xref: /openbmc/linux/fs/btrfs/send.c (revision e1e38ea1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 
19 #include "send.h"
20 #include "backref.h"
21 #include "locking.h"
22 #include "disk-io.h"
23 #include "btrfs_inode.h"
24 #include "transaction.h"
25 #include "compression.h"
26 
27 /*
28  * A fs_path is a helper to dynamically build path names with unknown size.
29  * It reallocates the internal buffer on demand.
30  * It allows fast adding of path elements on the right side (normal path) and
31  * fast adding to the left side (reversed path). A reversed path can also be
32  * unreversed if needed.
33  */
34 struct fs_path {
35 	union {
36 		struct {
37 			char *start;
38 			char *end;
39 
40 			char *buf;
41 			unsigned short buf_len:15;
42 			unsigned short reversed:1;
43 			char inline_buf[];
44 		};
45 		/*
46 		 * Average path length does not exceed 200 bytes, we'll have
47 		 * better packing in the slab and higher chance to satisfy
48 		 * a allocation later during send.
49 		 */
50 		char pad[256];
51 	};
52 };
53 #define FS_PATH_INLINE_SIZE \
54 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
55 
56 
57 /* reused for each extent */
58 struct clone_root {
59 	struct btrfs_root *root;
60 	u64 ino;
61 	u64 offset;
62 
63 	u64 found_refs;
64 };
65 
66 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
67 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
68 
69 struct send_ctx {
70 	struct file *send_filp;
71 	loff_t send_off;
72 	char *send_buf;
73 	u32 send_size;
74 	u32 send_max_size;
75 	u64 total_send_size;
76 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
77 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
78 
79 	struct btrfs_root *send_root;
80 	struct btrfs_root *parent_root;
81 	struct clone_root *clone_roots;
82 	int clone_roots_cnt;
83 
84 	/* current state of the compare_tree call */
85 	struct btrfs_path *left_path;
86 	struct btrfs_path *right_path;
87 	struct btrfs_key *cmp_key;
88 
89 	/*
90 	 * infos of the currently processed inode. In case of deleted inodes,
91 	 * these are the values from the deleted inode.
92 	 */
93 	u64 cur_ino;
94 	u64 cur_inode_gen;
95 	int cur_inode_new;
96 	int cur_inode_new_gen;
97 	int cur_inode_deleted;
98 	u64 cur_inode_size;
99 	u64 cur_inode_mode;
100 	u64 cur_inode_rdev;
101 	u64 cur_inode_last_extent;
102 	u64 cur_inode_next_write_offset;
103 	bool ignore_cur_inode;
104 
105 	u64 send_progress;
106 
107 	struct list_head new_refs;
108 	struct list_head deleted_refs;
109 
110 	struct radix_tree_root name_cache;
111 	struct list_head name_cache_list;
112 	int name_cache_size;
113 
114 	struct file_ra_state ra;
115 
116 	char *read_buf;
117 
118 	/*
119 	 * We process inodes by their increasing order, so if before an
120 	 * incremental send we reverse the parent/child relationship of
121 	 * directories such that a directory with a lower inode number was
122 	 * the parent of a directory with a higher inode number, and the one
123 	 * becoming the new parent got renamed too, we can't rename/move the
124 	 * directory with lower inode number when we finish processing it - we
125 	 * must process the directory with higher inode number first, then
126 	 * rename/move it and then rename/move the directory with lower inode
127 	 * number. Example follows.
128 	 *
129 	 * Tree state when the first send was performed:
130 	 *
131 	 * .
132 	 * |-- a                   (ino 257)
133 	 *     |-- b               (ino 258)
134 	 *         |
135 	 *         |
136 	 *         |-- c           (ino 259)
137 	 *         |   |-- d       (ino 260)
138 	 *         |
139 	 *         |-- c2          (ino 261)
140 	 *
141 	 * Tree state when the second (incremental) send is performed:
142 	 *
143 	 * .
144 	 * |-- a                   (ino 257)
145 	 *     |-- b               (ino 258)
146 	 *         |-- c2          (ino 261)
147 	 *             |-- d2      (ino 260)
148 	 *                 |-- cc  (ino 259)
149 	 *
150 	 * The sequence of steps that lead to the second state was:
151 	 *
152 	 * mv /a/b/c/d /a/b/c2/d2
153 	 * mv /a/b/c /a/b/c2/d2/cc
154 	 *
155 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
156 	 * before we move "d", which has higher inode number.
157 	 *
158 	 * So we just memorize which move/rename operations must be performed
159 	 * later when their respective parent is processed and moved/renamed.
160 	 */
161 
162 	/* Indexed by parent directory inode number. */
163 	struct rb_root pending_dir_moves;
164 
165 	/*
166 	 * Reverse index, indexed by the inode number of a directory that
167 	 * is waiting for the move/rename of its immediate parent before its
168 	 * own move/rename can be performed.
169 	 */
170 	struct rb_root waiting_dir_moves;
171 
172 	/*
173 	 * A directory that is going to be rm'ed might have a child directory
174 	 * which is in the pending directory moves index above. In this case,
175 	 * the directory can only be removed after the move/rename of its child
176 	 * is performed. Example:
177 	 *
178 	 * Parent snapshot:
179 	 *
180 	 * .                        (ino 256)
181 	 * |-- a/                   (ino 257)
182 	 *     |-- b/               (ino 258)
183 	 *         |-- c/           (ino 259)
184 	 *         |   |-- x/       (ino 260)
185 	 *         |
186 	 *         |-- y/           (ino 261)
187 	 *
188 	 * Send snapshot:
189 	 *
190 	 * .                        (ino 256)
191 	 * |-- a/                   (ino 257)
192 	 *     |-- b/               (ino 258)
193 	 *         |-- YY/          (ino 261)
194 	 *              |-- x/      (ino 260)
195 	 *
196 	 * Sequence of steps that lead to the send snapshot:
197 	 * rm -f /a/b/c/foo.txt
198 	 * mv /a/b/y /a/b/YY
199 	 * mv /a/b/c/x /a/b/YY
200 	 * rmdir /a/b/c
201 	 *
202 	 * When the child is processed, its move/rename is delayed until its
203 	 * parent is processed (as explained above), but all other operations
204 	 * like update utimes, chown, chgrp, etc, are performed and the paths
205 	 * that it uses for those operations must use the orphanized name of
206 	 * its parent (the directory we're going to rm later), so we need to
207 	 * memorize that name.
208 	 *
209 	 * Indexed by the inode number of the directory to be deleted.
210 	 */
211 	struct rb_root orphan_dirs;
212 };
213 
214 struct pending_dir_move {
215 	struct rb_node node;
216 	struct list_head list;
217 	u64 parent_ino;
218 	u64 ino;
219 	u64 gen;
220 	struct list_head update_refs;
221 };
222 
223 struct waiting_dir_move {
224 	struct rb_node node;
225 	u64 ino;
226 	/*
227 	 * There might be some directory that could not be removed because it
228 	 * was waiting for this directory inode to be moved first. Therefore
229 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
230 	 */
231 	u64 rmdir_ino;
232 	bool orphanized;
233 };
234 
235 struct orphan_dir_info {
236 	struct rb_node node;
237 	u64 ino;
238 	u64 gen;
239 	u64 last_dir_index_offset;
240 };
241 
242 struct name_cache_entry {
243 	struct list_head list;
244 	/*
245 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
246 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
247 	 * more then one inum would fall into the same entry, we use radix_list
248 	 * to store the additional entries. radix_list is also used to store
249 	 * entries where two entries have the same inum but different
250 	 * generations.
251 	 */
252 	struct list_head radix_list;
253 	u64 ino;
254 	u64 gen;
255 	u64 parent_ino;
256 	u64 parent_gen;
257 	int ret;
258 	int need_later_update;
259 	int name_len;
260 	char name[];
261 };
262 
263 __cold
264 static void inconsistent_snapshot_error(struct send_ctx *sctx,
265 					enum btrfs_compare_tree_result result,
266 					const char *what)
267 {
268 	const char *result_string;
269 
270 	switch (result) {
271 	case BTRFS_COMPARE_TREE_NEW:
272 		result_string = "new";
273 		break;
274 	case BTRFS_COMPARE_TREE_DELETED:
275 		result_string = "deleted";
276 		break;
277 	case BTRFS_COMPARE_TREE_CHANGED:
278 		result_string = "updated";
279 		break;
280 	case BTRFS_COMPARE_TREE_SAME:
281 		ASSERT(0);
282 		result_string = "unchanged";
283 		break;
284 	default:
285 		ASSERT(0);
286 		result_string = "unexpected";
287 	}
288 
289 	btrfs_err(sctx->send_root->fs_info,
290 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
291 		  result_string, what, sctx->cmp_key->objectid,
292 		  sctx->send_root->root_key.objectid,
293 		  (sctx->parent_root ?
294 		   sctx->parent_root->root_key.objectid : 0));
295 }
296 
297 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
298 
299 static struct waiting_dir_move *
300 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
301 
302 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
303 
304 static int need_send_hole(struct send_ctx *sctx)
305 {
306 	return (sctx->parent_root && !sctx->cur_inode_new &&
307 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
308 		S_ISREG(sctx->cur_inode_mode));
309 }
310 
311 static void fs_path_reset(struct fs_path *p)
312 {
313 	if (p->reversed) {
314 		p->start = p->buf + p->buf_len - 1;
315 		p->end = p->start;
316 		*p->start = 0;
317 	} else {
318 		p->start = p->buf;
319 		p->end = p->start;
320 		*p->start = 0;
321 	}
322 }
323 
324 static struct fs_path *fs_path_alloc(void)
325 {
326 	struct fs_path *p;
327 
328 	p = kmalloc(sizeof(*p), GFP_KERNEL);
329 	if (!p)
330 		return NULL;
331 	p->reversed = 0;
332 	p->buf = p->inline_buf;
333 	p->buf_len = FS_PATH_INLINE_SIZE;
334 	fs_path_reset(p);
335 	return p;
336 }
337 
338 static struct fs_path *fs_path_alloc_reversed(void)
339 {
340 	struct fs_path *p;
341 
342 	p = fs_path_alloc();
343 	if (!p)
344 		return NULL;
345 	p->reversed = 1;
346 	fs_path_reset(p);
347 	return p;
348 }
349 
350 static void fs_path_free(struct fs_path *p)
351 {
352 	if (!p)
353 		return;
354 	if (p->buf != p->inline_buf)
355 		kfree(p->buf);
356 	kfree(p);
357 }
358 
359 static int fs_path_len(struct fs_path *p)
360 {
361 	return p->end - p->start;
362 }
363 
364 static int fs_path_ensure_buf(struct fs_path *p, int len)
365 {
366 	char *tmp_buf;
367 	int path_len;
368 	int old_buf_len;
369 
370 	len++;
371 
372 	if (p->buf_len >= len)
373 		return 0;
374 
375 	if (len > PATH_MAX) {
376 		WARN_ON(1);
377 		return -ENOMEM;
378 	}
379 
380 	path_len = p->end - p->start;
381 	old_buf_len = p->buf_len;
382 
383 	/*
384 	 * First time the inline_buf does not suffice
385 	 */
386 	if (p->buf == p->inline_buf) {
387 		tmp_buf = kmalloc(len, GFP_KERNEL);
388 		if (tmp_buf)
389 			memcpy(tmp_buf, p->buf, old_buf_len);
390 	} else {
391 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
392 	}
393 	if (!tmp_buf)
394 		return -ENOMEM;
395 	p->buf = tmp_buf;
396 	/*
397 	 * The real size of the buffer is bigger, this will let the fast path
398 	 * happen most of the time
399 	 */
400 	p->buf_len = ksize(p->buf);
401 
402 	if (p->reversed) {
403 		tmp_buf = p->buf + old_buf_len - path_len - 1;
404 		p->end = p->buf + p->buf_len - 1;
405 		p->start = p->end - path_len;
406 		memmove(p->start, tmp_buf, path_len + 1);
407 	} else {
408 		p->start = p->buf;
409 		p->end = p->start + path_len;
410 	}
411 	return 0;
412 }
413 
414 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
415 				   char **prepared)
416 {
417 	int ret;
418 	int new_len;
419 
420 	new_len = p->end - p->start + name_len;
421 	if (p->start != p->end)
422 		new_len++;
423 	ret = fs_path_ensure_buf(p, new_len);
424 	if (ret < 0)
425 		goto out;
426 
427 	if (p->reversed) {
428 		if (p->start != p->end)
429 			*--p->start = '/';
430 		p->start -= name_len;
431 		*prepared = p->start;
432 	} else {
433 		if (p->start != p->end)
434 			*p->end++ = '/';
435 		*prepared = p->end;
436 		p->end += name_len;
437 		*p->end = 0;
438 	}
439 
440 out:
441 	return ret;
442 }
443 
444 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
445 {
446 	int ret;
447 	char *prepared;
448 
449 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
450 	if (ret < 0)
451 		goto out;
452 	memcpy(prepared, name, name_len);
453 
454 out:
455 	return ret;
456 }
457 
458 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
459 {
460 	int ret;
461 	char *prepared;
462 
463 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
464 	if (ret < 0)
465 		goto out;
466 	memcpy(prepared, p2->start, p2->end - p2->start);
467 
468 out:
469 	return ret;
470 }
471 
472 static int fs_path_add_from_extent_buffer(struct fs_path *p,
473 					  struct extent_buffer *eb,
474 					  unsigned long off, int len)
475 {
476 	int ret;
477 	char *prepared;
478 
479 	ret = fs_path_prepare_for_add(p, len, &prepared);
480 	if (ret < 0)
481 		goto out;
482 
483 	read_extent_buffer(eb, prepared, off, len);
484 
485 out:
486 	return ret;
487 }
488 
489 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
490 {
491 	int ret;
492 
493 	p->reversed = from->reversed;
494 	fs_path_reset(p);
495 
496 	ret = fs_path_add_path(p, from);
497 
498 	return ret;
499 }
500 
501 
502 static void fs_path_unreverse(struct fs_path *p)
503 {
504 	char *tmp;
505 	int len;
506 
507 	if (!p->reversed)
508 		return;
509 
510 	tmp = p->start;
511 	len = p->end - p->start;
512 	p->start = p->buf;
513 	p->end = p->start + len;
514 	memmove(p->start, tmp, len + 1);
515 	p->reversed = 0;
516 }
517 
518 static struct btrfs_path *alloc_path_for_send(void)
519 {
520 	struct btrfs_path *path;
521 
522 	path = btrfs_alloc_path();
523 	if (!path)
524 		return NULL;
525 	path->search_commit_root = 1;
526 	path->skip_locking = 1;
527 	path->need_commit_sem = 1;
528 	return path;
529 }
530 
531 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
532 {
533 	int ret;
534 	u32 pos = 0;
535 
536 	while (pos < len) {
537 		ret = kernel_write(filp, buf + pos, len - pos, off);
538 		/* TODO handle that correctly */
539 		/*if (ret == -ERESTARTSYS) {
540 			continue;
541 		}*/
542 		if (ret < 0)
543 			return ret;
544 		if (ret == 0) {
545 			return -EIO;
546 		}
547 		pos += ret;
548 	}
549 
550 	return 0;
551 }
552 
553 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
554 {
555 	struct btrfs_tlv_header *hdr;
556 	int total_len = sizeof(*hdr) + len;
557 	int left = sctx->send_max_size - sctx->send_size;
558 
559 	if (unlikely(left < total_len))
560 		return -EOVERFLOW;
561 
562 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
563 	hdr->tlv_type = cpu_to_le16(attr);
564 	hdr->tlv_len = cpu_to_le16(len);
565 	memcpy(hdr + 1, data, len);
566 	sctx->send_size += total_len;
567 
568 	return 0;
569 }
570 
571 #define TLV_PUT_DEFINE_INT(bits) \
572 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
573 			u##bits attr, u##bits value)			\
574 	{								\
575 		__le##bits __tmp = cpu_to_le##bits(value);		\
576 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
577 	}
578 
579 TLV_PUT_DEFINE_INT(64)
580 
581 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
582 			  const char *str, int len)
583 {
584 	if (len == -1)
585 		len = strlen(str);
586 	return tlv_put(sctx, attr, str, len);
587 }
588 
589 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
590 			const u8 *uuid)
591 {
592 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
593 }
594 
595 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
596 				  struct extent_buffer *eb,
597 				  struct btrfs_timespec *ts)
598 {
599 	struct btrfs_timespec bts;
600 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
601 	return tlv_put(sctx, attr, &bts, sizeof(bts));
602 }
603 
604 
605 #define TLV_PUT(sctx, attrtype, data, attrlen) \
606 	do { \
607 		ret = tlv_put(sctx, attrtype, data, attrlen); \
608 		if (ret < 0) \
609 			goto tlv_put_failure; \
610 	} while (0)
611 
612 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
613 	do { \
614 		ret = tlv_put_u##bits(sctx, attrtype, value); \
615 		if (ret < 0) \
616 			goto tlv_put_failure; \
617 	} while (0)
618 
619 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
620 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
621 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
622 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
623 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
624 	do { \
625 		ret = tlv_put_string(sctx, attrtype, str, len); \
626 		if (ret < 0) \
627 			goto tlv_put_failure; \
628 	} while (0)
629 #define TLV_PUT_PATH(sctx, attrtype, p) \
630 	do { \
631 		ret = tlv_put_string(sctx, attrtype, p->start, \
632 			p->end - p->start); \
633 		if (ret < 0) \
634 			goto tlv_put_failure; \
635 	} while(0)
636 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
637 	do { \
638 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
639 		if (ret < 0) \
640 			goto tlv_put_failure; \
641 	} while (0)
642 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
643 	do { \
644 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
645 		if (ret < 0) \
646 			goto tlv_put_failure; \
647 	} while (0)
648 
649 static int send_header(struct send_ctx *sctx)
650 {
651 	struct btrfs_stream_header hdr;
652 
653 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
654 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
655 
656 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
657 					&sctx->send_off);
658 }
659 
660 /*
661  * For each command/item we want to send to userspace, we call this function.
662  */
663 static int begin_cmd(struct send_ctx *sctx, int cmd)
664 {
665 	struct btrfs_cmd_header *hdr;
666 
667 	if (WARN_ON(!sctx->send_buf))
668 		return -EINVAL;
669 
670 	BUG_ON(sctx->send_size);
671 
672 	sctx->send_size += sizeof(*hdr);
673 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
674 	hdr->cmd = cpu_to_le16(cmd);
675 
676 	return 0;
677 }
678 
679 static int send_cmd(struct send_ctx *sctx)
680 {
681 	int ret;
682 	struct btrfs_cmd_header *hdr;
683 	u32 crc;
684 
685 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
686 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
687 	hdr->crc = 0;
688 
689 	crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
690 	hdr->crc = cpu_to_le32(crc);
691 
692 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
693 					&sctx->send_off);
694 
695 	sctx->total_send_size += sctx->send_size;
696 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
697 	sctx->send_size = 0;
698 
699 	return ret;
700 }
701 
702 /*
703  * Sends a move instruction to user space
704  */
705 static int send_rename(struct send_ctx *sctx,
706 		     struct fs_path *from, struct fs_path *to)
707 {
708 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
709 	int ret;
710 
711 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
712 
713 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
714 	if (ret < 0)
715 		goto out;
716 
717 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
718 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
719 
720 	ret = send_cmd(sctx);
721 
722 tlv_put_failure:
723 out:
724 	return ret;
725 }
726 
727 /*
728  * Sends a link instruction to user space
729  */
730 static int send_link(struct send_ctx *sctx,
731 		     struct fs_path *path, struct fs_path *lnk)
732 {
733 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
734 	int ret;
735 
736 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
737 
738 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
739 	if (ret < 0)
740 		goto out;
741 
742 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
743 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
744 
745 	ret = send_cmd(sctx);
746 
747 tlv_put_failure:
748 out:
749 	return ret;
750 }
751 
752 /*
753  * Sends an unlink instruction to user space
754  */
755 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
756 {
757 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
758 	int ret;
759 
760 	btrfs_debug(fs_info, "send_unlink %s", path->start);
761 
762 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
763 	if (ret < 0)
764 		goto out;
765 
766 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
767 
768 	ret = send_cmd(sctx);
769 
770 tlv_put_failure:
771 out:
772 	return ret;
773 }
774 
775 /*
776  * Sends a rmdir instruction to user space
777  */
778 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
779 {
780 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
781 	int ret;
782 
783 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
784 
785 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
786 	if (ret < 0)
787 		goto out;
788 
789 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
790 
791 	ret = send_cmd(sctx);
792 
793 tlv_put_failure:
794 out:
795 	return ret;
796 }
797 
798 /*
799  * Helper function to retrieve some fields from an inode item.
800  */
801 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
802 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
803 			  u64 *gid, u64 *rdev)
804 {
805 	int ret;
806 	struct btrfs_inode_item *ii;
807 	struct btrfs_key key;
808 
809 	key.objectid = ino;
810 	key.type = BTRFS_INODE_ITEM_KEY;
811 	key.offset = 0;
812 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
813 	if (ret) {
814 		if (ret > 0)
815 			ret = -ENOENT;
816 		return ret;
817 	}
818 
819 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
820 			struct btrfs_inode_item);
821 	if (size)
822 		*size = btrfs_inode_size(path->nodes[0], ii);
823 	if (gen)
824 		*gen = btrfs_inode_generation(path->nodes[0], ii);
825 	if (mode)
826 		*mode = btrfs_inode_mode(path->nodes[0], ii);
827 	if (uid)
828 		*uid = btrfs_inode_uid(path->nodes[0], ii);
829 	if (gid)
830 		*gid = btrfs_inode_gid(path->nodes[0], ii);
831 	if (rdev)
832 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
833 
834 	return ret;
835 }
836 
837 static int get_inode_info(struct btrfs_root *root,
838 			  u64 ino, u64 *size, u64 *gen,
839 			  u64 *mode, u64 *uid, u64 *gid,
840 			  u64 *rdev)
841 {
842 	struct btrfs_path *path;
843 	int ret;
844 
845 	path = alloc_path_for_send();
846 	if (!path)
847 		return -ENOMEM;
848 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
849 			       rdev);
850 	btrfs_free_path(path);
851 	return ret;
852 }
853 
854 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
855 				   struct fs_path *p,
856 				   void *ctx);
857 
858 /*
859  * Helper function to iterate the entries in ONE btrfs_inode_ref or
860  * btrfs_inode_extref.
861  * The iterate callback may return a non zero value to stop iteration. This can
862  * be a negative value for error codes or 1 to simply stop it.
863  *
864  * path must point to the INODE_REF or INODE_EXTREF when called.
865  */
866 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
867 			     struct btrfs_key *found_key, int resolve,
868 			     iterate_inode_ref_t iterate, void *ctx)
869 {
870 	struct extent_buffer *eb = path->nodes[0];
871 	struct btrfs_item *item;
872 	struct btrfs_inode_ref *iref;
873 	struct btrfs_inode_extref *extref;
874 	struct btrfs_path *tmp_path;
875 	struct fs_path *p;
876 	u32 cur = 0;
877 	u32 total;
878 	int slot = path->slots[0];
879 	u32 name_len;
880 	char *start;
881 	int ret = 0;
882 	int num = 0;
883 	int index;
884 	u64 dir;
885 	unsigned long name_off;
886 	unsigned long elem_size;
887 	unsigned long ptr;
888 
889 	p = fs_path_alloc_reversed();
890 	if (!p)
891 		return -ENOMEM;
892 
893 	tmp_path = alloc_path_for_send();
894 	if (!tmp_path) {
895 		fs_path_free(p);
896 		return -ENOMEM;
897 	}
898 
899 
900 	if (found_key->type == BTRFS_INODE_REF_KEY) {
901 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
902 						    struct btrfs_inode_ref);
903 		item = btrfs_item_nr(slot);
904 		total = btrfs_item_size(eb, item);
905 		elem_size = sizeof(*iref);
906 	} else {
907 		ptr = btrfs_item_ptr_offset(eb, slot);
908 		total = btrfs_item_size_nr(eb, slot);
909 		elem_size = sizeof(*extref);
910 	}
911 
912 	while (cur < total) {
913 		fs_path_reset(p);
914 
915 		if (found_key->type == BTRFS_INODE_REF_KEY) {
916 			iref = (struct btrfs_inode_ref *)(ptr + cur);
917 			name_len = btrfs_inode_ref_name_len(eb, iref);
918 			name_off = (unsigned long)(iref + 1);
919 			index = btrfs_inode_ref_index(eb, iref);
920 			dir = found_key->offset;
921 		} else {
922 			extref = (struct btrfs_inode_extref *)(ptr + cur);
923 			name_len = btrfs_inode_extref_name_len(eb, extref);
924 			name_off = (unsigned long)&extref->name;
925 			index = btrfs_inode_extref_index(eb, extref);
926 			dir = btrfs_inode_extref_parent(eb, extref);
927 		}
928 
929 		if (resolve) {
930 			start = btrfs_ref_to_path(root, tmp_path, name_len,
931 						  name_off, eb, dir,
932 						  p->buf, p->buf_len);
933 			if (IS_ERR(start)) {
934 				ret = PTR_ERR(start);
935 				goto out;
936 			}
937 			if (start < p->buf) {
938 				/* overflow , try again with larger buffer */
939 				ret = fs_path_ensure_buf(p,
940 						p->buf_len + p->buf - start);
941 				if (ret < 0)
942 					goto out;
943 				start = btrfs_ref_to_path(root, tmp_path,
944 							  name_len, name_off,
945 							  eb, dir,
946 							  p->buf, p->buf_len);
947 				if (IS_ERR(start)) {
948 					ret = PTR_ERR(start);
949 					goto out;
950 				}
951 				BUG_ON(start < p->buf);
952 			}
953 			p->start = start;
954 		} else {
955 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
956 							     name_len);
957 			if (ret < 0)
958 				goto out;
959 		}
960 
961 		cur += elem_size + name_len;
962 		ret = iterate(num, dir, index, p, ctx);
963 		if (ret)
964 			goto out;
965 		num++;
966 	}
967 
968 out:
969 	btrfs_free_path(tmp_path);
970 	fs_path_free(p);
971 	return ret;
972 }
973 
974 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
975 				  const char *name, int name_len,
976 				  const char *data, int data_len,
977 				  u8 type, void *ctx);
978 
979 /*
980  * Helper function to iterate the entries in ONE btrfs_dir_item.
