		list_add_tail(&moves->list, stack);
3225 	} else {
3226 		LIST_HEAD(list);
3227 		list_splice_init(&moves->list, &list);
3228 		list_add_tail(&moves->list, stack);
3229 		list_splice_tail(&list, stack);
3230 	}
3231 }
3232 
3233 static int apply_children_dir_moves(struct send_ctx *sctx)
3234 {
3235 	struct pending_dir_move *pm;
3236 	struct list_head stack;
3237 	u64 parent_ino = sctx->cur_ino;
3238 	int ret = 0;
3239 
3240 	pm = get_pending_dir_moves(sctx, parent_ino);
3241 	if (!pm)
3242 		return 0;
3243 
3244 	INIT_LIST_HEAD(&stack);
3245 	tail_append_pending_moves(pm, &stack);
3246 
3247 	while (!list_empty(&stack)) {
3248 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3249 		parent_ino = pm->ino;
3250 		ret = apply_dir_move(sctx, pm);
3251 		free_pending_move(sctx, pm);
3252 		if (ret)
3253 			goto out;
3254 		pm = get_pending_dir_moves(sctx, parent_ino);
3255 		if (pm)
3256 			tail_append_pending_moves(pm, &stack);
3257 	}
3258 	return 0;
3259 
3260 out:
3261 	while (!list_empty(&stack)) {
3262 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3263 		free_pending_move(sctx, pm);
3264 	}
3265 	return ret;
3266 }
3267 
3268 /*
3269  * We might need to delay a directory rename even when no ancestor directory
3270  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3271  * renamed. This happens when we rename a directory to the old name (the name
3272  * in the parent root) of some other unrelated directory that got its rename
3273  * delayed due to some ancestor with higher number that got renamed.
3274  *
3275  * Example:
3276  *
3277  * Parent snapshot:
3278  * .                                       (ino 256)
3279  * |---- a/                                (ino 257)
3280  * |     |---- file                        (ino 260)
3281  * |
3282  * |---- b/                                (ino 258)
3283  * |---- c/                                (ino 259)
3284  *
3285  * Send snapshot:
3286  * .                                       (ino 256)
3287  * |---- a/                                (ino 258)
3288  * |---- x/                                (ino 259)
3289  *       |---- y/                          (ino 257)
3290  *             |----- file                 (ino 260)
3291  *
3292  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3293  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3294  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3295  * must issue is:
3296  *
3297  * 1 - rename 259 from 'c' to 'x'
3298  * 2 - rename 257 from 'a' to 'x/y'
3299  * 3 - rename 258 from 'b' to 'a'
3300  *
3301  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3302  * be done right away and < 0 on error.
3303  */
3304 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3305 				  struct recorded_ref *parent_ref,
3306 				  const bool is_orphan)
3307 {
3308 	struct btrfs_path *path;
3309 	struct btrfs_key key;
3310 	struct btrfs_key di_key;
3311 	struct btrfs_dir_item *di;
3312 	u64 left_gen;
3313 	u64 right_gen;
3314 	int ret = 0;
3315 
3316 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3317 		return 0;
3318 
3319 	path = alloc_path_for_send();
3320 	if (!path)
3321 		return -ENOMEM;
3322 
3323 	key.objectid = parent_ref->dir;
3324 	key.type = BTRFS_DIR_ITEM_KEY;
3325 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3326 
3327 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3328 	if (ret < 0) {
3329 		goto out;
3330 	} else if (ret > 0) {
3331 		ret = 0;
3332 		goto out;
3333 	}
3334 
3335 	di = btrfs_match_dir_item_name(sctx->parent_root, path,
3336 				       parent_ref->name, parent_ref->name_len);
3337 	if (!di) {
3338 		ret = 0;
3339 		goto out;
3340 	}
3341 	/*
3342 	 * di_key.objectid has the number of the inode that has a dentry in the
3343 	 * parent directory with the same name that sctx->cur_ino is being
3344 	 * renamed to. We need to check if that inode is in the send root as
3345 	 * well and if it is currently marked as an inode with a pending rename,
3346 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3347 	 * that it happens after that other inode is renamed.
3348 	 */
3349 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3350 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3351 		ret = 0;
3352 		goto out;
3353 	}
3354 
3355 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3356 			     &left_gen, NULL, NULL, NULL, NULL);
3357 	if (ret < 0)
3358 		goto out;
3359 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3360 			     &right_gen, NULL, NULL, NULL, NULL);
3361 	if (ret < 0) {
3362 		if (ret == -ENOENT)
3363 			ret = 0;
3364 		goto out;
3365 	}
3366 
3367 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3368 	if (right_gen != left_gen) {
3369 		ret = 0;
3370 		goto out;
3371 	}
3372 
3373 	if (is_waiting_for_move(sctx, di_key.objectid)) {
3374 		ret = add_pending_dir_move(sctx,
3375 					   sctx->cur_ino,
3376 					   sctx->cur_inode_gen,
3377 					   di_key.objectid,
3378 					   &sctx->new_refs,
3379 					   &sctx->deleted_refs,
3380 					   is_orphan);
3381 		if (!ret)
3382 			ret = 1;
3383 	}
3384 out:
3385 	btrfs_free_path(path);
3386 	return ret;
3387 }
3388 
3389 /*
3390  * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3391  * Return 1 if true, 0 if false and < 0 on error.
3392  */
3393 static int is_ancestor(struct btrfs_root *root,
3394 		       const u64 ino1,
3395 		       const u64 ino1_gen,
3396 		       const u64 ino2,
3397 		       struct fs_path *fs_path)
3398 {
3399 	u64 ino = ino2;
3400 
3401 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3402 		int ret;
3403 		u64 parent;
3404 		u64 parent_gen;
3405 
3406 		fs_path_reset(fs_path);
3407 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3408 		if (ret < 0) {
3409 			if (ret == -ENOENT && ino == ino2)
3410 				ret = 0;
3411 			return ret;
3412 		}
3413 		if (parent == ino1)
3414 			return parent_gen == ino1_gen ? 1 : 0;
3415 		ino = parent;
3416 	}
3417 	return 0;
3418 }
3419 
3420 static int wait_for_parent_move(struct send_ctx *sctx,
3421 				struct recorded_ref *parent_ref,
3422 				const bool is_orphan)
3423 {
3424 	int ret = 0;
3425 	u64 ino = parent_ref->dir;
3426 	u64 parent_ino_before, parent_ino_after;
3427 	struct fs_path *path_before = NULL;
3428 	struct fs_path *path_after = NULL;
3429 	int len1, len2;
3430 
3431 	path_after = fs_path_alloc();
3432 	path_before = fs_path_alloc();
3433 	if (!path_after || !path_before) {
3434 		ret = -ENOMEM;
3435 		goto out;
3436 	}
3437 
3438 	/*
3439 	 * Our current directory inode may not yet be renamed/moved because some
3440 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3441 	 * such ancestor exists and make sure our own rename/move happens after
3442 	 * that ancestor is processed to avoid path build infinite loops (done
3443 	 * at get_cur_path()).
3444 	 */
3445 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3446 		if (is_waiting_for_move(sctx, ino)) {
3447 			/*
3448 			 * If the current inode is an ancestor of ino in the
3449 			 * parent root, we need to delay the rename of the
3450 			 * current inode, otherwise don't delayed the rename
3451 			 * because we can end up with a circular dependency
3452 			 * of renames, resulting in some directories never
3453 			 * getting the respective rename operations issued in
3454 			 * the send stream or getting into infinite path build
3455 			 * loops.
3456 			 */
3457 			ret = is_ancestor(sctx->parent_root,
3458 					  sctx->cur_ino, sctx->cur_inode_gen,
3459 					  ino, path_before);
3460 			break;
3461 		}
3462 
3463 		fs_path_reset(path_before);
3464 		fs_path_reset(path_after);
3465 
3466 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3467 				    NULL, path_after);
3468 		if (ret < 0)
3469 			goto out;
3470 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3471 				    NULL, path_before);
3472 		if (ret < 0 && ret != -ENOENT) {
3473 			goto out;
3474 		} else if (ret == -ENOENT) {
3475 			ret = 0;
3476 			break;
3477 		}
3478 
3479 		len1 = fs_path_len(path_before);
3480 		len2 = fs_path_len(path_after);
3481 		if (ino > sctx->cur_ino &&
3482 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3483 		     memcmp(path_before->start, path_after->start, len1))) {
3484 			ret = 1;
3485 			break;
3486 		}
3487 		ino = parent_ino_after;
3488 	}
3489 
3490 out:
3491 	fs_path_free(path_before);
3492 	fs_path_free(path_after);
3493 
3494 	if (ret == 1) {
3495 		ret = add_pending_dir_move(sctx,
3496 					   sctx->cur_ino,
3497 					   sctx->cur_inode_gen,
3498 					   ino,
3499 					   &sctx->new_refs,
3500 					   &sctx->deleted_refs,
3501 					   is_orphan);
3502 		if (!ret)
3503 			ret = 1;
3504 	}
3505 
3506 	return ret;
3507 }
3508 
3509 /*
3510  * This does all the move/link/unlink/rmdir magic.
3511  */
3512 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3513 {
3514 	int ret = 0;
3515 	struct recorded_ref *cur;
3516 	struct recorded_ref *cur2;
3517 	struct list_head check_dirs;
3518 	struct fs_path *valid_path = NULL;
3519 	u64 ow_inode = 0;
3520 	u64 ow_gen;
3521 	int did_overwrite = 0;
3522 	int is_orphan = 0;
3523 	u64 last_dir_ino_rm = 0;
3524 	bool can_rename = true;
3525 
3526 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3527 
3528 	/*
3529 	 * This should never happen as the root dir always has the same ref
3530 	 * which is always '..'
3531 	 */
3532 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3533 	INIT_LIST_HEAD(&check_dirs);
3534 
3535 	valid_path = fs_path_alloc();
3536 	if (!valid_path) {
3537 		ret = -ENOMEM;
3538 		goto out;
3539 	}
3540 
3541 	/*
3542 	 * First, check if the first ref of the current inode was overwritten
3543 	 * before. If yes, we know that the current inode was already orphanized
3544 	 * and thus use the orphan name. If not, we can use get_cur_path to
3545 	 * get the path of the first ref as it would like while receiving at
3546 	 * this point in time.
3547 	 * New inodes are always orphan at the beginning, so force to use the
3548 	 * orphan name in this case.
3549 	 * The first ref is stored in valid_path and will be updated if it
3550 	 * gets moved around.
3551 	 */
3552 	if (!sctx->cur_inode_new) {
3553 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3554 				sctx->cur_inode_gen);
3555 		if (ret < 0)
3556 			goto out;
3557 		if (ret)
3558 			did_overwrite = 1;
3559 	}
3560 	if (sctx->cur_inode_new || did_overwrite) {
3561 		ret = gen_unique_name(sctx, sctx->cur_ino,
3562 				sctx->cur_inode_gen, valid_path);
3563 		if (ret < 0)
3564 			goto out;
3565 		is_orphan = 1;
3566 	} else {
3567 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3568 				valid_path);
3569 		if (ret < 0)
3570 			goto out;
3571 	}
3572 
3573 	list_for_each_entry(cur, &sctx->new_refs, list) {
3574 		/*
3575 		 * We may have refs where the parent directory does not exist
3576 		 * yet. This happens if the parent directories inum is higher
3577 		 * the the current inum. To handle this case, we create the
3578 		 * parent directory out of order. But we need to check if this
3579 		 * did already happen before due to other refs in the same dir.
