xref: /openbmc/linux/fs/btrfs/send.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 
38 static int g_verbose = 0;
39 
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
41 
42 /*
43  * A fs_path is a helper to dynamically build path names with unknown size.
44  * It reallocates the internal buffer on demand.
45  * It allows fast adding of path elements on the right side (normal path) and
46  * fast adding to the left side (reversed path). A reversed path can also be
47  * unreversed if needed.
48  */
49 struct fs_path {
50 	union {
51 		struct {
52 			char *start;
53 			char *end;
54 
55 			char *buf;
56 			unsigned short buf_len:15;
57 			unsigned short reversed:1;
58 			char inline_buf[];
59 		};
60 		/*
61 		 * Average path length does not exceed 200 bytes, we'll have
62 		 * better packing in the slab and higher chance to satisfy
63 		 * a allocation later during send.
64 		 */
65 		char pad[256];
66 	};
67 };
68 #define FS_PATH_INLINE_SIZE \
69 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
70 
71 
72 /* reused for each extent */
73 struct clone_root {
74 	struct btrfs_root *root;
75 	u64 ino;
76 	u64 offset;
77 
78 	u64 found_refs;
79 };
80 
81 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
82 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
83 
84 struct send_ctx {
85 	struct file *send_filp;
86 	loff_t send_off;
87 	char *send_buf;
88 	u32 send_size;
89 	u32 send_max_size;
90 	u64 total_send_size;
91 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
92 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
93 
94 	struct btrfs_root *send_root;
95 	struct btrfs_root *parent_root;
96 	struct clone_root *clone_roots;
97 	int clone_roots_cnt;
98 
99 	/* current state of the compare_tree call */
100 	struct btrfs_path *left_path;
101 	struct btrfs_path *right_path;
102 	struct btrfs_key *cmp_key;
103 
104 	/*
105 	 * infos of the currently processed inode. In case of deleted inodes,
106 	 * these are the values from the deleted inode.
107 	 */
108 	u64 cur_ino;
109 	u64 cur_inode_gen;
110 	int cur_inode_new;
111 	int cur_inode_new_gen;
112 	int cur_inode_deleted;
113 	u64 cur_inode_size;
114 	u64 cur_inode_mode;
115 	u64 cur_inode_rdev;
116 	u64 cur_inode_last_extent;
117 
118 	u64 send_progress;
119 
120 	struct list_head new_refs;
121 	struct list_head deleted_refs;
122 
123 	struct radix_tree_root name_cache;
124 	struct list_head name_cache_list;
125 	int name_cache_size;
126 
127 	struct file_ra_state ra;
128 
129 	char *read_buf;
130 
131 	/*
132 	 * We process inodes by their increasing order, so if before an
133 	 * incremental send we reverse the parent/child relationship of
134 	 * directories such that a directory with a lower inode number was
135 	 * the parent of a directory with a higher inode number, and the one
136 	 * becoming the new parent got renamed too, we can't rename/move the
137 	 * directory with lower inode number when we finish processing it - we
138 	 * must process the directory with higher inode number first, then
139 	 * rename/move it and then rename/move the directory with lower inode
140 	 * number. Example follows.
141 	 *
142 	 * Tree state when the first send was performed:
143 	 *
144 	 * .
145 	 * |-- a                   (ino 257)
146 	 *     |-- b               (ino 258)
147 	 *         |
148 	 *         |
149 	 *         |-- c           (ino 259)
150 	 *         |   |-- d       (ino 260)
151 	 *         |
152 	 *         |-- c2          (ino 261)
153 	 *
154 	 * Tree state when the second (incremental) send is performed:
155 	 *
156 	 * .
157 	 * |-- a                   (ino 257)
158 	 *     |-- b               (ino 258)
159 	 *         |-- c2          (ino 261)
160 	 *             |-- d2      (ino 260)
161 	 *                 |-- cc  (ino 259)
162 	 *
163 	 * The sequence of steps that lead to the second state was:
164 	 *
165 	 * mv /a/b/c/d /a/b/c2/d2
166 	 * mv /a/b/c /a/b/c2/d2/cc
167 	 *
168 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
169 	 * before we move "d", which has higher inode number.
170 	 *
171 	 * So we just memorize which move/rename operations must be performed
172 	 * later when their respective parent is processed and moved/renamed.
173 	 */
174 
175 	/* Indexed by parent directory inode number. */
176 	struct rb_root pending_dir_moves;
177 
178 	/*
179 	 * Reverse index, indexed by the inode number of a directory that
180 	 * is waiting for the move/rename of its immediate parent before its
181 	 * own move/rename can be performed.
182 	 */
183 	struct rb_root waiting_dir_moves;
184 
185 	/*
186 	 * A directory that is going to be rm'ed might have a child directory
187 	 * which is in the pending directory moves index above. In this case,
188 	 * the directory can only be removed after the move/rename of its child
189 	 * is performed. Example:
190 	 *
191 	 * Parent snapshot:
192 	 *
193 	 * .                        (ino 256)
194 	 * |-- a/                   (ino 257)
195 	 *     |-- b/               (ino 258)
196 	 *         |-- c/           (ino 259)
197 	 *         |   |-- x/       (ino 260)
198 	 *         |
199 	 *         |-- y/           (ino 261)
200 	 *
201 	 * Send snapshot:
202 	 *
203 	 * .                        (ino 256)
204 	 * |-- a/                   (ino 257)
205 	 *     |-- b/               (ino 258)
206 	 *         |-- YY/          (ino 261)
207 	 *              |-- x/      (ino 260)
208 	 *
209 	 * Sequence of steps that lead to the send snapshot:
210 	 * rm -f /a/b/c/foo.txt
211 	 * mv /a/b/y /a/b/YY
212 	 * mv /a/b/c/x /a/b/YY
213 	 * rmdir /a/b/c
214 	 *
215 	 * When the child is processed, its move/rename is delayed until its
216 	 * parent is processed (as explained above), but all other operations
217 	 * like update utimes, chown, chgrp, etc, are performed and the paths
218 	 * that it uses for those operations must use the orphanized name of
219 	 * its parent (the directory we're going to rm later), so we need to
220 	 * memorize that name.
221 	 *
222 	 * Indexed by the inode number of the directory to be deleted.
223 	 */
224 	struct rb_root orphan_dirs;
225 };
226 
227 struct pending_dir_move {
228 	struct rb_node node;
229 	struct list_head list;
230 	u64 parent_ino;
231 	u64 ino;
232 	u64 gen;
233 	bool is_orphan;
234 	struct list_head update_refs;
235 };
236 
237 struct waiting_dir_move {
238 	struct rb_node node;
239 	u64 ino;
240 	/*
241 	 * There might be some directory that could not be removed because it
242 	 * was waiting for this directory inode to be moved first. Therefore
243 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
244 	 */
245 	u64 rmdir_ino;
246 	bool orphanized;
247 };
248 
249 struct orphan_dir_info {
250 	struct rb_node node;
251 	u64 ino;
252 	u64 gen;
253 };
254 
255 struct name_cache_entry {
256 	struct list_head list;
257 	/*
258 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
259 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
260 	 * more then one inum would fall into the same entry, we use radix_list
261 	 * to store the additional entries. radix_list is also used to store
262 	 * entries where two entries have the same inum but different
263 	 * generations.
264 	 */
265 	struct list_head radix_list;
266 	u64 ino;
267 	u64 gen;
268 	u64 parent_ino;
269 	u64 parent_gen;
270 	int ret;
271 	int need_later_update;
272 	int name_len;
273 	char name[];
274 };
275 
276 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
277 
278 static struct waiting_dir_move *
279 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
280 
281 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
282 
283 static int need_send_hole(struct send_ctx *sctx)
284 {
285 	return (sctx->parent_root && !sctx->cur_inode_new &&
286 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
287 		S_ISREG(sctx->cur_inode_mode));
288 }
289 
290 static void fs_path_reset(struct fs_path *p)
291 {
292 	if (p->reversed) {
293 		p->start = p->buf + p->buf_len - 1;
294 		p->end = p->start;
295 		*p->start = 0;
296 	} else {
297 		p->start = p->buf;
298 		p->end = p->start;
299 		*p->start = 0;
300 	}
301 }
302 
303 static struct fs_path *fs_path_alloc(void)
304 {
305 	struct fs_path *p;
306 
307 	p = kmalloc(sizeof(*p), GFP_NOFS);
308 	if (!p)
309 		return NULL;
310 	p->reversed = 0;
311 	p->buf = p->inline_buf;
312 	p->buf_len = FS_PATH_INLINE_SIZE;
313 	fs_path_reset(p);
314 	return p;
315 }
316 
317 static struct fs_path *fs_path_alloc_reversed(void)
318 {
319 	struct fs_path *p;
320 
321 	p = fs_path_alloc();
322 	if (!p)
323 		return NULL;
324 	p->reversed = 1;
325 	fs_path_reset(p);
326 	return p;
327 }
328 
329 static void fs_path_free(struct fs_path *p)
330 {
331 	if (!p)
332 		return;
333 	if (p->buf != p->inline_buf)
334 		kfree(p->buf);
335 	kfree(p);
336 }
337 
338 static int fs_path_len(struct fs_path *p)
339 {
340 	return p->end - p->start;
341 }
342 
343 static int fs_path_ensure_buf(struct fs_path *p, int len)
344 {
345 	char *tmp_buf;
346 	int path_len;
347 	int old_buf_len;
348 
349 	len++;
350 
351 	if (p->buf_len >= len)
352 		return 0;
353 
354 	if (len > PATH_MAX) {
355 		WARN_ON(1);
356 		return -ENOMEM;
357 	}
358 
359 	path_len = p->end - p->start;
360 	old_buf_len = p->buf_len;
361 
362 	/*
363 	 * First time the inline_buf does not suffice
364 	 */
365 	if (p->buf == p->inline_buf) {
366 		tmp_buf = kmalloc(len, GFP_NOFS);
367 		if (tmp_buf)
368 			memcpy(tmp_buf, p->buf, old_buf_len);
369 	} else {
370 		tmp_buf = krealloc(p->buf, len, GFP_NOFS);
371 	}
372 	if (!tmp_buf)
373 		return -ENOMEM;
374 	p->buf = tmp_buf;
375 	/*
376 	 * The real size of the buffer is bigger, this will let the fast path
377 	 * happen most of the time
378 	 */
379 	p->buf_len = ksize(p->buf);
380 
381 	if (p->reversed) {
382 		tmp_buf = p->buf + old_buf_len - path_len - 1;
383 		p->end = p->buf + p->buf_len - 1;
384 		p->start = p->end - path_len;
385 		memmove(p->start, tmp_buf, path_len + 1);
386 	} else {
387 		p->start = p->buf;
388 		p->end = p->start + path_len;
389 	}
390 	return 0;
391 }
392 
393 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
394 				   char **prepared)
395 {
396 	int ret;
397 	int new_len;
398 
399 	new_len = p->end - p->start + name_len;
400 	if (p->start != p->end)
401 		new_len++;
402 	ret = fs_path_ensure_buf(p, new_len);
403 	if (ret < 0)
404 		goto out;
405 
406 	if (p->reversed) {
407 		if (p->start != p->end)
408 			*--p->start = '/';
409 		p->start -= name_len;
410 		*prepared = p->start;
411 	} else {
412 		if (p->start != p->end)
413 			*p->end++ = '/';
414 		*prepared = p->end;
415 		p->end += name_len;
416 		*p->end = 0;
417 	}
418 
419 out:
420 	return ret;
421 }
422 
423 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
424 {
425 	int ret;
426 	char *prepared;
427 
428 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
429 	if (ret < 0)
430 		goto out;
431 	memcpy(prepared, name, name_len);
432 
433 out:
434 	return ret;
435 }
436 
437 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
438 {
439 	int ret;
440 	char *prepared;
441 
442 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
443 	if (ret < 0)
444 		goto out;
445 	memcpy(prepared, p2->start, p2->end - p2->start);
446 
447 out:
448 	return ret;
449 }
450 
451 static int fs_path_add_from_extent_buffer(struct fs_path *p,
452 					  struct extent_buffer *eb,
453 					  unsigned long off, int len)
454 {
455 	int ret;
456 	char *prepared;
457 
458 	ret = fs_path_prepare_for_add(p, len, &prepared);
459 	if (ret < 0)
460 		goto out;
461 
462 	read_extent_buffer(eb, prepared, off, len);
463 
464 out:
465 	return ret;
466 }
467 
468 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
469 {
470 	int ret;
471 
472 	p->reversed = from->reversed;
473 	fs_path_reset(p);
474 
475 	ret = fs_path_add_path(p, from);
476 
477 	return ret;
478 }
479 
480 
481 static void fs_path_unreverse(struct fs_path *p)
482 {
483 	char *tmp;
484 	int len;
485 
486 	if (!p->reversed)
487 		return;
488 
489 	tmp = p->start;
490 	len = p->end - p->start;
491 	p->start = p->buf;
492 	p->end = p->start + len;
493 	memmove(p->start, tmp, len + 1);
494 	p->reversed = 0;
495 }
496 
497 static struct btrfs_path *alloc_path_for_send(void)
498 {
499 	struct btrfs_path *path;
500 
501 	path = btrfs_alloc_path();
502 	if (!path)
503 		return NULL;
504 	path->search_commit_root = 1;
505 	path->skip_locking = 1;
506 	path->need_commit_sem = 1;
507 	return path;
508 }
509 
510 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
511 {
512 	int ret;
513 	mm_segment_t old_fs;
514 	u32 pos = 0;
515 
516 	old_fs = get_fs();
517 	set_fs(KERNEL_DS);
518 
519 	while (pos < len) {
520 		ret = vfs_write(filp, (__force const char __user *)buf + pos,
521 				len - pos, off);
522 		/* TODO handle that correctly */
523 		/*if (ret == -ERESTARTSYS) {
524 			continue;
525 		}*/
526 		if (ret < 0)
527 			goto out;
528 		if (ret == 0) {
529 			ret = -EIO;
530 			goto out;
531 		}
532 		pos += ret;
533 	}
534 
535 	ret = 0;
536 
537 out:
538 	set_fs(old_fs);
539 	return ret;
540 }
541 
542 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
543 {
544 	struct btrfs_tlv_header *hdr;
545 	int total_len = sizeof(*hdr) + len;
546 	int left = sctx->send_max_size - sctx->send_size;
547 
548 	if (unlikely(left < total_len))
549 		return -EOVERFLOW;
550 
551 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
552 	hdr->tlv_type = cpu_to_le16(attr);
553 	hdr->tlv_len = cpu_to_le16(len);
554 	memcpy(hdr + 1, data, len);
555 	sctx->send_size += total_len;
556 
557 	return 0;
558 }
559 
560 #define TLV_PUT_DEFINE_INT(bits) \
561 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
562 			u##bits attr, u##bits value)			\
563 	{								\
564 		__le##bits __tmp = cpu_to_le##bits(value);		\
565 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
566 	}
567 
568 TLV_PUT_DEFINE_INT(64)
569 
570 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
571 			  const char *str, int len)
572 {
573 	if (len == -1)
574 		len = strlen(str);
575 	return tlv_put(sctx, attr, str, len);
576 }
577 
578 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
579 			const u8 *uuid)
580 {
581 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
582 }
583 
584 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
585 				  struct extent_buffer *eb,
586 				  struct btrfs_timespec *ts)
587 {
588 	struct btrfs_timespec bts;
589 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
590 	return tlv_put(sctx, attr, &bts, sizeof(bts));
591 }
592 
593 
594 #define TLV_PUT(sctx, attrtype, attrlen, data) \
595 	do { \
596 		ret = tlv_put(sctx, attrtype, attrlen, data); \
597 		if (ret < 0) \
598 			goto tlv_put_failure; \
599 	} while (0)
600 
601 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
602 	do { \
603 		ret = tlv_put_u##bits(sctx, attrtype, value); \
604 		if (ret < 0) \
605 			goto tlv_put_failure; \
606 	} while (0)
607 
608 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
609 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
610 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
611 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
612 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
613 	do { \
614 		ret = tlv_put_string(sctx, attrtype, str, len); \
615 		if (ret < 0) \
616 			goto tlv_put_failure; \
617 	} while (0)
618 #define TLV_PUT_PATH(sctx, attrtype, p) \
619 	do { \
620 		ret = tlv_put_string(sctx, attrtype, p->start, \
621 			p->end - p->start); \
622 		if (ret < 0) \
623 			goto tlv_put_failure; \
624 	} while(0)
625 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
626 	do { \
627 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
628 		if (ret < 0) \
629 			goto tlv_put_failure; \
630 	} while (0)
631 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
632 	do { \
633 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
634 		if (ret < 0) \
635 			goto tlv_put_failure; \
636 	} while (0)
637 
638 static int send_header(struct send_ctx *sctx)
639 {
640 	struct btrfs_stream_header hdr;
641 
642 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
643 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
644 
645 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
646 					&sctx->send_off);
647 }
648 
649 /*
650  * For each command/item we want to send to userspace, we call this function.
651  */
652 static int begin_cmd(struct send_ctx *sctx, int cmd)
653 {
654 	struct btrfs_cmd_header *hdr;
655 
656 	if (WARN_ON(!sctx->send_buf))
657 		return -EINVAL;
658 
659 	BUG_ON(sctx->send_size);
660 
661 	sctx->send_size += sizeof(*hdr);
662 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
663 	hdr->cmd = cpu_to_le16(cmd);
664 
665 	return 0;
666 }
667 
668 static int send_cmd(struct send_ctx *sctx)
669 {
670 	int ret;
671 	struct btrfs_cmd_header *hdr;
672 	u32 crc;
673 
674 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
675 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
676 	hdr->crc = 0;
677 
678 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
679 	hdr->crc = cpu_to_le32(crc);
680 
681 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
682 					&sctx->send_off);
683 
684 	sctx->total_send_size += sctx->send_size;
685 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
686 	sctx->send_size = 0;
687 
688 	return ret;
689 }
690 
691 /*
692  * Sends a move instruction to user space
693  */
694 static int send_rename(struct send_ctx *sctx,
695 		     struct fs_path *from, struct fs_path *to)
696 {
697 	int ret;
698 
699 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
700 
701 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
702 	if (ret < 0)
703 		goto out;
704 
705 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
706 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
707 
708 	ret = send_cmd(sctx);
709 
710 tlv_put_failure:
711 out:
712 	return ret;
713 }
714 
715 /*
716  * Sends a link instruction to user space
717  */
718 static int send_link(struct send_ctx *sctx,
719 		     struct fs_path *path, struct fs_path *lnk)
720 {
721 	int ret;
722 
723 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
724 
725 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
726 	if (ret < 0)
727 		goto out;
728 
729 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
730 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
731 
732 	ret = send_cmd(sctx);
733 
734 tlv_put_failure:
735 out:
736 	return ret;
737 }
738 
739 /*
740  * Sends an unlink instruction to user space
741  */
742 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
743 {
744 	int ret;
745 
746 verbose_printk("btrfs: send_unlink %s\n", path->start);
747 
748 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
749 	if (ret < 0)
750 		goto out;
751 
752 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
753 
754 	ret = send_cmd(sctx);
755 
756 tlv_put_failure:
757 out:
758 	return ret;
759 }
760 
761 /*
762  * Sends a rmdir instruction to user space
763  */
764 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
765 {
766 	int ret;
767 
768 verbose_printk("btrfs: send_rmdir %s\n", path->start);
769 
770 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
771 	if (ret < 0)
772 		goto out;
773 
774 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
775 
776 	ret = send_cmd(sctx);
777 
778 tlv_put_failure:
779 out:
780 	return ret;
781 }
782 
783 /*
784  * Helper function to retrieve some fields from an inode item.
785  */
786 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
787 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
788 			  u64 *gid, u64 *rdev)
789 {
790 	int ret;
791 	struct btrfs_inode_item *ii;
792 	struct btrfs_key key;
793 
794 	key.objectid = ino;
795 	key.type = BTRFS_INODE_ITEM_KEY;
796 	key.offset = 0;
797 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
798 	if (ret) {
799 		if (ret > 0)
800 			ret = -ENOENT;
801 		return ret;
802 	}
803 
804 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
805 			struct btrfs_inode_item);
806 	if (size)
807 		*size = btrfs_inode_size(path->nodes[0], ii);
808 	if (gen)
809 		*gen = btrfs_inode_generation(path->nodes[0], ii);
810 	if (mode)
811 		*mode = btrfs_inode_mode(path->nodes[0], ii);
812 	if (uid)
813 		*uid = btrfs_inode_uid(path->nodes[0], ii);
814 	if (gid)
815 		*gid = btrfs_inode_gid(path->nodes[0], ii);
816 	if (rdev)
817 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
818 
819 	return ret;
820 }
821 
822 static int get_inode_info(struct btrfs_root *root,
823 			  u64 ino, u64 *size, u64 *gen,
824 			  u64 *mode, u64 *uid, u64 *gid,
825 			  u64 *rdev)
826 {
827 	struct btrfs_path *path;
828 	int ret;
829 
830 	path = alloc_path_for_send();
831 	if (!path)
832 		return -ENOMEM;
833 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
834 			       rdev);
835 	btrfs_free_path(path);
836 	return ret;
837 }
838 
839 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
840 				   struct fs_path *p,
841 				   void *ctx);
842 
843 /*
844  * Helper function to iterate the entries in ONE btrfs_inode_ref or
845  * btrfs_inode_extref.
846  * The iterate callback may return a non zero value to stop iteration. This can
847  * be a negative value for error codes or 1 to simply stop it.
848  *
849  * path must point to the INODE_REF or INODE_EXTREF when called.