981  * The iterate callback may return a non zero value to stop iteration. This can
982  * be a negative value for error codes or 1 to simply stop it.
983  *
984  * path must point to the dir item when called.
985  */
986 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
987 			    iterate_dir_item_t iterate, void *ctx)
988 {
989 	int ret = 0;
990 	struct extent_buffer *eb;
991 	struct btrfs_item *item;
992 	struct btrfs_dir_item *di;
993 	struct btrfs_key di_key;
994 	char *buf = NULL;
995 	int buf_len;
996 	u32 name_len;
997 	u32 data_len;
998 	u32 cur;
999 	u32 len;
1000 	u32 total;
1001 	int slot;
1002 	int num;
1003 	u8 type;
1004 
1005 	/*
1006 	 * Start with a small buffer (1 page). If later we end up needing more
1007 	 * space, which can happen for xattrs on a fs with a leaf size greater
1008 	 * then the page size, attempt to increase the buffer. Typically xattr
1009 	 * values are small.
1010 	 */
1011 	buf_len = PATH_MAX;
1012 	buf = kmalloc(buf_len, GFP_KERNEL);
1013 	if (!buf) {
1014 		ret = -ENOMEM;
1015 		goto out;
1016 	}
1017 
1018 	eb = path->nodes[0];
1019 	slot = path->slots[0];
1020 	item = btrfs_item_nr(slot);
1021 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1022 	cur = 0;
1023 	len = 0;
1024 	total = btrfs_item_size(eb, item);
1025 
1026 	num = 0;
1027 	while (cur < total) {
1028 		name_len = btrfs_dir_name_len(eb, di);
1029 		data_len = btrfs_dir_data_len(eb, di);
1030 		type = btrfs_dir_type(eb, di);
1031 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1032 
1033 		if (type == BTRFS_FT_XATTR) {
1034 			if (name_len > XATTR_NAME_MAX) {
1035 				ret = -ENAMETOOLONG;
1036 				goto out;
1037 			}
1038 			if (name_len + data_len >
1039 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1040 				ret = -E2BIG;
1041 				goto out;
1042 			}
1043 		} else {
1044 			/*
1045 			 * Path too long
1046 			 */
1047 			if (name_len + data_len > PATH_MAX) {
1048 				ret = -ENAMETOOLONG;
1049 				goto out;
1050 			}
1051 		}
1052 
1053 		if (name_len + data_len > buf_len) {
1054 			buf_len = name_len + data_len;
1055 			if (is_vmalloc_addr(buf)) {
1056 				vfree(buf);
1057 				buf = NULL;
1058 			} else {
1059 				char *tmp = krealloc(buf, buf_len,
1060 						GFP_KERNEL | __GFP_NOWARN);
1061 
1062 				if (!tmp)
1063 					kfree(buf);
1064 				buf = tmp;
1065 			}
1066 			if (!buf) {
1067 				buf = kvmalloc(buf_len, GFP_KERNEL);
1068 				if (!buf) {
1069 					ret = -ENOMEM;
1070 					goto out;
1071 				}
1072 			}
1073 		}
1074 
1075 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1076 				name_len + data_len);
1077 
1078 		len = sizeof(*di) + name_len + data_len;
1079 		di = (struct btrfs_dir_item *)((char *)di + len);
1080 		cur += len;
1081 
1082 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1083 				data_len, type, ctx);
1084 		if (ret < 0)
1085 			goto out;
1086 		if (ret) {
1087 			ret = 0;
1088 			goto out;
1089 		}
1090 
1091 		num++;
1092 	}
1093 
1094 out:
1095 	kvfree(buf);
1096 	return ret;
1097 }
1098 
1099 static int __copy_first_ref(int num, u64 dir, int index,
1100 			    struct fs_path *p, void *ctx)
1101 {
1102 	int ret;
1103 	struct fs_path *pt = ctx;
1104 
1105 	ret = fs_path_copy(pt, p);
1106 	if (ret < 0)
1107 		return ret;
1108 
1109 	/* we want the first only */
1110 	return 1;
1111 }
1112 
1113 /*
1114  * Retrieve the first path of an inode. If an inode has more then one
1115  * ref/hardlink, this is ignored.
1116  */
1117 static int get_inode_path(struct btrfs_root *root,
1118 			  u64 ino, struct fs_path *path)
1119 {
1120 	int ret;
1121 	struct btrfs_key key, found_key;
1122 	struct btrfs_path *p;
1123 
1124 	p = alloc_path_for_send();
1125 	if (!p)
1126 		return -ENOMEM;
1127 
1128 	fs_path_reset(path);
1129 
1130 	key.objectid = ino;
1131 	key.type = BTRFS_INODE_REF_KEY;
1132 	key.offset = 0;
1133 
1134 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1135 	if (ret < 0)
1136 		goto out;
1137 	if (ret) {
1138 		ret = 1;
1139 		goto out;
1140 	}
1141 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1142 	if (found_key.objectid != ino ||
1143 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1144 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1145 		ret = -ENOENT;
1146 		goto out;
1147 	}
1148 
1149 	ret = iterate_inode_ref(root, p, &found_key, 1,
1150 				__copy_first_ref, path);
1151 	if (ret < 0)
1152 		goto out;
1153 	ret = 0;
1154 
1155 out:
1156 	btrfs_free_path(p);
1157 	return ret;
1158 }
1159 
1160 struct backref_ctx {
1161 	struct send_ctx *sctx;
1162 
1163 	struct btrfs_path *path;
1164 	/* number of total found references */
1165 	u64 found;
1166 
1167 	/*
1168 	 * used for clones found in send_root. clones found behind cur_objectid
1169 	 * and cur_offset are not considered as allowed clones.
1170 	 */
1171 	u64 cur_objectid;
1172 	u64 cur_offset;
1173 
1174 	/* may be truncated in case it's the last extent in a file */
1175 	u64 extent_len;
1176 
1177 	/* data offset in the file extent item */
1178 	u64 data_offset;
1179 
1180 	/* Just to check for bugs in backref resolving */
1181 	int found_itself;
1182 };
1183 
1184 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1185 {
1186 	u64 root = (u64)(uintptr_t)key;
1187 	struct clone_root *cr = (struct clone_root *)elt;
1188 
1189 	if (root < cr->root->objectid)
1190 		return -1;
1191 	if (root > cr->root->objectid)
1192 		return 1;
1193 	return 0;
1194 }
1195 
1196 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1197 {
1198 	struct clone_root *cr1 = (struct clone_root *)e1;
1199 	struct clone_root *cr2 = (struct clone_root *)e2;
1200 
1201 	if (cr1->root->objectid < cr2->root->objectid)
1202 		return -1;
1203 	if (cr1->root->objectid > cr2->root->objectid)
1204 		return 1;
1205 	return 0;
1206 }
1207 
1208 /*
1209  * Called for every backref that is found for the current extent.
1210  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1211  */
1212 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1213 {
1214 	struct backref_ctx *bctx = ctx_;
1215 	struct clone_root *found;
1216 	int ret;
1217 	u64 i_size;
1218 
1219 	/* First check if the root is in the list of accepted clone sources */
1220 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1221 			bctx->sctx->clone_roots_cnt,
1222 			sizeof(struct clone_root),
1223 			__clone_root_cmp_bsearch);
1224 	if (!found)
1225 		return 0;
1226 
1227 	if (found->root == bctx->sctx->send_root &&
1228 	    ino == bctx->cur_objectid &&
1229 	    offset == bctx->cur_offset) {
1230 		bctx->found_itself = 1;
1231 	}
1232 
1233 	/*
1234 	 * There are inodes that have extents that lie behind its i_size. Don't
1235 	 * accept clones from these extents.
1236 	 */
1237 	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1238 			       NULL, NULL, NULL);
1239 	btrfs_release_path(bctx->path);
1240 	if (ret < 0)
1241 		return ret;
1242 
1243 	if (offset + bctx->data_offset + bctx->extent_len > i_size)
1244 		return 0;
1245 
1246 	/*
1247 	 * Make sure we don't consider clones from send_root that are
1248 	 * behind the current inode/offset.
1249 	 */
1250 	if (found->root == bctx->sctx->send_root) {
1251 		/*
1252 		 * TODO for the moment we don't accept clones from the inode
1253 		 * that is currently send. We may change this when
1254 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1255 		 * file.
1256 		 */
1257 		if (ino >= bctx->cur_objectid)
1258 			return 0;
1259 	}
1260 
1261 	bctx->found++;
1262 	found->found_refs++;
1263 	if (ino < found->ino) {
1264 		found->ino = ino;
1265 		found->offset = offset;
1266 	} else if (found->ino == ino) {
1267 		/*
1268 		 * same extent found more then once in the same file.
1269 		 */
1270 		if (found->offset > offset + bctx->extent_len)
1271 			found->offset = offset;
1272 	}
1273 
1274 	return 0;
1275 }
1276 
1277 /*
1278  * Given an inode, offset and extent item, it finds a good clone for a clone
1279  * instruction. Returns -ENOENT when none could be found. The function makes
1280  * sure that the returned clone is usable at the point where sending is at the
1281  * moment. This means, that no clones are accepted which lie behind the current
1282  * inode+offset.
1283  *
1284  * path must point to the extent item when called.
1285  */
1286 static int find_extent_clone(struct send_ctx *sctx,
1287 			     struct btrfs_path *path,
1288 			     u64 ino, u64 data_offset,
1289 			     u64 ino_size,
1290 			     struct clone_root **found)
1291 {
1292 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1293 	int ret;
1294 	int extent_type;
1295 	u64 logical;
1296 	u64 disk_byte;
1297 	u64 num_bytes;
1298 	u64 extent_item_pos;
1299 	u64 flags = 0;
1300 	struct btrfs_file_extent_item *fi;
1301 	struct extent_buffer *eb = path->nodes[0];
1302 	struct backref_ctx *backref_ctx = NULL;
1303 	struct clone_root *cur_clone_root;
1304 	struct btrfs_key found_key;
1305 	struct btrfs_path *tmp_path;
1306 	int compressed;
1307 	u32 i;
1308 
1309 	tmp_path = alloc_path_for_send();
1310 	if (!tmp_path)
1311 		return -ENOMEM;
1312 
1313 	/* We only use this path under the commit sem */
1314 	tmp_path->need_commit_sem = 0;
1315 
1316 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1317 	if (!backref_ctx) {
1318 		ret = -ENOMEM;
1319 		goto out;
1320 	}
1321 
1322 	backref_ctx->path = tmp_path;
1323 
1324 	if (data_offset >= ino_size) {
1325 		/*
1326 		 * There may be extents that lie behind the file's size.
1327 		 * I at least had this in combination with snapshotting while
1328 		 * writing large files.
1329 		 */
1330 		ret = 0;
1331 		goto out;
1332 	}
1333 
1334 	fi = btrfs_item_ptr(eb, path->slots[0],
1335 			struct btrfs_file_extent_item);
1336 	extent_type = btrfs_file_extent_type(eb, fi);
1337 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1338 		ret = -ENOENT;
1339 		goto out;
1340 	}
1341 	compressed = btrfs_file_extent_compression(eb, fi);
1342 
1343 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1344 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1345 	if (disk_byte == 0) {
1346 		ret = -ENOENT;
1347 		goto out;
1348 	}
1349 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1350 
1351 	down_read(&fs_info->commit_root_sem);
1352 	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1353 				  &found_key, &flags);
1354 	up_read(&fs_info->commit_root_sem);
1355 	btrfs_release_path(tmp_path);
1356 
1357 	if (ret < 0)
1358 		goto out;
1359 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1360 		ret = -EIO;
1361 		goto out;
1362 	}
1363 
1364 	/*
1365 	 * Setup the clone roots.
1366 	 */
1367 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1368 		cur_clone_root = sctx->clone_roots + i;
1369 		cur_clone_root->ino = (u64)-1;
1370 		cur_clone_root->offset = 0;
1371 		cur_clone_root->found_refs = 0;
1372 	}
1373 
1374 	backref_ctx->sctx = sctx;
1375 	backref_ctx->found = 0;
1376 	backref_ctx->cur_objectid = ino;
1377 	backref_ctx->cur_offset = data_offset;
1378 	backref_ctx->found_itself = 0;
1379 	backref_ctx->extent_len = num_bytes;
1380 	/*
1381 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1382 	 * offsets that already take into account the data offset, but not for
1383 	 * compressed extents, since the offset is logical and not relative to
1384 	 * the physical extent locations. We must take this into account to
1385 	 * avoid sending clone offsets that go beyond the source file's size,
1386 	 * which would result in the clone ioctl failing with -EINVAL on the
1387 	 * receiving end.
1388 	 */
1389 	if (compressed == BTRFS_COMPRESS_NONE)
1390 		backref_ctx->data_offset = 0;
1391 	else
1392 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1393 
1394 	/*
1395 	 * The last extent of a file may be too large due to page alignment.
1396 	 * We need to adjust extent_len in this case so that the checks in
1397 	 * __iterate_backrefs work.
1398 	 */
1399 	if (data_offset + num_bytes >= ino_size)
1400 		backref_ctx->extent_len = ino_size - data_offset;
1401 
1402 	/*
1403 	 * Now collect all backrefs.
1404 	 */
1405 	if (compressed == BTRFS_COMPRESS_NONE)
1406 		extent_item_pos = logical - found_key.objectid;
1407 	else
1408 		extent_item_pos = 0;
1409 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1410 				    extent_item_pos, 1, __iterate_backrefs,
1411 				    backref_ctx, false);
1412 
1413 	if (ret < 0)
1414 		goto out;
1415 
1416 	if (!backref_ctx->found_itself) {
1417 		/* found a bug in backref code? */
1418 		ret = -EIO;
1419 		btrfs_err(fs_info,
1420 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1421 			  ino, data_offset, disk_byte, found_key.objectid);
1422 		goto out;
1423 	}
1424 
1425 	btrfs_debug(fs_info,
1426 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1427 		    data_offset, ino, num_bytes, logical);
1428 
1429 	if (!backref_ctx->found)
1430 		btrfs_debug(fs_info, "no clones found");
1431 
1432 	cur_clone_root = NULL;
1433 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1434 		if (sctx->clone_roots[i].found_refs) {
1435 			if (!cur_clone_root)
1436 				cur_clone_root = sctx->clone_roots + i;
1437 			else if (sctx->clone_roots[i].root == sctx->send_root)
1438 				/* prefer clones from send_root over others */
1439 				cur_clone_root = sctx->clone_roots + i;
1440 		}
1441 
1442 	}
1443 
1444 	if (cur_clone_root) {
1445 		*found = cur_clone_root;
1446 		ret = 0;
1447 	} else {
1448 		ret = -ENOENT;
1449 	}
1450 
1451 out:
1452 	btrfs_free_path(tmp_path);
1453 	kfree(backref_ctx);
1454 	return ret;
1455 }
1456 
1457 static int read_symlink(struct btrfs_root *root,
1458 			u64 ino,
1459 			struct fs_path *dest)
1460 {
1461 	int ret;
1462 	struct btrfs_path *path;
1463 	struct btrfs_key key;
1464 	struct btrfs_file_extent_item *ei;
1465 	u8 type;
1466 	u8 compression;
1467 	unsigned long off;
1468 	int len;
1469 
1470 	path = alloc_path_for_send();
1471 	if (!path)
1472 		return -ENOMEM;
1473 
1474 	key.objectid = ino;
1475 	key.type = BTRFS_EXTENT_DATA_KEY;
1476 	key.offset = 0;
1477 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1478 	if (ret < 0)
1479 		goto out;
1480 	if (ret) {
1481 		/*
1482 		 * An empty symlink inode. Can happen in rare error paths when
1483 		 * creating a symlink (transaction committed before the inode
1484 		 * eviction handler removed the symlink inode items and a crash
1485 		 * happened in between or the subvol was snapshoted in between).
1486 		 * Print an informative message to dmesg/syslog so that the user
1487 		 * can delete the symlink.
1488 		 */
1489 		btrfs_err(root->fs_info,
1490 			  "Found empty symlink inode %llu at root %llu",
1491 			  ino, root->root_key.objectid);
1492 		ret = -EIO;
1493 		goto out;
1494 	}
1495 
1496 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1497 			struct btrfs_file_extent_item);
1498 	type = btrfs_file_extent_type(path->nodes[0], ei);
1499 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1500 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1501 	BUG_ON(compression);
1502 
1503 	off = btrfs_file_extent_inline_start(ei);
1504 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1505 
1506 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1507 
1508 out:
1509 	btrfs_free_path(path);
1510 	return ret;
1511 }
1512 
1513 /*
1514  * Helper function to generate a file name that is unique in the root of
1515  * send_root and parent_root. This is used to generate names for orphan inodes.
1516  */
1517 static int gen_unique_name(struct send_ctx *sctx,
1518 			   u64 ino, u64 gen,
1519 			   struct fs_path *dest)
1520 {
1521 	int ret = 0;
1522 	struct btrfs_path *path;
1523 	struct btrfs_dir_item *di;
1524 	char tmp[64];
1525 	int len;
1526 	u64 idx = 0;
1527 
1528 	path = alloc_path_for_send();
1529 	if (!path)
1530 		return -ENOMEM;
1531 
1532 	while (1) {
1533 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1534 				ino, gen, idx);
1535 		ASSERT(len < sizeof(tmp));
1536 
1537 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1538 				path, BTRFS_FIRST_FREE_OBJECTID,
1539 				tmp, strlen(tmp), 0);
1540 		btrfs_release_path(path);
1541 		if (IS_ERR(di)) {
1542 			ret = PTR_ERR(di);
1543 			goto out;
1544 		}
1545 		if (di) {
1546 			/* not unique, try again */
1547 			idx++;
1548 			continue;
1549 		}
1550 
1551 		if (!sctx->parent_root) {
1552 			/* unique */
1553 			ret = 0;
1554 			break;
1555 		}
1556 
1557 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1558 				path, BTRFS_FIRST_FREE_OBJECTID,
1559 				tmp, strlen(tmp), 0);
1560 		btrfs_release_path(path);
1561 		if (IS_ERR(di)) {
1562 			ret = PTR_ERR(di);
1563 			goto out;
1564 		}
1565 		if (di) {
1566 			/* not unique, try again */
1567 			idx++;
1568 			continue;
1569 		}
1570 		/* unique */
1571 		break;
1572 	}
1573 
1574 	ret = fs_path_add(dest, tmp, strlen(tmp));
1575 
1576 out:
1577 	btrfs_free_path(path);
1578 	return ret;
1579 }
1580 
1581 enum inode_state {
1582 	inode_state_no_change,
1583 	inode_state_will_create,
1584 	inode_state_did_create,
1585 	inode_state_will_delete,
1586 	inode_state_did_delete,
1587 };
1588 
1589 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1590 {
1591 	int ret;
1592 	int left_ret;
1593 	int right_ret;
1594 	u64 left_gen;
1595 	u64 right_gen;
1596 
1597 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1598 			NULL, NULL);
1599 	if (ret < 0 && ret != -ENOENT)
1600 		goto out;
1601 	left_ret = ret;
1602 
1603 	if (!sctx->parent_root) {
1604 		right_ret = -ENOENT;
1605 	} else {
1606 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1607 				NULL, NULL, NULL, NULL);
1608 		if (ret < 0 && ret != -ENOENT)
1609 			goto out;
1610 		right_ret = ret;
1611 	}
1612 
1613 	if (!left_ret && !right_ret) {
1614 		if (left_gen == gen && right_gen == gen) {
1615 			ret = inode_state_no_change;
1616 		} else if (left_gen == gen) {
1617 			if (ino < sctx->send_progress)
1618 				ret = inode_state_did_create;
1619 			else
1620 				ret = inode_state_will_create;
1621 		} else if (right_gen == gen) {
1622 			if (ino < sctx->send_progress)
1623 				ret = inode_state_did_delete;
1624 			else
1625 				ret = inode_state_will_delete;
1626 		} else  {
1627 			ret = -ENOENT;
1628 		}
1629 	} else if (!left_ret) {
1630 		if (left_gen == gen) {
1631 			if (ino < sctx->send_progress)
1632 				ret = inode_state_did_create;
1633 			else
1634 				ret = inode_state_will_create;
1635 		} else {
1636 			ret = -ENOENT;
1637 		}
1638 	} else if (!right_ret) {
1639 		if (right_gen == gen) {
1640 			if (ino < sctx->send_progress)
1641 				ret = inode_state_did_delete;
1642 			else
1643 				ret = inode_state_will_delete;
1644 		} else {
1645 			ret = -ENOENT;
1646 		}
1647 	} else {
1648 		ret = -ENOENT;
1649 	}
1650 
1651 out:
1652 	return ret;
1653 }
1654 
1655 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1656 {
1657 	int ret;
1658 
1659 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1660 		return 1;
1661 
1662 	ret = get_cur_inode_state(sctx, ino, gen);
1663 	if (ret < 0)
1664 		goto out;
1665 
1666 	if (ret == inode_state_no_change ||
1667 	    ret == inode_state_did_create ||
1668 	    ret == inode_state_will_delete)
1669 		ret = 1;
1670 	else
1671 		ret = 0;
1672 
1673 out:
1674 	return ret;
1675 }
1676 
1677 /*
1678  * Helper function to lookup a dir item in a dir.
1679  */
1680 static int lookup_dir_item_inode(struct btrfs_root *root,
1681 				 u64 dir, const char *name, int name_len,
1682 				 u64 *found_inode,
1683 				 u8 *found_type)
1684 {
1685 	int ret = 0;
1686 	struct btrfs_dir_item *di;
1687 	struct btrfs_key key;
1688 	struct btrfs_path *path;
1689 
1690 	path = alloc_path_for_send();
1691 	if (!path)
1692 		return -ENOMEM;
1693 
1694 	di = btrfs_lookup_dir_item(NULL, root, path,
1695 			dir, name, name_len, 0);
1696 	if (!di) {
1697 		ret = -ENOENT;
1698 		goto out;
1699 	}
1700 	if (IS_ERR(di)) {
1701 		ret = PTR_ERR(di);
1702 		goto out;
1703 	}
1704 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1705 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1706 		ret = -ENOENT;
1707 		goto out;
1708 	}
1709 	*found_inode = key.objectid;
1710 	*found_type = btrfs_dir_type(path->nodes[0], di);
1711 
1712 out:
1713 	btrfs_free_path(path);
1714 	return ret;
1715 }
1716 
1717 /*
1718  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1719  * generation of the parent dir and the name of the dir entry.
1720  */
1721 static int get_first_ref(struct btrfs_root *root, u64 ino,
1722 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1723 {
1724 	int ret;
1725 	struct btrfs_key key;
1726 	struct btrfs_key found_key;
1727 	struct btrfs_path *path;
1728 	int len;
1729 	u64 parent_dir;
1730 
1731 	path = alloc_path_for_send();
1732 	if (!path)
1733 		return -ENOMEM;
1734 
1735 	key.objectid = ino;
1736 	key.type = BTRFS_INODE_REF_KEY;
1737 	key.offset = 0;
1738 
1739 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1740 	if (ret < 0)
1741 		goto out;
1742 	if (!ret)
1743 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1744 				path->slots[0]);
1745 	if (ret || found_key.objectid != ino ||
1746 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1747 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1748 		ret = -ENOENT;
1749 		goto out;
1750 	}
1751 
1752 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1753 		struct btrfs_inode_ref *iref;
1754 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1755 				      struct btrfs_inode_ref);
1756 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1757 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1758 						     (unsigned long)(iref + 1),
1759 						     len);
1760 		parent_dir = found_key.offset;
1761 	} else {
1762 		struct btrfs_inode_extref *extref;
1763 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1764 					struct btrfs_inode_extref);
1765 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1766 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1767 					(unsigned long)&extref->name, len);
1768 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1769 	}
1770 	if (ret < 0)
1771 		goto out;
1772 	btrfs_release_path(path);
1773 
1774 	if (dir_gen) {
1775 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1776 				     NULL, NULL, NULL);
1777 		if (ret < 0)
1778 			goto out;
1779 	}
1780 
1781 	*dir = parent_dir;
1782 
1783 out:
1784 	btrfs_free_path(path);
1785 	return ret;
1786 }
1787 
1788 static int is_first_ref(struct btrfs_root *root,
1789 			u64 ino, u64 dir,
1790 			const char *name, int name_len)
1791 {
1792 	int ret;
1793 	struct fs_path *tmp_name;
1794 	u64 tmp_dir;
1795 
1796 	tmp_name = fs_path_alloc();
1797 	if (!tmp_name)
1798 		return -ENOMEM;
1799 
1800 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1801 	if (ret < 0)
1802 		goto out;
1803 
1804 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1805 		ret = 0;
1806 		goto out;
1807 	}
1808 
1809 	ret = !memcmp(tmp_name->start, name, name_len);
1810 
1811 out:
1812 	fs_path_free(tmp_name);
1813 	return ret;
1814 }
1815 
1816 /*
1817  * Used by process_recorded_refs to determine if a new ref would overwrite an
1818  * already existing ref. In case it detects an overwrite, it returns the
1819  * inode/gen in who_ino/who_gen.
1820  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1821  * to make sure later references to the overwritten inode are possible.
1822  * Orphanizing is however only required for the first ref of an inode.
1823  * process_recorded_refs does an additional is_first_ref check to see if
1824  * orphanizing is really required.
