xref: /openbmc/linux/fs/btrfs/send.c (revision d8bcaabe)
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 #include "compression.h"
38 
39 /*
40  * A fs_path is a helper to dynamically build path names with unknown size.
41  * It reallocates the internal buffer on demand.
42  * It allows fast adding of path elements on the right side (normal path) and
43  * fast adding to the left side (reversed path). A reversed path can also be
44  * unreversed if needed.
45  */
46 struct fs_path {
47 	union {
48 		struct {
49 			char *start;
50 			char *end;
51 
52 			char *buf;
53 			unsigned short buf_len:15;
54 			unsigned short reversed:1;
55 			char inline_buf[];
56 		};
57 		/*
58 		 * Average path length does not exceed 200 bytes, we'll have
59 		 * better packing in the slab and higher chance to satisfy
60 		 * a allocation later during send.
61 		 */
62 		char pad[256];
63 	};
64 };
65 #define FS_PATH_INLINE_SIZE \
66 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
67 
68 
69 /* reused for each extent */
70 struct clone_root {
71 	struct btrfs_root *root;
72 	u64 ino;
73 	u64 offset;
74 
75 	u64 found_refs;
76 };
77 
78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
80 
81 struct send_ctx {
82 	struct file *send_filp;
83 	loff_t send_off;
84 	char *send_buf;
85 	u32 send_size;
86 	u32 send_max_size;
87 	u64 total_send_size;
88 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
89 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
90 
91 	struct btrfs_root *send_root;
92 	struct btrfs_root *parent_root;
93 	struct clone_root *clone_roots;
94 	int clone_roots_cnt;
95 
96 	/* current state of the compare_tree call */
97 	struct btrfs_path *left_path;
98 	struct btrfs_path *right_path;
99 	struct btrfs_key *cmp_key;
100 
101 	/*
102 	 * infos of the currently processed inode. In case of deleted inodes,
103 	 * these are the values from the deleted inode.
104 	 */
105 	u64 cur_ino;
106 	u64 cur_inode_gen;
107 	int cur_inode_new;
108 	int cur_inode_new_gen;
109 	int cur_inode_deleted;
110 	u64 cur_inode_size;
111 	u64 cur_inode_mode;
112 	u64 cur_inode_rdev;
113 	u64 cur_inode_last_extent;
114 
115 	u64 send_progress;
116 
117 	struct list_head new_refs;
118 	struct list_head deleted_refs;
119 
120 	struct radix_tree_root name_cache;
121 	struct list_head name_cache_list;
122 	int name_cache_size;
123 
124 	struct file_ra_state ra;
125 
126 	char *read_buf;
127 
128 	/*
129 	 * We process inodes by their increasing order, so if before an
130 	 * incremental send we reverse the parent/child relationship of
131 	 * directories such that a directory with a lower inode number was
132 	 * the parent of a directory with a higher inode number, and the one
133 	 * becoming the new parent got renamed too, we can't rename/move the
134 	 * directory with lower inode number when we finish processing it - we
135 	 * must process the directory with higher inode number first, then
136 	 * rename/move it and then rename/move the directory with lower inode
137 	 * number. Example follows.
138 	 *
139 	 * Tree state when the first send was performed:
140 	 *
141 	 * .
142 	 * |-- a                   (ino 257)
143 	 *     |-- b               (ino 258)
144 	 *         |
145 	 *         |
146 	 *         |-- c           (ino 259)
147 	 *         |   |-- d       (ino 260)
148 	 *         |
149 	 *         |-- c2          (ino 261)
150 	 *
151 	 * Tree state when the second (incremental) send is performed:
152 	 *
153 	 * .
154 	 * |-- a                   (ino 257)
155 	 *     |-- b               (ino 258)
156 	 *         |-- c2          (ino 261)
157 	 *             |-- d2      (ino 260)
158 	 *                 |-- cc  (ino 259)
159 	 *
160 	 * The sequence of steps that lead to the second state was:
161 	 *
162 	 * mv /a/b/c/d /a/b/c2/d2
163 	 * mv /a/b/c /a/b/c2/d2/cc
164 	 *
165 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
166 	 * before we move "d", which has higher inode number.
167 	 *
168 	 * So we just memorize which move/rename operations must be performed
169 	 * later when their respective parent is processed and moved/renamed.
170 	 */
171 
172 	/* Indexed by parent directory inode number. */
173 	struct rb_root pending_dir_moves;
174 
175 	/*
176 	 * Reverse index, indexed by the inode number of a directory that
177 	 * is waiting for the move/rename of its immediate parent before its
178 	 * own move/rename can be performed.
179 	 */
180 	struct rb_root waiting_dir_moves;
181 
182 	/*
183 	 * A directory that is going to be rm'ed might have a child directory
184 	 * which is in the pending directory moves index above. In this case,
185 	 * the directory can only be removed after the move/rename of its child
186 	 * is performed. Example:
187 	 *
188 	 * Parent snapshot:
189 	 *
190 	 * .                        (ino 256)
191 	 * |-- a/                   (ino 257)
192 	 *     |-- b/               (ino 258)
193 	 *         |-- c/           (ino 259)
194 	 *         |   |-- x/       (ino 260)
195 	 *         |
196 	 *         |-- y/           (ino 261)
197 	 *
198 	 * Send snapshot:
199 	 *
200 	 * .                        (ino 256)
201 	 * |-- a/                   (ino 257)
202 	 *     |-- b/               (ino 258)
203 	 *         |-- YY/          (ino 261)
204 	 *              |-- x/      (ino 260)
205 	 *
206 	 * Sequence of steps that lead to the send snapshot:
207 	 * rm -f /a/b/c/foo.txt
208 	 * mv /a/b/y /a/b/YY
209 	 * mv /a/b/c/x /a/b/YY
210 	 * rmdir /a/b/c
211 	 *
212 	 * When the child is processed, its move/rename is delayed until its
213 	 * parent is processed (as explained above), but all other operations
214 	 * like update utimes, chown, chgrp, etc, are performed and the paths
215 	 * that it uses for those operations must use the orphanized name of
216 	 * its parent (the directory we're going to rm later), so we need to
217 	 * memorize that name.
218 	 *
219 	 * Indexed by the inode number of the directory to be deleted.
220 	 */
221 	struct rb_root orphan_dirs;
222 };
223 
224 struct pending_dir_move {
225 	struct rb_node node;
226 	struct list_head list;
227 	u64 parent_ino;
228 	u64 ino;
229 	u64 gen;
230 	struct list_head update_refs;
231 };
232 
233 struct waiting_dir_move {
234 	struct rb_node node;
235 	u64 ino;
236 	/*
237 	 * There might be some directory that could not be removed because it
238 	 * was waiting for this directory inode to be moved first. Therefore
239 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
240 	 */
241 	u64 rmdir_ino;
242 	bool orphanized;
243 };
244 
245 struct orphan_dir_info {
246 	struct rb_node node;
247 	u64 ino;
248 	u64 gen;
249 };
250 
251 struct name_cache_entry {
252 	struct list_head list;
253 	/*
254 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
255 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
256 	 * more then one inum would fall into the same entry, we use radix_list
257 	 * to store the additional entries. radix_list is also used to store
258 	 * entries where two entries have the same inum but different
259 	 * generations.
260 	 */
261 	struct list_head radix_list;
262 	u64 ino;
263 	u64 gen;
264 	u64 parent_ino;
265 	u64 parent_gen;
266 	int ret;
267 	int need_later_update;
268 	int name_len;
269 	char name[];
270 };
271 
272 static void inconsistent_snapshot_error(struct send_ctx *sctx,
273 					enum btrfs_compare_tree_result result,
274 					const char *what)
275 {
276 	const char *result_string;
277 
278 	switch (result) {
279 	case BTRFS_COMPARE_TREE_NEW:
280 		result_string = "new";
281 		break;
282 	case BTRFS_COMPARE_TREE_DELETED:
283 		result_string = "deleted";
284 		break;
285 	case BTRFS_COMPARE_TREE_CHANGED:
286 		result_string = "updated";
287 		break;
288 	case BTRFS_COMPARE_TREE_SAME:
289 		ASSERT(0);
290 		result_string = "unchanged";
291 		break;
292 	default:
293 		ASSERT(0);
294 		result_string = "unexpected";
295 	}
296 
297 	btrfs_err(sctx->send_root->fs_info,
298 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
299 		  result_string, what, sctx->cmp_key->objectid,
300 		  sctx->send_root->root_key.objectid,
301 		  (sctx->parent_root ?
302 		   sctx->parent_root->root_key.objectid : 0));
303 }
304 
305 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
306 
307 static struct waiting_dir_move *
308 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
309 
310 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
311 
312 static int need_send_hole(struct send_ctx *sctx)
313 {
314 	return (sctx->parent_root && !sctx->cur_inode_new &&
315 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
316 		S_ISREG(sctx->cur_inode_mode));
317 }
318 
319 static void fs_path_reset(struct fs_path *p)
320 {
321 	if (p->reversed) {
322 		p->start = p->buf + p->buf_len - 1;
323 		p->end = p->start;
324 		*p->start = 0;
325 	} else {
326 		p->start = p->buf;
327 		p->end = p->start;
328 		*p->start = 0;
329 	}
330 }
331 
332 static struct fs_path *fs_path_alloc(void)
333 {
334 	struct fs_path *p;
335 
336 	p = kmalloc(sizeof(*p), GFP_KERNEL);
337 	if (!p)
338 		return NULL;
339 	p->reversed = 0;
340 	p->buf = p->inline_buf;
341 	p->buf_len = FS_PATH_INLINE_SIZE;
342 	fs_path_reset(p);
343 	return p;
344 }
345 
346 static struct fs_path *fs_path_alloc_reversed(void)
347 {
348 	struct fs_path *p;
349 
350 	p = fs_path_alloc();
351 	if (!p)
352 		return NULL;
353 	p->reversed = 1;
354 	fs_path_reset(p);
355 	return p;
356 }
357 
358 static void fs_path_free(struct fs_path *p)
359 {
360 	if (!p)
361 		return;
362 	if (p->buf != p->inline_buf)
363 		kfree(p->buf);
364 	kfree(p);
365 }
366 
367 static int fs_path_len(struct fs_path *p)
368 {
369 	return p->end - p->start;
370 }
371 
372 static int fs_path_ensure_buf(struct fs_path *p, int len)
373 {
374 	char *tmp_buf;
375 	int path_len;
376 	int old_buf_len;
377 
378 	len++;
379 
380 	if (p->buf_len >= len)
381 		return 0;
382 
383 	if (len > PATH_MAX) {
384 		WARN_ON(1);
385 		return -ENOMEM;
386 	}
387 
388 	path_len = p->end - p->start;
389 	old_buf_len = p->buf_len;
390 
391 	/*
392 	 * First time the inline_buf does not suffice
393 	 */
394 	if (p->buf == p->inline_buf) {
395 		tmp_buf = kmalloc(len, GFP_KERNEL);
396 		if (tmp_buf)
397 			memcpy(tmp_buf, p->buf, old_buf_len);
398 	} else {
399 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
400 	}
401 	if (!tmp_buf)
402 		return -ENOMEM;
403 	p->buf = tmp_buf;
404 	/*
405 	 * The real size of the buffer is bigger, this will let the fast path
406 	 * happen most of the time
407 	 */
408 	p->buf_len = ksize(p->buf);
409 
410 	if (p->reversed) {
411 		tmp_buf = p->buf + old_buf_len - path_len - 1;
412 		p->end = p->buf + p->buf_len - 1;
413 		p->start = p->end - path_len;
414 		memmove(p->start, tmp_buf, path_len + 1);
415 	} else {
416 		p->start = p->buf;
417 		p->end = p->start + path_len;
418 	}
419 	return 0;
420 }
421 
422 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
423 				   char **prepared)
424 {
425 	int ret;
426 	int new_len;
427 
428 	new_len = p->end - p->start + name_len;
429 	if (p->start != p->end)
430 		new_len++;
431 	ret = fs_path_ensure_buf(p, new_len);
432 	if (ret < 0)
433 		goto out;
434 
435 	if (p->reversed) {
436 		if (p->start != p->end)
437 			*--p->start = '/';
438 		p->start -= name_len;
439 		*prepared = p->start;
440 	} else {
441 		if (p->start != p->end)
442 			*p->end++ = '/';
443 		*prepared = p->end;
444 		p->end += name_len;
445 		*p->end = 0;
446 	}
447 
448 out:
449 	return ret;
450 }
451 
452 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
453 {
454 	int ret;
455 	char *prepared;
456 
457 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
458 	if (ret < 0)
459 		goto out;
460 	memcpy(prepared, name, name_len);
461 
462 out:
463 	return ret;
464 }
465 
466 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
467 {
468 	int ret;
469 	char *prepared;
470 
471 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
472 	if (ret < 0)
473 		goto out;
474 	memcpy(prepared, p2->start, p2->end - p2->start);
475 
476 out:
477 	return ret;
478 }
479 
480 static int fs_path_add_from_extent_buffer(struct fs_path *p,
481 					  struct extent_buffer *eb,
482 					  unsigned long off, int len)
483 {
484 	int ret;
485 	char *prepared;
486 
487 	ret = fs_path_prepare_for_add(p, len, &prepared);
488 	if (ret < 0)
489 		goto out;
490 
491 	read_extent_buffer(eb, prepared, off, len);
492 
493 out:
494 	return ret;
495 }
496 
497 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
498 {
499 	int ret;
500 
501 	p->reversed = from->reversed;
502 	fs_path_reset(p);
503 
504 	ret = fs_path_add_path(p, from);
505 
506 	return ret;
507 }
508 
509 
510 static void fs_path_unreverse(struct fs_path *p)
511 {
512 	char *tmp;
513 	int len;
514 
515 	if (!p->reversed)
516 		return;
517 
518 	tmp = p->start;
519 	len = p->end - p->start;
520 	p->start = p->buf;
521 	p->end = p->start + len;
522 	memmove(p->start, tmp, len + 1);
523 	p->reversed = 0;
524 }
525 
526 static struct btrfs_path *alloc_path_for_send(void)
527 {
528 	struct btrfs_path *path;
529 
530 	path = btrfs_alloc_path();
531 	if (!path)
532 		return NULL;
533 	path->search_commit_root = 1;
534 	path->skip_locking = 1;
535 	path->need_commit_sem = 1;
536 	return path;
537 }
538 
539 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
540 {
541 	int ret;
542 	u32 pos = 0;
543 
544 	while (pos < len) {
545 		ret = kernel_write(filp, buf + pos, len - pos, off);
546 		/* TODO handle that correctly */
547 		/*if (ret == -ERESTARTSYS) {
548 			continue;
549 		}*/
550 		if (ret < 0)
551 			return ret;
552 		if (ret == 0) {
553 			return -EIO;
554 		}
555 		pos += ret;
556 	}
557 
558 	return 0;
559 }
560 
561 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
562 {
563 	struct btrfs_tlv_header *hdr;
564 	int total_len = sizeof(*hdr) + len;
565 	int left = sctx->send_max_size - sctx->send_size;
566 
567 	if (unlikely(left < total_len))
568 		return -EOVERFLOW;
569 
570 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
571 	hdr->tlv_type = cpu_to_le16(attr);
572 	hdr->tlv_len = cpu_to_le16(len);
573 	memcpy(hdr + 1, data, len);
574 	sctx->send_size += total_len;
575 
576 	return 0;
577 }
578 
579 #define TLV_PUT_DEFINE_INT(bits) \
580 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
581 			u##bits attr, u##bits value)			\
582 	{								\
583 		__le##bits __tmp = cpu_to_le##bits(value);		\
584 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
585 	}
586 
587 TLV_PUT_DEFINE_INT(64)
588 
589 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
590 			  const char *str, int len)
591 {
592 	if (len == -1)
593 		len = strlen(str);
594 	return tlv_put(sctx, attr, str, len);
595 }
596 
597 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
598 			const u8 *uuid)
599 {
600 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
601 }
602 
603 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
604 				  struct extent_buffer *eb,
605 				  struct btrfs_timespec *ts)
606 {
607 	struct btrfs_timespec bts;
608 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
609 	return tlv_put(sctx, attr, &bts, sizeof(bts));
610 }
611 
612 
613 #define TLV_PUT(sctx, attrtype, attrlen, data) \
614 	do { \
615 		ret = tlv_put(sctx, attrtype, attrlen, data); \
616 		if (ret < 0) \
617 			goto tlv_put_failure; \
618 	} while (0)
619 
620 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
621 	do { \
622 		ret = tlv_put_u##bits(sctx, attrtype, value); \
623 		if (ret < 0) \
624 			goto tlv_put_failure; \
625 	} while (0)
626 
627 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
628 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
629 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
630 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
631 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
632 	do { \
633 		ret = tlv_put_string(sctx, attrtype, str, len); \
634 		if (ret < 0) \
635 			goto tlv_put_failure; \
636 	} while (0)
637 #define TLV_PUT_PATH(sctx, attrtype, p) \
638 	do { \
639 		ret = tlv_put_string(sctx, attrtype, p->start, \
640 			p->end - p->start); \
641 		if (ret < 0) \
642 			goto tlv_put_failure; \
643 	} while(0)
644 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
645 	do { \
646 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
647 		if (ret < 0) \
648 			goto tlv_put_failure; \
649 	} while (0)
650 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
651 	do { \
652 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
653 		if (ret < 0) \
654 			goto tlv_put_failure; \
655 	} while (0)
656 
657 static int send_header(struct send_ctx *sctx)
658 {
659 	struct btrfs_stream_header hdr;
660 
661 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
662 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
663 
664 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
665 					&sctx->send_off);
666 }
667 
668 /*
669  * For each command/item we want to send to userspace, we call this function.
670  */
671 static int begin_cmd(struct send_ctx *sctx, int cmd)
672 {
673 	struct btrfs_cmd_header *hdr;
674 
675 	if (WARN_ON(!sctx->send_buf))
676 		return -EINVAL;
677 
678 	BUG_ON(sctx->send_size);
679 
680 	sctx->send_size += sizeof(*hdr);
681 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
682 	hdr->cmd = cpu_to_le16(cmd);
683 
684 	return 0;
685 }
686 
687 static int send_cmd(struct send_ctx *sctx)
688 {
689 	int ret;
690 	struct btrfs_cmd_header *hdr;
691 	u32 crc;
692 
693 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
694 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
695 	hdr->crc = 0;
696 
697 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
698 	hdr->crc = cpu_to_le32(crc);
699 
700 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
701 					&sctx->send_off);
702 
703 	sctx->total_send_size += sctx->send_size;
704 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
705 	sctx->send_size = 0;
706 
707 	return ret;
708 }
709 
710 /*
711  * Sends a move instruction to user space
712  */
713 static int send_rename(struct send_ctx *sctx,
714 		     struct fs_path *from, struct fs_path *to)
715 {
716 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
717 	int ret;
718 
719 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
720 
721 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
722 	if (ret < 0)
723 		goto out;
724 
725 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
726 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
727 
728 	ret = send_cmd(sctx);
729 
730 tlv_put_failure:
731 out:
732 	return ret;
733 }
734 
735 /*
736  * Sends a link instruction to user space
737  */
738 static int send_link(struct send_ctx *sctx,
739 		     struct fs_path *path, struct fs_path *lnk)
740 {
741 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
742 	int ret;
743 
744 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
745 
746 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
747 	if (ret < 0)
748 		goto out;
749 
750 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
751 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
752 
753 	ret = send_cmd(sctx);
754 
755 tlv_put_failure:
756 out:
757 	return ret;
758 }
759 
760 /*
761  * Sends an unlink instruction to user space
762  */
763 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
764 {
765 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
766 	int ret;
767 
768 	btrfs_debug(fs_info, "send_unlink %s", path->start);
769 
770 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
771 	if (ret < 0)
772 		goto out;
773 
774 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
775 
776 	ret = send_cmd(sctx);
777 
778 tlv_put_failure:
779 out:
780 	return ret;
781 }
782 
783 /*
784  * Sends a rmdir instruction to user space
785  */
786 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
787 {
788 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
789 	int ret;
790 
791 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
792 
793 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
794 	if (ret < 0)
795 		goto out;
796 
797 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
798 
799 	ret = send_cmd(sctx);
800 
801 tlv_put_failure:
802 out:
803 	return ret;
804 }
805 
806 /*
807  * Helper function to retrieve some fields from an inode item.
808  */
809 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
810 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
811 			  u64 *gid, u64 *rdev)
812 {
813 	int ret;
814 	struct btrfs_inode_item *ii;
815 	struct btrfs_key key;
816 
817 	key.objectid = ino;
818 	key.type = BTRFS_INODE_ITEM_KEY;
819 	key.offset = 0;
820 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
821 	if (ret) {
822 		if (ret > 0)
823 			ret = -ENOENT;
824 		return ret;
825 	}
826 
827 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
828 			struct btrfs_inode_item);
829 	if (size)
830 		*size = btrfs_inode_size(path->nodes[0], ii);
831 	if (gen)
832 		*gen = btrfs_inode_generation(path->nodes[0], ii);
833 	if (mode)
834 		*mode = btrfs_inode_mode(path->nodes[0], ii);
835 	if (uid)
836 		*uid = btrfs_inode_uid(path->nodes[0], ii);
837 	if (gid)
838 		*gid = btrfs_inode_gid(path->nodes[0], ii);
839 	if (rdev)
840 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
841 
842 	return ret;
843 }
844 
845 static int get_inode_info(struct btrfs_root *root,
846 			  u64 ino, u64 *size, u64 *gen,
847 			  u64 *mode, u64 *uid, u64 *gid,
848 			  u64 *rdev)
849 {
850 	struct btrfs_path *path;
851 	int ret;
852 
853 	path = alloc_path_for_send();
854 	if (!path)
855 		return -ENOMEM;
856 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
857 			       rdev);
858 	btrfs_free_path(path);
859 	return ret;
860 }
861 
862 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
863 				   struct fs_path *p,
864 				   void *ctx);
865 
866 /*
867  * Helper function to iterate the entries in ONE btrfs_inode_ref or
868  * btrfs_inode_extref.
869  * The iterate callback may return a non zero value to stop iteration. This can
870  * be a negative value for error codes or 1 to simply stop it.
871  *
872  * path must point to the INODE_REF or INODE_EXTREF when called.
873  */
874 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
875 			     struct btrfs_key *found_key, int resolve,
876 			     iterate_inode_ref_t iterate, void *ctx)
877 {
878 	struct extent_buffer *eb = path->nodes[0];
879 	struct btrfs_item *item;
880 	struct btrfs_inode_ref *iref;
881 	struct btrfs_inode_extref *extref;
882 	struct btrfs_path *tmp_path;
883 	struct fs_path *p;
884 	u32 cur = 0;
885 	u32 total;
886 	int slot = path->slots[0];
887 	u32 name_len;
888 	char *start;
889 	int ret = 0;
890 	int num = 0;
891 	int index;
892 	u64 dir;
893 	unsigned long name_off;
894 	unsigned long elem_size;
895 	unsigned long ptr;
896 
897 	p = fs_path_alloc_reversed();
898 	if (!p)
899 		return -ENOMEM;
900 
901 	tmp_path = alloc_path_for_send();
902 	if (!tmp_path) {
903 		fs_path_free(p);
904 		return -ENOMEM;
905 	}
906 
907 
908 	if (found_key->type == BTRFS_INODE_REF_KEY) {
909 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
910 						    struct btrfs_inode_ref);
911 		item = btrfs_item_nr(slot);
912 		total = btrfs_item_size(eb, item);
913 		elem_size = sizeof(*iref);
914 	} else {
915 		ptr = btrfs_item_ptr_offset(eb, slot);
916 		total = btrfs_item_size_nr(eb, slot);
917 		elem_size = sizeof(*extref);
918 	}
919 
920 	while (cur < total) {
921 		fs_path_reset(p);
922 
923 		if (found_key->type == BTRFS_INODE_REF_KEY) {
924 			iref = (struct btrfs_inode_ref *)(ptr + cur);
925 			name_len = btrfs_inode_ref_name_len(eb, iref);
926 			name_off = (unsigned long)(iref + 1);
927 			index = btrfs_inode_ref_index(eb, iref);
928 			dir = found_key->offset;
929 		} else {
930 			extref = (struct btrfs_inode_extref *)(ptr + cur);
931 			name_len = btrfs_inode_extref_name_len(eb, extref);
932 			name_off = (unsigned long)&extref->name;
933 			index = btrfs_inode_extref_index(eb, extref);
934 			dir = btrfs_inode_extref_parent(eb, extref);
935 		}
936 
937 		if (resolve) {
938 			start = btrfs_ref_to_path(root, tmp_path, name_len,
939 						  name_off, eb, dir,
940 						  p->buf, p->buf_len);
941 			if (IS_ERR(start)) {
942 				ret = PTR_ERR(start);
943 				goto out;
944 			}
945 			if (start < p->buf) {
946 				/* overflow , try again with larger buffer */
947 				ret = fs_path_ensure_buf(p,
948 						p->buf_len + p->buf - start);
949 				if (ret < 0)
950 					goto out;
951 				start = btrfs_ref_to_path(root, tmp_path,
952 							  name_len, name_off,
953 							  eb, dir,
954 							  p->buf, p->buf_len);
955 				if (IS_ERR(start)) {
956 					ret = PTR_ERR(start);
957 					goto out;
958 				}
959 				BUG_ON(start < p->buf);
960 			}
961 			p->start = start;
962 		} else {
963 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
964 							     name_len);
965 			if (ret < 0)
966 				goto out;
967 		}
968 
969 		cur += elem_size + name_len;
970 		ret = iterate(num, dir, index, p, ctx);
971 		if (ret)
972 			goto out;
973 		num++;
974 	}
975 
976 out:
977 	btrfs_free_path(tmp_path);
978 	fs_path_free(p);
979 	return ret;
980 }
981 
982 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
983 				  const char *name, int name_len,
984 				  const char *data, int data_len,
985 				  u8 type, void *ctx);
986 
987 /*
988  * Helper function to iterate the entries in ONE btrfs_dir_item.
