1 /* 2 * Copyright (C) 2012 Alexander Block. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/bsearch.h> 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/sort.h> 23 #include <linux/mount.h> 24 #include <linux/xattr.h> 25 #include <linux/posix_acl_xattr.h> 26 #include <linux/radix-tree.h> 27 #include <linux/vmalloc.h> 28 #include <linux/string.h> 29 30 #include "send.h" 31 #include "backref.h" 32 #include "hash.h" 33 #include "locking.h" 34 #include "disk-io.h" 35 #include "btrfs_inode.h" 36 #include "transaction.h" 37 38 static int g_verbose = 0; 39 40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__) 41 42 /* 43 * A fs_path is a helper to dynamically build path names with unknown size. 44 * It reallocates the internal buffer on demand. 45 * It allows fast adding of path elements on the right side (normal path) and 46 * fast adding to the left side (reversed path). A reversed path can also be 47 * unreversed if needed. 48 */ 49 struct fs_path { 50 union { 51 struct { 52 char *start; 53 char *end; 54 55 char *buf; 56 unsigned short buf_len:15; 57 unsigned short reversed:1; 58 char inline_buf[]; 59 }; 60 /* 61 * Average path length does not exceed 200 bytes, we'll have 62 * better packing in the slab and higher chance to satisfy 63 * a allocation later during send. 64 */ 65 char pad[256]; 66 }; 67 }; 68 #define FS_PATH_INLINE_SIZE \ 69 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 70 71 72 /* reused for each extent */ 73 struct clone_root { 74 struct btrfs_root *root; 75 u64 ino; 76 u64 offset; 77 78 u64 found_refs; 79 }; 80 81 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 82 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 83 84 struct send_ctx { 85 struct file *send_filp; 86 loff_t send_off; 87 char *send_buf; 88 u32 send_size; 89 u32 send_max_size; 90 u64 total_send_size; 91 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 92 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 93 94 struct btrfs_root *send_root; 95 struct btrfs_root *parent_root; 96 struct clone_root *clone_roots; 97 int clone_roots_cnt; 98 99 /* current state of the compare_tree call */ 100 struct btrfs_path *left_path; 101 struct btrfs_path *right_path; 102 struct btrfs_key *cmp_key; 103 104 /* 105 * infos of the currently processed inode. In case of deleted inodes, 106 * these are the values from the deleted inode. 107 */ 108 u64 cur_ino; 109 u64 cur_inode_gen; 110 int cur_inode_new; 111 int cur_inode_new_gen; 112 int cur_inode_deleted; 113 u64 cur_inode_size; 114 u64 cur_inode_mode; 115 u64 cur_inode_rdev; 116 u64 cur_inode_last_extent; 117 118 u64 send_progress; 119 120 struct list_head new_refs; 121 struct list_head deleted_refs; 122 123 struct radix_tree_root name_cache; 124 struct list_head name_cache_list; 125 int name_cache_size; 126 127 struct file_ra_state ra; 128 129 char *read_buf; 130 131 /* 132 * We process inodes by their increasing order, so if before an 133 * incremental send we reverse the parent/child relationship of 134 * directories such that a directory with a lower inode number was 135 * the parent of a directory with a higher inode number, and the one 136 * becoming the new parent got renamed too, we can't rename/move the 137 * directory with lower inode number when we finish processing it - we 138 * must process the directory with higher inode number first, then 139 * rename/move it and then rename/move the directory with lower inode 140 * number. Example follows. 141 * 142 * Tree state when the first send was performed: 143 * 144 * . 145 * |-- a (ino 257) 146 * |-- b (ino 258) 147 * | 148 * | 149 * |-- c (ino 259) 150 * | |-- d (ino 260) 151 * | 152 * |-- c2 (ino 261) 153 * 154 * Tree state when the second (incremental) send is performed: 155 * 156 * . 157 * |-- a (ino 257) 158 * |-- b (ino 258) 159 * |-- c2 (ino 261) 160 * |-- d2 (ino 260) 161 * |-- cc (ino 259) 162 * 163 * The sequence of steps that lead to the second state was: 164 * 165 * mv /a/b/c/d /a/b/c2/d2 166 * mv /a/b/c /a/b/c2/d2/cc 167 * 168 * "c" has lower inode number, but we can't move it (2nd mv operation) 169 * before we move "d", which has higher inode number. 170 * 171 * So we just memorize which move/rename operations must be performed 172 * later when their respective parent is processed and moved/renamed. 173 */ 174 175 /* Indexed by parent directory inode number. */ 176 struct rb_root pending_dir_moves; 177 178 /* 179 * Reverse index, indexed by the inode number of a directory that 180 * is waiting for the move/rename of its immediate parent before its 181 * own move/rename can be performed. 182 */ 183 struct rb_root waiting_dir_moves; 184 185 /* 186 * A directory that is going to be rm'ed might have a child directory 187 * which is in the pending directory moves index above. In this case, 188 * the directory can only be removed after the move/rename of its child 189 * is performed. Example: 190 * 191 * Parent snapshot: 192 * 193 * . (ino 256) 194 * |-- a/ (ino 257) 195 * |-- b/ (ino 258) 196 * |-- c/ (ino 259) 197 * | |-- x/ (ino 260) 198 * | 199 * |-- y/ (ino 261) 200 * 201 * Send snapshot: 202 * 203 * . (ino 256) 204 * |-- a/ (ino 257) 205 * |-- b/ (ino 258) 206 * |-- YY/ (ino 261) 207 * |-- x/ (ino 260) 208 * 209 * Sequence of steps that lead to the send snapshot: 210 * rm -f /a/b/c/foo.txt 211 * mv /a/b/y /a/b/YY 212 * mv /a/b/c/x /a/b/YY 213 * rmdir /a/b/c 214 * 215 * When the child is processed, its move/rename is delayed until its 216 * parent is processed (as explained above), but all other operations 217 * like update utimes, chown, chgrp, etc, are performed and the paths 218 * that it uses for those operations must use the orphanized name of 219 * its parent (the directory we're going to rm later), so we need to 220 * memorize that name. 221 * 222 * Indexed by the inode number of the directory to be deleted. 223 */ 224 struct rb_root orphan_dirs; 225 }; 226 227 struct pending_dir_move { 228 struct rb_node node; 229 struct list_head list; 230 u64 parent_ino; 231 u64 ino; 232 u64 gen; 233 bool is_orphan; 234 struct list_head update_refs; 235 }; 236 237 struct waiting_dir_move { 238 struct rb_node node; 239 u64 ino; 240 /* 241 * There might be some directory that could not be removed because it 242 * was waiting for this directory inode to be moved first. Therefore 243 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 244 */ 245 u64 rmdir_ino; 246 bool orphanized; 247 }; 248 249 struct orphan_dir_info { 250 struct rb_node node; 251 u64 ino; 252 u64 gen; 253 }; 254 255 struct name_cache_entry { 256 struct list_head list; 257 /* 258 * radix_tree has only 32bit entries but we need to handle 64bit inums. 259 * We use the lower 32bit of the 64bit inum to store it in the tree. If 260 * more then one inum would fall into the same entry, we use radix_list 261 * to store the additional entries. radix_list is also used to store 262 * entries where two entries have the same inum but different 263 * generations. 264 */ 265 struct list_head radix_list; 266 u64 ino; 267 u64 gen; 268 u64 parent_ino; 269 u64 parent_gen; 270 int ret; 271 int need_later_update; 272 int name_len; 273 char name[]; 274 }; 275 276 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 277 278 static struct waiting_dir_move * 279 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 280 281 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino); 282 283 static int need_send_hole(struct send_ctx *sctx) 284 { 285 return (sctx->parent_root && !sctx->cur_inode_new && 286 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 287 S_ISREG(sctx->cur_inode_mode)); 288 } 289 290 static void fs_path_reset(struct fs_path *p) 291 { 292 if (p->reversed) { 293 p->start = p->buf + p->buf_len - 1; 294 p->end = p->start; 295 *p->start = 0; 296 } else { 297 p->start = p->buf; 298 p->end = p->start; 299 *p->start = 0; 300 } 301 } 302 303 static struct fs_path *fs_path_alloc(void) 304 { 305 struct fs_path *p; 306 307 p = kmalloc(sizeof(*p), GFP_NOFS); 308 if (!p) 309 return NULL; 310 p->reversed = 0; 311 p->buf = p->inline_buf; 312 p->buf_len = FS_PATH_INLINE_SIZE; 313 fs_path_reset(p); 314 return p; 315 } 316 317 static struct fs_path *fs_path_alloc_reversed(void) 318 { 319 struct fs_path *p; 320 321 p = fs_path_alloc(); 322 if (!p) 323 return NULL; 324 p->reversed = 1; 325 fs_path_reset(p); 326 return p; 327 } 328 329 static void fs_path_free(struct fs_path *p) 330 { 331 if (!p) 332 return; 333 if (p->buf != p->inline_buf) 334 kfree(p->buf); 335 kfree(p); 336 } 337 338 static int fs_path_len(struct fs_path *p) 339 { 340 return p->end - p->start; 341 } 342 343 static int fs_path_ensure_buf(struct fs_path *p, int len) 344 { 345 char *tmp_buf; 346 int path_len; 347 int old_buf_len; 348 349 len++; 350 351 if (p->buf_len >= len) 352 return 0; 353 354 if (len > PATH_MAX) { 355 WARN_ON(1); 356 return -ENOMEM; 357 } 358 359 path_len = p->end - p->start; 360 old_buf_len = p->buf_len; 361 362 /* 363 * First time the inline_buf does not suffice 364 */ 365 if (p->buf == p->inline_buf) { 366 tmp_buf = kmalloc(len, GFP_NOFS); 367 if (tmp_buf) 368 memcpy(tmp_buf, p->buf, old_buf_len); 369 } else { 370 tmp_buf = krealloc(p->buf, len, GFP_NOFS); 371 } 372 if (!tmp_buf) 373 return -ENOMEM; 374 p->buf = tmp_buf; 375 /* 376 * The real size of the buffer is bigger, this will let the fast path 377 * happen most of the time 378 */ 379 p->buf_len = ksize(p->buf); 380 381 if (p->reversed) { 382 tmp_buf = p->buf + old_buf_len - path_len - 1; 383 p->end = p->buf + p->buf_len - 1; 384 p->start = p->end - path_len; 385 memmove(p->start, tmp_buf, path_len + 1); 386 } else { 387 p->start = p->buf; 388 p->end = p->start + path_len; 389 } 390 return 0; 391 } 392 393 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 394 char **prepared) 395 { 396 int ret; 397 int new_len; 398 399 new_len = p->end - p->start + name_len; 400 if (p->start != p->end) 401 new_len++; 402 ret = fs_path_ensure_buf(p, new_len); 403 if (ret < 0) 404 goto out; 405 406 if (p->reversed) { 407 if (p->start != p->end) 408 *--p->start = '/'; 409 p->start -= name_len; 410 *prepared = p->start; 411 } else { 412 if (p->start != p->end) 413 *p->end++ = '/'; 414 *prepared = p->end; 415 p->end += name_len; 416 *p->end = 0; 417 } 418 419 out: 420 return ret; 421 } 422 423 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 424 { 425 int ret; 426 char *prepared; 427 428 ret = fs_path_prepare_for_add(p, name_len, &prepared); 429 if (ret < 0) 430 goto out; 431 memcpy(prepared, name, name_len); 432 433 out: 434 return ret; 435 } 436 437 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 438 { 439 int ret; 440 char *prepared; 441 442 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 443 if (ret < 0) 444 goto out; 445 memcpy(prepared, p2->start, p2->end - p2->start); 446 447 out: 448 return ret; 449 } 450 451 static int fs_path_add_from_extent_buffer(struct fs_path *p, 452 struct extent_buffer *eb, 453 unsigned long off, int len) 454 { 455 int ret; 456 char *prepared; 457 458 ret = fs_path_prepare_for_add(p, len, &prepared); 459 if (ret < 0) 460 goto out; 461 462 read_extent_buffer(eb, prepared, off, len); 463 464 out: 465 return ret; 466 } 467 468 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 469 { 470 int ret; 471 472 p->reversed = from->reversed; 473 fs_path_reset(p); 474 475 ret = fs_path_add_path(p, from); 476 477 return ret; 478 } 479 480 481 static void fs_path_unreverse(struct fs_path *p) 482 { 483 char *tmp; 484 int len; 485 486 if (!p->reversed) 487 return; 488 489 tmp = p->start; 490 len = p->end - p->start; 491 p->start = p->buf; 492 p->end = p->start + len; 493 memmove(p->start, tmp, len + 1); 494 p->reversed = 0; 495 } 496 497 static struct btrfs_path *alloc_path_for_send(void) 498 { 499 struct btrfs_path *path; 500 501 path = btrfs_alloc_path(); 502 if (!path) 503 return NULL; 504 path->search_commit_root = 1; 505 path->skip_locking = 1; 506 path->need_commit_sem = 1; 507 return path; 508 } 509 510 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 511 { 512 int ret; 513 mm_segment_t old_fs; 514 u32 pos = 0; 515 516 old_fs = get_fs(); 517 set_fs(KERNEL_DS); 518 519 while (pos < len) { 520 ret = vfs_write(filp, (__force const char __user *)buf + pos, 521 len - pos, off); 522 /* TODO handle that correctly */ 523 /*if (ret == -ERESTARTSYS) { 524 continue; 525 }*/ 526 if (ret < 0) 527 goto out; 528 if (ret == 0) { 529 ret = -EIO; 530 goto out; 531 } 532 pos += ret; 533 } 534 535 ret = 0; 536 537 out: 538 set_fs(old_fs); 539 return ret; 540 } 541 542 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 543 { 544 struct btrfs_tlv_header *hdr; 545 int total_len = sizeof(*hdr) + len; 546 int left = sctx->send_max_size - sctx->send_size; 547 548 if (unlikely(left < total_len)) 549 return -EOVERFLOW; 550 551 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 552 hdr->tlv_type = cpu_to_le16(attr); 553 hdr->tlv_len = cpu_to_le16(len); 554 memcpy(hdr + 1, data, len); 555 sctx->send_size += total_len; 556 557 return 0; 558 } 559 560 #define TLV_PUT_DEFINE_INT(bits) \ 561 static int tlv_put_u##bits(struct send_ctx *sctx, \ 562 u##bits attr, u##bits value) \ 563 { \ 564 __le##bits __tmp = cpu_to_le##bits(value); \ 565 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 566 } 567 568 TLV_PUT_DEFINE_INT(64) 569 570 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 571 const char *str, int len) 572 { 573 if (len == -1) 574 len = strlen(str); 575 return tlv_put(sctx, attr, str, len); 576 } 577 578 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 579 const u8 *uuid) 580 { 581 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 582 } 583 584 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 585 struct extent_buffer *eb, 586 struct btrfs_timespec *ts) 587 { 588 struct btrfs_timespec bts; 589 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 590 return tlv_put(sctx, attr, &bts, sizeof(bts)); 591 } 592 593 594 #define TLV_PUT(sctx, attrtype, attrlen, data) \ 595 do { \ 596 ret = tlv_put(sctx, attrtype, attrlen, data); \ 597 if (ret < 0) \ 598 goto tlv_put_failure; \ 599 } while (0) 600 601 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 602 do { \ 603 ret = tlv_put_u##bits(sctx, attrtype, value); \ 604 if (ret < 0) \ 605 goto tlv_put_failure; \ 606 } while (0) 607 608 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 609 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 610 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 611 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 612 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 613 do { \ 614 ret = tlv_put_string(sctx, attrtype, str, len); \ 615 if (ret < 0) \ 616 goto tlv_put_failure; \ 617 } while (0) 618 #define TLV_PUT_PATH(sctx, attrtype, p) \ 619 do { \ 620 ret = tlv_put_string(sctx, attrtype, p->start, \ 621 p->end - p->start); \ 622 if (ret < 0) \ 623 goto tlv_put_failure; \ 624 } while(0) 625 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 626 do { \ 627 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 628 if (ret < 0) \ 629 goto tlv_put_failure; \ 630 } while (0) 631 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 632 do { \ 633 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 634 if (ret < 0) \ 635 goto tlv_put_failure; \ 636 } while (0) 637 638 static int send_header(struct send_ctx *sctx) 639 { 640 struct btrfs_stream_header hdr; 641 642 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 643 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 644 645 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 646 &sctx->send_off); 647 } 648 649 /* 650 * For each command/item we want to send to userspace, we call this function. 651 */ 652 static int begin_cmd(struct send_ctx *sctx, int cmd) 653 { 654 struct btrfs_cmd_header *hdr; 655 656 if (WARN_ON(!sctx->send_buf)) 657 return -EINVAL; 658 659 BUG_ON(sctx->send_size); 660 661 sctx->send_size += sizeof(*hdr); 662 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 663 hdr->cmd = cpu_to_le16(cmd); 664 665 return 0; 666 } 667 668 static int send_cmd(struct send_ctx *sctx) 669 { 670 int ret; 671 struct btrfs_cmd_header *hdr; 672 u32 crc; 673 674 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 675 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr)); 676 hdr->crc = 0; 677 678 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 679 hdr->crc = cpu_to_le32(crc); 680 681 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 682 &sctx->send_off); 683 684 sctx->total_send_size += sctx->send_size; 685 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size; 686 sctx->send_size = 0; 687 688 return ret; 689 } 690 691 /* 692 * Sends a move instruction to user space 693 */ 694 static int send_rename(struct send_ctx *sctx, 695 struct fs_path *from, struct fs_path *to) 696 { 697 int ret; 698 699 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start); 700 701 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 702 if (ret < 0) 703 goto out; 704 705 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 706 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 707 708 ret = send_cmd(sctx); 709 710 tlv_put_failure: 711 out: 712 return ret; 713 } 714 715 /* 716 * Sends a link instruction to user space 717 */ 718 static int send_link(struct send_ctx *sctx, 719 struct fs_path *path, struct fs_path *lnk) 720 { 721 int ret; 722 723 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start); 724 725 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 726 if (ret < 0) 727 goto out; 728 729 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 730 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 731 732 ret = send_cmd(sctx); 733 734 tlv_put_failure: 735 out: 736 return ret; 737 } 738 739 /* 740 * Sends an unlink instruction to user space 741 */ 742 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 743 { 744 int ret; 745 746 verbose_printk("btrfs: send_unlink %s\n", path->start); 747 748 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 749 if (ret < 0) 750 goto out; 751 752 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 753 754 ret = send_cmd(sctx); 755 756 tlv_put_failure: 757 out: 758 return ret; 759 } 760 761 /* 762 * Sends a rmdir instruction to user space 763 */ 764 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 765 { 766 int ret; 767 768 verbose_printk("btrfs: send_rmdir %s\n", path->start); 769 770 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 771 if (ret < 0) 772 goto out; 773 774 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 775 776 ret = send_cmd(sctx); 777 778 tlv_put_failure: 779 out: 780 return ret; 781 } 782 783 /* 784 * Helper function to retrieve some fields from an inode item. 785 */ 786 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 787 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 788 u64 *gid, u64 *rdev) 789 { 790 int ret; 791 struct btrfs_inode_item *ii; 792 struct btrfs_key key; 793 794 key.objectid = ino; 795 key.type = BTRFS_INODE_ITEM_KEY; 796 key.offset = 0; 797 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 798 if (ret) { 799 if (ret > 0) 800 ret = -ENOENT; 801 return ret; 802 } 803 804 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 805 struct btrfs_inode_item); 806 if (size) 807 *size = btrfs_inode_size(path->nodes[0], ii); 808 if (gen) 809 *gen = btrfs_inode_generation(path->nodes[0], ii); 810 if (mode) 811 *mode = btrfs_inode_mode(path->nodes[0], ii); 812 if (uid) 813 *uid = btrfs_inode_uid(path->nodes[0], ii); 814 if (gid) 815 *gid = btrfs_inode_gid(path->nodes[0], ii); 816 if (rdev) 817 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 818 819 return ret; 820 } 821 822 static int get_inode_info(struct btrfs_root *root, 823 u64 ino, u64 *size, u64 *gen, 824 u64 *mode, u64 *uid, u64 *gid, 825 u64 *rdev) 826 { 827 struct btrfs_path *path; 828 int ret; 829 830 path = alloc_path_for_send(); 831 if (!path) 832 return -ENOMEM; 833 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 834 rdev); 835 btrfs_free_path(path); 836 return ret; 837 } 838 839 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 840 struct fs_path *p, 841 void *ctx); 842 843 /* 844 * Helper function to iterate the entries in ONE btrfs_inode_ref or 845 * btrfs_inode_extref. 846 * The iterate callback may return a non zero value to stop iteration. This can 847 * be a negative value for error codes or 1 to simply stop it. 848 * 849 * path must point to the INODE_REF or INODE_EXTREF when called. 