xref: /openbmc/linux/fs/btrfs/send.c (revision d23015c1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 
19 #include "send.h"
20 #include "backref.h"
21 #include "locking.h"
22 #include "disk-io.h"
23 #include "btrfs_inode.h"
24 #include "transaction.h"
25 #include "compression.h"
26 
27 /*
28  * Maximum number of references an extent can have in order for us to attempt to
29  * issue clone operations instead of write operations. This currently exists to
30  * avoid hitting limitations of the backreference walking code (taking a lot of
31  * time and using too much memory for extents with large number of references).
32  */
33 #define SEND_MAX_EXTENT_REFS	64
34 
35 /*
36  * A fs_path is a helper to dynamically build path names with unknown size.
37  * It reallocates the internal buffer on demand.
38  * It allows fast adding of path elements on the right side (normal path) and
39  * fast adding to the left side (reversed path). A reversed path can also be
40  * unreversed if needed.
41  */
42 struct fs_path {
43 	union {
44 		struct {
45 			char *start;
46 			char *end;
47 
48 			char *buf;
49 			unsigned short buf_len:15;
50 			unsigned short reversed:1;
51 			char inline_buf[];
52 		};
53 		/*
54 		 * Average path length does not exceed 200 bytes, we'll have
55 		 * better packing in the slab and higher chance to satisfy
56 		 * a allocation later during send.
57 		 */
58 		char pad[256];
59 	};
60 };
61 #define FS_PATH_INLINE_SIZE \
62 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
63 
64 
65 /* reused for each extent */
66 struct clone_root {
67 	struct btrfs_root *root;
68 	u64 ino;
69 	u64 offset;
70 
71 	u64 found_refs;
72 };
73 
74 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
75 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
76 
77 struct send_ctx {
78 	struct file *send_filp;
79 	loff_t send_off;
80 	char *send_buf;
81 	u32 send_size;
82 	u32 send_max_size;
83 	u64 total_send_size;
84 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
85 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
86 
87 	struct btrfs_root *send_root;
88 	struct btrfs_root *parent_root;
89 	struct clone_root *clone_roots;
90 	int clone_roots_cnt;
91 
92 	/* current state of the compare_tree call */
93 	struct btrfs_path *left_path;
94 	struct btrfs_path *right_path;
95 	struct btrfs_key *cmp_key;
96 
97 	/*
98 	 * infos of the currently processed inode. In case of deleted inodes,
99 	 * these are the values from the deleted inode.
100 	 */
101 	u64 cur_ino;
102 	u64 cur_inode_gen;
103 	int cur_inode_new;
104 	int cur_inode_new_gen;
105 	int cur_inode_deleted;
106 	u64 cur_inode_size;
107 	u64 cur_inode_mode;
108 	u64 cur_inode_rdev;
109 	u64 cur_inode_last_extent;
110 	u64 cur_inode_next_write_offset;
111 	bool ignore_cur_inode;
112 
113 	u64 send_progress;
114 
115 	struct list_head new_refs;
116 	struct list_head deleted_refs;
117 
118 	struct radix_tree_root name_cache;
119 	struct list_head name_cache_list;
120 	int name_cache_size;
121 
122 	struct file_ra_state ra;
123 
124 	char *read_buf;
125 
126 	/*
127 	 * We process inodes by their increasing order, so if before an
128 	 * incremental send we reverse the parent/child relationship of
129 	 * directories such that a directory with a lower inode number was
130 	 * the parent of a directory with a higher inode number, and the one
131 	 * becoming the new parent got renamed too, we can't rename/move the
132 	 * directory with lower inode number when we finish processing it - we
133 	 * must process the directory with higher inode number first, then
134 	 * rename/move it and then rename/move the directory with lower inode
135 	 * number. Example follows.
136 	 *
137 	 * Tree state when the first send was performed:
138 	 *
139 	 * .
140 	 * |-- a                   (ino 257)
141 	 *     |-- b               (ino 258)
142 	 *         |
143 	 *         |
144 	 *         |-- c           (ino 259)
145 	 *         |   |-- d       (ino 260)
146 	 *         |
147 	 *         |-- c2          (ino 261)
148 	 *
149 	 * Tree state when the second (incremental) send is performed:
150 	 *
151 	 * .
152 	 * |-- a                   (ino 257)
153 	 *     |-- b               (ino 258)
154 	 *         |-- c2          (ino 261)
155 	 *             |-- d2      (ino 260)
156 	 *                 |-- cc  (ino 259)
157 	 *
158 	 * The sequence of steps that lead to the second state was:
159 	 *
160 	 * mv /a/b/c/d /a/b/c2/d2
161 	 * mv /a/b/c /a/b/c2/d2/cc
162 	 *
163 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
164 	 * before we move "d", which has higher inode number.
165 	 *
166 	 * So we just memorize which move/rename operations must be performed
167 	 * later when their respective parent is processed and moved/renamed.
168 	 */
169 
170 	/* Indexed by parent directory inode number. */
171 	struct rb_root pending_dir_moves;
172 
173 	/*
174 	 * Reverse index, indexed by the inode number of a directory that
175 	 * is waiting for the move/rename of its immediate parent before its
176 	 * own move/rename can be performed.
177 	 */
178 	struct rb_root waiting_dir_moves;
179 
180 	/*
181 	 * A directory that is going to be rm'ed might have a child directory
182 	 * which is in the pending directory moves index above. In this case,
183 	 * the directory can only be removed after the move/rename of its child
184 	 * is performed. Example:
185 	 *
186 	 * Parent snapshot:
187 	 *
188 	 * .                        (ino 256)
189 	 * |-- a/                   (ino 257)
190 	 *     |-- b/               (ino 258)
191 	 *         |-- c/           (ino 259)
192 	 *         |   |-- x/       (ino 260)
193 	 *         |
194 	 *         |-- y/           (ino 261)
195 	 *
196 	 * Send snapshot:
197 	 *
198 	 * .                        (ino 256)
199 	 * |-- a/                   (ino 257)
200 	 *     |-- b/               (ino 258)
201 	 *         |-- YY/          (ino 261)
202 	 *              |-- x/      (ino 260)
203 	 *
204 	 * Sequence of steps that lead to the send snapshot:
205 	 * rm -f /a/b/c/foo.txt
206 	 * mv /a/b/y /a/b/YY
207 	 * mv /a/b/c/x /a/b/YY
208 	 * rmdir /a/b/c
209 	 *
210 	 * When the child is processed, its move/rename is delayed until its
211 	 * parent is processed (as explained above), but all other operations
212 	 * like update utimes, chown, chgrp, etc, are performed and the paths
213 	 * that it uses for those operations must use the orphanized name of
214 	 * its parent (the directory we're going to rm later), so we need to
215 	 * memorize that name.
216 	 *
217 	 * Indexed by the inode number of the directory to be deleted.
218 	 */
219 	struct rb_root orphan_dirs;
220 };
221 
222 struct pending_dir_move {
223 	struct rb_node node;
224 	struct list_head list;
225 	u64 parent_ino;
226 	u64 ino;
227 	u64 gen;
228 	struct list_head update_refs;
229 };
230 
231 struct waiting_dir_move {
232 	struct rb_node node;
233 	u64 ino;
234 	/*
235 	 * There might be some directory that could not be removed because it
236 	 * was waiting for this directory inode to be moved first. Therefore
237 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
238 	 */
239 	u64 rmdir_ino;
240 	bool orphanized;
241 };
242 
243 struct orphan_dir_info {
244 	struct rb_node node;
245 	u64 ino;
246 	u64 gen;
247 	u64 last_dir_index_offset;
248 };
249 
250 struct name_cache_entry {
251 	struct list_head list;
252 	/*
253 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
254 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
255 	 * more then one inum would fall into the same entry, we use radix_list
256 	 * to store the additional entries. radix_list is also used to store
257 	 * entries where two entries have the same inum but different
258 	 * generations.
259 	 */
260 	struct list_head radix_list;
261 	u64 ino;
262 	u64 gen;
263 	u64 parent_ino;
264 	u64 parent_gen;
265 	int ret;
266 	int need_later_update;
267 	int name_len;
268 	char name[];
269 };
270 
271 #define ADVANCE							1
272 #define ADVANCE_ONLY_NEXT					-1
273 
274 enum btrfs_compare_tree_result {
275 	BTRFS_COMPARE_TREE_NEW,
276 	BTRFS_COMPARE_TREE_DELETED,
277 	BTRFS_COMPARE_TREE_CHANGED,
278 	BTRFS_COMPARE_TREE_SAME,
279 };
280 typedef int (*btrfs_changed_cb_t)(struct btrfs_path *left_path,
281 				  struct btrfs_path *right_path,
282 				  struct btrfs_key *key,
283 				  enum btrfs_compare_tree_result result,
284 				  void *ctx);
285 
286 __cold
287 static void inconsistent_snapshot_error(struct send_ctx *sctx,
288 					enum btrfs_compare_tree_result result,
289 					const char *what)
290 {
291 	const char *result_string;
292 
293 	switch (result) {
294 	case BTRFS_COMPARE_TREE_NEW:
295 		result_string = "new";
296 		break;
297 	case BTRFS_COMPARE_TREE_DELETED:
298 		result_string = "deleted";
299 		break;
300 	case BTRFS_COMPARE_TREE_CHANGED:
301 		result_string = "updated";
302 		break;
303 	case BTRFS_COMPARE_TREE_SAME:
304 		ASSERT(0);
305 		result_string = "unchanged";
306 		break;
307 	default:
308 		ASSERT(0);
309 		result_string = "unexpected";
310 	}
311 
312 	btrfs_err(sctx->send_root->fs_info,
313 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
314 		  result_string, what, sctx->cmp_key->objectid,
315 		  sctx->send_root->root_key.objectid,
316 		  (sctx->parent_root ?
317 		   sctx->parent_root->root_key.objectid : 0));
318 }
319 
320 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
321 
322 static struct waiting_dir_move *
323 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
324 
325 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
326 
327 static int need_send_hole(struct send_ctx *sctx)
328 {
329 	return (sctx->parent_root && !sctx->cur_inode_new &&
330 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
331 		S_ISREG(sctx->cur_inode_mode));
332 }
333 
334 static void fs_path_reset(struct fs_path *p)
335 {
336 	if (p->reversed) {
337 		p->start = p->buf + p->buf_len - 1;
338 		p->end = p->start;
339 		*p->start = 0;
340 	} else {
341 		p->start = p->buf;
342 		p->end = p->start;
343 		*p->start = 0;
344 	}
345 }
346 
347 static struct fs_path *fs_path_alloc(void)
348 {
349 	struct fs_path *p;
350 
351 	p = kmalloc(sizeof(*p), GFP_KERNEL);
352 	if (!p)
353 		return NULL;
354 	p->reversed = 0;
355 	p->buf = p->inline_buf;
356 	p->buf_len = FS_PATH_INLINE_SIZE;
357 	fs_path_reset(p);
358 	return p;
359 }
360 
361 static struct fs_path *fs_path_alloc_reversed(void)
362 {
363 	struct fs_path *p;
364 
365 	p = fs_path_alloc();
366 	if (!p)
367 		return NULL;
368 	p->reversed = 1;
369 	fs_path_reset(p);
370 	return p;
371 }
372 
373 static void fs_path_free(struct fs_path *p)
374 {
375 	if (!p)
376 		return;
377 	if (p->buf != p->inline_buf)
378 		kfree(p->buf);
379 	kfree(p);
380 }
381 
382 static int fs_path_len(struct fs_path *p)
383 {
384 	return p->end - p->start;
385 }
386 
387 static int fs_path_ensure_buf(struct fs_path *p, int len)
388 {
389 	char *tmp_buf;
390 	int path_len;
391 	int old_buf_len;
392 
393 	len++;
394 
395 	if (p->buf_len >= len)
396 		return 0;
397 
398 	if (len > PATH_MAX) {
399 		WARN_ON(1);
400 		return -ENOMEM;
401 	}
402 
403 	path_len = p->end - p->start;
404 	old_buf_len = p->buf_len;
405 
406 	/*
407 	 * First time the inline_buf does not suffice
408 	 */
409 	if (p->buf == p->inline_buf) {
410 		tmp_buf = kmalloc(len, GFP_KERNEL);
411 		if (tmp_buf)
412 			memcpy(tmp_buf, p->buf, old_buf_len);
413 	} else {
414 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
415 	}
416 	if (!tmp_buf)
417 		return -ENOMEM;
418 	p->buf = tmp_buf;
419 	/*
420 	 * The real size of the buffer is bigger, this will let the fast path
421 	 * happen most of the time
422 	 */
423 	p->buf_len = ksize(p->buf);
424 
425 	if (p->reversed) {
426 		tmp_buf = p->buf + old_buf_len - path_len - 1;
427 		p->end = p->buf + p->buf_len - 1;
428 		p->start = p->end - path_len;
429 		memmove(p->start, tmp_buf, path_len + 1);
430 	} else {
431 		p->start = p->buf;
432 		p->end = p->start + path_len;
433 	}
434 	return 0;
435 }
436 
437 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
438 				   char **prepared)
439 {
440 	int ret;
441 	int new_len;
442 
443 	new_len = p->end - p->start + name_len;
444 	if (p->start != p->end)
445 		new_len++;
446 	ret = fs_path_ensure_buf(p, new_len);
447 	if (ret < 0)
448 		goto out;
449 
450 	if (p->reversed) {
451 		if (p->start != p->end)
452 			*--p->start = '/';
453 		p->start -= name_len;
454 		*prepared = p->start;
455 	} else {
456 		if (p->start != p->end)
457 			*p->end++ = '/';
458 		*prepared = p->end;
459 		p->end += name_len;
460 		*p->end = 0;
461 	}
462 
463 out:
464 	return ret;
465 }
466 
467 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
468 {
469 	int ret;
470 	char *prepared;
471 
472 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
473 	if (ret < 0)
474 		goto out;
475 	memcpy(prepared, name, name_len);
476 
477 out:
478 	return ret;
479 }
480 
481 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
482 {
483 	int ret;
484 	char *prepared;
485 
486 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
487 	if (ret < 0)
488 		goto out;
489 	memcpy(prepared, p2->start, p2->end - p2->start);
490 
491 out:
492 	return ret;
493 }
494 
495 static int fs_path_add_from_extent_buffer(struct fs_path *p,
496 					  struct extent_buffer *eb,
497 					  unsigned long off, int len)
498 {
499 	int ret;
500 	char *prepared;
501 
502 	ret = fs_path_prepare_for_add(p, len, &prepared);
503 	if (ret < 0)
504 		goto out;
505 
506 	read_extent_buffer(eb, prepared, off, len);
507 
508 out:
509 	return ret;
510 }
511 
512 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
513 {
514 	int ret;
515 
516 	p->reversed = from->reversed;
517 	fs_path_reset(p);
518 
519 	ret = fs_path_add_path(p, from);
520 
521 	return ret;
522 }
523 
524 
525 static void fs_path_unreverse(struct fs_path *p)
526 {
527 	char *tmp;
528 	int len;
529 
530 	if (!p->reversed)
531 		return;
532 
533 	tmp = p->start;
534 	len = p->end - p->start;
535 	p->start = p->buf;
536 	p->end = p->start + len;
537 	memmove(p->start, tmp, len + 1);
538 	p->reversed = 0;
539 }
540 
541 static struct btrfs_path *alloc_path_for_send(void)
542 {
543 	struct btrfs_path *path;
544 
545 	path = btrfs_alloc_path();
546 	if (!path)
547 		return NULL;
548 	path->search_commit_root = 1;
549 	path->skip_locking = 1;
550 	path->need_commit_sem = 1;
551 	return path;
552 }
553 
554 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
555 {
556 	int ret;
557 	u32 pos = 0;
558 
559 	while (pos < len) {
560 		ret = kernel_write(filp, buf + pos, len - pos, off);
561 		/* TODO handle that correctly */
562 		/*if (ret == -ERESTARTSYS) {
563 			continue;
564 		}*/
565 		if (ret < 0)
566 			return ret;
567 		if (ret == 0) {
568 			return -EIO;
569 		}
570 		pos += ret;
571 	}
572 
573 	return 0;
574 }
575 
576 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
577 {
578 	struct btrfs_tlv_header *hdr;
579 	int total_len = sizeof(*hdr) + len;
580 	int left = sctx->send_max_size - sctx->send_size;
581 
582 	if (unlikely(left < total_len))
583 		return -EOVERFLOW;
584 
585 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
586 	hdr->tlv_type = cpu_to_le16(attr);
587 	hdr->tlv_len = cpu_to_le16(len);
588 	memcpy(hdr + 1, data, len);
589 	sctx->send_size += total_len;
590 
591 	return 0;
592 }
593 
594 #define TLV_PUT_DEFINE_INT(bits) \
595 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
596 			u##bits attr, u##bits value)			\
597 	{								\
598 		__le##bits __tmp = cpu_to_le##bits(value);		\
599 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
600 	}
601 
602 TLV_PUT_DEFINE_INT(64)
603 
604 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
605 			  const char *str, int len)
606 {
607 	if (len == -1)
608 		len = strlen(str);
609 	return tlv_put(sctx, attr, str, len);
610 }
611 
612 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
613 			const u8 *uuid)
614 {
615 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
616 }
617 
618 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
619 				  struct extent_buffer *eb,
620 				  struct btrfs_timespec *ts)
621 {
622 	struct btrfs_timespec bts;
623 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
624 	return tlv_put(sctx, attr, &bts, sizeof(bts));
625 }
626 
627 
628 #define TLV_PUT(sctx, attrtype, data, attrlen) \
629 	do { \
630 		ret = tlv_put(sctx, attrtype, data, attrlen); \
631 		if (ret < 0) \
632 			goto tlv_put_failure; \
633 	} while (0)
634 
635 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
636 	do { \
637 		ret = tlv_put_u##bits(sctx, attrtype, value); \
638 		if (ret < 0) \
639 			goto tlv_put_failure; \
640 	} while (0)
641 
642 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
643 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
644 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
645 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
646 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
647 	do { \
648 		ret = tlv_put_string(sctx, attrtype, str, len); \
649 		if (ret < 0) \
650 			goto tlv_put_failure; \
651 	} while (0)
652 #define TLV_PUT_PATH(sctx, attrtype, p) \
653 	do { \
654 		ret = tlv_put_string(sctx, attrtype, p->start, \
655 			p->end - p->start); \
656 		if (ret < 0) \
657 			goto tlv_put_failure; \
658 	} while(0)
659 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
660 	do { \
661 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
662 		if (ret < 0) \
663 			goto tlv_put_failure; \
664 	} while (0)
665 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
666 	do { \
667 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
668 		if (ret < 0) \
669 			goto tlv_put_failure; \
670 	} while (0)
671 
672 static int send_header(struct send_ctx *sctx)
673 {
674 	struct btrfs_stream_header hdr;
675 
676 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
677 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
678 
679 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
680 					&sctx->send_off);
681 }
682 
683 /*
684  * For each command/item we want to send to userspace, we call this function.
685  */
686 static int begin_cmd(struct send_ctx *sctx, int cmd)
687 {
688 	struct btrfs_cmd_header *hdr;
689 
690 	if (WARN_ON(!sctx->send_buf))
691 		return -EINVAL;
692 
693 	BUG_ON(sctx->send_size);
694 
695 	sctx->send_size += sizeof(*hdr);
696 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
697 	hdr->cmd = cpu_to_le16(cmd);
698 
699 	return 0;
700 }
701 
702 static int send_cmd(struct send_ctx *sctx)
703 {
704 	int ret;
705 	struct btrfs_cmd_header *hdr;
706 	u32 crc;
707 
708 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
709 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
710 	hdr->crc = 0;
711 
712 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
713 	hdr->crc = cpu_to_le32(crc);
714 
715 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
716 					&sctx->send_off);
717 
718 	sctx->total_send_size += sctx->send_size;
719 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
720 	sctx->send_size = 0;
721 
722 	return ret;
723 }
724 
725 /*
726  * Sends a move instruction to user space
727  */
728 static int send_rename(struct send_ctx *sctx,
729 		     struct fs_path *from, struct fs_path *to)
730 {
731 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
732 	int ret;
733 
734 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
735 
736 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
737 	if (ret < 0)
738 		goto out;
739 
740 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
741 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
742 
743 	ret = send_cmd(sctx);
744 
745 tlv_put_failure:
746 out:
747 	return ret;
748 }
749 
750 /*
751  * Sends a link instruction to user space
752  */
753 static int send_link(struct send_ctx *sctx,
754 		     struct fs_path *path, struct fs_path *lnk)
755 {
756 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
757 	int ret;
758 
759 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
760 
761 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
762 	if (ret < 0)
763 		goto out;
764 
765 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
766 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
767 
768 	ret = send_cmd(sctx);
769 
770 tlv_put_failure:
771 out:
772 	return ret;
773 }
774 
775 /*
776  * Sends an unlink instruction to user space
777  */
778 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
779 {
780 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
781 	int ret;
782 
783 	btrfs_debug(fs_info, "send_unlink %s", path->start);
784 
785 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
786 	if (ret < 0)
787 		goto out;
788 
789 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
790 
791 	ret = send_cmd(sctx);
792 
793 tlv_put_failure:
794 out:
795 	return ret;
796 }
797 
798 /*
799  * Sends a rmdir instruction to user space
800  */
801 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
802 {
803 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
804 	int ret;
805 
806 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
807 
808 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
809 	if (ret < 0)
810 		goto out;
811 
812 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
813 
814 	ret = send_cmd(sctx);
815 
816 tlv_put_failure:
817 out:
818 	return ret;
819 }
820 
821 /*
822  * Helper function to retrieve some fields from an inode item.
823  */
824 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
825 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
826 			  u64 *gid, u64 *rdev)
827 {
828 	int ret;
829 	struct btrfs_inode_item *ii;
830 	struct btrfs_key key;
831 
832 	key.objectid = ino;
833 	key.type = BTRFS_INODE_ITEM_KEY;
834 	key.offset = 0;
835 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
836 	if (ret) {
837 		if (ret > 0)
838 			ret = -ENOENT;
839 		return ret;
840 	}
841 
842 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
843 			struct btrfs_inode_item);
844 	if (size)
845 		*size = btrfs_inode_size(path->nodes[0], ii);
846 	if (gen)
847 		*gen = btrfs_inode_generation(path->nodes[0], ii);
848 	if (mode)
849 		*mode = btrfs_inode_mode(path->nodes[0], ii);
850 	if (uid)
851 		*uid = btrfs_inode_uid(path->nodes[0], ii);
852 	if (gid)
853 		*gid = btrfs_inode_gid(path->nodes[0], ii);
854 	if (rdev)
855 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
856 
857 	return ret;
858 }
859 
860 static int get_inode_info(struct btrfs_root *root,
861 			  u64 ino, u64 *size, u64 *gen,
862 			  u64 *mode, u64 *uid, u64 *gid,
863 			  u64 *rdev)
864 {
865 	struct btrfs_path *path;
866 	int ret;
867 
868 	path = alloc_path_for_send();
869 	if (!path)
870 		return -ENOMEM;
871 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
872 			       rdev);
873 	btrfs_free_path(path);
874 	return ret;
875 }
876 
877 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
878 				   struct fs_path *p,
879 				   void *ctx);
880 
881 /*
882  * Helper function to iterate the entries in ONE btrfs_inode_ref or
883  * btrfs_inode_extref.
884  * The iterate callback may return a non zero value to stop iteration. This can
885  * be a negative value for error codes or 1 to simply stop it.
886  *
887  * path must point to the INODE_REF or INODE_EXTREF when called.
888  */
889 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
890 			     struct btrfs_key *found_key, int resolve,
891 			     iterate_inode_ref_t iterate, void *ctx)
892 {
893 	struct extent_buffer *eb = path->nodes[0];
894 	struct btrfs_item *item;
895 	struct btrfs_inode_ref *iref;
896 	struct btrfs_inode_extref *extref;
897 	struct btrfs_path *tmp_path;
898 	struct fs_path *p;
899 	u32 cur = 0;
900 	u32 total;
901 	int slot = path->slots[0];
902 	u32 name_len;
903 	char *start;
904 	int ret = 0;
905 	int num = 0;
906 	int index;
907 	u64 dir;
908 	unsigned long name_off;
909 	unsigned long elem_size;
910 	unsigned long ptr;
911 
912 	p = fs_path_alloc_reversed();
913 	if (!p)
914 		return -ENOMEM;
915 
916 	tmp_path = alloc_path_for_send();
917 	if (!tmp_path) {
918 		fs_path_free(p);
919 		return -ENOMEM;
920 	}
921 
922 
923 	if (found_key->type == BTRFS_INODE_REF_KEY) {
924 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
925 						    struct btrfs_inode_ref);
926 		item = btrfs_item_nr(slot);
927 		total = btrfs_item_size(eb, item);
928 		elem_size = sizeof(*iref);
929 	} else {
930 		ptr = btrfs_item_ptr_offset(eb, slot);
931 		total = btrfs_item_size_nr(eb, slot);
932 		elem_size = sizeof(*extref);
933 	}
934 
935 	while (cur < total) {
936 		fs_path_reset(p);
937 
938 		if (found_key->type == BTRFS_INODE_REF_KEY) {
939 			iref = (struct btrfs_inode_ref *)(ptr + cur);
940 			name_len = btrfs_inode_ref_name_len(eb, iref);
941 			name_off = (unsigned long)(iref + 1);
942 			index = btrfs_inode_ref_index(eb, iref);
943 			dir = found_key->offset;
944 		} else {
945 			extref = (struct btrfs_inode_extref *)(ptr + cur);
946 			name_len = btrfs_inode_extref_name_len(eb, extref);
947 			name_off = (unsigned long)&extref->name;
948 			index = btrfs_inode_extref_index(eb, extref);
949 			dir = btrfs_inode_extref_parent(eb, extref);
950 		}
951 
952 		if (resolve) {
953 			start = btrfs_ref_to_path(root, tmp_path, name_len,
954 						  name_off, eb, dir,
955 						  p->buf, p->buf_len);
956 			if (IS_ERR(start)) {
957 				ret = PTR_ERR(start);
958 				goto out;
959 			}
960 			if (start < p->buf) {
961 				/* overflow , try again with larger buffer */
962 				ret = fs_path_ensure_buf(p,
963 						p->buf_len + p->buf - start);
964 				if (ret < 0)
965 					goto out;
966 				start = btrfs_ref_to_path(root, tmp_path,
967 							  name_len, name_off,
968 							  eb, dir,
969 							  p->buf, p->buf_len);
970 				if (IS_ERR(start)) {
971 					ret = PTR_ERR(start);
972 					goto out;
973 				}
974 				BUG_ON(start < p->buf);
975 			}
976 			p->start = start;
977 		} else {
978 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
979 							     name_len);
980 			if (ret < 0)
981 				goto out;
982 		}
983 
984 		cur += elem_size + name_len;
985 		ret = iterate(num, dir, index, p, ctx);
986 		if (ret)
987 			goto out;
988 		num++;
989 	}
990 
991 out:
992 	btrfs_free_path(tmp_path);
993 	fs_path_free(p);
994 	return ret;
995 }
996 
997 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
998 				  const char *name, int name_len,
999 				  const char *data, int data_len,
1000 				  u8 type, void *ctx);
1001 
1002 /*
1003  * Helper function to iterate the entries in ONE btrfs_dir_item.
1004  * The iterate callback may return a non zero value to stop iteration. This can
1005  * be a negative value for error codes or 1 to simply stop it.
1006  *
1007  * path must point to the dir item when called.
1008  */
1009 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1010 			    iterate_dir_item_t iterate, void *ctx)
1011 {
1012 	int ret = 0;
1013 	struct extent_buffer *eb;
1014 	struct btrfs_item *item;
1015 	struct btrfs_dir_item *di;
1016 	struct btrfs_key di_key;
1017 	char *buf = NULL;
1018 	int buf_len;
1019 	u32 name_len;
1020 	u32 data_len;
1021 	u32 cur;
1022 	u32 len;
1023 	u32 total;
1024 	int slot;
1025 	int num;
1026 	u8 type;
1027 
1028 	/*
1029 	 * Start with a small buffer (1 page). If later we end up needing more
1030 	 * space, which can happen for xattrs on a fs with a leaf size greater
1031 	 * then the page size, attempt to increase the buffer. Typically xattr
1032 	 * values are small.