989  * The iterate callback may return a non zero value to stop iteration. This can
990  * be a negative value for error codes or 1 to simply stop it.
991  *
992  * path must point to the dir item when called.
993  */
994 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
995 			    struct btrfs_key *found_key,
996 			    iterate_dir_item_t iterate, void *ctx)
997 {
998 	int ret = 0;
999 	struct extent_buffer *eb;
1000 	struct btrfs_item *item;
1001 	struct btrfs_dir_item *di;
1002 	struct btrfs_key di_key;
1003 	char *buf = NULL;
1004 	int buf_len;
1005 	u32 name_len;
1006 	u32 data_len;
1007 	u32 cur;
1008 	u32 len;
1009 	u32 total;
1010 	int slot;
1011 	int num;
1012 	u8 type;
1013 
1014 	/*
1015 	 * Start with a small buffer (1 page). If later we end up needing more
1016 	 * space, which can happen for xattrs on a fs with a leaf size greater
1017 	 * then the page size, attempt to increase the buffer. Typically xattr
1018 	 * values are small.
1019 	 */
1020 	buf_len = PATH_MAX;
1021 	buf = kmalloc(buf_len, GFP_KERNEL);
1022 	if (!buf) {
1023 		ret = -ENOMEM;
1024 		goto out;
1025 	}
1026 
1027 	eb = path->nodes[0];
1028 	slot = path->slots[0];
1029 	item = btrfs_item_nr(slot);
1030 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1031 	cur = 0;
1032 	len = 0;
1033 	total = btrfs_item_size(eb, item);
1034 
1035 	num = 0;
1036 	while (cur < total) {
1037 		name_len = btrfs_dir_name_len(eb, di);
1038 		data_len = btrfs_dir_data_len(eb, di);
1039 		type = btrfs_dir_type(eb, di);
1040 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1041 
1042 		if (type == BTRFS_FT_XATTR) {
1043 			if (name_len > XATTR_NAME_MAX) {
1044 				ret = -ENAMETOOLONG;
1045 				goto out;
1046 			}
1047 			if (name_len + data_len >
1048 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1049 				ret = -E2BIG;
1050 				goto out;
1051 			}
1052 		} else {
1053 			/*
1054 			 * Path too long
1055 			 */
1056 			if (name_len + data_len > PATH_MAX) {
1057 				ret = -ENAMETOOLONG;
1058 				goto out;
1059 			}
1060 		}
1061 
1062 		ret = btrfs_is_name_len_valid(eb, path->slots[0],
1063 			  (unsigned long)(di + 1), name_len + data_len);
1064 		if (!ret) {
1065 			ret = -EIO;
1066 			goto out;
1067 		}
1068 		if (name_len + data_len > buf_len) {
1069 			buf_len = name_len + data_len;
1070 			if (is_vmalloc_addr(buf)) {
1071 				vfree(buf);
1072 				buf = NULL;
1073 			} else {
1074 				char *tmp = krealloc(buf, buf_len,
1075 						GFP_KERNEL | __GFP_NOWARN);
1076 
1077 				if (!tmp)
1078 					kfree(buf);
1079 				buf = tmp;
1080 			}
1081 			if (!buf) {
1082 				buf = kvmalloc(buf_len, GFP_KERNEL);
1083 				if (!buf) {
1084 					ret = -ENOMEM;
1085 					goto out;
1086 				}
1087 			}
1088 		}
1089 
1090 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1091 				name_len + data_len);
1092 
1093 		len = sizeof(*di) + name_len + data_len;
1094 		di = (struct btrfs_dir_item *)((char *)di + len);
1095 		cur += len;
1096 
1097 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1098 				data_len, type, ctx);
1099 		if (ret < 0)
1100 			goto out;
1101 		if (ret) {
1102 			ret = 0;
1103 			goto out;
1104 		}
1105 
1106 		num++;
1107 	}
1108 
1109 out:
1110 	kvfree(buf);
1111 	return ret;
1112 }
1113 
1114 static int __copy_first_ref(int num, u64 dir, int index,
1115 			    struct fs_path *p, void *ctx)
1116 {
1117 	int ret;
1118 	struct fs_path *pt = ctx;
1119 
1120 	ret = fs_path_copy(pt, p);
1121 	if (ret < 0)
1122 		return ret;
1123 
1124 	/* we want the first only */
1125 	return 1;
1126 }
1127 
1128 /*
1129  * Retrieve the first path of an inode. If an inode has more then one
1130  * ref/hardlink, this is ignored.
1131  */
1132 static int get_inode_path(struct btrfs_root *root,
1133 			  u64 ino, struct fs_path *path)
1134 {
1135 	int ret;
1136 	struct btrfs_key key, found_key;
1137 	struct btrfs_path *p;
1138 
1139 	p = alloc_path_for_send();
1140 	if (!p)
1141 		return -ENOMEM;
1142 
1143 	fs_path_reset(path);
1144 
1145 	key.objectid = ino;
1146 	key.type = BTRFS_INODE_REF_KEY;
1147 	key.offset = 0;
1148 
1149 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1150 	if (ret < 0)
1151 		goto out;
1152 	if (ret) {
1153 		ret = 1;
1154 		goto out;
1155 	}
1156 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1157 	if (found_key.objectid != ino ||
1158 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1159 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1160 		ret = -ENOENT;
1161 		goto out;
1162 	}
1163 
1164 	ret = iterate_inode_ref(root, p, &found_key, 1,
1165 				__copy_first_ref, path);
1166 	if (ret < 0)
1167 		goto out;
1168 	ret = 0;
1169 
1170 out:
1171 	btrfs_free_path(p);
1172 	return ret;
1173 }
1174 
1175 struct backref_ctx {
1176 	struct send_ctx *sctx;
1177 
1178 	struct btrfs_path *path;
1179 	/* number of total found references */
1180 	u64 found;
1181 
1182 	/*
1183 	 * used for clones found in send_root. clones found behind cur_objectid
1184 	 * and cur_offset are not considered as allowed clones.
1185 	 */
1186 	u64 cur_objectid;
1187 	u64 cur_offset;
1188 
1189 	/* may be truncated in case it's the last extent in a file */
1190 	u64 extent_len;
1191 
1192 	/* data offset in the file extent item */
1193 	u64 data_offset;
1194 
1195 	/* Just to check for bugs in backref resolving */
1196 	int found_itself;
1197 };
1198 
1199 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1200 {
1201 	u64 root = (u64)(uintptr_t)key;
1202 	struct clone_root *cr = (struct clone_root *)elt;
1203 
1204 	if (root < cr->root->objectid)
1205 		return -1;
1206 	if (root > cr->root->objectid)
1207 		return 1;
1208 	return 0;
1209 }
1210 
1211 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1212 {
1213 	struct clone_root *cr1 = (struct clone_root *)e1;
1214 	struct clone_root *cr2 = (struct clone_root *)e2;
1215 
1216 	if (cr1->root->objectid < cr2->root->objectid)
1217 		return -1;
1218 	if (cr1->root->objectid > cr2->root->objectid)
1219 		return 1;
1220 	return 0;
1221 }
1222 
1223 /*
1224  * Called for every backref that is found for the current extent.
1225  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1226  */
1227 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1228 {
1229 	struct backref_ctx *bctx = ctx_;
1230 	struct clone_root *found;
1231 	int ret;
1232 	u64 i_size;
1233 
1234 	/* First check if the root is in the list of accepted clone sources */
1235 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1236 			bctx->sctx->clone_roots_cnt,
1237 			sizeof(struct clone_root),
1238 			__clone_root_cmp_bsearch);
1239 	if (!found)
1240 		return 0;
1241 
1242 	if (found->root == bctx->sctx->send_root &&
1243 	    ino == bctx->cur_objectid &&
1244 	    offset == bctx->cur_offset) {
1245 		bctx->found_itself = 1;
1246 	}
1247 
1248 	/*
1249 	 * There are inodes that have extents that lie behind its i_size. Don't
1250 	 * accept clones from these extents.
1251 	 */
1252 	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1253 			       NULL, NULL, NULL);
1254 	btrfs_release_path(bctx->path);
1255 	if (ret < 0)
1256 		return ret;
1257 
1258 	if (offset + bctx->data_offset + bctx->extent_len > i_size)
1259 		return 0;
1260 
1261 	/*
1262 	 * Make sure we don't consider clones from send_root that are
1263 	 * behind the current inode/offset.
1264 	 */
1265 	if (found->root == bctx->sctx->send_root) {
1266 		/*
1267 		 * TODO for the moment we don't accept clones from the inode
1268 		 * that is currently send. We may change this when
1269 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1270 		 * file.
1271 		 */
1272 		if (ino >= bctx->cur_objectid)
1273 			return 0;
1274 #if 0
1275 		if (ino > bctx->cur_objectid)
1276 			return 0;
1277 		if (offset + bctx->extent_len > bctx->cur_offset)
1278 			return 0;
1279 #endif
1280 	}
1281 
1282 	bctx->found++;
1283 	found->found_refs++;
1284 	if (ino < found->ino) {
1285 		found->ino = ino;
1286 		found->offset = offset;
1287 	} else if (found->ino == ino) {
1288 		/*
1289 		 * same extent found more then once in the same file.
1290 		 */
1291 		if (found->offset > offset + bctx->extent_len)
1292 			found->offset = offset;
1293 	}
1294 
1295 	return 0;
1296 }
1297 
1298 /*
1299  * Given an inode, offset and extent item, it finds a good clone for a clone
1300  * instruction. Returns -ENOENT when none could be found. The function makes
1301  * sure that the returned clone is usable at the point where sending is at the
1302  * moment. This means, that no clones are accepted which lie behind the current
1303  * inode+offset.
1304  *
1305  * path must point to the extent item when called.
1306  */
1307 static int find_extent_clone(struct send_ctx *sctx,
1308 			     struct btrfs_path *path,
1309 			     u64 ino, u64 data_offset,
1310 			     u64 ino_size,
1311 			     struct clone_root **found)
1312 {
1313 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1314 	int ret;
1315 	int extent_type;
1316 	u64 logical;
1317 	u64 disk_byte;
1318 	u64 num_bytes;
1319 	u64 extent_item_pos;
1320 	u64 flags = 0;
1321 	struct btrfs_file_extent_item *fi;
1322 	struct extent_buffer *eb = path->nodes[0];
1323 	struct backref_ctx *backref_ctx = NULL;
1324 	struct clone_root *cur_clone_root;
1325 	struct btrfs_key found_key;
1326 	struct btrfs_path *tmp_path;
1327 	int compressed;
1328 	u32 i;
1329 
1330 	tmp_path = alloc_path_for_send();
1331 	if (!tmp_path)
1332 		return -ENOMEM;
1333 
1334 	/* We only use this path under the commit sem */
1335 	tmp_path->need_commit_sem = 0;
1336 
1337 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1338 	if (!backref_ctx) {
1339 		ret = -ENOMEM;
1340 		goto out;
1341 	}
1342 
1343 	backref_ctx->path = tmp_path;
1344 
1345 	if (data_offset >= ino_size) {
1346 		/*
1347 		 * There may be extents that lie behind the file's size.
1348 		 * I at least had this in combination with snapshotting while
1349 		 * writing large files.
1350 		 */
1351 		ret = 0;
1352 		goto out;
1353 	}
1354 
1355 	fi = btrfs_item_ptr(eb, path->slots[0],
1356 			struct btrfs_file_extent_item);
1357 	extent_type = btrfs_file_extent_type(eb, fi);
1358 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1359 		ret = -ENOENT;
1360 		goto out;
1361 	}
1362 	compressed = btrfs_file_extent_compression(eb, fi);
1363 
1364 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1365 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1366 	if (disk_byte == 0) {
1367 		ret = -ENOENT;
1368 		goto out;
1369 	}
1370 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1371 
1372 	down_read(&fs_info->commit_root_sem);
1373 	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1374 				  &found_key, &flags);
1375 	up_read(&fs_info->commit_root_sem);
1376 	btrfs_release_path(tmp_path);
1377 
1378 	if (ret < 0)
1379 		goto out;
1380 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1381 		ret = -EIO;
1382 		goto out;
1383 	}
1384 
1385 	/*
1386 	 * Setup the clone roots.
1387 	 */
1388 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1389 		cur_clone_root = sctx->clone_roots + i;
1390 		cur_clone_root->ino = (u64)-1;
1391 		cur_clone_root->offset = 0;
1392 		cur_clone_root->found_refs = 0;
1393 	}
1394 
1395 	backref_ctx->sctx = sctx;
1396 	backref_ctx->found = 0;
1397 	backref_ctx->cur_objectid = ino;
1398 	backref_ctx->cur_offset = data_offset;
1399 	backref_ctx->found_itself = 0;
1400 	backref_ctx->extent_len = num_bytes;
1401 	/*
1402 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1403 	 * offsets that already take into account the data offset, but not for
1404 	 * compressed extents, since the offset is logical and not relative to
1405 	 * the physical extent locations. We must take this into account to
1406 	 * avoid sending clone offsets that go beyond the source file's size,
1407 	 * which would result in the clone ioctl failing with -EINVAL on the
1408 	 * receiving end.
1409 	 */
1410 	if (compressed == BTRFS_COMPRESS_NONE)
1411 		backref_ctx->data_offset = 0;
1412 	else
1413 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1414 
1415 	/*
1416 	 * The last extent of a file may be too large due to page alignment.
1417 	 * We need to adjust extent_len in this case so that the checks in
1418 	 * __iterate_backrefs work.
1419 	 */
1420 	if (data_offset + num_bytes >= ino_size)
1421 		backref_ctx->extent_len = ino_size - data_offset;
1422 
1423 	/*
1424 	 * Now collect all backrefs.
1425 	 */
1426 	if (compressed == BTRFS_COMPRESS_NONE)
1427 		extent_item_pos = logical - found_key.objectid;
1428 	else
1429 		extent_item_pos = 0;
1430 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1431 				    extent_item_pos, 1, __iterate_backrefs,
1432 				    backref_ctx);
1433 
1434 	if (ret < 0)
1435 		goto out;
1436 
1437 	if (!backref_ctx->found_itself) {
1438 		/* found a bug in backref code? */
1439 		ret = -EIO;
1440 		btrfs_err(fs_info,
1441 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1442 			  ino, data_offset, disk_byte, found_key.objectid);
1443 		goto out;
1444 	}
1445 
1446 	btrfs_debug(fs_info,
1447 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1448 		    data_offset, ino, num_bytes, logical);
1449 
1450 	if (!backref_ctx->found)
1451 		btrfs_debug(fs_info, "no clones found");
1452 
1453 	cur_clone_root = NULL;
1454 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1455 		if (sctx->clone_roots[i].found_refs) {
1456 			if (!cur_clone_root)
1457 				cur_clone_root = sctx->clone_roots + i;
1458 			else if (sctx->clone_roots[i].root == sctx->send_root)
1459 				/* prefer clones from send_root over others */
1460 				cur_clone_root = sctx->clone_roots + i;
1461 		}
1462 
1463 	}
1464 
1465 	if (cur_clone_root) {
1466 		*found = cur_clone_root;
1467 		ret = 0;
1468 	} else {
1469 		ret = -ENOENT;
1470 	}
1471 
1472 out:
1473 	btrfs_free_path(tmp_path);
1474 	kfree(backref_ctx);
1475 	return ret;
1476 }
1477 
1478 static int read_symlink(struct btrfs_root *root,
1479 			u64 ino,
1480 			struct fs_path *dest)
1481 {
1482 	int ret;
1483 	struct btrfs_path *path;
1484 	struct btrfs_key key;
1485 	struct btrfs_file_extent_item *ei;
1486 	u8 type;
1487 	u8 compression;
1488 	unsigned long off;
1489 	int len;
1490 
1491 	path = alloc_path_for_send();
1492 	if (!path)
1493 		return -ENOMEM;
1494 
1495 	key.objectid = ino;
1496 	key.type = BTRFS_EXTENT_DATA_KEY;
1497 	key.offset = 0;
1498 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1499 	if (ret < 0)
1500 		goto out;
1501 	if (ret) {
1502 		/*
1503 		 * An empty symlink inode. Can happen in rare error paths when
1504 		 * creating a symlink (transaction committed before the inode
1505 		 * eviction handler removed the symlink inode items and a crash
1506 		 * happened in between or the subvol was snapshoted in between).
1507 		 * Print an informative message to dmesg/syslog so that the user
1508 		 * can delete the symlink.
1509 		 */
1510 		btrfs_err(root->fs_info,
1511 			  "Found empty symlink inode %llu at root %llu",
1512 			  ino, root->root_key.objectid);
1513 		ret = -EIO;
1514 		goto out;
1515 	}
1516 
1517 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1518 			struct btrfs_file_extent_item);
1519 	type = btrfs_file_extent_type(path->nodes[0], ei);
1520 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1521 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1522 	BUG_ON(compression);
1523 
1524 	off = btrfs_file_extent_inline_start(ei);
1525 	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1526 
1527 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1528 
1529 out:
1530 	btrfs_free_path(path);
1531 	return ret;
1532 }
1533 
1534 /*
1535  * Helper function to generate a file name that is unique in the root of
1536  * send_root and parent_root. This is used to generate names for orphan inodes.
1537  */
1538 static int gen_unique_name(struct send_ctx *sctx,
1539 			   u64 ino, u64 gen,
1540 			   struct fs_path *dest)
1541 {
1542 	int ret = 0;
1543 	struct btrfs_path *path;
1544 	struct btrfs_dir_item *di;
1545 	char tmp[64];
1546 	int len;
1547 	u64 idx = 0;
1548 
1549 	path = alloc_path_for_send();
1550 	if (!path)
1551 		return -ENOMEM;
1552 
1553 	while (1) {
1554 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1555 				ino, gen, idx);
1556 		ASSERT(len < sizeof(tmp));
1557 
1558 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1559 				path, BTRFS_FIRST_FREE_OBJECTID,
1560 				tmp, strlen(tmp), 0);
1561 		btrfs_release_path(path);
1562 		if (IS_ERR(di)) {
1563 			ret = PTR_ERR(di);
1564 			goto out;
1565 		}
1566 		if (di) {
1567 			/* not unique, try again */
1568 			idx++;
1569 			continue;
1570 		}
1571 
1572 		if (!sctx->parent_root) {
1573 			/* unique */
1574 			ret = 0;
1575 			break;
1576 		}
1577 
1578 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1579 				path, BTRFS_FIRST_FREE_OBJECTID,
1580 				tmp, strlen(tmp), 0);
1581 		btrfs_release_path(path);
1582 		if (IS_ERR(di)) {
1583 			ret = PTR_ERR(di);
1584 			goto out;
1585 		}
1586 		if (di) {
1587 			/* not unique, try again */
1588 			idx++;
1589 			continue;
1590 		}
1591 		/* unique */
1592 		break;
1593 	}
1594 
1595 	ret = fs_path_add(dest, tmp, strlen(tmp));
1596 
1597 out:
1598 	btrfs_free_path(path);
1599 	return ret;
1600 }
1601 
1602 enum inode_state {
1603 	inode_state_no_change,
1604 	inode_state_will_create,
1605 	inode_state_did_create,
1606 	inode_state_will_delete,
1607 	inode_state_did_delete,
1608 };
1609 
1610 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1611 {
1612 	int ret;
1613 	int left_ret;
1614 	int right_ret;
1615 	u64 left_gen;
1616 	u64 right_gen;
1617 
1618 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1619 			NULL, NULL);
1620 	if (ret < 0 && ret != -ENOENT)
1621 		goto out;
1622 	left_ret = ret;
1623 
1624 	if (!sctx->parent_root) {
1625 		right_ret = -ENOENT;
1626 	} else {
1627 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1628 				NULL, NULL, NULL, NULL);
1629 		if (ret < 0 && ret != -ENOENT)
1630 			goto out;
1631 		right_ret = ret;
1632 	}
1633 
1634 	if (!left_ret && !right_ret) {
1635 		if (left_gen == gen && right_gen == gen) {
1636 			ret = inode_state_no_change;
1637 		} else if (left_gen == gen) {
1638 			if (ino < sctx->send_progress)
1639 				ret = inode_state_did_create;
1640 			else
1641 				ret = inode_state_will_create;
1642 		} else if (right_gen == gen) {
1643 			if (ino < sctx->send_progress)
1644 				ret = inode_state_did_delete;
1645 			else
1646 				ret = inode_state_will_delete;
1647 		} else  {
1648 			ret = -ENOENT;
1649 		}
1650 	} else if (!left_ret) {
1651 		if (left_gen == gen) {
1652 			if (ino < sctx->send_progress)
1653 				ret = inode_state_did_create;
1654 			else
1655 				ret = inode_state_will_create;
1656 		} else {
1657 			ret = -ENOENT;
1658 		}
1659 	} else if (!right_ret) {
1660 		if (right_gen == gen) {
1661 			if (ino < sctx->send_progress)
1662 				ret = inode_state_did_delete;
1663 			else
1664 				ret = inode_state_will_delete;
1665 		} else {
1666 			ret = -ENOENT;
1667 		}
1668 	} else {
1669 		ret = -ENOENT;
1670 	}
1671 
1672 out:
1673 	return ret;
1674 }
1675 
1676 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1677 {
1678 	int ret;
1679 
1680 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1681 		return 1;
1682 
1683 	ret = get_cur_inode_state(sctx, ino, gen);
1684 	if (ret < 0)
1685 		goto out;
1686 
1687 	if (ret == inode_state_no_change ||
1688 	    ret == inode_state_did_create ||
1689 	    ret == inode_state_will_delete)
1690 		ret = 1;
1691 	else
1692 		ret = 0;
1693 
1694 out:
1695 	return ret;
1696 }
1697 
1698 /*
1699  * Helper function to lookup a dir item in a dir.
1700  */
1701 static int lookup_dir_item_inode(struct btrfs_root *root,
1702 				 u64 dir, const char *name, int name_len,
1703 				 u64 *found_inode,
1704 				 u8 *found_type)
1705 {
1706 	int ret = 0;
1707 	struct btrfs_dir_item *di;
1708 	struct btrfs_key key;
1709 	struct btrfs_path *path;
1710 
1711 	path = alloc_path_for_send();
1712 	if (!path)
1713 		return -ENOMEM;
1714 
1715 	di = btrfs_lookup_dir_item(NULL, root, path,
1716 			dir, name, name_len, 0);
1717 	if (!di) {
1718 		ret = -ENOENT;
1719 		goto out;
1720 	}
1721 	if (IS_ERR(di)) {
1722 		ret = PTR_ERR(di);
1723 		goto out;
1724 	}
1725 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1726 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1727 		ret = -ENOENT;
1728 		goto out;
1729 	}
1730 	*found_inode = key.objectid;
1731 	*found_type = btrfs_dir_type(path->nodes[0], di);
1732 
1733 out:
1734 	btrfs_free_path(path);
1735 	return ret;
1736 }
1737 
1738 /*
1739  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1740  * generation of the parent dir and the name of the dir entry.