3580 		 */
3581 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3582 		if (ret < 0)
3583 			goto out;
3584 		if (ret == inode_state_will_create) {
3585 			ret = 0;
3586 			/*
3587 			 * First check if any of the current inodes refs did
3588 			 * already create the dir.
3589 			 */
3590 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3591 				if (cur == cur2)
3592 					break;
3593 				if (cur2->dir == cur->dir) {
3594 					ret = 1;
3595 					break;
3596 				}
3597 			}
3598 
3599 			/*
3600 			 * If that did not happen, check if a previous inode
3601 			 * did already create the dir.
3602 			 */
3603 			if (!ret)
3604 				ret = did_create_dir(sctx, cur->dir);
3605 			if (ret < 0)
3606 				goto out;
3607 			if (!ret) {
3608 				ret = send_create_inode(sctx, cur->dir);
3609 				if (ret < 0)
3610 					goto out;
3611 			}
3612 		}
3613 
3614 		/*
3615 		 * Check if this new ref would overwrite the first ref of
3616 		 * another unprocessed inode. If yes, orphanize the
3617 		 * overwritten inode. If we find an overwritten ref that is
3618 		 * not the first ref, simply unlink it.
3619 		 */
3620 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3621 				cur->name, cur->name_len,
3622 				&ow_inode, &ow_gen);
3623 		if (ret < 0)
3624 			goto out;
3625 		if (ret) {
3626 			ret = is_first_ref(sctx->parent_root,
3627 					   ow_inode, cur->dir, cur->name,
3628 					   cur->name_len);
3629 			if (ret < 0)
3630 				goto out;
3631 			if (ret) {
3632 				struct name_cache_entry *nce;
3633 
3634 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3635 						cur->full_path);
3636 				if (ret < 0)
3637 					goto out;
3638 				/*
3639 				 * Make sure we clear our orphanized inode's
3640 				 * name from the name cache. This is because the
3641 				 * inode ow_inode might be an ancestor of some
3642 				 * other inode that will be orphanized as well
3643 				 * later and has an inode number greater than
3644 				 * sctx->send_progress. We need to prevent
3645 				 * future name lookups from using the old name
3646 				 * and get instead the orphan name.
3647 				 */
3648 				nce = name_cache_search(sctx, ow_inode, ow_gen);
3649 				if (nce) {
3650 					name_cache_delete(sctx, nce);
3651 					kfree(nce);
3652 				}
3653 			} else {
3654 				ret = send_unlink(sctx, cur->full_path);
3655 				if (ret < 0)
3656 					goto out;
3657 			}
3658 		}
3659 
3660 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3661 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3662 			if (ret < 0)
3663 				goto out;
3664 			if (ret == 1) {
3665 				can_rename = false;
3666 				*pending_move = 1;
3667 			}
3668 		}
3669 
3670 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3671 		    can_rename) {
3672 			ret = wait_for_parent_move(sctx, cur, is_orphan);
3673 			if (ret < 0)
3674 				goto out;
3675 			if (ret == 1) {
3676 				can_rename = false;
3677 				*pending_move = 1;
3678 			}
3679 		}
3680 
3681 		/*
3682 		 * link/move the ref to the new place. If we have an orphan
3683 		 * inode, move it and update valid_path. If not, link or move
3684 		 * it depending on the inode mode.
3685 		 */
3686 		if (is_orphan && can_rename) {
3687 			ret = send_rename(sctx, valid_path, cur->full_path);
3688 			if (ret < 0)
3689 				goto out;
3690 			is_orphan = 0;
3691 			ret = fs_path_copy(valid_path, cur->full_path);
3692 			if (ret < 0)
3693 				goto out;
3694 		} else if (can_rename) {
3695 			if (S_ISDIR(sctx->cur_inode_mode)) {
3696 				/*
3697 				 * Dirs can't be linked, so move it. For moved
3698 				 * dirs, we always have one new and one deleted
3699 				 * ref. The deleted ref is ignored later.
3700 				 */
3701 				ret = send_rename(sctx, valid_path,
3702 						  cur->full_path);
3703 				if (!ret)
3704 					ret = fs_path_copy(valid_path,
3705 							   cur->full_path);
3706 				if (ret < 0)
3707 					goto out;
3708 			} else {
3709 				ret = send_link(sctx, cur->full_path,
3710 						valid_path);
3711 				if (ret < 0)
3712 					goto out;
3713 			}
3714 		}
3715 		ret = dup_ref(cur, &check_dirs);
3716 		if (ret < 0)
3717 			goto out;
3718 	}
3719 
3720 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3721 		/*
3722 		 * Check if we can already rmdir the directory. If not,
3723 		 * orphanize it. For every dir item inside that gets deleted
3724 		 * later, we do this check again and rmdir it then if possible.
3725 		 * See the use of check_dirs for more details.
3726 		 */
3727 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3728 				sctx->cur_ino);
3729 		if (ret < 0)
3730 			goto out;
3731 		if (ret) {
3732 			ret = send_rmdir(sctx, valid_path);
3733 			if (ret < 0)
3734 				goto out;
3735 		} else if (!is_orphan) {
3736 			ret = orphanize_inode(sctx, sctx->cur_ino,
3737 					sctx->cur_inode_gen, valid_path);
3738 			if (ret < 0)
3739 				goto out;
3740 			is_orphan = 1;
3741 		}
3742 
3743 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3744 			ret = dup_ref(cur, &check_dirs);
3745 			if (ret < 0)
3746 				goto out;
3747 		}
3748 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
3749 		   !list_empty(&sctx->deleted_refs)) {
3750 		/*
3751 		 * We have a moved dir. Add the old parent to check_dirs
3752 		 */
3753 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3754 				list);
3755 		ret = dup_ref(cur, &check_dirs);
3756 		if (ret < 0)
3757 			goto out;
3758 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
3759 		/*
3760 		 * We have a non dir inode. Go through all deleted refs and
3761 		 * unlink them if they were not already overwritten by other
3762 		 * inodes.
3763 		 */
3764 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3765 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3766 					sctx->cur_ino, sctx->cur_inode_gen,
3767 					cur->name, cur->name_len);
3768 			if (ret < 0)
3769 				goto out;
3770 			if (!ret) {
3771 				ret = send_unlink(sctx, cur->full_path);
3772 				if (ret < 0)
3773 					goto out;
3774 			}
3775 			ret = dup_ref(cur, &check_dirs);
3776 			if (ret < 0)
3777 				goto out;
3778 		}
3779 		/*
3780 		 * If the inode is still orphan, unlink the orphan. This may
3781 		 * happen when a previous inode did overwrite the first ref
3782 		 * of this inode and no new refs were added for the current
3783 		 * inode. Unlinking does not mean that the inode is deleted in
3784 		 * all cases. There may still be links to this inode in other
3785 		 * places.
3786 		 */
3787 		if (is_orphan) {
3788 			ret = send_unlink(sctx, valid_path);
3789 			if (ret < 0)
3790 				goto out;
3791 		}
3792 	}
3793 
3794 	/*
3795 	 * We did collect all parent dirs where cur_inode was once located. We
3796 	 * now go through all these dirs and check if they are pending for
3797 	 * deletion and if it's finally possible to perform the rmdir now.
3798 	 * We also update the inode stats of the parent dirs here.
3799 	 */
3800 	list_for_each_entry(cur, &check_dirs, list) {
3801 		/*
3802 		 * In case we had refs into dirs that were not processed yet,
3803 		 * we don't need to do the utime and rmdir logic for these dirs.
3804 		 * The dir will be processed later.
3805 		 */
3806 		if (cur->dir > sctx->cur_ino)
3807 			continue;
3808 
3809 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3810 		if (ret < 0)
3811 			goto out;
3812 
3813 		if (ret == inode_state_did_create ||
3814 		    ret == inode_state_no_change) {
3815 			/* TODO delayed utimes */
3816 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3817 			if (ret < 0)
3818 				goto out;
3819 		} else if (ret == inode_state_did_delete &&
3820 			   cur->dir != last_dir_ino_rm) {
3821 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3822 					sctx->cur_ino);
3823 			if (ret < 0)
3824 				goto out;
3825 			if (ret) {
3826 				ret = get_cur_path(sctx, cur->dir,
3827 						   cur->dir_gen, valid_path);
3828 				if (ret < 0)
3829 					goto out;
3830 				ret = send_rmdir(sctx, valid_path);
3831 				if (ret < 0)
3832 					goto out;
3833 				last_dir_ino_rm = cur->dir;
3834 			}
3835 		}
3836 	}
3837 
3838 	ret = 0;
3839 
3840 out:
3841 	__free_recorded_refs(&check_dirs);
3842 	free_recorded_refs(sctx);
3843 	fs_path_free(valid_path);
3844 	return ret;
3845 }
3846 
3847 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3848 		      struct fs_path *name, void *ctx, struct list_head *refs)
3849 {
3850 	int ret = 0;
3851 	struct send_ctx *sctx = ctx;
3852 	struct fs_path *p;
3853 	u64 gen;
3854 
3855 	p = fs_path_alloc();
3856 	if (!p)
3857 		return -ENOMEM;
3858 
3859 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3860 			NULL, NULL);
3861 	if (ret < 0)
3862 		goto out;
3863 
3864 	ret = get_cur_path(sctx, dir, gen, p);
3865 	if (ret < 0)
3866 		goto out;
3867 	ret = fs_path_add_path(p, name);
3868 	if (ret < 0)
3869 		goto out;
3870 
3871 	ret = __record_ref(refs, dir, gen, p);
3872 
3873 out:
3874 	if (ret)
3875 		fs_path_free(p);
3876 	return ret;
3877 }
3878 
3879 static int __record_new_ref(int num, u64 dir, int index,
3880 			    struct fs_path *name,
3881 			    void *ctx)
3882 {
3883 	struct send_ctx *sctx = ctx;
3884 	return record_ref(sctx->send_root, num, dir, index, name,
3885 			  ctx, &sctx->new_refs);
3886 }
3887 
3888 
3889 static int __record_deleted_ref(int num, u64 dir, int index,
3890 				struct fs_path *name,
3891 				void *ctx)
3892 {
3893 	struct send_ctx *sctx = ctx;
3894 	return record_ref(sctx->parent_root, num, dir, index, name,
3895 			  ctx, &sctx->deleted_refs);
3896 }
3897 
3898 static int record_new_ref(struct send_ctx *sctx)
3899 {
3900 	int ret;
3901 
3902 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3903 				sctx->cmp_key, 0, __record_new_ref, sctx);
3904 	if (ret < 0)
3905 		goto out;
3906 	ret = 0;
3907 
3908 out:
3909 	return ret;
3910 }
3911 
3912 static int record_deleted_ref(struct send_ctx *sctx)
3913 {
3914 	int ret;
3915 
3916 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3917 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
3918 	if (ret < 0)
3919 		goto out;
3920 	ret = 0;
3921 
3922 out:
3923 	return ret;
3924 }
3925 
3926 struct find_ref_ctx {
3927 	u64 dir;
3928 	u64 dir_gen;
3929 	struct btrfs_root *root;
3930 	struct fs_path *name;
3931 	int found_idx;
3932 };
3933 
3934 static int __find_iref(int num, u64 dir, int index,
3935 		       struct fs_path *name,
3936 		       void *ctx_)
3937 {
3938 	struct find_ref_ctx *ctx = ctx_;
3939 	u64 dir_gen;
3940 	int ret;
3941 
3942 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3943 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3944 		/*
3945 		 * To avoid doing extra lookups we'll only do this if everything
3946 		 * else matches.