850 */ 851 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 852 struct btrfs_key *found_key, int resolve, 853 iterate_inode_ref_t iterate, void *ctx) 854 { 855 struct extent_buffer *eb = path->nodes[0]; 856 struct btrfs_item *item; 857 struct btrfs_inode_ref *iref; 858 struct btrfs_inode_extref *extref; 859 struct btrfs_path *tmp_path; 860 struct fs_path *p; 861 u32 cur = 0; 862 u32 total; 863 int slot = path->slots[0]; 864 u32 name_len; 865 char *start; 866 int ret = 0; 867 int num = 0; 868 int index; 869 u64 dir; 870 unsigned long name_off; 871 unsigned long elem_size; 872 unsigned long ptr; 873 874 p = fs_path_alloc_reversed(); 875 if (!p) 876 return -ENOMEM; 877 878 tmp_path = alloc_path_for_send(); 879 if (!tmp_path) { 880 fs_path_free(p); 881 return -ENOMEM; 882 } 883 884 885 if (found_key->type == BTRFS_INODE_REF_KEY) { 886 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 887 struct btrfs_inode_ref); 888 item = btrfs_item_nr(slot); 889 total = btrfs_item_size(eb, item); 890 elem_size = sizeof(*iref); 891 } else { 892 ptr = btrfs_item_ptr_offset(eb, slot); 893 total = btrfs_item_size_nr(eb, slot); 894 elem_size = sizeof(*extref); 895 } 896 897 while (cur < total) { 898 fs_path_reset(p); 899 900 if (found_key->type == BTRFS_INODE_REF_KEY) { 901 iref = (struct btrfs_inode_ref *)(ptr + cur); 902 name_len = btrfs_inode_ref_name_len(eb, iref); 903 name_off = (unsigned long)(iref + 1); 904 index = btrfs_inode_ref_index(eb, iref); 905 dir = found_key->offset; 906 } else { 907 extref = (struct btrfs_inode_extref *)(ptr + cur); 908 name_len = btrfs_inode_extref_name_len(eb, extref); 909 name_off = (unsigned long)&extref->name; 910 index = btrfs_inode_extref_index(eb, extref); 911 dir = btrfs_inode_extref_parent(eb, extref); 912 } 913 914 if (resolve) { 915 start = btrfs_ref_to_path(root, tmp_path, name_len, 916 name_off, eb, dir, 917 p->buf, p->buf_len); 918 if (IS_ERR(start)) { 919 ret = PTR_ERR(start); 920 goto out; 921 } 922 if (start < p->buf) { 923 /* overflow , try again with larger buffer */ 924 ret = fs_path_ensure_buf(p, 925 p->buf_len + p->buf - start); 926 if (ret < 0) 927 goto out; 928 start = btrfs_ref_to_path(root, tmp_path, 929 name_len, name_off, 930 eb, dir, 931 p->buf, p->buf_len); 932 if (IS_ERR(start)) { 933 ret = PTR_ERR(start); 934 goto out; 935 } 936 BUG_ON(start < p->buf); 937 } 938 p->start = start; 939 } else { 940 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 941 name_len); 942 if (ret < 0) 943 goto out; 944 } 945 946 cur += elem_size + name_len; 947 ret = iterate(num, dir, index, p, ctx); 948 if (ret) 949 goto out; 950 num++; 951 } 952 953 out: 954 btrfs_free_path(tmp_path); 955 fs_path_free(p); 956 return ret; 957 } 958 959 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 960 const char *name, int name_len, 961 const char *data, int data_len, 962 u8 type, void *ctx); 963 964 /* 965 * Helper function to iterate the entries in ONE btrfs_dir_item. 966 * The iterate callback may return a non zero value to stop iteration. This can 967 * be a negative value for error codes or 1 to simply stop it. 968 * 969 * path must point to the dir item when called. 970 */ 971 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 972 struct btrfs_key *found_key, 973 iterate_dir_item_t iterate, void *ctx) 974 { 975 int ret = 0; 976 struct extent_buffer *eb; 977 struct btrfs_item *item; 978 struct btrfs_dir_item *di; 979 struct btrfs_key di_key; 980 char *buf = NULL; 981 int buf_len; 982 u32 name_len; 983 u32 data_len; 984 u32 cur; 985 u32 len; 986 u32 total; 987 int slot; 988 int num; 989 u8 type; 990 991 /* 992 * Start with a small buffer (1 page). If later we end up needing more 993 * space, which can happen for xattrs on a fs with a leaf size greater 994 * then the page size, attempt to increase the buffer. Typically xattr 995 * values are small. 996 */ 997 buf_len = PATH_MAX; 998 buf = kmalloc(buf_len, GFP_NOFS); 999 if (!buf) { 1000 ret = -ENOMEM; 1001 goto out; 1002 } 1003 1004 eb = path->nodes[0]; 1005 slot = path->slots[0]; 1006 item = btrfs_item_nr(slot); 1007 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1008 cur = 0; 1009 len = 0; 1010 total = btrfs_item_size(eb, item); 1011 1012 num = 0; 1013 while (cur < total) { 1014 name_len = btrfs_dir_name_len(eb, di); 1015 data_len = btrfs_dir_data_len(eb, di); 1016 type = btrfs_dir_type(eb, di); 1017 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1018 1019 if (type == BTRFS_FT_XATTR) { 1020 if (name_len > XATTR_NAME_MAX) { 1021 ret = -ENAMETOOLONG; 1022 goto out; 1023 } 1024 if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) { 1025 ret = -E2BIG; 1026 goto out; 1027 } 1028 } else { 1029 /* 1030 * Path too long 1031 */ 1032 if (name_len + data_len > PATH_MAX) { 1033 ret = -ENAMETOOLONG; 1034 goto out; 1035 } 1036 } 1037 1038 if (name_len + data_len > buf_len) { 1039 buf_len = name_len + data_len; 1040 if (is_vmalloc_addr(buf)) { 1041 vfree(buf); 1042 buf = NULL; 1043 } else { 1044 char *tmp = krealloc(buf, buf_len, 1045 GFP_NOFS | __GFP_NOWARN); 1046 1047 if (!tmp) 1048 kfree(buf); 1049 buf = tmp; 1050 } 1051 if (!buf) { 1052 buf = vmalloc(buf_len); 1053 if (!buf) { 1054 ret = -ENOMEM; 1055 goto out; 1056 } 1057 } 1058 } 1059 1060 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1061 name_len + data_len); 1062 1063 len = sizeof(*di) + name_len + data_len; 1064 di = (struct btrfs_dir_item *)((char *)di + len); 1065 cur += len; 1066 1067 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1068 data_len, type, ctx); 1069 if (ret < 0) 1070 goto out; 1071 if (ret) { 1072 ret = 0; 1073 goto out; 1074 } 1075 1076 num++; 1077 } 1078 1079 out: 1080 kvfree(buf); 1081 return ret; 1082 } 1083 1084 static int __copy_first_ref(int num, u64 dir, int index, 1085 struct fs_path *p, void *ctx) 1086 { 1087 int ret; 1088 struct fs_path *pt = ctx; 1089 1090 ret = fs_path_copy(pt, p); 1091 if (ret < 0) 1092 return ret; 1093 1094 /* we want the first only */ 1095 return 1; 1096 } 1097 1098 /* 1099 * Retrieve the first path of an inode. If an inode has more then one 1100 * ref/hardlink, this is ignored. 1101 */ 1102 static int get_inode_path(struct btrfs_root *root, 1103 u64 ino, struct fs_path *path) 1104 { 1105 int ret; 1106 struct btrfs_key key, found_key; 1107 struct btrfs_path *p; 1108 1109 p = alloc_path_for_send(); 1110 if (!p) 1111 return -ENOMEM; 1112 1113 fs_path_reset(path); 1114 1115 key.objectid = ino; 1116 key.type = BTRFS_INODE_REF_KEY; 1117 key.offset = 0; 1118 1119 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1120 if (ret < 0) 1121 goto out; 1122 if (ret) { 1123 ret = 1; 1124 goto out; 1125 } 1126 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1127 if (found_key.objectid != ino || 1128 (found_key.type != BTRFS_INODE_REF_KEY && 1129 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1130 ret = -ENOENT; 1131 goto out; 1132 } 1133 1134 ret = iterate_inode_ref(root, p, &found_key, 1, 1135 __copy_first_ref, path); 1136 if (ret < 0) 1137 goto out; 1138 ret = 0; 1139 1140 out: 1141 btrfs_free_path(p); 1142 return ret; 1143 } 1144 1145 struct backref_ctx { 1146 struct send_ctx *sctx; 1147 1148 struct btrfs_path *path; 1149 /* number of total found references */ 1150 u64 found; 1151 1152 /* 1153 * used for clones found in send_root. clones found behind cur_objectid 1154 * and cur_offset are not considered as allowed clones. 1155 */ 1156 u64 cur_objectid; 1157 u64 cur_offset; 1158 1159 /* may be truncated in case it's the last extent in a file */ 1160 u64 extent_len; 1161 1162 /* data offset in the file extent item */ 1163 u64 data_offset; 1164 1165 /* Just to check for bugs in backref resolving */ 1166 int found_itself; 1167 }; 1168 1169 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1170 { 1171 u64 root = (u64)(uintptr_t)key; 1172 struct clone_root *cr = (struct clone_root *)elt; 1173 1174 if (root < cr->root->objectid) 1175 return -1; 1176 if (root > cr->root->objectid) 1177 return 1; 1178 return 0; 1179 } 1180 1181 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1182 { 1183 struct clone_root *cr1 = (struct clone_root *)e1; 1184 struct clone_root *cr2 = (struct clone_root *)e2; 1185 1186 if (cr1->root->objectid < cr2->root->objectid) 1187 return -1; 1188 if (cr1->root->objectid > cr2->root->objectid) 1189 return 1; 1190 return 0; 1191 } 1192 1193 /* 1194 * Called for every backref that is found for the current extent. 1195 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1196 */ 1197 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1198 { 1199 struct backref_ctx *bctx = ctx_; 1200 struct clone_root *found; 1201 int ret; 1202 u64 i_size; 1203 1204 /* First check if the root is in the list of accepted clone sources */ 1205 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1206 bctx->sctx->clone_roots_cnt, 1207 sizeof(struct clone_root), 1208 __clone_root_cmp_bsearch); 1209 if (!found) 1210 return 0; 1211 1212 if (found->root == bctx->sctx->send_root && 1213 ino == bctx->cur_objectid && 1214 offset == bctx->cur_offset) { 1215 bctx->found_itself = 1; 1216 } 1217 1218 /* 1219 * There are inodes that have extents that lie behind its i_size. Don't 1220 * accept clones from these extents. 1221 */ 1222 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL, 1223 NULL, NULL, NULL); 1224 btrfs_release_path(bctx->path); 1225 if (ret < 0) 1226 return ret; 1227 1228 if (offset + bctx->data_offset + bctx->extent_len > i_size) 1229 return 0; 1230 1231 /* 1232 * Make sure we don't consider clones from send_root that are 1233 * behind the current inode/offset. 1234 */ 1235 if (found->root == bctx->sctx->send_root) { 1236 /* 1237 * TODO for the moment we don't accept clones from the inode 1238 * that is currently send. We may change this when 1239 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same 1240 * file. 1241 */ 1242 if (ino >= bctx->cur_objectid) 1243 return 0; 1244 #if 0 1245 if (ino > bctx->cur_objectid) 1246 return 0; 1247 if (offset + bctx->extent_len > bctx->cur_offset) 1248 return 0; 1249 #endif 1250 } 1251 1252 bctx->found++; 1253 found->found_refs++; 1254 if (ino < found->ino) { 1255 found->ino = ino; 1256 found->offset = offset; 1257 } else if (found->ino == ino) { 1258 /* 1259 * same extent found more then once in the same file. 1260 */ 1261 if (found->offset > offset + bctx->extent_len) 1262 found->offset = offset; 1263 } 1264 1265 return 0; 1266 } 1267 1268 /* 1269 * Given an inode, offset and extent item, it finds a good clone for a clone 1270 * instruction. Returns -ENOENT when none could be found. The function makes 1271 * sure that the returned clone is usable at the point where sending is at the 1272 * moment. This means, that no clones are accepted which lie behind the current 1273 * inode+offset. 1274 * 1275 * path must point to the extent item when called. 1276 */ 1277 static int find_extent_clone(struct send_ctx *sctx, 1278 struct btrfs_path *path, 1279 u64 ino, u64 data_offset, 1280 u64 ino_size, 1281 struct clone_root **found) 1282 { 1283 int ret; 1284 int extent_type; 1285 u64 logical; 1286 u64 disk_byte; 1287 u64 num_bytes; 1288 u64 extent_item_pos; 1289 u64 flags = 0; 1290 struct btrfs_file_extent_item *fi; 1291 struct extent_buffer *eb = path->nodes[0]; 1292 struct backref_ctx *backref_ctx = NULL; 1293 struct clone_root *cur_clone_root; 1294 struct btrfs_key found_key; 1295 struct btrfs_path *tmp_path; 1296 int compressed; 1297 u32 i; 1298 1299 tmp_path = alloc_path_for_send(); 1300 if (!tmp_path) 1301 return -ENOMEM; 1302 1303 /* We only use this path under the commit sem */ 1304 tmp_path->need_commit_sem = 0; 1305 1306 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS); 1307 if (!backref_ctx) { 1308 ret = -ENOMEM; 1309 goto out; 1310 } 1311 1312 backref_ctx->path = tmp_path; 1313 1314 if (data_offset >= ino_size) { 1315 /* 1316 * There may be extents that lie behind the file's size. 1317 * I at least had this in combination with snapshotting while 1318 * writing large files. 