1741  */
1742 static int get_first_ref(struct btrfs_root *root, u64 ino,
1743 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1744 {
1745 	int ret;
1746 	struct btrfs_key key;
1747 	struct btrfs_key found_key;
1748 	struct btrfs_path *path;
1749 	int len;
1750 	u64 parent_dir;
1751 
1752 	path = alloc_path_for_send();
1753 	if (!path)
1754 		return -ENOMEM;
1755 
1756 	key.objectid = ino;
1757 	key.type = BTRFS_INODE_REF_KEY;
1758 	key.offset = 0;
1759 
1760 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1761 	if (ret < 0)
1762 		goto out;
1763 	if (!ret)
1764 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1765 				path->slots[0]);
1766 	if (ret || found_key.objectid != ino ||
1767 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1768 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1769 		ret = -ENOENT;
1770 		goto out;
1771 	}
1772 
1773 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1774 		struct btrfs_inode_ref *iref;
1775 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1776 				      struct btrfs_inode_ref);
1777 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1778 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1779 						     (unsigned long)(iref + 1),
1780 						     len);
1781 		parent_dir = found_key.offset;
1782 	} else {
1783 		struct btrfs_inode_extref *extref;
1784 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1785 					struct btrfs_inode_extref);
1786 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1787 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1788 					(unsigned long)&extref->name, len);
1789 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1790 	}
1791 	if (ret < 0)
1792 		goto out;
1793 	btrfs_release_path(path);
1794 
1795 	if (dir_gen) {
1796 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1797 				     NULL, NULL, NULL);
1798 		if (ret < 0)
1799 			goto out;
1800 	}
1801 
1802 	*dir = parent_dir;
1803 
1804 out:
1805 	btrfs_free_path(path);
1806 	return ret;
1807 }
1808 
1809 static int is_first_ref(struct btrfs_root *root,
1810 			u64 ino, u64 dir,
1811 			const char *name, int name_len)
1812 {
1813 	int ret;
1814 	struct fs_path *tmp_name;
1815 	u64 tmp_dir;
1816 
1817 	tmp_name = fs_path_alloc();
1818 	if (!tmp_name)
1819 		return -ENOMEM;
1820 
1821 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1822 	if (ret < 0)
1823 		goto out;
1824 
1825 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1826 		ret = 0;
1827 		goto out;
1828 	}
1829 
1830 	ret = !memcmp(tmp_name->start, name, name_len);
1831 
1832 out:
1833 	fs_path_free(tmp_name);
1834 	return ret;
1835 }
1836 
1837 /*
1838  * Used by process_recorded_refs to determine if a new ref would overwrite an
1839  * already existing ref. In case it detects an overwrite, it returns the
1840  * inode/gen in who_ino/who_gen.
1841  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1842  * to make sure later references to the overwritten inode are possible.
1843  * Orphanizing is however only required for the first ref of an inode.
1844  * process_recorded_refs does an additional is_first_ref check to see if
1845  * orphanizing is really required.
1846  */
1847 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1848 			      const char *name, int name_len,
1849 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1850 {
1851 	int ret = 0;
1852 	u64 gen;
1853 	u64 other_inode = 0;
1854 	u8 other_type = 0;
1855 
1856 	if (!sctx->parent_root)
1857 		goto out;
1858 
1859 	ret = is_inode_existent(sctx, dir, dir_gen);
1860 	if (ret <= 0)
1861 		goto out;
1862 
1863 	/*
1864 	 * If we have a parent root we need to verify that the parent dir was
1865 	 * not deleted and then re-created, if it was then we have no overwrite
1866 	 * and we can just unlink this entry.
1867 	 */
1868 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1869 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1870 				     NULL, NULL, NULL);
1871 		if (ret < 0 && ret != -ENOENT)
1872 			goto out;
1873 		if (ret) {
1874 			ret = 0;
1875 			goto out;
1876 		}
1877 		if (gen != dir_gen)
1878 			goto out;
1879 	}
1880 
1881 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1882 			&other_inode, &other_type);
1883 	if (ret < 0 && ret != -ENOENT)
1884 		goto out;
1885 	if (ret) {
1886 		ret = 0;
1887 		goto out;
1888 	}
1889 
1890 	/*
1891 	 * Check if the overwritten ref was already processed. If yes, the ref
1892 	 * was already unlinked/moved, so we can safely assume that we will not
1893 	 * overwrite anything at this point in time.
1894 	 */
1895 	if (other_inode > sctx->send_progress ||
1896 	    is_waiting_for_move(sctx, other_inode)) {
1897 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1898 				who_gen, who_mode, NULL, NULL, NULL);
1899 		if (ret < 0)
1900 			goto out;
1901 
1902 		ret = 1;
1903 		*who_ino = other_inode;
1904 	} else {
1905 		ret = 0;
1906 	}
1907 
1908 out:
1909 	return ret;
1910 }
1911 
1912 /*
1913  * Checks if the ref was overwritten by an already processed inode. This is
1914  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1915  * thus the orphan name needs be used.
1916  * process_recorded_refs also uses it to avoid unlinking of refs that were
1917  * overwritten.
1918  */
1919 static int did_overwrite_ref(struct send_ctx *sctx,
1920 			    u64 dir, u64 dir_gen,
1921 			    u64 ino, u64 ino_gen,
1922 			    const char *name, int name_len)
1923 {
1924 	int ret = 0;
1925 	u64 gen;
1926 	u64 ow_inode;
1927 	u8 other_type;
1928 
1929 	if (!sctx->parent_root)
1930 		goto out;
1931 
1932 	ret = is_inode_existent(sctx, dir, dir_gen);
1933 	if (ret <= 0)
1934 		goto out;
1935 
1936 	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1937 		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1938 				     NULL, NULL, NULL);
1939 		if (ret < 0 && ret != -ENOENT)
1940 			goto out;
1941 		if (ret) {
1942 			ret = 0;
1943 			goto out;
1944 		}
1945 		if (gen != dir_gen)
1946 			goto out;
1947 	}
1948 
1949 	/* check if the ref was overwritten by another ref */
1950 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1951 			&ow_inode, &other_type);
1952 	if (ret < 0 && ret != -ENOENT)
1953 		goto out;
1954 	if (ret) {
1955 		/* was never and will never be overwritten */
1956 		ret = 0;
1957 		goto out;
1958 	}
1959 
1960 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1961 			NULL, NULL);
1962 	if (ret < 0)
1963 		goto out;
1964 
1965 	if (ow_inode == ino && gen == ino_gen) {
1966 		ret = 0;
1967 		goto out;
1968 	}
1969 
1970 	/*
1971 	 * We know that it is or will be overwritten. Check this now.
1972 	 * The current inode being processed might have been the one that caused
1973 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1974 	 * the current inode being processed.
1975 	 */
1976 	if ((ow_inode < sctx->send_progress) ||
1977 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1978 	     gen == sctx->cur_inode_gen))
1979 		ret = 1;
1980 	else
1981 		ret = 0;
1982 
1983 out:
1984 	return ret;
1985 }
1986 
1987 /*
1988  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1989  * that got overwritten. This is used by process_recorded_refs to determine
1990  * if it has to use the path as returned by get_cur_path or the orphan name.
1991  */
1992 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1993 {
1994 	int ret = 0;
1995 	struct fs_path *name = NULL;
1996 	u64 dir;
1997 	u64 dir_gen;
1998 
1999 	if (!sctx->parent_root)
2000 		goto out;
2001 
2002 	name = fs_path_alloc();
2003 	if (!name)
2004 		return -ENOMEM;
2005 
2006 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2007 	if (ret < 0)
2008 		goto out;
2009 
2010 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2011 			name->start, fs_path_len(name));
2012 
2013 out:
2014 	fs_path_free(name);
2015 	return ret;
2016 }
2017 
2018 /*
2019  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2020  * so we need to do some special handling in case we have clashes. This function
2021  * takes care of this with the help of name_cache_entry::radix_list.
2022  * In case of error, nce is kfreed.
2023  */
2024 static int name_cache_insert(struct send_ctx *sctx,
2025 			     struct name_cache_entry *nce)
2026 {
2027 	int ret = 0;
2028 	struct list_head *nce_head;
2029 
2030 	nce_head = radix_tree_lookup(&sctx->name_cache,
2031 			(unsigned long)nce->ino);
2032 	if (!nce_head) {
2033 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2034 		if (!nce_head) {
2035 			kfree(nce);
2036 			return -ENOMEM;
2037 		}
2038 		INIT_LIST_HEAD(nce_head);
2039 
2040 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2041 		if (ret < 0) {
2042 			kfree(nce_head);
2043 			kfree(nce);
2044 			return ret;
2045 		}
2046 	}
2047 	list_add_tail(&nce->radix_list, nce_head);
2048 	list_add_tail(&nce->list, &sctx->name_cache_list);
2049 	sctx->name_cache_size++;
2050 
2051 	return ret;
2052 }
2053 
2054 static void name_cache_delete(struct send_ctx *sctx,
2055 			      struct name_cache_entry *nce)
2056 {
2057 	struct list_head *nce_head;
2058 
2059 	nce_head = radix_tree_lookup(&sctx->name_cache,
2060 			(unsigned long)nce->ino);
2061 	if (!nce_head) {
2062 		btrfs_err(sctx->send_root->fs_info,
2063 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2064 			nce->ino, sctx->name_cache_size);
2065 	}
2066 
2067 	list_del(&nce->radix_list);
2068 	list_del(&nce->list);
2069 	sctx->name_cache_size--;
2070 
2071 	/*
2072 	 * We may not get to the final release of nce_head if the lookup fails
2073 	 */
2074 	if (nce_head && list_empty(nce_head)) {
2075 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2076 		kfree(nce_head);
2077 	}
2078 }
2079 
2080 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2081 						    u64 ino, u64 gen)
2082 {
2083 	struct list_head *nce_head;
2084 	struct name_cache_entry *cur;
2085 
2086 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2087 	if (!nce_head)
2088 		return NULL;
2089 
2090 	list_for_each_entry(cur, nce_head, radix_list) {
2091 		if (cur->ino == ino && cur->gen == gen)
2092 			return cur;
2093 	}
2094 	return NULL;
2095 }
2096 
2097 /*
2098  * Removes the entry from the list and adds it back to the end. This marks the
2099  * entry as recently used so that name_cache_clean_unused does not remove it.
2100  */
2101 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2102 {
2103 	list_del(&nce->list);
2104 	list_add_tail(&nce->list, &sctx->name_cache_list);
2105 }
2106 
2107 /*
2108  * Remove some entries from the beginning of name_cache_list.
2109  */
2110 static void name_cache_clean_unused(struct send_ctx *sctx)
2111 {
2112 	struct name_cache_entry *nce;
2113 
2114 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2115 		return;
2116 
2117 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2118 		nce = list_entry(sctx->name_cache_list.next,
2119 				struct name_cache_entry, list);
2120 		name_cache_delete(sctx, nce);
2121 		kfree(nce);
2122 	}
2123 }
2124 
2125 static void name_cache_free(struct send_ctx *sctx)
2126 {
2127 	struct name_cache_entry *nce;
2128 
2129 	while (!list_empty(&sctx->name_cache_list)) {
2130 		nce = list_entry(sctx->name_cache_list.next,
2131 				struct name_cache_entry, list);
2132 		name_cache_delete(sctx, nce);
2133 		kfree(nce);
2134 	}
2135 }
2136 
2137 /*
2138  * Used by get_cur_path for each ref up to the root.
2139  * Returns 0 if it succeeded.
2140  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2141  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2142  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2143  * Returns <0 in case of error.
2144  */
2145 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2146 				     u64 ino, u64 gen,
2147 				     u64 *parent_ino,
2148 				     u64 *parent_gen,
2149 				     struct fs_path *dest)
2150 {
2151 	int ret;
2152 	int nce_ret;
2153 	struct name_cache_entry *nce = NULL;
2154 
2155 	/*
2156 	 * First check if we already did a call to this function with the same
2157 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2158 	 * return the cached result.
2159 	 */
2160 	nce = name_cache_search(sctx, ino, gen);
2161 	if (nce) {
2162 		if (ino < sctx->send_progress && nce->need_later_update) {
2163 			name_cache_delete(sctx, nce);
2164 			kfree(nce);
2165 			nce = NULL;
2166 		} else {
2167 			name_cache_used(sctx, nce);
2168 			*parent_ino = nce->parent_ino;
2169 			*parent_gen = nce->parent_gen;
2170 			ret = fs_path_add(dest, nce->name, nce->name_len);
2171 			if (ret < 0)
2172 				goto out;
2173 			ret = nce->ret;
2174 			goto out;
2175 		}
2176 	}
2177 
2178 	/*
2179 	 * If the inode is not existent yet, add the orphan name and return 1.
2180 	 * This should only happen for the parent dir that we determine in
2181 	 * __record_new_ref
2182 	 */
2183 	ret = is_inode_existent(sctx, ino, gen);
2184 	if (ret < 0)
2185 		goto out;
2186 
2187 	if (!ret) {
2188 		ret = gen_unique_name(sctx, ino, gen, dest);
2189 		if (ret < 0)
2190 			goto out;
2191 		ret = 1;
2192 		goto out_cache;
2193 	}
2194 
2195 	/*
2196 	 * Depending on whether the inode was already processed or not, use
2197 	 * send_root or parent_root for ref lookup.
2198 	 */
2199 	if (ino < sctx->send_progress)
2200 		ret = get_first_ref(sctx->send_root, ino,
2201 				    parent_ino, parent_gen, dest);
2202 	else
2203 		ret = get_first_ref(sctx->parent_root, ino,
2204 				    parent_ino, parent_gen, dest);
2205 	if (ret < 0)
2206 		goto out;
2207 
2208 	/*
2209 	 * Check if the ref was overwritten by an inode's ref that was processed
2210 	 * earlier. If yes, treat as orphan and return 1.
2211 	 */
2212 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2213 			dest->start, dest->end - dest->start);
2214 	if (ret < 0)
2215 		goto out;
2216 	if (ret) {
2217 		fs_path_reset(dest);
2218 		ret = gen_unique_name(sctx, ino, gen, dest);
2219 		if (ret < 0)
2220 			goto out;
2221 		ret = 1;
2222 	}
2223 
2224 out_cache:
2225 	/*
2226 	 * Store the result of the lookup in the name cache.
2227 	 */
2228 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2229 	if (!nce) {
2230 		ret = -ENOMEM;
2231 		goto out;
2232 	}
2233 
2234 	nce->ino = ino;
2235 	nce->gen = gen;
2236 	nce->parent_ino = *parent_ino;
2237 	nce->parent_gen = *parent_gen;
2238 	nce->name_len = fs_path_len(dest);
2239 	nce->ret = ret;
2240 	strcpy(nce->name, dest->start);
2241 
2242 	if (ino < sctx->send_progress)
2243 		nce->need_later_update = 0;
2244 	else
2245 		nce->need_later_update = 1;
2246 
2247 	nce_ret = name_cache_insert(sctx, nce);
2248 	if (nce_ret < 0)
2249 		ret = nce_ret;
2250 	name_cache_clean_unused(sctx);
2251 
2252 out:
2253 	return ret;
2254 }
2255 
2256 /*
2257  * Magic happens here. This function returns the first ref to an inode as it
2258  * would look like while receiving the stream at this point in time.
2259  * We walk the path up to the root. For every inode in between, we check if it
2260  * was already processed/sent. If yes, we continue with the parent as found
2261  * in send_root. If not, we continue with the parent as found in parent_root.
2262  * If we encounter an inode that was deleted at this point in time, we use the
2263  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2264  * that were not created yet and overwritten inodes/refs.
2265  *
2266  * When do we have have orphan inodes:
2267  * 1. When an inode is freshly created and thus no valid refs are available yet
2268  * 2. When a directory lost all it's refs (deleted) but still has dir items
2269  *    inside which were not processed yet (pending for move/delete). If anyone
2270  *    tried to get the path to the dir items, it would get a path inside that
2271  *    orphan directory.
2272  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2273  *    of an unprocessed inode. If in that case the first ref would be
2274  *    overwritten, the overwritten inode gets "orphanized". Later when we
2275  *    process this overwritten inode, it is restored at a new place by moving
2276  *    the orphan inode.
2277  *
2278  * sctx->send_progress tells this function at which point in time receiving
2279  * would be.
2280  */
2281 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2282 			struct fs_path *dest)
2283 {
2284 	int ret = 0;
2285 	struct fs_path *name = NULL;
2286 	u64 parent_inode = 0;
2287 	u64 parent_gen = 0;
2288 	int stop = 0;
2289 
2290 	name = fs_path_alloc();
2291 	if (!name) {
2292 		ret = -ENOMEM;
2293 		goto out;
2294 	}
2295 
2296 	dest->reversed = 1;
2297 	fs_path_reset(dest);
2298 
2299 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2300 		struct waiting_dir_move *wdm;
2301 
2302 		fs_path_reset(name);
2303 
2304 		if (is_waiting_for_rm(sctx, ino)) {
2305 			ret = gen_unique_name(sctx, ino, gen, name);
2306 			if (ret < 0)
2307 				goto out;
2308 			ret = fs_path_add_path(dest, name);
2309 			break;
2310 		}
2311 
2312 		wdm = get_waiting_dir_move(sctx, ino);
2313 		if (wdm && wdm->orphanized) {
2314 			ret = gen_unique_name(sctx, ino, gen, name);
2315 			stop = 1;
2316 		} else if (wdm) {
2317 			ret = get_first_ref(sctx->parent_root, ino,
2318 					    &parent_inode, &parent_gen, name);
2319 		} else {
2320 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2321 							&parent_inode,
2322 							&parent_gen, name);
2323 			if (ret)
2324 				stop = 1;
2325 		}
2326 
2327 		if (ret < 0)
2328 			goto out;
2329 
2330 		ret = fs_path_add_path(dest, name);
2331 		if (ret < 0)
2332 			goto out;
2333 
2334 		ino = parent_inode;
2335 		gen = parent_gen;
2336 	}
2337 
2338 out:
2339 	fs_path_free(name);
2340 	if (!ret)
2341 		fs_path_unreverse(dest);
2342 	return ret;
2343 }
2344 
2345 /*
2346  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2347  */
2348 static int send_subvol_begin(struct send_ctx *sctx)
2349 {
2350 	int ret;
2351 	struct btrfs_root *send_root = sctx->send_root;
2352 	struct btrfs_root *parent_root = sctx->parent_root;
2353 	struct btrfs_path *path;
2354 	struct btrfs_key key;
2355 	struct btrfs_root_ref *ref;
2356 	struct extent_buffer *leaf;
2357 	char *name = NULL;
2358 	int namelen;
2359 
2360 	path = btrfs_alloc_path();
2361 	if (!path)
2362 		return -ENOMEM;
2363 
2364 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2365 	if (!name) {
2366 		btrfs_free_path(path);
2367 		return -ENOMEM;
2368 	}
2369 
2370 	key.objectid = send_root->objectid;
2371 	key.type = BTRFS_ROOT_BACKREF_KEY;
2372 	key.offset = 0;
2373 
2374 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2375 				&key, path, 1, 0);
2376 	if (ret < 0)
2377 		goto out;
2378 	if (ret) {
2379 		ret = -ENOENT;
2380 		goto out;
2381 	}
2382 
2383 	leaf = path->nodes[0];
2384 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2385 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2386 	    key.objectid != send_root->objectid) {
2387 		ret = -ENOENT;
2388 		goto out;
2389 	}
2390 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2391 	namelen = btrfs_root_ref_name_len(leaf, ref);
2392 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2393 	btrfs_release_path(path);
2394 
2395 	if (parent_root) {
2396 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2397 		if (ret < 0)
2398 			goto out;
2399 	} else {
2400 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2401 		if (ret < 0)
2402 			goto out;
2403 	}
2404 
2405 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2406 
2407 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2408 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2409 			    sctx->send_root->root_item.received_uuid);
2410 	else
2411 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2412 			    sctx->send_root->root_item.uuid);
2413 
2414 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2415 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2416 	if (parent_root) {
2417 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2418 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2419 				     parent_root->root_item.received_uuid);
2420 		else
2421 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2422 				     parent_root->root_item.uuid);
2423 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2424 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2425 	}
2426 
2427 	ret = send_cmd(sctx);
2428 
2429 tlv_put_failure:
2430 out:
2431 	btrfs_free_path(path);
2432 	kfree(name);
2433 	return ret;
2434 }
2435 
2436 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2437 {
2438 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2439 	int ret = 0;
2440 	struct fs_path *p;
2441 
2442 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2443 
2444 	p = fs_path_alloc();
2445 	if (!p)
2446 		return -ENOMEM;
2447 
2448 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2449 	if (ret < 0)
2450 		goto out;
2451 
2452 	ret = get_cur_path(sctx, ino, gen, p);
2453 	if (ret < 0)
2454 		goto out;
2455 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2456 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2457 
2458 	ret = send_cmd(sctx);
2459 
2460 tlv_put_failure:
2461 out:
2462 	fs_path_free(p);
2463 	return ret;
2464 }
2465 
2466 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2467 {
2468 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2469 	int ret = 0;
2470 	struct fs_path *p;
2471 
2472 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2473 
2474 	p = fs_path_alloc();
2475 	if (!p)
2476 		return -ENOMEM;
2477 
2478 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2479 	if (ret < 0)
2480 		goto out;
2481 
2482 	ret = get_cur_path(sctx, ino, gen, p);
2483 	if (ret < 0)
2484 		goto out;
2485 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2486 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2487 
2488 	ret = send_cmd(sctx);
2489 
2490 tlv_put_failure:
2491 out:
2492 	fs_path_free(p);
2493 	return ret;
2494 }
2495 
2496 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2497 {
2498 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2499 	int ret = 0;
2500 	struct fs_path *p;
2501 
2502 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2503 		    ino, uid, gid);
2504 
2505 	p = fs_path_alloc();
2506 	if (!p)
2507 		return -ENOMEM;
2508 
2509 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2510 	if (ret < 0)
2511 		goto out;
2512 
2513 	ret = get_cur_path(sctx, ino, gen, p);
2514 	if (ret < 0)
2515 		goto out;
2516 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2517 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2518 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2519 
2520 	ret = send_cmd(sctx);
2521 
2522 tlv_put_failure:
2523 out:
2524 	fs_path_free(p);
2525 	return ret;
2526 }
2527 
2528 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2529 {
2530 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2531 	int ret = 0;
2532 	struct fs_path *p = NULL;
2533 	struct btrfs_inode_item *ii;
2534 	struct btrfs_path *path = NULL;
2535 	struct extent_buffer *eb;
2536 	struct btrfs_key key;
2537 	int slot;
2538 
2539 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2540 
2541 	p = fs_path_alloc();
2542 	if (!p)
2543 		return -ENOMEM;
2544 
2545 	path = alloc_path_for_send();
2546 	if (!path) {
2547 		ret = -ENOMEM;
2548 		goto out;
2549 	}
2550 
2551 	key.objectid = ino;
2552 	key.type = BTRFS_INODE_ITEM_KEY;
2553 	key.offset = 0;
2554 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2555 	if (ret > 0)
2556 		ret = -ENOENT;
2557 	if (ret < 0)
2558 		goto out;
2559 
2560 	eb = path->nodes[0];
2561 	slot = path->slots[0];
2562 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2563 
2564 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2565 	if (ret < 0)
2566 		goto out;
2567 
2568 	ret = get_cur_path(sctx, ino, gen, p);
2569 	if (ret < 0)
2570 		goto out;
2571 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2572 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2573 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2574 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2575 	/* TODO Add otime support when the otime patches get into upstream */
2576 
2577 	ret = send_cmd(sctx);
2578 
2579 tlv_put_failure:
2580 out:
2581 	fs_path_free(p);
2582 	btrfs_free_path(path);
2583 	return ret;
2584 }
2585 
2586 /*
2587  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2588  * a valid path yet because we did not process the refs yet. So, the inode
2589  * is created as orphan.
2590  */
2591 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2592 {
2593 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2594 	int ret = 0;
2595 	struct fs_path *p;
2596 	int cmd;
2597 	u64 gen;
2598 	u64 mode;
2599 	u64 rdev;
2600 
2601 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2602 
2603 	p = fs_path_alloc();
2604 	if (!p)
2605 		return -ENOMEM;
2606 
2607 	if (ino != sctx->cur_ino) {
2608 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2609 				     NULL, NULL, &rdev);
2610 		if (ret < 0)
2611 			goto out;
2612 	} else {
2613 		gen = sctx->cur_inode_gen;
2614 		mode = sctx->cur_inode_mode;
2615 		rdev = sctx->cur_inode_rdev;
2616 	}
2617 
2618 	if (S_ISREG(mode)) {
2619 		cmd = BTRFS_SEND_C_MKFILE;
2620 	} else if (S_ISDIR(mode)) {
2621 		cmd = BTRFS_SEND_C_MKDIR;
2622 	} else if (S_ISLNK(mode)) {
2623 		cmd = BTRFS_SEND_C_SYMLINK;
2624 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2625 		cmd = BTRFS_SEND_C_MKNOD;
2626 	} else if (S_ISFIFO(mode)) {
2627 		cmd = BTRFS_SEND_C_MKFIFO;
2628 	} else if (S_ISSOCK(mode)) {
2629 		cmd = BTRFS_SEND_C_MKSOCK;
2630 	} else {
2631 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2632 				(int)(mode & S_IFMT));
2633 		ret = -EOPNOTSUPP;
2634 		goto out;
2635 	}
2636 
2637 	ret = begin_cmd(sctx, cmd);
2638 	if (ret < 0)
2639 		goto out;
2640 
2641 	ret = gen_unique_name(sctx, ino, gen, p);
2642 	if (ret < 0)
2643 		goto out;
2644 
2645 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2646 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2647 
2648 	if (S_ISLNK(mode)) {
2649 		fs_path_reset(p);
2650 		ret = read_symlink(sctx->send_root, ino, p);
2651 		if (ret < 0)
2652 			goto out;
2653 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2654 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2655 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2656 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2657 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2658 	}
2659 
2660 	ret = send_cmd(sctx);
2661 	if (ret < 0)
2662 		goto out;
2663 
2664 
2665 tlv_put_failure:
2666 out:
2667 	fs_path_free(p);
2668 	return ret;
2669 }
2670 
2671 /*
2672  * We need some special handling for inodes that get processed before the parent
2673  * directory got created. See process_recorded_refs for details.