3947 		 */
3948 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3949 				     NULL, NULL, NULL);
3950 		if (ret)
3951 			return ret;
3952 		if (dir_gen != ctx->dir_gen)
3953 			return 0;
3954 		ctx->found_idx = num;
3955 		return 1;
3956 	}
3957 	return 0;
3958 }
3959 
3960 static int find_iref(struct btrfs_root *root,
3961 		     struct btrfs_path *path,
3962 		     struct btrfs_key *key,
3963 		     u64 dir, u64 dir_gen, struct fs_path *name)
3964 {
3965 	int ret;
3966 	struct find_ref_ctx ctx;
3967 
3968 	ctx.dir = dir;
3969 	ctx.name = name;
3970 	ctx.dir_gen = dir_gen;
3971 	ctx.found_idx = -1;
3972 	ctx.root = root;
3973 
3974 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3975 	if (ret < 0)
3976 		return ret;
3977 
3978 	if (ctx.found_idx == -1)
3979 		return -ENOENT;
3980 
3981 	return ctx.found_idx;
3982 }
3983 
3984 static int __record_changed_new_ref(int num, u64 dir, int index,
3985 				    struct fs_path *name,
3986 				    void *ctx)
3987 {
3988 	u64 dir_gen;
3989 	int ret;
3990 	struct send_ctx *sctx = ctx;
3991 
3992 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3993 			     NULL, NULL, NULL);
3994 	if (ret)
3995 		return ret;
3996 
3997 	ret = find_iref(sctx->parent_root, sctx->right_path,
3998 			sctx->cmp_key, dir, dir_gen, name);
3999 	if (ret == -ENOENT)
4000 		ret = __record_new_ref(num, dir, index, name, sctx);
4001 	else if (ret > 0)
4002 		ret = 0;
4003 
4004 	return ret;
4005 }
4006 
4007 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4008 					struct fs_path *name,
4009 					void *ctx)
4010 {
4011 	u64 dir_gen;
4012 	int ret;
4013 	struct send_ctx *sctx = ctx;
4014 
4015 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4016 			     NULL, NULL, NULL);
4017 	if (ret)
4018 		return ret;
4019 
4020 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4021 			dir, dir_gen, name);
4022 	if (ret == -ENOENT)
4023 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4024 	else if (ret > 0)
4025 		ret = 0;
4026 
4027 	return ret;
4028 }
4029 
4030 static int record_changed_ref(struct send_ctx *sctx)
4031 {
4032 	int ret = 0;
4033 
4034 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4035 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4036 	if (ret < 0)
4037 		goto out;
4038 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4039 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4040 	if (ret < 0)
4041 		goto out;
4042 	ret = 0;
4043 
4044 out:
4045 	return ret;
4046 }
4047 
4048 /*
4049  * Record and process all refs at once. Needed when an inode changes the
4050  * generation number, which means that it was deleted and recreated.
4051  */
4052 static int process_all_refs(struct send_ctx *sctx,
4053 			    enum btrfs_compare_tree_result cmd)
4054 {
4055 	int ret;
4056 	struct btrfs_root *root;
4057 	struct btrfs_path *path;
4058 	struct btrfs_key key;
4059 	struct btrfs_key found_key;
4060 	struct extent_buffer *eb;
4061 	int slot;
4062 	iterate_inode_ref_t cb;
4063 	int pending_move = 0;
4064 
4065 	path = alloc_path_for_send();
4066 	if (!path)
4067 		return -ENOMEM;
4068 
4069 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4070 		root = sctx->send_root;
4071 		cb = __record_new_ref;
4072 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4073 		root = sctx->parent_root;
4074 		cb = __record_deleted_ref;
4075 	} else {
4076 		btrfs_err(sctx->send_root->fs_info,
4077 				"Wrong command %d in process_all_refs", cmd);
4078 		ret = -EINVAL;
4079 		goto out;
4080 	}
4081 
4082 	key.objectid = sctx->cmp_key->objectid;
4083 	key.type = BTRFS_INODE_REF_KEY;
4084 	key.offset = 0;
4085 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4086 	if (ret < 0)
4087 		goto out;
4088 
4089 	while (1) {
4090 		eb = path->nodes[0];
4091 		slot = path->slots[0];
4092 		if (slot >= btrfs_header_nritems(eb)) {
4093 			ret = btrfs_next_leaf(root, path);
4094 			if (ret < 0)
4095 				goto out;
4096 			else if (ret > 0)
4097 				break;
4098 			continue;
4099 		}
4100 
4101 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4102 
4103 		if (found_key.objectid != key.objectid ||
4104 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4105 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4106 			break;
4107 
4108 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4109 		if (ret < 0)
4110 			goto out;
4111 
4112 		path->slots[0]++;
4113 	}
4114 	btrfs_release_path(path);
4115 
4116 	ret = process_recorded_refs(sctx, &pending_move);
4117 	/* Only applicable to an incremental send. */
4118 	ASSERT(pending_move == 0);
4119 
4120 out:
4121 	btrfs_free_path(path);
4122 	return ret;
4123 }
4124 
4125 static int send_set_xattr(struct send_ctx *sctx,
4126 			  struct fs_path *path,
4127 			  const char *name, int name_len,
4128 			  const char *data, int data_len)
4129 {
4130 	int ret = 0;
4131 
4132 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4133 	if (ret < 0)
4134 		goto out;
4135 
4136 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4137 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4138 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4139 
4140 	ret = send_cmd(sctx);
4141 
4142 tlv_put_failure:
4143 out:
4144 	return ret;
4145 }
4146 
4147 static int send_remove_xattr(struct send_ctx *sctx,
4148 			  struct fs_path *path,
4149 			  const char *name, int name_len)
4150 {
4151 	int ret = 0;
4152 
4153 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4154 	if (ret < 0)
4155 		goto out;
4156 
4157 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4158 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4159 
4160 	ret = send_cmd(sctx);
4161 
4162 tlv_put_failure:
4163 out:
4164 	return ret;
4165 }
4166 
4167 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4168 			       const char *name, int name_len,
4169 			       const char *data, int data_len,
4170 			       u8 type, void *ctx)
4171 {
4172 	int ret;
4173 	struct send_ctx *sctx = ctx;
4174 	struct fs_path *p;
4175 	posix_acl_xattr_header dummy_acl;
4176 
4177 	p = fs_path_alloc();
4178 	if (!p)
4179 		return -ENOMEM;
4180 
4181 	/*
4182 	 * This hack is needed because empty acl's are stored as zero byte
4183 	 * data in xattrs. Problem with that is, that receiving these zero byte
4184 	 * acl's will fail later. To fix this, we send a dummy acl list that
4185 	 * only contains the version number and no entries.
4186 	 */
4187 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4188 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4189 		if (data_len == 0) {
4190 			dummy_acl.a_version =
4191 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4192 			data = (char *)&dummy_acl;
4193 			data_len = sizeof(dummy_acl);
4194 		}
4195 	}
4196 
4197 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4198 	if (ret < 0)
4199 		goto out;
4200 
4201 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4202 
4203 out:
4204 	fs_path_free(p);
4205 	return ret;
4206 }
4207 
4208 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4209 				   const char *name, int name_len,
4210 				   const char *data, int data_len,
4211 				   u8 type, void *ctx)
4212 {
4213 	int ret;
4214 	struct send_ctx *sctx = ctx;
4215 	struct fs_path *p;
4216 
4217 	p = fs_path_alloc();
4218 	if (!p)
4219 		return -ENOMEM;
4220 
4221 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4222 	if (ret < 0)
4223 		goto out;
4224 
4225 	ret = send_remove_xattr(sctx, p, name, name_len);
4226 
4227 out:
4228 	fs_path_free(p);
4229 	return ret;
4230 }
4231 
4232 static int process_new_xattr(struct send_ctx *sctx)
4233 {
4234 	int ret = 0;
4235 
4236 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4237 			       sctx->cmp_key, __process_new_xattr, sctx);
4238 
4239 	return ret;
4240 }
4241 
4242 static int process_deleted_xattr(struct send_ctx *sctx)
4243 {
4244 	int ret;
4245 
4246 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4247 			       sctx->cmp_key, __process_deleted_xattr, sctx);
4248 
4249 	return ret;
4250 }
4251 
4252 struct find_xattr_ctx {
4253 	const char *name;
4254 	int name_len;
4255 	int found_idx;
4256 	char *found_data;
4257 	int found_data_len;
4258 };
4259 
4260 static int __find_xattr(int num, struct btrfs_key *di_key,
4261 			const char *name, int name_len,
4262 			const char *data, int data_len,
4263 			u8 type, void *vctx)
4264 {
4265 	struct find_xattr_ctx *ctx = vctx;
4266 
4267 	if (name_len == ctx->name_len &&
4268 	    strncmp(name, ctx->name, name_len) == 0) {
4269 		ctx->found_idx = num;
4270 		ctx->found_data_len = data_len;
4271 		ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
4272 		if (!ctx->found_data)
4273 			return -ENOMEM;
4274 		return 1;
4275 	}
4276 	return 0;
4277 }
4278 
4279 static int find_xattr(struct btrfs_root *root,
4280 		      struct btrfs_path *path,
4281 		      struct btrfs_key *key,
4282 		      const char *name, int name_len,
4283 		      char **data, int *data_len)
4284 {
4285 	int ret;
4286 	struct find_xattr_ctx ctx;
4287 
4288 	ctx.name = name;
4289 	ctx.name_len = name_len;
4290 	ctx.found_idx = -1;
4291 	ctx.found_data = NULL;
4292 	ctx.found_data_len = 0;
4293 
4294 	ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4295 	if (ret < 0)
4296 		return ret;
4297 
4298 	if (ctx.found_idx == -1)
4299 		return -ENOENT;
4300 	if (data) {
4301 		*data = ctx.found_data;
4302 		*data_len = ctx.found_data_len;
4303 	} else {
4304 		kfree(ctx.found_data);
4305 	}
4306 	return ctx.found_idx;
4307 }
4308 
4309 
4310 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4311 				       const char *name, int name_len,
4312 				       const char *data, int data_len,
4313 				       u8 type, void *ctx)
4314 {
4315 	int ret;
4316 	struct send_ctx *sctx = ctx;
4317 	char *found_data = NULL;
4318 	int found_data_len  = 0;
4319 
4320 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4321 			 sctx->cmp_key, name, name_len, &found_data,
4322 			 &found_data_len);
4323 	if (ret == -ENOENT) {
4324 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4325 				data_len, type, ctx);
4326 	} else if (ret >= 0) {
4327 		if (data_len != found_data_len ||
4328 		    memcmp(data, found_data, data_len)) {
4329 			ret = __process_new_xattr(num, di_key, name, name_len,
4330 					data, data_len, type, ctx);
4331 		} else {
4332 			ret = 0;
4333 		}
4334 	}
4335 
4336 	kfree(found_data);
4337 	return ret;
4338 }
4339 
4340 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4341 					   const char *name, int name_len,
4342 					   const char *data, int data_len,
4343 					   u8 type, void *ctx)
4344 {
4345 	int ret;
4346 	struct send_ctx *sctx = ctx;
4347 
4348 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4349 			 name, name_len, NULL, NULL);
4350 	if (ret == -ENOENT)
4351 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4352 				data_len, type, ctx);
4353 	else if (ret >= 0)
4354 		ret = 0;
4355 
4356 	return ret;
4357 }
4358 
4359 static int process_changed_xattr(struct send_ctx *sctx)
4360 {
4361 	int ret = 0;
4362 
4363 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4364 			sctx->cmp_key, __process_changed_new_xattr, sctx);
4365 	if (ret < 0)
4366 		goto out;
4367 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4368 			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4369 
4370 out:
4371 	return ret;
4372 }
4373 
4374 static int process_all_new_xattrs(struct send_ctx *sctx)
4375 {
4376 	int ret;
4377 	struct btrfs_root *root;
4378 	struct btrfs_path *path;
4379 	struct btrfs_key key;