1825  */
1826 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1827 			      const char *name, int name_len,
1828 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1829 {
1830 	int ret = 0;
1831 	u64 gen;
1832 	u64 other_inode = 0;
1833 	u8 other_type = 0;
1834 
1835 	if (!sctx->parent_root)
1836 		goto out;
1837 
1838 	ret = is_inode_existent(sctx, dir, dir_gen);
1839 	if (ret <= 0)
1840 		goto out;
1841 
1842 	/*
1843 	 * If we have a parent root we need to verify that the parent dir was
1844 	 * not deleted and then re-created, if it was then we have no overwrite
1845 	 * and we can just unlink this entry.
1846 	 */
1847 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1848 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1849 				     NULL, NULL, NULL);
1850 		if (ret < 0 && ret != -ENOENT)
1851 			goto out;
1852 		if (ret) {
1853 			ret = 0;
1854 			goto out;
1855 		}
1856 		if (gen != dir_gen)
1857 			goto out;
1858 	}
1859 
1860 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1861 			&other_inode, &other_type);
1862 	if (ret < 0 && ret != -ENOENT)
1863 		goto out;
1864 	if (ret) {
1865 		ret = 0;
1866 		goto out;
1867 	}
1868 
1869 	/*
1870 	 * Check if the overwritten ref was already processed. If yes, the ref
1871 	 * was already unlinked/moved, so we can safely assume that we will not
1872 	 * overwrite anything at this point in time.
1873 	 */
1874 	if (other_inode > sctx->send_progress ||
1875 	    is_waiting_for_move(sctx, other_inode)) {
1876 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1877 				who_gen, who_mode, NULL, NULL, NULL);
1878 		if (ret < 0)
1879 			goto out;
1880 
1881 		ret = 1;
1882 		*who_ino = other_inode;
1883 	} else {
1884 		ret = 0;
1885 	}
1886 
1887 out:
1888 	return ret;
1889 }
1890 
1891 /*
1892  * Checks if the ref was overwritten by an already processed inode. This is
1893  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1894  * thus the orphan name needs be used.
1895  * process_recorded_refs also uses it to avoid unlinking of refs that were
1896  * overwritten.
1897  */
1898 static int did_overwrite_ref(struct send_ctx *sctx,
1899 			    u64 dir, u64 dir_gen,
1900 			    u64 ino, u64 ino_gen,
1901 			    const char *name, int name_len)
1902 {
1903 	int ret = 0;
1904 	u64 gen;
1905 	u64 ow_inode;
1906 	u8 other_type;
1907 
1908 	if (!sctx->parent_root)
1909 		goto out;
1910 
1911 	ret = is_inode_existent(sctx, dir, dir_gen);
1912 	if (ret <= 0)
1913 		goto out;
1914 
1915 	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1916 		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1917 				     NULL, NULL, NULL);
1918 		if (ret < 0 && ret != -ENOENT)
1919 			goto out;
1920 		if (ret) {
1921 			ret = 0;
1922 			goto out;
1923 		}
1924 		if (gen != dir_gen)
1925 			goto out;
1926 	}
1927 
1928 	/* check if the ref was overwritten by another ref */
1929 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1930 			&ow_inode, &other_type);
1931 	if (ret < 0 && ret != -ENOENT)
1932 		goto out;
1933 	if (ret) {
1934 		/* was never and will never be overwritten */
1935 		ret = 0;
1936 		goto out;
1937 	}
1938 
1939 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1940 			NULL, NULL);
1941 	if (ret < 0)
1942 		goto out;
1943 
1944 	if (ow_inode == ino && gen == ino_gen) {
1945 		ret = 0;
1946 		goto out;
1947 	}
1948 
1949 	/*
1950 	 * We know that it is or will be overwritten. Check this now.
1951 	 * The current inode being processed might have been the one that caused
1952 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1953 	 * the current inode being processed.
1954 	 */
1955 	if ((ow_inode < sctx->send_progress) ||
1956 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1957 	     gen == sctx->cur_inode_gen))
1958 		ret = 1;
1959 	else
1960 		ret = 0;
1961 
1962 out:
1963 	return ret;
1964 }
1965 
1966 /*
1967  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1968  * that got overwritten. This is used by process_recorded_refs to determine
1969  * if it has to use the path as returned by get_cur_path or the orphan name.
1970  */
1971 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1972 {
1973 	int ret = 0;
1974 	struct fs_path *name = NULL;
1975 	u64 dir;
1976 	u64 dir_gen;
1977 
1978 	if (!sctx->parent_root)
1979 		goto out;
1980 
1981 	name = fs_path_alloc();
1982 	if (!name)
1983 		return -ENOMEM;
1984 
1985 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1986 	if (ret < 0)
1987 		goto out;
1988 
1989 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1990 			name->start, fs_path_len(name));
1991 
1992 out:
1993 	fs_path_free(name);
1994 	return ret;
1995 }
1996 
1997 /*
1998  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1999  * so we need to do some special handling in case we have clashes. This function
2000  * takes care of this with the help of name_cache_entry::radix_list.
2001  * In case of error, nce is kfreed.
2002  */
2003 static int name_cache_insert(struct send_ctx *sctx,
2004 			     struct name_cache_entry *nce)
2005 {
2006 	int ret = 0;
2007 	struct list_head *nce_head;
2008 
2009 	nce_head = radix_tree_lookup(&sctx->name_cache,
2010 			(unsigned long)nce->ino);
2011 	if (!nce_head) {
2012 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2013 		if (!nce_head) {
2014 			kfree(nce);
2015 			return -ENOMEM;
2016 		}
2017 		INIT_LIST_HEAD(nce_head);
2018 
2019 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2020 		if (ret < 0) {
2021 			kfree(nce_head);
2022 			kfree(nce);
2023 			return ret;
2024 		}
2025 	}
2026 	list_add_tail(&nce->radix_list, nce_head);
2027 	list_add_tail(&nce->list, &sctx->name_cache_list);
2028 	sctx->name_cache_size++;
2029 
2030 	return ret;
2031 }
2032 
2033 static void name_cache_delete(struct send_ctx *sctx,
2034 			      struct name_cache_entry *nce)
2035 {
2036 	struct list_head *nce_head;
2037 
2038 	nce_head = radix_tree_lookup(&sctx->name_cache,
2039 			(unsigned long)nce->ino);
2040 	if (!nce_head) {
2041 		btrfs_err(sctx->send_root->fs_info,
2042 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2043 			nce->ino, sctx->name_cache_size);
2044 	}
2045 
2046 	list_del(&nce->radix_list);
2047 	list_del(&nce->list);
2048 	sctx->name_cache_size--;
2049 
2050 	/*
2051 	 * We may not get to the final release of nce_head if the lookup fails
2052 	 */
2053 	if (nce_head && list_empty(nce_head)) {
2054 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2055 		kfree(nce_head);
2056 	}
2057 }
2058 
2059 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2060 						    u64 ino, u64 gen)
2061 {
2062 	struct list_head *nce_head;
2063 	struct name_cache_entry *cur;
2064 
2065 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2066 	if (!nce_head)
2067 		return NULL;
2068 
2069 	list_for_each_entry(cur, nce_head, radix_list) {
2070 		if (cur->ino == ino && cur->gen == gen)
2071 			return cur;
2072 	}
2073 	return NULL;
2074 }
2075 
2076 /*
2077  * Removes the entry from the list and adds it back to the end. This marks the
2078  * entry as recently used so that name_cache_clean_unused does not remove it.
2079  */
2080 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2081 {
2082 	list_del(&nce->list);
2083 	list_add_tail(&nce->list, &sctx->name_cache_list);
2084 }
2085 
2086 /*
2087  * Remove some entries from the beginning of name_cache_list.
2088  */
2089 static void name_cache_clean_unused(struct send_ctx *sctx)
2090 {
2091 	struct name_cache_entry *nce;
2092 
2093 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2094 		return;
2095 
2096 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2097 		nce = list_entry(sctx->name_cache_list.next,
2098 				struct name_cache_entry, list);
2099 		name_cache_delete(sctx, nce);
2100 		kfree(nce);
2101 	}
2102 }
2103 
2104 static void name_cache_free(struct send_ctx *sctx)
2105 {
2106 	struct name_cache_entry *nce;
2107 
2108 	while (!list_empty(&sctx->name_cache_list)) {
2109 		nce = list_entry(sctx->name_cache_list.next,
2110 				struct name_cache_entry, list);
2111 		name_cache_delete(sctx, nce);
2112 		kfree(nce);
2113 	}
2114 }
2115 
2116 /*
2117  * Used by get_cur_path for each ref up to the root.
2118  * Returns 0 if it succeeded.
2119  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2120  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2121  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2122  * Returns <0 in case of error.
2123  */
2124 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2125 				     u64 ino, u64 gen,
2126 				     u64 *parent_ino,
2127 				     u64 *parent_gen,
2128 				     struct fs_path *dest)
2129 {
2130 	int ret;
2131 	int nce_ret;
2132 	struct name_cache_entry *nce = NULL;
2133 
2134 	/*
2135 	 * First check if we already did a call to this function with the same
2136 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2137 	 * return the cached result.
2138 	 */
2139 	nce = name_cache_search(sctx, ino, gen);
2140 	if (nce) {
2141 		if (ino < sctx->send_progress && nce->need_later_update) {
2142 			name_cache_delete(sctx, nce);
2143 			kfree(nce);
2144 			nce = NULL;
2145 		} else {
2146 			name_cache_used(sctx, nce);
2147 			*parent_ino = nce->parent_ino;
2148 			*parent_gen = nce->parent_gen;
2149 			ret = fs_path_add(dest, nce->name, nce->name_len);
2150 			if (ret < 0)
2151 				goto out;
2152 			ret = nce->ret;
2153 			goto out;
2154 		}
2155 	}
2156 
2157 	/*
2158 	 * If the inode is not existent yet, add the orphan name and return 1.
2159 	 * This should only happen for the parent dir that we determine in
2160 	 * __record_new_ref
2161 	 */
2162 	ret = is_inode_existent(sctx, ino, gen);
2163 	if (ret < 0)
2164 		goto out;
2165 
2166 	if (!ret) {
2167 		ret = gen_unique_name(sctx, ino, gen, dest);
2168 		if (ret < 0)
2169 			goto out;
2170 		ret = 1;
2171 		goto out_cache;
2172 	}
2173 
2174 	/*
2175 	 * Depending on whether the inode was already processed or not, use
2176 	 * send_root or parent_root for ref lookup.
2177 	 */
2178 	if (ino < sctx->send_progress)
2179 		ret = get_first_ref(sctx->send_root, ino,
2180 				    parent_ino, parent_gen, dest);
2181 	else
2182 		ret = get_first_ref(sctx->parent_root, ino,
2183 				    parent_ino, parent_gen, dest);
2184 	if (ret < 0)
2185 		goto out;
2186 
2187 	/*
2188 	 * Check if the ref was overwritten by an inode's ref that was processed
2189 	 * earlier. If yes, treat as orphan and return 1.
2190 	 */
2191 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2192 			dest->start, dest->end - dest->start);
2193 	if (ret < 0)
2194 		goto out;
2195 	if (ret) {
2196 		fs_path_reset(dest);
2197 		ret = gen_unique_name(sctx, ino, gen, dest);
2198 		if (ret < 0)
2199 			goto out;
2200 		ret = 1;
2201 	}
2202 
2203 out_cache:
2204 	/*
2205 	 * Store the result of the lookup in the name cache.
2206 	 */
2207 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2208 	if (!nce) {
2209 		ret = -ENOMEM;
2210 		goto out;
2211 	}
2212 
2213 	nce->ino = ino;
2214 	nce->gen = gen;
2215 	nce->parent_ino = *parent_ino;
2216 	nce->parent_gen = *parent_gen;
2217 	nce->name_len = fs_path_len(dest);
2218 	nce->ret = ret;
2219 	strcpy(nce->name, dest->start);
2220 
2221 	if (ino < sctx->send_progress)
2222 		nce->need_later_update = 0;
2223 	else
2224 		nce->need_later_update = 1;
2225 
2226 	nce_ret = name_cache_insert(sctx, nce);
2227 	if (nce_ret < 0)
2228 		ret = nce_ret;
2229 	name_cache_clean_unused(sctx);
2230 
2231 out:
2232 	return ret;
2233 }
2234 
2235 /*
2236  * Magic happens here. This function returns the first ref to an inode as it
2237  * would look like while receiving the stream at this point in time.
2238  * We walk the path up to the root. For every inode in between, we check if it
2239  * was already processed/sent. If yes, we continue with the parent as found
2240  * in send_root. If not, we continue with the parent as found in parent_root.
2241  * If we encounter an inode that was deleted at this point in time, we use the
2242  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2243  * that were not created yet and overwritten inodes/refs.
2244  *
2245  * When do we have have orphan inodes:
2246  * 1. When an inode is freshly created and thus no valid refs are available yet
2247  * 2. When a directory lost all it's refs (deleted) but still has dir items
2248  *    inside which were not processed yet (pending for move/delete). If anyone
2249  *    tried to get the path to the dir items, it would get a path inside that
2250  *    orphan directory.
2251  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2252  *    of an unprocessed inode. If in that case the first ref would be
2253  *    overwritten, the overwritten inode gets "orphanized". Later when we
2254  *    process this overwritten inode, it is restored at a new place by moving
2255  *    the orphan inode.
2256  *
2257  * sctx->send_progress tells this function at which point in time receiving
2258  * would be.
2259  */
2260 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2261 			struct fs_path *dest)
2262 {
2263 	int ret = 0;
2264 	struct fs_path *name = NULL;
2265 	u64 parent_inode = 0;
2266 	u64 parent_gen = 0;
2267 	int stop = 0;
2268 
2269 	name = fs_path_alloc();
2270 	if (!name) {
2271 		ret = -ENOMEM;
2272 		goto out;
2273 	}
2274 
2275 	dest->reversed = 1;
2276 	fs_path_reset(dest);
2277 
2278 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2279 		struct waiting_dir_move *wdm;
2280 
2281 		fs_path_reset(name);
2282 
2283 		if (is_waiting_for_rm(sctx, ino)) {
2284 			ret = gen_unique_name(sctx, ino, gen, name);
2285 			if (ret < 0)
2286 				goto out;
2287 			ret = fs_path_add_path(dest, name);
2288 			break;
2289 		}
2290 
2291 		wdm = get_waiting_dir_move(sctx, ino);
2292 		if (wdm && wdm->orphanized) {
2293 			ret = gen_unique_name(sctx, ino, gen, name);
2294 			stop = 1;
2295 		} else if (wdm) {
2296 			ret = get_first_ref(sctx->parent_root, ino,
2297 					    &parent_inode, &parent_gen, name);
2298 		} else {
2299 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2300 							&parent_inode,
2301 							&parent_gen, name);
2302 			if (ret)
2303 				stop = 1;
2304 		}
2305 
2306 		if (ret < 0)
2307 			goto out;
2308 
2309 		ret = fs_path_add_path(dest, name);
2310 		if (ret < 0)
2311 			goto out;
2312 
2313 		ino = parent_inode;
2314 		gen = parent_gen;
2315 	}
2316 
2317 out:
2318 	fs_path_free(name);
2319 	if (!ret)
2320 		fs_path_unreverse(dest);
2321 	return ret;
2322 }
2323 
2324 /*
2325  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2326  */
2327 static int send_subvol_begin(struct send_ctx *sctx)
2328 {
2329 	int ret;
2330 	struct btrfs_root *send_root = sctx->send_root;
2331 	struct btrfs_root *parent_root = sctx->parent_root;
2332 	struct btrfs_path *path;
2333 	struct btrfs_key key;
2334 	struct btrfs_root_ref *ref;
2335 	struct extent_buffer *leaf;
2336 	char *name = NULL;
2337 	int namelen;
2338 
2339 	path = btrfs_alloc_path();
2340 	if (!path)
2341 		return -ENOMEM;
2342 
2343 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2344 	if (!name) {
2345 		btrfs_free_path(path);
2346 		return -ENOMEM;
2347 	}
2348 
2349 	key.objectid = send_root->objectid;
2350 	key.type = BTRFS_ROOT_BACKREF_KEY;
2351 	key.offset = 0;
2352 
2353 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2354 				&key, path, 1, 0);
2355 	if (ret < 0)
2356 		goto out;
2357 	if (ret) {
2358 		ret = -ENOENT;
2359 		goto out;
2360 	}
2361 
2362 	leaf = path->nodes[0];
2363 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2364 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2365 	    key.objectid != send_root->objectid) {
2366 		ret = -ENOENT;
2367 		goto out;
2368 	}
2369 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2370 	namelen = btrfs_root_ref_name_len(leaf, ref);
2371 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2372 	btrfs_release_path(path);
2373 
2374 	if (parent_root) {
2375 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2376 		if (ret < 0)
2377 			goto out;
2378 	} else {
2379 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2380 		if (ret < 0)
2381 			goto out;
2382 	}
2383 
2384 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2385 
2386 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2387 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2388 			    sctx->send_root->root_item.received_uuid);
2389 	else
2390 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2391 			    sctx->send_root->root_item.uuid);
2392 
2393 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2394 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2395 	if (parent_root) {
2396 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2397 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2398 				     parent_root->root_item.received_uuid);
2399 		else
2400 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2401 				     parent_root->root_item.uuid);
2402 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2403 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2404 	}
2405 
2406 	ret = send_cmd(sctx);
2407 
2408 tlv_put_failure:
2409 out:
2410 	btrfs_free_path(path);
2411 	kfree(name);
2412 	return ret;
2413 }
2414 
2415 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2416 {
2417 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2418 	int ret = 0;
2419 	struct fs_path *p;
2420 
2421 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2422 
2423 	p = fs_path_alloc();
2424 	if (!p)
2425 		return -ENOMEM;
2426 
2427 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2428 	if (ret < 0)
2429 		goto out;
2430 
2431 	ret = get_cur_path(sctx, ino, gen, p);
2432 	if (ret < 0)
2433 		goto out;
2434 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2435 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2436 
2437 	ret = send_cmd(sctx);
2438 
2439 tlv_put_failure:
2440 out:
2441 	fs_path_free(p);
2442 	return ret;
2443 }
2444 
2445 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2446 {
2447 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2448 	int ret = 0;
2449 	struct fs_path *p;
2450 
2451 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2452 
2453 	p = fs_path_alloc();
2454 	if (!p)
2455 		return -ENOMEM;
2456 
2457 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2458 	if (ret < 0)
2459 		goto out;
2460 
2461 	ret = get_cur_path(sctx, ino, gen, p);
2462 	if (ret < 0)
2463 		goto out;
2464 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2465 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2466 
2467 	ret = send_cmd(sctx);
2468 
2469 tlv_put_failure:
2470 out:
2471 	fs_path_free(p);
2472 	return ret;
2473 }
2474 
2475 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2476 {
2477 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2478 	int ret = 0;
2479 	struct fs_path *p;
2480 
2481 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2482 		    ino, uid, gid);
2483 
2484 	p = fs_path_alloc();
2485 	if (!p)
2486 		return -ENOMEM;
2487 
2488 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2489 	if (ret < 0)
2490 		goto out;
2491 
2492 	ret = get_cur_path(sctx, ino, gen, p);
2493 	if (ret < 0)
2494 		goto out;
2495 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2496 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2497 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2498 
2499 	ret = send_cmd(sctx);
2500 
2501 tlv_put_failure:
2502 out:
2503 	fs_path_free(p);
2504 	return ret;
2505 }
2506 
2507 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2508 {
2509 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2510 	int ret = 0;
2511 	struct fs_path *p = NULL;
2512 	struct btrfs_inode_item *ii;
2513 	struct btrfs_path *path = NULL;
2514 	struct extent_buffer *eb;
2515 	struct btrfs_key key;
2516 	int slot;
2517 
2518 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2519 
2520 	p = fs_path_alloc();
2521 	if (!p)
2522 		return -ENOMEM;
2523 
2524 	path = alloc_path_for_send();
2525 	if (!path) {
2526 		ret = -ENOMEM;
2527 		goto out;
2528 	}
2529 
2530 	key.objectid = ino;
2531 	key.type = BTRFS_INODE_ITEM_KEY;
2532 	key.offset = 0;
2533 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2534 	if (ret > 0)
2535 		ret = -ENOENT;
2536 	if (ret < 0)
2537 		goto out;
2538 
2539 	eb = path->nodes[0];
2540 	slot = path->slots[0];
2541 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2542 
2543 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2544 	if (ret < 0)
2545 		goto out;
2546 
2547 	ret = get_cur_path(sctx, ino, gen, p);
2548 	if (ret < 0)
2549 		goto out;
2550 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2551 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2552 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2553 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2554 	/* TODO Add otime support when the otime patches get into upstream */
2555 
2556 	ret = send_cmd(sctx);
2557 
2558 tlv_put_failure:
2559 out:
2560 	fs_path_free(p);
2561 	btrfs_free_path(path);
2562 	return ret;
2563 }
2564 
2565 /*
2566  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2567  * a valid path yet because we did not process the refs yet. So, the inode
2568  * is created as orphan.
2569  */
2570 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2571 {
2572 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2573 	int ret = 0;
2574 	struct fs_path *p;
2575 	int cmd;
2576 	u64 gen;
2577 	u64 mode;
2578 	u64 rdev;
2579 
2580 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2581 
2582 	p = fs_path_alloc();
2583 	if (!p)
2584 		return -ENOMEM;
2585 
2586 	if (ino != sctx->cur_ino) {
2587 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2588 				     NULL, NULL, &rdev);
2589 		if (ret < 0)
2590 			goto out;
2591 	} else {
2592 		gen = sctx->cur_inode_gen;
2593 		mode = sctx->cur_inode_mode;
2594 		rdev = sctx->cur_inode_rdev;
2595 	}
2596 
2597 	if (S_ISREG(mode)) {
2598 		cmd = BTRFS_SEND_C_MKFILE;
2599 	} else if (S_ISDIR(mode)) {
2600 		cmd = BTRFS_SEND_C_MKDIR;
2601 	} else if (S_ISLNK(mode)) {
2602 		cmd = BTRFS_SEND_C_SYMLINK;
2603 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2604 		cmd = BTRFS_SEND_C_MKNOD;
2605 	} else if (S_ISFIFO(mode)) {
2606 		cmd = BTRFS_SEND_C_MKFIFO;
2607 	} else if (S_ISSOCK(mode)) {
2608 		cmd = BTRFS_SEND_C_MKSOCK;
2609 	} else {
2610 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2611 				(int)(mode & S_IFMT));
2612 		ret = -EOPNOTSUPP;
2613 		goto out;
2614 	}
2615 
2616 	ret = begin_cmd(sctx, cmd);
2617 	if (ret < 0)
2618 		goto out;
2619 
2620 	ret = gen_unique_name(sctx, ino, gen, p);
2621 	if (ret < 0)
2622 		goto out;
2623 
2624 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2625 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2626 
2627 	if (S_ISLNK(mode)) {
2628 		fs_path_reset(p);
2629 		ret = read_symlink(sctx->send_root, ino, p);
2630 		if (ret < 0)
2631 			goto out;
2632 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2633 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2634 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2635 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2636 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2637 	}
2638 
2639 	ret = send_cmd(sctx);
2640 	if (ret < 0)
2641 		goto out;
2642 
2643 
2644 tlv_put_failure:
2645 out:
2646 	fs_path_free(p);
2647 	return ret;
2648 }
2649 
2650 /*
2651  * We need some special handling for inodes that get processed before the parent
2652  * directory got created. See process_recorded_refs for details.
2653  * This function does the check if we already created the dir out of order.
2654  */
2655 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2656 {
2657 	int ret = 0;
2658 	struct btrfs_path *path = NULL;
2659 	struct btrfs_key key;
2660 	struct btrfs_key found_key;
2661 	struct btrfs_key di_key;
2662 	struct extent_buffer *eb;
2663 	struct btrfs_dir_item *di;
2664 	int slot;
2665 
2666 	path = alloc_path_for_send();
2667 	if (!path) {
2668 		ret = -ENOMEM;
2669 		goto out;
2670 	}
2671 
2672 	key.objectid = dir;
2673 	key.type = BTRFS_DIR_INDEX_KEY;
2674 	key.offset = 0;
2675 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2676 	if (ret < 0)
2677 		goto out;
2678 
2679 	while (1) {
2680 		eb = path->nodes[0];
2681 		slot = path->slots[0];
2682 		if (slot >= btrfs_header_nritems(eb)) {
2683 			ret = btrfs_next_leaf(sctx->send_root, path);
2684 			if (ret < 0) {
2685 				goto out;
2686 			} else if (ret > 0) {
2687 				ret = 0;
2688 				break;
2689 			}
2690 			continue;
2691 		}
2692 
2693 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2694 		if (found_key.objectid != key.objectid ||
2695 		    found_key.type != key.type) {
2696 			ret = 0;
2697 			goto out;
2698 		}
2699 
2700 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2701 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2702 
2703 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2704 		    di_key.objectid < sctx->send_progress) {
2705 			ret = 1;
2706 			goto out;
2707 		}
2708 
2709 		path->slots[0]++;
2710 	}
2711 
2712 out:
2713 	btrfs_free_path(path);
2714 	return ret;
2715 }
2716 
2717 /*
2718  * Only creates the inode if it is:
2719  * 1. Not a directory
2720  * 2. Or a directory which was not created already due to out of order
2721  *    directories. See did_create_dir and process_recorded_refs for details.