850  */
851 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
852 			     struct btrfs_key *found_key, int resolve,
853 			     iterate_inode_ref_t iterate, void *ctx)
854 {
855 	struct extent_buffer *eb = path->nodes[0];
856 	struct btrfs_item *item;
857 	struct btrfs_inode_ref *iref;
858 	struct btrfs_inode_extref *extref;
859 	struct btrfs_path *tmp_path;
860 	struct fs_path *p;
861 	u32 cur = 0;
862 	u32 total;
863 	int slot = path->slots[0];
864 	u32 name_len;
865 	char *start;
866 	int ret = 0;
867 	int num = 0;
868 	int index;
869 	u64 dir;
870 	unsigned long name_off;
871 	unsigned long elem_size;
872 	unsigned long ptr;
873 
874 	p = fs_path_alloc_reversed();
875 	if (!p)
876 		return -ENOMEM;
877 
878 	tmp_path = alloc_path_for_send();
879 	if (!tmp_path) {
880 		fs_path_free(p);
881 		return -ENOMEM;
882 	}
883 
884 
885 	if (found_key->type == BTRFS_INODE_REF_KEY) {
886 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
887 						    struct btrfs_inode_ref);
888 		item = btrfs_item_nr(slot);
889 		total = btrfs_item_size(eb, item);
890 		elem_size = sizeof(*iref);
891 	} else {
892 		ptr = btrfs_item_ptr_offset(eb, slot);
893 		total = btrfs_item_size_nr(eb, slot);
894 		elem_size = sizeof(*extref);
895 	}
896 
897 	while (cur < total) {
898 		fs_path_reset(p);
899 
900 		if (found_key->type == BTRFS_INODE_REF_KEY) {
901 			iref = (struct btrfs_inode_ref *)(ptr + cur);
902 			name_len = btrfs_inode_ref_name_len(eb, iref);
903 			name_off = (unsigned long)(iref + 1);
904 			index = btrfs_inode_ref_index(eb, iref);
905 			dir = found_key->offset;
906 		} else {
907 			extref = (struct btrfs_inode_extref *)(ptr + cur);
908 			name_len = btrfs_inode_extref_name_len(eb, extref);
909 			name_off = (unsigned long)&extref->name;
910 			index = btrfs_inode_extref_index(eb, extref);
911 			dir = btrfs_inode_extref_parent(eb, extref);
912 		}
913 
914 		if (resolve) {
915 			start = btrfs_ref_to_path(root, tmp_path, name_len,
916 						  name_off, eb, dir,
917 						  p->buf, p->buf_len);
918 			if (IS_ERR(start)) {
919 				ret = PTR_ERR(start);
920 				goto out;
921 			}
922 			if (start < p->buf) {
923 				/* overflow , try again with larger buffer */
924 				ret = fs_path_ensure_buf(p,
925 						p->buf_len + p->buf - start);
926 				if (ret < 0)
927 					goto out;
928 				start = btrfs_ref_to_path(root, tmp_path,
929 							  name_len, name_off,
930 							  eb, dir,
931 							  p->buf, p->buf_len);
932 				if (IS_ERR(start)) {
933 					ret = PTR_ERR(start);
934 					goto out;
935 				}
936 				BUG_ON(start < p->buf);
937 			}
938 			p->start = start;
939 		} else {
940 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
941 							     name_len);
942 			if (ret < 0)
943 				goto out;
944 		}
945 
946 		cur += elem_size + name_len;
947 		ret = iterate(num, dir, index, p, ctx);
948 		if (ret)
949 			goto out;
950 		num++;
951 	}
952 
953 out:
954 	btrfs_free_path(tmp_path);
955 	fs_path_free(p);
956 	return ret;
957 }
958 
959 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
960 				  const char *name, int name_len,
961 				  const char *data, int data_len,
962 				  u8 type, void *ctx);
963 
964 /*
965  * Helper function to iterate the entries in ONE btrfs_dir_item.
966  * The iterate callback may return a non zero value to stop iteration. This can
967  * be a negative value for error codes or 1 to simply stop it.
968  *
969  * path must point to the dir item when called.
970  */
971 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
972 			    struct btrfs_key *found_key,
973 			    iterate_dir_item_t iterate, void *ctx)
974 {
975 	int ret = 0;
976 	struct extent_buffer *eb;
977 	struct btrfs_item *item;
978 	struct btrfs_dir_item *di;
979 	struct btrfs_key di_key;
980 	char *buf = NULL;
981 	int buf_len;
982 	u32 name_len;
983 	u32 data_len;
984 	u32 cur;
985 	u32 len;
986 	u32 total;
987 	int slot;
988 	int num;
989 	u8 type;
990 
991 	/*
992 	 * Start with a small buffer (1 page). If later we end up needing more
993 	 * space, which can happen for xattrs on a fs with a leaf size greater
994 	 * then the page size, attempt to increase the buffer. Typically xattr
995 	 * values are small.
996 	 */
997 	buf_len = PATH_MAX;
998 	buf = kmalloc(buf_len, GFP_NOFS);
999 	if (!buf) {
1000 		ret = -ENOMEM;
1001 		goto out;
1002 	}
1003 
1004 	eb = path->nodes[0];
1005 	slot = path->slots[0];
1006 	item = btrfs_item_nr(slot);
1007 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1008 	cur = 0;
1009 	len = 0;
1010 	total = btrfs_item_size(eb, item);
1011 
1012 	num = 0;
1013 	while (cur < total) {
1014 		name_len = btrfs_dir_name_len(eb, di);
1015 		data_len = btrfs_dir_data_len(eb, di);
1016 		type = btrfs_dir_type(eb, di);
1017 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1018 
1019 		if (type == BTRFS_FT_XATTR) {
1020 			if (name_len > XATTR_NAME_MAX) {
1021 				ret = -ENAMETOOLONG;
1022 				goto out;
1023 			}
1024 			if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
1025 				ret = -E2BIG;
1026 				goto out;
1027 			}
1028 		} else {
1029 			/*
1030 			 * Path too long
1031 			 */
1032 			if (name_len + data_len > PATH_MAX) {
1033 				ret = -ENAMETOOLONG;
1034 				goto out;
1035 			}
1036 		}
1037 
1038 		if (name_len + data_len > buf_len) {
1039 			buf_len = name_len + data_len;
1040 			if (is_vmalloc_addr(buf)) {
1041 				vfree(buf);
1042 				buf = NULL;
1043 			} else {
1044 				char *tmp = krealloc(buf, buf_len,
1045 						     GFP_NOFS | __GFP_NOWARN);
1046 
1047 				if (!tmp)
1048 					kfree(buf);
1049 				buf = tmp;
1050 			}
1051 			if (!buf) {
1052 				buf = vmalloc(buf_len);
1053 				if (!buf) {
1054 					ret = -ENOMEM;
1055 					goto out;
1056 				}
1057 			}
1058 		}
1059 
1060 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1061 				name_len + data_len);
1062 
1063 		len = sizeof(*di) + name_len + data_len;
1064 		di = (struct btrfs_dir_item *)((char *)di + len);
1065 		cur += len;
1066 
1067 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1068 				data_len, type, ctx);
1069 		if (ret < 0)
1070 			goto out;
1071 		if (ret) {
1072 			ret = 0;
1073 			goto out;
1074 		}
1075 
1076 		num++;
1077 	}
1078 
1079 out:
1080 	kvfree(buf);
1081 	return ret;
1082 }
1083 
1084 static int __copy_first_ref(int num, u64 dir, int index,
1085 			    struct fs_path *p, void *ctx)
1086 {
1087 	int ret;
1088 	struct fs_path *pt = ctx;
1089 
1090 	ret = fs_path_copy(pt, p);
1091 	if (ret < 0)
1092 		return ret;
1093 
1094 	/* we want the first only */
1095 	return 1;
1096 }
1097 
1098 /*
1099  * Retrieve the first path of an inode. If an inode has more then one
1100  * ref/hardlink, this is ignored.
1101  */
1102 static int get_inode_path(struct btrfs_root *root,
1103 			  u64 ino, struct fs_path *path)
1104 {
1105 	int ret;
1106 	struct btrfs_key key, found_key;
1107 	struct btrfs_path *p;
1108 
1109 	p = alloc_path_for_send();
1110 	if (!p)
1111 		return -ENOMEM;
1112 
1113 	fs_path_reset(path);
1114 
1115 	key.objectid = ino;
1116 	key.type = BTRFS_INODE_REF_KEY;
1117 	key.offset = 0;
1118 
1119 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1120 	if (ret < 0)
1121 		goto out;
1122 	if (ret) {
1123 		ret = 1;
1124 		goto out;
1125 	}
1126 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1127 	if (found_key.objectid != ino ||
1128 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1129 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1130 		ret = -ENOENT;
1131 		goto out;
1132 	}
1133 
1134 	ret = iterate_inode_ref(root, p, &found_key, 1,
1135 				__copy_first_ref, path);
1136 	if (ret < 0)
1137 		goto out;
1138 	ret = 0;
1139 
1140 out:
1141 	btrfs_free_path(p);
1142 	return ret;
1143 }
1144 
1145 struct backref_ctx {
1146 	struct send_ctx *sctx;
1147 
1148 	struct btrfs_path *path;
1149 	/* number of total found references */
1150 	u64 found;
1151 
1152 	/*
1153 	 * used for clones found in send_root. clones found behind cur_objectid
1154 	 * and cur_offset are not considered as allowed clones.
1155 	 */
1156 	u64 cur_objectid;
1157 	u64 cur_offset;
1158 
1159 	/* may be truncated in case it's the last extent in a file */
1160 	u64 extent_len;
1161 
1162 	/* data offset in the file extent item */
1163 	u64 data_offset;
1164 
1165 	/* Just to check for bugs in backref resolving */
1166 	int found_itself;
1167 };
1168 
1169 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1170 {
1171 	u64 root = (u64)(uintptr_t)key;
1172 	struct clone_root *cr = (struct clone_root *)elt;
1173 
1174 	if (root < cr->root->objectid)
1175 		return -1;
1176 	if (root > cr->root->objectid)
1177 		return 1;
1178 	return 0;
1179 }
1180 
1181 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1182 {
1183 	struct clone_root *cr1 = (struct clone_root *)e1;
1184 	struct clone_root *cr2 = (struct clone_root *)e2;
1185 
1186 	if (cr1->root->objectid < cr2->root->objectid)
1187 		return -1;
1188 	if (cr1->root->objectid > cr2->root->objectid)
1189 		return 1;
1190 	return 0;
1191 }
1192 
1193 /*
1194  * Called for every backref that is found for the current extent.
1195  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1196  */
1197 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1198 {
1199 	struct backref_ctx *bctx = ctx_;
1200 	struct clone_root *found;
1201 	int ret;
1202 	u64 i_size;
1203 
1204 	/* First check if the root is in the list of accepted clone sources */
1205 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1206 			bctx->sctx->clone_roots_cnt,
1207 			sizeof(struct clone_root),
1208 			__clone_root_cmp_bsearch);
1209 	if (!found)
1210 		return 0;
1211 
1212 	if (found->root == bctx->sctx->send_root &&
1213 	    ino == bctx->cur_objectid &&
1214 	    offset == bctx->cur_offset) {
1215 		bctx->found_itself = 1;
1216 	}
1217 
1218 	/*
1219 	 * There are inodes that have extents that lie behind its i_size. Don't
1220 	 * accept clones from these extents.
1221 	 */
1222 	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1223 			       NULL, NULL, NULL);
1224 	btrfs_release_path(bctx->path);
1225 	if (ret < 0)
1226 		return ret;
1227 
1228 	if (offset + bctx->data_offset + bctx->extent_len > i_size)
1229 		return 0;
1230 
1231 	/*
1232 	 * Make sure we don't consider clones from send_root that are
1233 	 * behind the current inode/offset.
1234 	 */
1235 	if (found->root == bctx->sctx->send_root) {
1236 		/*
1237 		 * TODO for the moment we don't accept clones from the inode
1238 		 * that is currently send. We may change this when
1239 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1240 		 * file.
1241 		 */
1242 		if (ino >= bctx->cur_objectid)
1243 			return 0;
1244 #if 0
1245 		if (ino > bctx->cur_objectid)
1246 			return 0;
1247 		if (offset + bctx->extent_len > bctx->cur_offset)
1248 			return 0;
1249 #endif
1250 	}
1251 
1252 	bctx->found++;
1253 	found->found_refs++;
1254 	if (ino < found->ino) {
1255 		found->ino = ino;
1256 		found->offset = offset;
1257 	} else if (found->ino == ino) {
1258 		/*
1259 		 * same extent found more then once in the same file.
1260 		 */
1261 		if (found->offset > offset + bctx->extent_len)
1262 			found->offset = offset;
1263 	}
1264 
1265 	return 0;
1266 }
1267 
1268 /*
1269  * Given an inode, offset and extent item, it finds a good clone for a clone
1270  * instruction. Returns -ENOENT when none could be found. The function makes
1271  * sure that the returned clone is usable at the point where sending is at the
1272  * moment. This means, that no clones are accepted which lie behind the current
1273  * inode+offset.
1274  *
1275  * path must point to the extent item when called.
1276  */
1277 static int find_extent_clone(struct send_ctx *sctx,
1278 			     struct btrfs_path *path,
1279 			     u64 ino, u64 data_offset,
1280 			     u64 ino_size,
1281 			     struct clone_root **found)
1282 {
1283 	int ret;
1284 	int extent_type;
1285 	u64 logical;
1286 	u64 disk_byte;
1287 	u64 num_bytes;
1288 	u64 extent_item_pos;
1289 	u64 flags = 0;
1290 	struct btrfs_file_extent_item *fi;
1291 	struct extent_buffer *eb = path->nodes[0];
1292 	struct backref_ctx *backref_ctx = NULL;
1293 	struct clone_root *cur_clone_root;
1294 	struct btrfs_key found_key;
1295 	struct btrfs_path *tmp_path;
1296 	int compressed;
1297 	u32 i;
1298 
1299 	tmp_path = alloc_path_for_send();
1300 	if (!tmp_path)
1301 		return -ENOMEM;
1302 
1303 	/* We only use this path under the commit sem */
1304 	tmp_path->need_commit_sem = 0;
1305 
1306 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1307 	if (!backref_ctx) {
1308 		ret = -ENOMEM;
1309 		goto out;
1310 	}
1311 
1312 	backref_ctx->path = tmp_path;
1313 
1314 	if (data_offset >= ino_size) {
1315 		/*
1316 		 * There may be extents that lie behind the file's size.
1317 		 * I at least had this in combination with snapshotting while
1318 		 * writing large files.
1319 		 */
1320 		ret = 0;
1321 		goto out;
1322 	}
1323 
1324 	fi = btrfs_item_ptr(eb, path->slots[0],
1325 			struct btrfs_file_extent_item);
1326 	extent_type = btrfs_file_extent_type(eb, fi);
1327 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1328 		ret = -ENOENT;
1329 		goto out;
1330 	}
1331 	compressed = btrfs_file_extent_compression(eb, fi);
1332 
1333 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1334 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1335 	if (disk_byte == 0) {
1336 		ret = -ENOENT;
1337 		goto out;
1338 	}
1339 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1340 
1341 	down_read(&sctx->send_root->fs_info->commit_root_sem);
1342 	ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1343 				  &found_key, &flags);
1344 	up_read(&sctx->send_root->fs_info->commit_root_sem);
1345 	btrfs_release_path(tmp_path);
1346 
1347 	if (ret < 0)
1348 		goto out;
1349 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1350 		ret = -EIO;
1351 		goto out;
1352 	}
1353 
1354 	/*
1355 	 * Setup the clone roots.
1356 	 */
1357 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1358 		cur_clone_root = sctx->clone_roots + i;
1359 		cur_clone_root->ino = (u64)-1;
1360 		cur_clone_root->offset = 0;
1361 		cur_clone_root->found_refs = 0;
1362 	}
1363 
1364 	backref_ctx->sctx = sctx;
1365 	backref_ctx->found = 0;
1366 	backref_ctx->cur_objectid = ino;
1367 	backref_ctx->cur_offset = data_offset;
1368 	backref_ctx->found_itself = 0;
1369 	backref_ctx->extent_len = num_bytes;
1370 	/*
1371 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1372 	 * offsets that already take into account the data offset, but not for
1373 	 * compressed extents, since the offset is logical and not relative to
1374 	 * the physical extent locations. We must take this into account to
1375 	 * avoid sending clone offsets that go beyond the source file's size,
1376 	 * which would result in the clone ioctl failing with -EINVAL on the
1377 	 * receiving end.
1378 	 */
1379 	if (compressed == BTRFS_COMPRESS_NONE)
1380 		backref_ctx->data_offset = 0;
1381 	else
1382 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1383 
1384 	/*
1385 	 * The last extent of a file may be too large due to page alignment.
1386 	 * We need to adjust extent_len in this case so that the checks in
1387 	 * __iterate_backrefs work.
1388 	 */
1389 	if (data_offset + num_bytes >= ino_size)
1390 		backref_ctx->extent_len = ino_size - data_offset;
1391 
1392 	/*
1393 	 * Now collect all backrefs.
1394 	 */
1395 	if (compressed == BTRFS_COMPRESS_NONE)
1396 		extent_item_pos = logical - found_key.objectid;
1397 	else
1398 		extent_item_pos = 0;
1399 	ret = iterate_extent_inodes(sctx->send_root->fs_info,
1400 					found_key.objectid, extent_item_pos, 1,
1401 					__iterate_backrefs, backref_ctx);
1402 
1403 	if (ret < 0)
1404 		goto out;
1405 
1406 	if (!backref_ctx->found_itself) {
1407 		/* found a bug in backref code? */
1408 		ret = -EIO;
1409 		btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1410 				"send_root. inode=%llu, offset=%llu, "
1411 				"disk_byte=%llu found extent=%llu",
1412 				ino, data_offset, disk_byte, found_key.objectid);
1413 		goto out;
1414 	}
1415 
1416 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1417 		"ino=%llu, "
1418 		"num_bytes=%llu, logical=%llu\n",
1419 		data_offset, ino, num_bytes, logical);
1420 
1421 	if (!backref_ctx->found)
1422 		verbose_printk("btrfs:    no clones found\n");
1423 
1424 	cur_clone_root = NULL;
1425 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1426 		if (sctx->clone_roots[i].found_refs) {
1427 			if (!cur_clone_root)
1428 				cur_clone_root = sctx->clone_roots + i;
1429 			else if (sctx->clone_roots[i].root == sctx->send_root)
1430 				/* prefer clones from send_root over others */
1431 				cur_clone_root = sctx->clone_roots + i;
1432 		}
1433 
1434 	}
1435 
1436 	if (cur_clone_root) {
1437 		if (compressed != BTRFS_COMPRESS_NONE) {
1438 			/*
1439 			 * Offsets given by iterate_extent_inodes() are relative
1440 			 * to the start of the extent, we need to add logical
1441 			 * offset from the file extent item.
1442 			 * (See why at backref.c:check_extent_in_eb())
1443 			 */
1444 			cur_clone_root->offset += btrfs_file_extent_offset(eb,
1445 									   fi);
1446 		}
1447 		*found = cur_clone_root;
1448 		ret = 0;
1449 	} else {
1450 		ret = -ENOENT;
1451 	}
1452 
1453 out:
1454 	btrfs_free_path(tmp_path);
1455 	kfree(backref_ctx);
1456 	return ret;
1457 }
1458 
1459 static int read_symlink(struct btrfs_root *root,
1460 			u64 ino,
1461 			struct fs_path *dest)
1462 {
1463 	int ret;
1464 	struct btrfs_path *path;
1465 	struct btrfs_key key;
1466 	struct btrfs_file_extent_item *ei;
1467 	u8 type;
1468 	u8 compression;
1469 	unsigned long off;
1470 	int len;
1471 
1472 	path = alloc_path_for_send();
1473 	if (!path)
1474 		return -ENOMEM;
1475 
1476 	key.objectid = ino;
1477 	key.type = BTRFS_EXTENT_DATA_KEY;
1478 	key.offset = 0;
1479 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1480 	if (ret < 0)
1481 		goto out;
1482 	BUG_ON(ret);
1483 
1484 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1485 			struct btrfs_file_extent_item);
1486 	type = btrfs_file_extent_type(path->nodes[0], ei);
1487 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1488 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1489 	BUG_ON(compression);
1490 
1491 	off = btrfs_file_extent_inline_start(ei);
1492 	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1493 
1494 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1495 
1496 out:
1497 	btrfs_free_path(path);
1498 	return ret;
1499 }
1500 
1501 /*
1502  * Helper function to generate a file name that is unique in the root of
1503  * send_root and parent_root. This is used to generate names for orphan inodes.
1504  */
1505 static int gen_unique_name(struct send_ctx *sctx,
1506 			   u64 ino, u64 gen,
1507 			   struct fs_path *dest)
1508 {
1509 	int ret = 0;
1510 	struct btrfs_path *path;
1511 	struct btrfs_dir_item *di;
1512 	char tmp[64];
1513 	int len;
1514 	u64 idx = 0;
1515 
1516 	path = alloc_path_for_send();
1517 	if (!path)
1518 		return -ENOMEM;
1519 
1520 	while (1) {
1521 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1522 				ino, gen, idx);
1523 		ASSERT(len < sizeof(tmp));
1524 
1525 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1526 				path, BTRFS_FIRST_FREE_OBJECTID,
1527 				tmp, strlen(tmp), 0);
1528 		btrfs_release_path(path);
1529 		if (IS_ERR(di)) {
1530 			ret = PTR_ERR(di);
1531 			goto out;
1532 		}
1533 		if (di) {
1534 			/* not unique, try again */
1535 			idx++;
1536 			continue;
1537 		}
1538 
1539 		if (!sctx->parent_root) {
1540 			/* unique */
1541 			ret = 0;
1542 			break;
1543 		}
1544 
1545 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1546 				path, BTRFS_FIRST_FREE_OBJECTID,
1547 				tmp, strlen(tmp), 0);
1548 		btrfs_release_path(path);
1549 		if (IS_ERR(di)) {
1550 			ret = PTR_ERR(di);
1551 			goto out;
1552 		}
1553 		if (di) {
1554 			/* not unique, try again */
1555 			idx++;
1556 			continue;
1557 		}
1558 		/* unique */
1559 		break;
1560 	}
1561 
1562 	ret = fs_path_add(dest, tmp, strlen(tmp));
1563 
1564 out:
1565 	btrfs_free_path(path);
1566 	return ret;
1567 }
1568 
1569 enum inode_state {
1570 	inode_state_no_change,
1571 	inode_state_will_create,
1572 	inode_state_did_create,
1573 	inode_state_will_delete,
1574 	inode_state_did_delete,
1575 };
1576 
1577 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1578 {
1579 	int ret;
1580 	int left_ret;
1581 	int right_ret;
1582 	u64 left_gen;
1583 	u64 right_gen;
1584 
1585 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1586 			NULL, NULL);
1587 	if (ret < 0 && ret != -ENOENT)
1588 		goto out;
1589 	left_ret = ret;
1590 
1591 	if (!sctx->parent_root) {
1592 		right_ret = -ENOENT;
1593 	} else {
1594 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1595 				NULL, NULL, NULL, NULL);
1596 		if (ret < 0 && ret != -ENOENT)
1597 			goto out;
1598 		right_ret = ret;
1599 	}
1600 
1601 	if (!left_ret && !right_ret) {
1602 		if (left_gen == gen && right_gen == gen) {
1603 			ret = inode_state_no_change;
1604 		} else if (left_gen == gen) {
1605 			if (ino < sctx->send_progress)
1606 				ret = inode_state_did_create;
1607 			else
1608 				ret = inode_state_will_create;
1609 		} else if (right_gen == gen) {
1610 			if (ino < sctx->send_progress)
1611 				ret = inode_state_did_delete;
1612 			else
1613 				ret = inode_state_will_delete;
1614 		} else  {
1615 			ret = -ENOENT;
1616 		}
1617 	} else if (!left_ret) {
1618 		if (left_gen == gen) {
1619 			if (ino < sctx->send_progress)
1620 				ret = inode_state_did_create;
1621 			else
1622 				ret = inode_state_will_create;
1623 		} else {
1624 			ret = -ENOENT;
1625 		}
1626 	} else if (!right_ret) {
1627 		if (right_gen == gen) {
1628 			if (ino < sctx->send_progress)
1629 				ret = inode_state_did_delete;
1630 			else
1631 				ret = inode_state_will_delete;
1632 		} else {
1633 			ret = -ENOENT;
1634 		}
1635 	} else {
1636 		ret = -ENOENT;
1637 	}
1638 
1639 out:
1640 	return ret;
1641 }
1642 
1643 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1644 {
1645 	int ret;
1646 
1647 	ret = get_cur_inode_state(sctx, ino, gen);
1648 	if (ret < 0)
1649 		goto out;
1650 
1651 	if (ret == inode_state_no_change ||
1652 	    ret == inode_state_did_create ||
1653 	    ret == inode_state_will_delete)
1654 		ret = 1;
1655 	else
1656 		ret = 0;
1657 
1658 out:
1659 	return ret;
1660 }
1661 
1662 /*
1663  * Helper function to lookup a dir item in a dir.