2674  * This function does the check if we already created the dir out of order.
2675  */
2676 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2677 {
2678 	int ret = 0;
2679 	struct btrfs_path *path = NULL;
2680 	struct btrfs_key key;
2681 	struct btrfs_key found_key;
2682 	struct btrfs_key di_key;
2683 	struct extent_buffer *eb;
2684 	struct btrfs_dir_item *di;
2685 	int slot;
2686 
2687 	path = alloc_path_for_send();
2688 	if (!path) {
2689 		ret = -ENOMEM;
2690 		goto out;
2691 	}
2692 
2693 	key.objectid = dir;
2694 	key.type = BTRFS_DIR_INDEX_KEY;
2695 	key.offset = 0;
2696 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2697 	if (ret < 0)
2698 		goto out;
2699 
2700 	while (1) {
2701 		eb = path->nodes[0];
2702 		slot = path->slots[0];
2703 		if (slot >= btrfs_header_nritems(eb)) {
2704 			ret = btrfs_next_leaf(sctx->send_root, path);
2705 			if (ret < 0) {
2706 				goto out;
2707 			} else if (ret > 0) {
2708 				ret = 0;
2709 				break;
2710 			}
2711 			continue;
2712 		}
2713 
2714 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2715 		if (found_key.objectid != key.objectid ||
2716 		    found_key.type != key.type) {
2717 			ret = 0;
2718 			goto out;
2719 		}
2720 
2721 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2722 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2723 
2724 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2725 		    di_key.objectid < sctx->send_progress) {
2726 			ret = 1;
2727 			goto out;
2728 		}
2729 
2730 		path->slots[0]++;
2731 	}
2732 
2733 out:
2734 	btrfs_free_path(path);
2735 	return ret;
2736 }
2737 
2738 /*
2739  * Only creates the inode if it is:
2740  * 1. Not a directory
2741  * 2. Or a directory which was not created already due to out of order
2742  *    directories. See did_create_dir and process_recorded_refs for details.
2743  */
2744 static int send_create_inode_if_needed(struct send_ctx *sctx)
2745 {
2746 	int ret;
2747 
2748 	if (S_ISDIR(sctx->cur_inode_mode)) {
2749 		ret = did_create_dir(sctx, sctx->cur_ino);
2750 		if (ret < 0)
2751 			goto out;
2752 		if (ret) {
2753 			ret = 0;
2754 			goto out;
2755 		}
2756 	}
2757 
2758 	ret = send_create_inode(sctx, sctx->cur_ino);
2759 	if (ret < 0)
2760 		goto out;
2761 
2762 out:
2763 	return ret;
2764 }
2765 
2766 struct recorded_ref {
2767 	struct list_head list;
2768 	char *name;
2769 	struct fs_path *full_path;
2770 	u64 dir;
2771 	u64 dir_gen;
2772 	int name_len;
2773 };
2774 
2775 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2776 {
2777 	ref->full_path = path;
2778 	ref->name = (char *)kbasename(ref->full_path->start);
2779 	ref->name_len = ref->full_path->end - ref->name;
2780 }
2781 
2782 /*
2783  * We need to process new refs before deleted refs, but compare_tree gives us
2784  * everything mixed. So we first record all refs and later process them.
2785  * This function is a helper to record one ref.
2786  */
2787 static int __record_ref(struct list_head *head, u64 dir,
2788 		      u64 dir_gen, struct fs_path *path)
2789 {
2790 	struct recorded_ref *ref;
2791 
2792 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2793 	if (!ref)
2794 		return -ENOMEM;
2795 
2796 	ref->dir = dir;
2797 	ref->dir_gen = dir_gen;
2798 	set_ref_path(ref, path);
2799 	list_add_tail(&ref->list, head);
2800 	return 0;
2801 }
2802 
2803 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2804 {
2805 	struct recorded_ref *new;
2806 
2807 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2808 	if (!new)
2809 		return -ENOMEM;
2810 
2811 	new->dir = ref->dir;
2812 	new->dir_gen = ref->dir_gen;
2813 	new->full_path = NULL;
2814 	INIT_LIST_HEAD(&new->list);
2815 	list_add_tail(&new->list, list);
2816 	return 0;
2817 }
2818 
2819 static void __free_recorded_refs(struct list_head *head)
2820 {
2821 	struct recorded_ref *cur;
2822 
2823 	while (!list_empty(head)) {
2824 		cur = list_entry(head->next, struct recorded_ref, list);
2825 		fs_path_free(cur->full_path);
2826 		list_del(&cur->list);
2827 		kfree(cur);
2828 	}
2829 }
2830 
2831 static void free_recorded_refs(struct send_ctx *sctx)
2832 {
2833 	__free_recorded_refs(&sctx->new_refs);
2834 	__free_recorded_refs(&sctx->deleted_refs);
2835 }
2836 
2837 /*
2838  * Renames/moves a file/dir to its orphan name. Used when the first
2839  * ref of an unprocessed inode gets overwritten and for all non empty
2840  * directories.
2841  */
2842 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2843 			  struct fs_path *path)
2844 {
2845 	int ret;
2846 	struct fs_path *orphan;
2847 
2848 	orphan = fs_path_alloc();
2849 	if (!orphan)
2850 		return -ENOMEM;
2851 
2852 	ret = gen_unique_name(sctx, ino, gen, orphan);
2853 	if (ret < 0)
2854 		goto out;
2855 
2856 	ret = send_rename(sctx, path, orphan);
2857 
2858 out:
2859 	fs_path_free(orphan);
2860 	return ret;
2861 }
2862 
2863 static struct orphan_dir_info *
2864 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2865 {
2866 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2867 	struct rb_node *parent = NULL;
2868 	struct orphan_dir_info *entry, *odi;
2869 
2870 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2871 	if (!odi)
2872 		return ERR_PTR(-ENOMEM);
2873 	odi->ino = dir_ino;
2874 	odi->gen = 0;
2875 
2876 	while (*p) {
2877 		parent = *p;
2878 		entry = rb_entry(parent, struct orphan_dir_info, node);
2879 		if (dir_ino < entry->ino) {
2880 			p = &(*p)->rb_left;
2881 		} else if (dir_ino > entry->ino) {
2882 			p = &(*p)->rb_right;
2883 		} else {
2884 			kfree(odi);
2885 			return entry;
2886 		}
2887 	}
2888 
2889 	rb_link_node(&odi->node, parent, p);
2890 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2891 	return odi;
2892 }
2893 
2894 static struct orphan_dir_info *
2895 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2896 {
2897 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2898 	struct orphan_dir_info *entry;
2899 
2900 	while (n) {
2901 		entry = rb_entry(n, struct orphan_dir_info, node);
2902 		if (dir_ino < entry->ino)
2903 			n = n->rb_left;
2904 		else if (dir_ino > entry->ino)
2905 			n = n->rb_right;
2906 		else
2907 			return entry;
2908 	}
2909 	return NULL;
2910 }
2911 
2912 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2913 {
2914 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2915 
2916 	return odi != NULL;
2917 }
2918 
2919 static void free_orphan_dir_info(struct send_ctx *sctx,
2920 				 struct orphan_dir_info *odi)
2921 {
2922 	if (!odi)
2923 		return;
2924 	rb_erase(&odi->node, &sctx->orphan_dirs);
2925 	kfree(odi);
2926 }
2927 
2928 /*
2929  * Returns 1 if a directory can be removed at this point in time.
2930  * We check this by iterating all dir items and checking if the inode behind
2931  * the dir item was already processed.
2932  */
2933 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2934 		     u64 send_progress)
2935 {
2936 	int ret = 0;
2937 	struct btrfs_root *root = sctx->parent_root;
2938 	struct btrfs_path *path;
2939 	struct btrfs_key key;
2940 	struct btrfs_key found_key;
2941 	struct btrfs_key loc;
2942 	struct btrfs_dir_item *di;
2943 
2944 	/*
2945 	 * Don't try to rmdir the top/root subvolume dir.
2946 	 */
2947 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2948 		return 0;
2949 
2950 	path = alloc_path_for_send();
2951 	if (!path)
2952 		return -ENOMEM;
2953 
2954 	key.objectid = dir;
2955 	key.type = BTRFS_DIR_INDEX_KEY;
2956 	key.offset = 0;
2957 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2958 	if (ret < 0)
2959 		goto out;
2960 
2961 	while (1) {
2962 		struct waiting_dir_move *dm;
2963 
2964 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2965 			ret = btrfs_next_leaf(root, path);
2966 			if (ret < 0)
2967 				goto out;
2968 			else if (ret > 0)
2969 				break;
2970 			continue;
2971 		}
2972 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2973 				      path->slots[0]);
2974 		if (found_key.objectid != key.objectid ||
2975 		    found_key.type != key.type)
2976 			break;
2977 
2978 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2979 				struct btrfs_dir_item);
2980 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2981 
2982 		dm = get_waiting_dir_move(sctx, loc.objectid);
2983 		if (dm) {
2984 			struct orphan_dir_info *odi;
2985 
2986 			odi = add_orphan_dir_info(sctx, dir);
2987 			if (IS_ERR(odi)) {
2988 				ret = PTR_ERR(odi);
2989 				goto out;
2990 			}
2991 			odi->gen = dir_gen;
2992 			dm->rmdir_ino = dir;
2993 			ret = 0;
2994 			goto out;
2995 		}
2996 
2997 		if (loc.objectid > send_progress) {
2998 			struct orphan_dir_info *odi;
2999 
3000 			odi = get_orphan_dir_info(sctx, dir);
3001 			free_orphan_dir_info(sctx, odi);
3002 			ret = 0;
3003 			goto out;
3004 		}
3005 
3006 		path->slots[0]++;
3007 	}
3008 
3009 	ret = 1;
3010 
3011 out:
3012 	btrfs_free_path(path);
3013 	return ret;
3014 }
3015 
3016 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3017 {
3018 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3019 
3020 	return entry != NULL;
3021 }
3022 
3023 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3024 {
3025 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3026 	struct rb_node *parent = NULL;
3027 	struct waiting_dir_move *entry, *dm;
3028 
3029 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3030 	if (!dm)
3031 		return -ENOMEM;
3032 	dm->ino = ino;
3033 	dm->rmdir_ino = 0;
3034 	dm->orphanized = orphanized;
3035 
3036 	while (*p) {
3037 		parent = *p;
3038 		entry = rb_entry(parent, struct waiting_dir_move, node);
3039 		if (ino < entry->ino) {
3040 			p = &(*p)->rb_left;
3041 		} else if (ino > entry->ino) {
3042 			p = &(*p)->rb_right;
3043 		} else {
3044 			kfree(dm);
3045 			return -EEXIST;
3046 		}
3047 	}
3048 
3049 	rb_link_node(&dm->node, parent, p);
3050 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3051 	return 0;
3052 }
3053 
3054 static struct waiting_dir_move *
3055 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3056 {
3057 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3058 	struct waiting_dir_move *entry;
3059 
3060 	while (n) {
3061 		entry = rb_entry(n, struct waiting_dir_move, node);
3062 		if (ino < entry->ino)
3063 			n = n->rb_left;
3064 		else if (ino > entry->ino)
3065 			n = n->rb_right;
3066 		else
3067 			return entry;
3068 	}
3069 	return NULL;
3070 }
3071 
3072 static void free_waiting_dir_move(struct send_ctx *sctx,
3073 				  struct waiting_dir_move *dm)
3074 {
3075 	if (!dm)
3076 		return;
3077 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3078 	kfree(dm);
3079 }
3080 
3081 static int add_pending_dir_move(struct send_ctx *sctx,
3082 				u64 ino,
3083 				u64 ino_gen,
3084 				u64 parent_ino,
3085 				struct list_head *new_refs,
3086 				struct list_head *deleted_refs,
3087 				const bool is_orphan)
3088 {
3089 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3090 	struct rb_node *parent = NULL;
3091 	struct pending_dir_move *entry = NULL, *pm;
3092 	struct recorded_ref *cur;
3093 	int exists = 0;
3094 	int ret;
3095 
3096 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3097 	if (!pm)
3098 		return -ENOMEM;
3099 	pm->parent_ino = parent_ino;
3100 	pm->ino = ino;
3101 	pm->gen = ino_gen;
3102 	INIT_LIST_HEAD(&pm->list);
3103 	INIT_LIST_HEAD(&pm->update_refs);
3104 	RB_CLEAR_NODE(&pm->node);
3105 
3106 	while (*p) {
3107 		parent = *p;
3108 		entry = rb_entry(parent, struct pending_dir_move, node);
3109 		if (parent_ino < entry->parent_ino) {
3110 			p = &(*p)->rb_left;
3111 		} else if (parent_ino > entry->parent_ino) {
3112 			p = &(*p)->rb_right;
3113 		} else {
3114 			exists = 1;
3115 			break;
3116 		}
3117 	}
3118 
3119 	list_for_each_entry(cur, deleted_refs, list) {
3120 		ret = dup_ref(cur, &pm->update_refs);
3121 		if (ret < 0)
3122 			goto out;
3123 	}
3124 	list_for_each_entry(cur, new_refs, list) {
3125 		ret = dup_ref(cur, &pm->update_refs);
3126 		if (ret < 0)
3127 			goto out;
3128 	}
3129 
3130 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3131 	if (ret)
3132 		goto out;
3133 
3134 	if (exists) {
3135 		list_add_tail(&pm->list, &entry->list);
3136 	} else {
3137 		rb_link_node(&pm->node, parent, p);
3138 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3139 	}
3140 	ret = 0;
3141 out:
3142 	if (ret) {
3143 		__free_recorded_refs(&pm->update_refs);
3144 		kfree(pm);
3145 	}
3146 	return ret;
3147 }
3148 
3149 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3150 						      u64 parent_ino)
3151 {
3152 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3153 	struct pending_dir_move *entry;
3154 
3155 	while (n) {
3156 		entry = rb_entry(n, struct pending_dir_move, node);
3157 		if (parent_ino < entry->parent_ino)
3158 			n = n->rb_left;
3159 		else if (parent_ino > entry->parent_ino)
3160 			n = n->rb_right;
3161 		else
3162 			return entry;
3163 	}
3164 	return NULL;
3165 }
3166 
3167 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3168 		     u64 ino, u64 gen, u64 *ancestor_ino)
3169 {
3170 	int ret = 0;
3171 	u64 parent_inode = 0;
3172 	u64 parent_gen = 0;
3173 	u64 start_ino = ino;
3174 
3175 	*ancestor_ino = 0;
3176 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3177 		fs_path_reset(name);
3178 
3179 		if (is_waiting_for_rm(sctx, ino))
3180 			break;
3181 		if (is_waiting_for_move(sctx, ino)) {
3182 			if (*ancestor_ino == 0)
3183 				*ancestor_ino = ino;
3184 			ret = get_first_ref(sctx->parent_root, ino,
3185 					    &parent_inode, &parent_gen, name);
3186 		} else {
3187 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3188 							&parent_inode,
3189 							&parent_gen, name);
3190 			if (ret > 0) {
3191 				ret = 0;
3192 				break;
3193 			}
3194 		}
3195 		if (ret < 0)
3196 			break;
3197 		if (parent_inode == start_ino) {
3198 			ret = 1;
3199 			if (*ancestor_ino == 0)
3200 				*ancestor_ino = ino;
3201 			break;
3202 		}
3203 		ino = parent_inode;
3204 		gen = parent_gen;
3205 	}
3206 	return ret;
3207 }
3208 
3209 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3210 {
3211 	struct fs_path *from_path = NULL;
3212 	struct fs_path *to_path = NULL;
3213 	struct fs_path *name = NULL;
3214 	u64 orig_progress = sctx->send_progress;
3215 	struct recorded_ref *cur;
3216 	u64 parent_ino, parent_gen;
3217 	struct waiting_dir_move *dm = NULL;
3218 	u64 rmdir_ino = 0;
3219 	u64 ancestor;
3220 	bool is_orphan;
3221 	int ret;
3222 
3223 	name = fs_path_alloc();
3224 	from_path = fs_path_alloc();
3225 	if (!name || !from_path) {
3226 		ret = -ENOMEM;
3227 		goto out;
3228 	}
3229 
3230 	dm = get_waiting_dir_move(sctx, pm->ino);
3231 	ASSERT(dm);
3232 	rmdir_ino = dm->rmdir_ino;
3233 	is_orphan = dm->orphanized;
3234 	free_waiting_dir_move(sctx, dm);
3235 
3236 	if (is_orphan) {
3237 		ret = gen_unique_name(sctx, pm->ino,
3238 				      pm->gen, from_path);
3239 	} else {
3240 		ret = get_first_ref(sctx->parent_root, pm->ino,
3241 				    &parent_ino, &parent_gen, name);
3242 		if (ret < 0)
3243 			goto out;
3244 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3245 				   from_path);
3246 		if (ret < 0)
3247 			goto out;
3248 		ret = fs_path_add_path(from_path, name);
3249 	}
3250 	if (ret < 0)
3251 		goto out;
3252 
3253 	sctx->send_progress = sctx->cur_ino + 1;
3254 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3255 	if (ret < 0)
3256 		goto out;
3257 	if (ret) {
3258 		LIST_HEAD(deleted_refs);
3259 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3260 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3261 					   &pm->update_refs, &deleted_refs,
3262 					   is_orphan);
3263 		if (ret < 0)
3264 			goto out;
3265 		if (rmdir_ino) {
3266 			dm = get_waiting_dir_move(sctx, pm->ino);
3267 			ASSERT(dm);
3268 			dm->rmdir_ino = rmdir_ino;
3269 		}
3270 		goto out;
3271 	}
3272 	fs_path_reset(name);
3273 	to_path = name;
3274 	name = NULL;
3275 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3276 	if (ret < 0)
3277 		goto out;
3278 
3279 	ret = send_rename(sctx, from_path, to_path);
3280 	if (ret < 0)
3281 		goto out;
3282 
3283 	if (rmdir_ino) {
3284 		struct orphan_dir_info *odi;
3285 
3286 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3287 		if (!odi) {
3288 			/* already deleted */
3289 			goto finish;
3290 		}
3291 		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
3292 		if (ret < 0)
3293 			goto out;
3294 		if (!ret)
3295 			goto finish;
3296 
3297 		name = fs_path_alloc();
3298 		if (!name) {
3299 			ret = -ENOMEM;
3300 			goto out;
3301 		}
3302 		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3303 		if (ret < 0)
3304 			goto out;
3305 		ret = send_rmdir(sctx, name);
3306 		if (ret < 0)
3307 			goto out;
3308 		free_orphan_dir_info(sctx, odi);
3309 	}
3310 
3311 finish:
3312 	ret = send_utimes(sctx, pm->ino, pm->gen);
3313 	if (ret < 0)
3314 		goto out;
3315 
3316 	/*
3317 	 * After rename/move, need to update the utimes of both new parent(s)
3318 	 * and old parent(s).
3319 	 */
3320 	list_for_each_entry(cur, &pm->update_refs, list) {
3321 		/*
3322 		 * The parent inode might have been deleted in the send snapshot
3323 		 */
3324 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3325 				     NULL, NULL, NULL, NULL, NULL);
3326 		if (ret == -ENOENT) {
3327 			ret = 0;
3328 			continue;
3329 		}
3330 		if (ret < 0)
3331 			goto out;
3332 
3333 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3334 		if (ret < 0)
3335 			goto out;
3336 	}
3337 
3338 out:
3339 	fs_path_free(name);
3340 	fs_path_free(from_path);
3341 	fs_path_free(to_path);
3342 	sctx->send_progress = orig_progress;
3343 
3344 	return ret;
3345 }
3346 
3347 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3348 {
3349 	if (!list_empty(&m->list))
3350 		list_del(&m->list);
3351 	if (!RB_EMPTY_NODE(&m->node))
3352 		rb_erase(&m->node, &sctx->pending_dir_moves);
3353 	__free_recorded_refs(&m->update_refs);
3354 	kfree(m);
3355 }
3356 
3357 static void tail_append_pending_moves(struct pending_dir_move *moves,
3358 				      struct list_head *stack)
3359 {
3360 	if (list_empty(&moves->list)) {
3361 		list_add_tail(&moves->list, stack);
3362 	} else {
3363 		LIST_HEAD(list);
3364 		list_splice_init(&moves->list, &list);
3365 		list_add_tail(&moves->list, stack);
3366 		list_splice_tail(&list, stack);
3367 	}
3368 }
3369 
3370 static int apply_children_dir_moves(struct send_ctx *sctx)
3371 {
3372 	struct pending_dir_move *pm;
3373 	struct list_head stack;
3374 	u64 parent_ino = sctx->cur_ino;
3375 	int ret = 0;
3376 
3377 	pm = get_pending_dir_moves(sctx, parent_ino);
3378 	if (!pm)
3379 		return 0;
3380 
3381 	INIT_LIST_HEAD(&stack);
3382 	tail_append_pending_moves(pm, &stack);
3383 
3384 	while (!list_empty(&stack)) {
3385 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3386 		parent_ino = pm->ino;
3387 		ret = apply_dir_move(sctx, pm);
3388 		free_pending_move(sctx, pm);
3389 		if (ret)
3390 			goto out;
3391 		pm = get_pending_dir_moves(sctx, parent_ino);
3392 		if (pm)
3393 			tail_append_pending_moves(pm, &stack);
3394 	}
3395 	return 0;
3396 
3397 out:
3398 	while (!list_empty(&stack)) {
3399 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3400 		free_pending_move(sctx, pm);
3401 	}
3402 	return ret;
3403 }
3404 
3405 /*
3406  * We might need to delay a directory rename even when no ancestor directory
3407  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3408  * renamed. This happens when we rename a directory to the old name (the name
3409  * in the parent root) of some other unrelated directory that got its rename
3410  * delayed due to some ancestor with higher number that got renamed.
3411  *
3412  * Example:
3413  *
3414  * Parent snapshot:
3415  * .                                       (ino 256)
3416  * |---- a/                                (ino 257)
3417  * |     |---- file                        (ino 260)
3418  * |
3419  * |---- b/                                (ino 258)
3420  * |---- c/                                (ino 259)
3421  *
3422  * Send snapshot:
3423  * .                                       (ino 256)
3424  * |---- a/                                (ino 258)
3425  * |---- x/                                (ino 259)
3426  *       |---- y/                          (ino 257)
3427  *             |----- file                 (ino 260)
3428  *
3429  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3430  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3431  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3432  * must issue is:
3433  *
3434  * 1 - rename 259 from 'c' to 'x'
3435  * 2 - rename 257 from 'a' to 'x/y'
3436  * 3 - rename 258 from 'b' to 'a'
3437  *
3438  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3439  * be done right away and < 0 on error.
3440  */
3441 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3442 				  struct recorded_ref *parent_ref,
3443 				  const bool is_orphan)
3444 {
3445 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3446 	struct btrfs_path *path;
3447 	struct btrfs_key key;
3448 	struct btrfs_key di_key;
3449 	struct btrfs_dir_item *di;
3450 	u64 left_gen;
3451 	u64 right_gen;
3452 	int ret = 0;
3453 	struct waiting_dir_move *wdm;
3454 
3455 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3456 		return 0;
3457 
3458 	path = alloc_path_for_send();
3459 	if (!path)
3460 		return -ENOMEM;
3461 
3462 	key.objectid = parent_ref->dir;
3463 	key.type = BTRFS_DIR_ITEM_KEY;
3464 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3465 
3466 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3467 	if (ret < 0) {
3468 		goto out;
3469 	} else if (ret > 0) {
3470 		ret = 0;
3471 		goto out;
3472 	}
3473 
3474 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3475 				       parent_ref->name_len);
3476 	if (!di) {
3477 		ret = 0;
3478 		goto out;
3479 	}
3480 	/*
3481 	 * di_key.objectid has the number of the inode that has a dentry in the
3482 	 * parent directory with the same name that sctx->cur_ino is being
3483 	 * renamed to. We need to check if that inode is in the send root as
3484 	 * well and if it is currently marked as an inode with a pending rename,
3485 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3486 	 * that it happens after that other inode is renamed.