2722  */
2723 static int send_create_inode_if_needed(struct send_ctx *sctx)
2724 {
2725 	int ret;
2726 
2727 	if (S_ISDIR(sctx->cur_inode_mode)) {
2728 		ret = did_create_dir(sctx, sctx->cur_ino);
2729 		if (ret < 0)
2730 			goto out;
2731 		if (ret) {
2732 			ret = 0;
2733 			goto out;
2734 		}
2735 	}
2736 
2737 	ret = send_create_inode(sctx, sctx->cur_ino);
2738 	if (ret < 0)
2739 		goto out;
2740 
2741 out:
2742 	return ret;
2743 }
2744 
2745 struct recorded_ref {
2746 	struct list_head list;
2747 	char *name;
2748 	struct fs_path *full_path;
2749 	u64 dir;
2750 	u64 dir_gen;
2751 	int name_len;
2752 };
2753 
2754 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2755 {
2756 	ref->full_path = path;
2757 	ref->name = (char *)kbasename(ref->full_path->start);
2758 	ref->name_len = ref->full_path->end - ref->name;
2759 }
2760 
2761 /*
2762  * We need to process new refs before deleted refs, but compare_tree gives us
2763  * everything mixed. So we first record all refs and later process them.
2764  * This function is a helper to record one ref.
2765  */
2766 static int __record_ref(struct list_head *head, u64 dir,
2767 		      u64 dir_gen, struct fs_path *path)
2768 {
2769 	struct recorded_ref *ref;
2770 
2771 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2772 	if (!ref)
2773 		return -ENOMEM;
2774 
2775 	ref->dir = dir;
2776 	ref->dir_gen = dir_gen;
2777 	set_ref_path(ref, path);
2778 	list_add_tail(&ref->list, head);
2779 	return 0;
2780 }
2781 
2782 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2783 {
2784 	struct recorded_ref *new;
2785 
2786 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2787 	if (!new)
2788 		return -ENOMEM;
2789 
2790 	new->dir = ref->dir;
2791 	new->dir_gen = ref->dir_gen;
2792 	new->full_path = NULL;
2793 	INIT_LIST_HEAD(&new->list);
2794 	list_add_tail(&new->list, list);
2795 	return 0;
2796 }
2797 
2798 static void __free_recorded_refs(struct list_head *head)
2799 {
2800 	struct recorded_ref *cur;
2801 
2802 	while (!list_empty(head)) {
2803 		cur = list_entry(head->next, struct recorded_ref, list);
2804 		fs_path_free(cur->full_path);
2805 		list_del(&cur->list);
2806 		kfree(cur);
2807 	}
2808 }
2809 
2810 static void free_recorded_refs(struct send_ctx *sctx)
2811 {
2812 	__free_recorded_refs(&sctx->new_refs);
2813 	__free_recorded_refs(&sctx->deleted_refs);
2814 }
2815 
2816 /*
2817  * Renames/moves a file/dir to its orphan name. Used when the first
2818  * ref of an unprocessed inode gets overwritten and for all non empty
2819  * directories.
2820  */
2821 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2822 			  struct fs_path *path)
2823 {
2824 	int ret;
2825 	struct fs_path *orphan;
2826 
2827 	orphan = fs_path_alloc();
2828 	if (!orphan)
2829 		return -ENOMEM;
2830 
2831 	ret = gen_unique_name(sctx, ino, gen, orphan);
2832 	if (ret < 0)
2833 		goto out;
2834 
2835 	ret = send_rename(sctx, path, orphan);
2836 
2837 out:
2838 	fs_path_free(orphan);
2839 	return ret;
2840 }
2841 
2842 static struct orphan_dir_info *
2843 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2844 {
2845 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2846 	struct rb_node *parent = NULL;
2847 	struct orphan_dir_info *entry, *odi;
2848 
2849 	while (*p) {
2850 		parent = *p;
2851 		entry = rb_entry(parent, struct orphan_dir_info, node);
2852 		if (dir_ino < entry->ino) {
2853 			p = &(*p)->rb_left;
2854 		} else if (dir_ino > entry->ino) {
2855 			p = &(*p)->rb_right;
2856 		} else {
2857 			return entry;
2858 		}
2859 	}
2860 
2861 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2862 	if (!odi)
2863 		return ERR_PTR(-ENOMEM);
2864 	odi->ino = dir_ino;
2865 	odi->gen = 0;
2866 	odi->last_dir_index_offset = 0;
2867 
2868 	rb_link_node(&odi->node, parent, p);
2869 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2870 	return odi;
2871 }
2872 
2873 static struct orphan_dir_info *
2874 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2875 {
2876 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2877 	struct orphan_dir_info *entry;
2878 
2879 	while (n) {
2880 		entry = rb_entry(n, struct orphan_dir_info, node);
2881 		if (dir_ino < entry->ino)
2882 			n = n->rb_left;
2883 		else if (dir_ino > entry->ino)
2884 			n = n->rb_right;
2885 		else
2886 			return entry;
2887 	}
2888 	return NULL;
2889 }
2890 
2891 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2892 {
2893 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2894 
2895 	return odi != NULL;
2896 }
2897 
2898 static void free_orphan_dir_info(struct send_ctx *sctx,
2899 				 struct orphan_dir_info *odi)
2900 {
2901 	if (!odi)
2902 		return;
2903 	rb_erase(&odi->node, &sctx->orphan_dirs);
2904 	kfree(odi);
2905 }
2906 
2907 /*
2908  * Returns 1 if a directory can be removed at this point in time.
2909  * We check this by iterating all dir items and checking if the inode behind
2910  * the dir item was already processed.
2911  */
2912 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2913 		     u64 send_progress)
2914 {
2915 	int ret = 0;
2916 	struct btrfs_root *root = sctx->parent_root;
2917 	struct btrfs_path *path;
2918 	struct btrfs_key key;
2919 	struct btrfs_key found_key;
2920 	struct btrfs_key loc;
2921 	struct btrfs_dir_item *di;
2922 	struct orphan_dir_info *odi = NULL;
2923 
2924 	/*
2925 	 * Don't try to rmdir the top/root subvolume dir.
2926 	 */
2927 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2928 		return 0;
2929 
2930 	path = alloc_path_for_send();
2931 	if (!path)
2932 		return -ENOMEM;
2933 
2934 	key.objectid = dir;
2935 	key.type = BTRFS_DIR_INDEX_KEY;
2936 	key.offset = 0;
2937 
2938 	odi = get_orphan_dir_info(sctx, dir);
2939 	if (odi)
2940 		key.offset = odi->last_dir_index_offset;
2941 
2942 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2943 	if (ret < 0)
2944 		goto out;
2945 
2946 	while (1) {
2947 		struct waiting_dir_move *dm;
2948 
2949 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2950 			ret = btrfs_next_leaf(root, path);
2951 			if (ret < 0)
2952 				goto out;
2953 			else if (ret > 0)
2954 				break;
2955 			continue;
2956 		}
2957 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2958 				      path->slots[0]);
2959 		if (found_key.objectid != key.objectid ||
2960 		    found_key.type != key.type)
2961 			break;
2962 
2963 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2964 				struct btrfs_dir_item);
2965 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2966 
2967 		dm = get_waiting_dir_move(sctx, loc.objectid);
2968 		if (dm) {
2969 			odi = add_orphan_dir_info(sctx, dir);
2970 			if (IS_ERR(odi)) {
2971 				ret = PTR_ERR(odi);
2972 				goto out;
2973 			}
2974 			odi->gen = dir_gen;
2975 			odi->last_dir_index_offset = found_key.offset;
2976 			dm->rmdir_ino = dir;
2977 			ret = 0;
2978 			goto out;
2979 		}
2980 
2981 		if (loc.objectid > send_progress) {
2982 			odi = add_orphan_dir_info(sctx, dir);
2983 			if (IS_ERR(odi)) {
2984 				ret = PTR_ERR(odi);
2985 				goto out;
2986 			}
2987 			odi->gen = dir_gen;
2988 			odi->last_dir_index_offset = found_key.offset;
2989 			ret = 0;
2990 			goto out;
2991 		}
2992 
2993 		path->slots[0]++;
2994 	}
2995 	free_orphan_dir_info(sctx, odi);
2996 
2997 	ret = 1;
2998 
2999 out:
3000 	btrfs_free_path(path);
3001 	return ret;
3002 }
3003 
3004 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3005 {
3006 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3007 
3008 	return entry != NULL;
3009 }
3010 
3011 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3012 {
3013 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3014 	struct rb_node *parent = NULL;
3015 	struct waiting_dir_move *entry, *dm;
3016 
3017 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3018 	if (!dm)
3019 		return -ENOMEM;
3020 	dm->ino = ino;
3021 	dm->rmdir_ino = 0;
3022 	dm->orphanized = orphanized;
3023 
3024 	while (*p) {
3025 		parent = *p;
3026 		entry = rb_entry(parent, struct waiting_dir_move, node);
3027 		if (ino < entry->ino) {
3028 			p = &(*p)->rb_left;
3029 		} else if (ino > entry->ino) {
3030 			p = &(*p)->rb_right;
3031 		} else {
3032 			kfree(dm);
3033 			return -EEXIST;
3034 		}
3035 	}
3036 
3037 	rb_link_node(&dm->node, parent, p);
3038 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3039 	return 0;
3040 }
3041 
3042 static struct waiting_dir_move *
3043 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3044 {
3045 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3046 	struct waiting_dir_move *entry;
3047 
3048 	while (n) {
3049 		entry = rb_entry(n, struct waiting_dir_move, node);
3050 		if (ino < entry->ino)
3051 			n = n->rb_left;
3052 		else if (ino > entry->ino)
3053 			n = n->rb_right;
3054 		else
3055 			return entry;
3056 	}
3057 	return NULL;
3058 }
3059 
3060 static void free_waiting_dir_move(struct send_ctx *sctx,
3061 				  struct waiting_dir_move *dm)
3062 {
3063 	if (!dm)
3064 		return;
3065 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3066 	kfree(dm);
3067 }
3068 
3069 static int add_pending_dir_move(struct send_ctx *sctx,
3070 				u64 ino,
3071 				u64 ino_gen,
3072 				u64 parent_ino,
3073 				struct list_head *new_refs,
3074 				struct list_head *deleted_refs,
3075 				const bool is_orphan)
3076 {
3077 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3078 	struct rb_node *parent = NULL;
3079 	struct pending_dir_move *entry = NULL, *pm;
3080 	struct recorded_ref *cur;
3081 	int exists = 0;
3082 	int ret;
3083 
3084 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3085 	if (!pm)
3086 		return -ENOMEM;
3087 	pm->parent_ino = parent_ino;
3088 	pm->ino = ino;
3089 	pm->gen = ino_gen;
3090 	INIT_LIST_HEAD(&pm->list);
3091 	INIT_LIST_HEAD(&pm->update_refs);
3092 	RB_CLEAR_NODE(&pm->node);
3093 
3094 	while (*p) {
3095 		parent = *p;
3096 		entry = rb_entry(parent, struct pending_dir_move, node);
3097 		if (parent_ino < entry->parent_ino) {
3098 			p = &(*p)->rb_left;
3099 		} else if (parent_ino > entry->parent_ino) {
3100 			p = &(*p)->rb_right;
3101 		} else {
3102 			exists = 1;
3103 			break;
3104 		}
3105 	}
3106 
3107 	list_for_each_entry(cur, deleted_refs, list) {
3108 		ret = dup_ref(cur, &pm->update_refs);
3109 		if (ret < 0)
3110 			goto out;
3111 	}
3112 	list_for_each_entry(cur, new_refs, list) {
3113 		ret = dup_ref(cur, &pm->update_refs);
3114 		if (ret < 0)
3115 			goto out;
3116 	}
3117 
3118 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3119 	if (ret)
3120 		goto out;
3121 
3122 	if (exists) {
3123 		list_add_tail(&pm->list, &entry->list);
3124 	} else {
3125 		rb_link_node(&pm->node, parent, p);
3126 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3127 	}
3128 	ret = 0;
3129 out:
3130 	if (ret) {
3131 		__free_recorded_refs(&pm->update_refs);
3132 		kfree(pm);
3133 	}
3134 	return ret;
3135 }
3136 
3137 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3138 						      u64 parent_ino)
3139 {
3140 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3141 	struct pending_dir_move *entry;
3142 
3143 	while (n) {
3144 		entry = rb_entry(n, struct pending_dir_move, node);
3145 		if (parent_ino < entry->parent_ino)
3146 			n = n->rb_left;
3147 		else if (parent_ino > entry->parent_ino)
3148 			n = n->rb_right;
3149 		else
3150 			return entry;
3151 	}
3152 	return NULL;
3153 }
3154 
3155 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3156 		     u64 ino, u64 gen, u64 *ancestor_ino)
3157 {
3158 	int ret = 0;
3159 	u64 parent_inode = 0;
3160 	u64 parent_gen = 0;
3161 	u64 start_ino = ino;
3162 
3163 	*ancestor_ino = 0;
3164 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3165 		fs_path_reset(name);
3166 
3167 		if (is_waiting_for_rm(sctx, ino))
3168 			break;
3169 		if (is_waiting_for_move(sctx, ino)) {
3170 			if (*ancestor_ino == 0)
3171 				*ancestor_ino = ino;
3172 			ret = get_first_ref(sctx->parent_root, ino,
3173 					    &parent_inode, &parent_gen, name);
3174 		} else {
3175 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3176 							&parent_inode,
3177 							&parent_gen, name);
3178 			if (ret > 0) {
3179 				ret = 0;
3180 				break;
3181 			}
3182 		}
3183 		if (ret < 0)
3184 			break;
3185 		if (parent_inode == start_ino) {
3186 			ret = 1;
3187 			if (*ancestor_ino == 0)
3188 				*ancestor_ino = ino;
3189 			break;
3190 		}
3191 		ino = parent_inode;
3192 		gen = parent_gen;
3193 	}
3194 	return ret;
3195 }
3196 
3197 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3198 {
3199 	struct fs_path *from_path = NULL;
3200 	struct fs_path *to_path = NULL;
3201 	struct fs_path *name = NULL;
3202 	u64 orig_progress = sctx->send_progress;
3203 	struct recorded_ref *cur;
3204 	u64 parent_ino, parent_gen;
3205 	struct waiting_dir_move *dm = NULL;
3206 	u64 rmdir_ino = 0;
3207 	u64 ancestor;
3208 	bool is_orphan;
3209 	int ret;
3210 
3211 	name = fs_path_alloc();
3212 	from_path = fs_path_alloc();
3213 	if (!name || !from_path) {
3214 		ret = -ENOMEM;
3215 		goto out;
3216 	}
3217 
3218 	dm = get_waiting_dir_move(sctx, pm->ino);
3219 	ASSERT(dm);
3220 	rmdir_ino = dm->rmdir_ino;
3221 	is_orphan = dm->orphanized;
3222 	free_waiting_dir_move(sctx, dm);
3223 
3224 	if (is_orphan) {
3225 		ret = gen_unique_name(sctx, pm->ino,
3226 				      pm->gen, from_path);
3227 	} else {
3228 		ret = get_first_ref(sctx->parent_root, pm->ino,
3229 				    &parent_ino, &parent_gen, name);
3230 		if (ret < 0)
3231 			goto out;
3232 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3233 				   from_path);
3234 		if (ret < 0)
3235 			goto out;
3236 		ret = fs_path_add_path(from_path, name);
3237 	}
3238 	if (ret < 0)
3239 		goto out;
3240 
3241 	sctx->send_progress = sctx->cur_ino + 1;
3242 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3243 	if (ret < 0)
3244 		goto out;
3245 	if (ret) {
3246 		LIST_HEAD(deleted_refs);
3247 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3248 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3249 					   &pm->update_refs, &deleted_refs,
3250 					   is_orphan);
3251 		if (ret < 0)
3252 			goto out;
3253 		if (rmdir_ino) {
3254 			dm = get_waiting_dir_move(sctx, pm->ino);
3255 			ASSERT(dm);
3256 			dm->rmdir_ino = rmdir_ino;
3257 		}
3258 		goto out;
3259 	}
3260 	fs_path_reset(name);
3261 	to_path = name;
3262 	name = NULL;
3263 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3264 	if (ret < 0)
3265 		goto out;
3266 
3267 	ret = send_rename(sctx, from_path, to_path);
3268 	if (ret < 0)
3269 		goto out;
3270 
3271 	if (rmdir_ino) {
3272 		struct orphan_dir_info *odi;
3273 		u64 gen;
3274 
3275 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3276 		if (!odi) {
3277 			/* already deleted */
3278 			goto finish;
3279 		}
3280 		gen = odi->gen;
3281 
3282 		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3283 		if (ret < 0)
3284 			goto out;
3285 		if (!ret)
3286 			goto finish;
3287 
3288 		name = fs_path_alloc();
3289 		if (!name) {
3290 			ret = -ENOMEM;
3291 			goto out;
3292 		}
3293 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3294 		if (ret < 0)
3295 			goto out;
3296 		ret = send_rmdir(sctx, name);
3297 		if (ret < 0)
3298 			goto out;
3299 	}
3300 
3301 finish:
3302 	ret = send_utimes(sctx, pm->ino, pm->gen);
3303 	if (ret < 0)
3304 		goto out;
3305 
3306 	/*
3307 	 * After rename/move, need to update the utimes of both new parent(s)
3308 	 * and old parent(s).
3309 	 */
3310 	list_for_each_entry(cur, &pm->update_refs, list) {
3311 		/*
3312 		 * The parent inode might have been deleted in the send snapshot
3313 		 */
3314 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3315 				     NULL, NULL, NULL, NULL, NULL);
3316 		if (ret == -ENOENT) {
3317 			ret = 0;
3318 			continue;
3319 		}
3320 		if (ret < 0)
3321 			goto out;
3322 
3323 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3324 		if (ret < 0)
3325 			goto out;
3326 	}
3327 
3328 out:
3329 	fs_path_free(name);
3330 	fs_path_free(from_path);
3331 	fs_path_free(to_path);
3332 	sctx->send_progress = orig_progress;
3333 
3334 	return ret;
3335 }
3336 
3337 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3338 {
3339 	if (!list_empty(&m->list))
3340 		list_del(&m->list);
3341 	if (!RB_EMPTY_NODE(&m->node))
3342 		rb_erase(&m->node, &sctx->pending_dir_moves);
3343 	__free_recorded_refs(&m->update_refs);
3344 	kfree(m);
3345 }
3346 
3347 static void tail_append_pending_moves(struct pending_dir_move *moves,
3348 				      struct list_head *stack)
3349 {
3350 	if (list_empty(&moves->list)) {
3351 		list_add_tail(&moves->list, stack);
3352 	} else {
3353 		LIST_HEAD(list);
3354 		list_splice_init(&moves->list, &list);
3355 		list_add_tail(&moves->list, stack);
3356 		list_splice_tail(&list, stack);
3357 	}
3358 }
3359 
3360 static int apply_children_dir_moves(struct send_ctx *sctx)
3361 {
3362 	struct pending_dir_move *pm;
3363 	struct list_head stack;
3364 	u64 parent_ino = sctx->cur_ino;
3365 	int ret = 0;
3366 
3367 	pm = get_pending_dir_moves(sctx, parent_ino);
3368 	if (!pm)
3369 		return 0;
3370 
3371 	INIT_LIST_HEAD(&stack);
3372 	tail_append_pending_moves(pm, &stack);
3373 
3374 	while (!list_empty(&stack)) {
3375 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3376 		parent_ino = pm->ino;
3377 		ret = apply_dir_move(sctx, pm);
3378 		free_pending_move(sctx, pm);
3379 		if (ret)
3380 			goto out;
3381 		pm = get_pending_dir_moves(sctx, parent_ino);
3382 		if (pm)
3383 			tail_append_pending_moves(pm, &stack);
3384 	}
3385 	return 0;
3386 
3387 out:
3388 	while (!list_empty(&stack)) {
3389 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3390 		free_pending_move(sctx, pm);
3391 	}
3392 	return ret;
3393 }
3394 
3395 /*
3396  * We might need to delay a directory rename even when no ancestor directory
3397  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3398  * renamed. This happens when we rename a directory to the old name (the name
3399  * in the parent root) of some other unrelated directory that got its rename
3400  * delayed due to some ancestor with higher number that got renamed.
3401  *
3402  * Example:
3403  *
3404  * Parent snapshot:
3405  * .                                       (ino 256)
3406  * |---- a/                                (ino 257)
3407  * |     |---- file                        (ino 260)
3408  * |
3409  * |---- b/                                (ino 258)
3410  * |---- c/                                (ino 259)
3411  *
3412  * Send snapshot:
3413  * .                                       (ino 256)
3414  * |---- a/                                (ino 258)
3415  * |---- x/                                (ino 259)
3416  *       |---- y/                          (ino 257)
3417  *             |----- file                 (ino 260)
3418  *
3419  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3420  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3421  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3422  * must issue is:
3423  *
3424  * 1 - rename 259 from 'c' to 'x'
3425  * 2 - rename 257 from 'a' to 'x/y'
3426  * 3 - rename 258 from 'b' to 'a'
3427  *
3428  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3429  * be done right away and < 0 on error.
3430  */
3431 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3432 				  struct recorded_ref *parent_ref,
3433 				  const bool is_orphan)
3434 {
3435 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3436 	struct btrfs_path *path;
3437 	struct btrfs_key key;
3438 	struct btrfs_key di_key;
3439 	struct btrfs_dir_item *di;
3440 	u64 left_gen;
3441 	u64 right_gen;
3442 	int ret = 0;
3443 	struct waiting_dir_move *wdm;
3444 
3445 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3446 		return 0;
3447 
3448 	path = alloc_path_for_send();
3449 	if (!path)
3450 		return -ENOMEM;
3451 
3452 	key.objectid = parent_ref->dir;
3453 	key.type = BTRFS_DIR_ITEM_KEY;
3454 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3455 
3456 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3457 	if (ret < 0) {
3458 		goto out;
3459 	} else if (ret > 0) {
3460 		ret = 0;
3461 		goto out;
3462 	}
3463 
3464 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3465 				       parent_ref->name_len);
3466 	if (!di) {
3467 		ret = 0;
3468 		goto out;
3469 	}
3470 	/*
3471 	 * di_key.objectid has the number of the inode that has a dentry in the
3472 	 * parent directory with the same name that sctx->cur_ino is being
3473 	 * renamed to. We need to check if that inode is in the send root as
3474 	 * well and if it is currently marked as an inode with a pending rename,
3475 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3476 	 * that it happens after that other inode is renamed.
3477 	 */
3478 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3479 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3480 		ret = 0;
3481 		goto out;
3482 	}
3483 
3484 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3485 			     &left_gen, NULL, NULL, NULL, NULL);
3486 	if (ret < 0)
3487 		goto out;
3488 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3489 			     &right_gen, NULL, NULL, NULL, NULL);
3490 	if (ret < 0) {
3491 		if (ret == -ENOENT)
3492 			ret = 0;
3493 		goto out;
3494 	}
3495 
3496 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3497 	if (right_gen != left_gen) {
3498 		ret = 0;
3499 		goto out;
3500 	}
3501 
3502 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3503 	if (wdm && !wdm->orphanized) {
3504 		ret = add_pending_dir_move(sctx,
3505 					   sctx->cur_ino,
3506 					   sctx->cur_inode_gen,
3507 					   di_key.objectid,
3508 					   &sctx->new_refs,
3509 					   &sctx->deleted_refs,
3510 					   is_orphan);
3511 		if (!ret)
3512 			ret = 1;
3513 	}
3514 out:
3515 	btrfs_free_path(path);
3516 	return ret;
3517 }
3518 
3519 /*
3520  * Check if inode ino2, or any of its ancestors, is inode ino1.
3521  * Return 1 if true, 0 if false and < 0 on error.
3522  */
3523 static int check_ino_in_path(struct btrfs_root *root,
3524 			     const u64 ino1,
3525 			     const u64 ino1_gen,
3526 			     const u64 ino2,
3527 			     const u64 ino2_gen,
3528 			     struct fs_path *fs_path)
3529 {
3530 	u64 ino = ino2;
3531 
3532 	if (ino1 == ino2)
3533 		return ino1_gen == ino2_gen;
3534 
3535 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3536 		u64 parent;
3537 		u64 parent_gen;
3538 		int ret;
3539 
3540 		fs_path_reset(fs_path);
3541 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3542 		if (ret < 0)
3543 			return ret;
3544 		if (parent == ino1)
3545 			return parent_gen == ino1_gen;
3546 		ino = parent;
3547 	}
3548 	return 0;
3549 }
3550 
3551 /*
3552  * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3553  * possible path (in case ino2 is not a directory and has multiple hard links).
3554  * Return 1 if true, 0 if false and < 0 on error.