1664  */
1665 static int lookup_dir_item_inode(struct btrfs_root *root,
1666 				 u64 dir, const char *name, int name_len,
1667 				 u64 *found_inode,
1668 				 u8 *found_type)
1669 {
1670 	int ret = 0;
1671 	struct btrfs_dir_item *di;
1672 	struct btrfs_key key;
1673 	struct btrfs_path *path;
1674 
1675 	path = alloc_path_for_send();
1676 	if (!path)
1677 		return -ENOMEM;
1678 
1679 	di = btrfs_lookup_dir_item(NULL, root, path,
1680 			dir, name, name_len, 0);
1681 	if (!di) {
1682 		ret = -ENOENT;
1683 		goto out;
1684 	}
1685 	if (IS_ERR(di)) {
1686 		ret = PTR_ERR(di);
1687 		goto out;
1688 	}
1689 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1690 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1691 		ret = -ENOENT;
1692 		goto out;
1693 	}
1694 	*found_inode = key.objectid;
1695 	*found_type = btrfs_dir_type(path->nodes[0], di);
1696 
1697 out:
1698 	btrfs_free_path(path);
1699 	return ret;
1700 }
1701 
1702 /*
1703  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1704  * generation of the parent dir and the name of the dir entry.
1705  */
1706 static int get_first_ref(struct btrfs_root *root, u64 ino,
1707 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1708 {
1709 	int ret;
1710 	struct btrfs_key key;
1711 	struct btrfs_key found_key;
1712 	struct btrfs_path *path;
1713 	int len;
1714 	u64 parent_dir;
1715 
1716 	path = alloc_path_for_send();
1717 	if (!path)
1718 		return -ENOMEM;
1719 
1720 	key.objectid = ino;
1721 	key.type = BTRFS_INODE_REF_KEY;
1722 	key.offset = 0;
1723 
1724 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1725 	if (ret < 0)
1726 		goto out;
1727 	if (!ret)
1728 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1729 				path->slots[0]);
1730 	if (ret || found_key.objectid != ino ||
1731 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1732 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1733 		ret = -ENOENT;
1734 		goto out;
1735 	}
1736 
1737 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1738 		struct btrfs_inode_ref *iref;
1739 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1740 				      struct btrfs_inode_ref);
1741 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1742 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1743 						     (unsigned long)(iref + 1),
1744 						     len);
1745 		parent_dir = found_key.offset;
1746 	} else {
1747 		struct btrfs_inode_extref *extref;
1748 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1749 					struct btrfs_inode_extref);
1750 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1751 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1752 					(unsigned long)&extref->name, len);
1753 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1754 	}
1755 	if (ret < 0)
1756 		goto out;
1757 	btrfs_release_path(path);
1758 
1759 	if (dir_gen) {
1760 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1761 				     NULL, NULL, NULL);
1762 		if (ret < 0)
1763 			goto out;
1764 	}
1765 
1766 	*dir = parent_dir;
1767 
1768 out:
1769 	btrfs_free_path(path);
1770 	return ret;
1771 }
1772 
1773 static int is_first_ref(struct btrfs_root *root,
1774 			u64 ino, u64 dir,
1775 			const char *name, int name_len)
1776 {
1777 	int ret;
1778 	struct fs_path *tmp_name;
1779 	u64 tmp_dir;
1780 
1781 	tmp_name = fs_path_alloc();
1782 	if (!tmp_name)
1783 		return -ENOMEM;
1784 
1785 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1786 	if (ret < 0)
1787 		goto out;
1788 
1789 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1790 		ret = 0;
1791 		goto out;
1792 	}
1793 
1794 	ret = !memcmp(tmp_name->start, name, name_len);
1795 
1796 out:
1797 	fs_path_free(tmp_name);
1798 	return ret;
1799 }
1800 
1801 /*
1802  * Used by process_recorded_refs to determine if a new ref would overwrite an
1803  * already existing ref. In case it detects an overwrite, it returns the
1804  * inode/gen in who_ino/who_gen.
1805  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1806  * to make sure later references to the overwritten inode are possible.
1807  * Orphanizing is however only required for the first ref of an inode.
1808  * process_recorded_refs does an additional is_first_ref check to see if
1809  * orphanizing is really required.
1810  */
1811 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1812 			      const char *name, int name_len,
1813 			      u64 *who_ino, u64 *who_gen)
1814 {
1815 	int ret = 0;
1816 	u64 gen;
1817 	u64 other_inode = 0;
1818 	u8 other_type = 0;
1819 
1820 	if (!sctx->parent_root)
1821 		goto out;
1822 
1823 	ret = is_inode_existent(sctx, dir, dir_gen);
1824 	if (ret <= 0)
1825 		goto out;
1826 
1827 	/*
1828 	 * If we have a parent root we need to verify that the parent dir was
1829 	 * not delted and then re-created, if it was then we have no overwrite
1830 	 * and we can just unlink this entry.
1831 	 */
1832 	if (sctx->parent_root) {
1833 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1834 				     NULL, NULL, NULL);
1835 		if (ret < 0 && ret != -ENOENT)
1836 			goto out;
1837 		if (ret) {
1838 			ret = 0;
1839 			goto out;
1840 		}
1841 		if (gen != dir_gen)
1842 			goto out;
1843 	}
1844 
1845 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1846 			&other_inode, &other_type);
1847 	if (ret < 0 && ret != -ENOENT)
1848 		goto out;
1849 	if (ret) {
1850 		ret = 0;
1851 		goto out;
1852 	}
1853 
1854 	/*
1855 	 * Check if the overwritten ref was already processed. If yes, the ref
1856 	 * was already unlinked/moved, so we can safely assume that we will not
1857 	 * overwrite anything at this point in time.
1858 	 */
1859 	if (other_inode > sctx->send_progress) {
1860 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1861 				who_gen, NULL, NULL, NULL, NULL);
1862 		if (ret < 0)
1863 			goto out;
1864 
1865 		ret = 1;
1866 		*who_ino = other_inode;
1867 	} else {
1868 		ret = 0;
1869 	}
1870 
1871 out:
1872 	return ret;
1873 }
1874 
1875 /*
1876  * Checks if the ref was overwritten by an already processed inode. This is
1877  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1878  * thus the orphan name needs be used.
1879  * process_recorded_refs also uses it to avoid unlinking of refs that were
1880  * overwritten.
1881  */
1882 static int did_overwrite_ref(struct send_ctx *sctx,
1883 			    u64 dir, u64 dir_gen,
1884 			    u64 ino, u64 ino_gen,
1885 			    const char *name, int name_len)
1886 {
1887 	int ret = 0;
1888 	u64 gen;
1889 	u64 ow_inode;
1890 	u8 other_type;
1891 
1892 	if (!sctx->parent_root)
1893 		goto out;
1894 
1895 	ret = is_inode_existent(sctx, dir, dir_gen);
1896 	if (ret <= 0)
1897 		goto out;
1898 
1899 	/* check if the ref was overwritten by another ref */
1900 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1901 			&ow_inode, &other_type);
1902 	if (ret < 0 && ret != -ENOENT)
1903 		goto out;
1904 	if (ret) {
1905 		/* was never and will never be overwritten */
1906 		ret = 0;
1907 		goto out;
1908 	}
1909 
1910 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1911 			NULL, NULL);
1912 	if (ret < 0)
1913 		goto out;
1914 
1915 	if (ow_inode == ino && gen == ino_gen) {
1916 		ret = 0;
1917 		goto out;
1918 	}
1919 
1920 	/*
1921 	 * We know that it is or will be overwritten. Check this now.
1922 	 * The current inode being processed might have been the one that caused
1923 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1924 	 * the current inode being processed.
1925 	 */
1926 	if ((ow_inode < sctx->send_progress) ||
1927 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1928 	     gen == sctx->cur_inode_gen))
1929 		ret = 1;
1930 	else
1931 		ret = 0;
1932 
1933 out:
1934 	return ret;
1935 }
1936 
1937 /*
1938  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1939  * that got overwritten. This is used by process_recorded_refs to determine
1940  * if it has to use the path as returned by get_cur_path or the orphan name.
1941  */
1942 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1943 {
1944 	int ret = 0;
1945 	struct fs_path *name = NULL;
1946 	u64 dir;
1947 	u64 dir_gen;
1948 
1949 	if (!sctx->parent_root)
1950 		goto out;
1951 
1952 	name = fs_path_alloc();
1953 	if (!name)
1954 		return -ENOMEM;
1955 
1956 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1957 	if (ret < 0)
1958 		goto out;
1959 
1960 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1961 			name->start, fs_path_len(name));
1962 
1963 out:
1964 	fs_path_free(name);
1965 	return ret;
1966 }
1967 
1968 /*
1969  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1970  * so we need to do some special handling in case we have clashes. This function
1971  * takes care of this with the help of name_cache_entry::radix_list.
1972  * In case of error, nce is kfreed.
1973  */
1974 static int name_cache_insert(struct send_ctx *sctx,
1975 			     struct name_cache_entry *nce)
1976 {
1977 	int ret = 0;
1978 	struct list_head *nce_head;
1979 
1980 	nce_head = radix_tree_lookup(&sctx->name_cache,
1981 			(unsigned long)nce->ino);
1982 	if (!nce_head) {
1983 		nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1984 		if (!nce_head) {
1985 			kfree(nce);
1986 			return -ENOMEM;
1987 		}
1988 		INIT_LIST_HEAD(nce_head);
1989 
1990 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1991 		if (ret < 0) {
1992 			kfree(nce_head);
1993 			kfree(nce);
1994 			return ret;
1995 		}
1996 	}
1997 	list_add_tail(&nce->radix_list, nce_head);
1998 	list_add_tail(&nce->list, &sctx->name_cache_list);
1999 	sctx->name_cache_size++;
2000 
2001 	return ret;
2002 }
2003 
2004 static void name_cache_delete(struct send_ctx *sctx,
2005 			      struct name_cache_entry *nce)
2006 {
2007 	struct list_head *nce_head;
2008 
2009 	nce_head = radix_tree_lookup(&sctx->name_cache,
2010 			(unsigned long)nce->ino);
2011 	if (!nce_head) {
2012 		btrfs_err(sctx->send_root->fs_info,
2013 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2014 			nce->ino, sctx->name_cache_size);
2015 	}
2016 
2017 	list_del(&nce->radix_list);
2018 	list_del(&nce->list);
2019 	sctx->name_cache_size--;
2020 
2021 	/*
2022 	 * We may not get to the final release of nce_head if the lookup fails
2023 	 */
2024 	if (nce_head && list_empty(nce_head)) {
2025 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2026 		kfree(nce_head);
2027 	}
2028 }
2029 
2030 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2031 						    u64 ino, u64 gen)
2032 {
2033 	struct list_head *nce_head;
2034 	struct name_cache_entry *cur;
2035 
2036 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2037 	if (!nce_head)
2038 		return NULL;
2039 
2040 	list_for_each_entry(cur, nce_head, radix_list) {
2041 		if (cur->ino == ino && cur->gen == gen)
2042 			return cur;
2043 	}
2044 	return NULL;
2045 }
2046 
2047 /*
2048  * Removes the entry from the list and adds it back to the end. This marks the
2049  * entry as recently used so that name_cache_clean_unused does not remove it.
2050  */
2051 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2052 {
2053 	list_del(&nce->list);
2054 	list_add_tail(&nce->list, &sctx->name_cache_list);
2055 }
2056 
2057 /*
2058  * Remove some entries from the beginning of name_cache_list.
2059  */
2060 static void name_cache_clean_unused(struct send_ctx *sctx)
2061 {
2062 	struct name_cache_entry *nce;
2063 
2064 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2065 		return;
2066 
2067 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2068 		nce = list_entry(sctx->name_cache_list.next,
2069 				struct name_cache_entry, list);
2070 		name_cache_delete(sctx, nce);
2071 		kfree(nce);
2072 	}
2073 }
2074 
2075 static void name_cache_free(struct send_ctx *sctx)
2076 {
2077 	struct name_cache_entry *nce;
2078 
2079 	while (!list_empty(&sctx->name_cache_list)) {
2080 		nce = list_entry(sctx->name_cache_list.next,
2081 				struct name_cache_entry, list);
2082 		name_cache_delete(sctx, nce);
2083 		kfree(nce);
2084 	}
2085 }
2086 
2087 /*
2088  * Used by get_cur_path for each ref up to the root.
2089  * Returns 0 if it succeeded.
2090  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2091  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2092  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2093  * Returns <0 in case of error.
2094  */
2095 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2096 				     u64 ino, u64 gen,
2097 				     u64 *parent_ino,
2098 				     u64 *parent_gen,
2099 				     struct fs_path *dest)
2100 {
2101 	int ret;
2102 	int nce_ret;
2103 	struct name_cache_entry *nce = NULL;
2104 
2105 	/*
2106 	 * First check if we already did a call to this function with the same
2107 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2108 	 * return the cached result.
2109 	 */
2110 	nce = name_cache_search(sctx, ino, gen);
2111 	if (nce) {
2112 		if (ino < sctx->send_progress && nce->need_later_update) {
2113 			name_cache_delete(sctx, nce);
2114 			kfree(nce);
2115 			nce = NULL;
2116 		} else {
2117 			name_cache_used(sctx, nce);
2118 			*parent_ino = nce->parent_ino;
2119 			*parent_gen = nce->parent_gen;
2120 			ret = fs_path_add(dest, nce->name, nce->name_len);
2121 			if (ret < 0)
2122 				goto out;
2123 			ret = nce->ret;
2124 			goto out;
2125 		}
2126 	}
2127 
2128 	/*
2129 	 * If the inode is not existent yet, add the orphan name and return 1.
2130 	 * This should only happen for the parent dir that we determine in
2131 	 * __record_new_ref
2132 	 */
2133 	ret = is_inode_existent(sctx, ino, gen);
2134 	if (ret < 0)
2135 		goto out;
2136 
2137 	if (!ret) {
2138 		ret = gen_unique_name(sctx, ino, gen, dest);
2139 		if (ret < 0)
2140 			goto out;
2141 		ret = 1;
2142 		goto out_cache;
2143 	}
2144 
2145 	/*
2146 	 * Depending on whether the inode was already processed or not, use
2147 	 * send_root or parent_root for ref lookup.
2148 	 */
2149 	if (ino < sctx->send_progress)
2150 		ret = get_first_ref(sctx->send_root, ino,
2151 				    parent_ino, parent_gen, dest);
2152 	else
2153 		ret = get_first_ref(sctx->parent_root, ino,
2154 				    parent_ino, parent_gen, dest);
2155 	if (ret < 0)
2156 		goto out;
2157 
2158 	/*
2159 	 * Check if the ref was overwritten by an inode's ref that was processed
2160 	 * earlier. If yes, treat as orphan and return 1.
2161 	 */
2162 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2163 			dest->start, dest->end - dest->start);
2164 	if (ret < 0)
2165 		goto out;
2166 	if (ret) {
2167 		fs_path_reset(dest);
2168 		ret = gen_unique_name(sctx, ino, gen, dest);
2169 		if (ret < 0)
2170 			goto out;
2171 		ret = 1;
2172 	}
2173 
2174 out_cache:
2175 	/*
2176 	 * Store the result of the lookup in the name cache.
2177 	 */
2178 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2179 	if (!nce) {
2180 		ret = -ENOMEM;
2181 		goto out;
2182 	}
2183 
2184 	nce->ino = ino;
2185 	nce->gen = gen;
2186 	nce->parent_ino = *parent_ino;
2187 	nce->parent_gen = *parent_gen;
2188 	nce->name_len = fs_path_len(dest);
2189 	nce->ret = ret;
2190 	strcpy(nce->name, dest->start);
2191 
2192 	if (ino < sctx->send_progress)
2193 		nce->need_later_update = 0;
2194 	else
2195 		nce->need_later_update = 1;
2196 
2197 	nce_ret = name_cache_insert(sctx, nce);
2198 	if (nce_ret < 0)
2199 		ret = nce_ret;
2200 	name_cache_clean_unused(sctx);
2201 
2202 out:
2203 	return ret;
2204 }
2205 
2206 /*
2207  * Magic happens here. This function returns the first ref to an inode as it
2208  * would look like while receiving the stream at this point in time.
2209  * We walk the path up to the root. For every inode in between, we check if it
2210  * was already processed/sent. If yes, we continue with the parent as found
2211  * in send_root. If not, we continue with the parent as found in parent_root.
2212  * If we encounter an inode that was deleted at this point in time, we use the
2213  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2214  * that were not created yet and overwritten inodes/refs.
2215  *
2216  * When do we have have orphan inodes:
2217  * 1. When an inode is freshly created and thus no valid refs are available yet
2218  * 2. When a directory lost all it's refs (deleted) but still has dir items
2219  *    inside which were not processed yet (pending for move/delete). If anyone
2220  *    tried to get the path to the dir items, it would get a path inside that
2221  *    orphan directory.
2222  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2223  *    of an unprocessed inode. If in that case the first ref would be
2224  *    overwritten, the overwritten inode gets "orphanized". Later when we
2225  *    process this overwritten inode, it is restored at a new place by moving
2226  *    the orphan inode.
2227  *
2228  * sctx->send_progress tells this function at which point in time receiving
2229  * would be.