4380 	struct btrfs_key found_key;
4381 	struct extent_buffer *eb;
4382 	int slot;
4383 
4384 	path = alloc_path_for_send();
4385 	if (!path)
4386 		return -ENOMEM;
4387 
4388 	root = sctx->send_root;
4389 
4390 	key.objectid = sctx->cmp_key->objectid;
4391 	key.type = BTRFS_XATTR_ITEM_KEY;
4392 	key.offset = 0;
4393 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4394 	if (ret < 0)
4395 		goto out;
4396 
4397 	while (1) {
4398 		eb = path->nodes[0];
4399 		slot = path->slots[0];
4400 		if (slot >= btrfs_header_nritems(eb)) {
4401 			ret = btrfs_next_leaf(root, path);
4402 			if (ret < 0) {
4403 				goto out;
4404 			} else if (ret > 0) {
4405 				ret = 0;
4406 				break;
4407 			}
4408 			continue;
4409 		}
4410 
4411 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4412 		if (found_key.objectid != key.objectid ||
4413 		    found_key.type != key.type) {
4414 			ret = 0;
4415 			goto out;
4416 		}
4417 
4418 		ret = iterate_dir_item(root, path, &found_key,
4419 				       __process_new_xattr, sctx);
4420 		if (ret < 0)
4421 			goto out;
4422 
4423 		path->slots[0]++;
4424 	}
4425 
4426 out:
4427 	btrfs_free_path(path);
4428 	return ret;
4429 }
4430 
4431 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4432 {
4433 	struct btrfs_root *root = sctx->send_root;
4434 	struct btrfs_fs_info *fs_info = root->fs_info;
4435 	struct inode *inode;
4436 	struct page *page;
4437 	char *addr;
4438 	struct btrfs_key key;
4439 	pgoff_t index = offset >> PAGE_CACHE_SHIFT;
4440 	pgoff_t last_index;
4441 	unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
4442 	ssize_t ret = 0;
4443 
4444 	key.objectid = sctx->cur_ino;
4445 	key.type = BTRFS_INODE_ITEM_KEY;
4446 	key.offset = 0;
4447 
4448 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4449 	if (IS_ERR(inode))
4450 		return PTR_ERR(inode);
4451 
4452 	if (offset + len > i_size_read(inode)) {
4453 		if (offset > i_size_read(inode))
4454 			len = 0;
4455 		else
4456 			len = offset - i_size_read(inode);
4457 	}
4458 	if (len == 0)
4459 		goto out;
4460 
4461 	last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
4462 
4463 	/* initial readahead */
4464 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4465 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4466 	btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4467 		       last_index - index + 1);
4468 
4469 	while (index <= last_index) {
4470 		unsigned cur_len = min_t(unsigned, len,
4471 					 PAGE_CACHE_SIZE - pg_offset);
4472 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4473 		if (!page) {
4474 			ret = -ENOMEM;
4475 			break;
4476 		}
4477 
4478 		if (!PageUptodate(page)) {
4479 			btrfs_readpage(NULL, page);
4480 			lock_page(page);
4481 			if (!PageUptodate(page)) {
4482 				unlock_page(page);
4483 				page_cache_release(page);
4484 				ret = -EIO;
4485 				break;
4486 			}
4487 		}
4488 
4489 		addr = kmap(page);
4490 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4491 		kunmap(page);
4492 		unlock_page(page);
4493 		page_cache_release(page);
4494 		index++;
4495 		pg_offset = 0;
4496 		len -= cur_len;
4497 		ret += cur_len;
4498 	}
4499 out:
4500 	iput(inode);
4501 	return ret;
4502 }
4503 
4504 /*
4505  * Read some bytes from the current inode/file and send a write command to
4506  * user space.
4507  */
4508 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4509 {
4510 	int ret = 0;
4511 	struct fs_path *p;
4512 	ssize_t num_read = 0;
4513 
4514 	p = fs_path_alloc();
4515 	if (!p)
4516 		return -ENOMEM;
4517 
4518 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4519 
4520 	num_read = fill_read_buf(sctx, offset, len);
4521 	if (num_read <= 0) {
4522 		if (num_read < 0)
4523 			ret = num_read;
4524 		goto out;
4525 	}
4526 
4527 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4528 	if (ret < 0)
4529 		goto out;
4530 
4531 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4532 	if (ret < 0)
4533 		goto out;
4534 
4535 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4536 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4537 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4538 
4539 	ret = send_cmd(sctx);
4540 
4541 tlv_put_failure:
4542 out:
4543 	fs_path_free(p);
4544 	if (ret < 0)
4545 		return ret;
4546 	return num_read;
4547 }
4548 
4549 /*
4550  * Send a clone command to user space.
4551  */
4552 static int send_clone(struct send_ctx *sctx,
4553 		      u64 offset, u32 len,
4554 		      struct clone_root *clone_root)
4555 {
4556 	int ret = 0;
4557 	struct fs_path *p;
4558 	u64 gen;
4559 
4560 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4561 	       "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4562 		clone_root->root->objectid, clone_root->ino,
4563 		clone_root->offset);
4564 
4565 	p = fs_path_alloc();
4566 	if (!p)
4567 		return -ENOMEM;
4568 
4569 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4570 	if (ret < 0)
4571 		goto out;
4572 
4573 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4574 	if (ret < 0)
4575 		goto out;
4576 
4577 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4578 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4579 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4580 
4581 	if (clone_root->root == sctx->send_root) {
4582 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4583 				&gen, NULL, NULL, NULL, NULL);
4584 		if (ret < 0)
4585 			goto out;
4586 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4587 	} else {
4588 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4589 	}
4590 	if (ret < 0)
4591 		goto out;
4592 
4593 	/*
4594 	 * If the parent we're using has a received_uuid set then use that as
4595 	 * our clone source as that is what we will look for when doing a
4596 	 * receive.
4597 	 *
4598 	 * This covers the case that we create a snapshot off of a received
4599 	 * subvolume and then use that as the parent and try to receive on a
4600 	 * different host.
4601 	 */
4602 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4603 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4604 			     clone_root->root->root_item.received_uuid);
4605 	else
4606 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4607 			     clone_root->root->root_item.uuid);
4608 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4609 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4610 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4611 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4612 			clone_root->offset);
4613 
4614 	ret = send_cmd(sctx);
4615 
4616 tlv_put_failure:
4617 out:
4618 	fs_path_free(p);
4619 	return ret;
4620 }
4621 
4622 /*
4623  * Send an update extent command to user space.
4624  */
4625 static int send_update_extent(struct send_ctx *sctx,
4626 			      u64 offset, u32 len)
4627 {
4628 	int ret = 0;
4629 	struct fs_path *p;
4630 
4631 	p = fs_path_alloc();
4632 	if (!p)
4633 		return -ENOMEM;
4634 
4635 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4636 	if (ret < 0)
4637 		goto out;
4638 
4639 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4640 	if (ret < 0)
4641 		goto out;
4642 
4643 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4644 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4645 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4646 
4647 	ret = send_cmd(sctx);
4648 
4649 tlv_put_failure:
4650 out:
4651 	fs_path_free(p);
4652 	return ret;
4653 }
4654 
4655 static int send_hole(struct send_ctx *sctx, u64 end)
4656 {
4657 	struct fs_path *p = NULL;
4658 	u64 offset = sctx->cur_inode_last_extent;
4659 	u64 len;
4660 	int ret = 0;
4661 
4662 	p = fs_path_alloc();
4663 	if (!p)
4664 		return -ENOMEM;
4665 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4666 	if (ret < 0)
4667 		goto tlv_put_failure;
4668 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4669 	while (offset < end) {
4670 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4671 
4672 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4673 		if (ret < 0)
4674 			break;
4675 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4676 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4677 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4678 		ret = send_cmd(sctx);
4679 		if (ret < 0)
4680 			break;
4681 		offset += len;
4682 	}
4683 tlv_put_failure:
4684 	fs_path_free(p);
4685 	return ret;
4686 }
4687 
4688 static int send_write_or_clone(struct send_ctx *sctx,
4689 			       struct btrfs_path *path,
4690 			       struct btrfs_key *key,
4691 			       struct clone_root *clone_root)
4692 {
4693 	int ret = 0;
4694 	struct btrfs_file_extent_item *ei;
4695 	u64 offset = key->offset;
4696 	u64 pos = 0;
4697 	u64 len;
4698 	u32 l;
4699 	u8 type;
4700 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4701 
4702 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4703 			struct btrfs_file_extent_item);
4704 	type = btrfs_file_extent_type(path->nodes[0], ei);
4705 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4706 		len = btrfs_file_extent_inline_len(path->nodes[0],
4707 						   path->slots[0], ei);
4708 		/*
4709 		 * it is possible the inline item won't cover the whole page,
4710 		 * but there may be items after this page.  Make
4711 		 * sure to send the whole thing
4712 		 */
4713 		len = PAGE_CACHE_ALIGN(len);
4714 	} else {
4715 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4716 	}
4717 
4718 	if (offset + len > sctx->cur_inode_size)
4719 		len = sctx->cur_inode_size - offset;
4720 	if (len == 0) {
4721 		ret = 0;
4722 		goto out;
4723 	}
4724 
4725 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
4726 		ret = send_clone(sctx, offset, len, clone_root);
4727 	} else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
4728 		ret = send_update_extent(sctx, offset, len);
4729 	} else {
4730 		while (pos < len) {
4731 			l = len - pos;
4732 			if (l > BTRFS_SEND_READ_SIZE)
4733 				l = BTRFS_SEND_READ_SIZE;
4734 			ret = send_write(sctx, pos + offset, l);
4735 			if (ret < 0)
4736 				goto out;
4737 			if (!ret)
4738 				break;
4739 			pos += ret;
4740 		}
4741 		ret = 0;
4742 	}
4743 out:
4744 	return ret;
4745 }
4746 
4747 static int is_extent_unchanged(struct send_ctx *sctx,
4748 			       struct btrfs_path *left_path,
4749 			       struct btrfs_key *ekey)
4750 {
4751 	int ret = 0;
4752 	struct btrfs_key key;
4753 	struct btrfs_path *path = NULL;
4754 	struct extent_buffer *eb;
4755 	int slot;
4756 	struct btrfs_key found_key;
4757 	struct btrfs_file_extent_item *ei;
4758 	u64 left_disknr;
4759 	u64 right_disknr;
4760 	u64 left_offset;
4761 	u64 right_offset;
4762 	u64 left_offset_fixed;
4763 	u64 left_len;
4764 	u64 right_len;
4765 	u64 left_gen;
4766 	u64 right_gen;
4767 	u8 left_type;
4768 	u8 right_type;
4769 
4770 	path = alloc_path_for_send();
4771 	if (!path)
4772 		return -ENOMEM;
4773 
4774 	eb = left_path->nodes[0];
4775 	slot = left_path->slots[0];
4776 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4777 	left_type = btrfs_file_extent_type(eb, ei);
4778 
4779 	if (left_type != BTRFS_FILE_EXTENT_REG) {
4780 		ret = 0;
4781 		goto out;
4782 	}
4783 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4784 	left_len = btrfs_file_extent_num_bytes(eb, ei);
4785 	left_offset = btrfs_file_extent_offset(eb, ei);
4786 	left_gen = btrfs_file_extent_generation(eb, ei);
4787 
4788 	/*
4789 	 * Following comments will refer to these graphics. L is the left
4790 	 * extents which we are checking at the moment. 1-8 are the right
4791 	 * extents that we iterate.