1319 */ 1320 ret = 0; 1321 goto out; 1322 } 1323 1324 fi = btrfs_item_ptr(eb, path->slots[0], 1325 struct btrfs_file_extent_item); 1326 extent_type = btrfs_file_extent_type(eb, fi); 1327 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1328 ret = -ENOENT; 1329 goto out; 1330 } 1331 compressed = btrfs_file_extent_compression(eb, fi); 1332 1333 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1334 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1335 if (disk_byte == 0) { 1336 ret = -ENOENT; 1337 goto out; 1338 } 1339 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1340 1341 down_read(&sctx->send_root->fs_info->commit_root_sem); 1342 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path, 1343 &found_key, &flags); 1344 up_read(&sctx->send_root->fs_info->commit_root_sem); 1345 btrfs_release_path(tmp_path); 1346 1347 if (ret < 0) 1348 goto out; 1349 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1350 ret = -EIO; 1351 goto out; 1352 } 1353 1354 /* 1355 * Setup the clone roots. 1356 */ 1357 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1358 cur_clone_root = sctx->clone_roots + i; 1359 cur_clone_root->ino = (u64)-1; 1360 cur_clone_root->offset = 0; 1361 cur_clone_root->found_refs = 0; 1362 } 1363 1364 backref_ctx->sctx = sctx; 1365 backref_ctx->found = 0; 1366 backref_ctx->cur_objectid = ino; 1367 backref_ctx->cur_offset = data_offset; 1368 backref_ctx->found_itself = 0; 1369 backref_ctx->extent_len = num_bytes; 1370 /* 1371 * For non-compressed extents iterate_extent_inodes() gives us extent 1372 * offsets that already take into account the data offset, but not for 1373 * compressed extents, since the offset is logical and not relative to 1374 * the physical extent locations. We must take this into account to 1375 * avoid sending clone offsets that go beyond the source file's size, 1376 * which would result in the clone ioctl failing with -EINVAL on the 1377 * receiving end. 1378 */ 1379 if (compressed == BTRFS_COMPRESS_NONE) 1380 backref_ctx->data_offset = 0; 1381 else 1382 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi); 1383 1384 /* 1385 * The last extent of a file may be too large due to page alignment. 1386 * We need to adjust extent_len in this case so that the checks in 1387 * __iterate_backrefs work. 1388 */ 1389 if (data_offset + num_bytes >= ino_size) 1390 backref_ctx->extent_len = ino_size - data_offset; 1391 1392 /* 1393 * Now collect all backrefs. 1394 */ 1395 if (compressed == BTRFS_COMPRESS_NONE) 1396 extent_item_pos = logical - found_key.objectid; 1397 else 1398 extent_item_pos = 0; 1399 ret = iterate_extent_inodes(sctx->send_root->fs_info, 1400 found_key.objectid, extent_item_pos, 1, 1401 __iterate_backrefs, backref_ctx); 1402 1403 if (ret < 0) 1404 goto out; 1405 1406 if (!backref_ctx->found_itself) { 1407 /* found a bug in backref code? */ 1408 ret = -EIO; 1409 btrfs_err(sctx->send_root->fs_info, "did not find backref in " 1410 "send_root. inode=%llu, offset=%llu, " 1411 "disk_byte=%llu found extent=%llu", 1412 ino, data_offset, disk_byte, found_key.objectid); 1413 goto out; 1414 } 1415 1416 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, " 1417 "ino=%llu, " 1418 "num_bytes=%llu, logical=%llu\n", 1419 data_offset, ino, num_bytes, logical); 1420 1421 if (!backref_ctx->found) 1422 verbose_printk("btrfs: no clones found\n"); 1423 1424 cur_clone_root = NULL; 1425 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1426 if (sctx->clone_roots[i].found_refs) { 1427 if (!cur_clone_root) 1428 cur_clone_root = sctx->clone_roots + i; 1429 else if (sctx->clone_roots[i].root == sctx->send_root) 1430 /* prefer clones from send_root over others */ 1431 cur_clone_root = sctx->clone_roots + i; 1432 } 1433 1434 } 1435 1436 if (cur_clone_root) { 1437 if (compressed != BTRFS_COMPRESS_NONE) { 1438 /* 1439 * Offsets given by iterate_extent_inodes() are relative 1440 * to the start of the extent, we need to add logical 1441 * offset from the file extent item. 1442 * (See why at backref.c:check_extent_in_eb()) 1443 */ 1444 cur_clone_root->offset += btrfs_file_extent_offset(eb, 1445 fi); 1446 } 1447 *found = cur_clone_root; 1448 ret = 0; 1449 } else { 1450 ret = -ENOENT; 1451 } 1452 1453 out: 1454 btrfs_free_path(tmp_path); 1455 kfree(backref_ctx); 1456 return ret; 1457 } 1458 1459 static int read_symlink(struct btrfs_root *root, 1460 u64 ino, 1461 struct fs_path *dest) 1462 { 1463 int ret; 1464 struct btrfs_path *path; 1465 struct btrfs_key key; 1466 struct btrfs_file_extent_item *ei; 1467 u8 type; 1468 u8 compression; 1469 unsigned long off; 1470 int len; 1471 1472 path = alloc_path_for_send(); 1473 if (!path) 1474 return -ENOMEM; 1475 1476 key.objectid = ino; 1477 key.type = BTRFS_EXTENT_DATA_KEY; 1478 key.offset = 0; 1479 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1480 if (ret < 0) 1481 goto out; 1482 BUG_ON(ret); 1483 1484 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1485 struct btrfs_file_extent_item); 1486 type = btrfs_file_extent_type(path->nodes[0], ei); 1487 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1488 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1489 BUG_ON(compression); 1490 1491 off = btrfs_file_extent_inline_start(ei); 1492 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei); 1493 1494 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1495 1496 out: 1497 btrfs_free_path(path); 1498 return ret; 1499 } 1500 1501 /* 1502 * Helper function to generate a file name that is unique in the root of 1503 * send_root and parent_root. This is used to generate names for orphan inodes. 1504 */ 1505 static int gen_unique_name(struct send_ctx *sctx, 1506 u64 ino, u64 gen, 1507 struct fs_path *dest) 1508 { 1509 int ret = 0; 1510 struct btrfs_path *path; 1511 struct btrfs_dir_item *di; 1512 char tmp[64]; 1513 int len; 1514 u64 idx = 0; 1515 1516 path = alloc_path_for_send(); 1517 if (!path) 1518 return -ENOMEM; 1519 1520 while (1) { 1521 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1522 ino, gen, idx); 1523 ASSERT(len < sizeof(tmp)); 1524 1525 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1526 path, BTRFS_FIRST_FREE_OBJECTID, 1527 tmp, strlen(tmp), 0); 1528 btrfs_release_path(path); 1529 if (IS_ERR(di)) { 1530 ret = PTR_ERR(di); 1531 goto out; 1532 } 1533 if (di) { 1534 /* not unique, try again */ 1535 idx++; 1536 continue; 1537 } 1538 1539 if (!sctx->parent_root) { 1540 /* unique */ 1541 ret = 0; 1542 break; 1543 } 1544 1545 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1546 path, BTRFS_FIRST_FREE_OBJECTID, 1547 tmp, strlen(tmp), 0); 1548 btrfs_release_path(path); 1549 if (IS_ERR(di)) { 1550 ret = PTR_ERR(di); 1551 goto out; 1552 } 1553 if (di) { 1554 /* not unique, try again */ 1555 idx++; 1556 continue; 1557 } 1558 /* unique */ 1559 break; 1560 } 1561 1562 ret = fs_path_add(dest, tmp, strlen(tmp)); 1563 1564 out: 1565 btrfs_free_path(path); 1566 return ret; 1567 } 1568 1569 enum inode_state { 1570 inode_state_no_change, 1571 inode_state_will_create, 1572 inode_state_did_create, 1573 inode_state_will_delete, 1574 inode_state_did_delete, 1575 }; 1576 1577 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1578 { 1579 int ret; 1580 int left_ret; 1581 int right_ret; 1582 u64 left_gen; 1583 u64 right_gen; 1584 1585 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1586 NULL, NULL); 1587 if (ret < 0 && ret != -ENOENT) 1588 goto out; 1589 left_ret = ret; 1590 1591 if (!sctx->parent_root) { 1592 right_ret = -ENOENT; 1593 } else { 1594 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1595 NULL, NULL, NULL, NULL); 1596 if (ret < 0 && ret != -ENOENT) 1597 goto out; 1598 right_ret = ret; 1599 } 1600 1601 if (!left_ret && !right_ret) { 1602 if (left_gen == gen && right_gen == gen) { 1603 ret = inode_state_no_change; 1604 } else if (left_gen == gen) { 1605 if (ino < sctx->send_progress) 1606 ret = inode_state_did_create; 1607 else 1608 ret = inode_state_will_create; 1609 } else if (right_gen == gen) { 1610 if (ino < sctx->send_progress) 1611 ret = inode_state_did_delete; 1612 else 1613 ret = inode_state_will_delete; 1614 } else { 1615 ret = -ENOENT; 1616 } 1617 } else if (!left_ret) { 1618 if (left_gen == gen) { 1619 if (ino < sctx->send_progress) 1620 ret = inode_state_did_create; 1621 else 1622 ret = inode_state_will_create; 1623 } else { 1624 ret = -ENOENT; 1625 } 1626 } else if (!right_ret) { 1627 if (right_gen == gen) { 1628 if (ino < sctx->send_progress) 1629 ret = inode_state_did_delete; 1630 else 1631 ret = inode_state_will_delete; 1632 } else { 1633 ret = -ENOENT; 1634 } 1635 } else { 1636 ret = -ENOENT; 1637 } 1638 1639 out: 1640 return ret; 1641 } 1642 1643 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1644 { 1645 int ret; 1646 1647 ret = get_cur_inode_state(sctx, ino, gen); 1648 if (ret < 0) 1649 goto out; 1650 1651 if (ret == inode_state_no_change || 1652 ret == inode_state_did_create || 1653 ret == inode_state_will_delete) 1654 ret = 1; 1655 else 1656 ret = 0; 1657 1658 out: 1659 return ret; 1660 } 1661 1662 /* 1663 * Helper function to lookup a dir item in a dir. 1664 */ 1665 static int lookup_dir_item_inode(struct btrfs_root *root, 1666 u64 dir, const char *name, int name_len, 1667 u64 *found_inode, 1668 u8 *found_type) 1669 { 1670 int ret = 0; 1671 struct btrfs_dir_item *di; 1672 struct btrfs_key key; 1673 struct btrfs_path *path; 1674 1675 path = alloc_path_for_send(); 1676 if (!path) 1677 return -ENOMEM; 1678 1679 di = btrfs_lookup_dir_item(NULL, root, path, 1680 dir, name, name_len, 0); 1681 if (!di) { 1682 ret = -ENOENT; 1683 goto out; 1684 } 1685 if (IS_ERR(di)) { 1686 ret = PTR_ERR(di); 1687 goto out; 1688 } 1689 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1690 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1691 ret = -ENOENT; 1692 goto out; 1693 } 1694 *found_inode = key.objectid; 1695 *found_type = btrfs_dir_type(path->nodes[0], di); 1696 1697 out: 1698 btrfs_free_path(path); 1699 return ret; 1700 } 1701 1702 /* 1703 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1704 * generation of the parent dir and the name of the dir entry. 