2230  */
2231 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2232 			struct fs_path *dest)
2233 {
2234 	int ret = 0;
2235 	struct fs_path *name = NULL;
2236 	u64 parent_inode = 0;
2237 	u64 parent_gen = 0;
2238 	int stop = 0;
2239 
2240 	name = fs_path_alloc();
2241 	if (!name) {
2242 		ret = -ENOMEM;
2243 		goto out;
2244 	}
2245 
2246 	dest->reversed = 1;
2247 	fs_path_reset(dest);
2248 
2249 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2250 		struct waiting_dir_move *wdm;
2251 
2252 		fs_path_reset(name);
2253 
2254 		if (is_waiting_for_rm(sctx, ino)) {
2255 			ret = gen_unique_name(sctx, ino, gen, name);
2256 			if (ret < 0)
2257 				goto out;
2258 			ret = fs_path_add_path(dest, name);
2259 			break;
2260 		}
2261 
2262 		wdm = get_waiting_dir_move(sctx, ino);
2263 		if (wdm && wdm->orphanized) {
2264 			ret = gen_unique_name(sctx, ino, gen, name);
2265 			stop = 1;
2266 		} else if (wdm) {
2267 			ret = get_first_ref(sctx->parent_root, ino,
2268 					    &parent_inode, &parent_gen, name);
2269 		} else {
2270 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2271 							&parent_inode,
2272 							&parent_gen, name);
2273 			if (ret)
2274 				stop = 1;
2275 		}
2276 
2277 		if (ret < 0)
2278 			goto out;
2279 
2280 		ret = fs_path_add_path(dest, name);
2281 		if (ret < 0)
2282 			goto out;
2283 
2284 		ino = parent_inode;
2285 		gen = parent_gen;
2286 	}
2287 
2288 out:
2289 	fs_path_free(name);
2290 	if (!ret)
2291 		fs_path_unreverse(dest);
2292 	return ret;
2293 }
2294 
2295 /*
2296  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2297  */
2298 static int send_subvol_begin(struct send_ctx *sctx)
2299 {
2300 	int ret;
2301 	struct btrfs_root *send_root = sctx->send_root;
2302 	struct btrfs_root *parent_root = sctx->parent_root;
2303 	struct btrfs_path *path;
2304 	struct btrfs_key key;
2305 	struct btrfs_root_ref *ref;
2306 	struct extent_buffer *leaf;
2307 	char *name = NULL;
2308 	int namelen;
2309 
2310 	path = btrfs_alloc_path();
2311 	if (!path)
2312 		return -ENOMEM;
2313 
2314 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2315 	if (!name) {
2316 		btrfs_free_path(path);
2317 		return -ENOMEM;
2318 	}
2319 
2320 	key.objectid = send_root->objectid;
2321 	key.type = BTRFS_ROOT_BACKREF_KEY;
2322 	key.offset = 0;
2323 
2324 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2325 				&key, path, 1, 0);
2326 	if (ret < 0)
2327 		goto out;
2328 	if (ret) {
2329 		ret = -ENOENT;
2330 		goto out;
2331 	}
2332 
2333 	leaf = path->nodes[0];
2334 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2335 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2336 	    key.objectid != send_root->objectid) {
2337 		ret = -ENOENT;
2338 		goto out;
2339 	}
2340 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2341 	namelen = btrfs_root_ref_name_len(leaf, ref);
2342 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2343 	btrfs_release_path(path);
2344 
2345 	if (parent_root) {
2346 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2347 		if (ret < 0)
2348 			goto out;
2349 	} else {
2350 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2351 		if (ret < 0)
2352 			goto out;
2353 	}
2354 
2355 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2356 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2357 			sctx->send_root->root_item.uuid);
2358 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2359 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2360 	if (parent_root) {
2361 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2362 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2363 				     parent_root->root_item.received_uuid);
2364 		else
2365 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2366 				     parent_root->root_item.uuid);
2367 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2368 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2369 	}
2370 
2371 	ret = send_cmd(sctx);
2372 
2373 tlv_put_failure:
2374 out:
2375 	btrfs_free_path(path);
2376 	kfree(name);
2377 	return ret;
2378 }
2379 
2380 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2381 {
2382 	int ret = 0;
2383 	struct fs_path *p;
2384 
2385 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2386 
2387 	p = fs_path_alloc();
2388 	if (!p)
2389 		return -ENOMEM;
2390 
2391 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2392 	if (ret < 0)
2393 		goto out;
2394 
2395 	ret = get_cur_path(sctx, ino, gen, p);
2396 	if (ret < 0)
2397 		goto out;
2398 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2399 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2400 
2401 	ret = send_cmd(sctx);
2402 
2403 tlv_put_failure:
2404 out:
2405 	fs_path_free(p);
2406 	return ret;
2407 }
2408 
2409 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2410 {
2411 	int ret = 0;
2412 	struct fs_path *p;
2413 
2414 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2415 
2416 	p = fs_path_alloc();
2417 	if (!p)
2418 		return -ENOMEM;
2419 
2420 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2421 	if (ret < 0)
2422 		goto out;
2423 
2424 	ret = get_cur_path(sctx, ino, gen, p);
2425 	if (ret < 0)
2426 		goto out;
2427 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2428 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2429 
2430 	ret = send_cmd(sctx);
2431 
2432 tlv_put_failure:
2433 out:
2434 	fs_path_free(p);
2435 	return ret;
2436 }
2437 
2438 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2439 {
2440 	int ret = 0;
2441 	struct fs_path *p;
2442 
2443 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2444 
2445 	p = fs_path_alloc();
2446 	if (!p)
2447 		return -ENOMEM;
2448 
2449 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2450 	if (ret < 0)
2451 		goto out;
2452 
2453 	ret = get_cur_path(sctx, ino, gen, p);
2454 	if (ret < 0)
2455 		goto out;
2456 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2457 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2458 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2459 
2460 	ret = send_cmd(sctx);
2461 
2462 tlv_put_failure:
2463 out:
2464 	fs_path_free(p);
2465 	return ret;
2466 }
2467 
2468 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2469 {
2470 	int ret = 0;
2471 	struct fs_path *p = NULL;
2472 	struct btrfs_inode_item *ii;
2473 	struct btrfs_path *path = NULL;
2474 	struct extent_buffer *eb;
2475 	struct btrfs_key key;
2476 	int slot;
2477 
2478 verbose_printk("btrfs: send_utimes %llu\n", ino);
2479 
2480 	p = fs_path_alloc();
2481 	if (!p)
2482 		return -ENOMEM;
2483 
2484 	path = alloc_path_for_send();
2485 	if (!path) {
2486 		ret = -ENOMEM;
2487 		goto out;
2488 	}
2489 
2490 	key.objectid = ino;
2491 	key.type = BTRFS_INODE_ITEM_KEY;
2492 	key.offset = 0;
2493 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2494 	if (ret < 0)
2495 		goto out;
2496 
2497 	eb = path->nodes[0];
2498 	slot = path->slots[0];
2499 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2500 
2501 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2502 	if (ret < 0)
2503 		goto out;
2504 
2505 	ret = get_cur_path(sctx, ino, gen, p);
2506 	if (ret < 0)
2507 		goto out;
2508 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2509 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2510 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2511 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2512 	/* TODO Add otime support when the otime patches get into upstream */
2513 
2514 	ret = send_cmd(sctx);
2515 
2516 tlv_put_failure:
2517 out:
2518 	fs_path_free(p);
2519 	btrfs_free_path(path);
2520 	return ret;
2521 }
2522 
2523 /*
2524  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2525  * a valid path yet because we did not process the refs yet. So, the inode
2526  * is created as orphan.
2527  */
2528 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2529 {
2530 	int ret = 0;
2531 	struct fs_path *p;
2532 	int cmd;
2533 	u64 gen;
2534 	u64 mode;
2535 	u64 rdev;
2536 
2537 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2538 
2539 	p = fs_path_alloc();
2540 	if (!p)
2541 		return -ENOMEM;
2542 
2543 	if (ino != sctx->cur_ino) {
2544 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2545 				     NULL, NULL, &rdev);
2546 		if (ret < 0)
2547 			goto out;
2548 	} else {
2549 		gen = sctx->cur_inode_gen;
2550 		mode = sctx->cur_inode_mode;
2551 		rdev = sctx->cur_inode_rdev;
2552 	}
2553 
2554 	if (S_ISREG(mode)) {
2555 		cmd = BTRFS_SEND_C_MKFILE;
2556 	} else if (S_ISDIR(mode)) {
2557 		cmd = BTRFS_SEND_C_MKDIR;
2558 	} else if (S_ISLNK(mode)) {
2559 		cmd = BTRFS_SEND_C_SYMLINK;
2560 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2561 		cmd = BTRFS_SEND_C_MKNOD;
2562 	} else if (S_ISFIFO(mode)) {
2563 		cmd = BTRFS_SEND_C_MKFIFO;
2564 	} else if (S_ISSOCK(mode)) {
2565 		cmd = BTRFS_SEND_C_MKSOCK;
2566 	} else {
2567 		printk(KERN_WARNING "btrfs: unexpected inode type %o",
2568 				(int)(mode & S_IFMT));
2569 		ret = -ENOTSUPP;
2570 		goto out;
2571 	}
2572 
2573 	ret = begin_cmd(sctx, cmd);
2574 	if (ret < 0)
2575 		goto out;
2576 
2577 	ret = gen_unique_name(sctx, ino, gen, p);
2578 	if (ret < 0)
2579 		goto out;
2580 
2581 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2582 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2583 
2584 	if (S_ISLNK(mode)) {
2585 		fs_path_reset(p);
2586 		ret = read_symlink(sctx->send_root, ino, p);
2587 		if (ret < 0)
2588 			goto out;
2589 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2590 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2591 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2592 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2593 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2594 	}
2595 
2596 	ret = send_cmd(sctx);
2597 	if (ret < 0)
2598 		goto out;
2599 
2600 
2601 tlv_put_failure:
2602 out:
2603 	fs_path_free(p);
2604 	return ret;
2605 }
2606 
2607 /*
2608  * We need some special handling for inodes that get processed before the parent
2609  * directory got created. See process_recorded_refs for details.
2610  * This function does the check if we already created the dir out of order.
2611  */
2612 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2613 {
2614 	int ret = 0;
2615 	struct btrfs_path *path = NULL;
2616 	struct btrfs_key key;
2617 	struct btrfs_key found_key;
2618 	struct btrfs_key di_key;
2619 	struct extent_buffer *eb;
2620 	struct btrfs_dir_item *di;
2621 	int slot;
2622 
2623 	path = alloc_path_for_send();
2624 	if (!path) {
2625 		ret = -ENOMEM;
2626 		goto out;
2627 	}
2628 
2629 	key.objectid = dir;
2630 	key.type = BTRFS_DIR_INDEX_KEY;
2631 	key.offset = 0;
2632 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2633 	if (ret < 0)
2634 		goto out;
2635 
2636 	while (1) {
2637 		eb = path->nodes[0];
2638 		slot = path->slots[0];
2639 		if (slot >= btrfs_header_nritems(eb)) {
2640 			ret = btrfs_next_leaf(sctx->send_root, path);
2641 			if (ret < 0) {
2642 				goto out;
2643 			} else if (ret > 0) {
2644 				ret = 0;
2645 				break;
2646 			}
2647 			continue;
2648 		}
2649 
2650 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2651 		if (found_key.objectid != key.objectid ||
2652 		    found_key.type != key.type) {
2653 			ret = 0;
2654 			goto out;
2655 		}
2656 
2657 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2658 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2659 
2660 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2661 		    di_key.objectid < sctx->send_progress) {
2662 			ret = 1;
2663 			goto out;
2664 		}
2665 
2666 		path->slots[0]++;
2667 	}
2668 
2669 out:
2670 	btrfs_free_path(path);
2671 	return ret;
2672 }
2673 
2674 /*
2675  * Only creates the inode if it is:
2676  * 1. Not a directory
2677  * 2. Or a directory which was not created already due to out of order
2678  *    directories. See did_create_dir and process_recorded_refs for details.
2679  */
2680 static int send_create_inode_if_needed(struct send_ctx *sctx)
2681 {
2682 	int ret;
2683 
2684 	if (S_ISDIR(sctx->cur_inode_mode)) {
2685 		ret = did_create_dir(sctx, sctx->cur_ino);
2686 		if (ret < 0)
2687 			goto out;
2688 		if (ret) {
2689 			ret = 0;
2690 			goto out;
2691 		}
2692 	}
2693 
2694 	ret = send_create_inode(sctx, sctx->cur_ino);
2695 	if (ret < 0)
2696 		goto out;
2697 
2698 out:
2699 	return ret;
2700 }
2701 
2702 struct recorded_ref {
2703 	struct list_head list;
2704 	char *dir_path;
2705 	char *name;
2706 	struct fs_path *full_path;
2707 	u64 dir;
2708 	u64 dir_gen;
2709 	int dir_path_len;
2710 	int name_len;
2711 };
2712 
2713 /*
2714  * We need to process new refs before deleted refs, but compare_tree gives us
2715  * everything mixed. So we first record all refs and later process them.
2716  * This function is a helper to record one ref.
2717  */
2718 static int __record_ref(struct list_head *head, u64 dir,
2719 		      u64 dir_gen, struct fs_path *path)
2720 {
2721 	struct recorded_ref *ref;
2722 
2723 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
2724 	if (!ref)
2725 		return -ENOMEM;
2726 
2727 	ref->dir = dir;
2728 	ref->dir_gen = dir_gen;
2729 	ref->full_path = path;
2730 
2731 	ref->name = (char *)kbasename(ref->full_path->start);
2732 	ref->name_len = ref->full_path->end - ref->name;
2733 	ref->dir_path = ref->full_path->start;
2734 	if (ref->name == ref->full_path->start)
2735 		ref->dir_path_len = 0;
2736 	else
2737 		ref->dir_path_len = ref->full_path->end -
2738 				ref->full_path->start - 1 - ref->name_len;
2739 
2740 	list_add_tail(&ref->list, head);
2741 	return 0;
2742 }
2743 
2744 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2745 {
2746 	struct recorded_ref *new;
2747 
2748 	new = kmalloc(sizeof(*ref), GFP_NOFS);
2749 	if (!new)
2750 		return -ENOMEM;
2751 
2752 	new->dir = ref->dir;
2753 	new->dir_gen = ref->dir_gen;
2754 	new->full_path = NULL;
2755 	INIT_LIST_HEAD(&new->list);
2756 	list_add_tail(&new->list, list);
2757 	return 0;
2758 }
2759 
2760 static void __free_recorded_refs(struct list_head *head)
2761 {
2762 	struct recorded_ref *cur;
2763 
2764 	while (!list_empty(head)) {
2765 		cur = list_entry(head->next, struct recorded_ref, list);
2766 		fs_path_free(cur->full_path);
2767 		list_del(&cur->list);
2768 		kfree(cur);
2769 	}
2770 }
2771 
2772 static void free_recorded_refs(struct send_ctx *sctx)
2773 {
2774 	__free_recorded_refs(&sctx->new_refs);
2775 	__free_recorded_refs(&sctx->deleted_refs);
2776 }
2777 
2778 /*
2779  * Renames/moves a file/dir to its orphan name. Used when the first
2780  * ref of an unprocessed inode gets overwritten and for all non empty
2781  * directories.
2782  */
2783 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2784 			  struct fs_path *path)
2785 {
2786 	int ret;
2787 	struct fs_path *orphan;
2788 
2789 	orphan = fs_path_alloc();
2790 	if (!orphan)
2791 		return -ENOMEM;
2792 
2793 	ret = gen_unique_name(sctx, ino, gen, orphan);
2794 	if (ret < 0)
2795 		goto out;
2796 
2797 	ret = send_rename(sctx, path, orphan);
2798 
2799 out:
2800 	fs_path_free(orphan);
2801 	return ret;
2802 }
2803 
2804 static struct orphan_dir_info *
2805 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2806 {
2807 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2808 	struct rb_node *parent = NULL;
2809 	struct orphan_dir_info *entry, *odi;
2810 
2811 	odi = kmalloc(sizeof(*odi), GFP_NOFS);
2812 	if (!odi)
2813 		return ERR_PTR(-ENOMEM);
2814 	odi->ino = dir_ino;
2815 	odi->gen = 0;
2816 
2817 	while (*p) {
2818 		parent = *p;
2819 		entry = rb_entry(parent, struct orphan_dir_info, node);
2820 		if (dir_ino < entry->ino) {
2821 			p = &(*p)->rb_left;
2822 		} else if (dir_ino > entry->ino) {
2823 			p = &(*p)->rb_right;
2824 		} else {
2825 			kfree(odi);
2826 			return entry;
2827 		}
2828 	}
2829 
2830 	rb_link_node(&odi->node, parent, p);
2831 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2832 	return odi;
2833 }
2834 
2835 static struct orphan_dir_info *
2836 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2837 {
2838 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2839 	struct orphan_dir_info *entry;
2840 
2841 	while (n) {
2842 		entry = rb_entry(n, struct orphan_dir_info, node);
2843 		if (dir_ino < entry->ino)
2844 			n = n->rb_left;
2845 		else if (dir_ino > entry->ino)
2846 			n = n->rb_right;
2847 		else
2848 			return entry;
2849 	}
2850 	return NULL;
2851 }
2852 
2853 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2854 {
2855 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2856 
2857 	return odi != NULL;
2858 }
2859 
2860 static void free_orphan_dir_info(struct send_ctx *sctx,
2861 				 struct orphan_dir_info *odi)
2862 {
2863 	if (!odi)
2864 		return;
2865 	rb_erase(&odi->node, &sctx->orphan_dirs);
2866 	kfree(odi);
2867 }
2868 
2869 /*
2870  * Returns 1 if a directory can be removed at this point in time.
2871  * We check this by iterating all dir items and checking if the inode behind
2872  * the dir item was already processed.
2873  */
2874 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2875 		     u64 send_progress)
2876 {
2877 	int ret = 0;
2878 	struct btrfs_root *root = sctx->parent_root;
2879 	struct btrfs_path *path;
2880 	struct btrfs_key key;
2881 	struct btrfs_key found_key;
2882 	struct btrfs_key loc;
2883 	struct btrfs_dir_item *di;
2884 
2885 	/*
2886 	 * Don't try to rmdir the top/root subvolume dir.
2887 	 */
2888 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2889 		return 0;
2890 
2891 	path = alloc_path_for_send();
2892 	if (!path)
2893 		return -ENOMEM;
2894 
2895 	key.objectid = dir;
2896 	key.type = BTRFS_DIR_INDEX_KEY;
2897 	key.offset = 0;
2898 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2899 	if (ret < 0)
2900 		goto out;
2901 
2902 	while (1) {
2903 		struct waiting_dir_move *dm;
2904 
2905 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2906 			ret = btrfs_next_leaf(root, path);
2907 			if (ret < 0)
2908 				goto out;
2909 			else if (ret > 0)
2910 				break;
2911 			continue;
2912 		}
2913 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2914 				      path->slots[0]);
2915 		if (found_key.objectid != key.objectid ||
2916 		    found_key.type != key.type)
2917 			break;
2918 
2919 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2920 				struct btrfs_dir_item);
2921 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2922 
2923 		dm = get_waiting_dir_move(sctx, loc.objectid);
2924 		if (dm) {
2925 			struct orphan_dir_info *odi;
2926 
2927 			odi = add_orphan_dir_info(sctx, dir);
2928 			if (IS_ERR(odi)) {
2929 				ret = PTR_ERR(odi);
2930 				goto out;
2931 			}
2932 			odi->gen = dir_gen;
2933 			dm->rmdir_ino = dir;
2934 			ret = 0;
2935 			goto out;
2936 		}
2937 
2938 		if (loc.objectid > send_progress) {
2939 			ret = 0;
2940 			goto out;
2941 		}
2942 
2943 		path->slots[0]++;
2944 	}
2945 
2946 	ret = 1;
2947 
2948 out:
2949 	btrfs_free_path(path);
2950 	return ret;
2951 }
2952 
2953 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2954 {
2955 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2956 
2957 	return entry != NULL;
2958 }
2959 
2960 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
2961 {
2962 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2963 	struct rb_node *parent = NULL;
2964 	struct waiting_dir_move *entry, *dm;
2965 
2966 	dm = kmalloc(sizeof(*dm), GFP_NOFS);
2967 	if (!dm)
2968 		return -ENOMEM;
2969 	dm->ino = ino;
2970 	dm->rmdir_ino = 0;
2971 	dm->orphanized = orphanized;
2972 
2973 	while (*p) {
2974 		parent = *p;
2975 		entry = rb_entry(parent, struct waiting_dir_move, node);
2976 		if (ino < entry->ino) {
2977 			p = &(*p)->rb_left;
2978 		} else if (ino > entry->ino) {
2979 			p = &(*p)->rb_right;
2980 		} else {
2981 			kfree(dm);
2982 			return -EEXIST;
2983 		}
2984 	}
2985 
2986 	rb_link_node(&dm->node, parent, p);
2987 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2988 	return 0;
2989 }
2990 
2991 static struct waiting_dir_move *
2992 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2993 {
2994 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2995 	struct waiting_dir_move *entry;
2996 
2997 	while (n) {
2998 		entry = rb_entry(n, struct waiting_dir_move, node);
2999 		if (ino < entry->ino)
3000 			n = n->rb_left;
3001 		else if (ino > entry->ino)
3002 			n = n->rb_right;
3003 		else
3004 			return entry;
3005 	}
3006 	return NULL;
3007 }
3008 
3009 static void free_waiting_dir_move(struct send_ctx *sctx,
3010 				  struct waiting_dir_move *dm)
3011 {
3012 	if (!dm)
3013 		return;
3014 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3015 	kfree(dm);
3016 }
3017 
3018 static int add_pending_dir_move(struct send_ctx *sctx,
3019 				u64 ino,
3020 				u64 ino_gen,
3021 				u64 parent_ino,
3022 				struct list_head *new_refs,
3023 				struct list_head *deleted_refs,
3024 				const bool is_orphan)
3025 {
3026 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3027 	struct rb_node *parent = NULL;
3028 	struct pending_dir_move *entry = NULL, *pm;
3029 	struct recorded_ref *cur;
3030 	int exists = 0;
3031 	int ret;
3032 
3033 	pm = kmalloc(sizeof(*pm), GFP_NOFS);
3034 	if (!pm)
3035 		return -ENOMEM;
3036 	pm->parent_ino = parent_ino;
3037 	pm->ino = ino;
3038 	pm->gen = ino_gen;
3039 	pm->is_orphan = is_orphan;
3040 	INIT_LIST_HEAD(&pm->list);
3041 	INIT_LIST_HEAD(&pm->update_refs);
3042 	RB_CLEAR_NODE(&pm->node);
3043 
3044 	while (*p) {
3045 		parent = *p;
3046 		entry = rb_entry(parent, struct pending_dir_move, node);
3047 		if (parent_ino < entry->parent_ino) {
3048 			p = &(*p)->rb_left;
3049 		} else if (parent_ino > entry->parent_ino) {
3050 			p = &(*p)->rb_right;
3051 		} else {
3052 			exists = 1;
3053 			break;
3054 		}
3055 	}
3056 
3057 	list_for_each_entry(cur, deleted_refs, list) {
3058 		ret = dup_ref(cur, &pm->update_refs);
3059 		if (ret < 0)
3060 			goto out;
3061 	}
3062 	list_for_each_entry(cur, new_refs, list) {
3063 		ret = dup_ref(cur, &pm->update_refs);
3064 		if (ret < 0)
3065 			goto out;
3066 	}
3067 
3068 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3069 	if (ret)
3070 		goto out;
3071 
3072 	if (exists) {
3073 		list_add_tail(&pm->list, &entry->list);
3074 	} else {
3075 		rb_link_node(&pm->node, parent, p);
3076 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3077 	}
3078 	ret = 0;
3079 out:
3080 	if (ret) {
3081 		__free_recorded_refs(&pm->update_refs);
3082 		kfree(pm);
3083 	}
3084 	return ret;
3085 }
3086 
3087 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3088 						      u64 parent_ino)
3089 {
3090 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3091 	struct pending_dir_move *entry;
3092 
3093 	while (n) {
3094 		entry = rb_entry(n, struct pending_dir_move, node);
3095 		if (parent_ino < entry->parent_ino)
3096 			n = n->rb_left;
3097 		else if (parent_ino > entry->parent_ino)
3098 			n = n->rb_right;
3099 		else
3100 			return entry;
3101 	}
3102 	return NULL;
3103 }
3104 
3105 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3106 {
3107 	struct fs_path *from_path = NULL;
3108 	struct fs_path *to_path = NULL;
3109 	struct fs_path *name = NULL;
3110 	u64 orig_progress = sctx->send_progress;
3111 	struct recorded_ref *cur;
3112 	u64 parent_ino, parent_gen;
3113 	struct waiting_dir_move *dm = NULL;
3114 	u64 rmdir_ino = 0;
3115 	int ret;
3116 
3117 	name = fs_path_alloc();
3118 	from_path = fs_path_alloc();
3119 	if (!name || !from_path) {
3120 		ret = -ENOMEM;
3121 		goto out;
3122 	}
3123 
3124 	dm = get_waiting_dir_move(sctx, pm->ino);
3125 	ASSERT(dm);
3126 	rmdir_ino = dm->rmdir_ino;
3127 	free_waiting_dir_move(sctx, dm);
3128 
3129 	if (pm->is_orphan) {
3130 		ret = gen_unique_name(sctx, pm->ino,
3131 				      pm->gen, from_path);
3132 	} else {
3133 		ret = get_first_ref(sctx->parent_root, pm->ino,
3134 				    &parent_ino, &parent_gen, name);
3135 		if (ret < 0)
3136 			goto out;
3137 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3138 				   from_path);
3139 		if (ret < 0)
3140 			goto out;
3141 		ret = fs_path_add_path(from_path, name);
3142 	}
3143 	if (ret < 0)
3144 		goto out;
3145 
3146 	sctx->send_progress = sctx->cur_ino + 1;
3147 	fs_path_reset(name);
3148 	to_path = name;
3149 	name = NULL;
3150 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3151 	if (ret < 0)
3152 		goto out;
3153 
3154 	ret = send_rename(sctx, from_path, to_path);
3155 	if (ret < 0)
3156 		goto out;
3157 
3158 	if (rmdir_ino) {
3159 		struct orphan_dir_info *odi;
3160 
3161 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3162 		if (!odi) {
3163 			/* already deleted */
3164 			goto finish;
3165 		}
3166 		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3167 		if (ret < 0)
3168 			goto out;
3169 		if (!ret)
3170 			goto finish;
3171 
3172 		name = fs_path_alloc();
3173 		if (!name) {
3174 			ret = -ENOMEM;
3175 			goto out;
3176 		}
3177 		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3178 		if (ret < 0)
3179 			goto out;
3180 		ret = send_rmdir(sctx, name);
3181 		if (ret < 0)
3182 			goto out;
3183 		free_orphan_dir_info(sctx, odi);
3184 	}
3185 
3186 finish:
3187 	ret = send_utimes(sctx, pm->ino, pm->gen);
3188 	if (ret < 0)
3189 		goto out;
3190 
3191 	/*
3192 	 * After rename/move, need to update the utimes of both new parent(s)
3193 	 * and old parent(s).