4792 	 *
4793 	 *       |-----L-----|
4794 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4795 	 *
4796 	 *       |-----L-----|
4797 	 * |--1--|-2b-|...(same as above)
4798 	 *
4799 	 * Alternative situation. Happens on files where extents got split.
4800 	 *       |-----L-----|
4801 	 * |-----------7-----------|-6-|
4802 	 *
4803 	 * Alternative situation. Happens on files which got larger.
4804 	 *       |-----L-----|
4805 	 * |-8-|
4806 	 * Nothing follows after 8.
4807 	 */
4808 
4809 	key.objectid = ekey->objectid;
4810 	key.type = BTRFS_EXTENT_DATA_KEY;
4811 	key.offset = ekey->offset;
4812 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4813 	if (ret < 0)
4814 		goto out;
4815 	if (ret) {
4816 		ret = 0;
4817 		goto out;
4818 	}
4819 
4820 	/*
4821 	 * Handle special case where the right side has no extents at all.
4822 	 */
4823 	eb = path->nodes[0];
4824 	slot = path->slots[0];
4825 	btrfs_item_key_to_cpu(eb, &found_key, slot);
4826 	if (found_key.objectid != key.objectid ||
4827 	    found_key.type != key.type) {
4828 		/* If we're a hole then just pretend nothing changed */
4829 		ret = (left_disknr) ? 0 : 1;
4830 		goto out;
4831 	}
4832 
4833 	/*
4834 	 * We're now on 2a, 2b or 7.
4835 	 */
4836 	key = found_key;
4837 	while (key.offset < ekey->offset + left_len) {
4838 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4839 		right_type = btrfs_file_extent_type(eb, ei);
4840 		if (right_type != BTRFS_FILE_EXTENT_REG) {
4841 			ret = 0;
4842 			goto out;
4843 		}
4844 
4845 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4846 		right_len = btrfs_file_extent_num_bytes(eb, ei);
4847 		right_offset = btrfs_file_extent_offset(eb, ei);
4848 		right_gen = btrfs_file_extent_generation(eb, ei);
4849 
4850 		/*
4851 		 * Are we at extent 8? If yes, we know the extent is changed.
4852 		 * This may only happen on the first iteration.
4853 		 */
4854 		if (found_key.offset + right_len <= ekey->offset) {
4855 			/* If we're a hole just pretend nothing changed */
4856 			ret = (left_disknr) ? 0 : 1;
4857 			goto out;
4858 		}
4859 
4860 		left_offset_fixed = left_offset;
4861 		if (key.offset < ekey->offset) {
4862 			/* Fix the right offset for 2a and 7. */
4863 			right_offset += ekey->offset - key.offset;
4864 		} else {
4865 			/* Fix the left offset for all behind 2a and 2b */
4866 			left_offset_fixed += key.offset - ekey->offset;
4867 		}
4868 
4869 		/*
4870 		 * Check if we have the same extent.
4871 		 */
4872 		if (left_disknr != right_disknr ||
4873 		    left_offset_fixed != right_offset ||
4874 		    left_gen != right_gen) {
4875 			ret = 0;
4876 			goto out;
4877 		}
4878 
4879 		/*
4880 		 * Go to the next extent.
4881 		 */
4882 		ret = btrfs_next_item(sctx->parent_root, path);
4883 		if (ret < 0)
4884 			goto out;
4885 		if (!ret) {
4886 			eb = path->nodes[0];
4887 			slot = path->slots[0];
4888 			btrfs_item_key_to_cpu(eb, &found_key, slot);
4889 		}
4890 		if (ret || found_key.objectid != key.objectid ||
4891 		    found_key.type != key.type) {
4892 			key.offset += right_len;
4893 			break;
4894 		}
4895 		if (found_key.offset != key.offset + right_len) {
4896 			ret = 0;
4897 			goto out;
4898 		}
4899 		key = found_key;
4900 	}
4901 
4902 	/*
4903 	 * We're now behind the left extent (treat as unchanged) or at the end
4904 	 * of the right side (treat as changed).
4905 	 */
4906 	if (key.offset >= ekey->offset + left_len)
4907 		ret = 1;
4908 	else
4909 		ret = 0;
4910 
4911 
4912 out:
4913 	btrfs_free_path(path);
4914 	return ret;
4915 }
4916 
4917 static int get_last_extent(struct send_ctx *sctx, u64 offset)
4918 {
4919 	struct btrfs_path *path;
4920 	struct btrfs_root *root = sctx->send_root;
4921 	struct btrfs_file_extent_item *fi;
4922 	struct btrfs_key key;
4923 	u64 extent_end;
4924 	u8 type;
4925 	int ret;
4926 
4927 	path = alloc_path_for_send();
4928 	if (!path)
4929 		return -ENOMEM;
4930 
4931 	sctx->cur_inode_last_extent = 0;
4932 
4933 	key.objectid = sctx->cur_ino;
4934 	key.type = BTRFS_EXTENT_DATA_KEY;
4935 	key.offset = offset;
4936 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
4937 	if (ret < 0)
4938 		goto out;
4939 	ret = 0;
4940 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4941 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
4942 		goto out;
4943 
4944 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4945 			    struct btrfs_file_extent_item);
4946 	type = btrfs_file_extent_type(path->nodes[0], fi);
4947 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4948 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4949 							path->slots[0], fi);
4950 		extent_end = ALIGN(key.offset + size,
4951 				   sctx->send_root->sectorsize);
4952 	} else {
4953 		extent_end = key.offset +
4954 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
4955 	}
4956 	sctx->cur_inode_last_extent = extent_end;
4957 out:
4958 	btrfs_free_path(path);
4959 	return ret;
4960 }
4961 
4962 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
4963 			   struct btrfs_key *key)
4964 {
4965 	struct btrfs_file_extent_item *fi;
4966 	u64 extent_end;
4967 	u8 type;
4968 	int ret = 0;
4969 
4970 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
4971 		return 0;
4972 
4973 	if (sctx->cur_inode_last_extent == (u64)-1) {
4974 		ret = get_last_extent(sctx, key->offset - 1);
4975 		if (ret)
4976 			return ret;
4977 	}
4978 
4979 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4980 			    struct btrfs_file_extent_item);
4981 	type = btrfs_file_extent_type(path->nodes[0], fi);
4982 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4983 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4984 							path->slots[0], fi);
4985 		extent_end = ALIGN(key->offset + size,
4986 				   sctx->send_root->sectorsize);
4987 	} else {
4988 		extent_end = key->offset +
4989 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
4990 	}
4991 
4992 	if (path->slots[0] == 0 &&
4993 	    sctx->cur_inode_last_extent < key->offset) {
4994 		/*
4995 		 * We might have skipped entire leafs that contained only
4996 		 * file extent items for our current inode. These leafs have
4997 		 * a generation number smaller (older) than the one in the
4998 		 * current leaf and the leaf our last extent came from, and
4999 		 * are located between these 2 leafs.
5000 		 */
5001 		ret = get_last_extent(sctx, key->offset - 1);
5002 		if (ret)
5003 			return ret;
5004 	}
5005 
5006 	if (sctx->cur_inode_last_extent < key->offset)
5007 		ret = send_hole(sctx, key->offset);
5008 	sctx->cur_inode_last_extent = extent_end;
5009 	return ret;
5010 }
5011 
5012 static int process_extent(struct send_ctx *sctx,
5013 			  struct btrfs_path *path,
5014 			  struct btrfs_key *key)
5015 {
5016 	struct clone_root *found_clone = NULL;
5017 	int ret = 0;
5018 
5019 	if (S_ISLNK(sctx->cur_inode_mode))
5020 		return 0;
5021 
5022 	if (sctx->parent_root && !sctx->cur_inode_new) {
5023 		ret = is_extent_unchanged(sctx, path, key);
5024 		if (ret < 0)
5025 			goto out;
5026 		if (ret) {
5027 			ret = 0;
5028 			goto out_hole;
5029 		}
5030 	} else {
5031 		struct btrfs_file_extent_item *ei;
5032 		u8 type;
5033 
5034 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5035 				    struct btrfs_file_extent_item);
5036 		type = btrfs_file_extent_type(path->nodes[0], ei);
5037 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5038 		    type == BTRFS_FILE_EXTENT_REG) {
5039 			/*
5040 			 * The send spec does not have a prealloc command yet,
5041 			 * so just leave a hole for prealloc'ed extents until
5042 			 * we have enough commands queued up to justify rev'ing
5043 			 * the send spec.