1705 */ 1706 static int get_first_ref(struct btrfs_root *root, u64 ino, 1707 u64 *dir, u64 *dir_gen, struct fs_path *name) 1708 { 1709 int ret; 1710 struct btrfs_key key; 1711 struct btrfs_key found_key; 1712 struct btrfs_path *path; 1713 int len; 1714 u64 parent_dir; 1715 1716 path = alloc_path_for_send(); 1717 if (!path) 1718 return -ENOMEM; 1719 1720 key.objectid = ino; 1721 key.type = BTRFS_INODE_REF_KEY; 1722 key.offset = 0; 1723 1724 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1725 if (ret < 0) 1726 goto out; 1727 if (!ret) 1728 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1729 path->slots[0]); 1730 if (ret || found_key.objectid != ino || 1731 (found_key.type != BTRFS_INODE_REF_KEY && 1732 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1733 ret = -ENOENT; 1734 goto out; 1735 } 1736 1737 if (found_key.type == BTRFS_INODE_REF_KEY) { 1738 struct btrfs_inode_ref *iref; 1739 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1740 struct btrfs_inode_ref); 1741 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1742 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1743 (unsigned long)(iref + 1), 1744 len); 1745 parent_dir = found_key.offset; 1746 } else { 1747 struct btrfs_inode_extref *extref; 1748 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1749 struct btrfs_inode_extref); 1750 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1751 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1752 (unsigned long)&extref->name, len); 1753 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1754 } 1755 if (ret < 0) 1756 goto out; 1757 btrfs_release_path(path); 1758 1759 if (dir_gen) { 1760 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1761 NULL, NULL, NULL); 1762 if (ret < 0) 1763 goto out; 1764 } 1765 1766 *dir = parent_dir; 1767 1768 out: 1769 btrfs_free_path(path); 1770 return ret; 1771 } 1772 1773 static int is_first_ref(struct btrfs_root *root, 1774 u64 ino, u64 dir, 1775 const char *name, int name_len) 1776 { 1777 int ret; 1778 struct fs_path *tmp_name; 1779 u64 tmp_dir; 1780 1781 tmp_name = fs_path_alloc(); 1782 if (!tmp_name) 1783 return -ENOMEM; 1784 1785 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1786 if (ret < 0) 1787 goto out; 1788 1789 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1790 ret = 0; 1791 goto out; 1792 } 1793 1794 ret = !memcmp(tmp_name->start, name, name_len); 1795 1796 out: 1797 fs_path_free(tmp_name); 1798 return ret; 1799 } 1800 1801 /* 1802 * Used by process_recorded_refs to determine if a new ref would overwrite an 1803 * already existing ref. In case it detects an overwrite, it returns the 1804 * inode/gen in who_ino/who_gen. 1805 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1806 * to make sure later references to the overwritten inode are possible. 1807 * Orphanizing is however only required for the first ref of an inode. 1808 * process_recorded_refs does an additional is_first_ref check to see if 1809 * orphanizing is really required. 1810 */ 1811 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1812 const char *name, int name_len, 1813 u64 *who_ino, u64 *who_gen) 1814 { 1815 int ret = 0; 1816 u64 gen; 1817 u64 other_inode = 0; 1818 u8 other_type = 0; 1819 1820 if (!sctx->parent_root) 1821 goto out; 1822 1823 ret = is_inode_existent(sctx, dir, dir_gen); 1824 if (ret <= 0) 1825 goto out; 1826 1827 /* 1828 * If we have a parent root we need to verify that the parent dir was 1829 * not delted and then re-created, if it was then we have no overwrite 1830 * and we can just unlink this entry. 1831 */ 1832 if (sctx->parent_root) { 1833 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1834 NULL, NULL, NULL); 1835 if (ret < 0 && ret != -ENOENT) 1836 goto out; 1837 if (ret) { 1838 ret = 0; 1839 goto out; 1840 } 1841 if (gen != dir_gen) 1842 goto out; 1843 } 1844 1845 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1846 &other_inode, &other_type); 1847 if (ret < 0 && ret != -ENOENT) 1848 goto out; 1849 if (ret) { 1850 ret = 0; 1851 goto out; 1852 } 1853 1854 /* 1855 * Check if the overwritten ref was already processed. If yes, the ref 1856 * was already unlinked/moved, so we can safely assume that we will not 1857 * overwrite anything at this point in time. 1858 */ 1859 if (other_inode > sctx->send_progress) { 1860 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1861 who_gen, NULL, NULL, NULL, NULL); 1862 if (ret < 0) 1863 goto out; 1864 1865 ret = 1; 1866 *who_ino = other_inode; 1867 } else { 1868 ret = 0; 1869 } 1870 1871 out: 1872 return ret; 1873 } 1874 1875 /* 1876 * Checks if the ref was overwritten by an already processed inode. This is 1877 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1878 * thus the orphan name needs be used. 1879 * process_recorded_refs also uses it to avoid unlinking of refs that were 1880 * overwritten. 1881 */ 1882 static int did_overwrite_ref(struct send_ctx *sctx, 1883 u64 dir, u64 dir_gen, 1884 u64 ino, u64 ino_gen, 1885 const char *name, int name_len) 1886 { 1887 int ret = 0; 1888 u64 gen; 1889 u64 ow_inode; 1890 u8 other_type; 1891 1892 if (!sctx->parent_root) 1893 goto out; 1894 1895 ret = is_inode_existent(sctx, dir, dir_gen); 1896 if (ret <= 0) 1897 goto out; 1898 1899 /* check if the ref was overwritten by another ref */ 1900 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1901 &ow_inode, &other_type); 1902 if (ret < 0 && ret != -ENOENT) 1903 goto out; 1904 if (ret) { 1905 /* was never and will never be overwritten */ 1906 ret = 0; 1907 goto out; 1908 } 1909 1910 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1911 NULL, NULL); 1912 if (ret < 0) 1913 goto out; 1914 1915 if (ow_inode == ino && gen == ino_gen) { 1916 ret = 0; 1917 goto out; 1918 } 1919 1920 /* 1921 * We know that it is or will be overwritten. Check this now. 1922 * The current inode being processed might have been the one that caused 1923 * inode 'ino' to be orphanized, therefore check if ow_inode matches 1924 * the current inode being processed. 1925 */ 1926 if ((ow_inode < sctx->send_progress) || 1927 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 1928 gen == sctx->cur_inode_gen)) 1929 ret = 1; 1930 else 1931 ret = 0; 1932 1933 out: 1934 return ret; 1935 } 1936 1937 /* 1938 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1939 * that got overwritten. This is used by process_recorded_refs to determine 1940 * if it has to use the path as returned by get_cur_path or the orphan name. 1941 */ 1942 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1943 { 1944 int ret = 0; 1945 struct fs_path *name = NULL; 1946 u64 dir; 1947 u64 dir_gen; 1948 1949 if (!sctx->parent_root) 1950 goto out; 1951 1952 name = fs_path_alloc(); 1953 if (!name) 1954 return -ENOMEM; 1955 1956 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 1957 if (ret < 0) 1958 goto out; 1959 1960 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 1961 name->start, fs_path_len(name)); 1962 1963 out: 1964 fs_path_free(name); 1965 return ret; 1966 } 1967 1968 /* 1969 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 1970 * so we need to do some special handling in case we have clashes. This function 1971 * takes care of this with the help of name_cache_entry::radix_list. 1972 * In case of error, nce is kfreed. 1973 */ 1974 static int name_cache_insert(struct send_ctx *sctx, 1975 struct name_cache_entry *nce) 1976 { 1977 int ret = 0; 1978 struct list_head *nce_head; 1979 1980 nce_head = radix_tree_lookup(&sctx->name_cache, 1981 (unsigned long)nce->ino); 1982 if (!nce_head) { 1983 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS); 1984 if (!nce_head) { 1985 kfree(nce); 1986 return -ENOMEM; 1987 } 1988 INIT_LIST_HEAD(nce_head); 1989 1990 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 1991 if (ret < 0) { 1992 kfree(nce_head); 1993 kfree(nce); 1994 return ret; 1995 } 1996 } 1997 list_add_tail(&nce->radix_list, nce_head); 1998 list_add_tail(&nce->list, &sctx->name_cache_list); 1999 sctx->name_cache_size++; 2000 2001 return ret; 2002 } 2003 2004 static void name_cache_delete(struct send_ctx *sctx, 2005 struct name_cache_entry *nce) 2006 { 2007 struct list_head *nce_head; 2008 2009 nce_head = radix_tree_lookup(&sctx->name_cache, 2010 (unsigned long)nce->ino); 2011 if (!nce_head) { 2012 btrfs_err(sctx->send_root->fs_info, 2013 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2014 nce->ino, sctx->name_cache_size); 2015 } 2016 2017 list_del(&nce->radix_list); 2018 list_del(&nce->list); 2019 sctx->name_cache_size--; 2020 2021 /* 2022 * We may not get to the final release of nce_head if the lookup fails 2023 */ 2024 if (nce_head && list_empty(nce_head)) { 2025 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2026 kfree(nce_head); 2027 } 2028 } 2029 2030 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2031 u64 ino, u64 gen) 2032 { 2033 struct list_head *nce_head; 2034 struct name_cache_entry *cur; 2035 2036 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2037 if (!nce_head) 2038 return NULL; 2039 2040 list_for_each_entry(cur, nce_head, radix_list) { 2041 if (cur->ino == ino && cur->gen == gen) 2042 return cur; 2043 } 2044 return NULL; 2045 } 2046 2047 /* 2048 * Removes the entry from the list and adds it back to the end. This marks the 2049 * entry as recently used so that name_cache_clean_unused does not remove it. 2050 */ 2051 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 2052 { 2053 list_del(&nce->list); 2054 list_add_tail(&nce->list, &sctx->name_cache_list); 2055 } 2056 2057 /* 2058 * Remove some entries from the beginning of name_cache_list. 2059 */ 2060 static void name_cache_clean_unused(struct send_ctx *sctx) 2061 { 2062 struct name_cache_entry *nce; 2063 2064 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2065 return; 2066 2067 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2068 nce = list_entry(sctx->name_cache_list.next, 2069 struct name_cache_entry, list); 2070 name_cache_delete(sctx, nce); 2071 kfree(nce); 2072 } 2073 } 2074 2075 static void name_cache_free(struct send_ctx *sctx) 2076 { 2077 struct name_cache_entry *nce; 2078 2079 while (!list_empty(&sctx->name_cache_list)) { 2080 nce = list_entry(sctx->name_cache_list.next, 2081 struct name_cache_entry, list); 2082 name_cache_delete(sctx, nce); 2083 kfree(nce); 2084 } 2085 } 2086 2087 /* 2088 * Used by get_cur_path for each ref up to the root. 2089 * Returns 0 if it succeeded. 2090 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2091 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2092 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2093 * Returns <0 in case of error. 