3194 	 */
3195 	list_for_each_entry(cur, &pm->update_refs, list) {
3196 		if (cur->dir == rmdir_ino)
3197 			continue;
3198 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3199 		if (ret < 0)
3200 			goto out;
3201 	}
3202 
3203 out:
3204 	fs_path_free(name);
3205 	fs_path_free(from_path);
3206 	fs_path_free(to_path);
3207 	sctx->send_progress = orig_progress;
3208 
3209 	return ret;
3210 }
3211 
3212 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3213 {
3214 	if (!list_empty(&m->list))
3215 		list_del(&m->list);
3216 	if (!RB_EMPTY_NODE(&m->node))
3217 		rb_erase(&m->node, &sctx->pending_dir_moves);
3218 	__free_recorded_refs(&m->update_refs);
3219 	kfree(m);
3220 }
3221 
3222 static void tail_append_pending_moves(struct pending_dir_move *moves,
3223 				      struct list_head *stack)
3224 {
3225 	if (list_empty(&moves->list)) {
3226 		list_add_tail(&moves->list, stack);
3227 	} else {
3228 		LIST_HEAD(list);
3229 		list_splice_init(&moves->list, &list);
3230 		list_add_tail(&moves->list, stack);
3231 		list_splice_tail(&list, stack);
3232 	}
3233 }
3234 
3235 static int apply_children_dir_moves(struct send_ctx *sctx)
3236 {
3237 	struct pending_dir_move *pm;
3238 	struct list_head stack;
3239 	u64 parent_ino = sctx->cur_ino;
3240 	int ret = 0;
3241 
3242 	pm = get_pending_dir_moves(sctx, parent_ino);
3243 	if (!pm)
3244 		return 0;
3245 
3246 	INIT_LIST_HEAD(&stack);
3247 	tail_append_pending_moves(pm, &stack);
3248 
3249 	while (!list_empty(&stack)) {
3250 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3251 		parent_ino = pm->ino;
3252 		ret = apply_dir_move(sctx, pm);
3253 		free_pending_move(sctx, pm);
3254 		if (ret)
3255 			goto out;
3256 		pm = get_pending_dir_moves(sctx, parent_ino);
3257 		if (pm)
3258 			tail_append_pending_moves(pm, &stack);
3259 	}
3260 	return 0;
3261 
3262 out:
3263 	while (!list_empty(&stack)) {
3264 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3265 		free_pending_move(sctx, pm);
3266 	}
3267 	return ret;
3268 }
3269 
3270 /*
3271  * We might need to delay a directory rename even when no ancestor directory
3272  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3273  * renamed. This happens when we rename a directory to the old name (the name
3274  * in the parent root) of some other unrelated directory that got its rename
3275  * delayed due to some ancestor with higher number that got renamed.
3276  *
3277  * Example:
3278  *
3279  * Parent snapshot:
3280  * .                                       (ino 256)
3281  * |---- a/                                (ino 257)
3282  * |     |---- file                        (ino 260)
3283  * |
3284  * |---- b/                                (ino 258)
3285  * |---- c/                                (ino 259)
3286  *
3287  * Send snapshot:
3288  * .                                       (ino 256)
3289  * |---- a/                                (ino 258)
3290  * |---- x/                                (ino 259)
3291  *       |---- y/                          (ino 257)
3292  *             |----- file                 (ino 260)
3293  *
3294  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3295  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3296  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3297  * must issue is:
3298  *
3299  * 1 - rename 259 from 'c' to 'x'
3300  * 2 - rename 257 from 'a' to 'x/y'
3301  * 3 - rename 258 from 'b' to 'a'
3302  *
3303  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3304  * be done right away and < 0 on error.
3305  */
3306 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3307 				  struct recorded_ref *parent_ref,
3308 				  const bool is_orphan)
3309 {
3310 	struct btrfs_path *path;
3311 	struct btrfs_key key;
3312 	struct btrfs_key di_key;
3313 	struct btrfs_dir_item *di;
3314 	u64 left_gen;
3315 	u64 right_gen;
3316 	int ret = 0;
3317 
3318 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3319 		return 0;
3320 
3321 	path = alloc_path_for_send();
3322 	if (!path)
3323 		return -ENOMEM;
3324 
3325 	key.objectid = parent_ref->dir;
3326 	key.type = BTRFS_DIR_ITEM_KEY;
3327 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3328 
3329 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3330 	if (ret < 0) {
3331 		goto out;
3332 	} else if (ret > 0) {
3333 		ret = 0;
3334 		goto out;
3335 	}
3336 
3337 	di = btrfs_match_dir_item_name(sctx->parent_root, path,
3338 				       parent_ref->name, parent_ref->name_len);
3339 	if (!di) {
3340 		ret = 0;
3341 		goto out;
3342 	}
3343 	/*
3344 	 * di_key.objectid has the number of the inode that has a dentry in the
3345 	 * parent directory with the same name that sctx->cur_ino is being
3346 	 * renamed to. We need to check if that inode is in the send root as
3347 	 * well and if it is currently marked as an inode with a pending rename,
3348 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3349 	 * that it happens after that other inode is renamed.
3350 	 */
3351 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3352 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3353 		ret = 0;
3354 		goto out;
3355 	}
3356 
3357 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3358 			     &left_gen, NULL, NULL, NULL, NULL);
3359 	if (ret < 0)
3360 		goto out;
3361 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3362 			     &right_gen, NULL, NULL, NULL, NULL);
3363 	if (ret < 0) {
3364 		if (ret == -ENOENT)
3365 			ret = 0;
3366 		goto out;
3367 	}
3368 
3369 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3370 	if (right_gen != left_gen) {
3371 		ret = 0;
3372 		goto out;
3373 	}
3374 
3375 	if (is_waiting_for_move(sctx, di_key.objectid)) {
3376 		ret = add_pending_dir_move(sctx,
3377 					   sctx->cur_ino,
3378 					   sctx->cur_inode_gen,
3379 					   di_key.objectid,
3380 					   &sctx->new_refs,
3381 					   &sctx->deleted_refs,
3382 					   is_orphan);
3383 		if (!ret)
3384 			ret = 1;
3385 	}
3386 out:
3387 	btrfs_free_path(path);
3388 	return ret;
3389 }
3390 
3391 /*
3392  * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3393  * Return 1 if true, 0 if false and < 0 on error.
3394  */
3395 static int is_ancestor(struct btrfs_root *root,
3396 		       const u64 ino1,
3397 		       const u64 ino1_gen,
3398 		       const u64 ino2,
3399 		       struct fs_path *fs_path)
3400 {
3401 	u64 ino = ino2;
3402 
3403 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3404 		int ret;
3405 		u64 parent;
3406 		u64 parent_gen;
3407 
3408 		fs_path_reset(fs_path);
3409 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3410 		if (ret < 0) {
3411 			if (ret == -ENOENT && ino == ino2)
3412 				ret = 0;
3413 			return ret;
3414 		}
3415 		if (parent == ino1)
3416 			return parent_gen == ino1_gen ? 1 : 0;
3417 		ino = parent;
3418 	}
3419 	return 0;
3420 }
3421 
3422 static int wait_for_parent_move(struct send_ctx *sctx,
3423 				struct recorded_ref *parent_ref,
3424 				const bool is_orphan)
3425 {
3426 	int ret = 0;
3427 	u64 ino = parent_ref->dir;
3428 	u64 parent_ino_before, parent_ino_after;
3429 	struct fs_path *path_before = NULL;
3430 	struct fs_path *path_after = NULL;
3431 	int len1, len2;
3432 
3433 	path_after = fs_path_alloc();
3434 	path_before = fs_path_alloc();
3435 	if (!path_after || !path_before) {
3436 		ret = -ENOMEM;
3437 		goto out;
3438 	}
3439 
3440 	/*
3441 	 * Our current directory inode may not yet be renamed/moved because some
3442 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3443 	 * such ancestor exists and make sure our own rename/move happens after
3444 	 * that ancestor is processed to avoid path build infinite loops (done
3445 	 * at get_cur_path()).
3446 	 */
3447 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3448 		if (is_waiting_for_move(sctx, ino)) {
3449 			/*
3450 			 * If the current inode is an ancestor of ino in the
3451 			 * parent root, we need to delay the rename of the
3452 			 * current inode, otherwise don't delayed the rename
3453 			 * because we can end up with a circular dependency
3454 			 * of renames, resulting in some directories never
3455 			 * getting the respective rename operations issued in
3456 			 * the send stream or getting into infinite path build
3457 			 * loops.
3458 			 */
3459 			ret = is_ancestor(sctx->parent_root,
3460 					  sctx->cur_ino, sctx->cur_inode_gen,
3461 					  ino, path_before);
3462 			break;
3463 		}
3464 
3465 		fs_path_reset(path_before);
3466 		fs_path_reset(path_after);
3467 
3468 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3469 				    NULL, path_after);
3470 		if (ret < 0)
3471 			goto out;
3472 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3473 				    NULL, path_before);
3474 		if (ret < 0 && ret != -ENOENT) {
3475 			goto out;
3476 		} else if (ret == -ENOENT) {
3477 			ret = 0;
3478 			break;
3479 		}
3480 
3481 		len1 = fs_path_len(path_before);
3482 		len2 = fs_path_len(path_after);
3483 		if (ino > sctx->cur_ino &&
3484 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3485 		     memcmp(path_before->start, path_after->start, len1))) {
3486 			ret = 1;
3487 			break;
3488 		}
3489 		ino = parent_ino_after;
3490 	}
3491 
3492 out:
3493 	fs_path_free(path_before);
3494 	fs_path_free(path_after);
3495 
3496 	if (ret == 1) {
3497 		ret = add_pending_dir_move(sctx,
3498 					   sctx->cur_ino,
3499 					   sctx->cur_inode_gen,
3500 					   ino,
3501 					   &sctx->new_refs,
3502 					   &sctx->deleted_refs,
3503 					   is_orphan);
3504 		if (!ret)
3505 			ret = 1;
3506 	}
3507 
3508 	return ret;
3509 }
3510 
3511 /*
3512  * This does all the move/link/unlink/rmdir magic.
3513  */
3514 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3515 {
3516 	int ret = 0;
3517 	struct recorded_ref *cur;
3518 	struct recorded_ref *cur2;
3519 	struct list_head check_dirs;
3520 	struct fs_path *valid_path = NULL;
3521 	u64 ow_inode = 0;
3522 	u64 ow_gen;
3523 	int did_overwrite = 0;
3524 	int is_orphan = 0;
3525 	u64 last_dir_ino_rm = 0;
3526 	bool can_rename = true;
3527 
3528 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3529 
3530 	/*
3531 	 * This should never happen as the root dir always has the same ref
3532 	 * which is always '..'
3533 	 */
3534 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3535 	INIT_LIST_HEAD(&check_dirs);
3536 
3537 	valid_path = fs_path_alloc();
3538 	if (!valid_path) {
3539 		ret = -ENOMEM;
3540 		goto out;
3541 	}
3542 
3543 	/*
3544 	 * First, check if the first ref of the current inode was overwritten
3545 	 * before. If yes, we know that the current inode was already orphanized
3546 	 * and thus use the orphan name. If not, we can use get_cur_path to
3547 	 * get the path of the first ref as it would like while receiving at
3548 	 * this point in time.
3549 	 * New inodes are always orphan at the beginning, so force to use the
3550 	 * orphan name in this case.
3551 	 * The first ref is stored in valid_path and will be updated if it
3552 	 * gets moved around.
3553 	 */
3554 	if (!sctx->cur_inode_new) {
3555 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3556 				sctx->cur_inode_gen);
3557 		if (ret < 0)
3558 			goto out;
3559 		if (ret)
3560 			did_overwrite = 1;
3561 	}
3562 	if (sctx->cur_inode_new || did_overwrite) {
3563 		ret = gen_unique_name(sctx, sctx->cur_ino,
3564 				sctx->cur_inode_gen, valid_path);
3565 		if (ret < 0)
3566 			goto out;
3567 		is_orphan = 1;
3568 	} else {
3569 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3570 				valid_path);
3571 		if (ret < 0)
3572 			goto out;
3573 	}
3574 
3575 	list_for_each_entry(cur, &sctx->new_refs, list) {
3576 		/*
3577 		 * We may have refs where the parent directory does not exist
3578 		 * yet. This happens if the parent directories inum is higher
3579 		 * the the current inum. To handle this case, we create the
3580 		 * parent directory out of order. But we need to check if this
3581 		 * did already happen before due to other refs in the same dir.
3582 		 */
3583 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3584 		if (ret < 0)
3585 			goto out;
3586 		if (ret == inode_state_will_create) {
3587 			ret = 0;
3588 			/*
3589 			 * First check if any of the current inodes refs did
3590 			 * already create the dir.
3591 			 */
3592 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3593 				if (cur == cur2)
3594 					break;
3595 				if (cur2->dir == cur->dir) {
3596 					ret = 1;
3597 					break;
3598 				}
3599 			}
3600 
3601 			/*
3602 			 * If that did not happen, check if a previous inode
3603 			 * did already create the dir.
3604 			 */
3605 			if (!ret)
3606 				ret = did_create_dir(sctx, cur->dir);
3607 			if (ret < 0)
3608 				goto out;
3609 			if (!ret) {
3610 				ret = send_create_inode(sctx, cur->dir);
3611 				if (ret < 0)
3612 					goto out;
3613 			}
3614 		}
3615 
3616 		/*
3617 		 * Check if this new ref would overwrite the first ref of
3618 		 * another unprocessed inode. If yes, orphanize the
3619 		 * overwritten inode. If we find an overwritten ref that is
3620 		 * not the first ref, simply unlink it.
3621 		 */
3622 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3623 				cur->name, cur->name_len,
3624 				&ow_inode, &ow_gen);
3625 		if (ret < 0)
3626 			goto out;
3627 		if (ret) {
3628 			ret = is_first_ref(sctx->parent_root,
3629 					   ow_inode, cur->dir, cur->name,
3630 					   cur->name_len);
3631 			if (ret < 0)
3632 				goto out;
3633 			if (ret) {
3634 				struct name_cache_entry *nce;
3635 
3636 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3637 						cur->full_path);
3638 				if (ret < 0)
3639 					goto out;
3640 				/*
3641 				 * Make sure we clear our orphanized inode's
3642 				 * name from the name cache. This is because the
3643 				 * inode ow_inode might be an ancestor of some
3644 				 * other inode that will be orphanized as well
3645 				 * later and has an inode number greater than
3646 				 * sctx->send_progress. We need to prevent
3647 				 * future name lookups from using the old name
3648 				 * and get instead the orphan name.
3649 				 */
3650 				nce = name_cache_search(sctx, ow_inode, ow_gen);
3651 				if (nce) {
3652 					name_cache_delete(sctx, nce);
3653 					kfree(nce);
3654 				}
3655 			} else {
3656 				ret = send_unlink(sctx, cur->full_path);
3657 				if (ret < 0)
3658 					goto out;
3659 			}
3660 		}
3661 
3662 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3663 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3664 			if (ret < 0)
3665 				goto out;
3666 			if (ret == 1) {
3667 				can_rename = false;
3668 				*pending_move = 1;
3669 			}
3670 		}
3671 
3672 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3673 		    can_rename) {
3674 			ret = wait_for_parent_move(sctx, cur, is_orphan);
3675 			if (ret < 0)
3676 				goto out;
3677 			if (ret == 1) {
3678 				can_rename = false;
3679 				*pending_move = 1;
3680 			}
3681 		}
3682 
3683 		/*
3684 		 * link/move the ref to the new place. If we have an orphan
3685 		 * inode, move it and update valid_path. If not, link or move
3686 		 * it depending on the inode mode.
3687 		 */
3688 		if (is_orphan && can_rename) {
3689 			ret = send_rename(sctx, valid_path, cur->full_path);
3690 			if (ret < 0)
3691 				goto out;
3692 			is_orphan = 0;
3693 			ret = fs_path_copy(valid_path, cur->full_path);
3694 			if (ret < 0)
3695 				goto out;
3696 		} else if (can_rename) {
3697 			if (S_ISDIR(sctx->cur_inode_mode)) {
3698 				/*
3699 				 * Dirs can't be linked, so move it. For moved
3700 				 * dirs, we always have one new and one deleted
3701 				 * ref. The deleted ref is ignored later.
3702 				 */
3703 				ret = send_rename(sctx, valid_path,
3704 						  cur->full_path);
3705 				if (!ret)
3706 					ret = fs_path_copy(valid_path,
3707 							   cur->full_path);
3708 				if (ret < 0)
3709 					goto out;
3710 			} else {
3711 				ret = send_link(sctx, cur->full_path,
3712 						valid_path);
3713 				if (ret < 0)
3714 					goto out;
3715 			}
3716 		}
3717 		ret = dup_ref(cur, &check_dirs);
3718 		if (ret < 0)
3719 			goto out;
3720 	}
3721 
3722 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3723 		/*
3724 		 * Check if we can already rmdir the directory. If not,
3725 		 * orphanize it. For every dir item inside that gets deleted
3726 		 * later, we do this check again and rmdir it then if possible.
3727 		 * See the use of check_dirs for more details.
3728 		 */
3729 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3730 				sctx->cur_ino);
3731 		if (ret < 0)
3732 			goto out;
3733 		if (ret) {
3734 			ret = send_rmdir(sctx, valid_path);
3735 			if (ret < 0)
3736 				goto out;
3737 		} else if (!is_orphan) {
3738 			ret = orphanize_inode(sctx, sctx->cur_ino,
3739 					sctx->cur_inode_gen, valid_path);
3740 			if (ret < 0)
3741 				goto out;
3742 			is_orphan = 1;
3743 		}
3744 
3745 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3746 			ret = dup_ref(cur, &check_dirs);
3747 			if (ret < 0)
3748 				goto out;
3749 		}
3750 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
3751 		   !list_empty(&sctx->deleted_refs)) {
3752 		/*
3753 		 * We have a moved dir. Add the old parent to check_dirs
3754 		 */
3755 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3756 				list);
3757 		ret = dup_ref(cur, &check_dirs);
3758 		if (ret < 0)
3759 			goto out;
3760 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
3761 		/*
3762 		 * We have a non dir inode. Go through all deleted refs and
3763 		 * unlink them if they were not already overwritten by other
3764 		 * inodes.
3765 		 */
3766 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3767 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3768 					sctx->cur_ino, sctx->cur_inode_gen,
3769 					cur->name, cur->name_len);
3770 			if (ret < 0)
3771 				goto out;
3772 			if (!ret) {
3773 				ret = send_unlink(sctx, cur->full_path);
3774 				if (ret < 0)
3775 					goto out;
3776 			}
3777 			ret = dup_ref(cur, &check_dirs);
3778 			if (ret < 0)
3779 				goto out;
3780 		}
3781 		/*
3782 		 * If the inode is still orphan, unlink the orphan. This may
3783 		 * happen when a previous inode did overwrite the first ref
3784 		 * of this inode and no new refs were added for the current
3785 		 * inode. Unlinking does not mean that the inode is deleted in
3786 		 * all cases. There may still be links to this inode in other
3787 		 * places.
3788 		 */
3789 		if (is_orphan) {
3790 			ret = send_unlink(sctx, valid_path);
3791 			if (ret < 0)
3792 				goto out;
3793 		}
3794 	}
3795 
3796 	/*
3797 	 * We did collect all parent dirs where cur_inode was once located. We
3798 	 * now go through all these dirs and check if they are pending for
3799 	 * deletion and if it's finally possible to perform the rmdir now.
3800 	 * We also update the inode stats of the parent dirs here.
3801 	 */
3802 	list_for_each_entry(cur, &check_dirs, list) {
3803 		/*
3804 		 * In case we had refs into dirs that were not processed yet,
3805 		 * we don't need to do the utime and rmdir logic for these dirs.
3806 		 * The dir will be processed later.