5044 			 */
5045 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5046 				ret = 0;
5047 				goto out;
5048 			}
5049 
5050 			/* Have a hole, just skip it. */
5051 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5052 				ret = 0;
5053 				goto out;
5054 			}
5055 		}
5056 	}
5057 
5058 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5059 			sctx->cur_inode_size, &found_clone);
5060 	if (ret != -ENOENT && ret < 0)
5061 		goto out;
5062 
5063 	ret = send_write_or_clone(sctx, path, key, found_clone);
5064 	if (ret)
5065 		goto out;
5066 out_hole:
5067 	ret = maybe_send_hole(sctx, path, key);
5068 out:
5069 	return ret;
5070 }
5071 
5072 static int process_all_extents(struct send_ctx *sctx)
5073 {
5074 	int ret;
5075 	struct btrfs_root *root;
5076 	struct btrfs_path *path;
5077 	struct btrfs_key key;
5078 	struct btrfs_key found_key;
5079 	struct extent_buffer *eb;
5080 	int slot;
5081 
5082 	root = sctx->send_root;
5083 	path = alloc_path_for_send();
5084 	if (!path)
5085 		return -ENOMEM;
5086 
5087 	key.objectid = sctx->cmp_key->objectid;
5088 	key.type = BTRFS_EXTENT_DATA_KEY;
5089 	key.offset = 0;
5090 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5091 	if (ret < 0)
5092 		goto out;
5093 
5094 	while (1) {
5095 		eb = path->nodes[0];
5096 		slot = path->slots[0];
5097 
5098 		if (slot >= btrfs_header_nritems(eb)) {
5099 			ret = btrfs_next_leaf(root, path);
5100 			if (ret < 0) {
5101 				goto out;
5102 			} else if (ret > 0) {
5103 				ret = 0;
5104 				break;
5105 			}
5106 			continue;
5107 		}
5108 
5109 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5110 
5111 		if (found_key.objectid != key.objectid ||
5112 		    found_key.type != key.type) {
5113 			ret = 0;
5114 			goto out;
5115 		}
5116 
5117 		ret = process_extent(sctx, path, &found_key);
5118 		if (ret < 0)
5119 			goto out;
5120 
5121 		path->slots[0]++;
5122 	}
5123 
5124 out:
5125 	btrfs_free_path(path);
5126 	return ret;
5127 }
5128 
5129 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5130 					   int *pending_move,
5131 					   int *refs_processed)
5132 {
5133 	int ret = 0;
5134 
5135 	if (sctx->cur_ino == 0)
5136 		goto out;
5137 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5138 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5139 		goto out;
5140 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5141 		goto out;
5142 
5143 	ret = process_recorded_refs(sctx, pending_move);
5144 	if (ret < 0)
5145 		goto out;
5146 
5147 	*refs_processed = 1;
5148 out:
5149 	return ret;
5150 }
5151 
5152 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5153 {
5154 	int ret = 0;
5155 	u64 left_mode;
5156 	u64 left_uid;
5157 	u64 left_gid;
5158 	u64 right_mode;
5159 	u64 right_uid;
5160 	u64 right_gid;
5161 	int need_chmod = 0;
5162 	int need_chown = 0;
5163 	int pending_move = 0;
5164 	int refs_processed = 0;
5165 
5166 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5167 					      &refs_processed);
5168 	if (ret < 0)
5169 		goto out;
5170 
5171 	/*
5172 	 * We have processed the refs and thus need to advance send_progress.
5173 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5174 	 * inode into account.
5175 	 *
5176 	 * On the other hand, if our current inode is a directory and couldn't
5177 	 * be moved/renamed because its parent was renamed/moved too and it has
5178 	 * a higher inode number, we can only move/rename our current inode
5179 	 * after we moved/renamed its parent. Therefore in this case operate on
5180 	 * the old path (pre move/rename) of our current inode, and the
5181 	 * move/rename will be performed later.
5182 	 */
5183 	if (refs_processed && !pending_move)
5184 		sctx->send_progress = sctx->cur_ino + 1;
5185 
5186 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5187 		goto out;
5188 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5189 		goto out;
5190 
5191 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5192 			&left_mode, &left_uid, &left_gid, NULL);
5193 	if (ret < 0)
5194 		goto out;
5195 
5196 	if (!sctx->parent_root || sctx->cur_inode_new) {
5197 		need_chown = 1;
5198 		if (!S_ISLNK(sctx->cur_inode_mode))
5199 			need_chmod = 1;
5200 	} else {
5201 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5202 				NULL, NULL, &right_mode, &right_uid,
5203 				&right_gid, NULL);
5204 		if (ret < 0)
5205 			goto out;
5206 
5207 		if (left_uid != right_uid || left_gid != right_gid)
5208 			need_chown = 1;
5209 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5210 			need_chmod = 1;
5211 	}
5212 
5213 	if (S_ISREG(sctx->cur_inode_mode)) {
5214 		if (need_send_hole(sctx)) {
5215 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5216 			    sctx->cur_inode_last_extent <
5217 			    sctx->cur_inode_size) {
5218 				ret = get_last_extent(sctx, (u64)-1);
5219 				if (ret)
5220 					goto out;
5221 			}
5222 			if (sctx->cur_inode_last_extent <
5223 			    sctx->cur_inode_size) {
5224 				ret = send_hole(sctx, sctx->cur_inode_size);
5225 				if (ret)
5226 					goto out;
5227 			}
5228 		}
5229 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5230 				sctx->cur_inode_size);
5231 		if (ret < 0)
5232 			goto out;
5233 	}
5234 
5235 	if (need_chown) {
5236 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5237 				left_uid, left_gid);
5238 		if (ret < 0)
5239 			goto out;
5240 	}
5241 	if (need_chmod) {
5242 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5243 				left_mode);
5244 		if (ret < 0)
5245 			goto out;
5246 	}
5247 
5248 	/*
5249 	 * If other directory inodes depended on our current directory
5250 	 * inode's move/rename, now do their move/rename operations.
5251 	 */
5252 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5253 		ret = apply_children_dir_moves(sctx);
5254 		if (ret)
5255 			goto out;
5256 		/*
5257 		 * Need to send that every time, no matter if it actually
5258 		 * changed between the two trees as we have done changes to
5259 		 * the inode before. If our inode is a directory and it's
5260 		 * waiting to be moved/renamed, we will send its utimes when
5261 		 * it's moved/renamed, therefore we don't need to do it here.
5262 		 */
5263 		sctx->send_progress = sctx->cur_ino + 1;
5264 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5265 		if (ret < 0)
5266 			goto out;
5267 	}
5268 
5269 out:
5270 	return ret;
5271 }
5272 
5273 static int changed_inode(struct send_ctx *sctx,
5274 			 enum btrfs_compare_tree_result result)
5275 {
5276 	int ret = 0;
5277 	struct btrfs_key *key = sctx->cmp_key;
5278 	struct btrfs_inode_item *left_ii = NULL;
5279 	struct btrfs_inode_item *right_ii = NULL;
5280 	u64 left_gen = 0;
5281 	u64 right_gen = 0;
5282 
5283 	sctx->cur_ino = key->objectid;
5284 	sctx->cur_inode_new_gen = 0;
5285 	sctx->cur_inode_last_extent = (u64)-1;
5286 
5287 	/*
5288 	 * Set send_progress to current inode. This will tell all get_cur_xxx
5289 	 * functions that the current inode's refs are not updated yet. Later,
5290 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5291 	 */
5292 	sctx->send_progress = sctx->cur_ino;
5293 
5294 	if (result == BTRFS_COMPARE_TREE_NEW ||
5295 	    result == BTRFS_COMPARE_TREE_CHANGED) {
5296 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5297 				sctx->left_path->slots[0],
5298 				struct btrfs_inode_item);
5299 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5300 				left_ii);
5301 	} else {
5302 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5303 				sctx->right_path->slots[0],
5304 				struct btrfs_inode_item);
5305 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5306 				right_ii);
5307 	}
5308 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
5309 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5310 				sctx->right_path->slots[0],
5311 				struct btrfs_inode_item);
5312 
5313 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5314 				right_ii);
5315 
5316 		/*
5317 		 * The cur_ino = root dir case is special here. We can't treat
5318 		 * the inode as deleted+reused because it would generate a
5319 		 * stream that tries to delete/mkdir the root dir.
5320 		 */
5321 		if (left_gen != right_gen &&
5322 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5323 			sctx->cur_inode_new_gen = 1;
5324 	}
5325 
5326 	if (result == BTRFS_COMPARE_TREE_NEW) {
5327 		sctx->cur_inode_gen = left_gen;
5328 		sctx->cur_inode_new = 1;
5329 		sctx->cur_inode_deleted = 0;
5330 		sctx->cur_inode_size = btrfs_inode_size(
5331 				sctx->left_path->nodes[0], left_ii);
5332 		sctx->cur_inode_mode = btrfs_inode_mode(
5333 				sctx->left_path->nodes[0], left_ii);
5334 		sctx->cur_inode_rdev = btrfs_inode_rdev(
5335 				sctx->left_path->nodes[0], left_ii);
5336 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5337 			ret = send_create_inode_if_needed(sctx);
5338 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
5339 		sctx->cur_inode_gen = right_gen;
5340 		sctx->cur_inode_new = 0;
5341 		sctx->cur_inode_deleted = 1;
5342 		sctx->cur_inode_size = btrfs_inode_size(
5343 				sctx->right_path->nodes[0], right_ii);
5344 		sctx->cur_inode_mode = btrfs_inode_mode(
5345 				sctx->right_path->nodes[0], right_ii);
5346 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5347 		/*
5348 		 * We need to do some special handling in case the inode was
5349 		 * reported as changed with a changed generation number. This
5350 		 * means that the original inode was deleted and new inode
5351 		 * reused the same inum. So we have to treat the old inode as
5352 		 * deleted and the new one as new.
5353 		 */
5354 		if (sctx->cur_inode_new_gen) {
5355 			/*
5356 			 * First, process the inode as if it was deleted.
5357 			 */
5358 			sctx->cur_inode_gen = right_gen;
5359 			sctx->cur_inode_new = 0;
5360 			sctx->cur_inode_deleted = 1;
5361 			sctx->cur_inode_size = btrfs_inode_size(
5362 					sctx->right_path->nodes[0], right_ii);
5363 			sctx->cur_inode_mode = btrfs_inode_mode(
5364 					sctx->right_path->nodes[0], right_ii);
5365 			ret = process_all_refs(sctx,
5366 					BTRFS_COMPARE_TREE_DELETED);
5367 			if (ret < 0)
5368 				goto out;
5369 
5370 			/*
5371 			 * Now process the inode as if it was new.
5372 			 */
5373 			sctx->cur_inode_gen = left_gen;
5374 			sctx->cur_inode_new = 1;
5375 			sctx->cur_inode_deleted = 0;
5376 			sctx->cur_inode_size = btrfs_inode_size(
5377 					sctx->left_path->nodes[0], left_ii);
5378 			sctx->cur_inode_mode = btrfs_inode_mode(
5379 					sctx->left_path->nodes[0], left_ii);
5380 			sctx->cur_inode_rdev = btrfs_inode_rdev(
5381 					sctx->left_path->nodes[0], left_ii);
5382 			ret = send_create_inode_if_needed(sctx);
5383 			if (ret < 0)
5384 				goto out;
5385 
5386 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5387 			if (ret < 0)
5388 				goto out;
5389 			/*
5390 			 * Advance send_progress now as we did not get into
5391 			 * process_recorded_refs_if_needed in the new_gen case.