3487 	 */
3488 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3489 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3490 		ret = 0;
3491 		goto out;
3492 	}
3493 
3494 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3495 			     &left_gen, NULL, NULL, NULL, NULL);
3496 	if (ret < 0)
3497 		goto out;
3498 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3499 			     &right_gen, NULL, NULL, NULL, NULL);
3500 	if (ret < 0) {
3501 		if (ret == -ENOENT)
3502 			ret = 0;
3503 		goto out;
3504 	}
3505 
3506 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3507 	if (right_gen != left_gen) {
3508 		ret = 0;
3509 		goto out;
3510 	}
3511 
3512 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3513 	if (wdm && !wdm->orphanized) {
3514 		ret = add_pending_dir_move(sctx,
3515 					   sctx->cur_ino,
3516 					   sctx->cur_inode_gen,
3517 					   di_key.objectid,
3518 					   &sctx->new_refs,
3519 					   &sctx->deleted_refs,
3520 					   is_orphan);
3521 		if (!ret)
3522 			ret = 1;
3523 	}
3524 out:
3525 	btrfs_free_path(path);
3526 	return ret;
3527 }
3528 
3529 /*
3530  * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3531  * Return 1 if true, 0 if false and < 0 on error.
3532  */
3533 static int is_ancestor(struct btrfs_root *root,
3534 		       const u64 ino1,
3535 		       const u64 ino1_gen,
3536 		       const u64 ino2,
3537 		       struct fs_path *fs_path)
3538 {
3539 	u64 ino = ino2;
3540 	bool free_path = false;
3541 	int ret = 0;
3542 
3543 	if (!fs_path) {
3544 		fs_path = fs_path_alloc();
3545 		if (!fs_path)
3546 			return -ENOMEM;
3547 		free_path = true;
3548 	}
3549 
3550 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3551 		u64 parent;
3552 		u64 parent_gen;
3553 
3554 		fs_path_reset(fs_path);
3555 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3556 		if (ret < 0) {
3557 			if (ret == -ENOENT && ino == ino2)
3558 				ret = 0;
3559 			goto out;
3560 		}
3561 		if (parent == ino1) {
3562 			ret = parent_gen == ino1_gen ? 1 : 0;
3563 			goto out;
3564 		}
3565 		ino = parent;
3566 	}
3567  out:
3568 	if (free_path)
3569 		fs_path_free(fs_path);
3570 	return ret;
3571 }
3572 
3573 static int wait_for_parent_move(struct send_ctx *sctx,
3574 				struct recorded_ref *parent_ref,
3575 				const bool is_orphan)
3576 {
3577 	int ret = 0;
3578 	u64 ino = parent_ref->dir;
3579 	u64 ino_gen = parent_ref->dir_gen;
3580 	u64 parent_ino_before, parent_ino_after;
3581 	struct fs_path *path_before = NULL;
3582 	struct fs_path *path_after = NULL;
3583 	int len1, len2;
3584 
3585 	path_after = fs_path_alloc();
3586 	path_before = fs_path_alloc();
3587 	if (!path_after || !path_before) {
3588 		ret = -ENOMEM;
3589 		goto out;
3590 	}
3591 
3592 	/*
3593 	 * Our current directory inode may not yet be renamed/moved because some
3594 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3595 	 * such ancestor exists and make sure our own rename/move happens after
3596 	 * that ancestor is processed to avoid path build infinite loops (done
3597 	 * at get_cur_path()).
3598 	 */
3599 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3600 		u64 parent_ino_after_gen;
3601 
3602 		if (is_waiting_for_move(sctx, ino)) {
3603 			/*
3604 			 * If the current inode is an ancestor of ino in the
3605 			 * parent root, we need to delay the rename of the
3606 			 * current inode, otherwise don't delayed the rename
3607 			 * because we can end up with a circular dependency
3608 			 * of renames, resulting in some directories never
3609 			 * getting the respective rename operations issued in
3610 			 * the send stream or getting into infinite path build
3611 			 * loops.
3612 			 */
3613 			ret = is_ancestor(sctx->parent_root,
3614 					  sctx->cur_ino, sctx->cur_inode_gen,
3615 					  ino, path_before);
3616 			if (ret)
3617 				break;
3618 		}
3619 
3620 		fs_path_reset(path_before);
3621 		fs_path_reset(path_after);
3622 
3623 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3624 				    &parent_ino_after_gen, path_after);
3625 		if (ret < 0)
3626 			goto out;
3627 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3628 				    NULL, path_before);
3629 		if (ret < 0 && ret != -ENOENT) {
3630 			goto out;
3631 		} else if (ret == -ENOENT) {
3632 			ret = 0;
3633 			break;
3634 		}
3635 
3636 		len1 = fs_path_len(path_before);
3637 		len2 = fs_path_len(path_after);
3638 		if (ino > sctx->cur_ino &&
3639 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3640 		     memcmp(path_before->start, path_after->start, len1))) {
3641 			u64 parent_ino_gen;
3642 
3643 			ret = get_inode_info(sctx->parent_root, ino, NULL,
3644 					     &parent_ino_gen, NULL, NULL, NULL,
3645 					     NULL);
3646 			if (ret < 0)
3647 				goto out;
3648 			if (ino_gen == parent_ino_gen) {
3649 				ret = 1;
3650 				break;
3651 			}
3652 		}
3653 		ino = parent_ino_after;
3654 		ino_gen = parent_ino_after_gen;
3655 	}
3656 
3657 out:
3658 	fs_path_free(path_before);
3659 	fs_path_free(path_after);
3660 
3661 	if (ret == 1) {
3662 		ret = add_pending_dir_move(sctx,
3663 					   sctx->cur_ino,
3664 					   sctx->cur_inode_gen,
3665 					   ino,
3666 					   &sctx->new_refs,
3667 					   &sctx->deleted_refs,
3668 					   is_orphan);
3669 		if (!ret)
3670 			ret = 1;
3671 	}
3672 
3673 	return ret;
3674 }
3675 
3676 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3677 {
3678 	int ret;
3679 	struct fs_path *new_path;
3680 
3681 	/*
3682 	 * Our reference's name member points to its full_path member string, so
3683 	 * we use here a new path.
3684 	 */
3685 	new_path = fs_path_alloc();
3686 	if (!new_path)
3687 		return -ENOMEM;
3688 
3689 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3690 	if (ret < 0) {
3691 		fs_path_free(new_path);
3692 		return ret;
3693 	}
3694 	ret = fs_path_add(new_path, ref->name, ref->name_len);
3695 	if (ret < 0) {
3696 		fs_path_free(new_path);
3697 		return ret;
3698 	}
3699 
3700 	fs_path_free(ref->full_path);
3701 	set_ref_path(ref, new_path);
3702 
3703 	return 0;
3704 }
3705 
3706 /*
3707  * This does all the move/link/unlink/rmdir magic.
3708  */
3709 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3710 {
3711 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3712 	int ret = 0;
3713 	struct recorded_ref *cur;
3714 	struct recorded_ref *cur2;
3715 	struct list_head check_dirs;
3716 	struct fs_path *valid_path = NULL;
3717 	u64 ow_inode = 0;
3718 	u64 ow_gen;
3719 	u64 ow_mode;
3720 	int did_overwrite = 0;
3721 	int is_orphan = 0;
3722 	u64 last_dir_ino_rm = 0;
3723 	bool can_rename = true;
3724 	bool orphanized_dir = false;
3725 	bool orphanized_ancestor = false;
3726 
3727 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3728 
3729 	/*
3730 	 * This should never happen as the root dir always has the same ref
3731 	 * which is always '..'
3732 	 */
3733 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3734 	INIT_LIST_HEAD(&check_dirs);
3735 
3736 	valid_path = fs_path_alloc();
3737 	if (!valid_path) {
3738 		ret = -ENOMEM;
3739 		goto out;
3740 	}
3741 
3742 	/*
3743 	 * First, check if the first ref of the current inode was overwritten
3744 	 * before. If yes, we know that the current inode was already orphanized
3745 	 * and thus use the orphan name. If not, we can use get_cur_path to
3746 	 * get the path of the first ref as it would like while receiving at
3747 	 * this point in time.
3748 	 * New inodes are always orphan at the beginning, so force to use the
3749 	 * orphan name in this case.
3750 	 * The first ref is stored in valid_path and will be updated if it
3751 	 * gets moved around.
3752 	 */
3753 	if (!sctx->cur_inode_new) {
3754 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3755 				sctx->cur_inode_gen);
3756 		if (ret < 0)
3757 			goto out;
3758 		if (ret)
3759 			did_overwrite = 1;
3760 	}
3761 	if (sctx->cur_inode_new || did_overwrite) {
3762 		ret = gen_unique_name(sctx, sctx->cur_ino,
3763 				sctx->cur_inode_gen, valid_path);
3764 		if (ret < 0)
3765 			goto out;
3766 		is_orphan = 1;
3767 	} else {
3768 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3769 				valid_path);
3770 		if (ret < 0)
3771 			goto out;
3772 	}
3773 
3774 	list_for_each_entry(cur, &sctx->new_refs, list) {
3775 		/*
3776 		 * We may have refs where the parent directory does not exist
3777 		 * yet. This happens if the parent directories inum is higher
3778 		 * the the current inum. To handle this case, we create the
3779 		 * parent directory out of order. But we need to check if this
3780 		 * did already happen before due to other refs in the same dir.
3781 		 */
3782 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3783 		if (ret < 0)
3784 			goto out;
3785 		if (ret == inode_state_will_create) {
3786 			ret = 0;
3787 			/*
3788 			 * First check if any of the current inodes refs did
3789 			 * already create the dir.
3790 			 */
3791 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3792 				if (cur == cur2)
3793 					break;
3794 				if (cur2->dir == cur->dir) {
3795 					ret = 1;
3796 					break;
3797 				}
3798 			}
3799 
3800 			/*
3801 			 * If that did not happen, check if a previous inode
3802 			 * did already create the dir.
3803 			 */
3804 			if (!ret)
3805 				ret = did_create_dir(sctx, cur->dir);
3806 			if (ret < 0)
3807 				goto out;
3808 			if (!ret) {
3809 				ret = send_create_inode(sctx, cur->dir);
3810 				if (ret < 0)
3811 					goto out;
3812 			}
3813 		}
3814 
3815 		/*
3816 		 * Check if this new ref would overwrite the first ref of
3817 		 * another unprocessed inode. If yes, orphanize the
3818 		 * overwritten inode. If we find an overwritten ref that is
3819 		 * not the first ref, simply unlink it.
3820 		 */
3821 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3822 				cur->name, cur->name_len,
3823 				&ow_inode, &ow_gen, &ow_mode);
3824 		if (ret < 0)
3825 			goto out;
3826 		if (ret) {
3827 			ret = is_first_ref(sctx->parent_root,
3828 					   ow_inode, cur->dir, cur->name,
3829 					   cur->name_len);
3830 			if (ret < 0)
3831 				goto out;
3832 			if (ret) {
3833 				struct name_cache_entry *nce;
3834 				struct waiting_dir_move *wdm;
3835 
3836 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3837 						cur->full_path);
3838 				if (ret < 0)
3839 					goto out;
3840 				if (S_ISDIR(ow_mode))
3841 					orphanized_dir = true;
3842 
3843 				/*
3844 				 * If ow_inode has its rename operation delayed
3845 				 * make sure that its orphanized name is used in
3846 				 * the source path when performing its rename
3847 				 * operation.
3848 				 */
3849 				if (is_waiting_for_move(sctx, ow_inode)) {
3850 					wdm = get_waiting_dir_move(sctx,
3851 								   ow_inode);
3852 					ASSERT(wdm);
3853 					wdm->orphanized = true;
3854 				}
3855 
3856 				/*
3857 				 * Make sure we clear our orphanized inode's
3858 				 * name from the name cache. This is because the
3859 				 * inode ow_inode might be an ancestor of some
3860 				 * other inode that will be orphanized as well
3861 				 * later and has an inode number greater than
3862 				 * sctx->send_progress. We need to prevent
3863 				 * future name lookups from using the old name
3864 				 * and get instead the orphan name.
3865 				 */
3866 				nce = name_cache_search(sctx, ow_inode, ow_gen);
3867 				if (nce) {
3868 					name_cache_delete(sctx, nce);
3869 					kfree(nce);
3870 				}
3871 
3872 				/*
3873 				 * ow_inode might currently be an ancestor of
3874 				 * cur_ino, therefore compute valid_path (the
3875 				 * current path of cur_ino) again because it
3876 				 * might contain the pre-orphanization name of
3877 				 * ow_inode, which is no longer valid.
3878 				 */
3879 				ret = is_ancestor(sctx->parent_root,
3880 						  ow_inode, ow_gen,
3881 						  sctx->cur_ino, NULL);
3882 				if (ret > 0) {
3883 					orphanized_ancestor = true;
3884 					fs_path_reset(valid_path);
3885 					ret = get_cur_path(sctx, sctx->cur_ino,
3886 							   sctx->cur_inode_gen,
3887 							   valid_path);
3888 				}
3889 				if (ret < 0)
3890 					goto out;
3891 			} else {
3892 				ret = send_unlink(sctx, cur->full_path);
3893 				if (ret < 0)
3894 					goto out;
3895 			}
3896 		}
3897 
3898 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3899 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3900 			if (ret < 0)
3901 				goto out;
3902 			if (ret == 1) {
3903 				can_rename = false;
3904 				*pending_move = 1;
3905 			}
3906 		}
3907 
3908 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3909 		    can_rename) {
3910 			ret = wait_for_parent_move(sctx, cur, is_orphan);
3911 			if (ret < 0)
3912 				goto out;
3913 			if (ret == 1) {
3914 				can_rename = false;
3915 				*pending_move = 1;
3916 			}
3917 		}
3918 
3919 		/*
3920 		 * link/move the ref to the new place. If we have an orphan
3921 		 * inode, move it and update valid_path. If not, link or move
3922 		 * it depending on the inode mode.
3923 		 */
3924 		if (is_orphan && can_rename) {
3925 			ret = send_rename(sctx, valid_path, cur->full_path);
3926 			if (ret < 0)
3927 				goto out;
3928 			is_orphan = 0;
3929 			ret = fs_path_copy(valid_path, cur->full_path);
3930 			if (ret < 0)
3931 				goto out;
3932 		} else if (can_rename) {
3933 			if (S_ISDIR(sctx->cur_inode_mode)) {
3934 				/*
3935 				 * Dirs can't be linked, so move it. For moved
3936 				 * dirs, we always have one new and one deleted
3937 				 * ref. The deleted ref is ignored later.
3938 				 */
3939 				ret = send_rename(sctx, valid_path,
3940 						  cur->full_path);
3941 				if (!ret)
3942 					ret = fs_path_copy(valid_path,
3943 							   cur->full_path);
3944 				if (ret < 0)
3945 					goto out;
3946 			} else {
3947 				/*
3948 				 * We might have previously orphanized an inode
3949 				 * which is an ancestor of our current inode,
3950 				 * so our reference's full path, which was
3951 				 * computed before any such orphanizations, must
3952 				 * be updated.
3953 				 */
3954 				if (orphanized_dir) {
3955 					ret = update_ref_path(sctx, cur);
3956 					if (ret < 0)
3957 						goto out;
3958 				}
3959 				ret = send_link(sctx, cur->full_path,
3960 						valid_path);
3961 				if (ret < 0)
3962 					goto out;
3963 			}
3964 		}
3965 		ret = dup_ref(cur, &check_dirs);
3966 		if (ret < 0)
3967 			goto out;
3968 	}
3969 
3970 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3971 		/*
3972 		 * Check if we can already rmdir the directory. If not,
3973 		 * orphanize it. For every dir item inside that gets deleted
3974 		 * later, we do this check again and rmdir it then if possible.
3975 		 * See the use of check_dirs for more details.
3976 		 */
3977 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3978 				sctx->cur_ino);
3979 		if (ret < 0)
3980 			goto out;
3981 		if (ret) {
3982 			ret = send_rmdir(sctx, valid_path);
3983 			if (ret < 0)
3984 				goto out;
3985 		} else if (!is_orphan) {
3986 			ret = orphanize_inode(sctx, sctx->cur_ino,
3987 					sctx->cur_inode_gen, valid_path);
3988 			if (ret < 0)
3989 				goto out;
3990 			is_orphan = 1;
3991 		}
3992 
3993 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3994 			ret = dup_ref(cur, &check_dirs);
3995 			if (ret < 0)
3996 				goto out;
3997 		}
3998 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
3999 		   !list_empty(&sctx->deleted_refs)) {
4000 		/*
4001 		 * We have a moved dir. Add the old parent to check_dirs
4002 		 */
4003 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4004 				list);
4005 		ret = dup_ref(cur, &check_dirs);
4006 		if (ret < 0)
4007 			goto out;
4008 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4009 		/*
4010 		 * We have a non dir inode. Go through all deleted refs and
4011 		 * unlink them if they were not already overwritten by other
4012 		 * inodes.
4013 		 */
4014 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4015 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4016 					sctx->cur_ino, sctx->cur_inode_gen,
4017 					cur->name, cur->name_len);
4018 			if (ret < 0)
4019 				goto out;
4020 			if (!ret) {
4021 				/*
4022 				 * If we orphanized any ancestor before, we need
4023 				 * to recompute the full path for deleted names,
4024 				 * since any such path was computed before we
4025 				 * processed any references and orphanized any
4026 				 * ancestor inode.
4027 				 */
4028 				if (orphanized_ancestor) {
4029 					ret = update_ref_path(sctx, cur);
4030 					if (ret < 0)
4031 						goto out;
4032 				}
4033 				ret = send_unlink(sctx, cur->full_path);
4034 				if (ret < 0)
4035 					goto out;
4036 			}
4037 			ret = dup_ref(cur, &check_dirs);
4038 			if (ret < 0)
4039 				goto out;
4040 		}
4041 		/*
4042 		 * If the inode is still orphan, unlink the orphan. This may
4043 		 * happen when a previous inode did overwrite the first ref
4044 		 * of this inode and no new refs were added for the current
4045 		 * inode. Unlinking does not mean that the inode is deleted in
4046 		 * all cases. There may still be links to this inode in other
4047 		 * places.
4048 		 */
4049 		if (is_orphan) {
4050 			ret = send_unlink(sctx, valid_path);
4051 			if (ret < 0)
4052 				goto out;
4053 		}
4054 	}
4055 
4056 	/*
4057 	 * We did collect all parent dirs where cur_inode was once located. We
4058 	 * now go through all these dirs and check if they are pending for
4059 	 * deletion and if it's finally possible to perform the rmdir now.
4060 	 * We also update the inode stats of the parent dirs here.
4061 	 */
4062 	list_for_each_entry(cur, &check_dirs, list) {
4063 		/*
4064 		 * In case we had refs into dirs that were not processed yet,
4065 		 * we don't need to do the utime and rmdir logic for these dirs.
4066 		 * The dir will be processed later.
4067 		 */
4068 		if (cur->dir > sctx->cur_ino)
4069 			continue;
4070 
4071 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4072 		if (ret < 0)
4073 			goto out;
4074 
4075 		if (ret == inode_state_did_create ||
4076 		    ret == inode_state_no_change) {
4077 			/* TODO delayed utimes */
4078 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4079 			if (ret < 0)
4080 				goto out;
4081 		} else if (ret == inode_state_did_delete &&
4082 			   cur->dir != last_dir_ino_rm) {
4083 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4084 					sctx->cur_ino);
4085 			if (ret < 0)
4086 				goto out;
4087 			if (ret) {
4088 				ret = get_cur_path(sctx, cur->dir,
4089 						   cur->dir_gen, valid_path);
4090 				if (ret < 0)
4091 					goto out;
4092 				ret = send_rmdir(sctx, valid_path);
4093 				if (ret < 0)
4094 					goto out;
4095 				last_dir_ino_rm = cur->dir;
4096 			}
4097 		}
4098 	}
4099 
4100 	ret = 0;
4101 
4102 out:
4103 	__free_recorded_refs(&check_dirs);
4104 	free_recorded_refs(sctx);
4105 	fs_path_free(valid_path);
4106 	return ret;
4107 }
4108 
4109 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
4110 		      struct fs_path *name, void *ctx, struct list_head *refs)
4111 {
4112 	int ret = 0;
4113 	struct send_ctx *sctx = ctx;
4114 	struct fs_path *p;
4115 	u64 gen;
4116 
4117 	p = fs_path_alloc();
4118 	if (!p)
4119 		return -ENOMEM;
4120 
4121 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4122 			NULL, NULL);
4123 	if (ret < 0)
4124 		goto out;
4125 
4126 	ret = get_cur_path(sctx, dir, gen, p);
4127 	if (ret < 0)
4128 		goto out;
4129 	ret = fs_path_add_path(p, name);
4130 	if (ret < 0)
4131 		goto out;
4132 
4133 	ret = __record_ref(refs, dir, gen, p);
4134 
4135 out:
4136 	if (ret)
4137 		fs_path_free(p);
4138 	return ret;
4139 }
4140 
4141 static int __record_new_ref(int num, u64 dir, int index,
4142 			    struct fs_path *name,
4143 			    void *ctx)
4144 {
4145 	struct send_ctx *sctx = ctx;
4146 	return record_ref(sctx->send_root, num, dir, index, name,
4147 			  ctx, &sctx->new_refs);
4148 }
4149 
4150 
4151 static int __record_deleted_ref(int num, u64 dir, int index,
4152 				struct fs_path *name,
4153 				void *ctx)
4154 {
4155 	struct send_ctx *sctx = ctx;
4156 	return record_ref(sctx->parent_root, num, dir, index, name,
4157 			  ctx, &sctx->deleted_refs);
4158 }
4159 
4160 static int record_new_ref(struct send_ctx *sctx)
4161 {
4162 	int ret;
4163 
4164 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4165 				sctx->cmp_key, 0, __record_new_ref, sctx);
4166 	if (ret < 0)
4167 		goto out;
4168 	ret = 0;
4169 
4170 out:
4171 	return ret;
4172 }
4173 
4174 static int record_deleted_ref(struct send_ctx *sctx)
4175 {
4176 	int ret;
4177 
4178 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4179 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4180 	if (ret < 0)
4181 		goto out;
4182 	ret = 0;
4183 
4184 out:
4185 	return ret;
4186 }
4187 
4188 struct find_ref_ctx {
4189 	u64 dir;
4190 	u64 dir_gen;
4191 	struct btrfs_root *root;
4192 	struct fs_path *name;
4193 	int found_idx;
4194 };
4195 
4196 static int __find_iref(int num, u64 dir, int index,
4197 		       struct fs_path *name,
4198 		       void *ctx_)
4199 {
4200 	struct find_ref_ctx *ctx = ctx_;
4201 	u64 dir_gen;
4202 	int ret;
4203 
4204 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4205 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4206 		/*
4207 		 * To avoid doing extra lookups we'll only do this if everything
4208 		 * else matches.
4209 		 */
4210 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4211 				     NULL, NULL, NULL);
4212 		if (ret)
4213 			return ret;
4214 		if (dir_gen != ctx->dir_gen)
4215 			return 0;
4216 		ctx->found_idx = num;
4217 		return 1;
4218 	}
4219 	return 0;
4220 }
4221 
4222 static int find_iref(struct btrfs_root *root,
4223 		     struct btrfs_path *path,
4224 		     struct btrfs_key *key,
4225 		     u64 dir, u64 dir_gen, struct fs_path *name)
4226 {
4227 	int ret;
4228 	struct find_ref_ctx ctx;
4229 
4230 	ctx.dir = dir;
4231 	ctx.name = name;
4232 	ctx.dir_gen = dir_gen;
4233 	ctx.found_idx = -1;
4234 	ctx.root = root;
4235 
4236 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4237 	if (ret < 0)
4238 		return ret;
4239 
4240 	if (ctx.found_idx == -1)
4241 		return -ENOENT;
4242 
4243 	return ctx.found_idx;
4244 }
4245 
4246 static int __record_changed_new_ref(int num, u64 dir, int index,
4247 				    struct fs_path *name,
4248 				    void *ctx)
4249 {
4250 	u64 dir_gen;
4251 	int ret;
4252 	struct send_ctx *sctx = ctx;
4253 
4254 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4255 			     NULL, NULL, NULL);
4256 	if (ret)
4257 		return ret;
4258 
4259 	ret = find_iref(sctx->parent_root, sctx->right_path,
4260 			sctx->cmp_key, dir, dir_gen, name);
4261 	if (ret == -ENOENT)
4262 		ret = __record_new_ref(num, dir, index, name, sctx);
4263 	else if (ret > 0)
4264 		ret = 0;
4265 
4266 	return ret;
4267 }
4268 
4269 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4270 					struct fs_path *name,
4271 					void *ctx)
4272 {
4273 	u64 dir_gen;
4274 	int ret;
4275 	struct send_ctx *sctx = ctx;
4276 
4277 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4278 			     NULL, NULL, NULL);
4279 	if (ret)
4280 		return ret;
4281 
4282 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4283 			dir, dir_gen, name);
4284 	if (ret == -ENOENT)
4285 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4286 	else if (ret > 0)
4287 		ret = 0;
4288 
4289 	return ret;
4290 }
4291 
4292 static int record_changed_ref(struct send_ctx *sctx)
4293 {
4294 	int ret = 0;
4295 
4296 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4297 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4298 	if (ret < 0)
4299 		goto out;
4300 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4301 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4302 	if (ret < 0)
4303 		goto out;
4304 	ret = 0;
4305 
4306 out:
4307 	return ret;
4308 }
4309 
4310 /*
4311  * Record and process all refs at once. Needed when an inode changes the
4312  * generation number, which means that it was deleted and recreated.