3807 		 */
3808 		if (cur->dir > sctx->cur_ino)
3809 			continue;
3810 
3811 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3812 		if (ret < 0)
3813 			goto out;
3814 
3815 		if (ret == inode_state_did_create ||
3816 		    ret == inode_state_no_change) {
3817 			/* TODO delayed utimes */
3818 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3819 			if (ret < 0)
3820 				goto out;
3821 		} else if (ret == inode_state_did_delete &&
3822 			   cur->dir != last_dir_ino_rm) {
3823 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3824 					sctx->cur_ino);
3825 			if (ret < 0)
3826 				goto out;
3827 			if (ret) {
3828 				ret = get_cur_path(sctx, cur->dir,
3829 						   cur->dir_gen, valid_path);
3830 				if (ret < 0)
3831 					goto out;
3832 				ret = send_rmdir(sctx, valid_path);
3833 				if (ret < 0)
3834 					goto out;
3835 				last_dir_ino_rm = cur->dir;
3836 			}
3837 		}
3838 	}
3839 
3840 	ret = 0;
3841 
3842 out:
3843 	__free_recorded_refs(&check_dirs);
3844 	free_recorded_refs(sctx);
3845 	fs_path_free(valid_path);
3846 	return ret;
3847 }
3848 
3849 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3850 		      struct fs_path *name, void *ctx, struct list_head *refs)
3851 {
3852 	int ret = 0;
3853 	struct send_ctx *sctx = ctx;
3854 	struct fs_path *p;
3855 	u64 gen;
3856 
3857 	p = fs_path_alloc();
3858 	if (!p)
3859 		return -ENOMEM;
3860 
3861 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3862 			NULL, NULL);
3863 	if (ret < 0)
3864 		goto out;
3865 
3866 	ret = get_cur_path(sctx, dir, gen, p);
3867 	if (ret < 0)
3868 		goto out;
3869 	ret = fs_path_add_path(p, name);
3870 	if (ret < 0)
3871 		goto out;
3872 
3873 	ret = __record_ref(refs, dir, gen, p);
3874 
3875 out:
3876 	if (ret)
3877 		fs_path_free(p);
3878 	return ret;
3879 }
3880 
3881 static int __record_new_ref(int num, u64 dir, int index,
3882 			    struct fs_path *name,
3883 			    void *ctx)
3884 {
3885 	struct send_ctx *sctx = ctx;
3886 	return record_ref(sctx->send_root, num, dir, index, name,
3887 			  ctx, &sctx->new_refs);
3888 }
3889 
3890 
3891 static int __record_deleted_ref(int num, u64 dir, int index,
3892 				struct fs_path *name,
3893 				void *ctx)
3894 {
3895 	struct send_ctx *sctx = ctx;
3896 	return record_ref(sctx->parent_root, num, dir, index, name,
3897 			  ctx, &sctx->deleted_refs);
3898 }
3899 
3900 static int record_new_ref(struct send_ctx *sctx)
3901 {
3902 	int ret;
3903 
3904 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3905 				sctx->cmp_key, 0, __record_new_ref, sctx);
3906 	if (ret < 0)
3907 		goto out;
3908 	ret = 0;
3909 
3910 out:
3911 	return ret;
3912 }
3913 
3914 static int record_deleted_ref(struct send_ctx *sctx)
3915 {
3916 	int ret;
3917 
3918 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3919 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
3920 	if (ret < 0)
3921 		goto out;
3922 	ret = 0;
3923 
3924 out:
3925 	return ret;
3926 }
3927 
3928 struct find_ref_ctx {
3929 	u64 dir;
3930 	u64 dir_gen;
3931 	struct btrfs_root *root;
3932 	struct fs_path *name;
3933 	int found_idx;
3934 };
3935 
3936 static int __find_iref(int num, u64 dir, int index,
3937 		       struct fs_path *name,
3938 		       void *ctx_)
3939 {
3940 	struct find_ref_ctx *ctx = ctx_;
3941 	u64 dir_gen;
3942 	int ret;
3943 
3944 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3945 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3946 		/*
3947 		 * To avoid doing extra lookups we'll only do this if everything
3948 		 * else matches.
3949 		 */
3950 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3951 				     NULL, NULL, NULL);
3952 		if (ret)
3953 			return ret;
3954 		if (dir_gen != ctx->dir_gen)
3955 			return 0;
3956 		ctx->found_idx = num;
3957 		return 1;
3958 	}
3959 	return 0;
3960 }
3961 
3962 static int find_iref(struct btrfs_root *root,
3963 		     struct btrfs_path *path,
3964 		     struct btrfs_key *key,
3965 		     u64 dir, u64 dir_gen, struct fs_path *name)
3966 {
3967 	int ret;
3968 	struct find_ref_ctx ctx;
3969 
3970 	ctx.dir = dir;
3971 	ctx.name = name;
3972 	ctx.dir_gen = dir_gen;
3973 	ctx.found_idx = -1;
3974 	ctx.root = root;
3975 
3976 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3977 	if (ret < 0)
3978 		return ret;
3979 
3980 	if (ctx.found_idx == -1)
3981 		return -ENOENT;
3982 
3983 	return ctx.found_idx;
3984 }
3985 
3986 static int __record_changed_new_ref(int num, u64 dir, int index,
3987 				    struct fs_path *name,
3988 				    void *ctx)
3989 {
3990 	u64 dir_gen;
3991 	int ret;
3992 	struct send_ctx *sctx = ctx;
3993 
3994 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3995 			     NULL, NULL, NULL);
3996 	if (ret)
3997 		return ret;
3998 
3999 	ret = find_iref(sctx->parent_root, sctx->right_path,
4000 			sctx->cmp_key, dir, dir_gen, name);
4001 	if (ret == -ENOENT)
4002 		ret = __record_new_ref(num, dir, index, name, sctx);
4003 	else if (ret > 0)
4004 		ret = 0;
4005 
4006 	return ret;
4007 }
4008 
4009 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4010 					struct fs_path *name,
4011 					void *ctx)
4012 {
4013 	u64 dir_gen;
4014 	int ret;
4015 	struct send_ctx *sctx = ctx;
4016 
4017 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4018 			     NULL, NULL, NULL);
4019 	if (ret)
4020 		return ret;
4021 
4022 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4023 			dir, dir_gen, name);
4024 	if (ret == -ENOENT)
4025 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4026 	else if (ret > 0)
4027 		ret = 0;
4028 
4029 	return ret;
4030 }
4031 
4032 static int record_changed_ref(struct send_ctx *sctx)
4033 {
4034 	int ret = 0;
4035 
4036 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4037 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4038 	if (ret < 0)
4039 		goto out;
4040 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4041 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4042 	if (ret < 0)
4043 		goto out;
4044 	ret = 0;
4045 
4046 out:
4047 	return ret;
4048 }
4049 
4050 /*
4051  * Record and process all refs at once. Needed when an inode changes the
4052  * generation number, which means that it was deleted and recreated.
4053  */
4054 static int process_all_refs(struct send_ctx *sctx,
4055 			    enum btrfs_compare_tree_result cmd)
4056 {
4057 	int ret;
4058 	struct btrfs_root *root;
4059 	struct btrfs_path *path;
4060 	struct btrfs_key key;
4061 	struct btrfs_key found_key;
4062 	struct extent_buffer *eb;
4063 	int slot;
4064 	iterate_inode_ref_t cb;
4065 	int pending_move = 0;
4066 
4067 	path = alloc_path_for_send();
4068 	if (!path)
4069 		return -ENOMEM;
4070 
4071 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4072 		root = sctx->send_root;
4073 		cb = __record_new_ref;
4074 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4075 		root = sctx->parent_root;
4076 		cb = __record_deleted_ref;
4077 	} else {
4078 		btrfs_err(sctx->send_root->fs_info,
4079 				"Wrong command %d in process_all_refs", cmd);
4080 		ret = -EINVAL;
4081 		goto out;
4082 	}
4083 
4084 	key.objectid = sctx->cmp_key->objectid;
4085 	key.type = BTRFS_INODE_REF_KEY;
4086 	key.offset = 0;
4087 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4088 	if (ret < 0)
4089 		goto out;
4090 
4091 	while (1) {
4092 		eb = path->nodes[0];
4093 		slot = path->slots[0];
4094 		if (slot >= btrfs_header_nritems(eb)) {
4095 			ret = btrfs_next_leaf(root, path);
4096 			if (ret < 0)
4097 				goto out;
4098 			else if (ret > 0)
4099 				break;
4100 			continue;
4101 		}
4102 
4103 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4104 
4105 		if (found_key.objectid != key.objectid ||
4106 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4107 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4108 			break;
4109 
4110 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4111 		if (ret < 0)
4112 			goto out;
4113 
4114 		path->slots[0]++;
4115 	}
4116 	btrfs_release_path(path);
4117 
4118 	ret = process_recorded_refs(sctx, &pending_move);
4119 	/* Only applicable to an incremental send. */
4120 	ASSERT(pending_move == 0);
4121 
4122 out:
4123 	btrfs_free_path(path);
4124 	return ret;
4125 }
4126 
4127 static int send_set_xattr(struct send_ctx *sctx,
4128 			  struct fs_path *path,
4129 			  const char *name, int name_len,
4130 			  const char *data, int data_len)
4131 {
4132 	int ret = 0;
4133 
4134 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4135 	if (ret < 0)
4136 		goto out;
4137 
4138 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4139 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4140 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4141 
4142 	ret = send_cmd(sctx);
4143 
4144 tlv_put_failure:
4145 out:
4146 	return ret;
4147 }
4148 
4149 static int send_remove_xattr(struct send_ctx *sctx,
4150 			  struct fs_path *path,
4151 			  const char *name, int name_len)
4152 {
4153 	int ret = 0;
4154 
4155 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4156 	if (ret < 0)
4157 		goto out;
4158 
4159 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4160 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4161 
4162 	ret = send_cmd(sctx);
4163 
4164 tlv_put_failure:
4165 out:
4166 	return ret;
4167 }
4168 
4169 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4170 			       const char *name, int name_len,
4171 			       const char *data, int data_len,
4172 			       u8 type, void *ctx)
4173 {
4174 	int ret;
4175 	struct send_ctx *sctx = ctx;
4176 	struct fs_path *p;
4177 	posix_acl_xattr_header dummy_acl;
4178 
4179 	p = fs_path_alloc();
4180 	if (!p)
4181 		return -ENOMEM;
4182 
4183 	/*
4184 	 * This hack is needed because empty acl's are stored as zero byte
4185 	 * data in xattrs. Problem with that is, that receiving these zero byte
4186 	 * acl's will fail later. To fix this, we send a dummy acl list that
4187 	 * only contains the version number and no entries.
4188 	 */
4189 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4190 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4191 		if (data_len == 0) {
4192 			dummy_acl.a_version =
4193 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4194 			data = (char *)&dummy_acl;
4195 			data_len = sizeof(dummy_acl);
4196 		}
4197 	}
4198 
4199 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4200 	if (ret < 0)
4201 		goto out;
4202 
4203 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4204 
4205 out:
4206 	fs_path_free(p);
4207 	return ret;
4208 }
4209 
4210 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4211 				   const char *name, int name_len,
4212 				   const char *data, int data_len,
4213 				   u8 type, void *ctx)
4214 {
4215 	int ret;
4216 	struct send_ctx *sctx = ctx;
4217 	struct fs_path *p;
4218 
4219 	p = fs_path_alloc();
4220 	if (!p)
4221 		return -ENOMEM;
4222 
4223 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4224 	if (ret < 0)
4225 		goto out;
4226 
4227 	ret = send_remove_xattr(sctx, p, name, name_len);
4228 
4229 out:
4230 	fs_path_free(p);
4231 	return ret;
4232 }
4233 
4234 static int process_new_xattr(struct send_ctx *sctx)
4235 {
4236 	int ret = 0;
4237 
4238 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4239 			       sctx->cmp_key, __process_new_xattr, sctx);
4240 
4241 	return ret;
4242 }
4243 
4244 static int process_deleted_xattr(struct send_ctx *sctx)
4245 {
4246 	int ret;
4247 
4248 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4249 			       sctx->cmp_key, __process_deleted_xattr, sctx);
4250 
4251 	return ret;
4252 }
4253 
4254 struct find_xattr_ctx {
4255 	const char *name;
4256 	int name_len;
4257 	int found_idx;
4258 	char *found_data;
4259 	int found_data_len;
4260 };
4261 
4262 static int __find_xattr(int num, struct btrfs_key *di_key,
4263 			const char *name, int name_len,
4264 			const char *data, int data_len,
4265 			u8 type, void *vctx)
4266 {
4267 	struct find_xattr_ctx *ctx = vctx;
4268 
4269 	if (name_len == ctx->name_len &&
4270 	    strncmp(name, ctx->name, name_len) == 0) {
4271 		ctx->found_idx = num;
4272 		ctx->found_data_len = data_len;
4273 		ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
4274 		if (!ctx->found_data)
4275 			return -ENOMEM;
4276 		return 1;
4277 	}
4278 	return 0;
4279 }
4280 
4281 static int find_xattr(struct btrfs_root *root,
4282 		      struct btrfs_path *path,
4283 		      struct btrfs_key *key,
4284 		      const char *name, int name_len,
4285 		      char **data, int *data_len)
4286 {
4287 	int ret;
4288 	struct find_xattr_ctx ctx;
4289 
4290 	ctx.name = name;
4291 	ctx.name_len = name_len;
4292 	ctx.found_idx = -1;
4293 	ctx.found_data = NULL;
4294 	ctx.found_data_len = 0;
4295 
4296 	ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4297 	if (ret < 0)
4298 		return ret;
4299 
4300 	if (ctx.found_idx == -1)
4301 		return -ENOENT;
4302 	if (data) {
4303 		*data = ctx.found_data;
4304 		*data_len = ctx.found_data_len;
4305 	} else {
4306 		kfree(ctx.found_data);
4307 	}
4308 	return ctx.found_idx;
4309 }
4310 
4311 
4312 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4313 				       const char *name, int name_len,
4314 				       const char *data, int data_len,
4315 				       u8 type, void *ctx)
4316 {
4317 	int ret;
4318 	struct send_ctx *sctx = ctx;
4319 	char *found_data = NULL;
4320 	int found_data_len  = 0;
4321 
4322 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4323 			 sctx->cmp_key, name, name_len, &found_data,
4324 			 &found_data_len);
4325 	if (ret == -ENOENT) {
4326 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4327 				data_len, type, ctx);
4328 	} else if (ret >= 0) {
4329 		if (data_len != found_data_len ||
4330 		    memcmp(data, found_data, data_len)) {
4331 			ret = __process_new_xattr(num, di_key, name, name_len,
4332 					data, data_len, type, ctx);
4333 		} else {
4334 			ret = 0;
4335 		}
4336 	}
4337 
4338 	kfree(found_data);
4339 	return ret;
4340 }
4341 
4342 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4343 					   const char *name, int name_len,
4344 					   const char *data, int data_len,
4345 					   u8 type, void *ctx)
4346 {
4347 	int ret;
4348 	struct send_ctx *sctx = ctx;
4349 
4350 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4351 			 name, name_len, NULL, NULL);
4352 	if (ret == -ENOENT)
4353 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4354 				data_len, type, ctx);
4355 	else if (ret >= 0)
4356 		ret = 0;
4357 
4358 	return ret;
4359 }
4360 
4361 static int process_changed_xattr(struct send_ctx *sctx)
4362 {
4363 	int ret = 0;
4364 
4365 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4366 			sctx->cmp_key, __process_changed_new_xattr, sctx);
4367 	if (ret < 0)
4368 		goto out;
4369 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4370 			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4371 
4372 out:
4373 	return ret;
4374 }
4375 
4376 static int process_all_new_xattrs(struct send_ctx *sctx)
4377 {
4378 	int ret;
4379 	struct btrfs_root *root;
4380 	struct btrfs_path *path;
4381 	struct btrfs_key key;
4382 	struct btrfs_key found_key;
4383 	struct extent_buffer *eb;
4384 	int slot;
4385 
4386 	path = alloc_path_for_send();
4387 	if (!path)
4388 		return -ENOMEM;
4389 
4390 	root = sctx->send_root;
4391 
4392 	key.objectid = sctx->cmp_key->objectid;
4393 	key.type = BTRFS_XATTR_ITEM_KEY;
4394 	key.offset = 0;
4395 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4396 	if (ret < 0)
4397 		goto out;
4398 
4399 	while (1) {
4400 		eb = path->nodes[0];
4401 		slot = path->slots[0];
4402 		if (slot >= btrfs_header_nritems(eb)) {
4403 			ret = btrfs_next_leaf(root, path);
4404 			if (ret < 0) {
4405 				goto out;
4406 			} else if (ret > 0) {
4407 				ret = 0;
4408 				break;
4409 			}
4410 			continue;
4411 		}
4412 
4413 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4414 		if (found_key.objectid != key.objectid ||
4415 		    found_key.type != key.type) {
4416 			ret = 0;
4417 			goto out;
4418 		}
4419 
4420 		ret = iterate_dir_item(root, path, &found_key,
4421 				       __process_new_xattr, sctx);
4422 		if (ret < 0)
4423 			goto out;
4424 
4425 		path->slots[0]++;
4426 	}
4427 
4428 out:
4429 	btrfs_free_path(path);
4430 	return ret;
4431 }
4432 
4433 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4434 {
4435 	struct btrfs_root *root = sctx->send_root;
4436 	struct btrfs_fs_info *fs_info = root->fs_info;
4437 	struct inode *inode;
4438 	struct page *page;
4439 	char *addr;
4440 	struct btrfs_key key;
4441 	pgoff_t index = offset >> PAGE_CACHE_SHIFT;
4442 	pgoff_t last_index;
4443 	unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
4444 	ssize_t ret = 0;
4445 
4446 	key.objectid = sctx->cur_ino;
4447 	key.type = BTRFS_INODE_ITEM_KEY;
4448 	key.offset = 0;
4449 
4450 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4451 	if (IS_ERR(inode))
4452 		return PTR_ERR(inode);
4453 
4454 	if (offset + len > i_size_read(inode)) {
4455 		if (offset > i_size_read(inode))
4456 			len = 0;
4457 		else
4458 			len = offset - i_size_read(inode);
4459 	}
4460 	if (len == 0)
4461 		goto out;
4462 
4463 	last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
4464 
4465 	/* initial readahead */
4466 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4467 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4468 	btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4469 		       last_index - index + 1);
4470 
4471 	while (index <= last_index) {
4472 		unsigned cur_len = min_t(unsigned, len,
4473 					 PAGE_CACHE_SIZE - pg_offset);
4474 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4475 		if (!page) {
4476 			ret = -ENOMEM;
4477 			break;
4478 		}
4479 
4480 		if (!PageUptodate(page)) {
4481 			btrfs_readpage(NULL, page);
4482 			lock_page(page);
4483 			if (!PageUptodate(page)) {
4484 				unlock_page(page);
4485 				page_cache_release(page);
4486 				ret = -EIO;
4487 				break;
4488 			}
4489 		}
4490 
4491 		addr = kmap(page);
4492 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4493 		kunmap(page);
4494 		unlock_page(page);
4495 		page_cache_release(page);
4496 		index++;
4497 		pg_offset = 0;
4498 		len -= cur_len;
4499 		ret += cur_len;
4500 	}
4501 out:
4502 	iput(inode);
4503 	return ret;
4504 }
4505 
4506 /*
4507  * Read some bytes from the current inode/file and send a write command to
4508  * user space.
4509  */
4510 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4511 {
4512 	int ret = 0;
4513 	struct fs_path *p;
4514 	ssize_t num_read = 0;
4515 
4516 	p = fs_path_alloc();
4517 	if (!p)
4518 		return -ENOMEM;
4519 
4520 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4521 
4522 	num_read = fill_read_buf(sctx, offset, len);
4523 	if (num_read <= 0) {
4524 		if (num_read < 0)
4525 			ret = num_read;
4526 		goto out;
4527 	}
4528 
4529 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4530 	if (ret < 0)
4531 		goto out;
4532 
4533 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4534 	if (ret < 0)
4535 		goto out;
4536 
4537 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4538 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4539 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4540 
4541 	ret = send_cmd(sctx);
4542 
4543 tlv_put_failure:
4544 out:
4545 	fs_path_free(p);
4546 	if (ret < 0)
4547 		return ret;
4548 	return num_read;
4549 }
4550 
4551 /*
4552  * Send a clone command to user space.
4553  */
4554 static int send_clone(struct send_ctx *sctx,
4555 		      u64 offset, u32 len,
4556 		      struct clone_root *clone_root)
4557 {
4558 	int ret = 0;
4559 	struct fs_path *p;
4560 	u64 gen;
4561 
4562 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4563 	       "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4564 		clone_root->root->objectid, clone_root->ino,
4565 		clone_root->offset);
4566 
4567 	p = fs_path_alloc();
4568 	if (!p)
4569 		return -ENOMEM;
4570 
4571 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4572 	if (ret < 0)
4573 		goto out;
4574 
4575 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4576 	if (ret < 0)
4577 		goto out;
4578 
4579 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4580 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4581 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4582 
4583 	if (clone_root->root == sctx->send_root) {
4584 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4585 				&gen, NULL, NULL, NULL, NULL);
4586 		if (ret < 0)
4587 			goto out;
4588 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4589 	} else {
4590 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4591 	}
4592 	if (ret < 0)
4593 		goto out;
4594 
4595 	/*
4596 	 * If the parent we're using has a received_uuid set then use that as
4597 	 * our clone source as that is what we will look for when doing a
4598 	 * receive.
4599 	 *
4600 	 * This covers the case that we create a snapshot off of a received
4601 	 * subvolume and then use that as the parent and try to receive on a
4602 	 * different host.
4603 	 */
4604 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4605 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4606 			     clone_root->root->root_item.received_uuid);
4607 	else
4608 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4609 			     clone_root->root->root_item.uuid);
4610 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4611 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4612 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4613 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4614 			clone_root->offset);
4615 
4616 	ret = send_cmd(sctx);
4617 
4618 tlv_put_failure:
4619 out:
4620 	fs_path_free(p);
4621 	return ret;
4622 }
4623 
4624 /*
4625  * Send an update extent command to user space.