1033 	 */
1034 	buf_len = PATH_MAX;
1035 	buf = kmalloc(buf_len, GFP_KERNEL);
1036 	if (!buf) {
1037 		ret = -ENOMEM;
1038 		goto out;
1039 	}
1040 
1041 	eb = path->nodes[0];
1042 	slot = path->slots[0];
1043 	item = btrfs_item_nr(slot);
1044 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1045 	cur = 0;
1046 	len = 0;
1047 	total = btrfs_item_size(eb, item);
1048 
1049 	num = 0;
1050 	while (cur < total) {
1051 		name_len = btrfs_dir_name_len(eb, di);
1052 		data_len = btrfs_dir_data_len(eb, di);
1053 		type = btrfs_dir_type(eb, di);
1054 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1055 
1056 		if (type == BTRFS_FT_XATTR) {
1057 			if (name_len > XATTR_NAME_MAX) {
1058 				ret = -ENAMETOOLONG;
1059 				goto out;
1060 			}
1061 			if (name_len + data_len >
1062 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1063 				ret = -E2BIG;
1064 				goto out;
1065 			}
1066 		} else {
1067 			/*
1068 			 * Path too long
1069 			 */
1070 			if (name_len + data_len > PATH_MAX) {
1071 				ret = -ENAMETOOLONG;
1072 				goto out;
1073 			}
1074 		}
1075 
1076 		if (name_len + data_len > buf_len) {
1077 			buf_len = name_len + data_len;
1078 			if (is_vmalloc_addr(buf)) {
1079 				vfree(buf);
1080 				buf = NULL;
1081 			} else {
1082 				char *tmp = krealloc(buf, buf_len,
1083 						GFP_KERNEL | __GFP_NOWARN);
1084 
1085 				if (!tmp)
1086 					kfree(buf);
1087 				buf = tmp;
1088 			}
1089 			if (!buf) {
1090 				buf = kvmalloc(buf_len, GFP_KERNEL);
1091 				if (!buf) {
1092 					ret = -ENOMEM;
1093 					goto out;
1094 				}
1095 			}
1096 		}
1097 
1098 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1099 				name_len + data_len);
1100 
1101 		len = sizeof(*di) + name_len + data_len;
1102 		di = (struct btrfs_dir_item *)((char *)di + len);
1103 		cur += len;
1104 
1105 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1106 				data_len, type, ctx);
1107 		if (ret < 0)
1108 			goto out;
1109 		if (ret) {
1110 			ret = 0;
1111 			goto out;
1112 		}
1113 
1114 		num++;
1115 	}
1116 
1117 out:
1118 	kvfree(buf);
1119 	return ret;
1120 }
1121 
1122 static int __copy_first_ref(int num, u64 dir, int index,
1123 			    struct fs_path *p, void *ctx)
1124 {
1125 	int ret;
1126 	struct fs_path *pt = ctx;
1127 
1128 	ret = fs_path_copy(pt, p);
1129 	if (ret < 0)
1130 		return ret;
1131 
1132 	/* we want the first only */
1133 	return 1;
1134 }
1135 
1136 /*
1137  * Retrieve the first path of an inode. If an inode has more then one
1138  * ref/hardlink, this is ignored.
1139  */
1140 static int get_inode_path(struct btrfs_root *root,
1141 			  u64 ino, struct fs_path *path)
1142 {
1143 	int ret;
1144 	struct btrfs_key key, found_key;
1145 	struct btrfs_path *p;
1146 
1147 	p = alloc_path_for_send();
1148 	if (!p)
1149 		return -ENOMEM;
1150 
1151 	fs_path_reset(path);
1152 
1153 	key.objectid = ino;
1154 	key.type = BTRFS_INODE_REF_KEY;
1155 	key.offset = 0;
1156 
1157 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1158 	if (ret < 0)
1159 		goto out;
1160 	if (ret) {
1161 		ret = 1;
1162 		goto out;
1163 	}
1164 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1165 	if (found_key.objectid != ino ||
1166 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1167 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1168 		ret = -ENOENT;
1169 		goto out;
1170 	}
1171 
1172 	ret = iterate_inode_ref(root, p, &found_key, 1,
1173 				__copy_first_ref, path);
1174 	if (ret < 0)
1175 		goto out;
1176 	ret = 0;
1177 
1178 out:
1179 	btrfs_free_path(p);
1180 	return ret;
1181 }
1182 
1183 struct backref_ctx {
1184 	struct send_ctx *sctx;
1185 
1186 	/* number of total found references */
1187 	u64 found;
1188 
1189 	/*
1190 	 * used for clones found in send_root. clones found behind cur_objectid
1191 	 * and cur_offset are not considered as allowed clones.
1192 	 */
1193 	u64 cur_objectid;
1194 	u64 cur_offset;
1195 
1196 	/* may be truncated in case it's the last extent in a file */
1197 	u64 extent_len;
1198 
1199 	/* data offset in the file extent item */
1200 	u64 data_offset;
1201 
1202 	/* Just to check for bugs in backref resolving */
1203 	int found_itself;
1204 };
1205 
1206 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1207 {
1208 	u64 root = (u64)(uintptr_t)key;
1209 	struct clone_root *cr = (struct clone_root *)elt;
1210 
1211 	if (root < cr->root->root_key.objectid)
1212 		return -1;
1213 	if (root > cr->root->root_key.objectid)
1214 		return 1;
1215 	return 0;
1216 }
1217 
1218 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1219 {
1220 	struct clone_root *cr1 = (struct clone_root *)e1;
1221 	struct clone_root *cr2 = (struct clone_root *)e2;
1222 
1223 	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1224 		return -1;
1225 	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1226 		return 1;
1227 	return 0;
1228 }
1229 
1230 /*
1231  * Called for every backref that is found for the current extent.
1232  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1233  */
1234 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1235 {
1236 	struct backref_ctx *bctx = ctx_;
1237 	struct clone_root *found;
1238 
1239 	/* First check if the root is in the list of accepted clone sources */
1240 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1241 			bctx->sctx->clone_roots_cnt,
1242 			sizeof(struct clone_root),
1243 			__clone_root_cmp_bsearch);
1244 	if (!found)
1245 		return 0;
1246 
1247 	if (found->root == bctx->sctx->send_root &&
1248 	    ino == bctx->cur_objectid &&
1249 	    offset == bctx->cur_offset) {
1250 		bctx->found_itself = 1;
1251 	}
1252 
1253 	/*
1254 	 * Make sure we don't consider clones from send_root that are
1255 	 * behind the current inode/offset.
1256 	 */
1257 	if (found->root == bctx->sctx->send_root) {
1258 		/*
1259 		 * If the source inode was not yet processed we can't issue a
1260 		 * clone operation, as the source extent does not exist yet at
1261 		 * the destination of the stream.
1262 		 */
1263 		if (ino > bctx->cur_objectid)
1264 			return 0;
1265 		/*
1266 		 * We clone from the inode currently being sent as long as the
1267 		 * source extent is already processed, otherwise we could try
1268 		 * to clone from an extent that does not exist yet at the
1269 		 * destination of the stream.
1270 		 */
1271 		if (ino == bctx->cur_objectid &&
1272 		    offset >= bctx->sctx->cur_inode_next_write_offset)
1273 			return 0;
1274 	}
1275 
1276 	bctx->found++;
1277 	found->found_refs++;
1278 	if (ino < found->ino) {
1279 		found->ino = ino;
1280 		found->offset = offset;
1281 	} else if (found->ino == ino) {
1282 		/*
1283 		 * same extent found more then once in the same file.
1284 		 */
1285 		if (found->offset > offset + bctx->extent_len)
1286 			found->offset = offset;
1287 	}
1288 
1289 	return 0;
1290 }
1291 
1292 /*
1293  * Given an inode, offset and extent item, it finds a good clone for a clone
1294  * instruction. Returns -ENOENT when none could be found. The function makes
1295  * sure that the returned clone is usable at the point where sending is at the
1296  * moment. This means, that no clones are accepted which lie behind the current
1297  * inode+offset.
1298  *
1299  * path must point to the extent item when called.
1300  */
1301 static int find_extent_clone(struct send_ctx *sctx,
1302 			     struct btrfs_path *path,
1303 			     u64 ino, u64 data_offset,
1304 			     u64 ino_size,
1305 			     struct clone_root **found)
1306 {
1307 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1308 	int ret;
1309 	int extent_type;
1310 	u64 logical;
1311 	u64 disk_byte;
1312 	u64 num_bytes;
1313 	u64 extent_item_pos;
1314 	u64 flags = 0;
1315 	struct btrfs_file_extent_item *fi;
1316 	struct extent_buffer *eb = path->nodes[0];
1317 	struct backref_ctx *backref_ctx = NULL;
1318 	struct clone_root *cur_clone_root;
1319 	struct btrfs_key found_key;
1320 	struct btrfs_path *tmp_path;
1321 	struct btrfs_extent_item *ei;
1322 	int compressed;
1323 	u32 i;
1324 
1325 	tmp_path = alloc_path_for_send();
1326 	if (!tmp_path)
1327 		return -ENOMEM;
1328 
1329 	/* We only use this path under the commit sem */
1330 	tmp_path->need_commit_sem = 0;
1331 
1332 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1333 	if (!backref_ctx) {
1334 		ret = -ENOMEM;
1335 		goto out;
1336 	}
1337 
1338 	if (data_offset >= ino_size) {
1339 		/*
1340 		 * There may be extents that lie behind the file's size.
1341 		 * I at least had this in combination with snapshotting while
1342 		 * writing large files.
1343 		 */
1344 		ret = 0;
1345 		goto out;
1346 	}
1347 
1348 	fi = btrfs_item_ptr(eb, path->slots[0],
1349 			struct btrfs_file_extent_item);
1350 	extent_type = btrfs_file_extent_type(eb, fi);
1351 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1352 		ret = -ENOENT;
1353 		goto out;
1354 	}
1355 	compressed = btrfs_file_extent_compression(eb, fi);
1356 
1357 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1358 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1359 	if (disk_byte == 0) {
1360 		ret = -ENOENT;
1361 		goto out;
1362 	}
1363 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1364 
1365 	down_read(&fs_info->commit_root_sem);
1366 	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1367 				  &found_key, &flags);
1368 	up_read(&fs_info->commit_root_sem);
1369 
1370 	if (ret < 0)
1371 		goto out;
1372 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1373 		ret = -EIO;
1374 		goto out;
1375 	}
1376 
1377 	ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1378 			    struct btrfs_extent_item);
1379 	/*
1380 	 * Backreference walking (iterate_extent_inodes() below) is currently
1381 	 * too expensive when an extent has a large number of references, both
1382 	 * in time spent and used memory. So for now just fallback to write
1383 	 * operations instead of clone operations when an extent has more than
1384 	 * a certain amount of references.
1385 	 */
1386 	if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1387 		ret = -ENOENT;
1388 		goto out;
1389 	}
1390 	btrfs_release_path(tmp_path);
1391 
1392 	/*
1393 	 * Setup the clone roots.
1394 	 */
1395 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1396 		cur_clone_root = sctx->clone_roots + i;
1397 		cur_clone_root->ino = (u64)-1;
1398 		cur_clone_root->offset = 0;
1399 		cur_clone_root->found_refs = 0;
1400 	}
1401 
1402 	backref_ctx->sctx = sctx;
1403 	backref_ctx->found = 0;
1404 	backref_ctx->cur_objectid = ino;
1405 	backref_ctx->cur_offset = data_offset;
1406 	backref_ctx->found_itself = 0;
1407 	backref_ctx->extent_len = num_bytes;
1408 	/*
1409 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1410 	 * offsets that already take into account the data offset, but not for
1411 	 * compressed extents, since the offset is logical and not relative to
1412 	 * the physical extent locations. We must take this into account to
1413 	 * avoid sending clone offsets that go beyond the source file's size,
1414 	 * which would result in the clone ioctl failing with -EINVAL on the
1415 	 * receiving end.
1416 	 */
1417 	if (compressed == BTRFS_COMPRESS_NONE)
1418 		backref_ctx->data_offset = 0;
1419 	else
1420 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1421 
1422 	/*
1423 	 * The last extent of a file may be too large due to page alignment.
1424 	 * We need to adjust extent_len in this case so that the checks in
1425 	 * __iterate_backrefs work.
1426 	 */
1427 	if (data_offset + num_bytes >= ino_size)
1428 		backref_ctx->extent_len = ino_size - data_offset;
1429 
1430 	/*
1431 	 * Now collect all backrefs.
1432 	 */
1433 	if (compressed == BTRFS_COMPRESS_NONE)
1434 		extent_item_pos = logical - found_key.objectid;
1435 	else
1436 		extent_item_pos = 0;
1437 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1438 				    extent_item_pos, 1, __iterate_backrefs,
1439 				    backref_ctx, false);
1440 
1441 	if (ret < 0)
1442 		goto out;
1443 
1444 	if (!backref_ctx->found_itself) {
1445 		/* found a bug in backref code? */
1446 		ret = -EIO;
1447 		btrfs_err(fs_info,
1448 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1449 			  ino, data_offset, disk_byte, found_key.objectid);
1450 		goto out;
1451 	}
1452 
1453 	btrfs_debug(fs_info,
1454 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1455 		    data_offset, ino, num_bytes, logical);
1456 
1457 	if (!backref_ctx->found)
1458 		btrfs_debug(fs_info, "no clones found");
1459 
1460 	cur_clone_root = NULL;
1461 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1462 		if (sctx->clone_roots[i].found_refs) {
1463 			if (!cur_clone_root)
1464 				cur_clone_root = sctx->clone_roots + i;
1465 			else if (sctx->clone_roots[i].root == sctx->send_root)
1466 				/* prefer clones from send_root over others */
1467 				cur_clone_root = sctx->clone_roots + i;
1468 		}
1469 
1470 	}
1471 
1472 	if (cur_clone_root) {
1473 		*found = cur_clone_root;
1474 		ret = 0;
1475 	} else {
1476 		ret = -ENOENT;
1477 	}
1478 
1479 out:
1480 	btrfs_free_path(tmp_path);
1481 	kfree(backref_ctx);
1482 	return ret;
1483 }
1484 
1485 static int read_symlink(struct btrfs_root *root,
1486 			u64 ino,
1487 			struct fs_path *dest)
1488 {
1489 	int ret;
1490 	struct btrfs_path *path;
1491 	struct btrfs_key key;
1492 	struct btrfs_file_extent_item *ei;
1493 	u8 type;
1494 	u8 compression;
1495 	unsigned long off;
1496 	int len;
1497 
1498 	path = alloc_path_for_send();
1499 	if (!path)
1500 		return -ENOMEM;
1501 
1502 	key.objectid = ino;
1503 	key.type = BTRFS_EXTENT_DATA_KEY;
1504 	key.offset = 0;
1505 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1506 	if (ret < 0)
1507 		goto out;
1508 	if (ret) {
1509 		/*
1510 		 * An empty symlink inode. Can happen in rare error paths when
1511 		 * creating a symlink (transaction committed before the inode
1512 		 * eviction handler removed the symlink inode items and a crash
1513 		 * happened in between or the subvol was snapshoted in between).
1514 		 * Print an informative message to dmesg/syslog so that the user
1515 		 * can delete the symlink.
1516 		 */
1517 		btrfs_err(root->fs_info,
1518 			  "Found empty symlink inode %llu at root %llu",
1519 			  ino, root->root_key.objectid);
1520 		ret = -EIO;
1521 		goto out;
1522 	}
1523 
1524 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1525 			struct btrfs_file_extent_item);
1526 	type = btrfs_file_extent_type(path->nodes[0], ei);
1527 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1528 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1529 	BUG_ON(compression);
1530 
1531 	off = btrfs_file_extent_inline_start(ei);
1532 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1533 
1534 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1535 
1536 out:
1537 	btrfs_free_path(path);
1538 	return ret;
1539 }
1540 
1541 /*
1542  * Helper function to generate a file name that is unique in the root of
1543  * send_root and parent_root. This is used to generate names for orphan inodes.
1544  */
1545 static int gen_unique_name(struct send_ctx *sctx,
1546 			   u64 ino, u64 gen,
1547 			   struct fs_path *dest)
1548 {
1549 	int ret = 0;
1550 	struct btrfs_path *path;
1551 	struct btrfs_dir_item *di;
1552 	char tmp[64];
1553 	int len;
1554 	u64 idx = 0;
1555 
1556 	path = alloc_path_for_send();
1557 	if (!path)
1558 		return -ENOMEM;
1559 
1560 	while (1) {
1561 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1562 				ino, gen, idx);
1563 		ASSERT(len < sizeof(tmp));
1564 
1565 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1566 				path, BTRFS_FIRST_FREE_OBJECTID,
1567 				tmp, strlen(tmp), 0);
1568 		btrfs_release_path(path);
1569 		if (IS_ERR(di)) {
1570 			ret = PTR_ERR(di);
1571 			goto out;
1572 		}
1573 		if (di) {
1574 			/* not unique, try again */
1575 			idx++;
1576 			continue;
1577 		}
1578 
1579 		if (!sctx->parent_root) {
1580 			/* unique */
1581 			ret = 0;
1582 			break;
1583 		}
1584 
1585 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1586 				path, BTRFS_FIRST_FREE_OBJECTID,
1587 				tmp, strlen(tmp), 0);
1588 		btrfs_release_path(path);
1589 		if (IS_ERR(di)) {
1590 			ret = PTR_ERR(di);
1591 			goto out;
1592 		}
1593 		if (di) {
1594 			/* not unique, try again */
1595 			idx++;
1596 			continue;
1597 		}
1598 		/* unique */
1599 		break;
1600 	}
1601 
1602 	ret = fs_path_add(dest, tmp, strlen(tmp));
1603 
1604 out:
1605 	btrfs_free_path(path);
1606 	return ret;
1607 }
1608 
1609 enum inode_state {
1610 	inode_state_no_change,
1611 	inode_state_will_create,
1612 	inode_state_did_create,
1613 	inode_state_will_delete,
1614 	inode_state_did_delete,
1615 };
1616 
1617 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1618 {
1619 	int ret;
1620 	int left_ret;
1621 	int right_ret;
1622 	u64 left_gen;
1623 	u64 right_gen;
1624 
1625 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1626 			NULL, NULL);
1627 	if (ret < 0 && ret != -ENOENT)
1628 		goto out;
1629 	left_ret = ret;
1630 
1631 	if (!sctx->parent_root) {
1632 		right_ret = -ENOENT;
1633 	} else {
1634 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1635 				NULL, NULL, NULL, NULL);
1636 		if (ret < 0 && ret != -ENOENT)
1637 			goto out;
1638 		right_ret = ret;
1639 	}
1640 
1641 	if (!left_ret && !right_ret) {
1642 		if (left_gen == gen && right_gen == gen) {
1643 			ret = inode_state_no_change;
1644 		} else if (left_gen == gen) {
1645 			if (ino < sctx->send_progress)
1646 				ret = inode_state_did_create;
1647 			else
1648 				ret = inode_state_will_create;
1649 		} else if (right_gen == gen) {
1650 			if (ino < sctx->send_progress)
1651 				ret = inode_state_did_delete;
1652 			else
1653 				ret = inode_state_will_delete;
1654 		} else  {
1655 			ret = -ENOENT;
1656 		}
1657 	} else if (!left_ret) {
1658 		if (left_gen == gen) {
1659 			if (ino < sctx->send_progress)
1660 				ret = inode_state_did_create;
1661 			else
1662 				ret = inode_state_will_create;
1663 		} else {
1664 			ret = -ENOENT;
1665 		}
1666 	} else if (!right_ret) {
1667 		if (right_gen == gen) {
1668 			if (ino < sctx->send_progress)
1669 				ret = inode_state_did_delete;
1670 			else
1671 				ret = inode_state_will_delete;
1672 		} else {
1673 			ret = -ENOENT;
1674 		}
1675 	} else {
1676 		ret = -ENOENT;
1677 	}
1678 
1679 out:
1680 	return ret;
1681 }
1682 
1683 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1684 {
1685 	int ret;
1686 
1687 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1688 		return 1;
1689 
1690 	ret = get_cur_inode_state(sctx, ino, gen);
1691 	if (ret < 0)
1692 		goto out;
1693 
1694 	if (ret == inode_state_no_change ||
1695 	    ret == inode_state_did_create ||
1696 	    ret == inode_state_will_delete)
1697 		ret = 1;
1698 	else
1699 		ret = 0;
1700 
1701 out:
1702 	return ret;
1703 }
1704 
1705 /*
1706  * Helper function to lookup a dir item in a dir.
1707  */
1708 static int lookup_dir_item_inode(struct btrfs_root *root,
1709 				 u64 dir, const char *name, int name_len,
1710 				 u64 *found_inode,
1711 				 u8 *found_type)
1712 {
1713 	int ret = 0;
1714 	struct btrfs_dir_item *di;
1715 	struct btrfs_key key;
1716 	struct btrfs_path *path;
1717 
1718 	path = alloc_path_for_send();
1719 	if (!path)
1720 		return -ENOMEM;
1721 
1722 	di = btrfs_lookup_dir_item(NULL, root, path,
1723 			dir, name, name_len, 0);
1724 	if (IS_ERR_OR_NULL(di)) {
1725 		ret = di ? PTR_ERR(di) : -ENOENT;
1726 		goto out;
1727 	}
1728 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1729 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1730 		ret = -ENOENT;
1731 		goto out;
1732 	}
1733 	*found_inode = key.objectid;
1734 	*found_type = btrfs_dir_type(path->nodes[0], di);
1735 
1736 out:
1737 	btrfs_free_path(path);
1738 	return ret;
1739 }
1740 
1741 /*
1742  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1743  * generation of the parent dir and the name of the dir entry.
1744  */
1745 static int get_first_ref(struct btrfs_root *root, u64 ino,
1746 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1747 {
1748 	int ret;
1749 	struct btrfs_key key;
1750 	struct btrfs_key found_key;
1751 	struct btrfs_path *path;
1752 	int len;
1753 	u64 parent_dir;
1754 
1755 	path = alloc_path_for_send();
1756 	if (!path)
1757 		return -ENOMEM;
1758 
1759 	key.objectid = ino;
1760 	key.type = BTRFS_INODE_REF_KEY;
1761 	key.offset = 0;
1762 
1763 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1764 	if (ret < 0)
1765 		goto out;
1766 	if (!ret)
1767 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1768 				path->slots[0]);
1769 	if (ret || found_key.objectid != ino ||
1770 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1771 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1772 		ret = -ENOENT;
1773 		goto out;
1774 	}
1775 
1776 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1777 		struct btrfs_inode_ref *iref;
1778 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1779 				      struct btrfs_inode_ref);
1780 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1781 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1782 						     (unsigned long)(iref + 1),
1783 						     len);
1784 		parent_dir = found_key.offset;
1785 	} else {
1786 		struct btrfs_inode_extref *extref;
1787 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1788 					struct btrfs_inode_extref);
1789 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1790 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1791 					(unsigned long)&extref->name, len);
1792 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1793 	}
1794 	if (ret < 0)
1795 		goto out;
1796 	btrfs_release_path(path);
1797 
1798 	if (dir_gen) {
1799 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1800 				     NULL, NULL, NULL);
1801 		if (ret < 0)
1802 			goto out;
1803 	}
1804 
1805 	*dir = parent_dir;
1806 
1807 out:
1808 	btrfs_free_path(path);
1809 	return ret;
1810 }
1811 
1812 static int is_first_ref(struct btrfs_root *root,
1813 			u64 ino, u64 dir,
1814 			const char *name, int name_len)
1815 {
1816 	int ret;
1817 	struct fs_path *tmp_name;
1818 	u64 tmp_dir;
1819 
1820 	tmp_name = fs_path_alloc();
1821 	if (!tmp_name)
1822 		return -ENOMEM;
1823 
1824 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1825 	if (ret < 0)
1826 		goto out;
1827 
1828 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1829 		ret = 0;
1830 		goto out;
1831 	}
1832 
1833 	ret = !memcmp(tmp_name->start, name, name_len);
1834 
1835 out:
1836 	fs_path_free(tmp_name);
1837 	return ret;
1838 }
1839 
1840 /*
1841  * Used by process_recorded_refs to determine if a new ref would overwrite an
1842  * already existing ref. In case it detects an overwrite, it returns the
1843  * inode/gen in who_ino/who_gen.
1844  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1845  * to make sure later references to the overwritten inode are possible.
1846  * Orphanizing is however only required for the first ref of an inode.
1847  * process_recorded_refs does an additional is_first_ref check to see if
1848  * orphanizing is really required.
1849  */
1850 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1851 			      const char *name, int name_len,
1852 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1853 {
1854 	int ret = 0;
1855 	u64 gen;
1856 	u64 other_inode = 0;
1857 	u8 other_type = 0;
1858 
1859 	if (!sctx->parent_root)
1860 		goto out;
1861 
1862 	ret = is_inode_existent(sctx, dir, dir_gen);
1863 	if (ret <= 0)
1864 		goto out;
1865 
1866 	/*
1867 	 * If we have a parent root we need to verify that the parent dir was
1868 	 * not deleted and then re-created, if it was then we have no overwrite
1869 	 * and we can just unlink this entry.
1870 	 */
1871 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1872 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1873 				     NULL, NULL, NULL);
1874 		if (ret < 0 && ret != -ENOENT)
1875 			goto out;
1876 		if (ret) {
1877 			ret = 0;
1878 			goto out;
1879 		}
1880 		if (gen != dir_gen)
1881 			goto out;
1882 	}
1883 
1884 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1885 			&other_inode, &other_type);
1886 	if (ret < 0 && ret != -ENOENT)
1887 		goto out;
1888 	if (ret) {
1889 		ret = 0;
1890 		goto out;
1891 	}
1892 
1893 	/*
1894 	 * Check if the overwritten ref was already processed. If yes, the ref
1895 	 * was already unlinked/moved, so we can safely assume that we will not
1896 	 * overwrite anything at this point in time.
1897 	 */
1898 	if (other_inode > sctx->send_progress ||
1899 	    is_waiting_for_move(sctx, other_inode)) {
1900 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1901 				who_gen, who_mode, NULL, NULL, NULL);
1902 		if (ret < 0)
1903 			goto out;
1904 
1905 		ret = 1;
1906 		*who_ino = other_inode;
1907 	} else {
1908 		ret = 0;
1909 	}
1910 
1911 out:
1912 	return ret;
1913 }
1914 
1915 /*
1916  * Checks if the ref was overwritten by an already processed inode. This is
1917  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1918  * thus the orphan name needs be used.
1919  * process_recorded_refs also uses it to avoid unlinking of refs that were
1920  * overwritten.
1921  */
1922 static int did_overwrite_ref(struct send_ctx *sctx,
1923 			    u64 dir, u64 dir_gen,
1924 			    u64 ino, u64 ino_gen,
1925 			    const char *name, int name_len)
1926 {
1927 	int ret = 0;
1928 	u64 gen;
1929 	u64 ow_inode;
1930 	u8 other_type;
1931 
1932 	if (!sctx->parent_root)
1933 		goto out;
1934 
1935 	ret = is_inode_existent(sctx, dir, dir_gen);
1936 	if (ret <= 0)
1937 		goto out;
1938 
1939 	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1940 		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1941 				     NULL, NULL, NULL);
1942 		if (ret < 0 && ret != -ENOENT)
1943 			goto out;
1944 		if (ret) {
1945 			ret = 0;
1946 			goto out;
1947 		}
1948 		if (gen != dir_gen)
1949 			goto out;
1950 	}
1951 
1952 	/* check if the ref was overwritten by another ref */
1953 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1954 			&ow_inode, &other_type);
1955 	if (ret < 0 && ret != -ENOENT)
1956 		goto out;
1957 	if (ret) {
1958 		/* was never and will never be overwritten */
1959 		ret = 0;
1960 		goto out;
1961 	}
1962 
1963 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1964 			NULL, NULL);
1965 	if (ret < 0)
1966 		goto out;
1967 
1968 	if (ow_inode == ino && gen == ino_gen) {
1969 		ret = 0;
1970 		goto out;
1971 	}
1972 
1973 	/*
1974 	 * We know that it is or will be overwritten. Check this now.