4313  */
4314 static int process_all_refs(struct send_ctx *sctx,
4315 			    enum btrfs_compare_tree_result cmd)
4316 {
4317 	int ret;
4318 	struct btrfs_root *root;
4319 	struct btrfs_path *path;
4320 	struct btrfs_key key;
4321 	struct btrfs_key found_key;
4322 	struct extent_buffer *eb;
4323 	int slot;
4324 	iterate_inode_ref_t cb;
4325 	int pending_move = 0;
4326 
4327 	path = alloc_path_for_send();
4328 	if (!path)
4329 		return -ENOMEM;
4330 
4331 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4332 		root = sctx->send_root;
4333 		cb = __record_new_ref;
4334 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4335 		root = sctx->parent_root;
4336 		cb = __record_deleted_ref;
4337 	} else {
4338 		btrfs_err(sctx->send_root->fs_info,
4339 				"Wrong command %d in process_all_refs", cmd);
4340 		ret = -EINVAL;
4341 		goto out;
4342 	}
4343 
4344 	key.objectid = sctx->cmp_key->objectid;
4345 	key.type = BTRFS_INODE_REF_KEY;
4346 	key.offset = 0;
4347 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4348 	if (ret < 0)
4349 		goto out;
4350 
4351 	while (1) {
4352 		eb = path->nodes[0];
4353 		slot = path->slots[0];
4354 		if (slot >= btrfs_header_nritems(eb)) {
4355 			ret = btrfs_next_leaf(root, path);
4356 			if (ret < 0)
4357 				goto out;
4358 			else if (ret > 0)
4359 				break;
4360 			continue;
4361 		}
4362 
4363 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4364 
4365 		if (found_key.objectid != key.objectid ||
4366 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4367 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4368 			break;
4369 
4370 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4371 		if (ret < 0)
4372 			goto out;
4373 
4374 		path->slots[0]++;
4375 	}
4376 	btrfs_release_path(path);
4377 
4378 	/*
4379 	 * We don't actually care about pending_move as we are simply
4380 	 * re-creating this inode and will be rename'ing it into place once we
4381 	 * rename the parent directory.
4382 	 */
4383 	ret = process_recorded_refs(sctx, &pending_move);
4384 out:
4385 	btrfs_free_path(path);
4386 	return ret;
4387 }
4388 
4389 static int send_set_xattr(struct send_ctx *sctx,
4390 			  struct fs_path *path,
4391 			  const char *name, int name_len,
4392 			  const char *data, int data_len)
4393 {
4394 	int ret = 0;
4395 
4396 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4397 	if (ret < 0)
4398 		goto out;
4399 
4400 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4401 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4402 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4403 
4404 	ret = send_cmd(sctx);
4405 
4406 tlv_put_failure:
4407 out:
4408 	return ret;
4409 }
4410 
4411 static int send_remove_xattr(struct send_ctx *sctx,
4412 			  struct fs_path *path,
4413 			  const char *name, int name_len)
4414 {
4415 	int ret = 0;
4416 
4417 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4418 	if (ret < 0)
4419 		goto out;
4420 
4421 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4422 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4423 
4424 	ret = send_cmd(sctx);
4425 
4426 tlv_put_failure:
4427 out:
4428 	return ret;
4429 }
4430 
4431 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4432 			       const char *name, int name_len,
4433 			       const char *data, int data_len,
4434 			       u8 type, void *ctx)
4435 {
4436 	int ret;
4437 	struct send_ctx *sctx = ctx;
4438 	struct fs_path *p;
4439 	struct posix_acl_xattr_header dummy_acl;
4440 
4441 	p = fs_path_alloc();
4442 	if (!p)
4443 		return -ENOMEM;
4444 
4445 	/*
4446 	 * This hack is needed because empty acls are stored as zero byte
4447 	 * data in xattrs. Problem with that is, that receiving these zero byte
4448 	 * acls will fail later. To fix this, we send a dummy acl list that
4449 	 * only contains the version number and no entries.
4450 	 */
4451 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4452 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4453 		if (data_len == 0) {
4454 			dummy_acl.a_version =
4455 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4456 			data = (char *)&dummy_acl;
4457 			data_len = sizeof(dummy_acl);
4458 		}
4459 	}
4460 
4461 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4462 	if (ret < 0)
4463 		goto out;
4464 
4465 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4466 
4467 out:
4468 	fs_path_free(p);
4469 	return ret;
4470 }
4471 
4472 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4473 				   const char *name, int name_len,
4474 				   const char *data, int data_len,
4475 				   u8 type, void *ctx)
4476 {
4477 	int ret;
4478 	struct send_ctx *sctx = ctx;
4479 	struct fs_path *p;
4480 
4481 	p = fs_path_alloc();
4482 	if (!p)
4483 		return -ENOMEM;
4484 
4485 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4486 	if (ret < 0)
4487 		goto out;
4488 
4489 	ret = send_remove_xattr(sctx, p, name, name_len);
4490 
4491 out:
4492 	fs_path_free(p);
4493 	return ret;
4494 }
4495 
4496 static int process_new_xattr(struct send_ctx *sctx)
4497 {
4498 	int ret = 0;
4499 
4500 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4501 			       sctx->cmp_key, __process_new_xattr, sctx);
4502 
4503 	return ret;
4504 }
4505 
4506 static int process_deleted_xattr(struct send_ctx *sctx)
4507 {
4508 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4509 				sctx->cmp_key, __process_deleted_xattr, sctx);
4510 }
4511 
4512 struct find_xattr_ctx {
4513 	const char *name;
4514 	int name_len;
4515 	int found_idx;
4516 	char *found_data;
4517 	int found_data_len;
4518 };
4519 
4520 static int __find_xattr(int num, struct btrfs_key *di_key,
4521 			const char *name, int name_len,
4522 			const char *data, int data_len,
4523 			u8 type, void *vctx)
4524 {
4525 	struct find_xattr_ctx *ctx = vctx;
4526 
4527 	if (name_len == ctx->name_len &&
4528 	    strncmp(name, ctx->name, name_len) == 0) {
4529 		ctx->found_idx = num;
4530 		ctx->found_data_len = data_len;
4531 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4532 		if (!ctx->found_data)
4533 			return -ENOMEM;
4534 		return 1;
4535 	}
4536 	return 0;
4537 }
4538 
4539 static int find_xattr(struct btrfs_root *root,
4540 		      struct btrfs_path *path,
4541 		      struct btrfs_key *key,
4542 		      const char *name, int name_len,
4543 		      char **data, int *data_len)
4544 {
4545 	int ret;
4546 	struct find_xattr_ctx ctx;
4547 
4548 	ctx.name = name;
4549 	ctx.name_len = name_len;
4550 	ctx.found_idx = -1;
4551 	ctx.found_data = NULL;
4552 	ctx.found_data_len = 0;
4553 
4554 	ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4555 	if (ret < 0)
4556 		return ret;
4557 
4558 	if (ctx.found_idx == -1)
4559 		return -ENOENT;
4560 	if (data) {
4561 		*data = ctx.found_data;
4562 		*data_len = ctx.found_data_len;
4563 	} else {
4564 		kfree(ctx.found_data);
4565 	}
4566 	return ctx.found_idx;
4567 }
4568 
4569 
4570 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4571 				       const char *name, int name_len,
4572 				       const char *data, int data_len,
4573 				       u8 type, void *ctx)
4574 {
4575 	int ret;
4576 	struct send_ctx *sctx = ctx;
4577 	char *found_data = NULL;
4578 	int found_data_len  = 0;
4579 
4580 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4581 			 sctx->cmp_key, name, name_len, &found_data,
4582 			 &found_data_len);
4583 	if (ret == -ENOENT) {
4584 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4585 				data_len, type, ctx);
4586 	} else if (ret >= 0) {
4587 		if (data_len != found_data_len ||
4588 		    memcmp(data, found_data, data_len)) {
4589 			ret = __process_new_xattr(num, di_key, name, name_len,
4590 					data, data_len, type, ctx);
4591 		} else {
4592 			ret = 0;
4593 		}
4594 	}
4595 
4596 	kfree(found_data);
4597 	return ret;
4598 }
4599 
4600 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4601 					   const char *name, int name_len,
4602 					   const char *data, int data_len,
4603 					   u8 type, void *ctx)
4604 {
4605 	int ret;
4606 	struct send_ctx *sctx = ctx;
4607 
4608 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4609 			 name, name_len, NULL, NULL);
4610 	if (ret == -ENOENT)
4611 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4612 				data_len, type, ctx);
4613 	else if (ret >= 0)
4614 		ret = 0;
4615 
4616 	return ret;
4617 }
4618 
4619 static int process_changed_xattr(struct send_ctx *sctx)
4620 {
4621 	int ret = 0;
4622 
4623 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4624 			sctx->cmp_key, __process_changed_new_xattr, sctx);
4625 	if (ret < 0)
4626 		goto out;
4627 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4628 			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4629 
4630 out:
4631 	return ret;
4632 }
4633 
4634 static int process_all_new_xattrs(struct send_ctx *sctx)
4635 {
4636 	int ret;
4637 	struct btrfs_root *root;
4638 	struct btrfs_path *path;
4639 	struct btrfs_key key;
4640 	struct btrfs_key found_key;
4641 	struct extent_buffer *eb;
4642 	int slot;
4643 
4644 	path = alloc_path_for_send();
4645 	if (!path)
4646 		return -ENOMEM;
4647 
4648 	root = sctx->send_root;
4649 
4650 	key.objectid = sctx->cmp_key->objectid;
4651 	key.type = BTRFS_XATTR_ITEM_KEY;
4652 	key.offset = 0;
4653 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4654 	if (ret < 0)
4655 		goto out;
4656 
4657 	while (1) {
4658 		eb = path->nodes[0];
4659 		slot = path->slots[0];
4660 		if (slot >= btrfs_header_nritems(eb)) {
4661 			ret = btrfs_next_leaf(root, path);
4662 			if (ret < 0) {
4663 				goto out;
4664 			} else if (ret > 0) {
4665 				ret = 0;
4666 				break;
4667 			}
4668 			continue;
4669 		}
4670 
4671 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4672 		if (found_key.objectid != key.objectid ||
4673 		    found_key.type != key.type) {
4674 			ret = 0;
4675 			goto out;
4676 		}
4677 
4678 		ret = iterate_dir_item(root, path, &found_key,
4679 				       __process_new_xattr, sctx);
4680 		if (ret < 0)
4681 			goto out;
4682 
4683 		path->slots[0]++;
4684 	}
4685 
4686 out:
4687 	btrfs_free_path(path);
4688 	return ret;
4689 }
4690 
4691 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4692 {
4693 	struct btrfs_root *root = sctx->send_root;
4694 	struct btrfs_fs_info *fs_info = root->fs_info;
4695 	struct inode *inode;
4696 	struct page *page;
4697 	char *addr;
4698 	struct btrfs_key key;
4699 	pgoff_t index = offset >> PAGE_SHIFT;
4700 	pgoff_t last_index;
4701 	unsigned pg_offset = offset & ~PAGE_MASK;
4702 	ssize_t ret = 0;
4703 
4704 	key.objectid = sctx->cur_ino;
4705 	key.type = BTRFS_INODE_ITEM_KEY;
4706 	key.offset = 0;
4707 
4708 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4709 	if (IS_ERR(inode))
4710 		return PTR_ERR(inode);
4711 
4712 	if (offset + len > i_size_read(inode)) {
4713 		if (offset > i_size_read(inode))
4714 			len = 0;
4715 		else
4716 			len = offset - i_size_read(inode);
4717 	}
4718 	if (len == 0)
4719 		goto out;
4720 
4721 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4722 
4723 	/* initial readahead */
4724 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4725 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4726 	page_cache_sync_readahead(inode->i_mapping, &sctx->ra, NULL, index,
4727 		       last_index - index + 1);
4728 
4729 	while (index <= last_index) {
4730 		unsigned cur_len = min_t(unsigned, len,
4731 					 PAGE_SIZE - pg_offset);
4732 		page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL);
4733 		if (!page) {
4734 			ret = -ENOMEM;
4735 			break;
4736 		}
4737 
4738 		if (!PageUptodate(page)) {
4739 			btrfs_readpage(NULL, page);
4740 			lock_page(page);
4741 			if (!PageUptodate(page)) {
4742 				unlock_page(page);
4743 				put_page(page);
4744 				ret = -EIO;
4745 				break;
4746 			}
4747 		}
4748 
4749 		addr = kmap(page);
4750 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4751 		kunmap(page);
4752 		unlock_page(page);
4753 		put_page(page);
4754 		index++;
4755 		pg_offset = 0;
4756 		len -= cur_len;
4757 		ret += cur_len;
4758 	}
4759 out:
4760 	iput(inode);
4761 	return ret;
4762 }
4763 
4764 /*
4765  * Read some bytes from the current inode/file and send a write command to
4766  * user space.
4767  */
4768 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4769 {
4770 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4771 	int ret = 0;
4772 	struct fs_path *p;
4773 	ssize_t num_read = 0;
4774 
4775 	p = fs_path_alloc();
4776 	if (!p)
4777 		return -ENOMEM;
4778 
4779 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4780 
4781 	num_read = fill_read_buf(sctx, offset, len);
4782 	if (num_read <= 0) {
4783 		if (num_read < 0)
4784 			ret = num_read;
4785 		goto out;
4786 	}
4787 
4788 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4789 	if (ret < 0)
4790 		goto out;
4791 
4792 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4793 	if (ret < 0)
4794 		goto out;
4795 
4796 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4797 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4798 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4799 
4800 	ret = send_cmd(sctx);
4801 
4802 tlv_put_failure:
4803 out:
4804 	fs_path_free(p);
4805 	if (ret < 0)
4806 		return ret;
4807 	return num_read;
4808 }
4809 
4810 /*
4811  * Send a clone command to user space.
4812  */
4813 static int send_clone(struct send_ctx *sctx,
4814 		      u64 offset, u32 len,
4815 		      struct clone_root *clone_root)
4816 {
4817 	int ret = 0;
4818 	struct fs_path *p;
4819 	u64 gen;
4820 
4821 	btrfs_debug(sctx->send_root->fs_info,
4822 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4823 		    offset, len, clone_root->root->objectid, clone_root->ino,
4824 		    clone_root->offset);
4825 
4826 	p = fs_path_alloc();
4827 	if (!p)
4828 		return -ENOMEM;
4829 
4830 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4831 	if (ret < 0)
4832 		goto out;
4833 
4834 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4835 	if (ret < 0)
4836 		goto out;
4837 
4838 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4839 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4840 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4841 
4842 	if (clone_root->root == sctx->send_root) {
4843 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4844 				&gen, NULL, NULL, NULL, NULL);
4845 		if (ret < 0)
4846 			goto out;
4847 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4848 	} else {
4849 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4850 	}
4851 	if (ret < 0)
4852 		goto out;
4853 
4854 	/*
4855 	 * If the parent we're using has a received_uuid set then use that as
4856 	 * our clone source as that is what we will look for when doing a
4857 	 * receive.
4858 	 *
4859 	 * This covers the case that we create a snapshot off of a received
4860 	 * subvolume and then use that as the parent and try to receive on a
4861 	 * different host.
4862 	 */
4863 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4864 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4865 			     clone_root->root->root_item.received_uuid);
4866 	else
4867 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4868 			     clone_root->root->root_item.uuid);
4869 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4870 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4871 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4872 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4873 			clone_root->offset);
4874 
4875 	ret = send_cmd(sctx);
4876 
4877 tlv_put_failure:
4878 out:
4879 	fs_path_free(p);
4880 	return ret;
4881 }
4882 
4883 /*
4884  * Send an update extent command to user space.
4885  */
4886 static int send_update_extent(struct send_ctx *sctx,
4887 			      u64 offset, u32 len)
4888 {
4889 	int ret = 0;
4890 	struct fs_path *p;
4891 
4892 	p = fs_path_alloc();
4893 	if (!p)
4894 		return -ENOMEM;
4895 
4896 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4897 	if (ret < 0)
4898 		goto out;
4899 
4900 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4901 	if (ret < 0)
4902 		goto out;
4903 
4904 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4905 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4906 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4907 
4908 	ret = send_cmd(sctx);
4909 
4910 tlv_put_failure:
4911 out:
4912 	fs_path_free(p);
4913 	return ret;
4914 }
4915 
4916 static int send_hole(struct send_ctx *sctx, u64 end)
4917 {
4918 	struct fs_path *p = NULL;
4919 	u64 offset = sctx->cur_inode_last_extent;
4920 	u64 len;
4921 	int ret = 0;
4922 
4923 	p = fs_path_alloc();
4924 	if (!p)
4925 		return -ENOMEM;
4926 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4927 	if (ret < 0)
4928 		goto tlv_put_failure;
4929 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4930 	while (offset < end) {
4931 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4932 
4933 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4934 		if (ret < 0)
4935 			break;
4936 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4937 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4938 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4939 		ret = send_cmd(sctx);
4940 		if (ret < 0)
4941 			break;
4942 		offset += len;
4943 	}
4944 tlv_put_failure:
4945 	fs_path_free(p);
4946 	return ret;
4947 }
4948 
4949 static int send_extent_data(struct send_ctx *sctx,
4950 			    const u64 offset,
4951 			    const u64 len)
4952 {
4953 	u64 sent = 0;
4954 
4955 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4956 		return send_update_extent(sctx, offset, len);
4957 
4958 	while (sent < len) {
4959 		u64 size = len - sent;
4960 		int ret;
4961 
4962 		if (size > BTRFS_SEND_READ_SIZE)
4963 			size = BTRFS_SEND_READ_SIZE;
4964 		ret = send_write(sctx, offset + sent, size);
4965 		if (ret < 0)
4966 			return ret;
4967 		if (!ret)
4968 			break;
4969 		sent += ret;
4970 	}
4971 	return 0;
4972 }
4973 
4974 static int clone_range(struct send_ctx *sctx,
4975 		       struct clone_root *clone_root,
4976 		       const u64 disk_byte,
4977 		       u64 data_offset,
4978 		       u64 offset,
4979 		       u64 len)
4980 {
4981 	struct btrfs_path *path;
4982 	struct btrfs_key key;
4983 	int ret;
4984 
4985 	/*
4986 	 * Prevent cloning from a zero offset with a length matching the sector
4987 	 * size because in some scenarios this will make the receiver fail.
4988 	 *
4989 	 * For example, if in the source filesystem the extent at offset 0
4990 	 * has a length of sectorsize and it was written using direct IO, then
4991 	 * it can never be an inline extent (even if compression is enabled).
4992 	 * Then this extent can be cloned in the original filesystem to a non
4993 	 * zero file offset, but it may not be possible to clone in the
4994 	 * destination filesystem because it can be inlined due to compression
4995 	 * on the destination filesystem (as the receiver's write operations are
4996 	 * always done using buffered IO). The same happens when the original
4997 	 * filesystem does not have compression enabled but the destination
4998 	 * filesystem has.
4999 	 */
5000 	if (clone_root->offset == 0 &&
5001 	    len == sctx->send_root->fs_info->sectorsize)
5002 		return send_extent_data(sctx, offset, len);
5003 
5004 	path = alloc_path_for_send();
5005 	if (!path)
5006 		return -ENOMEM;
5007 
5008 	/*
5009 	 * We can't send a clone operation for the entire range if we find
5010 	 * extent items in the respective range in the source file that
5011 	 * refer to different extents or if we find holes.
5012 	 * So check for that and do a mix of clone and regular write/copy
5013 	 * operations if needed.
5014 	 *
5015 	 * Example:
5016 	 *
5017 	 * mkfs.btrfs -f /dev/sda
5018 	 * mount /dev/sda /mnt
5019 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5020 	 * cp --reflink=always /mnt/foo /mnt/bar
5021 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5022 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5023 	 *
5024 	 * If when we send the snapshot and we are processing file bar (which
5025 	 * has a higher inode number than foo) we blindly send a clone operation
5026 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5027 	 * a file bar that matches the content of file foo - iow, doesn't match
5028 	 * the content from bar in the original filesystem.
5029 	 */
5030 	key.objectid = clone_root->ino;
5031 	key.type = BTRFS_EXTENT_DATA_KEY;
5032 	key.offset = clone_root->offset;
5033 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5034 	if (ret < 0)
5035 		goto out;
5036 	if (ret > 0 && path->slots[0] > 0) {
5037 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5038 		if (key.objectid == clone_root->ino &&
5039 		    key.type == BTRFS_EXTENT_DATA_KEY)
5040 			path->slots[0]--;
5041 	}
5042 
5043 	while (true) {
5044 		struct extent_buffer *leaf = path->nodes[0];
5045 		int slot = path->slots[0];
5046 		struct btrfs_file_extent_item *ei;
5047 		u8 type;
5048 		u64 ext_len;
5049 		u64 clone_len;
5050 
5051 		if (slot >= btrfs_header_nritems(leaf)) {
5052 			ret = btrfs_next_leaf(clone_root->root, path);
5053 			if (ret < 0)
5054 				goto out;
5055 			else if (ret > 0)
5056 				break;
5057 			continue;
5058 		}
5059 
5060 		btrfs_item_key_to_cpu(leaf, &key, slot);
5061 
5062 		/*
5063 		 * We might have an implicit trailing hole (NO_HOLES feature
5064 		 * enabled). We deal with it after leaving this loop.
5065 		 */
5066 		if (key.objectid != clone_root->ino ||
5067 		    key.type != BTRFS_EXTENT_DATA_KEY)
5068 			break;
5069 
5070 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5071 		type = btrfs_file_extent_type(leaf, ei);
5072 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5073 			ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
5074 			ext_len = PAGE_ALIGN(ext_len);
5075 		} else {
5076 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5077 		}
5078 
5079 		if (key.offset + ext_len <= clone_root->offset)
5080 			goto next;
5081 
5082 		if (key.offset > clone_root->offset) {
5083 			/* Implicit hole, NO_HOLES feature enabled. */
5084 			u64 hole_len = key.offset - clone_root->offset;
5085 
5086 			if (hole_len > len)
5087 				hole_len = len;
5088 			ret = send_extent_data(sctx, offset, hole_len);
5089 			if (ret < 0)
5090 				goto out;
5091 
5092 			len -= hole_len;
5093 			if (len == 0)
5094 				break;
5095 			offset += hole_len;
5096 			clone_root->offset += hole_len;
5097 			data_offset += hole_len;
5098 		}
5099 
5100 		if (key.offset >= clone_root->offset + len)
5101 			break;
5102 
5103 		clone_len = min_t(u64, ext_len, len);
5104 
5105 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5106 		    btrfs_file_extent_offset(leaf, ei) == data_offset)
5107 			ret = send_clone(sctx, offset, clone_len, clone_root);
5108 		else
5109 			ret = send_extent_data(sctx, offset, clone_len);
5110 
5111 		if (ret < 0)
5112 			goto out;
5113 
5114 		len -= clone_len;
5115 		if (len == 0)
5116 			break;
5117 		offset += clone_len;
5118 		clone_root->offset += clone_len;
5119 		data_offset += clone_len;
5120 next:
5121 		path->slots[0]++;
5122 	}
5123 
5124 	if (len > 0)
5125 		ret = send_extent_data(sctx, offset, len);
5126 	else
5127 		ret = 0;
5128 out:
5129 	btrfs_free_path(path);
5130 	return ret;
5131 }
5132 
5133 static int send_write_or_clone(struct send_ctx *sctx,
5134 			       struct btrfs_path *path,
5135 			       struct btrfs_key *key,
5136 			       struct clone_root *clone_root)
5137 {
5138 	int ret = 0;
5139 	struct btrfs_file_extent_item *ei;
5140 	u64 offset = key->offset;
5141 	u64 len;
5142 	u8 type;
5143 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5144 
5145 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5146 			struct btrfs_file_extent_item);
5147 	type = btrfs_file_extent_type(path->nodes[0], ei);
5148 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5149 		len = btrfs_file_extent_inline_len(path->nodes[0],
5150 						   path->slots[0], ei);
5151 		/*
5152 		 * it is possible the inline item won't cover the whole page,
5153 		 * but there may be items after this page.  Make
5154 		 * sure to send the whole thing
5155 		 */
5156 		len = PAGE_ALIGN(len);
5157 	} else {
5158 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5159 	}
5160 
5161 	if (offset + len > sctx->cur_inode_size)
5162 		len = sctx->cur_inode_size - offset;
5163 	if (len == 0) {
5164 		ret = 0;
5165 		goto out;
5166 	}
5167 
5168 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
5169 		u64 disk_byte;
5170 		u64 data_offset;
5171 
5172 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5173 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5174 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5175 				  offset, len);
5176 	} else {
5177 		ret = send_extent_data(sctx, offset, len);
5178 	}
5179 out:
5180 	return ret;
5181 }
5182 
5183 static int is_extent_unchanged(struct send_ctx *sctx,
5184 			       struct btrfs_path *left_path,
5185 			       struct btrfs_key *ekey)
5186 {
5187 	int ret = 0;
5188 	struct btrfs_key key;
5189 	struct btrfs_path *path = NULL;
5190 	struct extent_buffer *eb;
5191 	int slot;
5192 	struct btrfs_key found_key;
5193 	struct btrfs_file_extent_item *ei;
5194 	u64 left_disknr;
5195 	u64 right_disknr;
5196 	u64 left_offset;
5197 	u64 right_offset;
5198 	u64 left_offset_fixed;
5199 	u64 left_len;
5200 	u64 right_len;
5201 	u64 left_gen;
5202 	u64 right_gen;
5203 	u8 left_type;
5204 	u8 right_type;
5205 
5206 	path = alloc_path_for_send();
5207 	if (!path)
5208 		return -ENOMEM;
5209 
5210 	eb = left_path->nodes[0];
5211 	slot = left_path->slots[0];
5212 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5213 	left_type = btrfs_file_extent_type(eb, ei);
5214 
5215 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5216 		ret = 0;
5217 		goto out;
5218 	}
5219 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5220 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5221 	left_offset = btrfs_file_extent_offset(eb, ei);
5222 	left_gen = btrfs_file_extent_generation(eb, ei);
5223 
5224 	/*
5225 	 * Following comments will refer to these graphics. L is the left
5226 	 * extents which we are checking at the moment. 1-8 are the right
5227 	 * extents that we iterate.