4626  */
4627 static int send_update_extent(struct send_ctx *sctx,
4628 			      u64 offset, u32 len)
4629 {
4630 	int ret = 0;
4631 	struct fs_path *p;
4632 
4633 	p = fs_path_alloc();
4634 	if (!p)
4635 		return -ENOMEM;
4636 
4637 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4638 	if (ret < 0)
4639 		goto out;
4640 
4641 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4642 	if (ret < 0)
4643 		goto out;
4644 
4645 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4646 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4647 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4648 
4649 	ret = send_cmd(sctx);
4650 
4651 tlv_put_failure:
4652 out:
4653 	fs_path_free(p);
4654 	return ret;
4655 }
4656 
4657 static int send_hole(struct send_ctx *sctx, u64 end)
4658 {
4659 	struct fs_path *p = NULL;
4660 	u64 offset = sctx->cur_inode_last_extent;
4661 	u64 len;
4662 	int ret = 0;
4663 
4664 	p = fs_path_alloc();
4665 	if (!p)
4666 		return -ENOMEM;
4667 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4668 	if (ret < 0)
4669 		goto tlv_put_failure;
4670 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4671 	while (offset < end) {
4672 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4673 
4674 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4675 		if (ret < 0)
4676 			break;
4677 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4678 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4679 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4680 		ret = send_cmd(sctx);
4681 		if (ret < 0)
4682 			break;
4683 		offset += len;
4684 	}
4685 tlv_put_failure:
4686 	fs_path_free(p);
4687 	return ret;
4688 }
4689 
4690 static int send_write_or_clone(struct send_ctx *sctx,
4691 			       struct btrfs_path *path,
4692 			       struct btrfs_key *key,
4693 			       struct clone_root *clone_root)
4694 {
4695 	int ret = 0;
4696 	struct btrfs_file_extent_item *ei;
4697 	u64 offset = key->offset;
4698 	u64 pos = 0;
4699 	u64 len;
4700 	u32 l;
4701 	u8 type;
4702 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4703 
4704 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4705 			struct btrfs_file_extent_item);
4706 	type = btrfs_file_extent_type(path->nodes[0], ei);
4707 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4708 		len = btrfs_file_extent_inline_len(path->nodes[0],
4709 						   path->slots[0], ei);
4710 		/*
4711 		 * it is possible the inline item won't cover the whole page,
4712 		 * but there may be items after this page.  Make
4713 		 * sure to send the whole thing
4714 		 */
4715 		len = PAGE_CACHE_ALIGN(len);
4716 	} else {
4717 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4718 	}
4719 
4720 	if (offset + len > sctx->cur_inode_size)
4721 		len = sctx->cur_inode_size - offset;
4722 	if (len == 0) {
4723 		ret = 0;
4724 		goto out;
4725 	}
4726 
4727 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
4728 		ret = send_clone(sctx, offset, len, clone_root);
4729 	} else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
4730 		ret = send_update_extent(sctx, offset, len);
4731 	} else {
4732 		while (pos < len) {
4733 			l = len - pos;
4734 			if (l > BTRFS_SEND_READ_SIZE)
4735 				l = BTRFS_SEND_READ_SIZE;
4736 			ret = send_write(sctx, pos + offset, l);
4737 			if (ret < 0)
4738 				goto out;
4739 			if (!ret)
4740 				break;
4741 			pos += ret;
4742 		}
4743 		ret = 0;
4744 	}
4745 out:
4746 	return ret;
4747 }
4748 
4749 static int is_extent_unchanged(struct send_ctx *sctx,
4750 			       struct btrfs_path *left_path,
4751 			       struct btrfs_key *ekey)
4752 {
4753 	int ret = 0;
4754 	struct btrfs_key key;
4755 	struct btrfs_path *path = NULL;
4756 	struct extent_buffer *eb;
4757 	int slot;
4758 	struct btrfs_key found_key;
4759 	struct btrfs_file_extent_item *ei;
4760 	u64 left_disknr;
4761 	u64 right_disknr;
4762 	u64 left_offset;
4763 	u64 right_offset;
4764 	u64 left_offset_fixed;
4765 	u64 left_len;
4766 	u64 right_len;
4767 	u64 left_gen;
4768 	u64 right_gen;
4769 	u8 left_type;
4770 	u8 right_type;
4771 
4772 	path = alloc_path_for_send();
4773 	if (!path)
4774 		return -ENOMEM;
4775 
4776 	eb = left_path->nodes[0];
4777 	slot = left_path->slots[0];
4778 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4779 	left_type = btrfs_file_extent_type(eb, ei);
4780 
4781 	if (left_type != BTRFS_FILE_EXTENT_REG) {
4782 		ret = 0;
4783 		goto out;
4784 	}
4785 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4786 	left_len = btrfs_file_extent_num_bytes(eb, ei);
4787 	left_offset = btrfs_file_extent_offset(eb, ei);
4788 	left_gen = btrfs_file_extent_generation(eb, ei);
4789 
4790 	/*
4791 	 * Following comments will refer to these graphics. L is the left
4792 	 * extents which we are checking at the moment. 1-8 are the right
4793 	 * extents that we iterate.
4794 	 *
4795 	 *       |-----L-----|
4796 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4797 	 *
4798 	 *       |-----L-----|
4799 	 * |--1--|-2b-|...(same as above)
4800 	 *
4801 	 * Alternative situation. Happens on files where extents got split.
4802 	 *       |-----L-----|
4803 	 * |-----------7-----------|-6-|
4804 	 *
4805 	 * Alternative situation. Happens on files which got larger.
4806 	 *       |-----L-----|
4807 	 * |-8-|
4808 	 * Nothing follows after 8.
4809 	 */
4810 
4811 	key.objectid = ekey->objectid;
4812 	key.type = BTRFS_EXTENT_DATA_KEY;
4813 	key.offset = ekey->offset;
4814 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4815 	if (ret < 0)
4816 		goto out;
4817 	if (ret) {
4818 		ret = 0;
4819 		goto out;
4820 	}
4821 
4822 	/*
4823 	 * Handle special case where the right side has no extents at all.
4824 	 */
4825 	eb = path->nodes[0];
4826 	slot = path->slots[0];
4827 	btrfs_item_key_to_cpu(eb, &found_key, slot);
4828 	if (found_key.objectid != key.objectid ||
4829 	    found_key.type != key.type) {
4830 		/* If we're a hole then just pretend nothing changed */
4831 		ret = (left_disknr) ? 0 : 1;
4832 		goto out;
4833 	}
4834 
4835 	/*
4836 	 * We're now on 2a, 2b or 7.
4837 	 */
4838 	key = found_key;
4839 	while (key.offset < ekey->offset + left_len) {
4840 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4841 		right_type = btrfs_file_extent_type(eb, ei);
4842 		if (right_type != BTRFS_FILE_EXTENT_REG) {
4843 			ret = 0;
4844 			goto out;
4845 		}
4846 
4847 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4848 		right_len = btrfs_file_extent_num_bytes(eb, ei);
4849 		right_offset = btrfs_file_extent_offset(eb, ei);
4850 		right_gen = btrfs_file_extent_generation(eb, ei);
4851 
4852 		/*
4853 		 * Are we at extent 8? If yes, we know the extent is changed.
4854 		 * This may only happen on the first iteration.
4855 		 */
4856 		if (found_key.offset + right_len <= ekey->offset) {
4857 			/* If we're a hole just pretend nothing changed */
4858 			ret = (left_disknr) ? 0 : 1;
4859 			goto out;
4860 		}
4861 
4862 		left_offset_fixed = left_offset;
4863 		if (key.offset < ekey->offset) {
4864 			/* Fix the right offset for 2a and 7. */
4865 			right_offset += ekey->offset - key.offset;
4866 		} else {
4867 			/* Fix the left offset for all behind 2a and 2b */
4868 			left_offset_fixed += key.offset - ekey->offset;
4869 		}
4870 
4871 		/*
4872 		 * Check if we have the same extent.
4873 		 */
4874 		if (left_disknr != right_disknr ||
4875 		    left_offset_fixed != right_offset ||
4876 		    left_gen != right_gen) {
4877 			ret = 0;
4878 			goto out;
4879 		}
4880 
4881 		/*
4882 		 * Go to the next extent.
4883 		 */
4884 		ret = btrfs_next_item(sctx->parent_root, path);
4885 		if (ret < 0)
4886 			goto out;
4887 		if (!ret) {
4888 			eb = path->nodes[0];
4889 			slot = path->slots[0];
4890 			btrfs_item_key_to_cpu(eb, &found_key, slot);
4891 		}
4892 		if (ret || found_key.objectid != key.objectid ||
4893 		    found_key.type != key.type) {
4894 			key.offset += right_len;
4895 			break;
4896 		}
4897 		if (found_key.offset != key.offset + right_len) {
4898 			ret = 0;
4899 			goto out;
4900 		}
4901 		key = found_key;
4902 	}
4903 
4904 	/*
4905 	 * We're now behind the left extent (treat as unchanged) or at the end
4906 	 * of the right side (treat as changed).
4907 	 */
4908 	if (key.offset >= ekey->offset + left_len)
4909 		ret = 1;
4910 	else
4911 		ret = 0;
4912 
4913 
4914 out:
4915 	btrfs_free_path(path);
4916 	return ret;
4917 }
4918 
4919 static int get_last_extent(struct send_ctx *sctx, u64 offset)
4920 {
4921 	struct btrfs_path *path;
4922 	struct btrfs_root *root = sctx->send_root;
4923 	struct btrfs_file_extent_item *fi;
4924 	struct btrfs_key key;
4925 	u64 extent_end;
4926 	u8 type;
4927 	int ret;
4928 
4929 	path = alloc_path_for_send();
4930 	if (!path)
4931 		return -ENOMEM;
4932 
4933 	sctx->cur_inode_last_extent = 0;
4934 
4935 	key.objectid = sctx->cur_ino;
4936 	key.type = BTRFS_EXTENT_DATA_KEY;
4937 	key.offset = offset;
4938 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
4939 	if (ret < 0)
4940 		goto out;
4941 	ret = 0;
4942 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4943 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
4944 		goto out;
4945 
4946 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4947 			    struct btrfs_file_extent_item);
4948 	type = btrfs_file_extent_type(path->nodes[0], fi);
4949 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4950 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4951 							path->slots[0], fi);
4952 		extent_end = ALIGN(key.offset + size,
4953 				   sctx->send_root->sectorsize);
4954 	} else {
4955 		extent_end = key.offset +
4956 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
4957 	}
4958 	sctx->cur_inode_last_extent = extent_end;
4959 out:
4960 	btrfs_free_path(path);
4961 	return ret;
4962 }
4963 
4964 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
4965 			   struct btrfs_key *key)
4966 {
4967 	struct btrfs_file_extent_item *fi;
4968 	u64 extent_end;
4969 	u8 type;
4970 	int ret = 0;
4971 
4972 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
4973 		return 0;
4974 
4975 	if (sctx->cur_inode_last_extent == (u64)-1) {
4976 		ret = get_last_extent(sctx, key->offset - 1);
4977 		if (ret)
4978 			return ret;
4979 	}
4980 
4981 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4982 			    struct btrfs_file_extent_item);
4983 	type = btrfs_file_extent_type(path->nodes[0], fi);
4984 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4985 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4986 							path->slots[0], fi);
4987 		extent_end = ALIGN(key->offset + size,
4988 				   sctx->send_root->sectorsize);
4989 	} else {
4990 		extent_end = key->offset +
4991 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
4992 	}
4993 
4994 	if (path->slots[0] == 0 &&
4995 	    sctx->cur_inode_last_extent < key->offset) {
4996 		/*
4997 		 * We might have skipped entire leafs that contained only
4998 		 * file extent items for our current inode. These leafs have
4999 		 * a generation number smaller (older) than the one in the
5000 		 * current leaf and the leaf our last extent came from, and
5001 		 * are located between these 2 leafs.
5002 		 */
5003 		ret = get_last_extent(sctx, key->offset - 1);
5004 		if (ret)
5005 			return ret;
5006 	}
5007 
5008 	if (sctx->cur_inode_last_extent < key->offset)
5009 		ret = send_hole(sctx, key->offset);
5010 	sctx->cur_inode_last_extent = extent_end;
5011 	return ret;
5012 }
5013 
5014 static int process_extent(struct send_ctx *sctx,
5015 			  struct btrfs_path *path,
5016 			  struct btrfs_key *key)
5017 {
5018 	struct clone_root *found_clone = NULL;
5019 	int ret = 0;
5020 
5021 	if (S_ISLNK(sctx->cur_inode_mode))
5022 		return 0;
5023 
5024 	if (sctx->parent_root && !sctx->cur_inode_new) {
5025 		ret = is_extent_unchanged(sctx, path, key);
5026 		if (ret < 0)
5027 			goto out;
5028 		if (ret) {
5029 			ret = 0;
5030 			goto out_hole;
5031 		}
5032 	} else {
5033 		struct btrfs_file_extent_item *ei;
5034 		u8 type;
5035 
5036 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5037 				    struct btrfs_file_extent_item);
5038 		type = btrfs_file_extent_type(path->nodes[0], ei);
5039 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5040 		    type == BTRFS_FILE_EXTENT_REG) {
5041 			/*
5042 			 * The send spec does not have a prealloc command yet,
5043 			 * so just leave a hole for prealloc'ed extents until
5044 			 * we have enough commands queued up to justify rev'ing
5045 			 * the send spec.
5046 			 */
5047 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5048 				ret = 0;
5049 				goto out;
5050 			}
5051 
5052 			/* Have a hole, just skip it. */
5053 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5054 				ret = 0;
5055 				goto out;
5056 			}
5057 		}
5058 	}
5059 
5060 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5061 			sctx->cur_inode_size, &found_clone);
5062 	if (ret != -ENOENT && ret < 0)
5063 		goto out;
5064 
5065 	ret = send_write_or_clone(sctx, path, key, found_clone);
5066 	if (ret)
5067 		goto out;
5068 out_hole:
5069 	ret = maybe_send_hole(sctx, path, key);
5070 out:
5071 	return ret;
5072 }
5073 
5074 static int process_all_extents(struct send_ctx *sctx)
5075 {
5076 	int ret;
5077 	struct btrfs_root *root;
5078 	struct btrfs_path *path;
5079 	struct btrfs_key key;
5080 	struct btrfs_key found_key;
5081 	struct extent_buffer *eb;
5082 	int slot;
5083 
5084 	root = sctx->send_root;
5085 	path = alloc_path_for_send();
5086 	if (!path)
5087 		return -ENOMEM;
5088 
5089 	key.objectid = sctx->cmp_key->objectid;
5090 	key.type = BTRFS_EXTENT_DATA_KEY;
5091 	key.offset = 0;
5092 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5093 	if (ret < 0)
5094 		goto out;
5095 
5096 	while (1) {
5097 		eb = path->nodes[0];
5098 		slot = path->slots[0];
5099 
5100 		if (slot >= btrfs_header_nritems(eb)) {
5101 			ret = btrfs_next_leaf(root, path);
5102 			if (ret < 0) {
5103 				goto out;
5104 			} else if (ret > 0) {
5105 				ret = 0;
5106 				break;
5107 			}
5108 			continue;
5109 		}
5110 
5111 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5112 
5113 		if (found_key.objectid != key.objectid ||
5114 		    found_key.type != key.type) {
5115 			ret = 0;
5116 			goto out;
5117 		}
5118 
5119 		ret = process_extent(sctx, path, &found_key);
5120 		if (ret < 0)
5121 			goto out;
5122 
5123 		path->slots[0]++;
5124 	}
5125 
5126 out:
5127 	btrfs_free_path(path);
5128 	return ret;
5129 }
5130 
5131 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5132 					   int *pending_move,
5133 					   int *refs_processed)
5134 {
5135 	int ret = 0;
5136 
5137 	if (sctx->cur_ino == 0)
5138 		goto out;
5139 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5140 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5141 		goto out;
5142 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5143 		goto out;
5144 
5145 	ret = process_recorded_refs(sctx, pending_move);
5146 	if (ret < 0)
5147 		goto out;
5148 
5149 	*refs_processed = 1;
5150 out:
5151 	return ret;
5152 }
5153 
5154 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5155 {
5156 	int ret = 0;
5157 	u64 left_mode;
5158 	u64 left_uid;
5159 	u64 left_gid;
5160 	u64 right_mode;
5161 	u64 right_uid;
5162 	u64 right_gid;
5163 	int need_chmod = 0;
5164 	int need_chown = 0;
5165 	int pending_move = 0;
5166 	int refs_processed = 0;
5167 
5168 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5169 					      &refs_processed);
5170 	if (ret < 0)
5171 		goto out;
5172 
5173 	/*
5174 	 * We have processed the refs and thus need to advance send_progress.
5175 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5176 	 * inode into account.
5177 	 *
5178 	 * On the other hand, if our current inode is a directory and couldn't
5179 	 * be moved/renamed because its parent was renamed/moved too and it has
5180 	 * a higher inode number, we can only move/rename our current inode
5181 	 * after we moved/renamed its parent. Therefore in this case operate on
5182 	 * the old path (pre move/rename) of our current inode, and the
5183 	 * move/rename will be performed later.
5184 	 */
5185 	if (refs_processed && !pending_move)
5186 		sctx->send_progress = sctx->cur_ino + 1;
5187 
5188 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5189 		goto out;
5190 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5191 		goto out;
5192 
5193 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5194 			&left_mode, &left_uid, &left_gid, NULL);
5195 	if (ret < 0)
5196 		goto out;
5197 
5198 	if (!sctx->parent_root || sctx->cur_inode_new) {
5199 		need_chown = 1;
5200 		if (!S_ISLNK(sctx->cur_inode_mode))
5201 			need_chmod = 1;
5202 	} else {
5203 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5204 				NULL, NULL, &right_mode, &right_uid,
5205 				&right_gid, NULL);
5206 		if (ret < 0)
5207 			goto out;
5208 
5209 		if (left_uid != right_uid || left_gid != right_gid)
5210 			need_chown = 1;
5211 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5212 			need_chmod = 1;
5213 	}
5214 
5215 	if (S_ISREG(sctx->cur_inode_mode)) {
5216 		if (need_send_hole(sctx)) {
5217 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5218 			    sctx->cur_inode_last_extent <
5219 			    sctx->cur_inode_size) {
5220 				ret = get_last_extent(sctx, (u64)-1);
5221 				if (ret)
5222 					goto out;
5223 			}
5224 			if (sctx->cur_inode_last_extent <
5225 			    sctx->cur_inode_size) {
5226 				ret = send_hole(sctx, sctx->cur_inode_size);
5227 				if (ret)
5228 					goto out;
5229 			}
5230 		}
5231 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5232 				sctx->cur_inode_size);
5233 		if (ret < 0)
5234 			goto out;
5235 	}
5236 
5237 	if (need_chown) {
5238 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5239 				left_uid, left_gid);
5240 		if (ret < 0)
5241 			goto out;
5242 	}
5243 	if (need_chmod) {
5244 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5245 				left_mode);
5246 		if (ret < 0)
5247 			goto out;
5248 	}
5249 
5250 	/*
5251 	 * If other directory inodes depended on our current directory
5252 	 * inode's move/rename, now do their move/rename operations.
5253 	 */
5254 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5255 		ret = apply_children_dir_moves(sctx);
5256 		if (ret)
5257 			goto out;
5258 		/*
5259 		 * Need to send that every time, no matter if it actually
5260 		 * changed between the two trees as we have done changes to
5261 		 * the inode before. If our inode is a directory and it's
5262 		 * waiting to be moved/renamed, we will send its utimes when
5263 		 * it's moved/renamed, therefore we don't need to do it here.
5264 		 */
5265 		sctx->send_progress = sctx->cur_ino + 1;
5266 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5267 		if (ret < 0)
5268 			goto out;
5269 	}
5270 
5271 out:
5272 	return ret;
5273 }
5274 
5275 static int changed_inode(struct send_ctx *sctx,
5276 			 enum btrfs_compare_tree_result result)
5277 {
5278 	int ret = 0;
5279 	struct btrfs_key *key = sctx->cmp_key;
5280 	struct btrfs_inode_item *left_ii = NULL;
5281 	struct btrfs_inode_item *right_ii = NULL;
5282 	u64 left_gen = 0;
5283 	u64 right_gen = 0;
5284 
5285 	sctx->cur_ino = key->objectid;
5286 	sctx->cur_inode_new_gen = 0;
5287 	sctx->cur_inode_last_extent = (u64)-1;
5288 
5289 	/*
5290 	 * Set send_progress to current inode. This will tell all get_cur_xxx
5291 	 * functions that the current inode's refs are not updated yet. Later,
5292 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5293 	 */
5294 	sctx->send_progress = sctx->cur_ino;
5295 
5296 	if (result == BTRFS_COMPARE_TREE_NEW ||
5297 	    result == BTRFS_COMPARE_TREE_CHANGED) {
5298 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5299 				sctx->left_path->slots[0],
5300 				struct btrfs_inode_item);
5301 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5302 				left_ii);
5303 	} else {
5304 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5305 				sctx->right_path->slots[0],
5306 				struct btrfs_inode_item);
5307 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5308 				right_ii);
5309 	}
5310 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
5311 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5312 				sctx->right_path->slots[0],
5313 				struct btrfs_inode_item);
5314 
5315 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5316 				right_ii);
5317 
5318 		/*
5319 		 * The cur_ino = root dir case is special here. We can't treat
5320 		 * the inode as deleted+reused because it would generate a
5321 		 * stream that tries to delete/mkdir the root dir.
5322 		 */
5323 		if (left_gen != right_gen &&
5324 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5325 			sctx->cur_inode_new_gen = 1;
5326 	}
5327 
5328 	if (result == BTRFS_COMPARE_TREE_NEW) {
5329 		sctx->cur_inode_gen = left_gen;
5330 		sctx->cur_inode_new = 1;
5331 		sctx->cur_inode_deleted = 0;
5332 		sctx->cur_inode_size = btrfs_inode_size(
5333 				sctx->left_path->nodes[0], left_ii);
5334 		sctx->cur_inode_mode = btrfs_inode_mode(
5335 				sctx->left_path->nodes[0], left_ii);
5336 		sctx->cur_inode_rdev = btrfs_inode_rdev(
5337 				sctx->left_path->nodes[0], left_ii);
5338 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5339 			ret = send_create_inode_if_needed(sctx);
5340 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
5341 		sctx->cur_inode_gen = right_gen;
5342 		sctx->cur_inode_new = 0;
5343 		sctx->cur_inode_deleted = 1;
5344 		sctx->cur_inode_size = btrfs_inode_size(
5345 				sctx->right_path->nodes[0], right_ii);
5346 		sctx->cur_inode_mode = btrfs_inode_mode(
5347 				sctx->right_path->nodes[0], right_ii);
5348 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5349 		/*
5350 		 * We need to do some special handling in case the inode was
5351 		 * reported as changed with a changed generation number. This
5352 		 * means that the original inode was deleted and new inode
5353 		 * reused the same inum. So we have to treat the old inode as
5354 		 * deleted and the new one as new.
5355 		 */
5356 		if (sctx->cur_inode_new_gen) {
5357 			/*
5358 			 * First, process the inode as if it was deleted.
5359 			 */
5360 			sctx->cur_inode_gen = right_gen;
5361 			sctx->cur_inode_new = 0;
5362 			sctx->cur_inode_deleted = 1;
5363 			sctx->cur_inode_size = btrfs_inode_size(
5364 					sctx->right_path->nodes[0], right_ii);
5365 			sctx->cur_inode_mode = btrfs_inode_mode(
5366 					sctx->right_path->nodes[0], right_ii);
5367 			ret = process_all_refs(sctx,
5368 					BTRFS_COMPARE_TREE_DELETED);
5369 			if (ret < 0)
5370 				goto out;
5371 
5372 			/*
5373 			 * Now process the inode as if it was new.