1975 	 * The current inode being processed might have been the one that caused
1976 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1977 	 * the current inode being processed.
1978 	 */
1979 	if ((ow_inode < sctx->send_progress) ||
1980 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1981 	     gen == sctx->cur_inode_gen))
1982 		ret = 1;
1983 	else
1984 		ret = 0;
1985 
1986 out:
1987 	return ret;
1988 }
1989 
1990 /*
1991  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1992  * that got overwritten. This is used by process_recorded_refs to determine
1993  * if it has to use the path as returned by get_cur_path or the orphan name.
1994  */
1995 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1996 {
1997 	int ret = 0;
1998 	struct fs_path *name = NULL;
1999 	u64 dir;
2000 	u64 dir_gen;
2001 
2002 	if (!sctx->parent_root)
2003 		goto out;
2004 
2005 	name = fs_path_alloc();
2006 	if (!name)
2007 		return -ENOMEM;
2008 
2009 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2010 	if (ret < 0)
2011 		goto out;
2012 
2013 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2014 			name->start, fs_path_len(name));
2015 
2016 out:
2017 	fs_path_free(name);
2018 	return ret;
2019 }
2020 
2021 /*
2022  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2023  * so we need to do some special handling in case we have clashes. This function
2024  * takes care of this with the help of name_cache_entry::radix_list.
2025  * In case of error, nce is kfreed.
2026  */
2027 static int name_cache_insert(struct send_ctx *sctx,
2028 			     struct name_cache_entry *nce)
2029 {
2030 	int ret = 0;
2031 	struct list_head *nce_head;
2032 
2033 	nce_head = radix_tree_lookup(&sctx->name_cache,
2034 			(unsigned long)nce->ino);
2035 	if (!nce_head) {
2036 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2037 		if (!nce_head) {
2038 			kfree(nce);
2039 			return -ENOMEM;
2040 		}
2041 		INIT_LIST_HEAD(nce_head);
2042 
2043 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2044 		if (ret < 0) {
2045 			kfree(nce_head);
2046 			kfree(nce);
2047 			return ret;
2048 		}
2049 	}
2050 	list_add_tail(&nce->radix_list, nce_head);
2051 	list_add_tail(&nce->list, &sctx->name_cache_list);
2052 	sctx->name_cache_size++;
2053 
2054 	return ret;
2055 }
2056 
2057 static void name_cache_delete(struct send_ctx *sctx,
2058 			      struct name_cache_entry *nce)
2059 {
2060 	struct list_head *nce_head;
2061 
2062 	nce_head = radix_tree_lookup(&sctx->name_cache,
2063 			(unsigned long)nce->ino);
2064 	if (!nce_head) {
2065 		btrfs_err(sctx->send_root->fs_info,
2066 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2067 			nce->ino, sctx->name_cache_size);
2068 	}
2069 
2070 	list_del(&nce->radix_list);
2071 	list_del(&nce->list);
2072 	sctx->name_cache_size--;
2073 
2074 	/*
2075 	 * We may not get to the final release of nce_head if the lookup fails
2076 	 */
2077 	if (nce_head && list_empty(nce_head)) {
2078 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2079 		kfree(nce_head);
2080 	}
2081 }
2082 
2083 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2084 						    u64 ino, u64 gen)
2085 {
2086 	struct list_head *nce_head;
2087 	struct name_cache_entry *cur;
2088 
2089 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2090 	if (!nce_head)
2091 		return NULL;
2092 
2093 	list_for_each_entry(cur, nce_head, radix_list) {
2094 		if (cur->ino == ino && cur->gen == gen)
2095 			return cur;
2096 	}
2097 	return NULL;
2098 }
2099 
2100 /*
2101  * Removes the entry from the list and adds it back to the end. This marks the
2102  * entry as recently used so that name_cache_clean_unused does not remove it.
2103  */
2104 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2105 {
2106 	list_del(&nce->list);
2107 	list_add_tail(&nce->list, &sctx->name_cache_list);
2108 }
2109 
2110 /*
2111  * Remove some entries from the beginning of name_cache_list.
2112  */
2113 static void name_cache_clean_unused(struct send_ctx *sctx)
2114 {
2115 	struct name_cache_entry *nce;
2116 
2117 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2118 		return;
2119 
2120 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2121 		nce = list_entry(sctx->name_cache_list.next,
2122 				struct name_cache_entry, list);
2123 		name_cache_delete(sctx, nce);
2124 		kfree(nce);
2125 	}
2126 }
2127 
2128 static void name_cache_free(struct send_ctx *sctx)
2129 {
2130 	struct name_cache_entry *nce;
2131 
2132 	while (!list_empty(&sctx->name_cache_list)) {
2133 		nce = list_entry(sctx->name_cache_list.next,
2134 				struct name_cache_entry, list);
2135 		name_cache_delete(sctx, nce);
2136 		kfree(nce);
2137 	}
2138 }
2139 
2140 /*
2141  * Used by get_cur_path for each ref up to the root.
2142  * Returns 0 if it succeeded.
2143  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2144  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2145  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2146  * Returns <0 in case of error.
2147  */
2148 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2149 				     u64 ino, u64 gen,
2150 				     u64 *parent_ino,
2151 				     u64 *parent_gen,
2152 				     struct fs_path *dest)
2153 {
2154 	int ret;
2155 	int nce_ret;
2156 	struct name_cache_entry *nce = NULL;
2157 
2158 	/*
2159 	 * First check if we already did a call to this function with the same
2160 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2161 	 * return the cached result.
2162 	 */
2163 	nce = name_cache_search(sctx, ino, gen);
2164 	if (nce) {
2165 		if (ino < sctx->send_progress && nce->need_later_update) {
2166 			name_cache_delete(sctx, nce);
2167 			kfree(nce);
2168 			nce = NULL;
2169 		} else {
2170 			name_cache_used(sctx, nce);
2171 			*parent_ino = nce->parent_ino;
2172 			*parent_gen = nce->parent_gen;
2173 			ret = fs_path_add(dest, nce->name, nce->name_len);
2174 			if (ret < 0)
2175 				goto out;
2176 			ret = nce->ret;
2177 			goto out;
2178 		}
2179 	}
2180 
2181 	/*
2182 	 * If the inode is not existent yet, add the orphan name and return 1.
2183 	 * This should only happen for the parent dir that we determine in
2184 	 * __record_new_ref
2185 	 */
2186 	ret = is_inode_existent(sctx, ino, gen);
2187 	if (ret < 0)
2188 		goto out;
2189 
2190 	if (!ret) {
2191 		ret = gen_unique_name(sctx, ino, gen, dest);
2192 		if (ret < 0)
2193 			goto out;
2194 		ret = 1;
2195 		goto out_cache;
2196 	}
2197 
2198 	/*
2199 	 * Depending on whether the inode was already processed or not, use
2200 	 * send_root or parent_root for ref lookup.
2201 	 */
2202 	if (ino < sctx->send_progress)
2203 		ret = get_first_ref(sctx->send_root, ino,
2204 				    parent_ino, parent_gen, dest);
2205 	else
2206 		ret = get_first_ref(sctx->parent_root, ino,
2207 				    parent_ino, parent_gen, dest);
2208 	if (ret < 0)
2209 		goto out;
2210 
2211 	/*
2212 	 * Check if the ref was overwritten by an inode's ref that was processed
2213 	 * earlier. If yes, treat as orphan and return 1.
2214 	 */
2215 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2216 			dest->start, dest->end - dest->start);
2217 	if (ret < 0)
2218 		goto out;
2219 	if (ret) {
2220 		fs_path_reset(dest);
2221 		ret = gen_unique_name(sctx, ino, gen, dest);
2222 		if (ret < 0)
2223 			goto out;
2224 		ret = 1;
2225 	}
2226 
2227 out_cache:
2228 	/*
2229 	 * Store the result of the lookup in the name cache.
2230 	 */
2231 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2232 	if (!nce) {
2233 		ret = -ENOMEM;
2234 		goto out;
2235 	}
2236 
2237 	nce->ino = ino;
2238 	nce->gen = gen;
2239 	nce->parent_ino = *parent_ino;
2240 	nce->parent_gen = *parent_gen;
2241 	nce->name_len = fs_path_len(dest);
2242 	nce->ret = ret;
2243 	strcpy(nce->name, dest->start);
2244 
2245 	if (ino < sctx->send_progress)
2246 		nce->need_later_update = 0;
2247 	else
2248 		nce->need_later_update = 1;
2249 
2250 	nce_ret = name_cache_insert(sctx, nce);
2251 	if (nce_ret < 0)
2252 		ret = nce_ret;
2253 	name_cache_clean_unused(sctx);
2254 
2255 out:
2256 	return ret;
2257 }
2258 
2259 /*
2260  * Magic happens here. This function returns the first ref to an inode as it
2261  * would look like while receiving the stream at this point in time.
2262  * We walk the path up to the root. For every inode in between, we check if it
2263  * was already processed/sent. If yes, we continue with the parent as found
2264  * in send_root. If not, we continue with the parent as found in parent_root.
2265  * If we encounter an inode that was deleted at this point in time, we use the
2266  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2267  * that were not created yet and overwritten inodes/refs.
2268  *
2269  * When do we have orphan inodes:
2270  * 1. When an inode is freshly created and thus no valid refs are available yet
2271  * 2. When a directory lost all it's refs (deleted) but still has dir items
2272  *    inside which were not processed yet (pending for move/delete). If anyone
2273  *    tried to get the path to the dir items, it would get a path inside that
2274  *    orphan directory.
2275  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2276  *    of an unprocessed inode. If in that case the first ref would be
2277  *    overwritten, the overwritten inode gets "orphanized". Later when we
2278  *    process this overwritten inode, it is restored at a new place by moving
2279  *    the orphan inode.
2280  *
2281  * sctx->send_progress tells this function at which point in time receiving
2282  * would be.
2283  */
2284 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2285 			struct fs_path *dest)
2286 {
2287 	int ret = 0;
2288 	struct fs_path *name = NULL;
2289 	u64 parent_inode = 0;
2290 	u64 parent_gen = 0;
2291 	int stop = 0;
2292 
2293 	name = fs_path_alloc();
2294 	if (!name) {
2295 		ret = -ENOMEM;
2296 		goto out;
2297 	}
2298 
2299 	dest->reversed = 1;
2300 	fs_path_reset(dest);
2301 
2302 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2303 		struct waiting_dir_move *wdm;
2304 
2305 		fs_path_reset(name);
2306 
2307 		if (is_waiting_for_rm(sctx, ino)) {
2308 			ret = gen_unique_name(sctx, ino, gen, name);
2309 			if (ret < 0)
2310 				goto out;
2311 			ret = fs_path_add_path(dest, name);
2312 			break;
2313 		}
2314 
2315 		wdm = get_waiting_dir_move(sctx, ino);
2316 		if (wdm && wdm->orphanized) {
2317 			ret = gen_unique_name(sctx, ino, gen, name);
2318 			stop = 1;
2319 		} else if (wdm) {
2320 			ret = get_first_ref(sctx->parent_root, ino,
2321 					    &parent_inode, &parent_gen, name);
2322 		} else {
2323 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2324 							&parent_inode,
2325 							&parent_gen, name);
2326 			if (ret)
2327 				stop = 1;
2328 		}
2329 
2330 		if (ret < 0)
2331 			goto out;
2332 
2333 		ret = fs_path_add_path(dest, name);
2334 		if (ret < 0)
2335 			goto out;
2336 
2337 		ino = parent_inode;
2338 		gen = parent_gen;
2339 	}
2340 
2341 out:
2342 	fs_path_free(name);
2343 	if (!ret)
2344 		fs_path_unreverse(dest);
2345 	return ret;
2346 }
2347 
2348 /*
2349  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2350  */
2351 static int send_subvol_begin(struct send_ctx *sctx)
2352 {
2353 	int ret;
2354 	struct btrfs_root *send_root = sctx->send_root;
2355 	struct btrfs_root *parent_root = sctx->parent_root;
2356 	struct btrfs_path *path;
2357 	struct btrfs_key key;
2358 	struct btrfs_root_ref *ref;
2359 	struct extent_buffer *leaf;
2360 	char *name = NULL;
2361 	int namelen;
2362 
2363 	path = btrfs_alloc_path();
2364 	if (!path)
2365 		return -ENOMEM;
2366 
2367 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2368 	if (!name) {
2369 		btrfs_free_path(path);
2370 		return -ENOMEM;
2371 	}
2372 
2373 	key.objectid = send_root->root_key.objectid;
2374 	key.type = BTRFS_ROOT_BACKREF_KEY;
2375 	key.offset = 0;
2376 
2377 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2378 				&key, path, 1, 0);
2379 	if (ret < 0)
2380 		goto out;
2381 	if (ret) {
2382 		ret = -ENOENT;
2383 		goto out;
2384 	}
2385 
2386 	leaf = path->nodes[0];
2387 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2388 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2389 	    key.objectid != send_root->root_key.objectid) {
2390 		ret = -ENOENT;
2391 		goto out;
2392 	}
2393 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2394 	namelen = btrfs_root_ref_name_len(leaf, ref);
2395 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2396 	btrfs_release_path(path);
2397 
2398 	if (parent_root) {
2399 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2400 		if (ret < 0)
2401 			goto out;
2402 	} else {
2403 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2404 		if (ret < 0)
2405 			goto out;
2406 	}
2407 
2408 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2409 
2410 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2411 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2412 			    sctx->send_root->root_item.received_uuid);
2413 	else
2414 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2415 			    sctx->send_root->root_item.uuid);
2416 
2417 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2418 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2419 	if (parent_root) {
2420 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2421 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2422 				     parent_root->root_item.received_uuid);
2423 		else
2424 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2425 				     parent_root->root_item.uuid);
2426 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2427 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2428 	}
2429 
2430 	ret = send_cmd(sctx);
2431 
2432 tlv_put_failure:
2433 out:
2434 	btrfs_free_path(path);
2435 	kfree(name);
2436 	return ret;
2437 }
2438 
2439 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2440 {
2441 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2442 	int ret = 0;
2443 	struct fs_path *p;
2444 
2445 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2446 
2447 	p = fs_path_alloc();
2448 	if (!p)
2449 		return -ENOMEM;
2450 
2451 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2452 	if (ret < 0)
2453 		goto out;
2454 
2455 	ret = get_cur_path(sctx, ino, gen, p);
2456 	if (ret < 0)
2457 		goto out;
2458 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2459 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2460 
2461 	ret = send_cmd(sctx);
2462 
2463 tlv_put_failure:
2464 out:
2465 	fs_path_free(p);
2466 	return ret;
2467 }
2468 
2469 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2470 {
2471 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2472 	int ret = 0;
2473 	struct fs_path *p;
2474 
2475 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2476 
2477 	p = fs_path_alloc();
2478 	if (!p)
2479 		return -ENOMEM;
2480 
2481 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2482 	if (ret < 0)
2483 		goto out;
2484 
2485 	ret = get_cur_path(sctx, ino, gen, p);
2486 	if (ret < 0)
2487 		goto out;
2488 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2489 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2490 
2491 	ret = send_cmd(sctx);
2492 
2493 tlv_put_failure:
2494 out:
2495 	fs_path_free(p);
2496 	return ret;
2497 }
2498 
2499 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2500 {
2501 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2502 	int ret = 0;
2503 	struct fs_path *p;
2504 
2505 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2506 		    ino, uid, gid);
2507 
2508 	p = fs_path_alloc();
2509 	if (!p)
2510 		return -ENOMEM;
2511 
2512 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2513 	if (ret < 0)
2514 		goto out;
2515 
2516 	ret = get_cur_path(sctx, ino, gen, p);
2517 	if (ret < 0)
2518 		goto out;
2519 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2520 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2521 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2522 
2523 	ret = send_cmd(sctx);
2524 
2525 tlv_put_failure:
2526 out:
2527 	fs_path_free(p);
2528 	return ret;
2529 }
2530 
2531 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2532 {
2533 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2534 	int ret = 0;
2535 	struct fs_path *p = NULL;
2536 	struct btrfs_inode_item *ii;
2537 	struct btrfs_path *path = NULL;
2538 	struct extent_buffer *eb;
2539 	struct btrfs_key key;
2540 	int slot;
2541 
2542 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2543 
2544 	p = fs_path_alloc();
2545 	if (!p)
2546 		return -ENOMEM;
2547 
2548 	path = alloc_path_for_send();
2549 	if (!path) {
2550 		ret = -ENOMEM;
2551 		goto out;
2552 	}
2553 
2554 	key.objectid = ino;
2555 	key.type = BTRFS_INODE_ITEM_KEY;
2556 	key.offset = 0;
2557 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2558 	if (ret > 0)
2559 		ret = -ENOENT;
2560 	if (ret < 0)
2561 		goto out;
2562 
2563 	eb = path->nodes[0];
2564 	slot = path->slots[0];
2565 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2566 
2567 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2568 	if (ret < 0)
2569 		goto out;
2570 
2571 	ret = get_cur_path(sctx, ino, gen, p);
2572 	if (ret < 0)
2573 		goto out;
2574 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2575 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2576 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2577 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2578 	/* TODO Add otime support when the otime patches get into upstream */
2579 
2580 	ret = send_cmd(sctx);
2581 
2582 tlv_put_failure:
2583 out:
2584 	fs_path_free(p);
2585 	btrfs_free_path(path);
2586 	return ret;
2587 }
2588 
2589 /*
2590  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2591  * a valid path yet because we did not process the refs yet. So, the inode
2592  * is created as orphan.
2593  */
2594 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2595 {
2596 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2597 	int ret = 0;
2598 	struct fs_path *p;
2599 	int cmd;
2600 	u64 gen;
2601 	u64 mode;
2602 	u64 rdev;
2603 
2604 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2605 
2606 	p = fs_path_alloc();
2607 	if (!p)
2608 		return -ENOMEM;
2609 
2610 	if (ino != sctx->cur_ino) {
2611 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2612 				     NULL, NULL, &rdev);
2613 		if (ret < 0)
2614 			goto out;
2615 	} else {
2616 		gen = sctx->cur_inode_gen;
2617 		mode = sctx->cur_inode_mode;
2618 		rdev = sctx->cur_inode_rdev;
2619 	}
2620 
2621 	if (S_ISREG(mode)) {
2622 		cmd = BTRFS_SEND_C_MKFILE;
2623 	} else if (S_ISDIR(mode)) {
2624 		cmd = BTRFS_SEND_C_MKDIR;
2625 	} else if (S_ISLNK(mode)) {
2626 		cmd = BTRFS_SEND_C_SYMLINK;
2627 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2628 		cmd = BTRFS_SEND_C_MKNOD;
2629 	} else if (S_ISFIFO(mode)) {
2630 		cmd = BTRFS_SEND_C_MKFIFO;
2631 	} else if (S_ISSOCK(mode)) {
2632 		cmd = BTRFS_SEND_C_MKSOCK;
2633 	} else {
2634 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2635 				(int)(mode & S_IFMT));
2636 		ret = -EOPNOTSUPP;
2637 		goto out;
2638 	}
2639 
2640 	ret = begin_cmd(sctx, cmd);
2641 	if (ret < 0)
2642 		goto out;
2643 
2644 	ret = gen_unique_name(sctx, ino, gen, p);
2645 	if (ret < 0)
2646 		goto out;
2647 
2648 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2649 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2650 
2651 	if (S_ISLNK(mode)) {
2652 		fs_path_reset(p);
2653 		ret = read_symlink(sctx->send_root, ino, p);
2654 		if (ret < 0)
2655 			goto out;
2656 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2657 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2658 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2659 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2660 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2661 	}
2662 
2663 	ret = send_cmd(sctx);
2664 	if (ret < 0)
2665 		goto out;
2666 
2667 
2668 tlv_put_failure:
2669 out:
2670 	fs_path_free(p);
2671 	return ret;
2672 }
2673 
2674 /*
2675  * We need some special handling for inodes that get processed before the parent
2676  * directory got created. See process_recorded_refs for details.
2677  * This function does the check if we already created the dir out of order.
2678  */
2679 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2680 {
2681 	int ret = 0;
2682 	struct btrfs_path *path = NULL;
2683 	struct btrfs_key key;
2684 	struct btrfs_key found_key;
2685 	struct btrfs_key di_key;
2686 	struct extent_buffer *eb;
2687 	struct btrfs_dir_item *di;
2688 	int slot;
2689 
2690 	path = alloc_path_for_send();
2691 	if (!path) {
2692 		ret = -ENOMEM;
2693 		goto out;
2694 	}
2695 
2696 	key.objectid = dir;
2697 	key.type = BTRFS_DIR_INDEX_KEY;
2698 	key.offset = 0;
2699 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2700 	if (ret < 0)
2701 		goto out;
2702 
2703 	while (1) {
2704 		eb = path->nodes[0];
2705 		slot = path->slots[0];
2706 		if (slot >= btrfs_header_nritems(eb)) {
2707 			ret = btrfs_next_leaf(sctx->send_root, path);
2708 			if (ret < 0) {
2709 				goto out;
2710 			} else if (ret > 0) {
2711 				ret = 0;
2712 				break;
2713 			}
2714 			continue;
2715 		}
2716 
2717 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2718 		if (found_key.objectid != key.objectid ||
2719 		    found_key.type != key.type) {
2720 			ret = 0;
2721 			goto out;
2722 		}
2723 
2724 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2725 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2726 
2727 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2728 		    di_key.objectid < sctx->send_progress) {
2729 			ret = 1;
2730 			goto out;
2731 		}
2732 
2733 		path->slots[0]++;
2734 	}
2735 
2736 out:
2737 	btrfs_free_path(path);
2738 	return ret;
2739 }
2740 
2741 /*
2742  * Only creates the inode if it is:
2743  * 1. Not a directory
2744  * 2. Or a directory which was not created already due to out of order
2745  *    directories. See did_create_dir and process_recorded_refs for details.
2746  */
2747 static int send_create_inode_if_needed(struct send_ctx *sctx)
2748 {
2749 	int ret;
2750 
2751 	if (S_ISDIR(sctx->cur_inode_mode)) {
2752 		ret = did_create_dir(sctx, sctx->cur_ino);
2753 		if (ret < 0)
2754 			goto out;
2755 		if (ret) {
2756 			ret = 0;
2757 			goto out;
2758 		}
2759 	}
2760 
2761 	ret = send_create_inode(sctx, sctx->cur_ino);
2762 	if (ret < 0)
2763 		goto out;
2764 
2765 out:
2766 	return ret;
2767 }
2768 
2769 struct recorded_ref {
2770 	struct list_head list;
2771 	char *name;
2772 	struct fs_path *full_path;
2773 	u64 dir;
2774 	u64 dir_gen;
2775 	int name_len;
2776 };
2777 
2778 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2779 {
2780 	ref->full_path = path;
2781 	ref->name = (char *)kbasename(ref->full_path->start);
2782 	ref->name_len = ref->full_path->end - ref->name;
2783 }
2784 
2785 /*
2786  * We need to process new refs before deleted refs, but compare_tree gives us
2787  * everything mixed. So we first record all refs and later process them.
2788  * This function is a helper to record one ref.
2789  */
2790 static int __record_ref(struct list_head *head, u64 dir,
2791 		      u64 dir_gen, struct fs_path *path)
2792 {
2793 	struct recorded_ref *ref;
2794 
2795 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2796 	if (!ref)
2797 		return -ENOMEM;
2798 
2799 	ref->dir = dir;
2800 	ref->dir_gen = dir_gen;
2801 	set_ref_path(ref, path);
2802 	list_add_tail(&ref->list, head);
2803 	return 0;
2804 }
2805 
2806 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2807 {
2808 	struct recorded_ref *new;
2809 
2810 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2811 	if (!new)
2812 		return -ENOMEM;
2813 
2814 	new->dir = ref->dir;
2815 	new->dir_gen = ref->dir_gen;
2816 	new->full_path = NULL;
2817 	INIT_LIST_HEAD(&new->list);
2818 	list_add_tail(&new->list, list);
2819 	return 0;
2820 }
2821 
2822 static void __free_recorded_refs(struct list_head *head)
2823 {
2824 	struct recorded_ref *cur;
2825 
2826 	while (!list_empty(head)) {
2827 		cur = list_entry(head->next, struct recorded_ref, list);
2828 		fs_path_free(cur->full_path);
2829 		list_del(&cur->list);
2830 		kfree(cur);
2831 	}
2832 }
2833 
2834 static void free_recorded_refs(struct send_ctx *sctx)
2835 {
2836 	__free_recorded_refs(&sctx->new_refs);
2837 	__free_recorded_refs(&sctx->deleted_refs);
2838 }
2839 
2840 /*
2841  * Renames/moves a file/dir to its orphan name. Used when the first
2842  * ref of an unprocessed inode gets overwritten and for all non empty
2843  * directories.
2844  */
2845 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2846 			  struct fs_path *path)
2847 {
2848 	int ret;
2849 	struct fs_path *orphan;
2850 
2851 	orphan = fs_path_alloc();
2852 	if (!orphan)
2853 		return -ENOMEM;
2854 
2855 	ret = gen_unique_name(sctx, ino, gen, orphan);
2856 	if (ret < 0)
2857 		goto out;
2858 
2859 	ret = send_rename(sctx, path, orphan);
2860 
2861 out:
2862 	fs_path_free(orphan);
2863 	return ret;
2864 }
2865 
2866 static struct orphan_dir_info *
2867 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2868 {
2869 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2870 	struct rb_node *parent = NULL;
2871 	struct orphan_dir_info *entry, *odi;
2872 
2873 	while (*p) {
2874 		parent = *p;
2875 		entry = rb_entry(parent, struct orphan_dir_info, node);
2876 		if (dir_ino < entry->ino) {
2877 			p = &(*p)->rb_left;
2878 		} else if (dir_ino > entry->ino) {
2879 			p = &(*p)->rb_right;
2880 		} else {
2881 			return entry;
2882 		}
2883 	}
2884 
2885 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2886 	if (!odi)
2887 		return ERR_PTR(-ENOMEM);
2888 	odi->ino = dir_ino;
2889 	odi->gen = 0;
2890 	odi->last_dir_index_offset = 0;
2891 
2892 	rb_link_node(&odi->node, parent, p);
2893 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2894 	return odi;
2895 }
2896 
2897 static struct orphan_dir_info *
2898 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2899 {
2900 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2901 	struct orphan_dir_info *entry;
2902 
2903 	while (n) {
2904 		entry = rb_entry(n, struct orphan_dir_info, node);
2905 		if (dir_ino < entry->ino)
2906 			n = n->rb_left;
2907 		else if (dir_ino > entry->ino)
2908 			n = n->rb_right;
2909 		else
2910 			return entry;
2911 	}
2912 	return NULL;
2913 }
2914 
2915 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2916 {
2917 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2918 
2919 	return odi != NULL;
2920 }
2921 
2922 static void free_orphan_dir_info(struct send_ctx *sctx,
2923 				 struct orphan_dir_info *odi)
2924 {
2925 	if (!odi)
2926 		return;
2927 	rb_erase(&odi->node, &sctx->orphan_dirs);
2928 	kfree(odi);
2929 }
2930 
2931 /*
2932  * Returns 1 if a directory can be removed at this point in time.
2933  * We check this by iterating all dir items and checking if the inode behind
2934  * the dir item was already processed.
2935  */
2936 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2937 		     u64 send_progress)
2938 {
2939 	int ret = 0;
2940 	struct btrfs_root *root = sctx->parent_root;
2941 	struct btrfs_path *path;
2942 	struct btrfs_key key;
2943 	struct btrfs_key found_key;
2944 	struct btrfs_key loc;
2945 	struct btrfs_dir_item *di;
2946 	struct orphan_dir_info *odi = NULL;
2947 
2948 	/*
2949 	 * Don't try to rmdir the top/root subvolume dir.