5392 			 */
5393 			sctx->send_progress = sctx->cur_ino + 1;
5394 
5395 			/*
5396 			 * Now process all extents and xattrs of the inode as if
5397 			 * they were all new.
5398 			 */
5399 			ret = process_all_extents(sctx);
5400 			if (ret < 0)
5401 				goto out;
5402 			ret = process_all_new_xattrs(sctx);
5403 			if (ret < 0)
5404 				goto out;
5405 		} else {
5406 			sctx->cur_inode_gen = left_gen;
5407 			sctx->cur_inode_new = 0;
5408 			sctx->cur_inode_new_gen = 0;
5409 			sctx->cur_inode_deleted = 0;
5410 			sctx->cur_inode_size = btrfs_inode_size(
5411 					sctx->left_path->nodes[0], left_ii);
5412 			sctx->cur_inode_mode = btrfs_inode_mode(
5413 					sctx->left_path->nodes[0], left_ii);
5414 		}
5415 	}
5416 
5417 out:
5418 	return ret;
5419 }
5420 
5421 /*
5422  * We have to process new refs before deleted refs, but compare_trees gives us
5423  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5424  * first and later process them in process_recorded_refs.
5425  * For the cur_inode_new_gen case, we skip recording completely because
5426  * changed_inode did already initiate processing of refs. The reason for this is
5427  * that in this case, compare_tree actually compares the refs of 2 different
5428  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5429  * refs of the right tree as deleted and all refs of the left tree as new.
5430  */
5431 static int changed_ref(struct send_ctx *sctx,
5432 		       enum btrfs_compare_tree_result result)
5433 {
5434 	int ret = 0;
5435 
5436 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5437 
5438 	if (!sctx->cur_inode_new_gen &&
5439 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5440 		if (result == BTRFS_COMPARE_TREE_NEW)
5441 			ret = record_new_ref(sctx);
5442 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5443 			ret = record_deleted_ref(sctx);
5444 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5445 			ret = record_changed_ref(sctx);
5446 	}
5447 
5448 	return ret;
5449 }
5450 
5451 /*
5452  * Process new/deleted/changed xattrs. We skip processing in the
5453  * cur_inode_new_gen case because changed_inode did already initiate processing
5454  * of xattrs. The reason is the same as in changed_ref
5455  */
5456 static int changed_xattr(struct send_ctx *sctx,
5457 			 enum btrfs_compare_tree_result result)
5458 {
5459 	int ret = 0;
5460 
5461 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5462 
5463 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5464 		if (result == BTRFS_COMPARE_TREE_NEW)
5465 			ret = process_new_xattr(sctx);
5466 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5467 			ret = process_deleted_xattr(sctx);
5468 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5469 			ret = process_changed_xattr(sctx);
5470 	}
5471 
5472 	return ret;
5473 }
5474 
5475 /*
5476  * Process new/deleted/changed extents. We skip processing in the
5477  * cur_inode_new_gen case because changed_inode did already initiate processing
5478  * of extents. The reason is the same as in changed_ref
5479  */
5480 static int changed_extent(struct send_ctx *sctx,
5481 			  enum btrfs_compare_tree_result result)
5482 {
5483 	int ret = 0;
5484 
5485 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5486 
5487 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5488 		if (result != BTRFS_COMPARE_TREE_DELETED)
5489 			ret = process_extent(sctx, sctx->left_path,
5490 					sctx->cmp_key);
5491 	}
5492 
5493 	return ret;
5494 }
5495 
5496 static int dir_changed(struct send_ctx *sctx, u64 dir)
5497 {
5498 	u64 orig_gen, new_gen;
5499 	int ret;
5500 
5501 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5502 			     NULL, NULL);
5503 	if (ret)
5504 		return ret;
5505 
5506 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5507 			     NULL, NULL, NULL);
5508 	if (ret)
5509 		return ret;
5510 
5511 	return (orig_gen != new_gen) ? 1 : 0;
5512 }
5513 
5514 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5515 			struct btrfs_key *key)
5516 {
5517 	struct btrfs_inode_extref *extref;
5518 	struct extent_buffer *leaf;
5519 	u64 dirid = 0, last_dirid = 0;
5520 	unsigned long ptr;
5521 	u32 item_size;
5522 	u32 cur_offset = 0;
5523 	int ref_name_len;
5524 	int ret = 0;
5525 
5526 	/* Easy case, just check this one dirid */
5527 	if (key->type == BTRFS_INODE_REF_KEY) {
5528 		dirid = key->offset;
5529 
5530 		ret = dir_changed(sctx, dirid);
5531 		goto out;
5532 	}
5533 
5534 	leaf = path->nodes[0];
5535 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5536 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5537 	while (cur_offset < item_size) {
5538 		extref = (struct btrfs_inode_extref *)(ptr +
5539 						       cur_offset);
5540 		dirid = btrfs_inode_extref_parent(leaf, extref);
5541 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5542 		cur_offset += ref_name_len + sizeof(*extref);
5543 		if (dirid == last_dirid)
5544 			continue;
5545 		ret = dir_changed(sctx, dirid);
5546 		if (ret)
5547 			break;
5548 		last_dirid = dirid;
5549 	}
5550 out:
5551 	return ret;
5552 }
5553 
5554 /*
5555  * Updates compare related fields in sctx and simply forwards to the actual
5556  * changed_xxx functions.
5557  */
5558 static int changed_cb(struct btrfs_root *left_root,
5559 		      struct btrfs_root *right_root,
5560 		      struct btrfs_path *left_path,
5561 		      struct btrfs_path *right_path,
5562 		      struct btrfs_key *key,
5563 		      enum btrfs_compare_tree_result result,
5564 		      void *ctx)
5565 {
5566 	int ret = 0;
5567 	struct send_ctx *sctx = ctx;
5568 
5569 	if (result == BTRFS_COMPARE_TREE_SAME) {
5570 		if (key->type == BTRFS_INODE_REF_KEY ||
5571 		    key->type == BTRFS_INODE_EXTREF_KEY) {
5572 			ret = compare_refs(sctx, left_path, key);
5573 			if (!ret)
5574 				return 0;
5575 			if (ret < 0)
5576 				return ret;
5577 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5578 			return maybe_send_hole(sctx, left_path, key);
5579 		} else {
5580 			return 0;
5581 		}
5582 		result = BTRFS_COMPARE_TREE_CHANGED;
5583 		ret = 0;
5584 	}
5585 
5586 	sctx->left_path = left_path;
5587 	sctx->right_path = right_path;
5588 	sctx->cmp_key = key;
5589 
5590 	ret = finish_inode_if_needed(sctx, 0);
5591 	if (ret < 0)
5592 		goto out;
5593 
5594 	/* Ignore non-FS objects */
5595 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5596 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5597 		goto out;
5598 
5599 	if (key->type == BTRFS_INODE_ITEM_KEY)
5600 		ret = changed_inode(sctx, result);
5601 	else if (key->type == BTRFS_INODE_REF_KEY ||
5602 		 key->type == BTRFS_INODE_EXTREF_KEY)
5603 		ret = changed_ref(sctx, result);
5604 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
5605 		ret = changed_xattr(sctx, result);
5606 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
5607 		ret = changed_extent(sctx, result);
5608 
5609 out:
5610 	return ret;
5611 }
5612 
5613 static int full_send_tree(struct send_ctx *sctx)
5614 {
5615 	int ret;
5616 	struct btrfs_root *send_root = sctx->send_root;
5617 	struct btrfs_key key;
5618 	struct btrfs_key found_key;
5619 	struct btrfs_path *path;
5620 	struct extent_buffer *eb;
5621 	int slot;
5622 
5623 	path = alloc_path_for_send();
5624 	if (!path)
5625 		return -ENOMEM;
5626 
5627 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5628 	key.type = BTRFS_INODE_ITEM_KEY;
5629 	key.offset = 0;
5630 
5631 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5632 	if (ret < 0)
5633 		goto out;
5634 	if (ret)
5635 		goto out_finish;
5636 
5637 	while (1) {
5638 		eb = path->nodes[0];
5639 		slot = path->slots[0];
5640 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5641 
5642 		ret = changed_cb(send_root, NULL, path, NULL,
5643 				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5644 		if (ret < 0)
5645 			goto out;
5646 
5647 		key.objectid = found_key.objectid;
5648 		key.type = found_key.type;
5649 		key.offset = found_key.offset + 1;
5650 
5651 		ret = btrfs_next_item(send_root, path);
5652 		if (ret < 0)
5653 			goto out;
5654 		if (ret) {
5655 			ret  = 0;
5656 			break;
5657 		}
5658 	}
5659 
5660 out_finish:
5661 	ret = finish_inode_if_needed(sctx, 1);
5662 
5663 out:
5664 	btrfs_free_path(path);
5665 	return ret;
5666 }
5667 
5668 static int send_subvol(struct send_ctx *sctx)
5669 {
5670 	int ret;
5671 
5672 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5673 		ret = send_header(sctx);
5674 		if (ret < 0)
5675 			goto out;
5676 	}
5677 
5678 	ret = send_subvol_begin(sctx);
5679 	if (ret < 0)
5680 		goto out;
5681 
5682 	if (sctx->parent_root) {
5683 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5684 				changed_cb, sctx);
5685 		if (ret < 0)
5686 			goto out;
5687 		ret = finish_inode_if_needed(sctx, 1);
5688 		if (ret < 0)
5689 			goto out;
5690 	} else {
5691 		ret = full_send_tree(sctx);
5692 		if (ret < 0)
5693 			goto out;
5694 	}
5695 
5696 out:
5697 	free_recorded_refs(sctx);
5698 	return ret;
5699 }
5700 
5701 /*
5702  * If orphan cleanup did remove any orphans from a root, it means the tree
5703  * was modified and therefore the commit root is not the same as the current
5704  * root anymore. This is a problem, because send uses the commit root and
5705  * therefore can see inode items that don't exist in the current root anymore,
5706  * and for example make calls to btrfs_iget, which will do tree lookups based
5707  * on the current root and not on the commit root. Those lookups will fail,
5708  * returning a -ESTALE error, and making send fail with that error. So make
5709  * sure a send does not see any orphans we have just removed, and that it will
5710  * see the same inodes regardless of whether a transaction commit happened
5711  * before it started (meaning that the commit root will be the same as the
5712  * current root) or not.