3555  */
3556 static int is_ancestor(struct btrfs_root *root,
3557 		       const u64 ino1,
3558 		       const u64 ino1_gen,
3559 		       const u64 ino2,
3560 		       struct fs_path *fs_path)
3561 {
3562 	bool free_fs_path = false;
3563 	int ret = 0;
3564 	struct btrfs_path *path = NULL;
3565 	struct btrfs_key key;
3566 
3567 	if (!fs_path) {
3568 		fs_path = fs_path_alloc();
3569 		if (!fs_path)
3570 			return -ENOMEM;
3571 		free_fs_path = true;
3572 	}
3573 
3574 	path = alloc_path_for_send();
3575 	if (!path) {
3576 		ret = -ENOMEM;
3577 		goto out;
3578 	}
3579 
3580 	key.objectid = ino2;
3581 	key.type = BTRFS_INODE_REF_KEY;
3582 	key.offset = 0;
3583 
3584 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3585 	if (ret < 0)
3586 		goto out;
3587 
3588 	while (true) {
3589 		struct extent_buffer *leaf = path->nodes[0];
3590 		int slot = path->slots[0];
3591 		u32 cur_offset = 0;
3592 		u32 item_size;
3593 
3594 		if (slot >= btrfs_header_nritems(leaf)) {
3595 			ret = btrfs_next_leaf(root, path);
3596 			if (ret < 0)
3597 				goto out;
3598 			if (ret > 0)
3599 				break;
3600 			continue;
3601 		}
3602 
3603 		btrfs_item_key_to_cpu(leaf, &key, slot);
3604 		if (key.objectid != ino2)
3605 			break;
3606 		if (key.type != BTRFS_INODE_REF_KEY &&
3607 		    key.type != BTRFS_INODE_EXTREF_KEY)
3608 			break;
3609 
3610 		item_size = btrfs_item_size_nr(leaf, slot);
3611 		while (cur_offset < item_size) {
3612 			u64 parent;
3613 			u64 parent_gen;
3614 
3615 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3616 				unsigned long ptr;
3617 				struct btrfs_inode_extref *extref;
3618 
3619 				ptr = btrfs_item_ptr_offset(leaf, slot);
3620 				extref = (struct btrfs_inode_extref *)
3621 					(ptr + cur_offset);
3622 				parent = btrfs_inode_extref_parent(leaf,
3623 								   extref);
3624 				cur_offset += sizeof(*extref);
3625 				cur_offset += btrfs_inode_extref_name_len(leaf,
3626 								  extref);
3627 			} else {
3628 				parent = key.offset;
3629 				cur_offset = item_size;
3630 			}
3631 
3632 			ret = get_inode_info(root, parent, NULL, &parent_gen,
3633 					     NULL, NULL, NULL, NULL);
3634 			if (ret < 0)
3635 				goto out;
3636 			ret = check_ino_in_path(root, ino1, ino1_gen,
3637 						parent, parent_gen, fs_path);
3638 			if (ret)
3639 				goto out;
3640 		}
3641 		path->slots[0]++;
3642 	}
3643 	ret = 0;
3644  out:
3645 	btrfs_free_path(path);
3646 	if (free_fs_path)
3647 		fs_path_free(fs_path);
3648 	return ret;
3649 }
3650 
3651 static int wait_for_parent_move(struct send_ctx *sctx,
3652 				struct recorded_ref *parent_ref,
3653 				const bool is_orphan)
3654 {
3655 	int ret = 0;
3656 	u64 ino = parent_ref->dir;
3657 	u64 ino_gen = parent_ref->dir_gen;
3658 	u64 parent_ino_before, parent_ino_after;
3659 	struct fs_path *path_before = NULL;
3660 	struct fs_path *path_after = NULL;
3661 	int len1, len2;
3662 
3663 	path_after = fs_path_alloc();
3664 	path_before = fs_path_alloc();
3665 	if (!path_after || !path_before) {
3666 		ret = -ENOMEM;
3667 		goto out;
3668 	}
3669 
3670 	/*
3671 	 * Our current directory inode may not yet be renamed/moved because some
3672 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3673 	 * such ancestor exists and make sure our own rename/move happens after
3674 	 * that ancestor is processed to avoid path build infinite loops (done
3675 	 * at get_cur_path()).
3676 	 */
3677 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3678 		u64 parent_ino_after_gen;
3679 
3680 		if (is_waiting_for_move(sctx, ino)) {
3681 			/*
3682 			 * If the current inode is an ancestor of ino in the
3683 			 * parent root, we need to delay the rename of the
3684 			 * current inode, otherwise don't delayed the rename
3685 			 * because we can end up with a circular dependency
3686 			 * of renames, resulting in some directories never
3687 			 * getting the respective rename operations issued in
3688 			 * the send stream or getting into infinite path build
3689 			 * loops.
3690 			 */
3691 			ret = is_ancestor(sctx->parent_root,
3692 					  sctx->cur_ino, sctx->cur_inode_gen,
3693 					  ino, path_before);
3694 			if (ret)
3695 				break;
3696 		}
3697 
3698 		fs_path_reset(path_before);
3699 		fs_path_reset(path_after);
3700 
3701 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3702 				    &parent_ino_after_gen, path_after);
3703 		if (ret < 0)
3704 			goto out;
3705 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3706 				    NULL, path_before);
3707 		if (ret < 0 && ret != -ENOENT) {
3708 			goto out;
3709 		} else if (ret == -ENOENT) {
3710 			ret = 0;
3711 			break;
3712 		}
3713 
3714 		len1 = fs_path_len(path_before);
3715 		len2 = fs_path_len(path_after);
3716 		if (ino > sctx->cur_ino &&
3717 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3718 		     memcmp(path_before->start, path_after->start, len1))) {
3719 			u64 parent_ino_gen;
3720 
3721 			ret = get_inode_info(sctx->parent_root, ino, NULL,
3722 					     &parent_ino_gen, NULL, NULL, NULL,
3723 					     NULL);
3724 			if (ret < 0)
3725 				goto out;
3726 			if (ino_gen == parent_ino_gen) {
3727 				ret = 1;
3728 				break;
3729 			}
3730 		}
3731 		ino = parent_ino_after;
3732 		ino_gen = parent_ino_after_gen;
3733 	}
3734 
3735 out:
3736 	fs_path_free(path_before);
3737 	fs_path_free(path_after);
3738 
3739 	if (ret == 1) {
3740 		ret = add_pending_dir_move(sctx,
3741 					   sctx->cur_ino,
3742 					   sctx->cur_inode_gen,
3743 					   ino,
3744 					   &sctx->new_refs,
3745 					   &sctx->deleted_refs,
3746 					   is_orphan);
3747 		if (!ret)
3748 			ret = 1;
3749 	}
3750 
3751 	return ret;
3752 }
3753 
3754 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3755 {
3756 	int ret;
3757 	struct fs_path *new_path;
3758 
3759 	/*
3760 	 * Our reference's name member points to its full_path member string, so
3761 	 * we use here a new path.
3762 	 */
3763 	new_path = fs_path_alloc();
3764 	if (!new_path)
3765 		return -ENOMEM;
3766 
3767 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3768 	if (ret < 0) {
3769 		fs_path_free(new_path);
3770 		return ret;
3771 	}
3772 	ret = fs_path_add(new_path, ref->name, ref->name_len);
3773 	if (ret < 0) {
3774 		fs_path_free(new_path);
3775 		return ret;
3776 	}
3777 
3778 	fs_path_free(ref->full_path);
3779 	set_ref_path(ref, new_path);
3780 
3781 	return 0;
3782 }
3783 
3784 /*
3785  * This does all the move/link/unlink/rmdir magic.
3786  */
3787 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3788 {
3789 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3790 	int ret = 0;
3791 	struct recorded_ref *cur;
3792 	struct recorded_ref *cur2;
3793 	struct list_head check_dirs;
3794 	struct fs_path *valid_path = NULL;
3795 	u64 ow_inode = 0;
3796 	u64 ow_gen;
3797 	u64 ow_mode;
3798 	int did_overwrite = 0;
3799 	int is_orphan = 0;
3800 	u64 last_dir_ino_rm = 0;
3801 	bool can_rename = true;
3802 	bool orphanized_dir = false;
3803 	bool orphanized_ancestor = false;
3804 
3805 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3806 
3807 	/*
3808 	 * This should never happen as the root dir always has the same ref
3809 	 * which is always '..'
3810 	 */
3811 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3812 	INIT_LIST_HEAD(&check_dirs);
3813 
3814 	valid_path = fs_path_alloc();
3815 	if (!valid_path) {
3816 		ret = -ENOMEM;
3817 		goto out;
3818 	}
3819 
3820 	/*
3821 	 * First, check if the first ref of the current inode was overwritten
3822 	 * before. If yes, we know that the current inode was already orphanized
3823 	 * and thus use the orphan name. If not, we can use get_cur_path to
3824 	 * get the path of the first ref as it would like while receiving at
3825 	 * this point in time.
3826 	 * New inodes are always orphan at the beginning, so force to use the
3827 	 * orphan name in this case.
3828 	 * The first ref is stored in valid_path and will be updated if it
3829 	 * gets moved around.
3830 	 */
3831 	if (!sctx->cur_inode_new) {
3832 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3833 				sctx->cur_inode_gen);
3834 		if (ret < 0)
3835 			goto out;
3836 		if (ret)
3837 			did_overwrite = 1;
3838 	}
3839 	if (sctx->cur_inode_new || did_overwrite) {
3840 		ret = gen_unique_name(sctx, sctx->cur_ino,
3841 				sctx->cur_inode_gen, valid_path);
3842 		if (ret < 0)
3843 			goto out;
3844 		is_orphan = 1;
3845 	} else {
3846 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3847 				valid_path);
3848 		if (ret < 0)
3849 			goto out;
3850 	}
3851 
3852 	list_for_each_entry(cur, &sctx->new_refs, list) {
3853 		/*
3854 		 * We may have refs where the parent directory does not exist
3855 		 * yet. This happens if the parent directories inum is higher
3856 		 * the the current inum. To handle this case, we create the
3857 		 * parent directory out of order. But we need to check if this
3858 		 * did already happen before due to other refs in the same dir.
3859 		 */
3860 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3861 		if (ret < 0)
3862 			goto out;
3863 		if (ret == inode_state_will_create) {
3864 			ret = 0;
3865 			/*
3866 			 * First check if any of the current inodes refs did
3867 			 * already create the dir.
3868 			 */
3869 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3870 				if (cur == cur2)
3871 					break;
3872 				if (cur2->dir == cur->dir) {
3873 					ret = 1;
3874 					break;
3875 				}
3876 			}
3877 
3878 			/*
3879 			 * If that did not happen, check if a previous inode
3880 			 * did already create the dir.
3881 			 */
3882 			if (!ret)
3883 				ret = did_create_dir(sctx, cur->dir);
3884 			if (ret < 0)
3885 				goto out;
3886 			if (!ret) {
3887 				ret = send_create_inode(sctx, cur->dir);
3888 				if (ret < 0)
3889 					goto out;
3890 			}
3891 		}
3892 
3893 		/*
3894 		 * Check if this new ref would overwrite the first ref of
3895 		 * another unprocessed inode. If yes, orphanize the
3896 		 * overwritten inode. If we find an overwritten ref that is
3897 		 * not the first ref, simply unlink it.
3898 		 */
3899 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3900 				cur->name, cur->name_len,
3901 				&ow_inode, &ow_gen, &ow_mode);
3902 		if (ret < 0)
3903 			goto out;
3904 		if (ret) {
3905 			ret = is_first_ref(sctx->parent_root,
3906 					   ow_inode, cur->dir, cur->name,
3907 					   cur->name_len);
3908 			if (ret < 0)
3909 				goto out;
3910 			if (ret) {
3911 				struct name_cache_entry *nce;
3912 				struct waiting_dir_move *wdm;
3913 
3914 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3915 						cur->full_path);
3916 				if (ret < 0)
3917 					goto out;
3918 				if (S_ISDIR(ow_mode))
3919 					orphanized_dir = true;
3920 
3921 				/*
3922 				 * If ow_inode has its rename operation delayed
3923 				 * make sure that its orphanized name is used in
3924 				 * the source path when performing its rename
3925 				 * operation.
3926 				 */
3927 				if (is_waiting_for_move(sctx, ow_inode)) {
3928 					wdm = get_waiting_dir_move(sctx,
3929 								   ow_inode);
3930 					ASSERT(wdm);
3931 					wdm->orphanized = true;
3932 				}
3933 
3934 				/*
3935 				 * Make sure we clear our orphanized inode's
3936 				 * name from the name cache. This is because the
3937 				 * inode ow_inode might be an ancestor of some
3938 				 * other inode that will be orphanized as well
3939 				 * later and has an inode number greater than
3940 				 * sctx->send_progress. We need to prevent
3941 				 * future name lookups from using the old name
3942 				 * and get instead the orphan name.
3943 				 */
3944 				nce = name_cache_search(sctx, ow_inode, ow_gen);
3945 				if (nce) {
3946 					name_cache_delete(sctx, nce);
3947 					kfree(nce);
3948 				}
3949 
3950 				/*
3951 				 * ow_inode might currently be an ancestor of
3952 				 * cur_ino, therefore compute valid_path (the
3953 				 * current path of cur_ino) again because it
3954 				 * might contain the pre-orphanization name of
3955 				 * ow_inode, which is no longer valid.
3956 				 */
3957 				ret = is_ancestor(sctx->parent_root,
3958 						  ow_inode, ow_gen,
3959 						  sctx->cur_ino, NULL);
3960 				if (ret > 0) {
3961 					orphanized_ancestor = true;
3962 					fs_path_reset(valid_path);
3963 					ret = get_cur_path(sctx, sctx->cur_ino,
3964 							   sctx->cur_inode_gen,
3965 							   valid_path);
3966 				}
3967 				if (ret < 0)
3968 					goto out;
3969 			} else {
3970 				ret = send_unlink(sctx, cur->full_path);
3971 				if (ret < 0)
3972 					goto out;
3973 			}
3974 		}
3975 
3976 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3977 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3978 			if (ret < 0)
3979 				goto out;
3980 			if (ret == 1) {
3981 				can_rename = false;
3982 				*pending_move = 1;
3983 			}
3984 		}
3985 
3986 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3987 		    can_rename) {
3988 			ret = wait_for_parent_move(sctx, cur, is_orphan);
3989 			if (ret < 0)
3990 				goto out;
3991 			if (ret == 1) {
3992 				can_rename = false;
3993 				*pending_move = 1;
3994 			}
3995 		}
3996 
3997 		/*
3998 		 * link/move the ref to the new place. If we have an orphan
3999 		 * inode, move it and update valid_path. If not, link or move
4000 		 * it depending on the inode mode.
4001 		 */
4002 		if (is_orphan && can_rename) {
4003 			ret = send_rename(sctx, valid_path, cur->full_path);
4004 			if (ret < 0)
4005 				goto out;
4006 			is_orphan = 0;
4007 			ret = fs_path_copy(valid_path, cur->full_path);
4008 			if (ret < 0)
4009 				goto out;
4010 		} else if (can_rename) {
4011 			if (S_ISDIR(sctx->cur_inode_mode)) {
4012 				/*
4013 				 * Dirs can't be linked, so move it. For moved
4014 				 * dirs, we always have one new and one deleted
4015 				 * ref. The deleted ref is ignored later.
4016 				 */
4017 				ret = send_rename(sctx, valid_path,
4018 						  cur->full_path);
4019 				if (!ret)
4020 					ret = fs_path_copy(valid_path,
4021 							   cur->full_path);
4022 				if (ret < 0)
4023 					goto out;
4024 			} else {
4025 				/*
4026 				 * We might have previously orphanized an inode
4027 				 * which is an ancestor of our current inode,
4028 				 * so our reference's full path, which was
4029 				 * computed before any such orphanizations, must
4030 				 * be updated.
4031 				 */
4032 				if (orphanized_dir) {
4033 					ret = update_ref_path(sctx, cur);
4034 					if (ret < 0)
4035 						goto out;
4036 				}
4037 				ret = send_link(sctx, cur->full_path,
4038 						valid_path);
4039 				if (ret < 0)
4040 					goto out;
4041 			}
4042 		}
4043 		ret = dup_ref(cur, &check_dirs);
4044 		if (ret < 0)
4045 			goto out;
4046 	}
4047 
4048 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4049 		/*
4050 		 * Check if we can already rmdir the directory. If not,
4051 		 * orphanize it. For every dir item inside that gets deleted
4052 		 * later, we do this check again and rmdir it then if possible.
4053 		 * See the use of check_dirs for more details.
4054 		 */
4055 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4056 				sctx->cur_ino);
4057 		if (ret < 0)
4058 			goto out;
4059 		if (ret) {
4060 			ret = send_rmdir(sctx, valid_path);
4061 			if (ret < 0)
4062 				goto out;
4063 		} else if (!is_orphan) {
4064 			ret = orphanize_inode(sctx, sctx->cur_ino,
4065 					sctx->cur_inode_gen, valid_path);
4066 			if (ret < 0)
4067 				goto out;
4068 			is_orphan = 1;
4069 		}
4070 
4071 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4072 			ret = dup_ref(cur, &check_dirs);
4073 			if (ret < 0)
4074 				goto out;
4075 		}
4076 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4077 		   !list_empty(&sctx->deleted_refs)) {
4078 		/*
4079 		 * We have a moved dir. Add the old parent to check_dirs
4080 		 */
4081 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4082 				list);
4083 		ret = dup_ref(cur, &check_dirs);
4084 		if (ret < 0)
4085 			goto out;
4086 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4087 		/*
4088 		 * We have a non dir inode. Go through all deleted refs and
4089 		 * unlink them if they were not already overwritten by other
4090 		 * inodes.
4091 		 */
4092 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4093 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4094 					sctx->cur_ino, sctx->cur_inode_gen,
4095 					cur->name, cur->name_len);
4096 			if (ret < 0)
4097 				goto out;
4098 			if (!ret) {
4099 				/*
4100 				 * If we orphanized any ancestor before, we need
4101 				 * to recompute the full path for deleted names,
4102 				 * since any such path was computed before we
4103 				 * processed any references and orphanized any
4104 				 * ancestor inode.
4105 				 */
4106 				if (orphanized_ancestor) {
4107 					ret = update_ref_path(sctx, cur);
4108 					if (ret < 0)
4109 						goto out;
4110 				}
4111 				ret = send_unlink(sctx, cur->full_path);
4112 				if (ret < 0)
4113 					goto out;
4114 			}
4115 			ret = dup_ref(cur, &check_dirs);
4116 			if (ret < 0)
4117 				goto out;
4118 		}
4119 		/*
4120 		 * If the inode is still orphan, unlink the orphan. This may
4121 		 * happen when a previous inode did overwrite the first ref
4122 		 * of this inode and no new refs were added for the current
4123 		 * inode. Unlinking does not mean that the inode is deleted in
4124 		 * all cases. There may still be links to this inode in other
4125 		 * places.
4126 		 */
4127 		if (is_orphan) {
4128 			ret = send_unlink(sctx, valid_path);
4129 			if (ret < 0)
4130 				goto out;
4131 		}
4132 	}
4133 
4134 	/*
4135 	 * We did collect all parent dirs where cur_inode was once located. We
4136 	 * now go through all these dirs and check if they are pending for
4137 	 * deletion and if it's finally possible to perform the rmdir now.
4138 	 * We also update the inode stats of the parent dirs here.
4139 	 */
4140 	list_for_each_entry(cur, &check_dirs, list) {
4141 		/*
4142 		 * In case we had refs into dirs that were not processed yet,
4143 		 * we don't need to do the utime and rmdir logic for these dirs.
4144 		 * The dir will be processed later.
4145 		 */
4146 		if (cur->dir > sctx->cur_ino)
4147 			continue;
4148 
4149 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4150 		if (ret < 0)
4151 			goto out;
4152 
4153 		if (ret == inode_state_did_create ||
4154 		    ret == inode_state_no_change) {
4155 			/* TODO delayed utimes */
4156 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4157 			if (ret < 0)
4158 				goto out;
4159 		} else if (ret == inode_state_did_delete &&
4160 			   cur->dir != last_dir_ino_rm) {
4161 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4162 					sctx->cur_ino);
4163 			if (ret < 0)
4164 				goto out;
4165 			if (ret) {
4166 				ret = get_cur_path(sctx, cur->dir,
4167 						   cur->dir_gen, valid_path);
4168 				if (ret < 0)
4169 					goto out;
4170 				ret = send_rmdir(sctx, valid_path);
4171 				if (ret < 0)
4172 					goto out;
4173 				last_dir_ino_rm = cur->dir;
4174 			}
4175 		}
4176 	}
4177 
4178 	ret = 0;
4179 
4180 out:
4181 	__free_recorded_refs(&check_dirs);
4182 	free_recorded_refs(sctx);
4183 	fs_path_free(valid_path);
4184 	return ret;
4185 }
4186 
4187 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4188 		      void *ctx, struct list_head *refs)
4189 {
4190 	int ret = 0;
4191 	struct send_ctx *sctx = ctx;
4192 	struct fs_path *p;
4193 	u64 gen;
4194 
4195 	p = fs_path_alloc();
4196 	if (!p)
4197 		return -ENOMEM;
4198 
4199 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4200 			NULL, NULL);
4201 	if (ret < 0)
4202 		goto out;
4203 
4204 	ret = get_cur_path(sctx, dir, gen, p);
4205 	if (ret < 0)
4206 		goto out;
4207 	ret = fs_path_add_path(p, name);
4208 	if (ret < 0)
4209 		goto out;
4210 
4211 	ret = __record_ref(refs, dir, gen, p);
4212 
4213 out:
4214 	if (ret)
4215 		fs_path_free(p);
4216 	return ret;
4217 }
4218 
4219 static int __record_new_ref(int num, u64 dir, int index,
4220 			    struct fs_path *name,
4221 			    void *ctx)
4222 {
4223 	struct send_ctx *sctx = ctx;
4224 	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4225 }
4226 
4227 
4228 static int __record_deleted_ref(int num, u64 dir, int index,
4229 				struct fs_path *name,
4230 				void *ctx)
4231 {
4232 	struct send_ctx *sctx = ctx;
4233 	return record_ref(sctx->parent_root, dir, name, ctx,
4234 			  &sctx->deleted_refs);
4235 }
4236 
4237 static int record_new_ref(struct send_ctx *sctx)
4238 {
4239 	int ret;
4240 
4241 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4242 				sctx->cmp_key, 0, __record_new_ref, sctx);
4243 	if (ret < 0)
4244 		goto out;
4245 	ret = 0;
4246 
4247 out:
4248 	return ret;
4249 }
4250 
4251 static int record_deleted_ref(struct send_ctx *sctx)
4252 {
4253 	int ret;
4254 
4255 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4256 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4257 	if (ret < 0)
4258 		goto out;
4259 	ret = 0;
4260 
4261 out:
4262 	return ret;
4263 }
4264 
4265 struct find_ref_ctx {
4266 	u64 dir;
4267 	u64 dir_gen;
4268 	struct btrfs_root *root;
4269 	struct fs_path *name;
4270 	int found_idx;
4271 };
4272 
4273 static int __find_iref(int num, u64 dir, int index,
4274 		       struct fs_path *name,
4275 		       void *ctx_)
4276 {
4277 	struct find_ref_ctx *ctx = ctx_;
4278 	u64 dir_gen;
4279 	int ret;
4280 
4281 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4282 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4283 		/*
4284 		 * To avoid doing extra lookups we'll only do this if everything
4285 		 * else matches.
4286 		 */
4287 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4288 				     NULL, NULL, NULL);
4289 		if (ret)
4290 			return ret;
4291 		if (dir_gen != ctx->dir_gen)
4292 			return 0;
4293 		ctx->found_idx = num;
4294 		return 1;
4295 	}
4296 	return 0;
4297 }
4298 
4299 static int find_iref(struct btrfs_root *root,
4300 		     struct btrfs_path *path,
4301 		     struct btrfs_key *key,
4302 		     u64 dir, u64 dir_gen, struct fs_path *name)
4303 {
4304 	int ret;
4305 	struct find_ref_ctx ctx;
4306 
4307 	ctx.dir = dir;
4308 	ctx.name = name;
4309 	ctx.dir_gen = dir_gen;
4310 	ctx.found_idx = -1;
4311 	ctx.root = root;
4312 
4313 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4314 	if (ret < 0)
4315 		return ret;
4316 
4317 	if (ctx.found_idx == -1)
4318 		return -ENOENT;
4319 
4320 	return ctx.found_idx;
4321 }
4322 
4323 static int __record_changed_new_ref(int num, u64 dir, int index,
4324 				    struct fs_path *name,
4325 				    void *ctx)
4326 {
4327 	u64 dir_gen;
4328 	int ret;
4329 	struct send_ctx *sctx = ctx;
4330 
4331 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4332 			     NULL, NULL, NULL);
4333 	if (ret)
4334 		return ret;
4335 
4336 	ret = find_iref(sctx->parent_root, sctx->right_path,
4337 			sctx->cmp_key, dir, dir_gen, name);
4338 	if (ret == -ENOENT)
4339 		ret = __record_new_ref(num, dir, index, name, sctx);
4340 	else if (ret > 0)
4341 		ret = 0;
4342 
4343 	return ret;
4344 }
4345 
4346 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4347 					struct fs_path *name,
4348 					void *ctx)
4349 {
4350 	u64 dir_gen;
4351 	int ret;
4352 	struct send_ctx *sctx = ctx;
4353 
4354 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4355 			     NULL, NULL, NULL);
4356 	if (ret)
4357 		return ret;
4358 
4359 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4360 			dir, dir_gen, name);
4361 	if (ret == -ENOENT)
4362 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4363 	else if (ret > 0)
4364 		ret = 0;
4365 
4366 	return ret;
4367 }
4368 
4369 static int record_changed_ref(struct send_ctx *sctx)
4370 {
4371 	int ret = 0;
4372 
4373 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4374 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4375 	if (ret < 0)
4376 		goto out;
4377 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4378 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4379 	if (ret < 0)
4380 		goto out;
4381 	ret = 0;
4382 
4383 out:
4384 	return ret;
4385 }
4386 
4387 /*
4388  * Record and process all refs at once. Needed when an inode changes the
4389  * generation number, which means that it was deleted and recreated.