2950 	 */
2951 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2952 		return 0;
2953 
2954 	path = alloc_path_for_send();
2955 	if (!path)
2956 		return -ENOMEM;
2957 
2958 	key.objectid = dir;
2959 	key.type = BTRFS_DIR_INDEX_KEY;
2960 	key.offset = 0;
2961 
2962 	odi = get_orphan_dir_info(sctx, dir);
2963 	if (odi)
2964 		key.offset = odi->last_dir_index_offset;
2965 
2966 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2967 	if (ret < 0)
2968 		goto out;
2969 
2970 	while (1) {
2971 		struct waiting_dir_move *dm;
2972 
2973 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2974 			ret = btrfs_next_leaf(root, path);
2975 			if (ret < 0)
2976 				goto out;
2977 			else if (ret > 0)
2978 				break;
2979 			continue;
2980 		}
2981 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2982 				      path->slots[0]);
2983 		if (found_key.objectid != key.objectid ||
2984 		    found_key.type != key.type)
2985 			break;
2986 
2987 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2988 				struct btrfs_dir_item);
2989 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2990 
2991 		dm = get_waiting_dir_move(sctx, loc.objectid);
2992 		if (dm) {
2993 			odi = add_orphan_dir_info(sctx, dir);
2994 			if (IS_ERR(odi)) {
2995 				ret = PTR_ERR(odi);
2996 				goto out;
2997 			}
2998 			odi->gen = dir_gen;
2999 			odi->last_dir_index_offset = found_key.offset;
3000 			dm->rmdir_ino = dir;
3001 			ret = 0;
3002 			goto out;
3003 		}
3004 
3005 		if (loc.objectid > send_progress) {
3006 			odi = add_orphan_dir_info(sctx, dir);
3007 			if (IS_ERR(odi)) {
3008 				ret = PTR_ERR(odi);
3009 				goto out;
3010 			}
3011 			odi->gen = dir_gen;
3012 			odi->last_dir_index_offset = found_key.offset;
3013 			ret = 0;
3014 			goto out;
3015 		}
3016 
3017 		path->slots[0]++;
3018 	}
3019 	free_orphan_dir_info(sctx, odi);
3020 
3021 	ret = 1;
3022 
3023 out:
3024 	btrfs_free_path(path);
3025 	return ret;
3026 }
3027 
3028 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3029 {
3030 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3031 
3032 	return entry != NULL;
3033 }
3034 
3035 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3036 {
3037 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3038 	struct rb_node *parent = NULL;
3039 	struct waiting_dir_move *entry, *dm;
3040 
3041 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3042 	if (!dm)
3043 		return -ENOMEM;
3044 	dm->ino = ino;
3045 	dm->rmdir_ino = 0;
3046 	dm->orphanized = orphanized;
3047 
3048 	while (*p) {
3049 		parent = *p;
3050 		entry = rb_entry(parent, struct waiting_dir_move, node);
3051 		if (ino < entry->ino) {
3052 			p = &(*p)->rb_left;
3053 		} else if (ino > entry->ino) {
3054 			p = &(*p)->rb_right;
3055 		} else {
3056 			kfree(dm);
3057 			return -EEXIST;
3058 		}
3059 	}
3060 
3061 	rb_link_node(&dm->node, parent, p);
3062 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3063 	return 0;
3064 }
3065 
3066 static struct waiting_dir_move *
3067 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3068 {
3069 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3070 	struct waiting_dir_move *entry;
3071 
3072 	while (n) {
3073 		entry = rb_entry(n, struct waiting_dir_move, node);
3074 		if (ino < entry->ino)
3075 			n = n->rb_left;
3076 		else if (ino > entry->ino)
3077 			n = n->rb_right;
3078 		else
3079 			return entry;
3080 	}
3081 	return NULL;
3082 }
3083 
3084 static void free_waiting_dir_move(struct send_ctx *sctx,
3085 				  struct waiting_dir_move *dm)
3086 {
3087 	if (!dm)
3088 		return;
3089 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3090 	kfree(dm);
3091 }
3092 
3093 static int add_pending_dir_move(struct send_ctx *sctx,
3094 				u64 ino,
3095 				u64 ino_gen,
3096 				u64 parent_ino,
3097 				struct list_head *new_refs,
3098 				struct list_head *deleted_refs,
3099 				const bool is_orphan)
3100 {
3101 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3102 	struct rb_node *parent = NULL;
3103 	struct pending_dir_move *entry = NULL, *pm;
3104 	struct recorded_ref *cur;
3105 	int exists = 0;
3106 	int ret;
3107 
3108 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3109 	if (!pm)
3110 		return -ENOMEM;
3111 	pm->parent_ino = parent_ino;
3112 	pm->ino = ino;
3113 	pm->gen = ino_gen;
3114 	INIT_LIST_HEAD(&pm->list);
3115 	INIT_LIST_HEAD(&pm->update_refs);
3116 	RB_CLEAR_NODE(&pm->node);
3117 
3118 	while (*p) {
3119 		parent = *p;
3120 		entry = rb_entry(parent, struct pending_dir_move, node);
3121 		if (parent_ino < entry->parent_ino) {
3122 			p = &(*p)->rb_left;
3123 		} else if (parent_ino > entry->parent_ino) {
3124 			p = &(*p)->rb_right;
3125 		} else {
3126 			exists = 1;
3127 			break;
3128 		}
3129 	}
3130 
3131 	list_for_each_entry(cur, deleted_refs, list) {
3132 		ret = dup_ref(cur, &pm->update_refs);
3133 		if (ret < 0)
3134 			goto out;
3135 	}
3136 	list_for_each_entry(cur, new_refs, list) {
3137 		ret = dup_ref(cur, &pm->update_refs);
3138 		if (ret < 0)
3139 			goto out;
3140 	}
3141 
3142 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3143 	if (ret)
3144 		goto out;
3145 
3146 	if (exists) {
3147 		list_add_tail(&pm->list, &entry->list);
3148 	} else {
3149 		rb_link_node(&pm->node, parent, p);
3150 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3151 	}
3152 	ret = 0;
3153 out:
3154 	if (ret) {
3155 		__free_recorded_refs(&pm->update_refs);
3156 		kfree(pm);
3157 	}
3158 	return ret;
3159 }
3160 
3161 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3162 						      u64 parent_ino)
3163 {
3164 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3165 	struct pending_dir_move *entry;
3166 
3167 	while (n) {
3168 		entry = rb_entry(n, struct pending_dir_move, node);
3169 		if (parent_ino < entry->parent_ino)
3170 			n = n->rb_left;
3171 		else if (parent_ino > entry->parent_ino)
3172 			n = n->rb_right;
3173 		else
3174 			return entry;
3175 	}
3176 	return NULL;
3177 }
3178 
3179 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3180 		     u64 ino, u64 gen, u64 *ancestor_ino)
3181 {
3182 	int ret = 0;
3183 	u64 parent_inode = 0;
3184 	u64 parent_gen = 0;
3185 	u64 start_ino = ino;
3186 
3187 	*ancestor_ino = 0;
3188 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3189 		fs_path_reset(name);
3190 
3191 		if (is_waiting_for_rm(sctx, ino))
3192 			break;
3193 		if (is_waiting_for_move(sctx, ino)) {
3194 			if (*ancestor_ino == 0)
3195 				*ancestor_ino = ino;
3196 			ret = get_first_ref(sctx->parent_root, ino,
3197 					    &parent_inode, &parent_gen, name);
3198 		} else {
3199 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3200 							&parent_inode,
3201 							&parent_gen, name);
3202 			if (ret > 0) {
3203 				ret = 0;
3204 				break;
3205 			}
3206 		}
3207 		if (ret < 0)
3208 			break;
3209 		if (parent_inode == start_ino) {
3210 			ret = 1;
3211 			if (*ancestor_ino == 0)
3212 				*ancestor_ino = ino;
3213 			break;
3214 		}
3215 		ino = parent_inode;
3216 		gen = parent_gen;
3217 	}
3218 	return ret;
3219 }
3220 
3221 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3222 {
3223 	struct fs_path *from_path = NULL;
3224 	struct fs_path *to_path = NULL;
3225 	struct fs_path *name = NULL;
3226 	u64 orig_progress = sctx->send_progress;
3227 	struct recorded_ref *cur;
3228 	u64 parent_ino, parent_gen;
3229 	struct waiting_dir_move *dm = NULL;
3230 	u64 rmdir_ino = 0;
3231 	u64 ancestor;
3232 	bool is_orphan;
3233 	int ret;
3234 
3235 	name = fs_path_alloc();
3236 	from_path = fs_path_alloc();
3237 	if (!name || !from_path) {
3238 		ret = -ENOMEM;
3239 		goto out;
3240 	}
3241 
3242 	dm = get_waiting_dir_move(sctx, pm->ino);
3243 	ASSERT(dm);
3244 	rmdir_ino = dm->rmdir_ino;
3245 	is_orphan = dm->orphanized;
3246 	free_waiting_dir_move(sctx, dm);
3247 
3248 	if (is_orphan) {
3249 		ret = gen_unique_name(sctx, pm->ino,
3250 				      pm->gen, from_path);
3251 	} else {
3252 		ret = get_first_ref(sctx->parent_root, pm->ino,
3253 				    &parent_ino, &parent_gen, name);
3254 		if (ret < 0)
3255 			goto out;
3256 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3257 				   from_path);
3258 		if (ret < 0)
3259 			goto out;
3260 		ret = fs_path_add_path(from_path, name);
3261 	}
3262 	if (ret < 0)
3263 		goto out;
3264 
3265 	sctx->send_progress = sctx->cur_ino + 1;
3266 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3267 	if (ret < 0)
3268 		goto out;
3269 	if (ret) {
3270 		LIST_HEAD(deleted_refs);
3271 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3272 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3273 					   &pm->update_refs, &deleted_refs,
3274 					   is_orphan);
3275 		if (ret < 0)
3276 			goto out;
3277 		if (rmdir_ino) {
3278 			dm = get_waiting_dir_move(sctx, pm->ino);
3279 			ASSERT(dm);
3280 			dm->rmdir_ino = rmdir_ino;
3281 		}
3282 		goto out;
3283 	}
3284 	fs_path_reset(name);
3285 	to_path = name;
3286 	name = NULL;
3287 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3288 	if (ret < 0)
3289 		goto out;
3290 
3291 	ret = send_rename(sctx, from_path, to_path);
3292 	if (ret < 0)
3293 		goto out;
3294 
3295 	if (rmdir_ino) {
3296 		struct orphan_dir_info *odi;
3297 		u64 gen;
3298 
3299 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3300 		if (!odi) {
3301 			/* already deleted */
3302 			goto finish;
3303 		}
3304 		gen = odi->gen;
3305 
3306 		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3307 		if (ret < 0)
3308 			goto out;
3309 		if (!ret)
3310 			goto finish;
3311 
3312 		name = fs_path_alloc();
3313 		if (!name) {
3314 			ret = -ENOMEM;
3315 			goto out;
3316 		}
3317 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3318 		if (ret < 0)
3319 			goto out;
3320 		ret = send_rmdir(sctx, name);
3321 		if (ret < 0)
3322 			goto out;
3323 	}
3324 
3325 finish:
3326 	ret = send_utimes(sctx, pm->ino, pm->gen);
3327 	if (ret < 0)
3328 		goto out;
3329 
3330 	/*
3331 	 * After rename/move, need to update the utimes of both new parent(s)
3332 	 * and old parent(s).
3333 	 */
3334 	list_for_each_entry(cur, &pm->update_refs, list) {
3335 		/*
3336 		 * The parent inode might have been deleted in the send snapshot
3337 		 */
3338 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3339 				     NULL, NULL, NULL, NULL, NULL);
3340 		if (ret == -ENOENT) {
3341 			ret = 0;
3342 			continue;
3343 		}
3344 		if (ret < 0)
3345 			goto out;
3346 
3347 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3348 		if (ret < 0)
3349 			goto out;
3350 	}
3351 
3352 out:
3353 	fs_path_free(name);
3354 	fs_path_free(from_path);
3355 	fs_path_free(to_path);
3356 	sctx->send_progress = orig_progress;
3357 
3358 	return ret;
3359 }
3360 
3361 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3362 {
3363 	if (!list_empty(&m->list))
3364 		list_del(&m->list);
3365 	if (!RB_EMPTY_NODE(&m->node))
3366 		rb_erase(&m->node, &sctx->pending_dir_moves);
3367 	__free_recorded_refs(&m->update_refs);
3368 	kfree(m);
3369 }
3370 
3371 static void tail_append_pending_moves(struct send_ctx *sctx,
3372 				      struct pending_dir_move *moves,
3373 				      struct list_head *stack)
3374 {
3375 	if (list_empty(&moves->list)) {
3376 		list_add_tail(&moves->list, stack);
3377 	} else {
3378 		LIST_HEAD(list);
3379 		list_splice_init(&moves->list, &list);
3380 		list_add_tail(&moves->list, stack);
3381 		list_splice_tail(&list, stack);
3382 	}
3383 	if (!RB_EMPTY_NODE(&moves->node)) {
3384 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3385 		RB_CLEAR_NODE(&moves->node);
3386 	}
3387 }
3388 
3389 static int apply_children_dir_moves(struct send_ctx *sctx)
3390 {
3391 	struct pending_dir_move *pm;
3392 	struct list_head stack;
3393 	u64 parent_ino = sctx->cur_ino;
3394 	int ret = 0;
3395 
3396 	pm = get_pending_dir_moves(sctx, parent_ino);
3397 	if (!pm)
3398 		return 0;
3399 
3400 	INIT_LIST_HEAD(&stack);
3401 	tail_append_pending_moves(sctx, pm, &stack);
3402 
3403 	while (!list_empty(&stack)) {
3404 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3405 		parent_ino = pm->ino;
3406 		ret = apply_dir_move(sctx, pm);
3407 		free_pending_move(sctx, pm);
3408 		if (ret)
3409 			goto out;
3410 		pm = get_pending_dir_moves(sctx, parent_ino);
3411 		if (pm)
3412 			tail_append_pending_moves(sctx, pm, &stack);
3413 	}
3414 	return 0;
3415 
3416 out:
3417 	while (!list_empty(&stack)) {
3418 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3419 		free_pending_move(sctx, pm);
3420 	}
3421 	return ret;
3422 }
3423 
3424 /*
3425  * We might need to delay a directory rename even when no ancestor directory
3426  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3427  * renamed. This happens when we rename a directory to the old name (the name
3428  * in the parent root) of some other unrelated directory that got its rename
3429  * delayed due to some ancestor with higher number that got renamed.
3430  *
3431  * Example:
3432  *
3433  * Parent snapshot:
3434  * .                                       (ino 256)
3435  * |---- a/                                (ino 257)
3436  * |     |---- file                        (ino 260)
3437  * |
3438  * |---- b/                                (ino 258)
3439  * |---- c/                                (ino 259)
3440  *
3441  * Send snapshot:
3442  * .                                       (ino 256)
3443  * |---- a/                                (ino 258)
3444  * |---- x/                                (ino 259)
3445  *       |---- y/                          (ino 257)
3446  *             |----- file                 (ino 260)
3447  *
3448  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3449  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3450  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3451  * must issue is:
3452  *
3453  * 1 - rename 259 from 'c' to 'x'
3454  * 2 - rename 257 from 'a' to 'x/y'
3455  * 3 - rename 258 from 'b' to 'a'
3456  *
3457  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3458  * be done right away and < 0 on error.
3459  */
3460 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3461 				  struct recorded_ref *parent_ref,
3462 				  const bool is_orphan)
3463 {
3464 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3465 	struct btrfs_path *path;
3466 	struct btrfs_key key;
3467 	struct btrfs_key di_key;
3468 	struct btrfs_dir_item *di;
3469 	u64 left_gen;
3470 	u64 right_gen;
3471 	int ret = 0;
3472 	struct waiting_dir_move *wdm;
3473 
3474 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3475 		return 0;
3476 
3477 	path = alloc_path_for_send();
3478 	if (!path)
3479 		return -ENOMEM;
3480 
3481 	key.objectid = parent_ref->dir;
3482 	key.type = BTRFS_DIR_ITEM_KEY;
3483 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3484 
3485 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3486 	if (ret < 0) {
3487 		goto out;
3488 	} else if (ret > 0) {
3489 		ret = 0;
3490 		goto out;
3491 	}
3492 
3493 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3494 				       parent_ref->name_len);
3495 	if (!di) {
3496 		ret = 0;
3497 		goto out;
3498 	}
3499 	/*
3500 	 * di_key.objectid has the number of the inode that has a dentry in the
3501 	 * parent directory with the same name that sctx->cur_ino is being
3502 	 * renamed to. We need to check if that inode is in the send root as
3503 	 * well and if it is currently marked as an inode with a pending rename,
3504 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3505 	 * that it happens after that other inode is renamed.
3506 	 */
3507 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3508 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3509 		ret = 0;
3510 		goto out;
3511 	}
3512 
3513 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3514 			     &left_gen, NULL, NULL, NULL, NULL);
3515 	if (ret < 0)
3516 		goto out;
3517 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3518 			     &right_gen, NULL, NULL, NULL, NULL);
3519 	if (ret < 0) {
3520 		if (ret == -ENOENT)
3521 			ret = 0;
3522 		goto out;
3523 	}
3524 
3525 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3526 	if (right_gen != left_gen) {
3527 		ret = 0;
3528 		goto out;
3529 	}
3530 
3531 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3532 	if (wdm && !wdm->orphanized) {
3533 		ret = add_pending_dir_move(sctx,
3534 					   sctx->cur_ino,
3535 					   sctx->cur_inode_gen,
3536 					   di_key.objectid,
3537 					   &sctx->new_refs,
3538 					   &sctx->deleted_refs,
3539 					   is_orphan);
3540 		if (!ret)
3541 			ret = 1;
3542 	}
3543 out:
3544 	btrfs_free_path(path);
3545 	return ret;
3546 }
3547 
3548 /*
3549  * Check if inode ino2, or any of its ancestors, is inode ino1.
3550  * Return 1 if true, 0 if false and < 0 on error.
3551  */
3552 static int check_ino_in_path(struct btrfs_root *root,
3553 			     const u64 ino1,
3554 			     const u64 ino1_gen,
3555 			     const u64 ino2,
3556 			     const u64 ino2_gen,
3557 			     struct fs_path *fs_path)
3558 {
3559 	u64 ino = ino2;
3560 
3561 	if (ino1 == ino2)
3562 		return ino1_gen == ino2_gen;
3563 
3564 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3565 		u64 parent;
3566 		u64 parent_gen;
3567 		int ret;
3568 
3569 		fs_path_reset(fs_path);
3570 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3571 		if (ret < 0)
3572 			return ret;
3573 		if (parent == ino1)
3574 			return parent_gen == ino1_gen;
3575 		ino = parent;
3576 	}
3577 	return 0;
3578 }
3579 
3580 /*
3581  * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3582  * possible path (in case ino2 is not a directory and has multiple hard links).
3583  * Return 1 if true, 0 if false and < 0 on error.
3584  */
3585 static int is_ancestor(struct btrfs_root *root,
3586 		       const u64 ino1,
3587 		       const u64 ino1_gen,
3588 		       const u64 ino2,
3589 		       struct fs_path *fs_path)
3590 {
3591 	bool free_fs_path = false;
3592 	int ret = 0;
3593 	struct btrfs_path *path = NULL;
3594 	struct btrfs_key key;
3595 
3596 	if (!fs_path) {
3597 		fs_path = fs_path_alloc();
3598 		if (!fs_path)
3599 			return -ENOMEM;
3600 		free_fs_path = true;
3601 	}
3602 
3603 	path = alloc_path_for_send();
3604 	if (!path) {
3605 		ret = -ENOMEM;
3606 		goto out;
3607 	}
3608 
3609 	key.objectid = ino2;
3610 	key.type = BTRFS_INODE_REF_KEY;
3611 	key.offset = 0;
3612 
3613 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3614 	if (ret < 0)
3615 		goto out;
3616 
3617 	while (true) {
3618 		struct extent_buffer *leaf = path->nodes[0];
3619 		int slot = path->slots[0];
3620 		u32 cur_offset = 0;
3621 		u32 item_size;
3622 
3623 		if (slot >= btrfs_header_nritems(leaf)) {
3624 			ret = btrfs_next_leaf(root, path);
3625 			if (ret < 0)
3626 				goto out;
3627 			if (ret > 0)
3628 				break;
3629 			continue;
3630 		}
3631 
3632 		btrfs_item_key_to_cpu(leaf, &key, slot);
3633 		if (key.objectid != ino2)
3634 			break;
3635 		if (key.type != BTRFS_INODE_REF_KEY &&
3636 		    key.type != BTRFS_INODE_EXTREF_KEY)
3637 			break;
3638 
3639 		item_size = btrfs_item_size_nr(leaf, slot);
3640 		while (cur_offset < item_size) {
3641 			u64 parent;
3642 			u64 parent_gen;
3643 
3644 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3645 				unsigned long ptr;
3646 				struct btrfs_inode_extref *extref;
3647 
3648 				ptr = btrfs_item_ptr_offset(leaf, slot);
3649 				extref = (struct btrfs_inode_extref *)
3650 					(ptr + cur_offset);
3651 				parent = btrfs_inode_extref_parent(leaf,
3652 								   extref);
3653 				cur_offset += sizeof(*extref);
3654 				cur_offset += btrfs_inode_extref_name_len(leaf,
3655 								  extref);
3656 			} else {
3657 				parent = key.offset;
3658 				cur_offset = item_size;
3659 			}
3660 
3661 			ret = get_inode_info(root, parent, NULL, &parent_gen,
3662 					     NULL, NULL, NULL, NULL);
3663 			if (ret < 0)
3664 				goto out;
3665 			ret = check_ino_in_path(root, ino1, ino1_gen,
3666 						parent, parent_gen, fs_path);
3667 			if (ret)
3668 				goto out;
3669 		}
3670 		path->slots[0]++;
3671 	}
3672 	ret = 0;
3673  out:
3674 	btrfs_free_path(path);
3675 	if (free_fs_path)
3676 		fs_path_free(fs_path);
3677 	return ret;
3678 }
3679 
3680 static int wait_for_parent_move(struct send_ctx *sctx,
3681 				struct recorded_ref *parent_ref,
3682 				const bool is_orphan)
3683 {
3684 	int ret = 0;
3685 	u64 ino = parent_ref->dir;
3686 	u64 ino_gen = parent_ref->dir_gen;
3687 	u64 parent_ino_before, parent_ino_after;
3688 	struct fs_path *path_before = NULL;
3689 	struct fs_path *path_after = NULL;
3690 	int len1, len2;
3691 
3692 	path_after = fs_path_alloc();
3693 	path_before = fs_path_alloc();
3694 	if (!path_after || !path_before) {
3695 		ret = -ENOMEM;
3696 		goto out;
3697 	}
3698 
3699 	/*
3700 	 * Our current directory inode may not yet be renamed/moved because some
3701 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3702 	 * such ancestor exists and make sure our own rename/move happens after
3703 	 * that ancestor is processed to avoid path build infinite loops (done
3704 	 * at get_cur_path()).
3705 	 */
3706 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3707 		u64 parent_ino_after_gen;
3708 
3709 		if (is_waiting_for_move(sctx, ino)) {
3710 			/*
3711 			 * If the current inode is an ancestor of ino in the
3712 			 * parent root, we need to delay the rename of the
3713 			 * current inode, otherwise don't delayed the rename
3714 			 * because we can end up with a circular dependency
3715 			 * of renames, resulting in some directories never
3716 			 * getting the respective rename operations issued in
3717 			 * the send stream or getting into infinite path build
3718 			 * loops.
3719 			 */
3720 			ret = is_ancestor(sctx->parent_root,
3721 					  sctx->cur_ino, sctx->cur_inode_gen,
3722 					  ino, path_before);
3723 			if (ret)
3724 				break;
3725 		}
3726 
3727 		fs_path_reset(path_before);
3728 		fs_path_reset(path_after);
3729 
3730 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3731 				    &parent_ino_after_gen, path_after);
3732 		if (ret < 0)
3733 			goto out;
3734 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3735 				    NULL, path_before);
3736 		if (ret < 0 && ret != -ENOENT) {
3737 			goto out;
3738 		} else if (ret == -ENOENT) {
3739 			ret = 0;
3740 			break;
3741 		}
3742 
3743 		len1 = fs_path_len(path_before);
3744 		len2 = fs_path_len(path_after);
3745 		if (ino > sctx->cur_ino &&
3746 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3747 		     memcmp(path_before->start, path_after->start, len1))) {
3748 			u64 parent_ino_gen;
3749 
3750 			ret = get_inode_info(sctx->parent_root, ino, NULL,
3751 					     &parent_ino_gen, NULL, NULL, NULL,
3752 					     NULL);
3753 			if (ret < 0)
3754 				goto out;
3755 			if (ino_gen == parent_ino_gen) {
3756 				ret = 1;
3757 				break;
3758 			}
3759 		}
3760 		ino = parent_ino_after;
3761 		ino_gen = parent_ino_after_gen;
3762 	}
3763 
3764 out:
3765 	fs_path_free(path_before);
3766 	fs_path_free(path_after);
3767 
3768 	if (ret == 1) {
3769 		ret = add_pending_dir_move(sctx,
3770 					   sctx->cur_ino,
3771 					   sctx->cur_inode_gen,
3772 					   ino,
3773 					   &sctx->new_refs,
3774 					   &sctx->deleted_refs,
3775 					   is_orphan);
3776 		if (!ret)
3777 			ret = 1;
3778 	}
3779 
3780 	return ret;
3781 }
3782 
3783 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3784 {
3785 	int ret;
3786 	struct fs_path *new_path;
3787 
3788 	/*
3789 	 * Our reference's name member points to its full_path member string, so
3790 	 * we use here a new path.
3791 	 */
3792 	new_path = fs_path_alloc();
3793 	if (!new_path)
3794 		return -ENOMEM;
3795 
3796 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3797 	if (ret < 0) {
3798 		fs_path_free(new_path);
3799 		return ret;
3800 	}
3801 	ret = fs_path_add(new_path, ref->name, ref->name_len);
3802 	if (ret < 0) {
3803 		fs_path_free(new_path);
3804 		return ret;
3805 	}
3806 
3807 	fs_path_free(ref->full_path);
3808 	set_ref_path(ref, new_path);
3809 
3810 	return 0;
3811 }
3812 
3813 /*
3814  * This does all the move/link/unlink/rmdir magic.
3815  */
3816 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3817 {
3818 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3819 	int ret = 0;
3820 	struct recorded_ref *cur;
3821 	struct recorded_ref *cur2;
3822 	struct list_head check_dirs;
3823 	struct fs_path *valid_path = NULL;
3824 	u64 ow_inode = 0;
3825 	u64 ow_gen;
3826 	u64 ow_mode;
3827 	int did_overwrite = 0;
3828 	int is_orphan = 0;
3829 	u64 last_dir_ino_rm = 0;
3830 	bool can_rename = true;
3831 	bool orphanized_dir = false;
3832 	bool orphanized_ancestor = false;
3833 
3834 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3835 
3836 	/*
3837 	 * This should never happen as the root dir always has the same ref
3838 	 * which is always '..'
3839 	 */
3840 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3841 	INIT_LIST_HEAD(&check_dirs);
3842 
3843 	valid_path = fs_path_alloc();
3844 	if (!valid_path) {
3845 		ret = -ENOMEM;
3846 		goto out;
3847 	}
3848 
3849 	/*
3850 	 * First, check if the first ref of the current inode was overwritten
3851 	 * before. If yes, we know that the current inode was already orphanized
3852 	 * and thus use the orphan name. If not, we can use get_cur_path to
3853 	 * get the path of the first ref as it would like while receiving at
3854 	 * this point in time.