2094 */ 2095 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2096 u64 ino, u64 gen, 2097 u64 *parent_ino, 2098 u64 *parent_gen, 2099 struct fs_path *dest) 2100 { 2101 int ret; 2102 int nce_ret; 2103 struct name_cache_entry *nce = NULL; 2104 2105 /* 2106 * First check if we already did a call to this function with the same 2107 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2108 * return the cached result. 2109 */ 2110 nce = name_cache_search(sctx, ino, gen); 2111 if (nce) { 2112 if (ino < sctx->send_progress && nce->need_later_update) { 2113 name_cache_delete(sctx, nce); 2114 kfree(nce); 2115 nce = NULL; 2116 } else { 2117 name_cache_used(sctx, nce); 2118 *parent_ino = nce->parent_ino; 2119 *parent_gen = nce->parent_gen; 2120 ret = fs_path_add(dest, nce->name, nce->name_len); 2121 if (ret < 0) 2122 goto out; 2123 ret = nce->ret; 2124 goto out; 2125 } 2126 } 2127 2128 /* 2129 * If the inode is not existent yet, add the orphan name and return 1. 2130 * This should only happen for the parent dir that we determine in 2131 * __record_new_ref 2132 */ 2133 ret = is_inode_existent(sctx, ino, gen); 2134 if (ret < 0) 2135 goto out; 2136 2137 if (!ret) { 2138 ret = gen_unique_name(sctx, ino, gen, dest); 2139 if (ret < 0) 2140 goto out; 2141 ret = 1; 2142 goto out_cache; 2143 } 2144 2145 /* 2146 * Depending on whether the inode was already processed or not, use 2147 * send_root or parent_root for ref lookup. 2148 */ 2149 if (ino < sctx->send_progress) 2150 ret = get_first_ref(sctx->send_root, ino, 2151 parent_ino, parent_gen, dest); 2152 else 2153 ret = get_first_ref(sctx->parent_root, ino, 2154 parent_ino, parent_gen, dest); 2155 if (ret < 0) 2156 goto out; 2157 2158 /* 2159 * Check if the ref was overwritten by an inode's ref that was processed 2160 * earlier. If yes, treat as orphan and return 1. 2161 */ 2162 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2163 dest->start, dest->end - dest->start); 2164 if (ret < 0) 2165 goto out; 2166 if (ret) { 2167 fs_path_reset(dest); 2168 ret = gen_unique_name(sctx, ino, gen, dest); 2169 if (ret < 0) 2170 goto out; 2171 ret = 1; 2172 } 2173 2174 out_cache: 2175 /* 2176 * Store the result of the lookup in the name cache. 2177 */ 2178 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS); 2179 if (!nce) { 2180 ret = -ENOMEM; 2181 goto out; 2182 } 2183 2184 nce->ino = ino; 2185 nce->gen = gen; 2186 nce->parent_ino = *parent_ino; 2187 nce->parent_gen = *parent_gen; 2188 nce->name_len = fs_path_len(dest); 2189 nce->ret = ret; 2190 strcpy(nce->name, dest->start); 2191 2192 if (ino < sctx->send_progress) 2193 nce->need_later_update = 0; 2194 else 2195 nce->need_later_update = 1; 2196 2197 nce_ret = name_cache_insert(sctx, nce); 2198 if (nce_ret < 0) 2199 ret = nce_ret; 2200 name_cache_clean_unused(sctx); 2201 2202 out: 2203 return ret; 2204 } 2205 2206 /* 2207 * Magic happens here. This function returns the first ref to an inode as it 2208 * would look like while receiving the stream at this point in time. 2209 * We walk the path up to the root. For every inode in between, we check if it 2210 * was already processed/sent. If yes, we continue with the parent as found 2211 * in send_root. If not, we continue with the parent as found in parent_root. 2212 * If we encounter an inode that was deleted at this point in time, we use the 2213 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2214 * that were not created yet and overwritten inodes/refs. 2215 * 2216 * When do we have have orphan inodes: 2217 * 1. When an inode is freshly created and thus no valid refs are available yet 2218 * 2. When a directory lost all it's refs (deleted) but still has dir items 2219 * inside which were not processed yet (pending for move/delete). If anyone 2220 * tried to get the path to the dir items, it would get a path inside that 2221 * orphan directory. 2222 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2223 * of an unprocessed inode. If in that case the first ref would be 2224 * overwritten, the overwritten inode gets "orphanized". Later when we 2225 * process this overwritten inode, it is restored at a new place by moving 2226 * the orphan inode. 2227 * 2228 * sctx->send_progress tells this function at which point in time receiving 2229 * would be. 2230 */ 2231 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2232 struct fs_path *dest) 2233 { 2234 int ret = 0; 2235 struct fs_path *name = NULL; 2236 u64 parent_inode = 0; 2237 u64 parent_gen = 0; 2238 int stop = 0; 2239 2240 name = fs_path_alloc(); 2241 if (!name) { 2242 ret = -ENOMEM; 2243 goto out; 2244 } 2245 2246 dest->reversed = 1; 2247 fs_path_reset(dest); 2248 2249 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2250 struct waiting_dir_move *wdm; 2251 2252 fs_path_reset(name); 2253 2254 if (is_waiting_for_rm(sctx, ino)) { 2255 ret = gen_unique_name(sctx, ino, gen, name); 2256 if (ret < 0) 2257 goto out; 2258 ret = fs_path_add_path(dest, name); 2259 break; 2260 } 2261 2262 wdm = get_waiting_dir_move(sctx, ino); 2263 if (wdm && wdm->orphanized) { 2264 ret = gen_unique_name(sctx, ino, gen, name); 2265 stop = 1; 2266 } else if (wdm) { 2267 ret = get_first_ref(sctx->parent_root, ino, 2268 &parent_inode, &parent_gen, name); 2269 } else { 2270 ret = __get_cur_name_and_parent(sctx, ino, gen, 2271 &parent_inode, 2272 &parent_gen, name); 2273 if (ret) 2274 stop = 1; 2275 } 2276 2277 if (ret < 0) 2278 goto out; 2279 2280 ret = fs_path_add_path(dest, name); 2281 if (ret < 0) 2282 goto out; 2283 2284 ino = parent_inode; 2285 gen = parent_gen; 2286 } 2287 2288 out: 2289 fs_path_free(name); 2290 if (!ret) 2291 fs_path_unreverse(dest); 2292 return ret; 2293 } 2294 2295 /* 2296 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2297 */ 2298 static int send_subvol_begin(struct send_ctx *sctx) 2299 { 2300 int ret; 2301 struct btrfs_root *send_root = sctx->send_root; 2302 struct btrfs_root *parent_root = sctx->parent_root; 2303 struct btrfs_path *path; 2304 struct btrfs_key key; 2305 struct btrfs_root_ref *ref; 2306 struct extent_buffer *leaf; 2307 char *name = NULL; 2308 int namelen; 2309 2310 path = btrfs_alloc_path(); 2311 if (!path) 2312 return -ENOMEM; 2313 2314 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS); 2315 if (!name) { 2316 btrfs_free_path(path); 2317 return -ENOMEM; 2318 } 2319 2320 key.objectid = send_root->objectid; 2321 key.type = BTRFS_ROOT_BACKREF_KEY; 2322 key.offset = 0; 2323 2324 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2325 &key, path, 1, 0); 2326 if (ret < 0) 2327 goto out; 2328 if (ret) { 2329 ret = -ENOENT; 2330 goto out; 2331 } 2332 2333 leaf = path->nodes[0]; 2334 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2335 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2336 key.objectid != send_root->objectid) { 2337 ret = -ENOENT; 2338 goto out; 2339 } 2340 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2341 namelen = btrfs_root_ref_name_len(leaf, ref); 2342 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2343 btrfs_release_path(path); 2344 2345 if (parent_root) { 2346 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2347 if (ret < 0) 2348 goto out; 2349 } else { 2350 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2351 if (ret < 0) 2352 goto out; 2353 } 2354 2355 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2356 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2357 sctx->send_root->root_item.uuid); 2358 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2359 le64_to_cpu(sctx->send_root->root_item.ctransid)); 2360 if (parent_root) { 2361 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2362 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2363 parent_root->root_item.received_uuid); 2364 else 2365 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2366 parent_root->root_item.uuid); 2367 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2368 le64_to_cpu(sctx->parent_root->root_item.ctransid)); 2369 } 2370 2371 ret = send_cmd(sctx); 2372 2373 tlv_put_failure: 2374 out: 2375 btrfs_free_path(path); 2376 kfree(name); 2377 return ret; 2378 } 2379 2380 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2381 { 2382 int ret = 0; 2383 struct fs_path *p; 2384 2385 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size); 2386 2387 p = fs_path_alloc(); 2388 if (!p) 2389 return -ENOMEM; 2390 2391 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2392 if (ret < 0) 2393 goto out; 2394 2395 ret = get_cur_path(sctx, ino, gen, p); 2396 if (ret < 0) 2397 goto out; 2398 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2399 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2400 2401 ret = send_cmd(sctx); 2402 2403 tlv_put_failure: 2404 out: 2405 fs_path_free(p); 2406 return ret; 2407 } 2408 2409 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2410 { 2411 int ret = 0; 2412 struct fs_path *p; 2413 2414 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode); 2415 2416 p = fs_path_alloc(); 2417 if (!p) 2418 return -ENOMEM; 2419 2420 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2421 if (ret < 0) 2422 goto out; 2423 2424 ret = get_cur_path(sctx, ino, gen, p); 2425 if (ret < 0) 2426 goto out; 2427 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2428 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2429 2430 ret = send_cmd(sctx); 2431 2432 tlv_put_failure: 2433 out: 2434 fs_path_free(p); 2435 return ret; 2436 } 2437 2438 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2439 { 2440 int ret = 0; 2441 struct fs_path *p; 2442 2443 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid); 2444 2445 p = fs_path_alloc(); 2446 if (!p) 2447 return -ENOMEM; 2448 2449 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2450 if (ret < 0) 2451 goto out; 2452 2453 ret = get_cur_path(sctx, ino, gen, p); 2454 if (ret < 0) 2455 goto out; 2456 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2457 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2458 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2459 2460 ret = send_cmd(sctx); 2461 2462 tlv_put_failure: 2463 out: 2464 fs_path_free(p); 2465 return ret; 2466 } 2467 2468 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2469 { 2470 int ret = 0; 2471 struct fs_path *p = NULL; 2472 struct btrfs_inode_item *ii; 2473 struct btrfs_path *path = NULL; 2474 struct extent_buffer *eb; 2475 struct btrfs_key key; 2476 int slot; 2477 2478 verbose_printk("btrfs: send_utimes %llu\n", ino); 2479 2480 p = fs_path_alloc(); 2481 if (!p) 2482 return -ENOMEM; 2483 2484 path = alloc_path_for_send(); 2485 if (!path) { 2486 ret = -ENOMEM; 2487 goto out; 2488 } 2489 2490 key.objectid = ino; 2491 key.type = BTRFS_INODE_ITEM_KEY; 2492 key.offset = 0; 2493 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2494 if (ret < 0) 2495 goto out; 2496 2497 eb = path->nodes[0]; 2498 slot = path->slots[0]; 2499 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2500 2501 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2502 if (ret < 0) 2503 goto out; 2504 2505 ret = get_cur_path(sctx, ino, gen, p); 2506 if (ret < 0) 2507 goto out; 2508 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2509 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2510 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2511 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2512 /* TODO Add otime support when the otime patches get into upstream */ 2513 2514 ret = send_cmd(sctx); 2515 2516 tlv_put_failure: 2517 out: 2518 fs_path_free(p); 2519 btrfs_free_path(path); 2520 return ret; 2521 } 2522 2523 /* 2524 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2525 * a valid path yet because we did not process the refs yet. So, the inode 2526 * is created as orphan. 