5228 	 *
5229 	 *       |-----L-----|
5230 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5231 	 *
5232 	 *       |-----L-----|
5233 	 * |--1--|-2b-|...(same as above)
5234 	 *
5235 	 * Alternative situation. Happens on files where extents got split.
5236 	 *       |-----L-----|
5237 	 * |-----------7-----------|-6-|
5238 	 *
5239 	 * Alternative situation. Happens on files which got larger.
5240 	 *       |-----L-----|
5241 	 * |-8-|
5242 	 * Nothing follows after 8.
5243 	 */
5244 
5245 	key.objectid = ekey->objectid;
5246 	key.type = BTRFS_EXTENT_DATA_KEY;
5247 	key.offset = ekey->offset;
5248 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5249 	if (ret < 0)
5250 		goto out;
5251 	if (ret) {
5252 		ret = 0;
5253 		goto out;
5254 	}
5255 
5256 	/*
5257 	 * Handle special case where the right side has no extents at all.
5258 	 */
5259 	eb = path->nodes[0];
5260 	slot = path->slots[0];
5261 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5262 	if (found_key.objectid != key.objectid ||
5263 	    found_key.type != key.type) {
5264 		/* If we're a hole then just pretend nothing changed */
5265 		ret = (left_disknr) ? 0 : 1;
5266 		goto out;
5267 	}
5268 
5269 	/*
5270 	 * We're now on 2a, 2b or 7.
5271 	 */
5272 	key = found_key;
5273 	while (key.offset < ekey->offset + left_len) {
5274 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5275 		right_type = btrfs_file_extent_type(eb, ei);
5276 		if (right_type != BTRFS_FILE_EXTENT_REG &&
5277 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5278 			ret = 0;
5279 			goto out;
5280 		}
5281 
5282 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5283 			right_len = btrfs_file_extent_inline_len(eb, slot, ei);
5284 			right_len = PAGE_ALIGN(right_len);
5285 		} else {
5286 			right_len = btrfs_file_extent_num_bytes(eb, ei);
5287 		}
5288 
5289 		/*
5290 		 * Are we at extent 8? If yes, we know the extent is changed.
5291 		 * This may only happen on the first iteration.
5292 		 */
5293 		if (found_key.offset + right_len <= ekey->offset) {
5294 			/* If we're a hole just pretend nothing changed */
5295 			ret = (left_disknr) ? 0 : 1;
5296 			goto out;
5297 		}
5298 
5299 		/*
5300 		 * We just wanted to see if when we have an inline extent, what
5301 		 * follows it is a regular extent (wanted to check the above
5302 		 * condition for inline extents too). This should normally not
5303 		 * happen but it's possible for example when we have an inline
5304 		 * compressed extent representing data with a size matching
5305 		 * the page size (currently the same as sector size).
5306 		 */
5307 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5308 			ret = 0;
5309 			goto out;
5310 		}
5311 
5312 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5313 		right_offset = btrfs_file_extent_offset(eb, ei);
5314 		right_gen = btrfs_file_extent_generation(eb, ei);
5315 
5316 		left_offset_fixed = left_offset;
5317 		if (key.offset < ekey->offset) {
5318 			/* Fix the right offset for 2a and 7. */
5319 			right_offset += ekey->offset - key.offset;
5320 		} else {
5321 			/* Fix the left offset for all behind 2a and 2b */
5322 			left_offset_fixed += key.offset - ekey->offset;
5323 		}
5324 
5325 		/*
5326 		 * Check if we have the same extent.
5327 		 */
5328 		if (left_disknr != right_disknr ||
5329 		    left_offset_fixed != right_offset ||
5330 		    left_gen != right_gen) {
5331 			ret = 0;
5332 			goto out;
5333 		}
5334 
5335 		/*
5336 		 * Go to the next extent.
5337 		 */
5338 		ret = btrfs_next_item(sctx->parent_root, path);
5339 		if (ret < 0)
5340 			goto out;
5341 		if (!ret) {
5342 			eb = path->nodes[0];
5343 			slot = path->slots[0];
5344 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5345 		}
5346 		if (ret || found_key.objectid != key.objectid ||
5347 		    found_key.type != key.type) {
5348 			key.offset += right_len;
5349 			break;
5350 		}
5351 		if (found_key.offset != key.offset + right_len) {
5352 			ret = 0;
5353 			goto out;
5354 		}
5355 		key = found_key;
5356 	}
5357 
5358 	/*
5359 	 * We're now behind the left extent (treat as unchanged) or at the end
5360 	 * of the right side (treat as changed).
5361 	 */
5362 	if (key.offset >= ekey->offset + left_len)
5363 		ret = 1;
5364 	else
5365 		ret = 0;
5366 
5367 
5368 out:
5369 	btrfs_free_path(path);
5370 	return ret;
5371 }
5372 
5373 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5374 {
5375 	struct btrfs_path *path;
5376 	struct btrfs_root *root = sctx->send_root;
5377 	struct btrfs_file_extent_item *fi;
5378 	struct btrfs_key key;
5379 	u64 extent_end;
5380 	u8 type;
5381 	int ret;
5382 
5383 	path = alloc_path_for_send();
5384 	if (!path)
5385 		return -ENOMEM;
5386 
5387 	sctx->cur_inode_last_extent = 0;
5388 
5389 	key.objectid = sctx->cur_ino;
5390 	key.type = BTRFS_EXTENT_DATA_KEY;
5391 	key.offset = offset;
5392 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5393 	if (ret < 0)
5394 		goto out;
5395 	ret = 0;
5396 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5397 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5398 		goto out;
5399 
5400 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5401 			    struct btrfs_file_extent_item);
5402 	type = btrfs_file_extent_type(path->nodes[0], fi);
5403 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5404 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5405 							path->slots[0], fi);
5406 		extent_end = ALIGN(key.offset + size,
5407 				   sctx->send_root->fs_info->sectorsize);
5408 	} else {
5409 		extent_end = key.offset +
5410 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5411 	}
5412 	sctx->cur_inode_last_extent = extent_end;
5413 out:
5414 	btrfs_free_path(path);
5415 	return ret;
5416 }
5417 
5418 static int range_is_hole_in_parent(struct send_ctx *sctx,
5419 				   const u64 start,
5420 				   const u64 end)
5421 {
5422 	struct btrfs_path *path;
5423 	struct btrfs_key key;
5424 	struct btrfs_root *root = sctx->parent_root;
5425 	u64 search_start = start;
5426 	int ret;
5427 
5428 	path = alloc_path_for_send();
5429 	if (!path)
5430 		return -ENOMEM;
5431 
5432 	key.objectid = sctx->cur_ino;
5433 	key.type = BTRFS_EXTENT_DATA_KEY;
5434 	key.offset = search_start;
5435 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5436 	if (ret < 0)
5437 		goto out;
5438 	if (ret > 0 && path->slots[0] > 0)
5439 		path->slots[0]--;
5440 
5441 	while (search_start < end) {
5442 		struct extent_buffer *leaf = path->nodes[0];
5443 		int slot = path->slots[0];
5444 		struct btrfs_file_extent_item *fi;
5445 		u64 extent_end;
5446 
5447 		if (slot >= btrfs_header_nritems(leaf)) {
5448 			ret = btrfs_next_leaf(root, path);
5449 			if (ret < 0)
5450 				goto out;
5451 			else if (ret > 0)
5452 				break;
5453 			continue;
5454 		}
5455 
5456 		btrfs_item_key_to_cpu(leaf, &key, slot);
5457 		if (key.objectid < sctx->cur_ino ||
5458 		    key.type < BTRFS_EXTENT_DATA_KEY)
5459 			goto next;
5460 		if (key.objectid > sctx->cur_ino ||
5461 		    key.type > BTRFS_EXTENT_DATA_KEY ||
5462 		    key.offset >= end)
5463 			break;
5464 
5465 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5466 		if (btrfs_file_extent_type(leaf, fi) ==
5467 		    BTRFS_FILE_EXTENT_INLINE) {
5468 			u64 size = btrfs_file_extent_inline_len(leaf, slot, fi);
5469 
5470 			extent_end = ALIGN(key.offset + size,
5471 					   root->fs_info->sectorsize);
5472 		} else {
5473 			extent_end = key.offset +
5474 				btrfs_file_extent_num_bytes(leaf, fi);
5475 		}
5476 		if (extent_end <= start)
5477 			goto next;
5478 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5479 			search_start = extent_end;
5480 			goto next;
5481 		}
5482 		ret = 0;
5483 		goto out;
5484 next:
5485 		path->slots[0]++;
5486 	}
5487 	ret = 1;
5488 out:
5489 	btrfs_free_path(path);
5490 	return ret;
5491 }
5492 
5493 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5494 			   struct btrfs_key *key)
5495 {
5496 	struct btrfs_file_extent_item *fi;
5497 	u64 extent_end;
5498 	u8 type;
5499 	int ret = 0;
5500 
5501 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5502 		return 0;
5503 
5504 	if (sctx->cur_inode_last_extent == (u64)-1) {
5505 		ret = get_last_extent(sctx, key->offset - 1);
5506 		if (ret)
5507 			return ret;
5508 	}
5509 
5510 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5511 			    struct btrfs_file_extent_item);
5512 	type = btrfs_file_extent_type(path->nodes[0], fi);
5513 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5514 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5515 							path->slots[0], fi);
5516 		extent_end = ALIGN(key->offset + size,
5517 				   sctx->send_root->fs_info->sectorsize);
5518 	} else {
5519 		extent_end = key->offset +
5520 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5521 	}
5522 
5523 	if (path->slots[0] == 0 &&
5524 	    sctx->cur_inode_last_extent < key->offset) {
5525 		/*
5526 		 * We might have skipped entire leafs that contained only
5527 		 * file extent items for our current inode. These leafs have
5528 		 * a generation number smaller (older) than the one in the
5529 		 * current leaf and the leaf our last extent came from, and
5530 		 * are located between these 2 leafs.
5531 		 */
5532 		ret = get_last_extent(sctx, key->offset - 1);
5533 		if (ret)
5534 			return ret;
5535 	}
5536 
5537 	if (sctx->cur_inode_last_extent < key->offset) {
5538 		ret = range_is_hole_in_parent(sctx,
5539 					      sctx->cur_inode_last_extent,
5540 					      key->offset);
5541 		if (ret < 0)
5542 			return ret;
5543 		else if (ret == 0)
5544 			ret = send_hole(sctx, key->offset);
5545 		else
5546 			ret = 0;
5547 	}
5548 	sctx->cur_inode_last_extent = extent_end;
5549 	return ret;
5550 }
5551 
5552 static int process_extent(struct send_ctx *sctx,
5553 			  struct btrfs_path *path,
5554 			  struct btrfs_key *key)
5555 {
5556 	struct clone_root *found_clone = NULL;
5557 	int ret = 0;
5558 
5559 	if (S_ISLNK(sctx->cur_inode_mode))
5560 		return 0;
5561 
5562 	if (sctx->parent_root && !sctx->cur_inode_new) {
5563 		ret = is_extent_unchanged(sctx, path, key);
5564 		if (ret < 0)
5565 			goto out;
5566 		if (ret) {
5567 			ret = 0;
5568 			goto out_hole;
5569 		}
5570 	} else {
5571 		struct btrfs_file_extent_item *ei;
5572 		u8 type;
5573 
5574 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5575 				    struct btrfs_file_extent_item);
5576 		type = btrfs_file_extent_type(path->nodes[0], ei);
5577 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5578 		    type == BTRFS_FILE_EXTENT_REG) {
5579 			/*
5580 			 * The send spec does not have a prealloc command yet,
5581 			 * so just leave a hole for prealloc'ed extents until
5582 			 * we have enough commands queued up to justify rev'ing
5583 			 * the send spec.
5584 			 */
5585 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5586 				ret = 0;
5587 				goto out;
5588 			}
5589 
5590 			/* Have a hole, just skip it. */
5591 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5592 				ret = 0;
5593 				goto out;
5594 			}
5595 		}
5596 	}
5597 
5598 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5599 			sctx->cur_inode_size, &found_clone);
5600 	if (ret != -ENOENT && ret < 0)
5601 		goto out;
5602 
5603 	ret = send_write_or_clone(sctx, path, key, found_clone);
5604 	if (ret)
5605 		goto out;
5606 out_hole:
5607 	ret = maybe_send_hole(sctx, path, key);
5608 out:
5609 	return ret;
5610 }
5611 
5612 static int process_all_extents(struct send_ctx *sctx)
5613 {
5614 	int ret;
5615 	struct btrfs_root *root;
5616 	struct btrfs_path *path;
5617 	struct btrfs_key key;
5618 	struct btrfs_key found_key;
5619 	struct extent_buffer *eb;
5620 	int slot;
5621 
5622 	root = sctx->send_root;
5623 	path = alloc_path_for_send();
5624 	if (!path)
5625 		return -ENOMEM;
5626 
5627 	key.objectid = sctx->cmp_key->objectid;
5628 	key.type = BTRFS_EXTENT_DATA_KEY;
5629 	key.offset = 0;
5630 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5631 	if (ret < 0)
5632 		goto out;
5633 
5634 	while (1) {
5635 		eb = path->nodes[0];
5636 		slot = path->slots[0];
5637 
5638 		if (slot >= btrfs_header_nritems(eb)) {
5639 			ret = btrfs_next_leaf(root, path);
5640 			if (ret < 0) {
5641 				goto out;
5642 			} else if (ret > 0) {
5643 				ret = 0;
5644 				break;
5645 			}
5646 			continue;
5647 		}
5648 
5649 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5650 
5651 		if (found_key.objectid != key.objectid ||
5652 		    found_key.type != key.type) {
5653 			ret = 0;
5654 			goto out;
5655 		}
5656 
5657 		ret = process_extent(sctx, path, &found_key);
5658 		if (ret < 0)
5659 			goto out;
5660 
5661 		path->slots[0]++;
5662 	}
5663 
5664 out:
5665 	btrfs_free_path(path);
5666 	return ret;
5667 }
5668 
5669 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5670 					   int *pending_move,
5671 					   int *refs_processed)
5672 {
5673 	int ret = 0;
5674 
5675 	if (sctx->cur_ino == 0)
5676 		goto out;
5677 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5678 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5679 		goto out;
5680 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5681 		goto out;
5682 
5683 	ret = process_recorded_refs(sctx, pending_move);
5684 	if (ret < 0)
5685 		goto out;
5686 
5687 	*refs_processed = 1;
5688 out:
5689 	return ret;
5690 }
5691 
5692 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5693 {
5694 	int ret = 0;
5695 	u64 left_mode;
5696 	u64 left_uid;
5697 	u64 left_gid;
5698 	u64 right_mode;
5699 	u64 right_uid;
5700 	u64 right_gid;
5701 	int need_chmod = 0;
5702 	int need_chown = 0;
5703 	int pending_move = 0;
5704 	int refs_processed = 0;
5705 
5706 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5707 					      &refs_processed);
5708 	if (ret < 0)
5709 		goto out;
5710 
5711 	/*
5712 	 * We have processed the refs and thus need to advance send_progress.
5713 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5714 	 * inode into account.
5715 	 *
5716 	 * On the other hand, if our current inode is a directory and couldn't
5717 	 * be moved/renamed because its parent was renamed/moved too and it has
5718 	 * a higher inode number, we can only move/rename our current inode
5719 	 * after we moved/renamed its parent. Therefore in this case operate on
5720 	 * the old path (pre move/rename) of our current inode, and the
5721 	 * move/rename will be performed later.
5722 	 */
5723 	if (refs_processed && !pending_move)
5724 		sctx->send_progress = sctx->cur_ino + 1;
5725 
5726 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5727 		goto out;
5728 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5729 		goto out;
5730 
5731 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5732 			&left_mode, &left_uid, &left_gid, NULL);
5733 	if (ret < 0)
5734 		goto out;
5735 
5736 	if (!sctx->parent_root || sctx->cur_inode_new) {
5737 		need_chown = 1;
5738 		if (!S_ISLNK(sctx->cur_inode_mode))
5739 			need_chmod = 1;
5740 	} else {
5741 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5742 				NULL, NULL, &right_mode, &right_uid,
5743 				&right_gid, NULL);
5744 		if (ret < 0)
5745 			goto out;
5746 
5747 		if (left_uid != right_uid || left_gid != right_gid)
5748 			need_chown = 1;
5749 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5750 			need_chmod = 1;
5751 	}
5752 
5753 	if (S_ISREG(sctx->cur_inode_mode)) {
5754 		if (need_send_hole(sctx)) {
5755 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5756 			    sctx->cur_inode_last_extent <
5757 			    sctx->cur_inode_size) {
5758 				ret = get_last_extent(sctx, (u64)-1);
5759 				if (ret)
5760 					goto out;
5761 			}
5762 			if (sctx->cur_inode_last_extent <
5763 			    sctx->cur_inode_size) {
5764 				ret = send_hole(sctx, sctx->cur_inode_size);
5765 				if (ret)
5766 					goto out;
5767 			}
5768 		}
5769 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5770 				sctx->cur_inode_size);
5771 		if (ret < 0)
5772 			goto out;
5773 	}
5774 
5775 	if (need_chown) {
5776 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5777 				left_uid, left_gid);
5778 		if (ret < 0)
5779 			goto out;
5780 	}
5781 	if (need_chmod) {
5782 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5783 				left_mode);
5784 		if (ret < 0)
5785 			goto out;
5786 	}
5787 
5788 	/*
5789 	 * If other directory inodes depended on our current directory
5790 	 * inode's move/rename, now do their move/rename operations.
5791 	 */
5792 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5793 		ret = apply_children_dir_moves(sctx);
5794 		if (ret)
5795 			goto out;
5796 		/*
5797 		 * Need to send that every time, no matter if it actually
5798 		 * changed between the two trees as we have done changes to
5799 		 * the inode before. If our inode is a directory and it's
5800 		 * waiting to be moved/renamed, we will send its utimes when
5801 		 * it's moved/renamed, therefore we don't need to do it here.
5802 		 */
5803 		sctx->send_progress = sctx->cur_ino + 1;
5804 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5805 		if (ret < 0)
5806 			goto out;
5807 	}
5808 
5809 out:
5810 	return ret;
5811 }
5812 
5813 static int changed_inode(struct send_ctx *sctx,
5814 			 enum btrfs_compare_tree_result result)
5815 {
5816 	int ret = 0;
5817 	struct btrfs_key *key = sctx->cmp_key;
5818 	struct btrfs_inode_item *left_ii = NULL;
5819 	struct btrfs_inode_item *right_ii = NULL;
5820 	u64 left_gen = 0;
5821 	u64 right_gen = 0;
5822 
5823 	sctx->cur_ino = key->objectid;
5824 	sctx->cur_inode_new_gen = 0;
5825 	sctx->cur_inode_last_extent = (u64)-1;
5826 
5827 	/*
5828 	 * Set send_progress to current inode. This will tell all get_cur_xxx
5829 	 * functions that the current inode's refs are not updated yet. Later,
5830 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5831 	 */
5832 	sctx->send_progress = sctx->cur_ino;
5833 
5834 	if (result == BTRFS_COMPARE_TREE_NEW ||
5835 	    result == BTRFS_COMPARE_TREE_CHANGED) {
5836 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5837 				sctx->left_path->slots[0],
5838 				struct btrfs_inode_item);
5839 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5840 				left_ii);
5841 	} else {
5842 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5843 				sctx->right_path->slots[0],
5844 				struct btrfs_inode_item);
5845 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5846 				right_ii);
5847 	}
5848 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
5849 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5850 				sctx->right_path->slots[0],
5851 				struct btrfs_inode_item);
5852 
5853 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5854 				right_ii);
5855 
5856 		/*
5857 		 * The cur_ino = root dir case is special here. We can't treat
5858 		 * the inode as deleted+reused because it would generate a
5859 		 * stream that tries to delete/mkdir the root dir.
5860 		 */
5861 		if (left_gen != right_gen &&
5862 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5863 			sctx->cur_inode_new_gen = 1;
5864 	}
5865 
5866 	if (result == BTRFS_COMPARE_TREE_NEW) {
5867 		sctx->cur_inode_gen = left_gen;
5868 		sctx->cur_inode_new = 1;
5869 		sctx->cur_inode_deleted = 0;
5870 		sctx->cur_inode_size = btrfs_inode_size(
5871 				sctx->left_path->nodes[0], left_ii);
5872 		sctx->cur_inode_mode = btrfs_inode_mode(
5873 				sctx->left_path->nodes[0], left_ii);
5874 		sctx->cur_inode_rdev = btrfs_inode_rdev(
5875 				sctx->left_path->nodes[0], left_ii);
5876 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5877 			ret = send_create_inode_if_needed(sctx);
5878 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
5879 		sctx->cur_inode_gen = right_gen;
5880 		sctx->cur_inode_new = 0;
5881 		sctx->cur_inode_deleted = 1;
5882 		sctx->cur_inode_size = btrfs_inode_size(
5883 				sctx->right_path->nodes[0], right_ii);
5884 		sctx->cur_inode_mode = btrfs_inode_mode(
5885 				sctx->right_path->nodes[0], right_ii);
5886 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5887 		/*
5888 		 * We need to do some special handling in case the inode was
5889 		 * reported as changed with a changed generation number. This
5890 		 * means that the original inode was deleted and new inode
5891 		 * reused the same inum. So we have to treat the old inode as
5892 		 * deleted and the new one as new.
5893 		 */
5894 		if (sctx->cur_inode_new_gen) {
5895 			/*
5896 			 * First, process the inode as if it was deleted.
5897 			 */
5898 			sctx->cur_inode_gen = right_gen;
5899 			sctx->cur_inode_new = 0;
5900 			sctx->cur_inode_deleted = 1;
5901 			sctx->cur_inode_size = btrfs_inode_size(
5902 					sctx->right_path->nodes[0], right_ii);
5903 			sctx->cur_inode_mode = btrfs_inode_mode(
5904 					sctx->right_path->nodes[0], right_ii);
5905 			ret = process_all_refs(sctx,
5906 					BTRFS_COMPARE_TREE_DELETED);
5907 			if (ret < 0)
5908 				goto out;
5909 
5910 			/*
5911 			 * Now process the inode as if it was new.
5912 			 */
5913 			sctx->cur_inode_gen = left_gen;
5914 			sctx->cur_inode_new = 1;
5915 			sctx->cur_inode_deleted = 0;
5916 			sctx->cur_inode_size = btrfs_inode_size(
5917 					sctx->left_path->nodes[0], left_ii);
5918 			sctx->cur_inode_mode = btrfs_inode_mode(
5919 					sctx->left_path->nodes[0], left_ii);
5920 			sctx->cur_inode_rdev = btrfs_inode_rdev(
5921 					sctx->left_path->nodes[0], left_ii);
5922 			ret = send_create_inode_if_needed(sctx);
5923 			if (ret < 0)
5924 				goto out;
5925 
5926 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5927 			if (ret < 0)
5928 				goto out;
5929 			/*
5930 			 * Advance send_progress now as we did not get into
5931 			 * process_recorded_refs_if_needed in the new_gen case.