3855 	 * New inodes are always orphan at the beginning, so force to use the
3856 	 * orphan name in this case.
3857 	 * The first ref is stored in valid_path and will be updated if it
3858 	 * gets moved around.
3859 	 */
3860 	if (!sctx->cur_inode_new) {
3861 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3862 				sctx->cur_inode_gen);
3863 		if (ret < 0)
3864 			goto out;
3865 		if (ret)
3866 			did_overwrite = 1;
3867 	}
3868 	if (sctx->cur_inode_new || did_overwrite) {
3869 		ret = gen_unique_name(sctx, sctx->cur_ino,
3870 				sctx->cur_inode_gen, valid_path);
3871 		if (ret < 0)
3872 			goto out;
3873 		is_orphan = 1;
3874 	} else {
3875 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3876 				valid_path);
3877 		if (ret < 0)
3878 			goto out;
3879 	}
3880 
3881 	list_for_each_entry(cur, &sctx->new_refs, list) {
3882 		/*
3883 		 * We may have refs where the parent directory does not exist
3884 		 * yet. This happens if the parent directories inum is higher
3885 		 * than the current inum. To handle this case, we create the
3886 		 * parent directory out of order. But we need to check if this
3887 		 * did already happen before due to other refs in the same dir.
3888 		 */
3889 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3890 		if (ret < 0)
3891 			goto out;
3892 		if (ret == inode_state_will_create) {
3893 			ret = 0;
3894 			/*
3895 			 * First check if any of the current inodes refs did
3896 			 * already create the dir.
3897 			 */
3898 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3899 				if (cur == cur2)
3900 					break;
3901 				if (cur2->dir == cur->dir) {
3902 					ret = 1;
3903 					break;
3904 				}
3905 			}
3906 
3907 			/*
3908 			 * If that did not happen, check if a previous inode
3909 			 * did already create the dir.
3910 			 */
3911 			if (!ret)
3912 				ret = did_create_dir(sctx, cur->dir);
3913 			if (ret < 0)
3914 				goto out;
3915 			if (!ret) {
3916 				ret = send_create_inode(sctx, cur->dir);
3917 				if (ret < 0)
3918 					goto out;
3919 			}
3920 		}
3921 
3922 		/*
3923 		 * Check if this new ref would overwrite the first ref of
3924 		 * another unprocessed inode. If yes, orphanize the
3925 		 * overwritten inode. If we find an overwritten ref that is
3926 		 * not the first ref, simply unlink it.
3927 		 */
3928 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3929 				cur->name, cur->name_len,
3930 				&ow_inode, &ow_gen, &ow_mode);
3931 		if (ret < 0)
3932 			goto out;
3933 		if (ret) {
3934 			ret = is_first_ref(sctx->parent_root,
3935 					   ow_inode, cur->dir, cur->name,
3936 					   cur->name_len);
3937 			if (ret < 0)
3938 				goto out;
3939 			if (ret) {
3940 				struct name_cache_entry *nce;
3941 				struct waiting_dir_move *wdm;
3942 
3943 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3944 						cur->full_path);
3945 				if (ret < 0)
3946 					goto out;
3947 				if (S_ISDIR(ow_mode))
3948 					orphanized_dir = true;
3949 
3950 				/*
3951 				 * If ow_inode has its rename operation delayed
3952 				 * make sure that its orphanized name is used in
3953 				 * the source path when performing its rename
3954 				 * operation.
3955 				 */
3956 				if (is_waiting_for_move(sctx, ow_inode)) {
3957 					wdm = get_waiting_dir_move(sctx,
3958 								   ow_inode);
3959 					ASSERT(wdm);
3960 					wdm->orphanized = true;
3961 				}
3962 
3963 				/*
3964 				 * Make sure we clear our orphanized inode's
3965 				 * name from the name cache. This is because the
3966 				 * inode ow_inode might be an ancestor of some
3967 				 * other inode that will be orphanized as well
3968 				 * later and has an inode number greater than
3969 				 * sctx->send_progress. We need to prevent
3970 				 * future name lookups from using the old name
3971 				 * and get instead the orphan name.
3972 				 */
3973 				nce = name_cache_search(sctx, ow_inode, ow_gen);
3974 				if (nce) {
3975 					name_cache_delete(sctx, nce);
3976 					kfree(nce);
3977 				}
3978 
3979 				/*
3980 				 * ow_inode might currently be an ancestor of
3981 				 * cur_ino, therefore compute valid_path (the
3982 				 * current path of cur_ino) again because it
3983 				 * might contain the pre-orphanization name of
3984 				 * ow_inode, which is no longer valid.
3985 				 */
3986 				ret = is_ancestor(sctx->parent_root,
3987 						  ow_inode, ow_gen,
3988 						  sctx->cur_ino, NULL);
3989 				if (ret > 0) {
3990 					orphanized_ancestor = true;
3991 					fs_path_reset(valid_path);
3992 					ret = get_cur_path(sctx, sctx->cur_ino,
3993 							   sctx->cur_inode_gen,
3994 							   valid_path);
3995 				}
3996 				if (ret < 0)
3997 					goto out;
3998 			} else {
3999 				ret = send_unlink(sctx, cur->full_path);
4000 				if (ret < 0)
4001 					goto out;
4002 			}
4003 		}
4004 
4005 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4006 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4007 			if (ret < 0)
4008 				goto out;
4009 			if (ret == 1) {
4010 				can_rename = false;
4011 				*pending_move = 1;
4012 			}
4013 		}
4014 
4015 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4016 		    can_rename) {
4017 			ret = wait_for_parent_move(sctx, cur, is_orphan);
4018 			if (ret < 0)
4019 				goto out;
4020 			if (ret == 1) {
4021 				can_rename = false;
4022 				*pending_move = 1;
4023 			}
4024 		}
4025 
4026 		/*
4027 		 * link/move the ref to the new place. If we have an orphan
4028 		 * inode, move it and update valid_path. If not, link or move
4029 		 * it depending on the inode mode.
4030 		 */
4031 		if (is_orphan && can_rename) {
4032 			ret = send_rename(sctx, valid_path, cur->full_path);
4033 			if (ret < 0)
4034 				goto out;
4035 			is_orphan = 0;
4036 			ret = fs_path_copy(valid_path, cur->full_path);
4037 			if (ret < 0)
4038 				goto out;
4039 		} else if (can_rename) {
4040 			if (S_ISDIR(sctx->cur_inode_mode)) {
4041 				/*
4042 				 * Dirs can't be linked, so move it. For moved
4043 				 * dirs, we always have one new and one deleted
4044 				 * ref. The deleted ref is ignored later.
4045 				 */
4046 				ret = send_rename(sctx, valid_path,
4047 						  cur->full_path);
4048 				if (!ret)
4049 					ret = fs_path_copy(valid_path,
4050 							   cur->full_path);
4051 				if (ret < 0)
4052 					goto out;
4053 			} else {
4054 				/*
4055 				 * We might have previously orphanized an inode
4056 				 * which is an ancestor of our current inode,
4057 				 * so our reference's full path, which was
4058 				 * computed before any such orphanizations, must
4059 				 * be updated.
4060 				 */
4061 				if (orphanized_dir) {
4062 					ret = update_ref_path(sctx, cur);
4063 					if (ret < 0)
4064 						goto out;
4065 				}
4066 				ret = send_link(sctx, cur->full_path,
4067 						valid_path);
4068 				if (ret < 0)
4069 					goto out;
4070 			}
4071 		}
4072 		ret = dup_ref(cur, &check_dirs);
4073 		if (ret < 0)
4074 			goto out;
4075 	}
4076 
4077 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4078 		/*
4079 		 * Check if we can already rmdir the directory. If not,
4080 		 * orphanize it. For every dir item inside that gets deleted
4081 		 * later, we do this check again and rmdir it then if possible.
4082 		 * See the use of check_dirs for more details.
4083 		 */
4084 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4085 				sctx->cur_ino);
4086 		if (ret < 0)
4087 			goto out;
4088 		if (ret) {
4089 			ret = send_rmdir(sctx, valid_path);
4090 			if (ret < 0)
4091 				goto out;
4092 		} else if (!is_orphan) {
4093 			ret = orphanize_inode(sctx, sctx->cur_ino,
4094 					sctx->cur_inode_gen, valid_path);
4095 			if (ret < 0)
4096 				goto out;
4097 			is_orphan = 1;
4098 		}
4099 
4100 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4101 			ret = dup_ref(cur, &check_dirs);
4102 			if (ret < 0)
4103 				goto out;
4104 		}
4105 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4106 		   !list_empty(&sctx->deleted_refs)) {
4107 		/*
4108 		 * We have a moved dir. Add the old parent to check_dirs
4109 		 */
4110 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4111 				list);
4112 		ret = dup_ref(cur, &check_dirs);
4113 		if (ret < 0)
4114 			goto out;
4115 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4116 		/*
4117 		 * We have a non dir inode. Go through all deleted refs and
4118 		 * unlink them if they were not already overwritten by other
4119 		 * inodes.
4120 		 */
4121 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4122 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4123 					sctx->cur_ino, sctx->cur_inode_gen,
4124 					cur->name, cur->name_len);
4125 			if (ret < 0)
4126 				goto out;
4127 			if (!ret) {
4128 				/*
4129 				 * If we orphanized any ancestor before, we need
4130 				 * to recompute the full path for deleted names,
4131 				 * since any such path was computed before we
4132 				 * processed any references and orphanized any
4133 				 * ancestor inode.
4134 				 */
4135 				if (orphanized_ancestor) {
4136 					ret = update_ref_path(sctx, cur);
4137 					if (ret < 0)
4138 						goto out;
4139 				}
4140 				ret = send_unlink(sctx, cur->full_path);
4141 				if (ret < 0)
4142 					goto out;
4143 			}
4144 			ret = dup_ref(cur, &check_dirs);
4145 			if (ret < 0)
4146 				goto out;
4147 		}
4148 		/*
4149 		 * If the inode is still orphan, unlink the orphan. This may
4150 		 * happen when a previous inode did overwrite the first ref
4151 		 * of this inode and no new refs were added for the current
4152 		 * inode. Unlinking does not mean that the inode is deleted in
4153 		 * all cases. There may still be links to this inode in other
4154 		 * places.
4155 		 */
4156 		if (is_orphan) {
4157 			ret = send_unlink(sctx, valid_path);
4158 			if (ret < 0)
4159 				goto out;
4160 		}
4161 	}
4162 
4163 	/*
4164 	 * We did collect all parent dirs where cur_inode was once located. We
4165 	 * now go through all these dirs and check if they are pending for
4166 	 * deletion and if it's finally possible to perform the rmdir now.
4167 	 * We also update the inode stats of the parent dirs here.
4168 	 */
4169 	list_for_each_entry(cur, &check_dirs, list) {
4170 		/*
4171 		 * In case we had refs into dirs that were not processed yet,
4172 		 * we don't need to do the utime and rmdir logic for these dirs.
4173 		 * The dir will be processed later.
4174 		 */
4175 		if (cur->dir > sctx->cur_ino)
4176 			continue;
4177 
4178 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4179 		if (ret < 0)
4180 			goto out;
4181 
4182 		if (ret == inode_state_did_create ||
4183 		    ret == inode_state_no_change) {
4184 			/* TODO delayed utimes */
4185 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4186 			if (ret < 0)
4187 				goto out;
4188 		} else if (ret == inode_state_did_delete &&
4189 			   cur->dir != last_dir_ino_rm) {
4190 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4191 					sctx->cur_ino);
4192 			if (ret < 0)
4193 				goto out;
4194 			if (ret) {
4195 				ret = get_cur_path(sctx, cur->dir,
4196 						   cur->dir_gen, valid_path);
4197 				if (ret < 0)
4198 					goto out;
4199 				ret = send_rmdir(sctx, valid_path);
4200 				if (ret < 0)
4201 					goto out;
4202 				last_dir_ino_rm = cur->dir;
4203 			}
4204 		}
4205 	}
4206 
4207 	ret = 0;
4208 
4209 out:
4210 	__free_recorded_refs(&check_dirs);
4211 	free_recorded_refs(sctx);
4212 	fs_path_free(valid_path);
4213 	return ret;
4214 }
4215 
4216 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4217 		      void *ctx, struct list_head *refs)
4218 {
4219 	int ret = 0;
4220 	struct send_ctx *sctx = ctx;
4221 	struct fs_path *p;
4222 	u64 gen;
4223 
4224 	p = fs_path_alloc();
4225 	if (!p)
4226 		return -ENOMEM;
4227 
4228 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4229 			NULL, NULL);
4230 	if (ret < 0)
4231 		goto out;
4232 
4233 	ret = get_cur_path(sctx, dir, gen, p);
4234 	if (ret < 0)
4235 		goto out;
4236 	ret = fs_path_add_path(p, name);
4237 	if (ret < 0)
4238 		goto out;
4239 
4240 	ret = __record_ref(refs, dir, gen, p);
4241 
4242 out:
4243 	if (ret)
4244 		fs_path_free(p);
4245 	return ret;
4246 }
4247 
4248 static int __record_new_ref(int num, u64 dir, int index,
4249 			    struct fs_path *name,
4250 			    void *ctx)
4251 {
4252 	struct send_ctx *sctx = ctx;
4253 	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4254 }
4255 
4256 
4257 static int __record_deleted_ref(int num, u64 dir, int index,
4258 				struct fs_path *name,
4259 				void *ctx)
4260 {
4261 	struct send_ctx *sctx = ctx;
4262 	return record_ref(sctx->parent_root, dir, name, ctx,
4263 			  &sctx->deleted_refs);
4264 }
4265 
4266 static int record_new_ref(struct send_ctx *sctx)
4267 {
4268 	int ret;
4269 
4270 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4271 				sctx->cmp_key, 0, __record_new_ref, sctx);
4272 	if (ret < 0)
4273 		goto out;
4274 	ret = 0;
4275 
4276 out:
4277 	return ret;
4278 }
4279 
4280 static int record_deleted_ref(struct send_ctx *sctx)
4281 {
4282 	int ret;
4283 
4284 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4285 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4286 	if (ret < 0)
4287 		goto out;
4288 	ret = 0;
4289 
4290 out:
4291 	return ret;
4292 }
4293 
4294 struct find_ref_ctx {
4295 	u64 dir;
4296 	u64 dir_gen;
4297 	struct btrfs_root *root;
4298 	struct fs_path *name;
4299 	int found_idx;
4300 };
4301 
4302 static int __find_iref(int num, u64 dir, int index,
4303 		       struct fs_path *name,
4304 		       void *ctx_)
4305 {
4306 	struct find_ref_ctx *ctx = ctx_;
4307 	u64 dir_gen;
4308 	int ret;
4309 
4310 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4311 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4312 		/*
4313 		 * To avoid doing extra lookups we'll only do this if everything
4314 		 * else matches.
4315 		 */
4316 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4317 				     NULL, NULL, NULL);
4318 		if (ret)
4319 			return ret;
4320 		if (dir_gen != ctx->dir_gen)
4321 			return 0;
4322 		ctx->found_idx = num;
4323 		return 1;
4324 	}
4325 	return 0;
4326 }
4327 
4328 static int find_iref(struct btrfs_root *root,
4329 		     struct btrfs_path *path,
4330 		     struct btrfs_key *key,
4331 		     u64 dir, u64 dir_gen, struct fs_path *name)
4332 {
4333 	int ret;
4334 	struct find_ref_ctx ctx;
4335 
4336 	ctx.dir = dir;
4337 	ctx.name = name;
4338 	ctx.dir_gen = dir_gen;
4339 	ctx.found_idx = -1;
4340 	ctx.root = root;
4341 
4342 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4343 	if (ret < 0)
4344 		return ret;
4345 
4346 	if (ctx.found_idx == -1)
4347 		return -ENOENT;
4348 
4349 	return ctx.found_idx;
4350 }
4351 
4352 static int __record_changed_new_ref(int num, u64 dir, int index,
4353 				    struct fs_path *name,
4354 				    void *ctx)
4355 {
4356 	u64 dir_gen;
4357 	int ret;
4358 	struct send_ctx *sctx = ctx;
4359 
4360 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4361 			     NULL, NULL, NULL);
4362 	if (ret)
4363 		return ret;
4364 
4365 	ret = find_iref(sctx->parent_root, sctx->right_path,
4366 			sctx->cmp_key, dir, dir_gen, name);
4367 	if (ret == -ENOENT)
4368 		ret = __record_new_ref(num, dir, index, name, sctx);
4369 	else if (ret > 0)
4370 		ret = 0;
4371 
4372 	return ret;
4373 }
4374 
4375 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4376 					struct fs_path *name,
4377 					void *ctx)
4378 {
4379 	u64 dir_gen;
4380 	int ret;
4381 	struct send_ctx *sctx = ctx;
4382 
4383 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4384 			     NULL, NULL, NULL);
4385 	if (ret)
4386 		return ret;
4387 
4388 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4389 			dir, dir_gen, name);
4390 	if (ret == -ENOENT)
4391 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4392 	else if (ret > 0)
4393 		ret = 0;
4394 
4395 	return ret;
4396 }
4397 
4398 static int record_changed_ref(struct send_ctx *sctx)
4399 {
4400 	int ret = 0;
4401 
4402 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4403 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4404 	if (ret < 0)
4405 		goto out;
4406 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4407 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4408 	if (ret < 0)
4409 		goto out;
4410 	ret = 0;
4411 
4412 out:
4413 	return ret;
4414 }
4415 
4416 /*
4417  * Record and process all refs at once. Needed when an inode changes the
4418  * generation number, which means that it was deleted and recreated.
4419  */
4420 static int process_all_refs(struct send_ctx *sctx,
4421 			    enum btrfs_compare_tree_result cmd)
4422 {
4423 	int ret;
4424 	struct btrfs_root *root;
4425 	struct btrfs_path *path;
4426 	struct btrfs_key key;
4427 	struct btrfs_key found_key;
4428 	struct extent_buffer *eb;
4429 	int slot;
4430 	iterate_inode_ref_t cb;
4431 	int pending_move = 0;
4432 
4433 	path = alloc_path_for_send();
4434 	if (!path)
4435 		return -ENOMEM;
4436 
4437 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4438 		root = sctx->send_root;
4439 		cb = __record_new_ref;
4440 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4441 		root = sctx->parent_root;
4442 		cb = __record_deleted_ref;
4443 	} else {
4444 		btrfs_err(sctx->send_root->fs_info,
4445 				"Wrong command %d in process_all_refs", cmd);
4446 		ret = -EINVAL;
4447 		goto out;
4448 	}
4449 
4450 	key.objectid = sctx->cmp_key->objectid;
4451 	key.type = BTRFS_INODE_REF_KEY;
4452 	key.offset = 0;
4453 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4454 	if (ret < 0)
4455 		goto out;
4456 
4457 	while (1) {
4458 		eb = path->nodes[0];
4459 		slot = path->slots[0];
4460 		if (slot >= btrfs_header_nritems(eb)) {
4461 			ret = btrfs_next_leaf(root, path);
4462 			if (ret < 0)
4463 				goto out;
4464 			else if (ret > 0)
4465 				break;
4466 			continue;
4467 		}
4468 
4469 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4470 
4471 		if (found_key.objectid != key.objectid ||
4472 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4473 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4474 			break;
4475 
4476 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4477 		if (ret < 0)
4478 			goto out;
4479 
4480 		path->slots[0]++;
4481 	}
4482 	btrfs_release_path(path);
4483 
4484 	/*
4485 	 * We don't actually care about pending_move as we are simply
4486 	 * re-creating this inode and will be rename'ing it into place once we
4487 	 * rename the parent directory.
4488 	 */
4489 	ret = process_recorded_refs(sctx, &pending_move);
4490 out:
4491 	btrfs_free_path(path);
4492 	return ret;
4493 }
4494 
4495 static int send_set_xattr(struct send_ctx *sctx,
4496 			  struct fs_path *path,
4497 			  const char *name, int name_len,
4498 			  const char *data, int data_len)
4499 {
4500 	int ret = 0;
4501 
4502 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4503 	if (ret < 0)
4504 		goto out;
4505 
4506 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4507 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4508 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4509 
4510 	ret = send_cmd(sctx);
4511 
4512 tlv_put_failure:
4513 out:
4514 	return ret;
4515 }
4516 
4517 static int send_remove_xattr(struct send_ctx *sctx,
4518 			  struct fs_path *path,
4519 			  const char *name, int name_len)
4520 {
4521 	int ret = 0;
4522 
4523 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4524 	if (ret < 0)
4525 		goto out;
4526 
4527 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4528 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4529 
4530 	ret = send_cmd(sctx);
4531 
4532 tlv_put_failure:
4533 out:
4534 	return ret;
4535 }
4536 
4537 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4538 			       const char *name, int name_len,
4539 			       const char *data, int data_len,
4540 			       u8 type, void *ctx)
4541 {
4542 	int ret;
4543 	struct send_ctx *sctx = ctx;
4544 	struct fs_path *p;
4545 	struct posix_acl_xattr_header dummy_acl;
4546 
4547 	p = fs_path_alloc();
4548 	if (!p)
4549 		return -ENOMEM;
4550 
4551 	/*
4552 	 * This hack is needed because empty acls are stored as zero byte
4553 	 * data in xattrs. Problem with that is, that receiving these zero byte
4554 	 * acls will fail later. To fix this, we send a dummy acl list that
4555 	 * only contains the version number and no entries.
4556 	 */
4557 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4558 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4559 		if (data_len == 0) {
4560 			dummy_acl.a_version =
4561 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4562 			data = (char *)&dummy_acl;
4563 			data_len = sizeof(dummy_acl);
4564 		}
4565 	}
4566 
4567 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4568 	if (ret < 0)
4569 		goto out;
4570 
4571 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4572 
4573 out:
4574 	fs_path_free(p);
4575 	return ret;
4576 }
4577 
4578 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4579 				   const char *name, int name_len,
4580 				   const char *data, int data_len,
4581 				   u8 type, void *ctx)
4582 {
4583 	int ret;
4584 	struct send_ctx *sctx = ctx;
4585 	struct fs_path *p;
4586 
4587 	p = fs_path_alloc();
4588 	if (!p)
4589 		return -ENOMEM;
4590 
4591 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4592 	if (ret < 0)
4593 		goto out;
4594 
4595 	ret = send_remove_xattr(sctx, p, name, name_len);
4596 
4597 out:
4598 	fs_path_free(p);
4599 	return ret;
4600 }
4601 
4602 static int process_new_xattr(struct send_ctx *sctx)
4603 {
4604 	int ret = 0;
4605 
4606 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4607 			       __process_new_xattr, sctx);
4608 
4609 	return ret;
4610 }
4611 
4612 static int process_deleted_xattr(struct send_ctx *sctx)
4613 {
4614 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4615 				__process_deleted_xattr, sctx);
4616 }
4617 
4618 struct find_xattr_ctx {
4619 	const char *name;
4620 	int name_len;
4621 	int found_idx;
4622 	char *found_data;
4623 	int found_data_len;
4624 };
4625 
4626 static int __find_xattr(int num, struct btrfs_key *di_key,
4627 			const char *name, int name_len,
4628 			const char *data, int data_len,
4629 			u8 type, void *vctx)
4630 {
4631 	struct find_xattr_ctx *ctx = vctx;
4632 
4633 	if (name_len == ctx->name_len &&
4634 	    strncmp(name, ctx->name, name_len) == 0) {
4635 		ctx->found_idx = num;
4636 		ctx->found_data_len = data_len;
4637 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4638 		if (!ctx->found_data)
4639 			return -ENOMEM;
4640 		return 1;
4641 	}
4642 	return 0;
4643 }
4644 
4645 static int find_xattr(struct btrfs_root *root,
4646 		      struct btrfs_path *path,
4647 		      struct btrfs_key *key,
4648 		      const char *name, int name_len,
4649 		      char **data, int *data_len)
4650 {
4651 	int ret;
4652 	struct find_xattr_ctx ctx;
4653 
4654 	ctx.name = name;
4655 	ctx.name_len = name_len;
4656 	ctx.found_idx = -1;
4657 	ctx.found_data = NULL;
4658 	ctx.found_data_len = 0;
4659 
4660 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4661 	if (ret < 0)
4662 		return ret;
4663 
4664 	if (ctx.found_idx == -1)
4665 		return -ENOENT;
4666 	if (data) {
4667 		*data = ctx.found_data;
4668 		*data_len = ctx.found_data_len;
4669 	} else {
4670 		kfree(ctx.found_data);
4671 	}
4672 	return ctx.found_idx;
4673 }
4674 
4675 
4676 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4677 				       const char *name, int name_len,
4678 				       const char *data, int data_len,
4679 				       u8 type, void *ctx)
4680 {
4681 	int ret;
4682 	struct send_ctx *sctx = ctx;
4683 	char *found_data = NULL;
4684 	int found_data_len  = 0;
4685 
4686 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4687 			 sctx->cmp_key, name, name_len, &found_data,
4688 			 &found_data_len);
4689 	if (ret == -ENOENT) {
4690 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4691 				data_len, type, ctx);
4692 	} else if (ret >= 0) {
4693 		if (data_len != found_data_len ||
4694 		    memcmp(data, found_data, data_len)) {
4695 			ret = __process_new_xattr(num, di_key, name, name_len,
4696 					data, data_len, type, ctx);
4697 		} else {
4698 			ret = 0;
4699 		}
4700 	}
4701 
4702 	kfree(found_data);
4703 	return ret;
4704 }
4705 
4706 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4707 					   const char *name, int name_len,
4708 					   const char *data, int data_len,
4709 					   u8 type, void *ctx)
4710 {
4711 	int ret;
4712 	struct send_ctx *sctx = ctx;
4713 
4714 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4715 			 name, name_len, NULL, NULL);
4716 	if (ret == -ENOENT)
4717 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4718 				data_len, type, ctx);
4719 	else if (ret >= 0)
4720 		ret = 0;
4721 
4722 	return ret;
4723 }
4724 
4725 static int process_changed_xattr(struct send_ctx *sctx)
4726 {
4727 	int ret = 0;
4728 
4729 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4730 			__process_changed_new_xattr, sctx);
4731 	if (ret < 0)
4732 		goto out;
4733 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4734 			__process_changed_deleted_xattr, sctx);
4735 
4736 out:
4737 	return ret;
4738 }
4739 
4740 static int process_all_new_xattrs(struct send_ctx *sctx)
4741 {
4742 	int ret;
4743 	struct btrfs_root *root;
4744 	struct btrfs_path *path;
4745 	struct btrfs_key key;
4746 	struct btrfs_key found_key;
4747 	struct extent_buffer *eb;
4748 	int slot;
4749 
4750 	path = alloc_path_for_send();
4751 	if (!path)
4752 		return -ENOMEM;
4753 
4754 	root = sctx->send_root;
4755 
4756 	key.objectid = sctx->cmp_key->objectid;
4757 	key.type = BTRFS_XATTR_ITEM_KEY;
4758 	key.offset = 0;
4759 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4760 	if (ret < 0)
4761 		goto out;
4762 
4763 	while (1) {
4764 		eb = path->nodes[0];
4765 		slot = path->slots[0];
4766 		if (slot >= btrfs_header_nritems(eb)) {
4767 			ret = btrfs_next_leaf(root, path);
4768 			if (ret < 0) {
4769 				goto out;
4770 			} else if (ret > 0) {
4771 				ret = 0;
4772 				break;
4773 			}
4774 			continue;
4775 		}
4776 
4777 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4778 		if (found_key.objectid != key.objectid ||
4779 		    found_key.type != key.type) {
4780 			ret = 0;
4781 			goto out;
4782 		}
4783 
4784 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4785 		if (ret < 0)
4786 			goto out;
4787 
4788 		path->slots[0]++;
4789 	}
4790 
4791 out:
4792 	btrfs_free_path(path);
4793 	return ret;
4794 }
4795 
4796 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4797 {
4798 	struct btrfs_root *root = sctx->send_root;
4799 	struct btrfs_fs_info *fs_info = root->fs_info;
4800 	struct inode *inode;
4801 	struct page *page;
4802 	char *addr;
4803 	struct btrfs_key key;
4804 	pgoff_t index = offset >> PAGE_SHIFT;
4805 	pgoff_t last_index;
4806 	unsigned pg_offset = offset_in_page(offset);
4807 	ssize_t ret = 0;
4808 
4809 	key.objectid = sctx->cur_ino;
4810 	key.type = BTRFS_INODE_ITEM_KEY;
4811 	key.offset = 0;
4812 
4813 	inode = btrfs_iget(fs_info->sb, &key, root);
4814 	if (IS_ERR(inode))
4815 		return PTR_ERR(inode);
4816 
4817 	if (offset + len > i_size_read(inode)) {
4818 		if (offset > i_size_read(inode))
4819 			len = 0;
4820 		else
4821 			len = offset - i_size_read(inode);
4822 	}
4823 	if (len == 0)
4824 		goto out;
4825 
4826 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4827 
4828 	/* initial readahead */
4829 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4830 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4831 
4832 	while (index <= last_index) {
4833 		unsigned cur_len = min_t(unsigned, len,
4834 					 PAGE_SIZE - pg_offset);
4835 
4836 		page = find_lock_page(inode->i_mapping, index);
4837 		if (!page) {
4838 			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4839 				NULL, index, last_index + 1 - index);
4840 
4841 			page = find_or_create_page(inode->i_mapping, index,
4842 					GFP_KERNEL);
4843 			if (!page) {
4844 				ret = -ENOMEM;
4845 				break;
4846 			}
4847 		}
4848 
4849 		if (PageReadahead(page)) {
4850 			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4851 				NULL, page, index, last_index + 1 - index);
4852 		}
4853 
4854 		if (!PageUptodate(page)) {
4855 			btrfs_readpage(NULL, page);
4856 			lock_page(page);
4857 			if (!PageUptodate(page)) {
4858 				unlock_page(page);
4859 				put_page(page);
4860 				ret = -EIO;
4861 				break;
4862 			}
4863 		}
4864 
4865 		addr = kmap(page);
4866 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4867 		kunmap(page);
4868 		unlock_page(page);
4869 		put_page(page);
4870 		index++;
4871 		pg_offset = 0;
4872 		len -= cur_len;
4873 		ret += cur_len;
4874 	}
4875 out:
4876 	iput(inode);
4877 	return ret;
4878 }
4879 
4880 /*
4881  * Read some bytes from the current inode/file and send a write command to
4882  * user space.