4390  */
4391 static int process_all_refs(struct send_ctx *sctx,
4392 			    enum btrfs_compare_tree_result cmd)
4393 {
4394 	int ret;
4395 	struct btrfs_root *root;
4396 	struct btrfs_path *path;
4397 	struct btrfs_key key;
4398 	struct btrfs_key found_key;
4399 	struct extent_buffer *eb;
4400 	int slot;
4401 	iterate_inode_ref_t cb;
4402 	int pending_move = 0;
4403 
4404 	path = alloc_path_for_send();
4405 	if (!path)
4406 		return -ENOMEM;
4407 
4408 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4409 		root = sctx->send_root;
4410 		cb = __record_new_ref;
4411 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4412 		root = sctx->parent_root;
4413 		cb = __record_deleted_ref;
4414 	} else {
4415 		btrfs_err(sctx->send_root->fs_info,
4416 				"Wrong command %d in process_all_refs", cmd);
4417 		ret = -EINVAL;
4418 		goto out;
4419 	}
4420 
4421 	key.objectid = sctx->cmp_key->objectid;
4422 	key.type = BTRFS_INODE_REF_KEY;
4423 	key.offset = 0;
4424 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4425 	if (ret < 0)
4426 		goto out;
4427 
4428 	while (1) {
4429 		eb = path->nodes[0];
4430 		slot = path->slots[0];
4431 		if (slot >= btrfs_header_nritems(eb)) {
4432 			ret = btrfs_next_leaf(root, path);
4433 			if (ret < 0)
4434 				goto out;
4435 			else if (ret > 0)
4436 				break;
4437 			continue;
4438 		}
4439 
4440 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4441 
4442 		if (found_key.objectid != key.objectid ||
4443 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4444 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4445 			break;
4446 
4447 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4448 		if (ret < 0)
4449 			goto out;
4450 
4451 		path->slots[0]++;
4452 	}
4453 	btrfs_release_path(path);
4454 
4455 	/*
4456 	 * We don't actually care about pending_move as we are simply
4457 	 * re-creating this inode and will be rename'ing it into place once we
4458 	 * rename the parent directory.
4459 	 */
4460 	ret = process_recorded_refs(sctx, &pending_move);
4461 out:
4462 	btrfs_free_path(path);
4463 	return ret;
4464 }
4465 
4466 static int send_set_xattr(struct send_ctx *sctx,
4467 			  struct fs_path *path,
4468 			  const char *name, int name_len,
4469 			  const char *data, int data_len)
4470 {
4471 	int ret = 0;
4472 
4473 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4474 	if (ret < 0)
4475 		goto out;
4476 
4477 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4478 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4479 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4480 
4481 	ret = send_cmd(sctx);
4482 
4483 tlv_put_failure:
4484 out:
4485 	return ret;
4486 }
4487 
4488 static int send_remove_xattr(struct send_ctx *sctx,
4489 			  struct fs_path *path,
4490 			  const char *name, int name_len)
4491 {
4492 	int ret = 0;
4493 
4494 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4495 	if (ret < 0)
4496 		goto out;
4497 
4498 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4499 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4500 
4501 	ret = send_cmd(sctx);
4502 
4503 tlv_put_failure:
4504 out:
4505 	return ret;
4506 }
4507 
4508 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4509 			       const char *name, int name_len,
4510 			       const char *data, int data_len,
4511 			       u8 type, void *ctx)
4512 {
4513 	int ret;
4514 	struct send_ctx *sctx = ctx;
4515 	struct fs_path *p;
4516 	struct posix_acl_xattr_header dummy_acl;
4517 
4518 	p = fs_path_alloc();
4519 	if (!p)
4520 		return -ENOMEM;
4521 
4522 	/*
4523 	 * This hack is needed because empty acls are stored as zero byte
4524 	 * data in xattrs. Problem with that is, that receiving these zero byte
4525 	 * acls will fail later. To fix this, we send a dummy acl list that
4526 	 * only contains the version number and no entries.
4527 	 */
4528 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4529 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4530 		if (data_len == 0) {
4531 			dummy_acl.a_version =
4532 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4533 			data = (char *)&dummy_acl;
4534 			data_len = sizeof(dummy_acl);
4535 		}
4536 	}
4537 
4538 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4539 	if (ret < 0)
4540 		goto out;
4541 
4542 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4543 
4544 out:
4545 	fs_path_free(p);
4546 	return ret;
4547 }
4548 
4549 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4550 				   const char *name, int name_len,
4551 				   const char *data, int data_len,
4552 				   u8 type, void *ctx)
4553 {
4554 	int ret;
4555 	struct send_ctx *sctx = ctx;
4556 	struct fs_path *p;
4557 
4558 	p = fs_path_alloc();
4559 	if (!p)
4560 		return -ENOMEM;
4561 
4562 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4563 	if (ret < 0)
4564 		goto out;
4565 
4566 	ret = send_remove_xattr(sctx, p, name, name_len);
4567 
4568 out:
4569 	fs_path_free(p);
4570 	return ret;
4571 }
4572 
4573 static int process_new_xattr(struct send_ctx *sctx)
4574 {
4575 	int ret = 0;
4576 
4577 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4578 			       __process_new_xattr, sctx);
4579 
4580 	return ret;
4581 }
4582 
4583 static int process_deleted_xattr(struct send_ctx *sctx)
4584 {
4585 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4586 				__process_deleted_xattr, sctx);
4587 }
4588 
4589 struct find_xattr_ctx {
4590 	const char *name;
4591 	int name_len;
4592 	int found_idx;
4593 	char *found_data;
4594 	int found_data_len;
4595 };
4596 
4597 static int __find_xattr(int num, struct btrfs_key *di_key,
4598 			const char *name, int name_len,
4599 			const char *data, int data_len,
4600 			u8 type, void *vctx)
4601 {
4602 	struct find_xattr_ctx *ctx = vctx;
4603 
4604 	if (name_len == ctx->name_len &&
4605 	    strncmp(name, ctx->name, name_len) == 0) {
4606 		ctx->found_idx = num;
4607 		ctx->found_data_len = data_len;
4608 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4609 		if (!ctx->found_data)
4610 			return -ENOMEM;
4611 		return 1;
4612 	}
4613 	return 0;
4614 }
4615 
4616 static int find_xattr(struct btrfs_root *root,
4617 		      struct btrfs_path *path,
4618 		      struct btrfs_key *key,
4619 		      const char *name, int name_len,
4620 		      char **data, int *data_len)
4621 {
4622 	int ret;
4623 	struct find_xattr_ctx ctx;
4624 
4625 	ctx.name = name;
4626 	ctx.name_len = name_len;
4627 	ctx.found_idx = -1;
4628 	ctx.found_data = NULL;
4629 	ctx.found_data_len = 0;
4630 
4631 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4632 	if (ret < 0)
4633 		return ret;
4634 
4635 	if (ctx.found_idx == -1)
4636 		return -ENOENT;
4637 	if (data) {
4638 		*data = ctx.found_data;
4639 		*data_len = ctx.found_data_len;
4640 	} else {
4641 		kfree(ctx.found_data);
4642 	}
4643 	return ctx.found_idx;
4644 }
4645 
4646 
4647 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4648 				       const char *name, int name_len,
4649 				       const char *data, int data_len,
4650 				       u8 type, void *ctx)
4651 {
4652 	int ret;
4653 	struct send_ctx *sctx = ctx;
4654 	char *found_data = NULL;
4655 	int found_data_len  = 0;
4656 
4657 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4658 			 sctx->cmp_key, name, name_len, &found_data,
4659 			 &found_data_len);
4660 	if (ret == -ENOENT) {
4661 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4662 				data_len, type, ctx);
4663 	} else if (ret >= 0) {
4664 		if (data_len != found_data_len ||
4665 		    memcmp(data, found_data, data_len)) {
4666 			ret = __process_new_xattr(num, di_key, name, name_len,
4667 					data, data_len, type, ctx);
4668 		} else {
4669 			ret = 0;
4670 		}
4671 	}
4672 
4673 	kfree(found_data);
4674 	return ret;
4675 }
4676 
4677 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4678 					   const char *name, int name_len,
4679 					   const char *data, int data_len,
4680 					   u8 type, void *ctx)
4681 {
4682 	int ret;
4683 	struct send_ctx *sctx = ctx;
4684 
4685 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4686 			 name, name_len, NULL, NULL);
4687 	if (ret == -ENOENT)
4688 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4689 				data_len, type, ctx);
4690 	else if (ret >= 0)
4691 		ret = 0;
4692 
4693 	return ret;
4694 }
4695 
4696 static int process_changed_xattr(struct send_ctx *sctx)
4697 {
4698 	int ret = 0;
4699 
4700 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4701 			__process_changed_new_xattr, sctx);
4702 	if (ret < 0)
4703 		goto out;
4704 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4705 			__process_changed_deleted_xattr, sctx);
4706 
4707 out:
4708 	return ret;
4709 }
4710 
4711 static int process_all_new_xattrs(struct send_ctx *sctx)
4712 {
4713 	int ret;
4714 	struct btrfs_root *root;
4715 	struct btrfs_path *path;
4716 	struct btrfs_key key;
4717 	struct btrfs_key found_key;
4718 	struct extent_buffer *eb;
4719 	int slot;
4720 
4721 	path = alloc_path_for_send();
4722 	if (!path)
4723 		return -ENOMEM;
4724 
4725 	root = sctx->send_root;
4726 
4727 	key.objectid = sctx->cmp_key->objectid;
4728 	key.type = BTRFS_XATTR_ITEM_KEY;
4729 	key.offset = 0;
4730 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4731 	if (ret < 0)
4732 		goto out;
4733 
4734 	while (1) {
4735 		eb = path->nodes[0];
4736 		slot = path->slots[0];
4737 		if (slot >= btrfs_header_nritems(eb)) {
4738 			ret = btrfs_next_leaf(root, path);
4739 			if (ret < 0) {
4740 				goto out;
4741 			} else if (ret > 0) {
4742 				ret = 0;
4743 				break;
4744 			}
4745 			continue;
4746 		}
4747 
4748 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4749 		if (found_key.objectid != key.objectid ||
4750 		    found_key.type != key.type) {
4751 			ret = 0;
4752 			goto out;
4753 		}
4754 
4755 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4756 		if (ret < 0)
4757 			goto out;
4758 
4759 		path->slots[0]++;
4760 	}
4761 
4762 out:
4763 	btrfs_free_path(path);
4764 	return ret;
4765 }
4766 
4767 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4768 {
4769 	struct btrfs_root *root = sctx->send_root;
4770 	struct btrfs_fs_info *fs_info = root->fs_info;
4771 	struct inode *inode;
4772 	struct page *page;
4773 	char *addr;
4774 	struct btrfs_key key;
4775 	pgoff_t index = offset >> PAGE_SHIFT;
4776 	pgoff_t last_index;
4777 	unsigned pg_offset = offset & ~PAGE_MASK;
4778 	ssize_t ret = 0;
4779 
4780 	key.objectid = sctx->cur_ino;
4781 	key.type = BTRFS_INODE_ITEM_KEY;
4782 	key.offset = 0;
4783 
4784 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4785 	if (IS_ERR(inode))
4786 		return PTR_ERR(inode);
4787 
4788 	if (offset + len > i_size_read(inode)) {
4789 		if (offset > i_size_read(inode))
4790 			len = 0;
4791 		else
4792 			len = offset - i_size_read(inode);
4793 	}
4794 	if (len == 0)
4795 		goto out;
4796 
4797 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4798 
4799 	/* initial readahead */
4800 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4801 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4802 
4803 	while (index <= last_index) {
4804 		unsigned cur_len = min_t(unsigned, len,
4805 					 PAGE_SIZE - pg_offset);
4806 
4807 		page = find_lock_page(inode->i_mapping, index);
4808 		if (!page) {
4809 			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4810 				NULL, index, last_index + 1 - index);
4811 
4812 			page = find_or_create_page(inode->i_mapping, index,
4813 					GFP_KERNEL);
4814 			if (!page) {
4815 				ret = -ENOMEM;
4816 				break;
4817 			}
4818 		}
4819 
4820 		if (PageReadahead(page)) {
4821 			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4822 				NULL, page, index, last_index + 1 - index);
4823 		}
4824 
4825 		if (!PageUptodate(page)) {
4826 			btrfs_readpage(NULL, page);
4827 			lock_page(page);
4828 			if (!PageUptodate(page)) {
4829 				unlock_page(page);
4830 				put_page(page);
4831 				ret = -EIO;
4832 				break;
4833 			}
4834 		}
4835 
4836 		addr = kmap(page);
4837 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4838 		kunmap(page);
4839 		unlock_page(page);
4840 		put_page(page);
4841 		index++;
4842 		pg_offset = 0;
4843 		len -= cur_len;
4844 		ret += cur_len;
4845 	}
4846 out:
4847 	iput(inode);
4848 	return ret;
4849 }
4850 
4851 /*
4852  * Read some bytes from the current inode/file and send a write command to
4853  * user space.
4854  */
4855 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4856 {
4857 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4858 	int ret = 0;
4859 	struct fs_path *p;
4860 	ssize_t num_read = 0;
4861 
4862 	p = fs_path_alloc();
4863 	if (!p)
4864 		return -ENOMEM;
4865 
4866 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4867 
4868 	num_read = fill_read_buf(sctx, offset, len);
4869 	if (num_read <= 0) {
4870 		if (num_read < 0)
4871 			ret = num_read;
4872 		goto out;
4873 	}
4874 
4875 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4876 	if (ret < 0)
4877 		goto out;
4878 
4879 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4880 	if (ret < 0)
4881 		goto out;
4882 
4883 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4884 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4885 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4886 
4887 	ret = send_cmd(sctx);
4888 
4889 tlv_put_failure:
4890 out:
4891 	fs_path_free(p);
4892 	if (ret < 0)
4893 		return ret;
4894 	return num_read;
4895 }
4896 
4897 /*
4898  * Send a clone command to user space.
4899  */
4900 static int send_clone(struct send_ctx *sctx,
4901 		      u64 offset, u32 len,
4902 		      struct clone_root *clone_root)
4903 {
4904 	int ret = 0;
4905 	struct fs_path *p;
4906 	u64 gen;
4907 
4908 	btrfs_debug(sctx->send_root->fs_info,
4909 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4910 		    offset, len, clone_root->root->objectid, clone_root->ino,
4911 		    clone_root->offset);
4912 
4913 	p = fs_path_alloc();
4914 	if (!p)
4915 		return -ENOMEM;
4916 
4917 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4918 	if (ret < 0)
4919 		goto out;
4920 
4921 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4922 	if (ret < 0)
4923 		goto out;
4924 
4925 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4926 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4927 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4928 
4929 	if (clone_root->root == sctx->send_root) {
4930 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4931 				&gen, NULL, NULL, NULL, NULL);
4932 		if (ret < 0)
4933 			goto out;
4934 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4935 	} else {
4936 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4937 	}
4938 	if (ret < 0)
4939 		goto out;
4940 
4941 	/*
4942 	 * If the parent we're using has a received_uuid set then use that as
4943 	 * our clone source as that is what we will look for when doing a
4944 	 * receive.
4945 	 *
4946 	 * This covers the case that we create a snapshot off of a received
4947 	 * subvolume and then use that as the parent and try to receive on a
4948 	 * different host.
4949 	 */
4950 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4951 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4952 			     clone_root->root->root_item.received_uuid);
4953 	else
4954 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4955 			     clone_root->root->root_item.uuid);
4956 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4957 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4958 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4959 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4960 			clone_root->offset);
4961 
4962 	ret = send_cmd(sctx);
4963 
4964 tlv_put_failure:
4965 out:
4966 	fs_path_free(p);
4967 	return ret;
4968 }
4969 
4970 /*
4971  * Send an update extent command to user space.
4972  */
4973 static int send_update_extent(struct send_ctx *sctx,
4974 			      u64 offset, u32 len)
4975 {
4976 	int ret = 0;
4977 	struct fs_path *p;
4978 
4979 	p = fs_path_alloc();
4980 	if (!p)
4981 		return -ENOMEM;
4982 
4983 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4984 	if (ret < 0)
4985 		goto out;
4986 
4987 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4988 	if (ret < 0)
4989 		goto out;
4990 
4991 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4992 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4993 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4994 
4995 	ret = send_cmd(sctx);
4996 
4997 tlv_put_failure:
4998 out:
4999 	fs_path_free(p);
5000 	return ret;
5001 }
5002 
5003 static int send_hole(struct send_ctx *sctx, u64 end)
5004 {
5005 	struct fs_path *p = NULL;
5006 	u64 offset = sctx->cur_inode_last_extent;
5007 	u64 len;
5008 	int ret = 0;
5009 
5010 	/*
5011 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5012 	 * fallocate (for extent preallocation and hole punching), sending a
5013 	 * write of zeroes starting at EOF or beyond would later require issuing
5014 	 * a truncate operation which would undo the write and achieve nothing.
5015 	 */
5016 	if (offset >= sctx->cur_inode_size)
5017 		return 0;
5018 
5019 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5020 		return send_update_extent(sctx, offset, end - offset);
5021 
5022 	p = fs_path_alloc();
5023 	if (!p)
5024 		return -ENOMEM;
5025 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5026 	if (ret < 0)
5027 		goto tlv_put_failure;
5028 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5029 	while (offset < end) {
5030 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5031 
5032 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5033 		if (ret < 0)
5034 			break;
5035 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5036 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5037 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5038 		ret = send_cmd(sctx);
5039 		if (ret < 0)
5040 			break;
5041 		offset += len;
5042 	}
5043 	sctx->cur_inode_next_write_offset = offset;
5044 tlv_put_failure:
5045 	fs_path_free(p);
5046 	return ret;
5047 }
5048 
5049 static int send_extent_data(struct send_ctx *sctx,
5050 			    const u64 offset,
5051 			    const u64 len)
5052 {
5053 	u64 sent = 0;
5054 
5055 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5056 		return send_update_extent(sctx, offset, len);
5057 
5058 	while (sent < len) {
5059 		u64 size = len - sent;
5060 		int ret;
5061 
5062 		if (size > BTRFS_SEND_READ_SIZE)
5063 			size = BTRFS_SEND_READ_SIZE;
5064 		ret = send_write(sctx, offset + sent, size);
5065 		if (ret < 0)
5066 			return ret;
5067 		if (!ret)
5068 			break;
5069 		sent += ret;
5070 	}
5071 	return 0;
5072 }
5073 
5074 static int clone_range(struct send_ctx *sctx,
5075 		       struct clone_root *clone_root,
5076 		       const u64 disk_byte,
5077 		       u64 data_offset,
5078 		       u64 offset,
5079 		       u64 len)
5080 {
5081 	struct btrfs_path *path;
5082 	struct btrfs_key key;
5083 	int ret;
5084 
5085 	/*
5086 	 * Prevent cloning from a zero offset with a length matching the sector
5087 	 * size because in some scenarios this will make the receiver fail.
5088 	 *
5089 	 * For example, if in the source filesystem the extent at offset 0
5090 	 * has a length of sectorsize and it was written using direct IO, then
5091 	 * it can never be an inline extent (even if compression is enabled).
5092 	 * Then this extent can be cloned in the original filesystem to a non
5093 	 * zero file offset, but it may not be possible to clone in the
5094 	 * destination filesystem because it can be inlined due to compression
5095 	 * on the destination filesystem (as the receiver's write operations are
5096 	 * always done using buffered IO). The same happens when the original
5097 	 * filesystem does not have compression enabled but the destination
5098 	 * filesystem has.
5099 	 */
5100 	if (clone_root->offset == 0 &&
5101 	    len == sctx->send_root->fs_info->sectorsize)
5102 		return send_extent_data(sctx, offset, len);
5103 
5104 	path = alloc_path_for_send();
5105 	if (!path)
5106 		return -ENOMEM;
5107 
5108 	/*
5109 	 * We can't send a clone operation for the entire range if we find
5110 	 * extent items in the respective range in the source file that
5111 	 * refer to different extents or if we find holes.
5112 	 * So check for that and do a mix of clone and regular write/copy
5113 	 * operations if needed.
5114 	 *
5115 	 * Example:
5116 	 *
5117 	 * mkfs.btrfs -f /dev/sda
5118 	 * mount /dev/sda /mnt
5119 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5120 	 * cp --reflink=always /mnt/foo /mnt/bar
5121 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5122 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5123 	 *
5124 	 * If when we send the snapshot and we are processing file bar (which
5125 	 * has a higher inode number than foo) we blindly send a clone operation
5126 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5127 	 * a file bar that matches the content of file foo - iow, doesn't match
5128 	 * the content from bar in the original filesystem.
5129 	 */
5130 	key.objectid = clone_root->ino;
5131 	key.type = BTRFS_EXTENT_DATA_KEY;
5132 	key.offset = clone_root->offset;
5133 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5134 	if (ret < 0)
5135 		goto out;
5136 	if (ret > 0 && path->slots[0] > 0) {
5137 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5138 		if (key.objectid == clone_root->ino &&
5139 		    key.type == BTRFS_EXTENT_DATA_KEY)
5140 			path->slots[0]--;
5141 	}
5142 
5143 	while (true) {
5144 		struct extent_buffer *leaf = path->nodes[0];
5145 		int slot = path->slots[0];
5146 		struct btrfs_file_extent_item *ei;
5147 		u8 type;
5148 		u64 ext_len;
5149 		u64 clone_len;
5150 
5151 		if (slot >= btrfs_header_nritems(leaf)) {
5152 			ret = btrfs_next_leaf(clone_root->root, path);
5153 			if (ret < 0)
5154 				goto out;
5155 			else if (ret > 0)
5156 				break;
5157 			continue;
5158 		}
5159 
5160 		btrfs_item_key_to_cpu(leaf, &key, slot);
5161 
5162 		/*
5163 		 * We might have an implicit trailing hole (NO_HOLES feature
5164 		 * enabled). We deal with it after leaving this loop.
5165 		 */
5166 		if (key.objectid != clone_root->ino ||
5167 		    key.type != BTRFS_EXTENT_DATA_KEY)
5168 			break;
5169 
5170 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5171 		type = btrfs_file_extent_type(leaf, ei);
5172 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5173 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5174 			ext_len = PAGE_ALIGN(ext_len);
5175 		} else {
5176 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5177 		}
5178 
5179 		if (key.offset + ext_len <= clone_root->offset)
5180 			goto next;
5181 
5182 		if (key.offset > clone_root->offset) {
5183 			/* Implicit hole, NO_HOLES feature enabled. */
5184 			u64 hole_len = key.offset - clone_root->offset;
5185 
5186 			if (hole_len > len)
5187 				hole_len = len;
5188 			ret = send_extent_data(sctx, offset, hole_len);
5189 			if (ret < 0)
5190 				goto out;
5191 
5192 			len -= hole_len;
5193 			if (len == 0)
5194 				break;
5195 			offset += hole_len;
5196 			clone_root->offset += hole_len;
5197 			data_offset += hole_len;
5198 		}
5199 
5200 		if (key.offset >= clone_root->offset + len)
5201 			break;
5202 
5203 		clone_len = min_t(u64, ext_len, len);
5204 
5205 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5206 		    btrfs_file_extent_offset(leaf, ei) == data_offset)
5207 			ret = send_clone(sctx, offset, clone_len, clone_root);
5208 		else
5209 			ret = send_extent_data(sctx, offset, clone_len);
5210 
5211 		if (ret < 0)
5212 			goto out;
5213 
5214 		len -= clone_len;
5215 		if (len == 0)
5216 			break;
5217 		offset += clone_len;
5218 		clone_root->offset += clone_len;
5219 		data_offset += clone_len;
5220 next:
5221 		path->slots[0]++;
5222 	}
5223 
5224 	if (len > 0)
5225 		ret = send_extent_data(sctx, offset, len);
5226 	else
5227 		ret = 0;
5228 out:
5229 	btrfs_free_path(path);
5230 	return ret;
5231 }
5232 
5233 static int send_write_or_clone(struct send_ctx *sctx,
5234 			       struct btrfs_path *path,
5235 			       struct btrfs_key *key,
5236 			       struct clone_root *clone_root)
5237 {
5238 	int ret = 0;
5239 	struct btrfs_file_extent_item *ei;
5240 	u64 offset = key->offset;
5241 	u64 len;
5242 	u8 type;
5243 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5244 
5245 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5246 			struct btrfs_file_extent_item);
5247 	type = btrfs_file_extent_type(path->nodes[0], ei);
5248 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5249 		len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
5250 		/*
5251 		 * it is possible the inline item won't cover the whole page,
5252 		 * but there may be items after this page.  Make
5253 		 * sure to send the whole thing
5254 		 */
5255 		len = PAGE_ALIGN(len);
5256 	} else {
5257 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5258 	}
5259 
5260 	if (offset >= sctx->cur_inode_size) {
5261 		ret = 0;
5262 		goto out;
5263 	}
5264 	if (offset + len > sctx->cur_inode_size)
5265 		len = sctx->cur_inode_size - offset;
5266 	if (len == 0) {
5267 		ret = 0;
5268 		goto out;
5269 	}
5270 
5271 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
5272 		u64 disk_byte;
5273 		u64 data_offset;
5274 
5275 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5276 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5277 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5278 				  offset, len);
5279 	} else {
5280 		ret = send_extent_data(sctx, offset, len);
5281 	}
5282 	sctx->cur_inode_next_write_offset = offset + len;
5283 out:
5284 	return ret;
5285 }
5286 
5287 static int is_extent_unchanged(struct send_ctx *sctx,
5288 			       struct btrfs_path *left_path,
5289 			       struct btrfs_key *ekey)
5290 {
5291 	int ret = 0;
5292 	struct btrfs_key key;
5293 	struct btrfs_path *path = NULL;
5294 	struct extent_buffer *eb;
5295 	int slot;
5296 	struct btrfs_key found_key;
5297 	struct btrfs_file_extent_item *ei;
5298 	u64 left_disknr;
5299 	u64 right_disknr;
5300 	u64 left_offset;
5301 	u64 right_offset;
5302 	u64 left_offset_fixed;
5303 	u64 left_len;
5304 	u64 right_len;
5305 	u64 left_gen;
5306 	u64 right_gen;
5307 	u8 left_type;
5308 	u8 right_type;
5309 
5310 	path = alloc_path_for_send();
5311 	if (!path)
5312 		return -ENOMEM;
5313 
5314 	eb = left_path->nodes[0];
5315 	slot = left_path->slots[0];
5316 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5317 	left_type = btrfs_file_extent_type(eb, ei);
5318 
5319 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5320 		ret = 0;
5321 		goto out;
5322 	}
5323 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5324 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5325 	left_offset = btrfs_file_extent_offset(eb, ei);
5326 	left_gen = btrfs_file_extent_generation(eb, ei);
5327 
5328 	/*
5329 	 * Following comments will refer to these graphics. L is the left
5330 	 * extents which we are checking at the moment. 1-8 are the right
5331 	 * extents that we iterate.