5374 			 */
5375 			sctx->cur_inode_gen = left_gen;
5376 			sctx->cur_inode_new = 1;
5377 			sctx->cur_inode_deleted = 0;
5378 			sctx->cur_inode_size = btrfs_inode_size(
5379 					sctx->left_path->nodes[0], left_ii);
5380 			sctx->cur_inode_mode = btrfs_inode_mode(
5381 					sctx->left_path->nodes[0], left_ii);
5382 			sctx->cur_inode_rdev = btrfs_inode_rdev(
5383 					sctx->left_path->nodes[0], left_ii);
5384 			ret = send_create_inode_if_needed(sctx);
5385 			if (ret < 0)
5386 				goto out;
5387 
5388 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5389 			if (ret < 0)
5390 				goto out;
5391 			/*
5392 			 * Advance send_progress now as we did not get into
5393 			 * process_recorded_refs_if_needed in the new_gen case.
5394 			 */
5395 			sctx->send_progress = sctx->cur_ino + 1;
5396 
5397 			/*
5398 			 * Now process all extents and xattrs of the inode as if
5399 			 * they were all new.
5400 			 */
5401 			ret = process_all_extents(sctx);
5402 			if (ret < 0)
5403 				goto out;
5404 			ret = process_all_new_xattrs(sctx);
5405 			if (ret < 0)
5406 				goto out;
5407 		} else {
5408 			sctx->cur_inode_gen = left_gen;
5409 			sctx->cur_inode_new = 0;
5410 			sctx->cur_inode_new_gen = 0;
5411 			sctx->cur_inode_deleted = 0;
5412 			sctx->cur_inode_size = btrfs_inode_size(
5413 					sctx->left_path->nodes[0], left_ii);
5414 			sctx->cur_inode_mode = btrfs_inode_mode(
5415 					sctx->left_path->nodes[0], left_ii);
5416 		}
5417 	}
5418 
5419 out:
5420 	return ret;
5421 }
5422 
5423 /*
5424  * We have to process new refs before deleted refs, but compare_trees gives us
5425  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5426  * first and later process them in process_recorded_refs.
5427  * For the cur_inode_new_gen case, we skip recording completely because
5428  * changed_inode did already initiate processing of refs. The reason for this is
5429  * that in this case, compare_tree actually compares the refs of 2 different
5430  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5431  * refs of the right tree as deleted and all refs of the left tree as new.
5432  */
5433 static int changed_ref(struct send_ctx *sctx,
5434 		       enum btrfs_compare_tree_result result)
5435 {
5436 	int ret = 0;
5437 
5438 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5439 
5440 	if (!sctx->cur_inode_new_gen &&
5441 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5442 		if (result == BTRFS_COMPARE_TREE_NEW)
5443 			ret = record_new_ref(sctx);
5444 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5445 			ret = record_deleted_ref(sctx);
5446 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5447 			ret = record_changed_ref(sctx);
5448 	}
5449 
5450 	return ret;
5451 }
5452 
5453 /*
5454  * Process new/deleted/changed xattrs. We skip processing in the
5455  * cur_inode_new_gen case because changed_inode did already initiate processing
5456  * of xattrs. The reason is the same as in changed_ref
5457  */
5458 static int changed_xattr(struct send_ctx *sctx,
5459 			 enum btrfs_compare_tree_result result)
5460 {
5461 	int ret = 0;
5462 
5463 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5464 
5465 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5466 		if (result == BTRFS_COMPARE_TREE_NEW)
5467 			ret = process_new_xattr(sctx);
5468 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5469 			ret = process_deleted_xattr(sctx);
5470 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5471 			ret = process_changed_xattr(sctx);
5472 	}
5473 
5474 	return ret;
5475 }
5476 
5477 /*
5478  * Process new/deleted/changed extents. We skip processing in the
5479  * cur_inode_new_gen case because changed_inode did already initiate processing
5480  * of extents. The reason is the same as in changed_ref
5481  */
5482 static int changed_extent(struct send_ctx *sctx,
5483 			  enum btrfs_compare_tree_result result)
5484 {
5485 	int ret = 0;
5486 
5487 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5488 
5489 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5490 		if (result != BTRFS_COMPARE_TREE_DELETED)
5491 			ret = process_extent(sctx, sctx->left_path,
5492 					sctx->cmp_key);
5493 	}
5494 
5495 	return ret;
5496 }
5497 
5498 static int dir_changed(struct send_ctx *sctx, u64 dir)
5499 {
5500 	u64 orig_gen, new_gen;
5501 	int ret;
5502 
5503 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5504 			     NULL, NULL);
5505 	if (ret)
5506 		return ret;
5507 
5508 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5509 			     NULL, NULL, NULL);
5510 	if (ret)
5511 		return ret;
5512 
5513 	return (orig_gen != new_gen) ? 1 : 0;
5514 }
5515 
5516 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5517 			struct btrfs_key *key)
5518 {
5519 	struct btrfs_inode_extref *extref;
5520 	struct extent_buffer *leaf;
5521 	u64 dirid = 0, last_dirid = 0;
5522 	unsigned long ptr;
5523 	u32 item_size;
5524 	u32 cur_offset = 0;
5525 	int ref_name_len;
5526 	int ret = 0;
5527 
5528 	/* Easy case, just check this one dirid */
5529 	if (key->type == BTRFS_INODE_REF_KEY) {
5530 		dirid = key->offset;
5531 
5532 		ret = dir_changed(sctx, dirid);
5533 		goto out;
5534 	}
5535 
5536 	leaf = path->nodes[0];
5537 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5538 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5539 	while (cur_offset < item_size) {
5540 		extref = (struct btrfs_inode_extref *)(ptr +
5541 						       cur_offset);
5542 		dirid = btrfs_inode_extref_parent(leaf, extref);
5543 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5544 		cur_offset += ref_name_len + sizeof(*extref);
5545 		if (dirid == last_dirid)
5546 			continue;
5547 		ret = dir_changed(sctx, dirid);
5548 		if (ret)
5549 			break;
5550 		last_dirid = dirid;
5551 	}
5552 out:
5553 	return ret;
5554 }
5555 
5556 /*
5557  * Updates compare related fields in sctx and simply forwards to the actual
5558  * changed_xxx functions.
5559  */
5560 static int changed_cb(struct btrfs_root *left_root,
5561 		      struct btrfs_root *right_root,
5562 		      struct btrfs_path *left_path,
5563 		      struct btrfs_path *right_path,
5564 		      struct btrfs_key *key,
5565 		      enum btrfs_compare_tree_result result,
5566 		      void *ctx)
5567 {
5568 	int ret = 0;
5569 	struct send_ctx *sctx = ctx;
5570 
5571 	if (result == BTRFS_COMPARE_TREE_SAME) {
5572 		if (key->type == BTRFS_INODE_REF_KEY ||
5573 		    key->type == BTRFS_INODE_EXTREF_KEY) {
5574 			ret = compare_refs(sctx, left_path, key);
5575 			if (!ret)
5576 				return 0;
5577 			if (ret < 0)
5578 				return ret;
5579 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5580 			return maybe_send_hole(sctx, left_path, key);
5581 		} else {
5582 			return 0;
5583 		}
5584 		result = BTRFS_COMPARE_TREE_CHANGED;
5585 		ret = 0;
5586 	}
5587 
5588 	sctx->left_path = left_path;
5589 	sctx->right_path = right_path;
5590 	sctx->cmp_key = key;
5591 
5592 	ret = finish_inode_if_needed(sctx, 0);
5593 	if (ret < 0)
5594 		goto out;
5595 
5596 	/* Ignore non-FS objects */
5597 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5598 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5599 		goto out;
5600 
5601 	if (key->type == BTRFS_INODE_ITEM_KEY)
5602 		ret = changed_inode(sctx, result);
5603 	else if (key->type == BTRFS_INODE_REF_KEY ||
5604 		 key->type == BTRFS_INODE_EXTREF_KEY)
5605 		ret = changed_ref(sctx, result);
5606 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
5607 		ret = changed_xattr(sctx, result);
5608 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
5609 		ret = changed_extent(sctx, result);
5610 
5611 out:
5612 	return ret;
5613 }
5614 
5615 static int full_send_tree(struct send_ctx *sctx)
5616 {
5617 	int ret;
5618 	struct btrfs_root *send_root = sctx->send_root;
5619 	struct btrfs_key key;
5620 	struct btrfs_key found_key;
5621 	struct btrfs_path *path;
5622 	struct extent_buffer *eb;
5623 	int slot;
5624 
5625 	path = alloc_path_for_send();
5626 	if (!path)
5627 		return -ENOMEM;
5628 
5629 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5630 	key.type = BTRFS_INODE_ITEM_KEY;
5631 	key.offset = 0;
5632 
5633 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5634 	if (ret < 0)
5635 		goto out;
5636 	if (ret)
5637 		goto out_finish;
5638 
5639 	while (1) {
5640 		eb = path->nodes[0];
5641 		slot = path->slots[0];
5642 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5643 
5644 		ret = changed_cb(send_root, NULL, path, NULL,
5645 				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5646 		if (ret < 0)
5647 			goto out;
5648 
5649 		key.objectid = found_key.objectid;
5650 		key.type = found_key.type;
5651 		key.offset = found_key.offset + 1;
5652 
5653 		ret = btrfs_next_item(send_root, path);
5654 		if (ret < 0)
5655 			goto out;
5656 		if (ret) {
5657 			ret  = 0;
5658 			break;
5659 		}
5660 	}
5661 
5662 out_finish:
5663 	ret = finish_inode_if_needed(sctx, 1);
5664 
5665 out:
5666 	btrfs_free_path(path);
5667 	return ret;
5668 }
5669 
5670 static int send_subvol(struct send_ctx *sctx)
5671 {
5672 	int ret;
5673 
5674 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5675 		ret = send_header(sctx);
5676 		if (ret < 0)
5677 			goto out;
5678 	}
5679 
5680 	ret = send_subvol_begin(sctx);
5681 	if (ret < 0)
5682 		goto out;
5683 
5684 	if (sctx->parent_root) {
5685 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5686 				changed_cb, sctx);
5687 		if (ret < 0)
5688 			goto out;
5689 		ret = finish_inode_if_needed(sctx, 1);
5690 		if (ret < 0)
5691 			goto out;
5692 	} else {
5693 		ret = full_send_tree(sctx);
5694 		if (ret < 0)
5695 			goto out;
5696 	}
5697 
5698 out:
5699 	free_recorded_refs(sctx);
5700 	return ret;
5701 }
5702 
5703 /*
5704  * If orphan cleanup did remove any orphans from a root, it means the tree
5705  * was modified and therefore the commit root is not the same as the current
5706  * root anymore. This is a problem, because send uses the commit root and
5707  * therefore can see inode items that don't exist in the current root anymore,
5708  * and for example make calls to btrfs_iget, which will do tree lookups based
5709  * on the current root and not on the commit root. Those lookups will fail,
5710  * returning a -ESTALE error, and making send fail with that error. So make
5711  * sure a send does not see any orphans we have just removed, and that it will
5712  * see the same inodes regardless of whether a transaction commit happened
5713  * before it started (meaning that the commit root will be the same as the
5714  * current root) or not.
5715  */
5716 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
5717 {
5718 	int i;
5719 	struct btrfs_trans_handle *trans = NULL;
5720 
5721 again:
5722 	if (sctx->parent_root &&
5723 	    sctx->parent_root->node != sctx->parent_root->commit_root)
5724 		goto commit_trans;
5725 
5726 	for (i = 0; i < sctx->clone_roots_cnt; i++)
5727 		if (sctx->clone_roots[i].root->node !=
5728 		    sctx->clone_roots[i].root->commit_root)
5729 			goto commit_trans;
5730 
5731 	if (trans)
5732 		return btrfs_end_transaction(trans, sctx->send_root);
5733 
5734 	return 0;
5735 
5736 commit_trans:
5737 	/* Use any root, all fs roots will get their commit roots updated. */
5738 	if (!trans) {
5739 		trans = btrfs_join_transaction(sctx->send_root);
5740 		if (IS_ERR(trans))
5741 			return PTR_ERR(trans);
5742 		goto again;
5743 	}
5744 
5745 	return btrfs_commit_transaction(trans, sctx->send_root);
5746 }
5747 
5748 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5749 {
5750 	spin_lock(&root->root_item_lock);
5751 	root->send_in_progress--;
5752 	/*
5753 	 * Not much left to do, we don't know why it's unbalanced and
5754 	 * can't blindly reset it to 0.
5755 	 */
5756 	if (root->send_in_progress < 0)
5757 		btrfs_err(root->fs_info,
5758 			"send_in_progres unbalanced %d root %llu",
5759 			root->send_in_progress, root->root_key.objectid);
5760 	spin_unlock(&root->root_item_lock);
5761 }
5762 
5763 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5764 {
5765 	int ret = 0;
5766 	struct btrfs_root *send_root;
5767 	struct btrfs_root *clone_root;
5768 	struct btrfs_fs_info *fs_info;
5769 	struct btrfs_ioctl_send_args *arg = NULL;
5770 	struct btrfs_key key;
5771 	struct send_ctx *sctx = NULL;
5772 	u32 i;
5773 	u64 *clone_sources_tmp = NULL;
5774 	int clone_sources_to_rollback = 0;
5775 	int sort_clone_roots = 0;
5776 	int index;
5777 
5778 	if (!capable(CAP_SYS_ADMIN))
5779 		return -EPERM;
5780 
5781 	send_root = BTRFS_I(file_inode(mnt_file))->root;
5782 	fs_info = send_root->fs_info;
5783 
5784 	/*
5785 	 * The subvolume must remain read-only during send, protect against
5786 	 * making it RW. This also protects against deletion.
5787 	 */
5788 	spin_lock(&send_root->root_item_lock);
5789 	send_root->send_in_progress++;
5790 	spin_unlock(&send_root->root_item_lock);
5791 
5792 	/*
5793 	 * This is done when we lookup the root, it should already be complete
5794 	 * by the time we get here.
5795 	 */
5796 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5797 
5798 	/*
5799 	 * Userspace tools do the checks and warn the user if it's
5800 	 * not RO.
5801 	 */
5802 	if (!btrfs_root_readonly(send_root)) {
5803 		ret = -EPERM;
5804 		goto out;
5805 	}
5806 
5807 	arg = memdup_user(arg_, sizeof(*arg));
5808 	if (IS_ERR(arg)) {
5809 		ret = PTR_ERR(arg);
5810 		arg = NULL;
5811 		goto out;
5812 	}
5813 
5814 	if (!access_ok(VERIFY_READ, arg->clone_sources,
5815 			sizeof(*arg->clone_sources) *
5816 			arg->clone_sources_count)) {
5817 		ret = -EFAULT;
5818 		goto out;
5819 	}
5820 
5821 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5822 		ret = -EINVAL;
5823 		goto out;
5824 	}
5825 
5826 	sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5827 	if (!sctx) {
5828 		ret = -ENOMEM;
5829 		goto out;
5830 	}
5831 
5832 	INIT_LIST_HEAD(&sctx->new_refs);
5833 	INIT_LIST_HEAD(&sctx->deleted_refs);
5834 	INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5835 	INIT_LIST_HEAD(&sctx->name_cache_list);
5836 
5837 	sctx->flags = arg->flags;
5838 
5839 	sctx->send_filp = fget(arg->send_fd);
5840 	if (!sctx->send_filp) {
5841 		ret = -EBADF;
5842 		goto out;
5843 	}
5844 
5845 	sctx->send_root = send_root;
5846 	/*
5847 	 * Unlikely but possible, if the subvolume is marked for deletion but
5848 	 * is slow to remove the directory entry, send can still be started
5849 	 */
5850 	if (btrfs_root_dead(sctx->send_root)) {
5851 		ret = -EPERM;
5852 		goto out;
5853 	}
5854 
5855 	sctx->clone_roots_cnt = arg->clone_sources_count;
5856 
5857 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
5858 	sctx->send_buf = vmalloc(sctx->send_max_size);
5859 	if (!sctx->send_buf) {
5860 		ret = -ENOMEM;
5861 		goto out;
5862 	}
5863 
5864 	sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
5865 	if (!sctx->read_buf) {
5866 		ret = -ENOMEM;
5867 		goto out;
5868 	}
5869 
5870 	sctx->pending_dir_moves = RB_ROOT;
5871 	sctx->waiting_dir_moves = RB_ROOT;
5872 	sctx->orphan_dirs = RB_ROOT;
5873 
5874 	sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
5875 			(arg->clone_sources_count + 1));
5876 	if (!sctx->clone_roots) {
5877 		ret = -ENOMEM;
5878 		goto out;
5879 	}
5880 
5881 	if (arg->clone_sources_count) {
5882 		clone_sources_tmp = vmalloc(arg->clone_sources_count *
5883 				sizeof(*arg->clone_sources));
5884 		if (!clone_sources_tmp) {
5885 			ret = -ENOMEM;
5886 			goto out;
5887 		}
5888 
5889 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
5890 				arg->clone_sources_count *
5891 				sizeof(*arg->clone_sources));
5892 		if (ret) {
5893 			ret = -EFAULT;
5894 			goto out;
5895 		}
5896 
5897 		for (i = 0; i < arg->clone_sources_count; i++) {
5898 			key.objectid = clone_sources_tmp[i];
5899 			key.type = BTRFS_ROOT_ITEM_KEY;
5900 			key.offset = (u64)-1;
5901 
5902 			index = srcu_read_lock(&fs_info->subvol_srcu);
5903 
5904 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
5905 			if (IS_ERR(clone_root)) {
5906 				srcu_read_unlock(&fs_info->subvol_srcu, index);
5907 				ret = PTR_ERR(clone_root);
5908 				goto out;
5909 			}
5910 			spin_lock(&clone_root->root_item_lock);
5911 			if (!btrfs_root_readonly(clone_root) ||
5912 			    btrfs_root_dead(clone_root)) {
5913 				spin_unlock(&clone_root->root_item_lock);
5914 				srcu_read_unlock(&fs_info->subvol_srcu, index);
5915 				ret = -EPERM;
5916 				goto out;
5917 			}
5918 			clone_root->send_in_progress++;
5919 			spin_unlock(&clone_root->root_item_lock);
5920 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5921 
5922 			sctx->clone_roots[i].root = clone_root;
5923 			clone_sources_to_rollback = i + 1;
5924 		}
5925 		vfree(clone_sources_tmp);
5926 		clone_sources_tmp = NULL;
5927 	}
5928 
5929 	if (arg->parent_root) {
5930 		key.objectid = arg->parent_root;
5931 		key.type = BTRFS_ROOT_ITEM_KEY;
5932 		key.offset = (u64)-1;
5933 
5934 		index = srcu_read_lock(&fs_info->subvol_srcu);
5935 
5936 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
5937 		if (IS_ERR(sctx->parent_root)) {
5938 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5939 			ret = PTR_ERR(sctx->parent_root);
5940 			goto out;
5941 		}
5942 
5943 		spin_lock(&sctx->parent_root->root_item_lock);
5944 		sctx->parent_root->send_in_progress++;
5945 		if (!btrfs_root_readonly(sctx->parent_root) ||
5946 				btrfs_root_dead(sctx->parent_root)) {
5947 			spin_unlock(&sctx->parent_root->root_item_lock);
5948 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5949 			ret = -EPERM;
5950 			goto out;
5951 		}
5952 		spin_unlock(&sctx->parent_root->root_item_lock);
5953 
5954 		srcu_read_unlock(&fs_info->subvol_srcu, index);
5955 	}
5956 
5957 	/*
5958 	 * Clones from send_root are allowed, but only if the clone source
5959 	 * is behind the current send position. This is checked while searching
5960 	 * for possible clone sources.
5961 	 */
5962 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
5963 
5964 	/* We do a bsearch later */
5965 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
5966 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
5967 			NULL);
5968 	sort_clone_roots = 1;
5969 
5970 	ret = ensure_commit_roots_uptodate(sctx);
5971 	if (ret)
5972 		goto out;
5973 
5974 	current->journal_info = BTRFS_SEND_TRANS_STUB;
5975 	ret = send_subvol(sctx);
5976 	current->journal_info = NULL;
5977 	if (ret < 0)
5978 		goto out;
5979 
5980 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
5981 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
5982 		if (ret < 0)
5983 			goto out;
5984 		ret = send_cmd(sctx);
5985 		if (ret < 0)
5986 			goto out;
5987 	}
5988 
5989 out:
5990 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
5991 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
5992 		struct rb_node *n;
5993 		struct pending_dir_move *pm;
5994 
5995 		n = rb_first(&sctx->pending_dir_moves);
5996 		pm = rb_entry(n, struct pending_dir_move, node);
5997 		while (!list_empty(&pm->list)) {
5998 			struct pending_dir_move *pm2;
5999 
6000 			pm2 = list_first_entry(&pm->list,
6001 					       struct pending_dir_move, list);
6002 			free_pending_move(sctx, pm2);
6003 		}
6004 		free_pending_move(sctx, pm);
6005 	}
6006 
6007 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6008 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6009 		struct rb_node *n;
6010 		struct waiting_dir_move *dm;
6011 
6012 		n = rb_first(&sctx->waiting_dir_moves);
6013 		dm = rb_entry(n, struct waiting_dir_move, node);
6014 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
6015 		kfree(dm);
6016 	}
6017 
6018 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6019 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6020 		struct rb_node *n;
6021 		struct orphan_dir_info *odi;
6022 
6023 		n = rb_first(&sctx->orphan_dirs);
6024 		odi = rb_entry(n, struct orphan_dir_info, node);
6025 		free_orphan_dir_info(sctx, odi);
6026 	}
6027 
6028 	if (sort_clone_roots) {
6029 		for (i = 0; i < sctx->clone_roots_cnt; i++)
6030 			btrfs_root_dec_send_in_progress(
6031 					sctx->clone_roots[i].root);
6032 	} else {
6033 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6034 			btrfs_root_dec_send_in_progress(
6035 					sctx->clone_roots[i].root);
6036 
6037 		btrfs_root_dec_send_in_progress(send_root);
6038 	}
6039 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6040 		btrfs_root_dec_send_in_progress(sctx->parent_root);
6041 
6042 	kfree(arg);
6043 	vfree(clone_sources_tmp);
6044 
6045 	if (sctx) {
6046 		if (sctx->send_filp)
6047 			fput(sctx->send_filp);
6048 
6049 		vfree(sctx->clone_roots);
6050 		vfree(sctx->send_buf);
6051 		vfree(sctx->read_buf);
6052 
6053 		name_cache_free(sctx);
6054 
6055 		kfree(sctx);
6056 	}
6057 
6058 	return ret;
6059 }
6060