4883  */
4884 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4885 {
4886 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4887 	int ret = 0;
4888 	struct fs_path *p;
4889 	ssize_t num_read = 0;
4890 
4891 	p = fs_path_alloc();
4892 	if (!p)
4893 		return -ENOMEM;
4894 
4895 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4896 
4897 	num_read = fill_read_buf(sctx, offset, len);
4898 	if (num_read <= 0) {
4899 		if (num_read < 0)
4900 			ret = num_read;
4901 		goto out;
4902 	}
4903 
4904 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4905 	if (ret < 0)
4906 		goto out;
4907 
4908 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4909 	if (ret < 0)
4910 		goto out;
4911 
4912 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4913 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4914 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4915 
4916 	ret = send_cmd(sctx);
4917 
4918 tlv_put_failure:
4919 out:
4920 	fs_path_free(p);
4921 	if (ret < 0)
4922 		return ret;
4923 	return num_read;
4924 }
4925 
4926 /*
4927  * Send a clone command to user space.
4928  */
4929 static int send_clone(struct send_ctx *sctx,
4930 		      u64 offset, u32 len,
4931 		      struct clone_root *clone_root)
4932 {
4933 	int ret = 0;
4934 	struct fs_path *p;
4935 	u64 gen;
4936 
4937 	btrfs_debug(sctx->send_root->fs_info,
4938 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4939 		    offset, len, clone_root->root->root_key.objectid,
4940 		    clone_root->ino, clone_root->offset);
4941 
4942 	p = fs_path_alloc();
4943 	if (!p)
4944 		return -ENOMEM;
4945 
4946 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4947 	if (ret < 0)
4948 		goto out;
4949 
4950 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4951 	if (ret < 0)
4952 		goto out;
4953 
4954 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4955 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4956 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4957 
4958 	if (clone_root->root == sctx->send_root) {
4959 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4960 				&gen, NULL, NULL, NULL, NULL);
4961 		if (ret < 0)
4962 			goto out;
4963 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4964 	} else {
4965 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4966 	}
4967 	if (ret < 0)
4968 		goto out;
4969 
4970 	/*
4971 	 * If the parent we're using has a received_uuid set then use that as
4972 	 * our clone source as that is what we will look for when doing a
4973 	 * receive.
4974 	 *
4975 	 * This covers the case that we create a snapshot off of a received
4976 	 * subvolume and then use that as the parent and try to receive on a
4977 	 * different host.
4978 	 */
4979 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4980 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4981 			     clone_root->root->root_item.received_uuid);
4982 	else
4983 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4984 			     clone_root->root->root_item.uuid);
4985 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4986 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4987 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4988 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4989 			clone_root->offset);
4990 
4991 	ret = send_cmd(sctx);
4992 
4993 tlv_put_failure:
4994 out:
4995 	fs_path_free(p);
4996 	return ret;
4997 }
4998 
4999 /*
5000  * Send an update extent command to user space.
5001  */
5002 static int send_update_extent(struct send_ctx *sctx,
5003 			      u64 offset, u32 len)
5004 {
5005 	int ret = 0;
5006 	struct fs_path *p;
5007 
5008 	p = fs_path_alloc();
5009 	if (!p)
5010 		return -ENOMEM;
5011 
5012 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5013 	if (ret < 0)
5014 		goto out;
5015 
5016 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5017 	if (ret < 0)
5018 		goto out;
5019 
5020 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5021 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5022 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5023 
5024 	ret = send_cmd(sctx);
5025 
5026 tlv_put_failure:
5027 out:
5028 	fs_path_free(p);
5029 	return ret;
5030 }
5031 
5032 static int send_hole(struct send_ctx *sctx, u64 end)
5033 {
5034 	struct fs_path *p = NULL;
5035 	u64 offset = sctx->cur_inode_last_extent;
5036 	u64 len;
5037 	int ret = 0;
5038 
5039 	/*
5040 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5041 	 * fallocate (for extent preallocation and hole punching), sending a
5042 	 * write of zeroes starting at EOF or beyond would later require issuing
5043 	 * a truncate operation which would undo the write and achieve nothing.
5044 	 */
5045 	if (offset >= sctx->cur_inode_size)
5046 		return 0;
5047 
5048 	/*
5049 	 * Don't go beyond the inode's i_size due to prealloc extents that start
5050 	 * after the i_size.
5051 	 */
5052 	end = min_t(u64, end, sctx->cur_inode_size);
5053 
5054 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5055 		return send_update_extent(sctx, offset, end - offset);
5056 
5057 	p = fs_path_alloc();
5058 	if (!p)
5059 		return -ENOMEM;
5060 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5061 	if (ret < 0)
5062 		goto tlv_put_failure;
5063 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5064 	while (offset < end) {
5065 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5066 
5067 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5068 		if (ret < 0)
5069 			break;
5070 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5071 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5072 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5073 		ret = send_cmd(sctx);
5074 		if (ret < 0)
5075 			break;
5076 		offset += len;
5077 	}
5078 	sctx->cur_inode_next_write_offset = offset;
5079 tlv_put_failure:
5080 	fs_path_free(p);
5081 	return ret;
5082 }
5083 
5084 static int send_extent_data(struct send_ctx *sctx,
5085 			    const u64 offset,
5086 			    const u64 len)
5087 {
5088 	u64 sent = 0;
5089 
5090 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5091 		return send_update_extent(sctx, offset, len);
5092 
5093 	while (sent < len) {
5094 		u64 size = len - sent;
5095 		int ret;
5096 
5097 		if (size > BTRFS_SEND_READ_SIZE)
5098 			size = BTRFS_SEND_READ_SIZE;
5099 		ret = send_write(sctx, offset + sent, size);
5100 		if (ret < 0)
5101 			return ret;
5102 		if (!ret)
5103 			break;
5104 		sent += ret;
5105 	}
5106 	return 0;
5107 }
5108 
5109 static int clone_range(struct send_ctx *sctx,
5110 		       struct clone_root *clone_root,
5111 		       const u64 disk_byte,
5112 		       u64 data_offset,
5113 		       u64 offset,
5114 		       u64 len)
5115 {
5116 	struct btrfs_path *path;
5117 	struct btrfs_key key;
5118 	int ret;
5119 	u64 clone_src_i_size = 0;
5120 
5121 	/*
5122 	 * Prevent cloning from a zero offset with a length matching the sector
5123 	 * size because in some scenarios this will make the receiver fail.
5124 	 *
5125 	 * For example, if in the source filesystem the extent at offset 0
5126 	 * has a length of sectorsize and it was written using direct IO, then
5127 	 * it can never be an inline extent (even if compression is enabled).
5128 	 * Then this extent can be cloned in the original filesystem to a non
5129 	 * zero file offset, but it may not be possible to clone in the
5130 	 * destination filesystem because it can be inlined due to compression
5131 	 * on the destination filesystem (as the receiver's write operations are
5132 	 * always done using buffered IO). The same happens when the original
5133 	 * filesystem does not have compression enabled but the destination
5134 	 * filesystem has.
5135 	 */
5136 	if (clone_root->offset == 0 &&
5137 	    len == sctx->send_root->fs_info->sectorsize)
5138 		return send_extent_data(sctx, offset, len);
5139 
5140 	path = alloc_path_for_send();
5141 	if (!path)
5142 		return -ENOMEM;
5143 
5144 	/*
5145 	 * There are inodes that have extents that lie behind its i_size. Don't
5146 	 * accept clones from these extents.
5147 	 */
5148 	ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5149 			       &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5150 	btrfs_release_path(path);
5151 	if (ret < 0)
5152 		goto out;
5153 
5154 	/*
5155 	 * We can't send a clone operation for the entire range if we find
5156 	 * extent items in the respective range in the source file that
5157 	 * refer to different extents or if we find holes.
5158 	 * So check for that and do a mix of clone and regular write/copy
5159 	 * operations if needed.
5160 	 *
5161 	 * Example:
5162 	 *
5163 	 * mkfs.btrfs -f /dev/sda
5164 	 * mount /dev/sda /mnt
5165 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5166 	 * cp --reflink=always /mnt/foo /mnt/bar
5167 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5168 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5169 	 *
5170 	 * If when we send the snapshot and we are processing file bar (which
5171 	 * has a higher inode number than foo) we blindly send a clone operation
5172 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5173 	 * a file bar that matches the content of file foo - iow, doesn't match
5174 	 * the content from bar in the original filesystem.
5175 	 */
5176 	key.objectid = clone_root->ino;
5177 	key.type = BTRFS_EXTENT_DATA_KEY;
5178 	key.offset = clone_root->offset;
5179 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5180 	if (ret < 0)
5181 		goto out;
5182 	if (ret > 0 && path->slots[0] > 0) {
5183 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5184 		if (key.objectid == clone_root->ino &&
5185 		    key.type == BTRFS_EXTENT_DATA_KEY)
5186 			path->slots[0]--;
5187 	}
5188 
5189 	while (true) {
5190 		struct extent_buffer *leaf = path->nodes[0];
5191 		int slot = path->slots[0];
5192 		struct btrfs_file_extent_item *ei;
5193 		u8 type;
5194 		u64 ext_len;
5195 		u64 clone_len;
5196 		u64 clone_data_offset;
5197 
5198 		if (slot >= btrfs_header_nritems(leaf)) {
5199 			ret = btrfs_next_leaf(clone_root->root, path);
5200 			if (ret < 0)
5201 				goto out;
5202 			else if (ret > 0)
5203 				break;
5204 			continue;
5205 		}
5206 
5207 		btrfs_item_key_to_cpu(leaf, &key, slot);
5208 
5209 		/*
5210 		 * We might have an implicit trailing hole (NO_HOLES feature
5211 		 * enabled). We deal with it after leaving this loop.
5212 		 */
5213 		if (key.objectid != clone_root->ino ||
5214 		    key.type != BTRFS_EXTENT_DATA_KEY)
5215 			break;
5216 
5217 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5218 		type = btrfs_file_extent_type(leaf, ei);
5219 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5220 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5221 			ext_len = PAGE_ALIGN(ext_len);
5222 		} else {
5223 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5224 		}
5225 
5226 		if (key.offset + ext_len <= clone_root->offset)
5227 			goto next;
5228 
5229 		if (key.offset > clone_root->offset) {
5230 			/* Implicit hole, NO_HOLES feature enabled. */
5231 			u64 hole_len = key.offset - clone_root->offset;
5232 
5233 			if (hole_len > len)
5234 				hole_len = len;
5235 			ret = send_extent_data(sctx, offset, hole_len);
5236 			if (ret < 0)
5237 				goto out;
5238 
5239 			len -= hole_len;
5240 			if (len == 0)
5241 				break;
5242 			offset += hole_len;
5243 			clone_root->offset += hole_len;
5244 			data_offset += hole_len;
5245 		}
5246 
5247 		if (key.offset >= clone_root->offset + len)
5248 			break;
5249 
5250 		if (key.offset >= clone_src_i_size)
5251 			break;
5252 
5253 		if (key.offset + ext_len > clone_src_i_size)
5254 			ext_len = clone_src_i_size - key.offset;
5255 
5256 		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5257 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5258 			clone_root->offset = key.offset;
5259 			if (clone_data_offset < data_offset &&
5260 				clone_data_offset + ext_len > data_offset) {
5261 				u64 extent_offset;
5262 
5263 				extent_offset = data_offset - clone_data_offset;
5264 				ext_len -= extent_offset;
5265 				clone_data_offset += extent_offset;
5266 				clone_root->offset += extent_offset;
5267 			}
5268 		}
5269 
5270 		clone_len = min_t(u64, ext_len, len);
5271 
5272 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5273 		    clone_data_offset == data_offset) {
5274 			const u64 src_end = clone_root->offset + clone_len;
5275 			const u64 sectorsize = SZ_64K;
5276 
5277 			/*
5278 			 * We can't clone the last block, when its size is not
5279 			 * sector size aligned, into the middle of a file. If we
5280 			 * do so, the receiver will get a failure (-EINVAL) when
5281 			 * trying to clone or will silently corrupt the data in
5282 			 * the destination file if it's on a kernel without the
5283 			 * fix introduced by commit ac765f83f1397646
5284 			 * ("Btrfs: fix data corruption due to cloning of eof
5285 			 * block).
5286 			 *
5287 			 * So issue a clone of the aligned down range plus a
5288 			 * regular write for the eof block, if we hit that case.
5289 			 *
5290 			 * Also, we use the maximum possible sector size, 64K,
5291 			 * because we don't know what's the sector size of the
5292 			 * filesystem that receives the stream, so we have to
5293 			 * assume the largest possible sector size.
5294 			 */
5295 			if (src_end == clone_src_i_size &&
5296 			    !IS_ALIGNED(src_end, sectorsize) &&
5297 			    offset + clone_len < sctx->cur_inode_size) {
5298 				u64 slen;
5299 
5300 				slen = ALIGN_DOWN(src_end - clone_root->offset,
5301 						  sectorsize);
5302 				if (slen > 0) {
5303 					ret = send_clone(sctx, offset, slen,
5304 							 clone_root);
5305 					if (ret < 0)
5306 						goto out;
5307 				}
5308 				ret = send_extent_data(sctx, offset + slen,
5309 						       clone_len - slen);
5310 			} else {
5311 				ret = send_clone(sctx, offset, clone_len,
5312 						 clone_root);
5313 			}
5314 		} else {
5315 			ret = send_extent_data(sctx, offset, clone_len);
5316 		}
5317 
5318 		if (ret < 0)
5319 			goto out;
5320 
5321 		len -= clone_len;
5322 		if (len == 0)
5323 			break;
5324 		offset += clone_len;
5325 		clone_root->offset += clone_len;
5326 		data_offset += clone_len;
5327 next:
5328 		path->slots[0]++;
5329 	}
5330 
5331 	if (len > 0)
5332 		ret = send_extent_data(sctx, offset, len);
5333 	else
5334 		ret = 0;
5335 out:
5336 	btrfs_free_path(path);
5337 	return ret;
5338 }
5339 
5340 static int send_write_or_clone(struct send_ctx *sctx,
5341 			       struct btrfs_path *path,
5342 			       struct btrfs_key *key,
5343 			       struct clone_root *clone_root)
5344 {
5345 	int ret = 0;
5346 	struct btrfs_file_extent_item *ei;
5347 	u64 offset = key->offset;
5348 	u64 len;
5349 	u8 type;
5350 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5351 
5352 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5353 			struct btrfs_file_extent_item);
5354 	type = btrfs_file_extent_type(path->nodes[0], ei);
5355 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5356 		len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
5357 		/*
5358 		 * it is possible the inline item won't cover the whole page,
5359 		 * but there may be items after this page.  Make
5360 		 * sure to send the whole thing
5361 		 */
5362 		len = PAGE_ALIGN(len);
5363 	} else {
5364 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5365 	}
5366 
5367 	if (offset >= sctx->cur_inode_size) {
5368 		ret = 0;
5369 		goto out;
5370 	}
5371 	if (offset + len > sctx->cur_inode_size)
5372 		len = sctx->cur_inode_size - offset;
5373 	if (len == 0) {
5374 		ret = 0;
5375 		goto out;
5376 	}
5377 
5378 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
5379 		u64 disk_byte;
5380 		u64 data_offset;
5381 
5382 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5383 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5384 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5385 				  offset, len);
5386 	} else {
5387 		ret = send_extent_data(sctx, offset, len);
5388 	}
5389 	sctx->cur_inode_next_write_offset = offset + len;
5390 out:
5391 	return ret;
5392 }
5393 
5394 static int is_extent_unchanged(struct send_ctx *sctx,
5395 			       struct btrfs_path *left_path,
5396 			       struct btrfs_key *ekey)
5397 {
5398 	int ret = 0;
5399 	struct btrfs_key key;
5400 	struct btrfs_path *path = NULL;
5401 	struct extent_buffer *eb;
5402 	int slot;
5403 	struct btrfs_key found_key;
5404 	struct btrfs_file_extent_item *ei;
5405 	u64 left_disknr;
5406 	u64 right_disknr;
5407 	u64 left_offset;
5408 	u64 right_offset;
5409 	u64 left_offset_fixed;
5410 	u64 left_len;
5411 	u64 right_len;
5412 	u64 left_gen;
5413 	u64 right_gen;
5414 	u8 left_type;
5415 	u8 right_type;
5416 
5417 	path = alloc_path_for_send();
5418 	if (!path)
5419 		return -ENOMEM;
5420 
5421 	eb = left_path->nodes[0];
5422 	slot = left_path->slots[0];
5423 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5424 	left_type = btrfs_file_extent_type(eb, ei);
5425 
5426 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5427 		ret = 0;
5428 		goto out;
5429 	}
5430 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5431 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5432 	left_offset = btrfs_file_extent_offset(eb, ei);
5433 	left_gen = btrfs_file_extent_generation(eb, ei);
5434 
5435 	/*
5436 	 * Following comments will refer to these graphics. L is the left
5437 	 * extents which we are checking at the moment. 1-8 are the right
5438 	 * extents that we iterate.
5439 	 *
5440 	 *       |-----L-----|
5441 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5442 	 *
5443 	 *       |-----L-----|
5444 	 * |--1--|-2b-|...(same as above)
5445 	 *
5446 	 * Alternative situation. Happens on files where extents got split.
5447 	 *       |-----L-----|
5448 	 * |-----------7-----------|-6-|
5449 	 *
5450 	 * Alternative situation. Happens on files which got larger.
5451 	 *       |-----L-----|
5452 	 * |-8-|
5453 	 * Nothing follows after 8.
5454 	 */
5455 
5456 	key.objectid = ekey->objectid;
5457 	key.type = BTRFS_EXTENT_DATA_KEY;
5458 	key.offset = ekey->offset;
5459 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5460 	if (ret < 0)
5461 		goto out;
5462 	if (ret) {
5463 		ret = 0;
5464 		goto out;
5465 	}
5466 
5467 	/*
5468 	 * Handle special case where the right side has no extents at all.
5469 	 */
5470 	eb = path->nodes[0];
5471 	slot = path->slots[0];
5472 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5473 	if (found_key.objectid != key.objectid ||
5474 	    found_key.type != key.type) {
5475 		/* If we're a hole then just pretend nothing changed */
5476 		ret = (left_disknr) ? 0 : 1;
5477 		goto out;
5478 	}
5479 
5480 	/*
5481 	 * We're now on 2a, 2b or 7.
5482 	 */
5483 	key = found_key;
5484 	while (key.offset < ekey->offset + left_len) {
5485 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5486 		right_type = btrfs_file_extent_type(eb, ei);
5487 		if (right_type != BTRFS_FILE_EXTENT_REG &&
5488 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5489 			ret = 0;
5490 			goto out;
5491 		}
5492 
5493 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5494 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
5495 			right_len = PAGE_ALIGN(right_len);
5496 		} else {
5497 			right_len = btrfs_file_extent_num_bytes(eb, ei);
5498 		}
5499 
5500 		/*
5501 		 * Are we at extent 8? If yes, we know the extent is changed.
5502 		 * This may only happen on the first iteration.
5503 		 */
5504 		if (found_key.offset + right_len <= ekey->offset) {
5505 			/* If we're a hole just pretend nothing changed */
5506 			ret = (left_disknr) ? 0 : 1;
5507 			goto out;
5508 		}
5509 
5510 		/*
5511 		 * We just wanted to see if when we have an inline extent, what
5512 		 * follows it is a regular extent (wanted to check the above
5513 		 * condition for inline extents too). This should normally not
5514 		 * happen but it's possible for example when we have an inline
5515 		 * compressed extent representing data with a size matching
5516 		 * the page size (currently the same as sector size).
5517 		 */
5518 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5519 			ret = 0;
5520 			goto out;
5521 		}
5522 
5523 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5524 		right_offset = btrfs_file_extent_offset(eb, ei);
5525 		right_gen = btrfs_file_extent_generation(eb, ei);
5526 
5527 		left_offset_fixed = left_offset;
5528 		if (key.offset < ekey->offset) {
5529 			/* Fix the right offset for 2a and 7. */
5530 			right_offset += ekey->offset - key.offset;
5531 		} else {
5532 			/* Fix the left offset for all behind 2a and 2b */
5533 			left_offset_fixed += key.offset - ekey->offset;
5534 		}
5535 
5536 		/*
5537 		 * Check if we have the same extent.
5538 		 */
5539 		if (left_disknr != right_disknr ||
5540 		    left_offset_fixed != right_offset ||
5541 		    left_gen != right_gen) {
5542 			ret = 0;
5543 			goto out;
5544 		}
5545 
5546 		/*
5547 		 * Go to the next extent.
5548 		 */
5549 		ret = btrfs_next_item(sctx->parent_root, path);
5550 		if (ret < 0)
5551 			goto out;
5552 		if (!ret) {
5553 			eb = path->nodes[0];
5554 			slot = path->slots[0];
5555 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5556 		}
5557 		if (ret || found_key.objectid != key.objectid ||
5558 		    found_key.type != key.type) {
5559 			key.offset += right_len;
5560 			break;
5561 		}
5562 		if (found_key.offset != key.offset + right_len) {
5563 			ret = 0;
5564 			goto out;
5565 		}
5566 		key = found_key;
5567 	}
5568 
5569 	/*
5570 	 * We're now behind the left extent (treat as unchanged) or at the end
5571 	 * of the right side (treat as changed).
5572 	 */
5573 	if (key.offset >= ekey->offset + left_len)
5574 		ret = 1;
5575 	else
5576 		ret = 0;
5577 
5578 
5579 out:
5580 	btrfs_free_path(path);
5581 	return ret;
5582 }
5583 
5584 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5585 {
5586 	struct btrfs_path *path;
5587 	struct btrfs_root *root = sctx->send_root;
5588 	struct btrfs_file_extent_item *fi;
5589 	struct btrfs_key key;
5590 	u64 extent_end;
5591 	u8 type;
5592 	int ret;
5593 
5594 	path = alloc_path_for_send();
5595 	if (!path)
5596 		return -ENOMEM;
5597 
5598 	sctx->cur_inode_last_extent = 0;
5599 
5600 	key.objectid = sctx->cur_ino;
5601 	key.type = BTRFS_EXTENT_DATA_KEY;
5602 	key.offset = offset;
5603 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5604 	if (ret < 0)
5605 		goto out;
5606 	ret = 0;
5607 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5608 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5609 		goto out;
5610 
5611 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5612 			    struct btrfs_file_extent_item);
5613 	type = btrfs_file_extent_type(path->nodes[0], fi);
5614 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5615 		u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
5616 		extent_end = ALIGN(key.offset + size,
5617 				   sctx->send_root->fs_info->sectorsize);
5618 	} else {
5619 		extent_end = key.offset +
5620 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5621 	}
5622 	sctx->cur_inode_last_extent = extent_end;
5623 out:
5624 	btrfs_free_path(path);
5625 	return ret;
5626 }
5627 
5628 static int range_is_hole_in_parent(struct send_ctx *sctx,
5629 				   const u64 start,
5630 				   const u64 end)
5631 {
5632 	struct btrfs_path *path;
5633 	struct btrfs_key key;
5634 	struct btrfs_root *root = sctx->parent_root;
5635 	u64 search_start = start;
5636 	int ret;
5637 
5638 	path = alloc_path_for_send();
5639 	if (!path)
5640 		return -ENOMEM;
5641 
5642 	key.objectid = sctx->cur_ino;
5643 	key.type = BTRFS_EXTENT_DATA_KEY;
5644 	key.offset = search_start;
5645 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5646 	if (ret < 0)
5647 		goto out;
5648 	if (ret > 0 && path->slots[0] > 0)
5649 		path->slots[0]--;
5650 
5651 	while (search_start < end) {
5652 		struct extent_buffer *leaf = path->nodes[0];
5653 		int slot = path->slots[0];
5654 		struct btrfs_file_extent_item *fi;
5655 		u64 extent_end;
5656 
5657 		if (slot >= btrfs_header_nritems(leaf)) {
5658 			ret = btrfs_next_leaf(root, path);
5659 			if (ret < 0)
5660 				goto out;
5661 			else if (ret > 0)
5662 				break;
5663 			continue;
5664 		}
5665 
5666 		btrfs_item_key_to_cpu(leaf, &key, slot);
5667 		if (key.objectid < sctx->cur_ino ||
5668 		    key.type < BTRFS_EXTENT_DATA_KEY)
5669 			goto next;
5670 		if (key.objectid > sctx->cur_ino ||
5671 		    key.type > BTRFS_EXTENT_DATA_KEY ||
5672 		    key.offset >= end)
5673 			break;
5674 
5675 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5676 		if (btrfs_file_extent_type(leaf, fi) ==
5677 		    BTRFS_FILE_EXTENT_INLINE) {
5678 			u64 size = btrfs_file_extent_ram_bytes(leaf, fi);
5679 
5680 			extent_end = ALIGN(key.offset + size,
5681 					   root->fs_info->sectorsize);
5682 		} else {
5683 			extent_end = key.offset +
5684 				btrfs_file_extent_num_bytes(leaf, fi);
5685 		}
5686 		if (extent_end <= start)
5687 			goto next;
5688 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5689 			search_start = extent_end;
5690 			goto next;
5691 		}
5692 		ret = 0;
5693 		goto out;
5694 next:
5695 		path->slots[0]++;
5696 	}
5697 	ret = 1;
5698 out:
5699 	btrfs_free_path(path);
5700 	return ret;
5701 }
5702 
5703 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5704 			   struct btrfs_key *key)
5705 {
5706 	struct btrfs_file_extent_item *fi;
5707 	u64 extent_end;
5708 	u8 type;
5709 	int ret = 0;
5710 
5711 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5712 		return 0;
5713 
5714 	if (sctx->cur_inode_last_extent == (u64)-1) {
5715 		ret = get_last_extent(sctx, key->offset - 1);
5716 		if (ret)
5717 			return ret;
5718 	}
5719 
5720 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5721 			    struct btrfs_file_extent_item);
5722 	type = btrfs_file_extent_type(path->nodes[0], fi);
5723 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5724 		u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
5725 		extent_end = ALIGN(key->offset + size,
5726 				   sctx->send_root->fs_info->sectorsize);
5727 	} else {
5728 		extent_end = key->offset +
5729 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5730 	}
5731 
5732 	if (path->slots[0] == 0 &&
5733 	    sctx->cur_inode_last_extent < key->offset) {
5734 		/*
5735 		 * We might have skipped entire leafs that contained only
5736 		 * file extent items for our current inode. These leafs have
5737 		 * a generation number smaller (older) than the one in the
5738 		 * current leaf and the leaf our last extent came from, and
5739 		 * are located between these 2 leafs.