5332 	 *
5333 	 *       |-----L-----|
5334 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5335 	 *
5336 	 *       |-----L-----|
5337 	 * |--1--|-2b-|...(same as above)
5338 	 *
5339 	 * Alternative situation. Happens on files where extents got split.
5340 	 *       |-----L-----|
5341 	 * |-----------7-----------|-6-|
5342 	 *
5343 	 * Alternative situation. Happens on files which got larger.
5344 	 *       |-----L-----|
5345 	 * |-8-|
5346 	 * Nothing follows after 8.
5347 	 */
5348 
5349 	key.objectid = ekey->objectid;
5350 	key.type = BTRFS_EXTENT_DATA_KEY;
5351 	key.offset = ekey->offset;
5352 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5353 	if (ret < 0)
5354 		goto out;
5355 	if (ret) {
5356 		ret = 0;
5357 		goto out;
5358 	}
5359 
5360 	/*
5361 	 * Handle special case where the right side has no extents at all.
5362 	 */
5363 	eb = path->nodes[0];
5364 	slot = path->slots[0];
5365 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5366 	if (found_key.objectid != key.objectid ||
5367 	    found_key.type != key.type) {
5368 		/* If we're a hole then just pretend nothing changed */
5369 		ret = (left_disknr) ? 0 : 1;
5370 		goto out;
5371 	}
5372 
5373 	/*
5374 	 * We're now on 2a, 2b or 7.
5375 	 */
5376 	key = found_key;
5377 	while (key.offset < ekey->offset + left_len) {
5378 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5379 		right_type = btrfs_file_extent_type(eb, ei);
5380 		if (right_type != BTRFS_FILE_EXTENT_REG &&
5381 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5382 			ret = 0;
5383 			goto out;
5384 		}
5385 
5386 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5387 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
5388 			right_len = PAGE_ALIGN(right_len);
5389 		} else {
5390 			right_len = btrfs_file_extent_num_bytes(eb, ei);
5391 		}
5392 
5393 		/*
5394 		 * Are we at extent 8? If yes, we know the extent is changed.
5395 		 * This may only happen on the first iteration.
5396 		 */
5397 		if (found_key.offset + right_len <= ekey->offset) {
5398 			/* If we're a hole just pretend nothing changed */
5399 			ret = (left_disknr) ? 0 : 1;
5400 			goto out;
5401 		}
5402 
5403 		/*
5404 		 * We just wanted to see if when we have an inline extent, what
5405 		 * follows it is a regular extent (wanted to check the above
5406 		 * condition for inline extents too). This should normally not
5407 		 * happen but it's possible for example when we have an inline
5408 		 * compressed extent representing data with a size matching
5409 		 * the page size (currently the same as sector size).
5410 		 */
5411 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5412 			ret = 0;
5413 			goto out;
5414 		}
5415 
5416 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5417 		right_offset = btrfs_file_extent_offset(eb, ei);
5418 		right_gen = btrfs_file_extent_generation(eb, ei);
5419 
5420 		left_offset_fixed = left_offset;
5421 		if (key.offset < ekey->offset) {
5422 			/* Fix the right offset for 2a and 7. */
5423 			right_offset += ekey->offset - key.offset;
5424 		} else {
5425 			/* Fix the left offset for all behind 2a and 2b */
5426 			left_offset_fixed += key.offset - ekey->offset;
5427 		}
5428 
5429 		/*
5430 		 * Check if we have the same extent.
5431 		 */
5432 		if (left_disknr != right_disknr ||
5433 		    left_offset_fixed != right_offset ||
5434 		    left_gen != right_gen) {
5435 			ret = 0;
5436 			goto out;
5437 		}
5438 
5439 		/*
5440 		 * Go to the next extent.
5441 		 */
5442 		ret = btrfs_next_item(sctx->parent_root, path);
5443 		if (ret < 0)
5444 			goto out;
5445 		if (!ret) {
5446 			eb = path->nodes[0];
5447 			slot = path->slots[0];
5448 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5449 		}
5450 		if (ret || found_key.objectid != key.objectid ||
5451 		    found_key.type != key.type) {
5452 			key.offset += right_len;
5453 			break;
5454 		}
5455 		if (found_key.offset != key.offset + right_len) {
5456 			ret = 0;
5457 			goto out;
5458 		}
5459 		key = found_key;
5460 	}
5461 
5462 	/*
5463 	 * We're now behind the left extent (treat as unchanged) or at the end
5464 	 * of the right side (treat as changed).
5465 	 */
5466 	if (key.offset >= ekey->offset + left_len)
5467 		ret = 1;
5468 	else
5469 		ret = 0;
5470 
5471 
5472 out:
5473 	btrfs_free_path(path);
5474 	return ret;
5475 }
5476 
5477 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5478 {
5479 	struct btrfs_path *path;
5480 	struct btrfs_root *root = sctx->send_root;
5481 	struct btrfs_file_extent_item *fi;
5482 	struct btrfs_key key;
5483 	u64 extent_end;
5484 	u8 type;
5485 	int ret;
5486 
5487 	path = alloc_path_for_send();
5488 	if (!path)
5489 		return -ENOMEM;
5490 
5491 	sctx->cur_inode_last_extent = 0;
5492 
5493 	key.objectid = sctx->cur_ino;
5494 	key.type = BTRFS_EXTENT_DATA_KEY;
5495 	key.offset = offset;
5496 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5497 	if (ret < 0)
5498 		goto out;
5499 	ret = 0;
5500 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5501 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5502 		goto out;
5503 
5504 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5505 			    struct btrfs_file_extent_item);
5506 	type = btrfs_file_extent_type(path->nodes[0], fi);
5507 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5508 		u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
5509 		extent_end = ALIGN(key.offset + size,
5510 				   sctx->send_root->fs_info->sectorsize);
5511 	} else {
5512 		extent_end = key.offset +
5513 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5514 	}
5515 	sctx->cur_inode_last_extent = extent_end;
5516 out:
5517 	btrfs_free_path(path);
5518 	return ret;
5519 }
5520 
5521 static int range_is_hole_in_parent(struct send_ctx *sctx,
5522 				   const u64 start,
5523 				   const u64 end)
5524 {
5525 	struct btrfs_path *path;
5526 	struct btrfs_key key;
5527 	struct btrfs_root *root = sctx->parent_root;
5528 	u64 search_start = start;
5529 	int ret;
5530 
5531 	path = alloc_path_for_send();
5532 	if (!path)
5533 		return -ENOMEM;
5534 
5535 	key.objectid = sctx->cur_ino;
5536 	key.type = BTRFS_EXTENT_DATA_KEY;
5537 	key.offset = search_start;
5538 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5539 	if (ret < 0)
5540 		goto out;
5541 	if (ret > 0 && path->slots[0] > 0)
5542 		path->slots[0]--;
5543 
5544 	while (search_start < end) {
5545 		struct extent_buffer *leaf = path->nodes[0];
5546 		int slot = path->slots[0];
5547 		struct btrfs_file_extent_item *fi;
5548 		u64 extent_end;
5549 
5550 		if (slot >= btrfs_header_nritems(leaf)) {
5551 			ret = btrfs_next_leaf(root, path);
5552 			if (ret < 0)
5553 				goto out;
5554 			else if (ret > 0)
5555 				break;
5556 			continue;
5557 		}
5558 
5559 		btrfs_item_key_to_cpu(leaf, &key, slot);
5560 		if (key.objectid < sctx->cur_ino ||
5561 		    key.type < BTRFS_EXTENT_DATA_KEY)
5562 			goto next;
5563 		if (key.objectid > sctx->cur_ino ||
5564 		    key.type > BTRFS_EXTENT_DATA_KEY ||
5565 		    key.offset >= end)
5566 			break;
5567 
5568 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5569 		if (btrfs_file_extent_type(leaf, fi) ==
5570 		    BTRFS_FILE_EXTENT_INLINE) {
5571 			u64 size = btrfs_file_extent_ram_bytes(leaf, fi);
5572 
5573 			extent_end = ALIGN(key.offset + size,
5574 					   root->fs_info->sectorsize);
5575 		} else {
5576 			extent_end = key.offset +
5577 				btrfs_file_extent_num_bytes(leaf, fi);
5578 		}
5579 		if (extent_end <= start)
5580 			goto next;
5581 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5582 			search_start = extent_end;
5583 			goto next;
5584 		}
5585 		ret = 0;
5586 		goto out;
5587 next:
5588 		path->slots[0]++;
5589 	}
5590 	ret = 1;
5591 out:
5592 	btrfs_free_path(path);
5593 	return ret;
5594 }
5595 
5596 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5597 			   struct btrfs_key *key)
5598 {
5599 	struct btrfs_file_extent_item *fi;
5600 	u64 extent_end;
5601 	u8 type;
5602 	int ret = 0;
5603 
5604 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5605 		return 0;
5606 
5607 	if (sctx->cur_inode_last_extent == (u64)-1) {
5608 		ret = get_last_extent(sctx, key->offset - 1);
5609 		if (ret)
5610 			return ret;
5611 	}
5612 
5613 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5614 			    struct btrfs_file_extent_item);
5615 	type = btrfs_file_extent_type(path->nodes[0], fi);
5616 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5617 		u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
5618 		extent_end = ALIGN(key->offset + size,
5619 				   sctx->send_root->fs_info->sectorsize);
5620 	} else {
5621 		extent_end = key->offset +
5622 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5623 	}
5624 
5625 	if (path->slots[0] == 0 &&
5626 	    sctx->cur_inode_last_extent < key->offset) {
5627 		/*
5628 		 * We might have skipped entire leafs that contained only
5629 		 * file extent items for our current inode. These leafs have
5630 		 * a generation number smaller (older) than the one in the
5631 		 * current leaf and the leaf our last extent came from, and
5632 		 * are located between these 2 leafs.
5633 		 */
5634 		ret = get_last_extent(sctx, key->offset - 1);
5635 		if (ret)
5636 			return ret;
5637 	}
5638 
5639 	if (sctx->cur_inode_last_extent < key->offset) {
5640 		ret = range_is_hole_in_parent(sctx,
5641 					      sctx->cur_inode_last_extent,
5642 					      key->offset);
5643 		if (ret < 0)
5644 			return ret;
5645 		else if (ret == 0)
5646 			ret = send_hole(sctx, key->offset);
5647 		else
5648 			ret = 0;
5649 	}
5650 	sctx->cur_inode_last_extent = extent_end;
5651 	return ret;
5652 }
5653 
5654 static int process_extent(struct send_ctx *sctx,
5655 			  struct btrfs_path *path,
5656 			  struct btrfs_key *key)
5657 {
5658 	struct clone_root *found_clone = NULL;
5659 	int ret = 0;
5660 
5661 	if (S_ISLNK(sctx->cur_inode_mode))
5662 		return 0;
5663 
5664 	if (sctx->parent_root && !sctx->cur_inode_new) {
5665 		ret = is_extent_unchanged(sctx, path, key);
5666 		if (ret < 0)
5667 			goto out;
5668 		if (ret) {
5669 			ret = 0;
5670 			goto out_hole;
5671 		}
5672 	} else {
5673 		struct btrfs_file_extent_item *ei;
5674 		u8 type;
5675 
5676 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5677 				    struct btrfs_file_extent_item);
5678 		type = btrfs_file_extent_type(path->nodes[0], ei);
5679 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5680 		    type == BTRFS_FILE_EXTENT_REG) {
5681 			/*
5682 			 * The send spec does not have a prealloc command yet,
5683 			 * so just leave a hole for prealloc'ed extents until
5684 			 * we have enough commands queued up to justify rev'ing
5685 			 * the send spec.
5686 			 */
5687 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5688 				ret = 0;
5689 				goto out;
5690 			}
5691 
5692 			/* Have a hole, just skip it. */
5693 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5694 				ret = 0;
5695 				goto out;
5696 			}
5697 		}
5698 	}
5699 
5700 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5701 			sctx->cur_inode_size, &found_clone);
5702 	if (ret != -ENOENT && ret < 0)
5703 		goto out;
5704 
5705 	ret = send_write_or_clone(sctx, path, key, found_clone);
5706 	if (ret)
5707 		goto out;
5708 out_hole:
5709 	ret = maybe_send_hole(sctx, path, key);
5710 out:
5711 	return ret;
5712 }
5713 
5714 static int process_all_extents(struct send_ctx *sctx)
5715 {
5716 	int ret;
5717 	struct btrfs_root *root;
5718 	struct btrfs_path *path;
5719 	struct btrfs_key key;
5720 	struct btrfs_key found_key;
5721 	struct extent_buffer *eb;
5722 	int slot;
5723 
5724 	root = sctx->send_root;
5725 	path = alloc_path_for_send();
5726 	if (!path)
5727 		return -ENOMEM;
5728 
5729 	key.objectid = sctx->cmp_key->objectid;
5730 	key.type = BTRFS_EXTENT_DATA_KEY;
5731 	key.offset = 0;
5732 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5733 	if (ret < 0)
5734 		goto out;
5735 
5736 	while (1) {
5737 		eb = path->nodes[0];
5738 		slot = path->slots[0];
5739 
5740 		if (slot >= btrfs_header_nritems(eb)) {
5741 			ret = btrfs_next_leaf(root, path);
5742 			if (ret < 0) {
5743 				goto out;
5744 			} else if (ret > 0) {
5745 				ret = 0;
5746 				break;
5747 			}
5748 			continue;
5749 		}
5750 
5751 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5752 
5753 		if (found_key.objectid != key.objectid ||
5754 		    found_key.type != key.type) {
5755 			ret = 0;
5756 			goto out;
5757 		}
5758 
5759 		ret = process_extent(sctx, path, &found_key);
5760 		if (ret < 0)
5761 			goto out;
5762 
5763 		path->slots[0]++;
5764 	}
5765 
5766 out:
5767 	btrfs_free_path(path);
5768 	return ret;
5769 }
5770 
5771 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5772 					   int *pending_move,
5773 					   int *refs_processed)
5774 {
5775 	int ret = 0;
5776 
5777 	if (sctx->cur_ino == 0)
5778 		goto out;
5779 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5780 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5781 		goto out;
5782 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5783 		goto out;
5784 
5785 	ret = process_recorded_refs(sctx, pending_move);
5786 	if (ret < 0)
5787 		goto out;
5788 
5789 	*refs_processed = 1;
5790 out:
5791 	return ret;
5792 }
5793 
5794 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5795 {
5796 	int ret = 0;
5797 	u64 left_mode;
5798 	u64 left_uid;
5799 	u64 left_gid;
5800 	u64 right_mode;
5801 	u64 right_uid;
5802 	u64 right_gid;
5803 	int need_chmod = 0;
5804 	int need_chown = 0;
5805 	int need_truncate = 1;
5806 	int pending_move = 0;
5807 	int refs_processed = 0;
5808 
5809 	if (sctx->ignore_cur_inode)
5810 		return 0;
5811 
5812 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5813 					      &refs_processed);
5814 	if (ret < 0)
5815 		goto out;
5816 
5817 	/*
5818 	 * We have processed the refs and thus need to advance send_progress.
5819 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5820 	 * inode into account.
5821 	 *
5822 	 * On the other hand, if our current inode is a directory and couldn't
5823 	 * be moved/renamed because its parent was renamed/moved too and it has
5824 	 * a higher inode number, we can only move/rename our current inode
5825 	 * after we moved/renamed its parent. Therefore in this case operate on
5826 	 * the old path (pre move/rename) of our current inode, and the
5827 	 * move/rename will be performed later.
5828 	 */
5829 	if (refs_processed && !pending_move)
5830 		sctx->send_progress = sctx->cur_ino + 1;
5831 
5832 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5833 		goto out;
5834 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5835 		goto out;
5836 
5837 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5838 			&left_mode, &left_uid, &left_gid, NULL);
5839 	if (ret < 0)
5840 		goto out;
5841 
5842 	if (!sctx->parent_root || sctx->cur_inode_new) {
5843 		need_chown = 1;
5844 		if (!S_ISLNK(sctx->cur_inode_mode))
5845 			need_chmod = 1;
5846 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
5847 			need_truncate = 0;
5848 	} else {
5849 		u64 old_size;
5850 
5851 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5852 				&old_size, NULL, &right_mode, &right_uid,
5853 				&right_gid, NULL);
5854 		if (ret < 0)
5855 			goto out;
5856 
5857 		if (left_uid != right_uid || left_gid != right_gid)
5858 			need_chown = 1;
5859 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5860 			need_chmod = 1;
5861 		if ((old_size == sctx->cur_inode_size) ||
5862 		    (sctx->cur_inode_size > old_size &&
5863 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
5864 			need_truncate = 0;
5865 	}
5866 
5867 	if (S_ISREG(sctx->cur_inode_mode)) {
5868 		if (need_send_hole(sctx)) {
5869 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5870 			    sctx->cur_inode_last_extent <
5871 			    sctx->cur_inode_size) {
5872 				ret = get_last_extent(sctx, (u64)-1);
5873 				if (ret)
5874 					goto out;
5875 			}
5876 			if (sctx->cur_inode_last_extent <
5877 			    sctx->cur_inode_size) {
5878 				ret = send_hole(sctx, sctx->cur_inode_size);
5879 				if (ret)
5880 					goto out;
5881 			}
5882 		}
5883 		if (need_truncate) {
5884 			ret = send_truncate(sctx, sctx->cur_ino,
5885 					    sctx->cur_inode_gen,
5886 					    sctx->cur_inode_size);
5887 			if (ret < 0)
5888 				goto out;
5889 		}
5890 	}
5891 
5892 	if (need_chown) {
5893 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5894 				left_uid, left_gid);
5895 		if (ret < 0)
5896 			goto out;
5897 	}
5898 	if (need_chmod) {
5899 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5900 				left_mode);
5901 		if (ret < 0)
5902 			goto out;
5903 	}
5904 
5905 	/*
5906 	 * If other directory inodes depended on our current directory
5907 	 * inode's move/rename, now do their move/rename operations.
5908 	 */
5909 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5910 		ret = apply_children_dir_moves(sctx);
5911 		if (ret)
5912 			goto out;
5913 		/*
5914 		 * Need to send that every time, no matter if it actually
5915 		 * changed between the two trees as we have done changes to
5916 		 * the inode before. If our inode is a directory and it's
5917 		 * waiting to be moved/renamed, we will send its utimes when
5918 		 * it's moved/renamed, therefore we don't need to do it here.
5919 		 */
5920 		sctx->send_progress = sctx->cur_ino + 1;
5921 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5922 		if (ret < 0)
5923 			goto out;
5924 	}
5925 
5926 out:
5927 	return ret;
5928 }
5929 
5930 struct parent_paths_ctx {
5931 	struct list_head *refs;
5932 	struct send_ctx *sctx;
5933 };
5934 
5935 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
5936 			     void *ctx)
5937 {
5938 	struct parent_paths_ctx *ppctx = ctx;
5939 
5940 	return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
5941 			  ppctx->refs);
5942 }
5943 
5944 /*
5945  * Issue unlink operations for all paths of the current inode found in the
5946  * parent snapshot.
5947  */
5948 static int btrfs_unlink_all_paths(struct send_ctx *sctx)
5949 {
5950 	LIST_HEAD(deleted_refs);
5951 	struct btrfs_path *path;
5952 	struct btrfs_key key;
5953 	struct parent_paths_ctx ctx;
5954 	int ret;
5955 
5956 	path = alloc_path_for_send();
5957 	if (!path)
5958 		return -ENOMEM;
5959 
5960 	key.objectid = sctx->cur_ino;
5961 	key.type = BTRFS_INODE_REF_KEY;
5962 	key.offset = 0;
5963 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
5964 	if (ret < 0)
5965 		goto out;
5966 
5967 	ctx.refs = &deleted_refs;
5968 	ctx.sctx = sctx;
5969 
5970 	while (true) {
5971 		struct extent_buffer *eb = path->nodes[0];
5972 		int slot = path->slots[0];
5973 
5974 		if (slot >= btrfs_header_nritems(eb)) {
5975 			ret = btrfs_next_leaf(sctx->parent_root, path);
5976 			if (ret < 0)
5977 				goto out;
5978 			else if (ret > 0)
5979 				break;
5980 			continue;
5981 		}
5982 
5983 		btrfs_item_key_to_cpu(eb, &key, slot);
5984 		if (key.objectid != sctx->cur_ino)
5985 			break;
5986 		if (key.type != BTRFS_INODE_REF_KEY &&
5987 		    key.type != BTRFS_INODE_EXTREF_KEY)
5988 			break;
5989 
5990 		ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
5991 					record_parent_ref, &ctx);
5992 		if (ret < 0)
5993 			goto out;
5994 
5995 		path->slots[0]++;
5996 	}
5997 
5998 	while (!list_empty(&deleted_refs)) {
5999 		struct recorded_ref *ref;
6000 
6001 		ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6002 		ret = send_unlink(sctx, ref->full_path);
6003 		if (ret < 0)
6004 			goto out;
6005 		fs_path_free(ref->full_path);
6006 		list_del(&ref->list);
6007 		kfree(ref);
6008 	}
6009 	ret = 0;
6010 out:
6011 	btrfs_free_path(path);
6012 	if (ret)
6013 		__free_recorded_refs(&deleted_refs);
6014 	return ret;
6015 }
6016 
6017 static int changed_inode(struct send_ctx *sctx,
6018 			 enum btrfs_compare_tree_result result)
6019 {
6020 	int ret = 0;
6021 	struct btrfs_key *key = sctx->cmp_key;
6022 	struct btrfs_inode_item *left_ii = NULL;
6023 	struct btrfs_inode_item *right_ii = NULL;
6024 	u64 left_gen = 0;
6025 	u64 right_gen = 0;
6026 
6027 	sctx->cur_ino = key->objectid;
6028 	sctx->cur_inode_new_gen = 0;
6029 	sctx->cur_inode_last_extent = (u64)-1;
6030 	sctx->cur_inode_next_write_offset = 0;
6031 	sctx->ignore_cur_inode = false;
6032 
6033 	/*
6034 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6035 	 * functions that the current inode's refs are not updated yet. Later,
6036 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6037 	 */
6038 	sctx->send_progress = sctx->cur_ino;
6039 
6040 	if (result == BTRFS_COMPARE_TREE_NEW ||
6041 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6042 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6043 				sctx->left_path->slots[0],
6044 				struct btrfs_inode_item);
6045 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6046 				left_ii);
6047 	} else {
6048 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6049 				sctx->right_path->slots[0],
6050 				struct btrfs_inode_item);
6051 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6052 				right_ii);
6053 	}
6054 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6055 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6056 				sctx->right_path->slots[0],
6057 				struct btrfs_inode_item);
6058 
6059 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6060 				right_ii);
6061 
6062 		/*
6063 		 * The cur_ino = root dir case is special here. We can't treat
6064 		 * the inode as deleted+reused because it would generate a
6065 		 * stream that tries to delete/mkdir the root dir.
6066 		 */
6067 		if (left_gen != right_gen &&
6068 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6069 			sctx->cur_inode_new_gen = 1;
6070 	}
6071 
6072 	/*
6073 	 * Normally we do not find inodes with a link count of zero (orphans)
6074 	 * because the most common case is to create a snapshot and use it
6075 	 * for a send operation. However other less common use cases involve
6076 	 * using a subvolume and send it after turning it to RO mode just
6077 	 * after deleting all hard links of a file while holding an open
6078 	 * file descriptor against it or turning a RO snapshot into RW mode,
6079 	 * keep an open file descriptor against a file, delete it and then
6080 	 * turn the snapshot back to RO mode before using it for a send
6081 	 * operation. So if we find such cases, ignore the inode and all its
6082 	 * items completely if it's a new inode, or if it's a changed inode
6083 	 * make sure all its previous paths (from the parent snapshot) are all
6084 	 * unlinked and all other the inode items are ignored.
6085 	 */
6086 	if (result == BTRFS_COMPARE_TREE_NEW ||
6087 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6088 		u32 nlinks;
6089 
6090 		nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6091 		if (nlinks == 0) {
6092 			sctx->ignore_cur_inode = true;
6093 			if (result == BTRFS_COMPARE_TREE_CHANGED)
6094 				ret = btrfs_unlink_all_paths(sctx);
6095 			goto out;
6096 		}
6097 	}
6098 
6099 	if (result == BTRFS_COMPARE_TREE_NEW) {
6100 		sctx->cur_inode_gen = left_gen;
6101 		sctx->cur_inode_new = 1;
6102 		sctx->cur_inode_deleted = 0;
6103 		sctx->cur_inode_size = btrfs_inode_size(
6104 				sctx->left_path->nodes[0], left_ii);
6105 		sctx->cur_inode_mode = btrfs_inode_mode(
6106 				sctx->left_path->nodes[0], left_ii);
6107 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6108 				sctx->left_path->nodes[0], left_ii);
6109 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6110 			ret = send_create_inode_if_needed(sctx);
6111 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6112 		sctx->cur_inode_gen = right_gen;
6113 		sctx->cur_inode_new = 0;
6114 		sctx->cur_inode_deleted = 1;
6115 		sctx->cur_inode_size = btrfs_inode_size(
6116 				sctx->right_path->nodes[0], right_ii);
6117 		sctx->cur_inode_mode = btrfs_inode_mode(
6118 				sctx->right_path->nodes[0], right_ii);
6119 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6120 		/*
6121 		 * We need to do some special handling in case the inode was
6122 		 * reported as changed with a changed generation number. This
6123 		 * means that the original inode was deleted and new inode
6124 		 * reused the same inum. So we have to treat the old inode as
6125 		 * deleted and the new one as new.
6126 		 */
6127 		if (sctx->cur_inode_new_gen) {
6128 			/*
6129 			 * First, process the inode as if it was deleted.