2527 */ 2528 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2529 { 2530 int ret = 0; 2531 struct fs_path *p; 2532 int cmd; 2533 u64 gen; 2534 u64 mode; 2535 u64 rdev; 2536 2537 verbose_printk("btrfs: send_create_inode %llu\n", ino); 2538 2539 p = fs_path_alloc(); 2540 if (!p) 2541 return -ENOMEM; 2542 2543 if (ino != sctx->cur_ino) { 2544 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2545 NULL, NULL, &rdev); 2546 if (ret < 0) 2547 goto out; 2548 } else { 2549 gen = sctx->cur_inode_gen; 2550 mode = sctx->cur_inode_mode; 2551 rdev = sctx->cur_inode_rdev; 2552 } 2553 2554 if (S_ISREG(mode)) { 2555 cmd = BTRFS_SEND_C_MKFILE; 2556 } else if (S_ISDIR(mode)) { 2557 cmd = BTRFS_SEND_C_MKDIR; 2558 } else if (S_ISLNK(mode)) { 2559 cmd = BTRFS_SEND_C_SYMLINK; 2560 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2561 cmd = BTRFS_SEND_C_MKNOD; 2562 } else if (S_ISFIFO(mode)) { 2563 cmd = BTRFS_SEND_C_MKFIFO; 2564 } else if (S_ISSOCK(mode)) { 2565 cmd = BTRFS_SEND_C_MKSOCK; 2566 } else { 2567 printk(KERN_WARNING "btrfs: unexpected inode type %o", 2568 (int)(mode & S_IFMT)); 2569 ret = -ENOTSUPP; 2570 goto out; 2571 } 2572 2573 ret = begin_cmd(sctx, cmd); 2574 if (ret < 0) 2575 goto out; 2576 2577 ret = gen_unique_name(sctx, ino, gen, p); 2578 if (ret < 0) 2579 goto out; 2580 2581 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2582 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2583 2584 if (S_ISLNK(mode)) { 2585 fs_path_reset(p); 2586 ret = read_symlink(sctx->send_root, ino, p); 2587 if (ret < 0) 2588 goto out; 2589 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2590 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2591 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2592 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2593 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2594 } 2595 2596 ret = send_cmd(sctx); 2597 if (ret < 0) 2598 goto out; 2599 2600 2601 tlv_put_failure: 2602 out: 2603 fs_path_free(p); 2604 return ret; 2605 } 2606 2607 /* 2608 * We need some special handling for inodes that get processed before the parent 2609 * directory got created. See process_recorded_refs for details. 2610 * This function does the check if we already created the dir out of order. 2611 */ 2612 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2613 { 2614 int ret = 0; 2615 struct btrfs_path *path = NULL; 2616 struct btrfs_key key; 2617 struct btrfs_key found_key; 2618 struct btrfs_key di_key; 2619 struct extent_buffer *eb; 2620 struct btrfs_dir_item *di; 2621 int slot; 2622 2623 path = alloc_path_for_send(); 2624 if (!path) { 2625 ret = -ENOMEM; 2626 goto out; 2627 } 2628 2629 key.objectid = dir; 2630 key.type = BTRFS_DIR_INDEX_KEY; 2631 key.offset = 0; 2632 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2633 if (ret < 0) 2634 goto out; 2635 2636 while (1) { 2637 eb = path->nodes[0]; 2638 slot = path->slots[0]; 2639 if (slot >= btrfs_header_nritems(eb)) { 2640 ret = btrfs_next_leaf(sctx->send_root, path); 2641 if (ret < 0) { 2642 goto out; 2643 } else if (ret > 0) { 2644 ret = 0; 2645 break; 2646 } 2647 continue; 2648 } 2649 2650 btrfs_item_key_to_cpu(eb, &found_key, slot); 2651 if (found_key.objectid != key.objectid || 2652 found_key.type != key.type) { 2653 ret = 0; 2654 goto out; 2655 } 2656 2657 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2658 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2659 2660 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2661 di_key.objectid < sctx->send_progress) { 2662 ret = 1; 2663 goto out; 2664 } 2665 2666 path->slots[0]++; 2667 } 2668 2669 out: 2670 btrfs_free_path(path); 2671 return ret; 2672 } 2673 2674 /* 2675 * Only creates the inode if it is: 2676 * 1. Not a directory 2677 * 2. Or a directory which was not created already due to out of order 2678 * directories. See did_create_dir and process_recorded_refs for details. 2679 */ 2680 static int send_create_inode_if_needed(struct send_ctx *sctx) 2681 { 2682 int ret; 2683 2684 if (S_ISDIR(sctx->cur_inode_mode)) { 2685 ret = did_create_dir(sctx, sctx->cur_ino); 2686 if (ret < 0) 2687 goto out; 2688 if (ret) { 2689 ret = 0; 2690 goto out; 2691 } 2692 } 2693 2694 ret = send_create_inode(sctx, sctx->cur_ino); 2695 if (ret < 0) 2696 goto out; 2697 2698 out: 2699 return ret; 2700 } 2701 2702 struct recorded_ref { 2703 struct list_head list; 2704 char *dir_path; 2705 char *name; 2706 struct fs_path *full_path; 2707 u64 dir; 2708 u64 dir_gen; 2709 int dir_path_len; 2710 int name_len; 2711 }; 2712 2713 /* 2714 * We need to process new refs before deleted refs, but compare_tree gives us 2715 * everything mixed. So we first record all refs and later process them. 2716 * This function is a helper to record one ref. 2717 */ 2718 static int __record_ref(struct list_head *head, u64 dir, 2719 u64 dir_gen, struct fs_path *path) 2720 { 2721 struct recorded_ref *ref; 2722 2723 ref = kmalloc(sizeof(*ref), GFP_NOFS); 2724 if (!ref) 2725 return -ENOMEM; 2726 2727 ref->dir = dir; 2728 ref->dir_gen = dir_gen; 2729 ref->full_path = path; 2730 2731 ref->name = (char *)kbasename(ref->full_path->start); 2732 ref->name_len = ref->full_path->end - ref->name; 2733 ref->dir_path = ref->full_path->start; 2734 if (ref->name == ref->full_path->start) 2735 ref->dir_path_len = 0; 2736 else 2737 ref->dir_path_len = ref->full_path->end - 2738 ref->full_path->start - 1 - ref->name_len; 2739 2740 list_add_tail(&ref->list, head); 2741 return 0; 2742 } 2743 2744 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2745 { 2746 struct recorded_ref *new; 2747 2748 new = kmalloc(sizeof(*ref), GFP_NOFS); 2749 if (!new) 2750 return -ENOMEM; 2751 2752 new->dir = ref->dir; 2753 new->dir_gen = ref->dir_gen; 2754 new->full_path = NULL; 2755 INIT_LIST_HEAD(&new->list); 2756 list_add_tail(&new->list, list); 2757 return 0; 2758 } 2759 2760 static void __free_recorded_refs(struct list_head *head) 2761 { 2762 struct recorded_ref *cur; 2763 2764 while (!list_empty(head)) { 2765 cur = list_entry(head->next, struct recorded_ref, list); 2766 fs_path_free(cur->full_path); 2767 list_del(&cur->list); 2768 kfree(cur); 2769 } 2770 } 2771 2772 static void free_recorded_refs(struct send_ctx *sctx) 2773 { 2774 __free_recorded_refs(&sctx->new_refs); 2775 __free_recorded_refs(&sctx->deleted_refs); 2776 } 2777 2778 /* 2779 * Renames/moves a file/dir to its orphan name. Used when the first 2780 * ref of an unprocessed inode gets overwritten and for all non empty 2781 * directories. 2782 */ 2783 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2784 struct fs_path *path) 2785 { 2786 int ret; 2787 struct fs_path *orphan; 2788 2789 orphan = fs_path_alloc(); 2790 if (!orphan) 2791 return -ENOMEM; 2792 2793 ret = gen_unique_name(sctx, ino, gen, orphan); 2794 if (ret < 0) 2795 goto out; 2796 2797 ret = send_rename(sctx, path, orphan); 2798 2799 out: 2800 fs_path_free(orphan); 2801 return ret; 2802 } 2803 2804 static struct orphan_dir_info * 2805 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2806 { 2807 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2808 struct rb_node *parent = NULL; 2809 struct orphan_dir_info *entry, *odi; 2810 2811 odi = kmalloc(sizeof(*odi), GFP_NOFS); 2812 if (!odi) 2813 return ERR_PTR(-ENOMEM); 2814 odi->ino = dir_ino; 2815 odi->gen = 0; 2816 2817 while (*p) { 2818 parent = *p; 2819 entry = rb_entry(parent, struct orphan_dir_info, node); 2820 if (dir_ino < entry->ino) { 2821 p = &(*p)->rb_left; 2822 } else if (dir_ino > entry->ino) { 2823 p = &(*p)->rb_right; 2824 } else { 2825 kfree(odi); 2826 return entry; 2827 } 2828 } 2829 2830 rb_link_node(&odi->node, parent, p); 2831 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2832 return odi; 2833 } 2834 2835 static struct orphan_dir_info * 2836 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2837 { 2838 struct rb_node *n = sctx->orphan_dirs.rb_node; 2839 struct orphan_dir_info *entry; 2840 2841 while (n) { 2842 entry = rb_entry(n, struct orphan_dir_info, node); 2843 if (dir_ino < entry->ino) 2844 n = n->rb_left; 2845 else if (dir_ino > entry->ino) 2846 n = n->rb_right; 2847 else 2848 return entry; 2849 } 2850 return NULL; 2851 } 2852 2853 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino) 2854 { 2855 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino); 2856 2857 return odi != NULL; 2858 } 2859 2860 static void free_orphan_dir_info(struct send_ctx *sctx, 2861 struct orphan_dir_info *odi) 2862 { 2863 if (!odi) 2864 return; 2865 rb_erase(&odi->node, &sctx->orphan_dirs); 2866 kfree(odi); 2867 } 2868 2869 /* 2870 * Returns 1 if a directory can be removed at this point in time. 2871 * We check this by iterating all dir items and checking if the inode behind 2872 * the dir item was already processed. 