5740 		 */
5741 		ret = get_last_extent(sctx, key->offset - 1);
5742 		if (ret)
5743 			return ret;
5744 	}
5745 
5746 	if (sctx->cur_inode_last_extent < key->offset) {
5747 		ret = range_is_hole_in_parent(sctx,
5748 					      sctx->cur_inode_last_extent,
5749 					      key->offset);
5750 		if (ret < 0)
5751 			return ret;
5752 		else if (ret == 0)
5753 			ret = send_hole(sctx, key->offset);
5754 		else
5755 			ret = 0;
5756 	}
5757 	sctx->cur_inode_last_extent = extent_end;
5758 	return ret;
5759 }
5760 
5761 static int process_extent(struct send_ctx *sctx,
5762 			  struct btrfs_path *path,
5763 			  struct btrfs_key *key)
5764 {
5765 	struct clone_root *found_clone = NULL;
5766 	int ret = 0;
5767 
5768 	if (S_ISLNK(sctx->cur_inode_mode))
5769 		return 0;
5770 
5771 	if (sctx->parent_root && !sctx->cur_inode_new) {
5772 		ret = is_extent_unchanged(sctx, path, key);
5773 		if (ret < 0)
5774 			goto out;
5775 		if (ret) {
5776 			ret = 0;
5777 			goto out_hole;
5778 		}
5779 	} else {
5780 		struct btrfs_file_extent_item *ei;
5781 		u8 type;
5782 
5783 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5784 				    struct btrfs_file_extent_item);
5785 		type = btrfs_file_extent_type(path->nodes[0], ei);
5786 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5787 		    type == BTRFS_FILE_EXTENT_REG) {
5788 			/*
5789 			 * The send spec does not have a prealloc command yet,
5790 			 * so just leave a hole for prealloc'ed extents until
5791 			 * we have enough commands queued up to justify rev'ing
5792 			 * the send spec.
5793 			 */
5794 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5795 				ret = 0;
5796 				goto out;
5797 			}
5798 
5799 			/* Have a hole, just skip it. */
5800 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5801 				ret = 0;
5802 				goto out;
5803 			}
5804 		}
5805 	}
5806 
5807 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5808 			sctx->cur_inode_size, &found_clone);
5809 	if (ret != -ENOENT && ret < 0)
5810 		goto out;
5811 
5812 	ret = send_write_or_clone(sctx, path, key, found_clone);
5813 	if (ret)
5814 		goto out;
5815 out_hole:
5816 	ret = maybe_send_hole(sctx, path, key);
5817 out:
5818 	return ret;
5819 }
5820 
5821 static int process_all_extents(struct send_ctx *sctx)
5822 {
5823 	int ret;
5824 	struct btrfs_root *root;
5825 	struct btrfs_path *path;
5826 	struct btrfs_key key;
5827 	struct btrfs_key found_key;
5828 	struct extent_buffer *eb;
5829 	int slot;
5830 
5831 	root = sctx->send_root;
5832 	path = alloc_path_for_send();
5833 	if (!path)
5834 		return -ENOMEM;
5835 
5836 	key.objectid = sctx->cmp_key->objectid;
5837 	key.type = BTRFS_EXTENT_DATA_KEY;
5838 	key.offset = 0;
5839 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5840 	if (ret < 0)
5841 		goto out;
5842 
5843 	while (1) {
5844 		eb = path->nodes[0];
5845 		slot = path->slots[0];
5846 
5847 		if (slot >= btrfs_header_nritems(eb)) {
5848 			ret = btrfs_next_leaf(root, path);
5849 			if (ret < 0) {
5850 				goto out;
5851 			} else if (ret > 0) {
5852 				ret = 0;
5853 				break;
5854 			}
5855 			continue;
5856 		}
5857 
5858 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5859 
5860 		if (found_key.objectid != key.objectid ||
5861 		    found_key.type != key.type) {
5862 			ret = 0;
5863 			goto out;
5864 		}
5865 
5866 		ret = process_extent(sctx, path, &found_key);
5867 		if (ret < 0)
5868 			goto out;
5869 
5870 		path->slots[0]++;
5871 	}
5872 
5873 out:
5874 	btrfs_free_path(path);
5875 	return ret;
5876 }
5877 
5878 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5879 					   int *pending_move,
5880 					   int *refs_processed)
5881 {
5882 	int ret = 0;
5883 
5884 	if (sctx->cur_ino == 0)
5885 		goto out;
5886 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5887 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5888 		goto out;
5889 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5890 		goto out;
5891 
5892 	ret = process_recorded_refs(sctx, pending_move);
5893 	if (ret < 0)
5894 		goto out;
5895 
5896 	*refs_processed = 1;
5897 out:
5898 	return ret;
5899 }
5900 
5901 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5902 {
5903 	int ret = 0;
5904 	u64 left_mode;
5905 	u64 left_uid;
5906 	u64 left_gid;
5907 	u64 right_mode;
5908 	u64 right_uid;
5909 	u64 right_gid;
5910 	int need_chmod = 0;
5911 	int need_chown = 0;
5912 	int need_truncate = 1;
5913 	int pending_move = 0;
5914 	int refs_processed = 0;
5915 
5916 	if (sctx->ignore_cur_inode)
5917 		return 0;
5918 
5919 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5920 					      &refs_processed);
5921 	if (ret < 0)
5922 		goto out;
5923 
5924 	/*
5925 	 * We have processed the refs and thus need to advance send_progress.
5926 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5927 	 * inode into account.
5928 	 *
5929 	 * On the other hand, if our current inode is a directory and couldn't
5930 	 * be moved/renamed because its parent was renamed/moved too and it has
5931 	 * a higher inode number, we can only move/rename our current inode
5932 	 * after we moved/renamed its parent. Therefore in this case operate on
5933 	 * the old path (pre move/rename) of our current inode, and the
5934 	 * move/rename will be performed later.
5935 	 */
5936 	if (refs_processed && !pending_move)
5937 		sctx->send_progress = sctx->cur_ino + 1;
5938 
5939 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5940 		goto out;
5941 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5942 		goto out;
5943 
5944 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5945 			&left_mode, &left_uid, &left_gid, NULL);
5946 	if (ret < 0)
5947 		goto out;
5948 
5949 	if (!sctx->parent_root || sctx->cur_inode_new) {
5950 		need_chown = 1;
5951 		if (!S_ISLNK(sctx->cur_inode_mode))
5952 			need_chmod = 1;
5953 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
5954 			need_truncate = 0;
5955 	} else {
5956 		u64 old_size;
5957 
5958 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5959 				&old_size, NULL, &right_mode, &right_uid,
5960 				&right_gid, NULL);
5961 		if (ret < 0)
5962 			goto out;
5963 
5964 		if (left_uid != right_uid || left_gid != right_gid)
5965 			need_chown = 1;
5966 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5967 			need_chmod = 1;
5968 		if ((old_size == sctx->cur_inode_size) ||
5969 		    (sctx->cur_inode_size > old_size &&
5970 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
5971 			need_truncate = 0;
5972 	}
5973 
5974 	if (S_ISREG(sctx->cur_inode_mode)) {
5975 		if (need_send_hole(sctx)) {
5976 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5977 			    sctx->cur_inode_last_extent <
5978 			    sctx->cur_inode_size) {
5979 				ret = get_last_extent(sctx, (u64)-1);
5980 				if (ret)
5981 					goto out;
5982 			}
5983 			if (sctx->cur_inode_last_extent <
5984 			    sctx->cur_inode_size) {
5985 				ret = send_hole(sctx, sctx->cur_inode_size);
5986 				if (ret)
5987 					goto out;
5988 			}
5989 		}
5990 		if (need_truncate) {
5991 			ret = send_truncate(sctx, sctx->cur_ino,
5992 					    sctx->cur_inode_gen,
5993 					    sctx->cur_inode_size);
5994 			if (ret < 0)
5995 				goto out;
5996 		}
5997 	}
5998 
5999 	if (need_chown) {
6000 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6001 				left_uid, left_gid);
6002 		if (ret < 0)
6003 			goto out;
6004 	}
6005 	if (need_chmod) {
6006 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6007 				left_mode);
6008 		if (ret < 0)
6009 			goto out;
6010 	}
6011 
6012 	/*
6013 	 * If other directory inodes depended on our current directory
6014 	 * inode's move/rename, now do their move/rename operations.
6015 	 */
6016 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6017 		ret = apply_children_dir_moves(sctx);
6018 		if (ret)
6019 			goto out;
6020 		/*
6021 		 * Need to send that every time, no matter if it actually
6022 		 * changed between the two trees as we have done changes to
6023 		 * the inode before. If our inode is a directory and it's
6024 		 * waiting to be moved/renamed, we will send its utimes when
6025 		 * it's moved/renamed, therefore we don't need to do it here.
6026 		 */
6027 		sctx->send_progress = sctx->cur_ino + 1;
6028 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6029 		if (ret < 0)
6030 			goto out;
6031 	}
6032 
6033 out:
6034 	return ret;
6035 }
6036 
6037 struct parent_paths_ctx {
6038 	struct list_head *refs;
6039 	struct send_ctx *sctx;
6040 };
6041 
6042 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6043 			     void *ctx)
6044 {
6045 	struct parent_paths_ctx *ppctx = ctx;
6046 
6047 	return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6048 			  ppctx->refs);
6049 }
6050 
6051 /*
6052  * Issue unlink operations for all paths of the current inode found in the
6053  * parent snapshot.
6054  */
6055 static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6056 {
6057 	LIST_HEAD(deleted_refs);
6058 	struct btrfs_path *path;
6059 	struct btrfs_key key;
6060 	struct parent_paths_ctx ctx;
6061 	int ret;
6062 
6063 	path = alloc_path_for_send();
6064 	if (!path)
6065 		return -ENOMEM;
6066 
6067 	key.objectid = sctx->cur_ino;
6068 	key.type = BTRFS_INODE_REF_KEY;
6069 	key.offset = 0;
6070 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6071 	if (ret < 0)
6072 		goto out;
6073 
6074 	ctx.refs = &deleted_refs;
6075 	ctx.sctx = sctx;
6076 
6077 	while (true) {
6078 		struct extent_buffer *eb = path->nodes[0];
6079 		int slot = path->slots[0];
6080 
6081 		if (slot >= btrfs_header_nritems(eb)) {
6082 			ret = btrfs_next_leaf(sctx->parent_root, path);
6083 			if (ret < 0)
6084 				goto out;
6085 			else if (ret > 0)
6086 				break;
6087 			continue;
6088 		}
6089 
6090 		btrfs_item_key_to_cpu(eb, &key, slot);
6091 		if (key.objectid != sctx->cur_ino)
6092 			break;
6093 		if (key.type != BTRFS_INODE_REF_KEY &&
6094 		    key.type != BTRFS_INODE_EXTREF_KEY)
6095 			break;
6096 
6097 		ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6098 					record_parent_ref, &ctx);
6099 		if (ret < 0)
6100 			goto out;
6101 
6102 		path->slots[0]++;
6103 	}
6104 
6105 	while (!list_empty(&deleted_refs)) {
6106 		struct recorded_ref *ref;
6107 
6108 		ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6109 		ret = send_unlink(sctx, ref->full_path);
6110 		if (ret < 0)
6111 			goto out;
6112 		fs_path_free(ref->full_path);
6113 		list_del(&ref->list);
6114 		kfree(ref);
6115 	}
6116 	ret = 0;
6117 out:
6118 	btrfs_free_path(path);
6119 	if (ret)
6120 		__free_recorded_refs(&deleted_refs);
6121 	return ret;
6122 }
6123 
6124 static int changed_inode(struct send_ctx *sctx,
6125 			 enum btrfs_compare_tree_result result)
6126 {
6127 	int ret = 0;
6128 	struct btrfs_key *key = sctx->cmp_key;
6129 	struct btrfs_inode_item *left_ii = NULL;
6130 	struct btrfs_inode_item *right_ii = NULL;
6131 	u64 left_gen = 0;
6132 	u64 right_gen = 0;
6133 
6134 	sctx->cur_ino = key->objectid;
6135 	sctx->cur_inode_new_gen = 0;
6136 	sctx->cur_inode_last_extent = (u64)-1;
6137 	sctx->cur_inode_next_write_offset = 0;
6138 	sctx->ignore_cur_inode = false;
6139 
6140 	/*
6141 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6142 	 * functions that the current inode's refs are not updated yet. Later,
6143 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6144 	 */
6145 	sctx->send_progress = sctx->cur_ino;
6146 
6147 	if (result == BTRFS_COMPARE_TREE_NEW ||
6148 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6149 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6150 				sctx->left_path->slots[0],
6151 				struct btrfs_inode_item);
6152 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6153 				left_ii);
6154 	} else {
6155 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6156 				sctx->right_path->slots[0],
6157 				struct btrfs_inode_item);
6158 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6159 				right_ii);
6160 	}
6161 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6162 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6163 				sctx->right_path->slots[0],
6164 				struct btrfs_inode_item);
6165 
6166 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6167 				right_ii);
6168 
6169 		/*
6170 		 * The cur_ino = root dir case is special here. We can't treat
6171 		 * the inode as deleted+reused because it would generate a
6172 		 * stream that tries to delete/mkdir the root dir.
6173 		 */
6174 		if (left_gen != right_gen &&
6175 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6176 			sctx->cur_inode_new_gen = 1;
6177 	}
6178 
6179 	/*
6180 	 * Normally we do not find inodes with a link count of zero (orphans)
6181 	 * because the most common case is to create a snapshot and use it
6182 	 * for a send operation. However other less common use cases involve
6183 	 * using a subvolume and send it after turning it to RO mode just
6184 	 * after deleting all hard links of a file while holding an open
6185 	 * file descriptor against it or turning a RO snapshot into RW mode,
6186 	 * keep an open file descriptor against a file, delete it and then
6187 	 * turn the snapshot back to RO mode before using it for a send
6188 	 * operation. So if we find such cases, ignore the inode and all its
6189 	 * items completely if it's a new inode, or if it's a changed inode
6190 	 * make sure all its previous paths (from the parent snapshot) are all
6191 	 * unlinked and all other the inode items are ignored.
6192 	 */
6193 	if (result == BTRFS_COMPARE_TREE_NEW ||
6194 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6195 		u32 nlinks;
6196 
6197 		nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6198 		if (nlinks == 0) {
6199 			sctx->ignore_cur_inode = true;
6200 			if (result == BTRFS_COMPARE_TREE_CHANGED)
6201 				ret = btrfs_unlink_all_paths(sctx);
6202 			goto out;
6203 		}
6204 	}
6205 
6206 	if (result == BTRFS_COMPARE_TREE_NEW) {
6207 		sctx->cur_inode_gen = left_gen;
6208 		sctx->cur_inode_new = 1;
6209 		sctx->cur_inode_deleted = 0;
6210 		sctx->cur_inode_size = btrfs_inode_size(
6211 				sctx->left_path->nodes[0], left_ii);
6212 		sctx->cur_inode_mode = btrfs_inode_mode(
6213 				sctx->left_path->nodes[0], left_ii);
6214 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6215 				sctx->left_path->nodes[0], left_ii);
6216 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6217 			ret = send_create_inode_if_needed(sctx);
6218 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6219 		sctx->cur_inode_gen = right_gen;
6220 		sctx->cur_inode_new = 0;
6221 		sctx->cur_inode_deleted = 1;
6222 		sctx->cur_inode_size = btrfs_inode_size(
6223 				sctx->right_path->nodes[0], right_ii);
6224 		sctx->cur_inode_mode = btrfs_inode_mode(
6225 				sctx->right_path->nodes[0], right_ii);
6226 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6227 		/*
6228 		 * We need to do some special handling in case the inode was
6229 		 * reported as changed with a changed generation number. This
6230 		 * means that the original inode was deleted and new inode
6231 		 * reused the same inum. So we have to treat the old inode as
6232 		 * deleted and the new one as new.
6233 		 */
6234 		if (sctx->cur_inode_new_gen) {
6235 			/*
6236 			 * First, process the inode as if it was deleted.
6237 			 */
6238 			sctx->cur_inode_gen = right_gen;
6239 			sctx->cur_inode_new = 0;
6240 			sctx->cur_inode_deleted = 1;
6241 			sctx->cur_inode_size = btrfs_inode_size(
6242 					sctx->right_path->nodes[0], right_ii);
6243 			sctx->cur_inode_mode = btrfs_inode_mode(
6244 					sctx->right_path->nodes[0], right_ii);
6245 			ret = process_all_refs(sctx,
6246 					BTRFS_COMPARE_TREE_DELETED);
6247 			if (ret < 0)
6248 				goto out;
6249 
6250 			/*
6251 			 * Now process the inode as if it was new.
6252 			 */
6253 			sctx->cur_inode_gen = left_gen;
6254 			sctx->cur_inode_new = 1;
6255 			sctx->cur_inode_deleted = 0;
6256 			sctx->cur_inode_size = btrfs_inode_size(
6257 					sctx->left_path->nodes[0], left_ii);
6258 			sctx->cur_inode_mode = btrfs_inode_mode(
6259 					sctx->left_path->nodes[0], left_ii);
6260 			sctx->cur_inode_rdev = btrfs_inode_rdev(
6261 					sctx->left_path->nodes[0], left_ii);
6262 			ret = send_create_inode_if_needed(sctx);
6263 			if (ret < 0)
6264 				goto out;
6265 
6266 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6267 			if (ret < 0)
6268 				goto out;
6269 			/*
6270 			 * Advance send_progress now as we did not get into
6271 			 * process_recorded_refs_if_needed in the new_gen case.
6272 			 */
6273 			sctx->send_progress = sctx->cur_ino + 1;
6274 
6275 			/*
6276 			 * Now process all extents and xattrs of the inode as if
6277 			 * they were all new.
6278 			 */
6279 			ret = process_all_extents(sctx);
6280 			if (ret < 0)
6281 				goto out;
6282 			ret = process_all_new_xattrs(sctx);
6283 			if (ret < 0)
6284 				goto out;
6285 		} else {
6286 			sctx->cur_inode_gen = left_gen;
6287 			sctx->cur_inode_new = 0;
6288 			sctx->cur_inode_new_gen = 0;
6289 			sctx->cur_inode_deleted = 0;
6290 			sctx->cur_inode_size = btrfs_inode_size(
6291 					sctx->left_path->nodes[0], left_ii);
6292 			sctx->cur_inode_mode = btrfs_inode_mode(
6293 					sctx->left_path->nodes[0], left_ii);
6294 		}
6295 	}
6296 
6297 out:
6298 	return ret;
6299 }
6300 
6301 /*
6302  * We have to process new refs before deleted refs, but compare_trees gives us
6303  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6304  * first and later process them in process_recorded_refs.
6305  * For the cur_inode_new_gen case, we skip recording completely because
6306  * changed_inode did already initiate processing of refs. The reason for this is
6307  * that in this case, compare_tree actually compares the refs of 2 different
6308  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6309  * refs of the right tree as deleted and all refs of the left tree as new.
6310  */
6311 static int changed_ref(struct send_ctx *sctx,
6312 		       enum btrfs_compare_tree_result result)
6313 {
6314 	int ret = 0;
6315 
6316 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6317 		inconsistent_snapshot_error(sctx, result, "reference");
6318 		return -EIO;
6319 	}
6320 
6321 	if (!sctx->cur_inode_new_gen &&
6322 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6323 		if (result == BTRFS_COMPARE_TREE_NEW)
6324 			ret = record_new_ref(sctx);
6325 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6326 			ret = record_deleted_ref(sctx);
6327 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6328 			ret = record_changed_ref(sctx);
6329 	}
6330 
6331 	return ret;
6332 }
6333 
6334 /*
6335  * Process new/deleted/changed xattrs. We skip processing in the
6336  * cur_inode_new_gen case because changed_inode did already initiate processing
6337  * of xattrs. The reason is the same as in changed_ref
6338  */
6339 static int changed_xattr(struct send_ctx *sctx,
6340 			 enum btrfs_compare_tree_result result)
6341 {
6342 	int ret = 0;
6343 
6344 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6345 		inconsistent_snapshot_error(sctx, result, "xattr");
6346 		return -EIO;
6347 	}
6348 
6349 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6350 		if (result == BTRFS_COMPARE_TREE_NEW)
6351 			ret = process_new_xattr(sctx);
6352 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6353 			ret = process_deleted_xattr(sctx);
6354 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6355 			ret = process_changed_xattr(sctx);
6356 	}
6357 
6358 	return ret;
6359 }
6360 
6361 /*
6362  * Process new/deleted/changed extents. We skip processing in the
6363  * cur_inode_new_gen case because changed_inode did already initiate processing
6364  * of extents. The reason is the same as in changed_ref
6365  */
6366 static int changed_extent(struct send_ctx *sctx,
6367 			  enum btrfs_compare_tree_result result)
6368 {
6369 	int ret = 0;
6370 
6371 	/*
6372 	 * We have found an extent item that changed without the inode item
6373 	 * having changed. This can happen either after relocation (where the
6374 	 * disk_bytenr of an extent item is replaced at
6375 	 * relocation.c:replace_file_extents()) or after deduplication into a
6376 	 * file in both the parent and send snapshots (where an extent item can
6377 	 * get modified or replaced with a new one). Note that deduplication
6378 	 * updates the inode item, but it only changes the iversion (sequence
6379 	 * field in the inode item) of the inode, so if a file is deduplicated
6380 	 * the same amount of times in both the parent and send snapshots, its
6381 	 * iversion becames the same in both snapshots, whence the inode item is
6382 	 * the same on both snapshots.
6383 	 */
6384 	if (sctx->cur_ino != sctx->cmp_key->objectid)
6385 		return 0;
6386 
6387 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6388 		if (result != BTRFS_COMPARE_TREE_DELETED)
6389 			ret = process_extent(sctx, sctx->left_path,
6390 					sctx->cmp_key);
6391 	}
6392 
6393 	return ret;
6394 }
6395 
6396 static int dir_changed(struct send_ctx *sctx, u64 dir)
6397 {
6398 	u64 orig_gen, new_gen;
6399 	int ret;
6400 
6401 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6402 			     NULL, NULL);
6403 	if (ret)
6404 		return ret;
6405 
6406 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6407 			     NULL, NULL, NULL);
6408 	if (ret)
6409 		return ret;
6410 
6411 	return (orig_gen != new_gen) ? 1 : 0;
6412 }
6413 
6414 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6415 			struct btrfs_key *key)
6416 {
6417 	struct btrfs_inode_extref *extref;
6418 	struct extent_buffer *leaf;
6419 	u64 dirid = 0, last_dirid = 0;
6420 	unsigned long ptr;
6421 	u32 item_size;
6422 	u32 cur_offset = 0;
6423 	int ref_name_len;
6424 	int ret = 0;
6425 
6426 	/* Easy case, just check this one dirid */
6427 	if (key->type == BTRFS_INODE_REF_KEY) {
6428 		dirid = key->offset;
6429 
6430 		ret = dir_changed(sctx, dirid);
6431 		goto out;
6432 	}
6433 
6434 	leaf = path->nodes[0];
6435 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6436 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6437 	while (cur_offset < item_size) {
6438 		extref = (struct btrfs_inode_extref *)(ptr +
6439 						       cur_offset);
6440 		dirid = btrfs_inode_extref_parent(leaf, extref);
6441 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6442 		cur_offset += ref_name_len + sizeof(*extref);
6443 		if (dirid == last_dirid)
6444 			continue;
6445 		ret = dir_changed(sctx, dirid);
6446 		if (ret)
6447 			break;
6448 		last_dirid = dirid;
6449 	}
6450 out:
6451 	return ret;
6452 }
6453 
6454 /*
6455  * Updates compare related fields in sctx and simply forwards to the actual
6456  * changed_xxx functions.
6457  */
6458 static int changed_cb(struct btrfs_path *left_path,
6459 		      struct btrfs_path *right_path,
6460 		      struct btrfs_key *key,
6461 		      enum btrfs_compare_tree_result result,
6462 		      void *ctx)
6463 {
6464 	int ret = 0;
6465 	struct send_ctx *sctx = ctx;
6466 
6467 	if (result == BTRFS_COMPARE_TREE_SAME) {
6468 		if (key->type == BTRFS_INODE_REF_KEY ||
6469 		    key->type == BTRFS_INODE_EXTREF_KEY) {
6470 			ret = compare_refs(sctx, left_path, key);
6471 			if (!ret)
6472 				return 0;
6473 			if (ret < 0)
6474 				return ret;
6475 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6476 			return maybe_send_hole(sctx, left_path, key);
6477 		} else {
6478 			return 0;
6479 		}
6480 		result = BTRFS_COMPARE_TREE_CHANGED;
6481 		ret = 0;
6482 	}
6483 
6484 	sctx->left_path = left_path;
6485 	sctx->right_path = right_path;
6486 	sctx->cmp_key = key;
6487 
6488 	ret = finish_inode_if_needed(sctx, 0);
6489 	if (ret < 0)
6490 		goto out;
6491 
6492 	/* Ignore non-FS objects */
6493 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6494 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6495 		goto out;
6496 
6497 	if (key->type == BTRFS_INODE_ITEM_KEY) {
6498 		ret = changed_inode(sctx, result);
6499 	} else if (!sctx->ignore_cur_inode) {
6500 		if (key->type == BTRFS_INODE_REF_KEY ||
6501 		    key->type == BTRFS_INODE_EXTREF_KEY)
6502 			ret = changed_ref(sctx, result);
6503 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
6504 			ret = changed_xattr(sctx, result);
6505 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
6506 			ret = changed_extent(sctx, result);
6507 	}
6508 
6509 out:
6510 	return ret;
6511 }
6512 
6513 static int full_send_tree(struct send_ctx *sctx)
6514 {
6515 	int ret;
6516 	struct btrfs_root *send_root = sctx->send_root;
6517 	struct btrfs_key key;
6518 	struct btrfs_path *path;
6519 	struct extent_buffer *eb;
6520 	int slot;
6521 
6522 	path = alloc_path_for_send();
6523 	if (!path)
6524 		return -ENOMEM;
6525 
6526 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6527 	key.type = BTRFS_INODE_ITEM_KEY;
6528 	key.offset = 0;
6529 
6530 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6531 	if (ret < 0)
6532 		goto out;
6533 	if (ret)
6534 		goto out_finish;
6535 
6536 	while (1) {
6537 		eb = path->nodes[0];
6538 		slot = path->slots[0];
6539 		btrfs_item_key_to_cpu(eb, &key, slot);
6540 
6541 		ret = changed_cb(path, NULL, &key,
6542 				 BTRFS_COMPARE_TREE_NEW, sctx);
6543 		if (ret < 0)
6544 			goto out;
6545 
6546 		ret = btrfs_next_item(send_root, path);
6547 		if (ret < 0)
6548 			goto out;
6549 		if (ret) {
6550 			ret  = 0;
6551 			break;
6552 		}
6553 	}
6554 
6555 out_finish:
6556 	ret = finish_inode_if_needed(sctx, 1);
6557 
6558 out:
6559 	btrfs_free_path(path);
6560 	return ret;
6561 }
6562 
6563 static int tree_move_down(struct btrfs_path *path, int *level)
6564 {
6565 	struct extent_buffer *eb;
6566 
6567 	BUG_ON(*level == 0);
6568 	eb = btrfs_read_node_slot(path->nodes[*level], path->slots[*level]);
6569 	if (IS_ERR(eb))
6570 		return PTR_ERR(eb);
6571 
6572 	path->nodes[*level - 1] = eb;
6573 	path->slots[*level - 1] = 0;
6574 	(*level)--;
6575 	return 0;
6576 }
6577 
6578 static int tree_move_next_or_upnext(struct btrfs_path *path,
6579 				    int *level, int root_level)
6580 {
6581 	int ret = 0;
6582 	int nritems;
6583 	nritems = btrfs_header_nritems(path->nodes[*level]);
6584 
6585 	path->slots[*level]++;
6586 
6587 	while (path->slots[*level] >= nritems) {
6588 		if (*level == root_level)
6589 			return -1;
6590 
6591 		/* move upnext */
6592 		path->slots[*level] = 0;
6593 		free_extent_buffer(path->nodes[*level]);
6594 		path->nodes[*level] = NULL;
6595 		(*level)++;
6596 		path->slots[*level]++;
6597 
6598 		nritems = btrfs_header_nritems(path->nodes[*level]);
6599 		ret = 1;
6600 	}
6601 	return ret;
6602 }
6603 
6604 /*
6605  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6606  * or down.