6130 			 */
6131 			sctx->cur_inode_gen = right_gen;
6132 			sctx->cur_inode_new = 0;
6133 			sctx->cur_inode_deleted = 1;
6134 			sctx->cur_inode_size = btrfs_inode_size(
6135 					sctx->right_path->nodes[0], right_ii);
6136 			sctx->cur_inode_mode = btrfs_inode_mode(
6137 					sctx->right_path->nodes[0], right_ii);
6138 			ret = process_all_refs(sctx,
6139 					BTRFS_COMPARE_TREE_DELETED);
6140 			if (ret < 0)
6141 				goto out;
6142 
6143 			/*
6144 			 * Now process the inode as if it was new.
6145 			 */
6146 			sctx->cur_inode_gen = left_gen;
6147 			sctx->cur_inode_new = 1;
6148 			sctx->cur_inode_deleted = 0;
6149 			sctx->cur_inode_size = btrfs_inode_size(
6150 					sctx->left_path->nodes[0], left_ii);
6151 			sctx->cur_inode_mode = btrfs_inode_mode(
6152 					sctx->left_path->nodes[0], left_ii);
6153 			sctx->cur_inode_rdev = btrfs_inode_rdev(
6154 					sctx->left_path->nodes[0], left_ii);
6155 			ret = send_create_inode_if_needed(sctx);
6156 			if (ret < 0)
6157 				goto out;
6158 
6159 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6160 			if (ret < 0)
6161 				goto out;
6162 			/*
6163 			 * Advance send_progress now as we did not get into
6164 			 * process_recorded_refs_if_needed in the new_gen case.
6165 			 */
6166 			sctx->send_progress = sctx->cur_ino + 1;
6167 
6168 			/*
6169 			 * Now process all extents and xattrs of the inode as if
6170 			 * they were all new.
6171 			 */
6172 			ret = process_all_extents(sctx);
6173 			if (ret < 0)
6174 				goto out;
6175 			ret = process_all_new_xattrs(sctx);
6176 			if (ret < 0)
6177 				goto out;
6178 		} else {
6179 			sctx->cur_inode_gen = left_gen;
6180 			sctx->cur_inode_new = 0;
6181 			sctx->cur_inode_new_gen = 0;
6182 			sctx->cur_inode_deleted = 0;
6183 			sctx->cur_inode_size = btrfs_inode_size(
6184 					sctx->left_path->nodes[0], left_ii);
6185 			sctx->cur_inode_mode = btrfs_inode_mode(
6186 					sctx->left_path->nodes[0], left_ii);
6187 		}
6188 	}
6189 
6190 out:
6191 	return ret;
6192 }
6193 
6194 /*
6195  * We have to process new refs before deleted refs, but compare_trees gives us
6196  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6197  * first and later process them in process_recorded_refs.
6198  * For the cur_inode_new_gen case, we skip recording completely because
6199  * changed_inode did already initiate processing of refs. The reason for this is
6200  * that in this case, compare_tree actually compares the refs of 2 different
6201  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6202  * refs of the right tree as deleted and all refs of the left tree as new.
6203  */
6204 static int changed_ref(struct send_ctx *sctx,
6205 		       enum btrfs_compare_tree_result result)
6206 {
6207 	int ret = 0;
6208 
6209 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6210 		inconsistent_snapshot_error(sctx, result, "reference");
6211 		return -EIO;
6212 	}
6213 
6214 	if (!sctx->cur_inode_new_gen &&
6215 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6216 		if (result == BTRFS_COMPARE_TREE_NEW)
6217 			ret = record_new_ref(sctx);
6218 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6219 			ret = record_deleted_ref(sctx);
6220 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6221 			ret = record_changed_ref(sctx);
6222 	}
6223 
6224 	return ret;
6225 }
6226 
6227 /*
6228  * Process new/deleted/changed xattrs. We skip processing in the
6229  * cur_inode_new_gen case because changed_inode did already initiate processing
6230  * of xattrs. The reason is the same as in changed_ref
6231  */
6232 static int changed_xattr(struct send_ctx *sctx,
6233 			 enum btrfs_compare_tree_result result)
6234 {
6235 	int ret = 0;
6236 
6237 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6238 		inconsistent_snapshot_error(sctx, result, "xattr");
6239 		return -EIO;
6240 	}
6241 
6242 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6243 		if (result == BTRFS_COMPARE_TREE_NEW)
6244 			ret = process_new_xattr(sctx);
6245 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6246 			ret = process_deleted_xattr(sctx);
6247 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6248 			ret = process_changed_xattr(sctx);
6249 	}
6250 
6251 	return ret;
6252 }
6253 
6254 /*
6255  * Process new/deleted/changed extents. We skip processing in the
6256  * cur_inode_new_gen case because changed_inode did already initiate processing
6257  * of extents. The reason is the same as in changed_ref
6258  */
6259 static int changed_extent(struct send_ctx *sctx,
6260 			  enum btrfs_compare_tree_result result)
6261 {
6262 	int ret = 0;
6263 
6264 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6265 
6266 		if (result == BTRFS_COMPARE_TREE_CHANGED) {
6267 			struct extent_buffer *leaf_l;
6268 			struct extent_buffer *leaf_r;
6269 			struct btrfs_file_extent_item *ei_l;
6270 			struct btrfs_file_extent_item *ei_r;
6271 
6272 			leaf_l = sctx->left_path->nodes[0];
6273 			leaf_r = sctx->right_path->nodes[0];
6274 			ei_l = btrfs_item_ptr(leaf_l,
6275 					      sctx->left_path->slots[0],
6276 					      struct btrfs_file_extent_item);
6277 			ei_r = btrfs_item_ptr(leaf_r,
6278 					      sctx->right_path->slots[0],
6279 					      struct btrfs_file_extent_item);
6280 
6281 			/*
6282 			 * We may have found an extent item that has changed
6283 			 * only its disk_bytenr field and the corresponding
6284 			 * inode item was not updated. This case happens due to
6285 			 * very specific timings during relocation when a leaf
6286 			 * that contains file extent items is COWed while
6287 			 * relocation is ongoing and its in the stage where it
6288 			 * updates data pointers. So when this happens we can
6289 			 * safely ignore it since we know it's the same extent,
6290 			 * but just at different logical and physical locations
6291 			 * (when an extent is fully replaced with a new one, we
6292 			 * know the generation number must have changed too,
6293 			 * since snapshot creation implies committing the current
6294 			 * transaction, and the inode item must have been updated
6295 			 * as well).
6296 			 * This replacement of the disk_bytenr happens at
6297 			 * relocation.c:replace_file_extents() through
6298 			 * relocation.c:btrfs_reloc_cow_block().
6299 			 */
6300 			if (btrfs_file_extent_generation(leaf_l, ei_l) ==
6301 			    btrfs_file_extent_generation(leaf_r, ei_r) &&
6302 			    btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
6303 			    btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
6304 			    btrfs_file_extent_compression(leaf_l, ei_l) ==
6305 			    btrfs_file_extent_compression(leaf_r, ei_r) &&
6306 			    btrfs_file_extent_encryption(leaf_l, ei_l) ==
6307 			    btrfs_file_extent_encryption(leaf_r, ei_r) &&
6308 			    btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
6309 			    btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
6310 			    btrfs_file_extent_type(leaf_l, ei_l) ==
6311 			    btrfs_file_extent_type(leaf_r, ei_r) &&
6312 			    btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
6313 			    btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
6314 			    btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
6315 			    btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
6316 			    btrfs_file_extent_offset(leaf_l, ei_l) ==
6317 			    btrfs_file_extent_offset(leaf_r, ei_r) &&
6318 			    btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
6319 			    btrfs_file_extent_num_bytes(leaf_r, ei_r))
6320 				return 0;
6321 		}
6322 
6323 		inconsistent_snapshot_error(sctx, result, "extent");
6324 		return -EIO;
6325 	}
6326 
6327 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6328 		if (result != BTRFS_COMPARE_TREE_DELETED)
6329 			ret = process_extent(sctx, sctx->left_path,
6330 					sctx->cmp_key);
6331 	}
6332 
6333 	return ret;
6334 }
6335 
6336 static int dir_changed(struct send_ctx *sctx, u64 dir)
6337 {
6338 	u64 orig_gen, new_gen;
6339 	int ret;
6340 
6341 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6342 			     NULL, NULL);
6343 	if (ret)
6344 		return ret;
6345 
6346 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6347 			     NULL, NULL, NULL);
6348 	if (ret)
6349 		return ret;
6350 
6351 	return (orig_gen != new_gen) ? 1 : 0;
6352 }
6353 
6354 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6355 			struct btrfs_key *key)
6356 {
6357 	struct btrfs_inode_extref *extref;
6358 	struct extent_buffer *leaf;
6359 	u64 dirid = 0, last_dirid = 0;
6360 	unsigned long ptr;
6361 	u32 item_size;
6362 	u32 cur_offset = 0;
6363 	int ref_name_len;
6364 	int ret = 0;
6365 
6366 	/* Easy case, just check this one dirid */
6367 	if (key->type == BTRFS_INODE_REF_KEY) {
6368 		dirid = key->offset;
6369 
6370 		ret = dir_changed(sctx, dirid);
6371 		goto out;
6372 	}
6373 
6374 	leaf = path->nodes[0];
6375 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6376 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6377 	while (cur_offset < item_size) {
6378 		extref = (struct btrfs_inode_extref *)(ptr +
6379 						       cur_offset);
6380 		dirid = btrfs_inode_extref_parent(leaf, extref);
6381 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6382 		cur_offset += ref_name_len + sizeof(*extref);
6383 		if (dirid == last_dirid)
6384 			continue;
6385 		ret = dir_changed(sctx, dirid);
6386 		if (ret)
6387 			break;
6388 		last_dirid = dirid;
6389 	}
6390 out:
6391 	return ret;
6392 }
6393 
6394 /*
6395  * Updates compare related fields in sctx and simply forwards to the actual
6396  * changed_xxx functions.
6397  */
6398 static int changed_cb(struct btrfs_path *left_path,
6399 		      struct btrfs_path *right_path,
6400 		      struct btrfs_key *key,
6401 		      enum btrfs_compare_tree_result result,
6402 		      void *ctx)
6403 {
6404 	int ret = 0;
6405 	struct send_ctx *sctx = ctx;
6406 
6407 	if (result == BTRFS_COMPARE_TREE_SAME) {
6408 		if (key->type == BTRFS_INODE_REF_KEY ||
6409 		    key->type == BTRFS_INODE_EXTREF_KEY) {
6410 			ret = compare_refs(sctx, left_path, key);
6411 			if (!ret)
6412 				return 0;
6413 			if (ret < 0)
6414 				return ret;
6415 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6416 			return maybe_send_hole(sctx, left_path, key);
6417 		} else {
6418 			return 0;
6419 		}
6420 		result = BTRFS_COMPARE_TREE_CHANGED;
6421 		ret = 0;
6422 	}
6423 
6424 	sctx->left_path = left_path;
6425 	sctx->right_path = right_path;
6426 	sctx->cmp_key = key;
6427 
6428 	ret = finish_inode_if_needed(sctx, 0);
6429 	if (ret < 0)
6430 		goto out;
6431 
6432 	/* Ignore non-FS objects */
6433 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6434 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6435 		goto out;
6436 
6437 	if (key->type == BTRFS_INODE_ITEM_KEY) {
6438 		ret = changed_inode(sctx, result);
6439 	} else if (!sctx->ignore_cur_inode) {
6440 		if (key->type == BTRFS_INODE_REF_KEY ||
6441 		    key->type == BTRFS_INODE_EXTREF_KEY)
6442 			ret = changed_ref(sctx, result);
6443 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
6444 			ret = changed_xattr(sctx, result);
6445 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
6446 			ret = changed_extent(sctx, result);
6447 	}
6448 
6449 out:
6450 	return ret;
6451 }
6452 
6453 static int full_send_tree(struct send_ctx *sctx)
6454 {
6455 	int ret;
6456 	struct btrfs_root *send_root = sctx->send_root;
6457 	struct btrfs_key key;
6458 	struct btrfs_path *path;
6459 	struct extent_buffer *eb;
6460 	int slot;
6461 
6462 	path = alloc_path_for_send();
6463 	if (!path)
6464 		return -ENOMEM;
6465 
6466 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6467 	key.type = BTRFS_INODE_ITEM_KEY;
6468 	key.offset = 0;
6469 
6470 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6471 	if (ret < 0)
6472 		goto out;
6473 	if (ret)
6474 		goto out_finish;
6475 
6476 	while (1) {
6477 		eb = path->nodes[0];
6478 		slot = path->slots[0];
6479 		btrfs_item_key_to_cpu(eb, &key, slot);
6480 
6481 		ret = changed_cb(path, NULL, &key,
6482 				 BTRFS_COMPARE_TREE_NEW, sctx);
6483 		if (ret < 0)
6484 			goto out;
6485 
6486 		ret = btrfs_next_item(send_root, path);
6487 		if (ret < 0)
6488 			goto out;
6489 		if (ret) {
6490 			ret  = 0;
6491 			break;
6492 		}
6493 	}
6494 
6495 out_finish:
6496 	ret = finish_inode_if_needed(sctx, 1);
6497 
6498 out:
6499 	btrfs_free_path(path);
6500 	return ret;
6501 }
6502 
6503 static int send_subvol(struct send_ctx *sctx)
6504 {
6505 	int ret;
6506 
6507 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6508 		ret = send_header(sctx);
6509 		if (ret < 0)
6510 			goto out;
6511 	}
6512 
6513 	ret = send_subvol_begin(sctx);
6514 	if (ret < 0)
6515 		goto out;
6516 
6517 	if (sctx->parent_root) {
6518 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6519 				changed_cb, sctx);
6520 		if (ret < 0)
6521 			goto out;
6522 		ret = finish_inode_if_needed(sctx, 1);
6523 		if (ret < 0)
6524 			goto out;
6525 	} else {
6526 		ret = full_send_tree(sctx);
6527 		if (ret < 0)
6528 			goto out;
6529 	}
6530 
6531 out:
6532 	free_recorded_refs(sctx);
6533 	return ret;
6534 }
6535 
6536 /*
6537  * If orphan cleanup did remove any orphans from a root, it means the tree
6538  * was modified and therefore the commit root is not the same as the current
6539  * root anymore. This is a problem, because send uses the commit root and
6540  * therefore can see inode items that don't exist in the current root anymore,
6541  * and for example make calls to btrfs_iget, which will do tree lookups based
6542  * on the current root and not on the commit root. Those lookups will fail,
6543  * returning a -ESTALE error, and making send fail with that error. So make
6544  * sure a send does not see any orphans we have just removed, and that it will
6545  * see the same inodes regardless of whether a transaction commit happened
6546  * before it started (meaning that the commit root will be the same as the
6547  * current root) or not.
6548  */
6549 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6550 {
6551 	int i;
6552 	struct btrfs_trans_handle *trans = NULL;
6553 
6554 again:
6555 	if (sctx->parent_root &&
6556 	    sctx->parent_root->node != sctx->parent_root->commit_root)
6557 		goto commit_trans;
6558 
6559 	for (i = 0; i < sctx->clone_roots_cnt; i++)
6560 		if (sctx->clone_roots[i].root->node !=
6561 		    sctx->clone_roots[i].root->commit_root)
6562 			goto commit_trans;
6563 
6564 	if (trans)
6565 		return btrfs_end_transaction(trans);
6566 
6567 	return 0;
6568 
6569 commit_trans:
6570 	/* Use any root, all fs roots will get their commit roots updated. */
6571 	if (!trans) {
6572 		trans = btrfs_join_transaction(sctx->send_root);
6573 		if (IS_ERR(trans))
6574 			return PTR_ERR(trans);
6575 		goto again;
6576 	}
6577 
6578 	return btrfs_commit_transaction(trans);
6579 }
6580 
6581 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6582 {
6583 	spin_lock(&root->root_item_lock);
6584 	root->send_in_progress--;
6585 	/*
6586 	 * Not much left to do, we don't know why it's unbalanced and
6587 	 * can't blindly reset it to 0.
6588 	 */
6589 	if (root->send_in_progress < 0)
6590 		btrfs_err(root->fs_info,
6591 			  "send_in_progress unbalanced %d root %llu",
6592 			  root->send_in_progress, root->root_key.objectid);
6593 	spin_unlock(&root->root_item_lock);
6594 }
6595 
6596 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
6597 {
6598 	int ret = 0;
6599 	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6600 	struct btrfs_fs_info *fs_info = send_root->fs_info;
6601 	struct btrfs_root *clone_root;
6602 	struct btrfs_key key;
6603 	struct send_ctx *sctx = NULL;
6604 	u32 i;
6605 	u64 *clone_sources_tmp = NULL;
6606 	int clone_sources_to_rollback = 0;
6607 	unsigned alloc_size;
6608 	int sort_clone_roots = 0;
6609 	int index;
6610 
6611 	if (!capable(CAP_SYS_ADMIN))
6612 		return -EPERM;
6613 
6614 	/*
6615 	 * The subvolume must remain read-only during send, protect against
6616 	 * making it RW. This also protects against deletion.
6617 	 */
6618 	spin_lock(&send_root->root_item_lock);
6619 	send_root->send_in_progress++;
6620 	spin_unlock(&send_root->root_item_lock);
6621 
6622 	/*
6623 	 * This is done when we lookup the root, it should already be complete
6624 	 * by the time we get here.
6625 	 */
6626 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6627 
6628 	/*
6629 	 * Userspace tools do the checks and warn the user if it's
6630 	 * not RO.
6631 	 */
6632 	if (!btrfs_root_readonly(send_root)) {
6633 		ret = -EPERM;
6634 		goto out;
6635 	}
6636 
6637 	/*
6638 	 * Check that we don't overflow at later allocations, we request
6639 	 * clone_sources_count + 1 items, and compare to unsigned long inside
6640 	 * access_ok.
6641 	 */
6642 	if (arg->clone_sources_count >
6643 	    ULONG_MAX / sizeof(struct clone_root) - 1) {
6644 		ret = -EINVAL;
6645 		goto out;
6646 	}
6647 
6648 	if (!access_ok(VERIFY_READ, arg->clone_sources,
6649 			sizeof(*arg->clone_sources) *
6650 			arg->clone_sources_count)) {
6651 		ret = -EFAULT;
6652 		goto out;
6653 	}
6654 
6655 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6656 		ret = -EINVAL;
6657 		goto out;
6658 	}
6659 
6660 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6661 	if (!sctx) {
6662 		ret = -ENOMEM;
6663 		goto out;
6664 	}
6665 
6666 	INIT_LIST_HEAD(&sctx->new_refs);
6667 	INIT_LIST_HEAD(&sctx->deleted_refs);
6668 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6669 	INIT_LIST_HEAD(&sctx->name_cache_list);
6670 
6671 	sctx->flags = arg->flags;
6672 
6673 	sctx->send_filp = fget(arg->send_fd);
6674 	if (!sctx->send_filp) {
6675 		ret = -EBADF;
6676 		goto out;
6677 	}
6678 
6679 	sctx->send_root = send_root;
6680 	/*
6681 	 * Unlikely but possible, if the subvolume is marked for deletion but
6682 	 * is slow to remove the directory entry, send can still be started
6683 	 */
6684 	if (btrfs_root_dead(sctx->send_root)) {
6685 		ret = -EPERM;
6686 		goto out;
6687 	}
6688 
6689 	sctx->clone_roots_cnt = arg->clone_sources_count;
6690 
6691 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6692 	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
6693 	if (!sctx->send_buf) {
6694 		ret = -ENOMEM;
6695 		goto out;
6696 	}
6697 
6698 	sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
6699 	if (!sctx->read_buf) {
6700 		ret = -ENOMEM;
6701 		goto out;
6702 	}
6703 
6704 	sctx->pending_dir_moves = RB_ROOT;
6705 	sctx->waiting_dir_moves = RB_ROOT;
6706 	sctx->orphan_dirs = RB_ROOT;
6707 
6708 	alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6709 
6710 	sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
6711 	if (!sctx->clone_roots) {
6712 		ret = -ENOMEM;
6713 		goto out;
6714 	}
6715 
6716 	alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6717 
6718 	if (arg->clone_sources_count) {
6719 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
6720 		if (!clone_sources_tmp) {
6721 			ret = -ENOMEM;
6722 			goto out;
6723 		}
6724 
6725 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6726 				alloc_size);
6727 		if (ret) {
6728 			ret = -EFAULT;
6729 			goto out;
6730 		}
6731 
6732 		for (i = 0; i < arg->clone_sources_count; i++) {
6733 			key.objectid = clone_sources_tmp[i];
6734 			key.type = BTRFS_ROOT_ITEM_KEY;
6735 			key.offset = (u64)-1;
6736 
6737 			index = srcu_read_lock(&fs_info->subvol_srcu);
6738 
6739 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6740 			if (IS_ERR(clone_root)) {
6741 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6742 				ret = PTR_ERR(clone_root);
6743 				goto out;
6744 			}
6745 			spin_lock(&clone_root->root_item_lock);
6746 			if (!btrfs_root_readonly(clone_root) ||
6747 			    btrfs_root_dead(clone_root)) {
6748 				spin_unlock(&clone_root->root_item_lock);
6749 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6750 				ret = -EPERM;
6751 				goto out;
6752 			}
6753 			clone_root->send_in_progress++;
6754 			spin_unlock(&clone_root->root_item_lock);
6755 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6756 
6757 			sctx->clone_roots[i].root = clone_root;
6758 			clone_sources_to_rollback = i + 1;
6759 		}
6760 		kvfree(clone_sources_tmp);
6761 		clone_sources_tmp = NULL;
6762 	}
6763 
6764 	if (arg->parent_root) {
6765 		key.objectid = arg->parent_root;
6766 		key.type = BTRFS_ROOT_ITEM_KEY;
6767 		key.offset = (u64)-1;
6768 
6769 		index = srcu_read_lock(&fs_info->subvol_srcu);
6770 
6771 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6772 		if (IS_ERR(sctx->parent_root)) {
6773 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6774 			ret = PTR_ERR(sctx->parent_root);
6775 			goto out;
6776 		}
6777 
6778 		spin_lock(&sctx->parent_root->root_item_lock);
6779 		sctx->parent_root->send_in_progress++;
6780 		if (!btrfs_root_readonly(sctx->parent_root) ||
6781 				btrfs_root_dead(sctx->parent_root)) {
6782 			spin_unlock(&sctx->parent_root->root_item_lock);
6783 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6784 			ret = -EPERM;
6785 			goto out;
6786 		}
6787 		spin_unlock(&sctx->parent_root->root_item_lock);
6788 
6789 		srcu_read_unlock(&fs_info->subvol_srcu, index);
6790 	}
6791 
6792 	/*
6793 	 * Clones from send_root are allowed, but only if the clone source
6794 	 * is behind the current send position. This is checked while searching
6795 	 * for possible clone sources.
6796 	 */
6797 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6798 
6799 	/* We do a bsearch later */
6800 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
6801 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6802 			NULL);
6803 	sort_clone_roots = 1;
6804 
6805 	ret = ensure_commit_roots_uptodate(sctx);
6806 	if (ret)
6807 		goto out;
6808 
6809 	current->journal_info = BTRFS_SEND_TRANS_STUB;
6810 	ret = send_subvol(sctx);
6811 	current->journal_info = NULL;
6812 	if (ret < 0)
6813 		goto out;
6814 
6815 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6816 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6817 		if (ret < 0)
6818 			goto out;
6819 		ret = send_cmd(sctx);
6820 		if (ret < 0)
6821 			goto out;
6822 	}
6823 
6824 out:
6825 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6826 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6827 		struct rb_node *n;
6828 		struct pending_dir_move *pm;
6829 
6830 		n = rb_first(&sctx->pending_dir_moves);
6831 		pm = rb_entry(n, struct pending_dir_move, node);
6832 		while (!list_empty(&pm->list)) {
6833 			struct pending_dir_move *pm2;
6834 
6835 			pm2 = list_first_entry(&pm->list,
6836 					       struct pending_dir_move, list);
6837 			free_pending_move(sctx, pm2);
6838 		}
6839 		free_pending_move(sctx, pm);
6840 	}
6841 
6842 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6843 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6844 		struct rb_node *n;
6845 		struct waiting_dir_move *dm;
6846 
6847 		n = rb_first(&sctx->waiting_dir_moves);
6848 		dm = rb_entry(n, struct waiting_dir_move, node);
6849 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
6850 		kfree(dm);
6851 	}
6852 
6853 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6854 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6855 		struct rb_node *n;
6856 		struct orphan_dir_info *odi;
6857 
6858 		n = rb_first(&sctx->orphan_dirs);
6859 		odi = rb_entry(n, struct orphan_dir_info, node);
6860 		free_orphan_dir_info(sctx, odi);
6861 	}
6862 
6863 	if (sort_clone_roots) {
6864 		for (i = 0; i < sctx->clone_roots_cnt; i++)
6865 			btrfs_root_dec_send_in_progress(
6866 					sctx->clone_roots[i].root);
6867 	} else {
6868 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6869 			btrfs_root_dec_send_in_progress(
6870 					sctx->clone_roots[i].root);
6871 
6872 		btrfs_root_dec_send_in_progress(send_root);
6873 	}
6874 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6875 		btrfs_root_dec_send_in_progress(sctx->parent_root);
6876 
6877 	kvfree(clone_sources_tmp);
6878 
6879 	if (sctx) {
6880 		if (sctx->send_filp)
6881 			fput(sctx->send_filp);
6882 
6883 		kvfree(sctx->clone_roots);
6884 		kvfree(sctx->send_buf);
6885 		kvfree(sctx->read_buf);
6886 
6887 		name_cache_free(sctx);
6888 
6889 		kfree(sctx);
6890 	}
6891 
6892 	return ret;
6893 }
6894