5713  */
5714 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
5715 {
5716 	int i;
5717 	struct btrfs_trans_handle *trans = NULL;
5718 
5719 again:
5720 	if (sctx->parent_root &&
5721 	    sctx->parent_root->node != sctx->parent_root->commit_root)
5722 		goto commit_trans;
5723 
5724 	for (i = 0; i < sctx->clone_roots_cnt; i++)
5725 		if (sctx->clone_roots[i].root->node !=
5726 		    sctx->clone_roots[i].root->commit_root)
5727 			goto commit_trans;
5728 
5729 	if (trans)
5730 		return btrfs_end_transaction(trans, sctx->send_root);
5731 
5732 	return 0;
5733 
5734 commit_trans:
5735 	/* Use any root, all fs roots will get their commit roots updated. */
5736 	if (!trans) {
5737 		trans = btrfs_join_transaction(sctx->send_root);
5738 		if (IS_ERR(trans))
5739 			return PTR_ERR(trans);
5740 		goto again;
5741 	}
5742 
5743 	return btrfs_commit_transaction(trans, sctx->send_root);
5744 }
5745 
5746 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5747 {
5748 	spin_lock(&root->root_item_lock);
5749 	root->send_in_progress--;
5750 	/*
5751 	 * Not much left to do, we don't know why it's unbalanced and
5752 	 * can't blindly reset it to 0.
5753 	 */
5754 	if (root->send_in_progress < 0)
5755 		btrfs_err(root->fs_info,
5756 			"send_in_progres unbalanced %d root %llu",
5757 			root->send_in_progress, root->root_key.objectid);
5758 	spin_unlock(&root->root_item_lock);
5759 }
5760 
5761 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5762 {
5763 	int ret = 0;
5764 	struct btrfs_root *send_root;
5765 	struct btrfs_root *clone_root;
5766 	struct btrfs_fs_info *fs_info;
5767 	struct btrfs_ioctl_send_args *arg = NULL;
5768 	struct btrfs_key key;
5769 	struct send_ctx *sctx = NULL;
5770 	u32 i;
5771 	u64 *clone_sources_tmp = NULL;
5772 	int clone_sources_to_rollback = 0;
5773 	int sort_clone_roots = 0;
5774 	int index;
5775 
5776 	if (!capable(CAP_SYS_ADMIN))
5777 		return -EPERM;
5778 
5779 	send_root = BTRFS_I(file_inode(mnt_file))->root;
5780 	fs_info = send_root->fs_info;
5781 
5782 	/*
5783 	 * The subvolume must remain read-only during send, protect against
5784 	 * making it RW. This also protects against deletion.
5785 	 */
5786 	spin_lock(&send_root->root_item_lock);
5787 	send_root->send_in_progress++;
5788 	spin_unlock(&send_root->root_item_lock);
5789 
5790 	/*
5791 	 * This is done when we lookup the root, it should already be complete
5792 	 * by the time we get here.
5793 	 */
5794 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5795 
5796 	/*
5797 	 * Userspace tools do the checks and warn the user if it's
5798 	 * not RO.
5799 	 */
5800 	if (!btrfs_root_readonly(send_root)) {
5801 		ret = -EPERM;
5802 		goto out;
5803 	}
5804 
5805 	arg = memdup_user(arg_, sizeof(*arg));
5806 	if (IS_ERR(arg)) {
5807 		ret = PTR_ERR(arg);
5808 		arg = NULL;
5809 		goto out;
5810 	}
5811 
5812 	if (!access_ok(VERIFY_READ, arg->clone_sources,
5813 			sizeof(*arg->clone_sources) *
5814 			arg->clone_sources_count)) {
5815 		ret = -EFAULT;
5816 		goto out;
5817 	}
5818 
5819 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5820 		ret = -EINVAL;
5821 		goto out;
5822 	}
5823 
5824 	sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5825 	if (!sctx) {
5826 		ret = -ENOMEM;
5827 		goto out;
5828 	}
5829 
5830 	INIT_LIST_HEAD(&sctx->new_refs);
5831 	INIT_LIST_HEAD(&sctx->deleted_refs);
5832 	INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5833 	INIT_LIST_HEAD(&sctx->name_cache_list);
5834 
5835 	sctx->flags = arg->flags;
5836 
5837 	sctx->send_filp = fget(arg->send_fd);
5838 	if (!sctx->send_filp) {
5839 		ret = -EBADF;
5840 		goto out;
5841 	}
5842 
5843 	sctx->send_root = send_root;
5844 	/*
5845 	 * Unlikely but possible, if the subvolume is marked for deletion but
5846 	 * is slow to remove the directory entry, send can still be started
5847 	 */
5848 	if (btrfs_root_dead(sctx->send_root)) {
5849 		ret = -EPERM;
5850 		goto out;
5851 	}
5852 
5853 	sctx->clone_roots_cnt = arg->clone_sources_count;
5854 
5855 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
5856 	sctx->send_buf = vmalloc(sctx->send_max_size);
5857 	if (!sctx->send_buf) {
5858 		ret = -ENOMEM;
5859 		goto out;
5860 	}
5861 
5862 	sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
5863 	if (!sctx->read_buf) {
5864 		ret = -ENOMEM;
5865 		goto out;
5866 	}
5867 
5868 	sctx->pending_dir_moves = RB_ROOT;
5869 	sctx->waiting_dir_moves = RB_ROOT;
5870 	sctx->orphan_dirs = RB_ROOT;
5871 
5872 	sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
5873 			(arg->clone_sources_count + 1));
5874 	if (!sctx->clone_roots) {
5875 		ret = -ENOMEM;
5876 		goto out;
5877 	}
5878 
5879 	if (arg->clone_sources_count) {
5880 		clone_sources_tmp = vmalloc(arg->clone_sources_count *
5881 				sizeof(*arg->clone_sources));
5882 		if (!clone_sources_tmp) {
5883 			ret = -ENOMEM;
5884 			goto out;
5885 		}
5886 
5887 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
5888 				arg->clone_sources_count *
5889 				sizeof(*arg->clone_sources));
5890 		if (ret) {
5891 			ret = -EFAULT;
5892 			goto out;
5893 		}
5894 
5895 		for (i = 0; i < arg->clone_sources_count; i++) {
5896 			key.objectid = clone_sources_tmp[i];
5897 			key.type = BTRFS_ROOT_ITEM_KEY;
5898 			key.offset = (u64)-1;
5899 
5900 			index = srcu_read_lock(&fs_info->subvol_srcu);
5901 
5902 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
5903 			if (IS_ERR(clone_root)) {
5904 				srcu_read_unlock(&fs_info->subvol_srcu, index);
5905 				ret = PTR_ERR(clone_root);
5906 				goto out;
5907 			}
5908 			spin_lock(&clone_root->root_item_lock);
5909 			if (!btrfs_root_readonly(clone_root) ||
5910 			    btrfs_root_dead(clone_root)) {
5911 				spin_unlock(&clone_root->root_item_lock);
5912 				srcu_read_unlock(&fs_info->subvol_srcu, index);
5913 				ret = -EPERM;
5914 				goto out;
5915 			}
5916 			clone_root->send_in_progress++;
5917 			spin_unlock(&clone_root->root_item_lock);
5918 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5919 
5920 			sctx->clone_roots[i].root = clone_root;
5921 			clone_sources_to_rollback = i + 1;
5922 		}
5923 		vfree(clone_sources_tmp);
5924 		clone_sources_tmp = NULL;
5925 	}
5926 
5927 	if (arg->parent_root) {
5928 		key.objectid = arg->parent_root;
5929 		key.type = BTRFS_ROOT_ITEM_KEY;
5930 		key.offset = (u64)-1;
5931 
5932 		index = srcu_read_lock(&fs_info->subvol_srcu);
5933 
5934 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
5935 		if (IS_ERR(sctx->parent_root)) {
5936 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5937 			ret = PTR_ERR(sctx->parent_root);
5938 			goto out;
5939 		}
5940 
5941 		spin_lock(&sctx->parent_root->root_item_lock);
5942 		sctx->parent_root->send_in_progress++;
5943 		if (!btrfs_root_readonly(sctx->parent_root) ||
5944 				btrfs_root_dead(sctx->parent_root)) {
5945 			spin_unlock(&sctx->parent_root->root_item_lock);
5946 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5947 			ret = -EPERM;
5948 			goto out;
5949 		}
5950 		spin_unlock(&sctx->parent_root->root_item_lock);
5951 
5952 		srcu_read_unlock(&fs_info->subvol_srcu, index);
5953 	}
5954 
5955 	/*
5956 	 * Clones from send_root are allowed, but only if the clone source
5957 	 * is behind the current send position. This is checked while searching
5958 	 * for possible clone sources.
5959 	 */
5960 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
5961 
5962 	/* We do a bsearch later */
5963 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
5964 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
5965 			NULL);
5966 	sort_clone_roots = 1;
5967 
5968 	ret = ensure_commit_roots_uptodate(sctx);
5969 	if (ret)
5970 		goto out;
5971 
5972 	current->journal_info = BTRFS_SEND_TRANS_STUB;
5973 	ret = send_subvol(sctx);
5974 	current->journal_info = NULL;
5975 	if (ret < 0)
5976 		goto out;
5977 
5978 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
5979 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
5980 		if (ret < 0)
5981 			goto out;
5982 		ret = send_cmd(sctx);
5983 		if (ret < 0)
5984 			goto out;
5985 	}
5986 
5987 out:
5988 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
5989 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
5990 		struct rb_node *n;
5991 		struct pending_dir_move *pm;
5992 
5993 		n = rb_first(&sctx->pending_dir_moves);
5994 		pm = rb_entry(n, struct pending_dir_move, node);
5995 		while (!list_empty(&pm->list)) {
5996 			struct pending_dir_move *pm2;
5997 
5998 			pm2 = list_first_entry(&pm->list,
5999 					       struct pending_dir_move, list);
6000 			free_pending_move(sctx, pm2);
6001 		}
6002 		free_pending_move(sctx, pm);
6003 	}
6004 
6005 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6006 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6007 		struct rb_node *n;
6008 		struct waiting_dir_move *dm;
6009 
6010 		n = rb_first(&sctx->waiting_dir_moves);
6011 		dm = rb_entry(n, struct waiting_dir_move, node);
6012 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
6013 		kfree(dm);
6014 	}
6015 
6016 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6017 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6018 		struct rb_node *n;
6019 		struct orphan_dir_info *odi;
6020 
6021 		n = rb_first(&sctx->orphan_dirs);
6022 		odi = rb_entry(n, struct orphan_dir_info, node);
6023 		free_orphan_dir_info(sctx, odi);
6024 	}
6025 
6026 	if (sort_clone_roots) {
6027 		for (i = 0; i < sctx->clone_roots_cnt; i++)
6028 			btrfs_root_dec_send_in_progress(
6029 					sctx->clone_roots[i].root);
6030 	} else {
6031 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6032 			btrfs_root_dec_send_in_progress(
6033 					sctx->clone_roots[i].root);
6034 
6035 		btrfs_root_dec_send_in_progress(send_root);
6036 	}
6037 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6038 		btrfs_root_dec_send_in_progress(sctx->parent_root);
6039 
6040 	kfree(arg);
6041 	vfree(clone_sources_tmp);
6042 
6043 	if (sctx) {
6044 		if (sctx->send_filp)
6045 			fput(sctx->send_filp);
6046 
6047 		vfree(sctx->clone_roots);
6048 		vfree(sctx->send_buf);
6049 		vfree(sctx->read_buf);
6050 
6051 		name_cache_free(sctx);
6052 
6053 		kfree(sctx);
6054 	}
6055 
6056 	return ret;
6057 }
6058