5932 			 */
5933 			sctx->send_progress = sctx->cur_ino + 1;
5934 
5935 			/*
5936 			 * Now process all extents and xattrs of the inode as if
5937 			 * they were all new.
5938 			 */
5939 			ret = process_all_extents(sctx);
5940 			if (ret < 0)
5941 				goto out;
5942 			ret = process_all_new_xattrs(sctx);
5943 			if (ret < 0)
5944 				goto out;
5945 		} else {
5946 			sctx->cur_inode_gen = left_gen;
5947 			sctx->cur_inode_new = 0;
5948 			sctx->cur_inode_new_gen = 0;
5949 			sctx->cur_inode_deleted = 0;
5950 			sctx->cur_inode_size = btrfs_inode_size(
5951 					sctx->left_path->nodes[0], left_ii);
5952 			sctx->cur_inode_mode = btrfs_inode_mode(
5953 					sctx->left_path->nodes[0], left_ii);
5954 		}
5955 	}
5956 
5957 out:
5958 	return ret;
5959 }
5960 
5961 /*
5962  * We have to process new refs before deleted refs, but compare_trees gives us
5963  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5964  * first and later process them in process_recorded_refs.
5965  * For the cur_inode_new_gen case, we skip recording completely because
5966  * changed_inode did already initiate processing of refs. The reason for this is
5967  * that in this case, compare_tree actually compares the refs of 2 different
5968  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5969  * refs of the right tree as deleted and all refs of the left tree as new.
5970  */
5971 static int changed_ref(struct send_ctx *sctx,
5972 		       enum btrfs_compare_tree_result result)
5973 {
5974 	int ret = 0;
5975 
5976 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
5977 		inconsistent_snapshot_error(sctx, result, "reference");
5978 		return -EIO;
5979 	}
5980 
5981 	if (!sctx->cur_inode_new_gen &&
5982 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5983 		if (result == BTRFS_COMPARE_TREE_NEW)
5984 			ret = record_new_ref(sctx);
5985 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5986 			ret = record_deleted_ref(sctx);
5987 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5988 			ret = record_changed_ref(sctx);
5989 	}
5990 
5991 	return ret;
5992 }
5993 
5994 /*
5995  * Process new/deleted/changed xattrs. We skip processing in the
5996  * cur_inode_new_gen case because changed_inode did already initiate processing
5997  * of xattrs. The reason is the same as in changed_ref
5998  */
5999 static int changed_xattr(struct send_ctx *sctx,
6000 			 enum btrfs_compare_tree_result result)
6001 {
6002 	int ret = 0;
6003 
6004 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6005 		inconsistent_snapshot_error(sctx, result, "xattr");
6006 		return -EIO;
6007 	}
6008 
6009 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6010 		if (result == BTRFS_COMPARE_TREE_NEW)
6011 			ret = process_new_xattr(sctx);
6012 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6013 			ret = process_deleted_xattr(sctx);
6014 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6015 			ret = process_changed_xattr(sctx);
6016 	}
6017 
6018 	return ret;
6019 }
6020 
6021 /*
6022  * Process new/deleted/changed extents. We skip processing in the
6023  * cur_inode_new_gen case because changed_inode did already initiate processing
6024  * of extents. The reason is the same as in changed_ref
6025  */
6026 static int changed_extent(struct send_ctx *sctx,
6027 			  enum btrfs_compare_tree_result result)
6028 {
6029 	int ret = 0;
6030 
6031 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6032 
6033 		if (result == BTRFS_COMPARE_TREE_CHANGED) {
6034 			struct extent_buffer *leaf_l;
6035 			struct extent_buffer *leaf_r;
6036 			struct btrfs_file_extent_item *ei_l;
6037 			struct btrfs_file_extent_item *ei_r;
6038 
6039 			leaf_l = sctx->left_path->nodes[0];
6040 			leaf_r = sctx->right_path->nodes[0];
6041 			ei_l = btrfs_item_ptr(leaf_l,
6042 					      sctx->left_path->slots[0],
6043 					      struct btrfs_file_extent_item);
6044 			ei_r = btrfs_item_ptr(leaf_r,
6045 					      sctx->right_path->slots[0],
6046 					      struct btrfs_file_extent_item);
6047 
6048 			/*
6049 			 * We may have found an extent item that has changed
6050 			 * only its disk_bytenr field and the corresponding
6051 			 * inode item was not updated. This case happens due to
6052 			 * very specific timings during relocation when a leaf
6053 			 * that contains file extent items is COWed while
6054 			 * relocation is ongoing and its in the stage where it
6055 			 * updates data pointers. So when this happens we can
6056 			 * safely ignore it since we know it's the same extent,
6057 			 * but just at different logical and physical locations
6058 			 * (when an extent is fully replaced with a new one, we
6059 			 * know the generation number must have changed too,
6060 			 * since snapshot creation implies committing the current
6061 			 * transaction, and the inode item must have been updated
6062 			 * as well).
6063 			 * This replacement of the disk_bytenr happens at
6064 			 * relocation.c:replace_file_extents() through
6065 			 * relocation.c:btrfs_reloc_cow_block().
6066 			 */
6067 			if (btrfs_file_extent_generation(leaf_l, ei_l) ==
6068 			    btrfs_file_extent_generation(leaf_r, ei_r) &&
6069 			    btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
6070 			    btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
6071 			    btrfs_file_extent_compression(leaf_l, ei_l) ==
6072 			    btrfs_file_extent_compression(leaf_r, ei_r) &&
6073 			    btrfs_file_extent_encryption(leaf_l, ei_l) ==
6074 			    btrfs_file_extent_encryption(leaf_r, ei_r) &&
6075 			    btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
6076 			    btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
6077 			    btrfs_file_extent_type(leaf_l, ei_l) ==
6078 			    btrfs_file_extent_type(leaf_r, ei_r) &&
6079 			    btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
6080 			    btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
6081 			    btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
6082 			    btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
6083 			    btrfs_file_extent_offset(leaf_l, ei_l) ==
6084 			    btrfs_file_extent_offset(leaf_r, ei_r) &&
6085 			    btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
6086 			    btrfs_file_extent_num_bytes(leaf_r, ei_r))
6087 				return 0;
6088 		}
6089 
6090 		inconsistent_snapshot_error(sctx, result, "extent");
6091 		return -EIO;
6092 	}
6093 
6094 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6095 		if (result != BTRFS_COMPARE_TREE_DELETED)
6096 			ret = process_extent(sctx, sctx->left_path,
6097 					sctx->cmp_key);
6098 	}
6099 
6100 	return ret;
6101 }
6102 
6103 static int dir_changed(struct send_ctx *sctx, u64 dir)
6104 {
6105 	u64 orig_gen, new_gen;
6106 	int ret;
6107 
6108 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6109 			     NULL, NULL);
6110 	if (ret)
6111 		return ret;
6112 
6113 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6114 			     NULL, NULL, NULL);
6115 	if (ret)
6116 		return ret;
6117 
6118 	return (orig_gen != new_gen) ? 1 : 0;
6119 }
6120 
6121 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6122 			struct btrfs_key *key)
6123 {
6124 	struct btrfs_inode_extref *extref;
6125 	struct extent_buffer *leaf;
6126 	u64 dirid = 0, last_dirid = 0;
6127 	unsigned long ptr;
6128 	u32 item_size;
6129 	u32 cur_offset = 0;
6130 	int ref_name_len;
6131 	int ret = 0;
6132 
6133 	/* Easy case, just check this one dirid */
6134 	if (key->type == BTRFS_INODE_REF_KEY) {
6135 		dirid = key->offset;
6136 
6137 		ret = dir_changed(sctx, dirid);
6138 		goto out;
6139 	}
6140 
6141 	leaf = path->nodes[0];
6142 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6143 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6144 	while (cur_offset < item_size) {
6145 		extref = (struct btrfs_inode_extref *)(ptr +
6146 						       cur_offset);
6147 		dirid = btrfs_inode_extref_parent(leaf, extref);
6148 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6149 		cur_offset += ref_name_len + sizeof(*extref);
6150 		if (dirid == last_dirid)
6151 			continue;
6152 		ret = dir_changed(sctx, dirid);
6153 		if (ret)
6154 			break;
6155 		last_dirid = dirid;
6156 	}
6157 out:
6158 	return ret;
6159 }
6160 
6161 /*
6162  * Updates compare related fields in sctx and simply forwards to the actual
6163  * changed_xxx functions.
6164  */
6165 static int changed_cb(struct btrfs_root *left_root,
6166 		      struct btrfs_root *right_root,
6167 		      struct btrfs_path *left_path,
6168 		      struct btrfs_path *right_path,
6169 		      struct btrfs_key *key,
6170 		      enum btrfs_compare_tree_result result,
6171 		      void *ctx)
6172 {
6173 	int ret = 0;
6174 	struct send_ctx *sctx = ctx;
6175 
6176 	if (result == BTRFS_COMPARE_TREE_SAME) {
6177 		if (key->type == BTRFS_INODE_REF_KEY ||
6178 		    key->type == BTRFS_INODE_EXTREF_KEY) {
6179 			ret = compare_refs(sctx, left_path, key);
6180 			if (!ret)
6181 				return 0;
6182 			if (ret < 0)
6183 				return ret;
6184 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6185 			return maybe_send_hole(sctx, left_path, key);
6186 		} else {
6187 			return 0;
6188 		}
6189 		result = BTRFS_COMPARE_TREE_CHANGED;
6190 		ret = 0;
6191 	}
6192 
6193 	sctx->left_path = left_path;
6194 	sctx->right_path = right_path;
6195 	sctx->cmp_key = key;
6196 
6197 	ret = finish_inode_if_needed(sctx, 0);
6198 	if (ret < 0)
6199 		goto out;
6200 
6201 	/* Ignore non-FS objects */
6202 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6203 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6204 		goto out;
6205 
6206 	if (key->type == BTRFS_INODE_ITEM_KEY)
6207 		ret = changed_inode(sctx, result);
6208 	else if (key->type == BTRFS_INODE_REF_KEY ||
6209 		 key->type == BTRFS_INODE_EXTREF_KEY)
6210 		ret = changed_ref(sctx, result);
6211 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
6212 		ret = changed_xattr(sctx, result);
6213 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
6214 		ret = changed_extent(sctx, result);
6215 
6216 out:
6217 	return ret;
6218 }
6219 
6220 static int full_send_tree(struct send_ctx *sctx)
6221 {
6222 	int ret;
6223 	struct btrfs_root *send_root = sctx->send_root;
6224 	struct btrfs_key key;
6225 	struct btrfs_key found_key;
6226 	struct btrfs_path *path;
6227 	struct extent_buffer *eb;
6228 	int slot;
6229 
6230 	path = alloc_path_for_send();
6231 	if (!path)
6232 		return -ENOMEM;
6233 
6234 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6235 	key.type = BTRFS_INODE_ITEM_KEY;
6236 	key.offset = 0;
6237 
6238 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6239 	if (ret < 0)
6240 		goto out;
6241 	if (ret)
6242 		goto out_finish;
6243 
6244 	while (1) {
6245 		eb = path->nodes[0];
6246 		slot = path->slots[0];
6247 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6248 
6249 		ret = changed_cb(send_root, NULL, path, NULL,
6250 				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
6251 		if (ret < 0)
6252 			goto out;
6253 
6254 		key.objectid = found_key.objectid;
6255 		key.type = found_key.type;
6256 		key.offset = found_key.offset + 1;
6257 
6258 		ret = btrfs_next_item(send_root, path);
6259 		if (ret < 0)
6260 			goto out;
6261 		if (ret) {
6262 			ret  = 0;
6263 			break;
6264 		}
6265 	}
6266 
6267 out_finish:
6268 	ret = finish_inode_if_needed(sctx, 1);
6269 
6270 out:
6271 	btrfs_free_path(path);
6272 	return ret;
6273 }
6274 
6275 static int send_subvol(struct send_ctx *sctx)
6276 {
6277 	int ret;
6278 
6279 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6280 		ret = send_header(sctx);
6281 		if (ret < 0)
6282 			goto out;
6283 	}
6284 
6285 	ret = send_subvol_begin(sctx);
6286 	if (ret < 0)
6287 		goto out;
6288 
6289 	if (sctx->parent_root) {
6290 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6291 				changed_cb, sctx);
6292 		if (ret < 0)
6293 			goto out;
6294 		ret = finish_inode_if_needed(sctx, 1);
6295 		if (ret < 0)
6296 			goto out;
6297 	} else {
6298 		ret = full_send_tree(sctx);
6299 		if (ret < 0)
6300 			goto out;
6301 	}
6302 
6303 out:
6304 	free_recorded_refs(sctx);
6305 	return ret;
6306 }
6307 
6308 /*
6309  * If orphan cleanup did remove any orphans from a root, it means the tree
6310  * was modified and therefore the commit root is not the same as the current
6311  * root anymore. This is a problem, because send uses the commit root and
6312  * therefore can see inode items that don't exist in the current root anymore,
6313  * and for example make calls to btrfs_iget, which will do tree lookups based
6314  * on the current root and not on the commit root. Those lookups will fail,
6315  * returning a -ESTALE error, and making send fail with that error. So make
6316  * sure a send does not see any orphans we have just removed, and that it will
6317  * see the same inodes regardless of whether a transaction commit happened
6318  * before it started (meaning that the commit root will be the same as the
6319  * current root) or not.
6320  */
6321 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6322 {
6323 	int i;
6324 	struct btrfs_trans_handle *trans = NULL;
6325 
6326 again:
6327 	if (sctx->parent_root &&
6328 	    sctx->parent_root->node != sctx->parent_root->commit_root)
6329 		goto commit_trans;
6330 
6331 	for (i = 0; i < sctx->clone_roots_cnt; i++)
6332 		if (sctx->clone_roots[i].root->node !=
6333 		    sctx->clone_roots[i].root->commit_root)
6334 			goto commit_trans;
6335 
6336 	if (trans)
6337 		return btrfs_end_transaction(trans);
6338 
6339 	return 0;
6340 
6341 commit_trans:
6342 	/* Use any root, all fs roots will get their commit roots updated. */
6343 	if (!trans) {
6344 		trans = btrfs_join_transaction(sctx->send_root);
6345 		if (IS_ERR(trans))
6346 			return PTR_ERR(trans);
6347 		goto again;
6348 	}
6349 
6350 	return btrfs_commit_transaction(trans);
6351 }
6352 
6353 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6354 {
6355 	spin_lock(&root->root_item_lock);
6356 	root->send_in_progress--;
6357 	/*
6358 	 * Not much left to do, we don't know why it's unbalanced and
6359 	 * can't blindly reset it to 0.
6360 	 */
6361 	if (root->send_in_progress < 0)
6362 		btrfs_err(root->fs_info,
6363 			  "send_in_progres unbalanced %d root %llu",
6364 			  root->send_in_progress, root->root_key.objectid);
6365 	spin_unlock(&root->root_item_lock);
6366 }
6367 
6368 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
6369 {
6370 	int ret = 0;
6371 	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6372 	struct btrfs_fs_info *fs_info = send_root->fs_info;
6373 	struct btrfs_root *clone_root;
6374 	struct btrfs_ioctl_send_args *arg = NULL;
6375 	struct btrfs_key key;
6376 	struct send_ctx *sctx = NULL;
6377 	u32 i;
6378 	u64 *clone_sources_tmp = NULL;
6379 	int clone_sources_to_rollback = 0;
6380 	unsigned alloc_size;
6381 	int sort_clone_roots = 0;
6382 	int index;
6383 
6384 	if (!capable(CAP_SYS_ADMIN))
6385 		return -EPERM;
6386 
6387 	/*
6388 	 * The subvolume must remain read-only during send, protect against
6389 	 * making it RW. This also protects against deletion.
6390 	 */
6391 	spin_lock(&send_root->root_item_lock);
6392 	send_root->send_in_progress++;
6393 	spin_unlock(&send_root->root_item_lock);
6394 
6395 	/*
6396 	 * This is done when we lookup the root, it should already be complete
6397 	 * by the time we get here.
6398 	 */
6399 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6400 
6401 	/*
6402 	 * Userspace tools do the checks and warn the user if it's
6403 	 * not RO.
6404 	 */
6405 	if (!btrfs_root_readonly(send_root)) {
6406 		ret = -EPERM;
6407 		goto out;
6408 	}
6409 
6410 	arg = memdup_user(arg_, sizeof(*arg));
6411 	if (IS_ERR(arg)) {
6412 		ret = PTR_ERR(arg);
6413 		arg = NULL;
6414 		goto out;
6415 	}
6416 
6417 	/*
6418 	 * Check that we don't overflow at later allocations, we request
6419 	 * clone_sources_count + 1 items, and compare to unsigned long inside
6420 	 * access_ok.
6421 	 */
6422 	if (arg->clone_sources_count >
6423 	    ULONG_MAX / sizeof(struct clone_root) - 1) {
6424 		ret = -EINVAL;
6425 		goto out;
6426 	}
6427 
6428 	if (!access_ok(VERIFY_READ, arg->clone_sources,
6429 			sizeof(*arg->clone_sources) *
6430 			arg->clone_sources_count)) {
6431 		ret = -EFAULT;
6432 		goto out;
6433 	}
6434 
6435 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6436 		ret = -EINVAL;
6437 		goto out;
6438 	}
6439 
6440 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6441 	if (!sctx) {
6442 		ret = -ENOMEM;
6443 		goto out;
6444 	}
6445 
6446 	INIT_LIST_HEAD(&sctx->new_refs);
6447 	INIT_LIST_HEAD(&sctx->deleted_refs);
6448 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6449 	INIT_LIST_HEAD(&sctx->name_cache_list);
6450 
6451 	sctx->flags = arg->flags;
6452 
6453 	sctx->send_filp = fget(arg->send_fd);
6454 	if (!sctx->send_filp) {
6455 		ret = -EBADF;
6456 		goto out;
6457 	}
6458 
6459 	sctx->send_root = send_root;
6460 	/*
6461 	 * Unlikely but possible, if the subvolume is marked for deletion but
6462 	 * is slow to remove the directory entry, send can still be started
6463 	 */
6464 	if (btrfs_root_dead(sctx->send_root)) {
6465 		ret = -EPERM;
6466 		goto out;
6467 	}
6468 
6469 	sctx->clone_roots_cnt = arg->clone_sources_count;
6470 
6471 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6472 	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
6473 	if (!sctx->send_buf) {
6474 		ret = -ENOMEM;
6475 		goto out;
6476 	}
6477 
6478 	sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
6479 	if (!sctx->read_buf) {
6480 		ret = -ENOMEM;
6481 		goto out;
6482 	}
6483 
6484 	sctx->pending_dir_moves = RB_ROOT;
6485 	sctx->waiting_dir_moves = RB_ROOT;
6486 	sctx->orphan_dirs = RB_ROOT;
6487 
6488 	alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6489 
6490 	sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
6491 	if (!sctx->clone_roots) {
6492 		ret = -ENOMEM;
6493 		goto out;
6494 	}
6495 
6496 	alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6497 
6498 	if (arg->clone_sources_count) {
6499 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
6500 		if (!clone_sources_tmp) {
6501 			ret = -ENOMEM;
6502 			goto out;
6503 		}
6504 
6505 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6506 				alloc_size);
6507 		if (ret) {
6508 			ret = -EFAULT;
6509 			goto out;
6510 		}
6511 
6512 		for (i = 0; i < arg->clone_sources_count; i++) {
6513 			key.objectid = clone_sources_tmp[i];
6514 			key.type = BTRFS_ROOT_ITEM_KEY;
6515 			key.offset = (u64)-1;
6516 
6517 			index = srcu_read_lock(&fs_info->subvol_srcu);
6518 
6519 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6520 			if (IS_ERR(clone_root)) {
6521 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6522 				ret = PTR_ERR(clone_root);
6523 				goto out;
6524 			}
6525 			spin_lock(&clone_root->root_item_lock);
6526 			if (!btrfs_root_readonly(clone_root) ||
6527 			    btrfs_root_dead(clone_root)) {
6528 				spin_unlock(&clone_root->root_item_lock);
6529 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6530 				ret = -EPERM;
6531 				goto out;
6532 			}
6533 			clone_root->send_in_progress++;
6534 			spin_unlock(&clone_root->root_item_lock);
6535 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6536 
6537 			sctx->clone_roots[i].root = clone_root;
6538 			clone_sources_to_rollback = i + 1;
6539 		}
6540 		kvfree(clone_sources_tmp);
6541 		clone_sources_tmp = NULL;
6542 	}
6543 
6544 	if (arg->parent_root) {
6545 		key.objectid = arg->parent_root;
6546 		key.type = BTRFS_ROOT_ITEM_KEY;
6547 		key.offset = (u64)-1;
6548 
6549 		index = srcu_read_lock(&fs_info->subvol_srcu);
6550 
6551 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6552 		if (IS_ERR(sctx->parent_root)) {
6553 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6554 			ret = PTR_ERR(sctx->parent_root);
6555 			goto out;
6556 		}
6557 
6558 		spin_lock(&sctx->parent_root->root_item_lock);
6559 		sctx->parent_root->send_in_progress++;
6560 		if (!btrfs_root_readonly(sctx->parent_root) ||
6561 				btrfs_root_dead(sctx->parent_root)) {
6562 			spin_unlock(&sctx->parent_root->root_item_lock);
6563 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6564 			ret = -EPERM;
6565 			goto out;
6566 		}
6567 		spin_unlock(&sctx->parent_root->root_item_lock);
6568 
6569 		srcu_read_unlock(&fs_info->subvol_srcu, index);
6570 	}
6571 
6572 	/*
6573 	 * Clones from send_root are allowed, but only if the clone source
6574 	 * is behind the current send position. This is checked while searching
6575 	 * for possible clone sources.
6576 	 */
6577 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6578 
6579 	/* We do a bsearch later */
6580 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
6581 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6582 			NULL);
6583 	sort_clone_roots = 1;
6584 
6585 	ret = ensure_commit_roots_uptodate(sctx);
6586 	if (ret)
6587 		goto out;
6588 
6589 	current->journal_info = BTRFS_SEND_TRANS_STUB;
6590 	ret = send_subvol(sctx);
6591 	current->journal_info = NULL;
6592 	if (ret < 0)
6593 		goto out;
6594 
6595 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6596 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6597 		if (ret < 0)
6598 			goto out;
6599 		ret = send_cmd(sctx);
6600 		if (ret < 0)
6601 			goto out;
6602 	}
6603 
6604 out:
6605 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6606 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6607 		struct rb_node *n;
6608 		struct pending_dir_move *pm;
6609 
6610 		n = rb_first(&sctx->pending_dir_moves);
6611 		pm = rb_entry(n, struct pending_dir_move, node);
6612 		while (!list_empty(&pm->list)) {
6613 			struct pending_dir_move *pm2;
6614 
6615 			pm2 = list_first_entry(&pm->list,
6616 					       struct pending_dir_move, list);
6617 			free_pending_move(sctx, pm2);
6618 		}
6619 		free_pending_move(sctx, pm);
6620 	}
6621 
6622 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6623 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6624 		struct rb_node *n;
6625 		struct waiting_dir_move *dm;
6626 
6627 		n = rb_first(&sctx->waiting_dir_moves);
6628 		dm = rb_entry(n, struct waiting_dir_move, node);
6629 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
6630 		kfree(dm);
6631 	}
6632 
6633 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6634 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6635 		struct rb_node *n;
6636 		struct orphan_dir_info *odi;
6637 
6638 		n = rb_first(&sctx->orphan_dirs);
6639 		odi = rb_entry(n, struct orphan_dir_info, node);
6640 		free_orphan_dir_info(sctx, odi);
6641 	}
6642 
6643 	if (sort_clone_roots) {
6644 		for (i = 0; i < sctx->clone_roots_cnt; i++)
6645 			btrfs_root_dec_send_in_progress(
6646 					sctx->clone_roots[i].root);
6647 	} else {
6648 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6649 			btrfs_root_dec_send_in_progress(
6650 					sctx->clone_roots[i].root);
6651 
6652 		btrfs_root_dec_send_in_progress(send_root);
6653 	}
6654 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6655 		btrfs_root_dec_send_in_progress(sctx->parent_root);
6656 
6657 	kfree(arg);
6658 	kvfree(clone_sources_tmp);
6659 
6660 	if (sctx) {
6661 		if (sctx->send_filp)
6662 			fput(sctx->send_filp);
6663 
6664 		kvfree(sctx->clone_roots);
6665 		kvfree(sctx->send_buf);
6666 		kvfree(sctx->read_buf);
6667 
6668 		name_cache_free(sctx);
6669 
6670 		kfree(sctx);
6671 	}
6672 
6673 	return ret;
6674 }
6675