6607  */
6608 static int tree_advance(struct btrfs_path *path,
6609 			int *level, int root_level,
6610 			int allow_down,
6611 			struct btrfs_key *key)
6612 {
6613 	int ret;
6614 
6615 	if (*level == 0 || !allow_down) {
6616 		ret = tree_move_next_or_upnext(path, level, root_level);
6617 	} else {
6618 		ret = tree_move_down(path, level);
6619 	}
6620 	if (ret >= 0) {
6621 		if (*level == 0)
6622 			btrfs_item_key_to_cpu(path->nodes[*level], key,
6623 					path->slots[*level]);
6624 		else
6625 			btrfs_node_key_to_cpu(path->nodes[*level], key,
6626 					path->slots[*level]);
6627 	}
6628 	return ret;
6629 }
6630 
6631 static int tree_compare_item(struct btrfs_path *left_path,
6632 			     struct btrfs_path *right_path,
6633 			     char *tmp_buf)
6634 {
6635 	int cmp;
6636 	int len1, len2;
6637 	unsigned long off1, off2;
6638 
6639 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
6640 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
6641 	if (len1 != len2)
6642 		return 1;
6643 
6644 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6645 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6646 				right_path->slots[0]);
6647 
6648 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6649 
6650 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6651 	if (cmp)
6652 		return 1;
6653 	return 0;
6654 }
6655 
6656 /*
6657  * This function compares two trees and calls the provided callback for
6658  * every changed/new/deleted item it finds.
6659  * If shared tree blocks are encountered, whole subtrees are skipped, making
6660  * the compare pretty fast on snapshotted subvolumes.
6661  *
6662  * This currently works on commit roots only. As commit roots are read only,
6663  * we don't do any locking. The commit roots are protected with transactions.
6664  * Transactions are ended and rejoined when a commit is tried in between.
6665  *
6666  * This function checks for modifications done to the trees while comparing.
6667  * If it detects a change, it aborts immediately.
6668  */
6669 static int btrfs_compare_trees(struct btrfs_root *left_root,
6670 			struct btrfs_root *right_root,
6671 			btrfs_changed_cb_t changed_cb, void *ctx)
6672 {
6673 	struct btrfs_fs_info *fs_info = left_root->fs_info;
6674 	int ret;
6675 	int cmp;
6676 	struct btrfs_path *left_path = NULL;
6677 	struct btrfs_path *right_path = NULL;
6678 	struct btrfs_key left_key;
6679 	struct btrfs_key right_key;
6680 	char *tmp_buf = NULL;
6681 	int left_root_level;
6682 	int right_root_level;
6683 	int left_level;
6684 	int right_level;
6685 	int left_end_reached;
6686 	int right_end_reached;
6687 	int advance_left;
6688 	int advance_right;
6689 	u64 left_blockptr;
6690 	u64 right_blockptr;
6691 	u64 left_gen;
6692 	u64 right_gen;
6693 
6694 	left_path = btrfs_alloc_path();
6695 	if (!left_path) {
6696 		ret = -ENOMEM;
6697 		goto out;
6698 	}
6699 	right_path = btrfs_alloc_path();
6700 	if (!right_path) {
6701 		ret = -ENOMEM;
6702 		goto out;
6703 	}
6704 
6705 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
6706 	if (!tmp_buf) {
6707 		ret = -ENOMEM;
6708 		goto out;
6709 	}
6710 
6711 	left_path->search_commit_root = 1;
6712 	left_path->skip_locking = 1;
6713 	right_path->search_commit_root = 1;
6714 	right_path->skip_locking = 1;
6715 
6716 	/*
6717 	 * Strategy: Go to the first items of both trees. Then do
6718 	 *
6719 	 * If both trees are at level 0
6720 	 *   Compare keys of current items
6721 	 *     If left < right treat left item as new, advance left tree
6722 	 *       and repeat
6723 	 *     If left > right treat right item as deleted, advance right tree
6724 	 *       and repeat
6725 	 *     If left == right do deep compare of items, treat as changed if
6726 	 *       needed, advance both trees and repeat
6727 	 * If both trees are at the same level but not at level 0
6728 	 *   Compare keys of current nodes/leafs
6729 	 *     If left < right advance left tree and repeat
6730 	 *     If left > right advance right tree and repeat
6731 	 *     If left == right compare blockptrs of the next nodes/leafs
6732 	 *       If they match advance both trees but stay at the same level
6733 	 *         and repeat
6734 	 *       If they don't match advance both trees while allowing to go
6735 	 *         deeper and repeat
6736 	 * If tree levels are different
6737 	 *   Advance the tree that needs it and repeat
6738 	 *
6739 	 * Advancing a tree means:
6740 	 *   If we are at level 0, try to go to the next slot. If that's not
6741 	 *   possible, go one level up and repeat. Stop when we found a level
6742 	 *   where we could go to the next slot. We may at this point be on a
6743 	 *   node or a leaf.
6744 	 *
6745 	 *   If we are not at level 0 and not on shared tree blocks, go one
6746 	 *   level deeper.
6747 	 *
6748 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
6749 	 *   the right if possible or go up and right.
6750 	 */
6751 
6752 	down_read(&fs_info->commit_root_sem);
6753 	left_level = btrfs_header_level(left_root->commit_root);
6754 	left_root_level = left_level;
6755 	left_path->nodes[left_level] =
6756 			btrfs_clone_extent_buffer(left_root->commit_root);
6757 	if (!left_path->nodes[left_level]) {
6758 		up_read(&fs_info->commit_root_sem);
6759 		ret = -ENOMEM;
6760 		goto out;
6761 	}
6762 
6763 	right_level = btrfs_header_level(right_root->commit_root);
6764 	right_root_level = right_level;
6765 	right_path->nodes[right_level] =
6766 			btrfs_clone_extent_buffer(right_root->commit_root);
6767 	if (!right_path->nodes[right_level]) {
6768 		up_read(&fs_info->commit_root_sem);
6769 		ret = -ENOMEM;
6770 		goto out;
6771 	}
6772 	up_read(&fs_info->commit_root_sem);
6773 
6774 	if (left_level == 0)
6775 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
6776 				&left_key, left_path->slots[left_level]);
6777 	else
6778 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
6779 				&left_key, left_path->slots[left_level]);
6780 	if (right_level == 0)
6781 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
6782 				&right_key, right_path->slots[right_level]);
6783 	else
6784 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
6785 				&right_key, right_path->slots[right_level]);
6786 
6787 	left_end_reached = right_end_reached = 0;
6788 	advance_left = advance_right = 0;
6789 
6790 	while (1) {
6791 		cond_resched();
6792 		if (advance_left && !left_end_reached) {
6793 			ret = tree_advance(left_path, &left_level,
6794 					left_root_level,
6795 					advance_left != ADVANCE_ONLY_NEXT,
6796 					&left_key);
6797 			if (ret == -1)
6798 				left_end_reached = ADVANCE;
6799 			else if (ret < 0)
6800 				goto out;
6801 			advance_left = 0;
6802 		}
6803 		if (advance_right && !right_end_reached) {
6804 			ret = tree_advance(right_path, &right_level,
6805 					right_root_level,
6806 					advance_right != ADVANCE_ONLY_NEXT,
6807 					&right_key);
6808 			if (ret == -1)
6809 				right_end_reached = ADVANCE;
6810 			else if (ret < 0)
6811 				goto out;
6812 			advance_right = 0;
6813 		}
6814 
6815 		if (left_end_reached && right_end_reached) {
6816 			ret = 0;
6817 			goto out;
6818 		} else if (left_end_reached) {
6819 			if (right_level == 0) {
6820 				ret = changed_cb(left_path, right_path,
6821 						&right_key,
6822 						BTRFS_COMPARE_TREE_DELETED,
6823 						ctx);
6824 				if (ret < 0)
6825 					goto out;
6826 			}
6827 			advance_right = ADVANCE;
6828 			continue;
6829 		} else if (right_end_reached) {
6830 			if (left_level == 0) {
6831 				ret = changed_cb(left_path, right_path,
6832 						&left_key,
6833 						BTRFS_COMPARE_TREE_NEW,
6834 						ctx);
6835 				if (ret < 0)
6836 					goto out;
6837 			}
6838 			advance_left = ADVANCE;
6839 			continue;
6840 		}
6841 
6842 		if (left_level == 0 && right_level == 0) {
6843 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6844 			if (cmp < 0) {
6845 				ret = changed_cb(left_path, right_path,
6846 						&left_key,
6847 						BTRFS_COMPARE_TREE_NEW,
6848 						ctx);
6849 				if (ret < 0)
6850 					goto out;
6851 				advance_left = ADVANCE;
6852 			} else if (cmp > 0) {
6853 				ret = changed_cb(left_path, right_path,
6854 						&right_key,
6855 						BTRFS_COMPARE_TREE_DELETED,
6856 						ctx);
6857 				if (ret < 0)
6858 					goto out;
6859 				advance_right = ADVANCE;
6860 			} else {
6861 				enum btrfs_compare_tree_result result;
6862 
6863 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
6864 				ret = tree_compare_item(left_path, right_path,
6865 							tmp_buf);
6866 				if (ret)
6867 					result = BTRFS_COMPARE_TREE_CHANGED;
6868 				else
6869 					result = BTRFS_COMPARE_TREE_SAME;
6870 				ret = changed_cb(left_path, right_path,
6871 						 &left_key, result, ctx);
6872 				if (ret < 0)
6873 					goto out;
6874 				advance_left = ADVANCE;
6875 				advance_right = ADVANCE;
6876 			}
6877 		} else if (left_level == right_level) {
6878 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6879 			if (cmp < 0) {
6880 				advance_left = ADVANCE;
6881 			} else if (cmp > 0) {
6882 				advance_right = ADVANCE;
6883 			} else {
6884 				left_blockptr = btrfs_node_blockptr(
6885 						left_path->nodes[left_level],
6886 						left_path->slots[left_level]);
6887 				right_blockptr = btrfs_node_blockptr(
6888 						right_path->nodes[right_level],
6889 						right_path->slots[right_level]);
6890 				left_gen = btrfs_node_ptr_generation(
6891 						left_path->nodes[left_level],
6892 						left_path->slots[left_level]);
6893 				right_gen = btrfs_node_ptr_generation(
6894 						right_path->nodes[right_level],
6895 						right_path->slots[right_level]);
6896 				if (left_blockptr == right_blockptr &&
6897 				    left_gen == right_gen) {
6898 					/*
6899 					 * As we're on a shared block, don't
6900 					 * allow to go deeper.
6901 					 */
6902 					advance_left = ADVANCE_ONLY_NEXT;
6903 					advance_right = ADVANCE_ONLY_NEXT;
6904 				} else {
6905 					advance_left = ADVANCE;
6906 					advance_right = ADVANCE;
6907 				}
6908 			}
6909 		} else if (left_level < right_level) {
6910 			advance_right = ADVANCE;
6911 		} else {
6912 			advance_left = ADVANCE;
6913 		}
6914 	}
6915 
6916 out:
6917 	btrfs_free_path(left_path);
6918 	btrfs_free_path(right_path);
6919 	kvfree(tmp_buf);
6920 	return ret;
6921 }
6922 
6923 static int send_subvol(struct send_ctx *sctx)
6924 {
6925 	int ret;
6926 
6927 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6928 		ret = send_header(sctx);
6929 		if (ret < 0)
6930 			goto out;
6931 	}
6932 
6933 	ret = send_subvol_begin(sctx);
6934 	if (ret < 0)
6935 		goto out;
6936 
6937 	if (sctx->parent_root) {
6938 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6939 				changed_cb, sctx);
6940 		if (ret < 0)
6941 			goto out;
6942 		ret = finish_inode_if_needed(sctx, 1);
6943 		if (ret < 0)
6944 			goto out;
6945 	} else {
6946 		ret = full_send_tree(sctx);
6947 		if (ret < 0)
6948 			goto out;
6949 	}
6950 
6951 out:
6952 	free_recorded_refs(sctx);
6953 	return ret;
6954 }
6955 
6956 /*
6957  * If orphan cleanup did remove any orphans from a root, it means the tree
6958  * was modified and therefore the commit root is not the same as the current
6959  * root anymore. This is a problem, because send uses the commit root and
6960  * therefore can see inode items that don't exist in the current root anymore,
6961  * and for example make calls to btrfs_iget, which will do tree lookups based
6962  * on the current root and not on the commit root. Those lookups will fail,
6963  * returning a -ESTALE error, and making send fail with that error. So make
6964  * sure a send does not see any orphans we have just removed, and that it will
6965  * see the same inodes regardless of whether a transaction commit happened
6966  * before it started (meaning that the commit root will be the same as the
6967  * current root) or not.
6968  */
6969 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6970 {
6971 	int i;
6972 	struct btrfs_trans_handle *trans = NULL;
6973 
6974 again:
6975 	if (sctx->parent_root &&
6976 	    sctx->parent_root->node != sctx->parent_root->commit_root)
6977 		goto commit_trans;
6978 
6979 	for (i = 0; i < sctx->clone_roots_cnt; i++)
6980 		if (sctx->clone_roots[i].root->node !=
6981 		    sctx->clone_roots[i].root->commit_root)
6982 			goto commit_trans;
6983 
6984 	if (trans)
6985 		return btrfs_end_transaction(trans);
6986 
6987 	return 0;
6988 
6989 commit_trans:
6990 	/* Use any root, all fs roots will get their commit roots updated. */
6991 	if (!trans) {
6992 		trans = btrfs_join_transaction(sctx->send_root);
6993 		if (IS_ERR(trans))
6994 			return PTR_ERR(trans);
6995 		goto again;
6996 	}
6997 
6998 	return btrfs_commit_transaction(trans);
6999 }
7000 
7001 /*
7002  * Make sure any existing dellaloc is flushed for any root used by a send
7003  * operation so that we do not miss any data and we do not race with writeback
7004  * finishing and changing a tree while send is using the tree. This could
7005  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7006  * a send operation then uses the subvolume.
7007  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7008  */
7009 static int flush_delalloc_roots(struct send_ctx *sctx)
7010 {
7011 	struct btrfs_root *root = sctx->parent_root;
7012 	int ret;
7013 	int i;
7014 
7015 	if (root) {
7016 		ret = btrfs_start_delalloc_snapshot(root);
7017 		if (ret)
7018 			return ret;
7019 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7020 	}
7021 
7022 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
7023 		root = sctx->clone_roots[i].root;
7024 		ret = btrfs_start_delalloc_snapshot(root);
7025 		if (ret)
7026 			return ret;
7027 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7028 	}
7029 
7030 	return 0;
7031 }
7032 
7033 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7034 {
7035 	spin_lock(&root->root_item_lock);
7036 	root->send_in_progress--;
7037 	/*
7038 	 * Not much left to do, we don't know why it's unbalanced and
7039 	 * can't blindly reset it to 0.
7040 	 */
7041 	if (root->send_in_progress < 0)
7042 		btrfs_err(root->fs_info,
7043 			  "send_in_progress unbalanced %d root %llu",
7044 			  root->send_in_progress, root->root_key.objectid);
7045 	spin_unlock(&root->root_item_lock);
7046 }
7047 
7048 static void dedupe_in_progress_warn(const struct btrfs_root *root)
7049 {
7050 	btrfs_warn_rl(root->fs_info,
7051 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7052 		      root->root_key.objectid, root->dedupe_in_progress);
7053 }
7054 
7055 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
7056 {
7057 	int ret = 0;
7058 	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
7059 	struct btrfs_fs_info *fs_info = send_root->fs_info;
7060 	struct btrfs_root *clone_root;
7061 	struct btrfs_key key;
7062 	struct send_ctx *sctx = NULL;
7063 	u32 i;
7064 	u64 *clone_sources_tmp = NULL;
7065 	int clone_sources_to_rollback = 0;
7066 	unsigned alloc_size;
7067 	int sort_clone_roots = 0;
7068 	int index;
7069 
7070 	if (!capable(CAP_SYS_ADMIN))
7071 		return -EPERM;
7072 
7073 	/*
7074 	 * The subvolume must remain read-only during send, protect against
7075 	 * making it RW. This also protects against deletion.
7076 	 */
7077 	spin_lock(&send_root->root_item_lock);
7078 	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7079 		dedupe_in_progress_warn(send_root);
7080 		spin_unlock(&send_root->root_item_lock);
7081 		return -EAGAIN;
7082 	}
7083 	send_root->send_in_progress++;
7084 	spin_unlock(&send_root->root_item_lock);
7085 
7086 	/*
7087 	 * This is done when we lookup the root, it should already be complete
7088 	 * by the time we get here.
7089 	 */
7090 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
7091 
7092 	/*
7093 	 * Userspace tools do the checks and warn the user if it's
7094 	 * not RO.
7095 	 */
7096 	if (!btrfs_root_readonly(send_root)) {
7097 		ret = -EPERM;
7098 		goto out;
7099 	}
7100 
7101 	/*
7102 	 * Check that we don't overflow at later allocations, we request
7103 	 * clone_sources_count + 1 items, and compare to unsigned long inside
7104 	 * access_ok.
7105 	 */
7106 	if (arg->clone_sources_count >
7107 	    ULONG_MAX / sizeof(struct clone_root) - 1) {
7108 		ret = -EINVAL;
7109 		goto out;
7110 	}
7111 
7112 	if (!access_ok(arg->clone_sources,
7113 			sizeof(*arg->clone_sources) *
7114 			arg->clone_sources_count)) {
7115 		ret = -EFAULT;
7116 		goto out;
7117 	}
7118 
7119 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7120 		ret = -EINVAL;
7121 		goto out;
7122 	}
7123 
7124 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7125 	if (!sctx) {
7126 		ret = -ENOMEM;
7127 		goto out;
7128 	}
7129 
7130 	INIT_LIST_HEAD(&sctx->new_refs);
7131 	INIT_LIST_HEAD(&sctx->deleted_refs);
7132 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7133 	INIT_LIST_HEAD(&sctx->name_cache_list);
7134 
7135 	sctx->flags = arg->flags;
7136 
7137 	sctx->send_filp = fget(arg->send_fd);
7138 	if (!sctx->send_filp) {
7139 		ret = -EBADF;
7140 		goto out;
7141 	}
7142 
7143 	sctx->send_root = send_root;
7144 	/*
7145 	 * Unlikely but possible, if the subvolume is marked for deletion but
7146 	 * is slow to remove the directory entry, send can still be started
7147 	 */
7148 	if (btrfs_root_dead(sctx->send_root)) {
7149 		ret = -EPERM;
7150 		goto out;
7151 	}
7152 
7153 	sctx->clone_roots_cnt = arg->clone_sources_count;
7154 
7155 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
7156 	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7157 	if (!sctx->send_buf) {
7158 		ret = -ENOMEM;
7159 		goto out;
7160 	}
7161 
7162 	sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
7163 	if (!sctx->read_buf) {
7164 		ret = -ENOMEM;
7165 		goto out;
7166 	}
7167 
7168 	sctx->pending_dir_moves = RB_ROOT;
7169 	sctx->waiting_dir_moves = RB_ROOT;
7170 	sctx->orphan_dirs = RB_ROOT;
7171 
7172 	alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
7173 
7174 	sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
7175 	if (!sctx->clone_roots) {
7176 		ret = -ENOMEM;
7177 		goto out;
7178 	}
7179 
7180 	alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
7181 
7182 	if (arg->clone_sources_count) {
7183 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7184 		if (!clone_sources_tmp) {
7185 			ret = -ENOMEM;
7186 			goto out;
7187 		}
7188 
7189 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7190 				alloc_size);
7191 		if (ret) {
7192 			ret = -EFAULT;
7193 			goto out;
7194 		}
7195 
7196 		for (i = 0; i < arg->clone_sources_count; i++) {
7197 			key.objectid = clone_sources_tmp[i];
7198 			key.type = BTRFS_ROOT_ITEM_KEY;
7199 			key.offset = (u64)-1;
7200 
7201 			index = srcu_read_lock(&fs_info->subvol_srcu);
7202 
7203 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
7204 			if (IS_ERR(clone_root)) {
7205 				srcu_read_unlock(&fs_info->subvol_srcu, index);
7206 				ret = PTR_ERR(clone_root);
7207 				goto out;
7208 			}
7209 			spin_lock(&clone_root->root_item_lock);
7210 			if (!btrfs_root_readonly(clone_root) ||
7211 			    btrfs_root_dead(clone_root)) {
7212 				spin_unlock(&clone_root->root_item_lock);
7213 				srcu_read_unlock(&fs_info->subvol_srcu, index);
7214 				ret = -EPERM;
7215 				goto out;
7216 			}
7217 			if (clone_root->dedupe_in_progress) {
7218 				dedupe_in_progress_warn(clone_root);
7219 				spin_unlock(&clone_root->root_item_lock);
7220 				srcu_read_unlock(&fs_info->subvol_srcu, index);
7221 				ret = -EAGAIN;
7222 				goto out;
7223 			}
7224 			clone_root->send_in_progress++;
7225 			spin_unlock(&clone_root->root_item_lock);
7226 			srcu_read_unlock(&fs_info->subvol_srcu, index);
7227 
7228 			sctx->clone_roots[i].root = clone_root;
7229 			clone_sources_to_rollback = i + 1;
7230 		}
7231 		kvfree(clone_sources_tmp);
7232 		clone_sources_tmp = NULL;
7233 	}
7234 
7235 	if (arg->parent_root) {
7236 		key.objectid = arg->parent_root;
7237 		key.type = BTRFS_ROOT_ITEM_KEY;
7238 		key.offset = (u64)-1;
7239 
7240 		index = srcu_read_lock(&fs_info->subvol_srcu);
7241 
7242 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
7243 		if (IS_ERR(sctx->parent_root)) {
7244 			srcu_read_unlock(&fs_info->subvol_srcu, index);
7245 			ret = PTR_ERR(sctx->parent_root);
7246 			goto out;
7247 		}
7248 
7249 		spin_lock(&sctx->parent_root->root_item_lock);
7250 		sctx->parent_root->send_in_progress++;
7251 		if (!btrfs_root_readonly(sctx->parent_root) ||
7252 				btrfs_root_dead(sctx->parent_root)) {
7253 			spin_unlock(&sctx->parent_root->root_item_lock);
7254 			srcu_read_unlock(&fs_info->subvol_srcu, index);
7255 			ret = -EPERM;
7256 			goto out;
7257 		}
7258 		if (sctx->parent_root->dedupe_in_progress) {
7259 			dedupe_in_progress_warn(sctx->parent_root);
7260 			spin_unlock(&sctx->parent_root->root_item_lock);
7261 			srcu_read_unlock(&fs_info->subvol_srcu, index);
7262 			ret = -EAGAIN;
7263 			goto out;
7264 		}
7265 		spin_unlock(&sctx->parent_root->root_item_lock);
7266 
7267 		srcu_read_unlock(&fs_info->subvol_srcu, index);
7268 	}
7269 
7270 	/*
7271 	 * Clones from send_root are allowed, but only if the clone source
7272 	 * is behind the current send position. This is checked while searching
7273 	 * for possible clone sources.
7274 	 */
7275 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
7276 
7277 	/* We do a bsearch later */
7278 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
7279 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7280 			NULL);
7281 	sort_clone_roots = 1;
7282 
7283 	ret = flush_delalloc_roots(sctx);
7284 	if (ret)
7285 		goto out;
7286 
7287 	ret = ensure_commit_roots_uptodate(sctx);
7288 	if (ret)
7289 		goto out;
7290 
7291 	mutex_lock(&fs_info->balance_mutex);
7292 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
7293 		mutex_unlock(&fs_info->balance_mutex);
7294 		btrfs_warn_rl(fs_info,
7295 		"cannot run send because a balance operation is in progress");
7296 		ret = -EAGAIN;
7297 		goto out;
7298 	}
7299 	fs_info->send_in_progress++;
7300 	mutex_unlock(&fs_info->balance_mutex);
7301 
7302 	current->journal_info = BTRFS_SEND_TRANS_STUB;
7303 	ret = send_subvol(sctx);
7304 	current->journal_info = NULL;
7305 	mutex_lock(&fs_info->balance_mutex);
7306 	fs_info->send_in_progress--;
7307 	mutex_unlock(&fs_info->balance_mutex);
7308 	if (ret < 0)
7309 		goto out;
7310 
7311 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7312 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7313 		if (ret < 0)
7314 			goto out;
7315 		ret = send_cmd(sctx);
7316 		if (ret < 0)
7317 			goto out;
7318 	}
7319 
7320 out:
7321 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7322 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7323 		struct rb_node *n;
7324 		struct pending_dir_move *pm;
7325 
7326 		n = rb_first(&sctx->pending_dir_moves);
7327 		pm = rb_entry(n, struct pending_dir_move, node);
7328 		while (!list_empty(&pm->list)) {
7329 			struct pending_dir_move *pm2;
7330 
7331 			pm2 = list_first_entry(&pm->list,
7332 					       struct pending_dir_move, list);
7333 			free_pending_move(sctx, pm2);
7334 		}
7335 		free_pending_move(sctx, pm);
7336 	}
7337 
7338 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7339 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7340 		struct rb_node *n;
7341 		struct waiting_dir_move *dm;
7342 
7343 		n = rb_first(&sctx->waiting_dir_moves);
7344 		dm = rb_entry(n, struct waiting_dir_move, node);
7345 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
7346 		kfree(dm);
7347 	}
7348 
7349 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7350 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7351 		struct rb_node *n;
7352 		struct orphan_dir_info *odi;
7353 
7354 		n = rb_first(&sctx->orphan_dirs);
7355 		odi = rb_entry(n, struct orphan_dir_info, node);
7356 		free_orphan_dir_info(sctx, odi);
7357 	}
7358 
7359 	if (sort_clone_roots) {
7360 		for (i = 0; i < sctx->clone_roots_cnt; i++)
7361 			btrfs_root_dec_send_in_progress(
7362 					sctx->clone_roots[i].root);
7363 	} else {
7364 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
7365 			btrfs_root_dec_send_in_progress(
7366 					sctx->clone_roots[i].root);
7367 
7368 		btrfs_root_dec_send_in_progress(send_root);
7369 	}
7370 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
7371 		btrfs_root_dec_send_in_progress(sctx->parent_root);
7372 
7373 	kvfree(clone_sources_tmp);
7374 
7375 	if (sctx) {
7376 		if (sctx->send_filp)
7377 			fput(sctx->send_filp);
7378 
7379 		kvfree(sctx->clone_roots);
7380 		kvfree(sctx->send_buf);
7381 		kvfree(sctx->read_buf);
7382 
7383 		name_cache_free(sctx);
7384 
7385 		kfree(sctx);
7386 	}
7387 
7388 	return ret;
7389 }
7390