2873 */ 2874 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2875 u64 send_progress) 2876 { 2877 int ret = 0; 2878 struct btrfs_root *root = sctx->parent_root; 2879 struct btrfs_path *path; 2880 struct btrfs_key key; 2881 struct btrfs_key found_key; 2882 struct btrfs_key loc; 2883 struct btrfs_dir_item *di; 2884 2885 /* 2886 * Don't try to rmdir the top/root subvolume dir. 2887 */ 2888 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2889 return 0; 2890 2891 path = alloc_path_for_send(); 2892 if (!path) 2893 return -ENOMEM; 2894 2895 key.objectid = dir; 2896 key.type = BTRFS_DIR_INDEX_KEY; 2897 key.offset = 0; 2898 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2899 if (ret < 0) 2900 goto out; 2901 2902 while (1) { 2903 struct waiting_dir_move *dm; 2904 2905 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2906 ret = btrfs_next_leaf(root, path); 2907 if (ret < 0) 2908 goto out; 2909 else if (ret > 0) 2910 break; 2911 continue; 2912 } 2913 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2914 path->slots[0]); 2915 if (found_key.objectid != key.objectid || 2916 found_key.type != key.type) 2917 break; 2918 2919 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2920 struct btrfs_dir_item); 2921 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2922 2923 dm = get_waiting_dir_move(sctx, loc.objectid); 2924 if (dm) { 2925 struct orphan_dir_info *odi; 2926 2927 odi = add_orphan_dir_info(sctx, dir); 2928 if (IS_ERR(odi)) { 2929 ret = PTR_ERR(odi); 2930 goto out; 2931 } 2932 odi->gen = dir_gen; 2933 dm->rmdir_ino = dir; 2934 ret = 0; 2935 goto out; 2936 } 2937 2938 if (loc.objectid > send_progress) { 2939 ret = 0; 2940 goto out; 2941 } 2942 2943 path->slots[0]++; 2944 } 2945 2946 ret = 1; 2947 2948 out: 2949 btrfs_free_path(path); 2950 return ret; 2951 } 2952 2953 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 2954 { 2955 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 2956 2957 return entry != NULL; 2958 } 2959 2960 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 2961 { 2962 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 2963 struct rb_node *parent = NULL; 2964 struct waiting_dir_move *entry, *dm; 2965 2966 dm = kmalloc(sizeof(*dm), GFP_NOFS); 2967 if (!dm) 2968 return -ENOMEM; 2969 dm->ino = ino; 2970 dm->rmdir_ino = 0; 2971 dm->orphanized = orphanized; 2972 2973 while (*p) { 2974 parent = *p; 2975 entry = rb_entry(parent, struct waiting_dir_move, node); 2976 if (ino < entry->ino) { 2977 p = &(*p)->rb_left; 2978 } else if (ino > entry->ino) { 2979 p = &(*p)->rb_right; 2980 } else { 2981 kfree(dm); 2982 return -EEXIST; 2983 } 2984 } 2985 2986 rb_link_node(&dm->node, parent, p); 2987 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 2988 return 0; 2989 } 2990 2991 static struct waiting_dir_move * 2992 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 2993 { 2994 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 2995 struct waiting_dir_move *entry; 2996 2997 while (n) { 2998 entry = rb_entry(n, struct waiting_dir_move, node); 2999 if (ino < entry->ino) 3000 n = n->rb_left; 3001 else if (ino > entry->ino) 3002 n = n->rb_right; 3003 else 3004 return entry; 3005 } 3006 return NULL; 3007 } 3008 3009 static void free_waiting_dir_move(struct send_ctx *sctx, 3010 struct waiting_dir_move *dm) 3011 { 3012 if (!dm) 3013 return; 3014 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3015 kfree(dm); 3016 } 3017 3018 static int add_pending_dir_move(struct send_ctx *sctx, 3019 u64 ino, 3020 u64 ino_gen, 3021 u64 parent_ino, 3022 struct list_head *new_refs, 3023 struct list_head *deleted_refs, 3024 const bool is_orphan) 3025 { 3026 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3027 struct rb_node *parent = NULL; 3028 struct pending_dir_move *entry = NULL, *pm; 3029 struct recorded_ref *cur; 3030 int exists = 0; 3031 int ret; 3032 3033 pm = kmalloc(sizeof(*pm), GFP_NOFS); 3034 if (!pm) 3035 return -ENOMEM; 3036 pm->parent_ino = parent_ino; 3037 pm->ino = ino; 3038 pm->gen = ino_gen; 3039 pm->is_orphan = is_orphan; 3040 INIT_LIST_HEAD(&pm->list); 3041 INIT_LIST_HEAD(&pm->update_refs); 3042 RB_CLEAR_NODE(&pm->node); 3043 3044 while (*p) { 3045 parent = *p; 3046 entry = rb_entry(parent, struct pending_dir_move, node); 3047 if (parent_ino < entry->parent_ino) { 3048 p = &(*p)->rb_left; 3049 } else if (parent_ino > entry->parent_ino) { 3050 p = &(*p)->rb_right; 3051 } else { 3052 exists = 1; 3053 break; 3054 } 3055 } 3056 3057 list_for_each_entry(cur, deleted_refs, list) { 3058 ret = dup_ref(cur, &pm->update_refs); 3059 if (ret < 0) 3060 goto out; 3061 } 3062 list_for_each_entry(cur, new_refs, list) { 3063 ret = dup_ref(cur, &pm->update_refs); 3064 if (ret < 0) 3065 goto out; 3066 } 3067 3068 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3069 if (ret) 3070 goto out; 3071 3072 if (exists) { 3073 list_add_tail(&pm->list, &entry->list); 3074 } else { 3075 rb_link_node(&pm->node, parent, p); 3076 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3077 } 3078 ret = 0; 3079 out: 3080 if (ret) { 3081 __free_recorded_refs(&pm->update_refs); 3082 kfree(pm); 3083 } 3084 return ret; 3085 } 3086 3087 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3088 u64 parent_ino) 3089 { 3090 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3091 struct pending_dir_move *entry; 3092 3093 while (n) { 3094 entry = rb_entry(n, struct pending_dir_move, node); 3095 if (parent_ino < entry->parent_ino) 3096 n = n->rb_left; 3097 else if (parent_ino > entry->parent_ino) 3098 n = n->rb_right; 3099 else 3100 return entry; 3101 } 3102 return NULL; 3103 } 3104 3105 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3106 { 3107 struct fs_path *from_path = NULL; 3108 struct fs_path *to_path = NULL; 3109 struct fs_path *name = NULL; 3110 u64 orig_progress = sctx->send_progress; 3111 struct recorded_ref *cur; 3112 u64 parent_ino, parent_gen; 3113 struct waiting_dir_move *dm = NULL; 3114 u64 rmdir_ino = 0; 3115 int ret; 3116 3117 name = fs_path_alloc(); 3118 from_path = fs_path_alloc(); 3119 if (!name || !from_path) { 3120 ret = -ENOMEM; 3121 goto out; 3122 } 3123 3124 dm = get_waiting_dir_move(sctx, pm->ino); 3125 ASSERT(dm); 3126 rmdir_ino = dm->rmdir_ino; 3127 free_waiting_dir_move(sctx, dm); 3128 3129 if (pm->is_orphan) { 3130 ret = gen_unique_name(sctx, pm->ino, 3131 pm->gen, from_path); 3132 } else { 3133 ret = get_first_ref(sctx->parent_root, pm->ino, 3134 &parent_ino, &parent_gen, name); 3135 if (ret < 0) 3136 goto out; 3137 ret = get_cur_path(sctx, parent_ino, parent_gen, 3138 from_path); 3139 if (ret < 0) 3140 goto out; 3141 ret = fs_path_add_path(from_path, name); 3142 } 3143 if (ret < 0) 3144 goto out; 3145 3146 sctx->send_progress = sctx->cur_ino + 1; 3147 fs_path_reset(name); 3148 to_path = name; 3149 name = NULL; 3150 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3151 if (ret < 0) 3152 goto out; 3153 3154 ret = send_rename(sctx, from_path, to_path); 3155 if (ret < 0) 3156 goto out; 3157 3158 if (rmdir_ino) { 3159 struct orphan_dir_info *odi; 3160 3161 odi = get_orphan_dir_info(sctx, rmdir_ino); 3162 if (!odi) { 3163 /* already deleted */ 3164 goto finish; 3165 } 3166 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1); 3167 if (ret < 0) 3168 goto out; 3169 if (!ret) 3170 goto finish; 3171 3172 name = fs_path_alloc(); 3173 if (!name) { 3174 ret = -ENOMEM; 3175 goto out; 3176 } 3177 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name); 3178 if (ret < 0) 3179 goto out; 3180 ret = send_rmdir(sctx, name); 3181 if (ret < 0) 3182 goto out; 3183 free_orphan_dir_info(sctx, odi); 3184 } 3185 3186 finish: 3187 ret = send_utimes(sctx, pm->ino, pm->gen); 3188 if (ret < 0) 3189 goto out; 3190 3191 /* 3192 * After rename/move, need to update the utimes of both new parent(s) 3193 * and old parent(s). 3194 */ 3195 list_for_each_entry(cur, &pm->update_refs, list) { 3196 if (cur->dir == rmdir_ino) 3197 continue; 3198 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3199 if (ret < 0) 3200 goto out; 3201 } 3202 3203 out: 3204 fs_path_free(name); 3205 fs_path_free(from_path); 3206 fs_path_free(to_path); 3207 sctx->send_progress = orig_progress; 3208 3209 return ret; 3210 } 3211 3212 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3213 { 3214 if (!list_empty(&m->list)) 3215 list_del(&m->list); 3216 if (!RB_EMPTY_NODE(&m->node)) 3217 rb_erase(&m->node, &sctx->pending_dir_moves); 3218 __free_recorded_refs(&m->update_refs); 3219 kfree(m); 3220 } 3221 3222 static void tail_append_pending_moves(struct pending_dir_move *moves, 3223 struct list_head *stack) 3224 { 3225 if (list_empty(&moves->list)) { 3226 list_add_tail(&moves->list, stack); 3227 } else { 3228 LIST_HEAD(list); 3229 list_splice_init(&moves->list, &list); 3230 list_add_tail(&moves->list, stack); 3231 list_splice_tail(&list, stack); 3232 } 3233 } 3234 3235 static int apply_children_dir_moves(struct send_ctx *sctx) 3236 { 3237 struct pending_dir_move *pm; 3238 struct list_head stack; 3239 u64 parent_ino = sctx->cur_ino; 3240 int ret = 0; 3241 3242 pm = get_pending_dir_moves(sctx, parent_ino); 3243 if (!pm) 3244 return 0; 3245 3246 INIT_LIST_HEAD(&stack); 3247 tail_append_pending_moves(pm, &stack); 3248 3249 while (!list_empty(&stack)) { 3250 pm = list_first_entry(&stack, struct pending_dir_move, list); 3251 parent_ino = pm->ino; 3252 ret = apply_dir_move(sctx, pm); 3253 free_pending_move(sctx, pm); 3254 if (ret) 3255 goto out; 3256 pm = get_pending_dir_moves(sctx, parent_ino); 3257 if (pm) 3258 tail_append_pending_moves(pm, &stack); 3259 } 3260 return 0; 3261 3262 out: 3263 while (!list_empty(&stack)) { 3264 pm = list_first_entry(&stack, struct pending_dir_move, list); 3265 free_pending_move(sctx, pm); 3266 } 3267 return ret; 3268 } 3269 3270 /* 3271 * We might need to delay a directory rename even when no ancestor directory 3272 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3273 * renamed. This happens when we rename a directory to the old name (the name 3274 * in the parent root) of some other unrelated directory that got its rename 3275 * delayed due to some ancestor with higher number that got renamed. 3276 * 3277 * Example: 3278 * 3279 * Parent snapshot: 3280 * . (ino 256) 3281 * |---- a/ (ino 257) 3282 * | |---- file (ino 260) 3283 * | 3284 * |---- b/ (ino 258) 3285 * |---- c/ (ino 259) 3286 * 3287 * Send snapshot: 3288 * . (ino 256) 3289 * |---- a/ (ino 258) 3290 * |---- x/ (ino 259) 3291 * |---- y/ (ino 257) 3292 * |----- file (ino 260) 3293 * 3294 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3295 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3296 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3297 * must issue is: 3298 * 3299 * 1 - rename 259 from 'c' to 'x' 3300 * 2 - rename 257 from 'a' to 'x/y' 3301 * 3 - rename 258 from 'b' to 'a' 3302 * 3303 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3304 * be done right away and < 0 on error. 3305 */ 3306 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3307 struct recorded_ref *parent_ref, 3308 const bool is_orphan) 3309 { 3310 struct btrfs_path *path; 3311 struct btrfs_key key; 3312 struct btrfs_key di_key; 3313 struct btrfs_dir_item *di; 3314 u64 left_gen; 3315 u64 right_gen; 3316 int ret = 0; 3317 3318 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3319 return 0; 3320 3321 path = alloc_path_for_send(); 3322 if (!path) 3323 return -ENOMEM; 3324 3325 key.objectid = parent_ref->dir; 3326 key.type = BTRFS_DIR_ITEM_KEY; 3327 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3328 3329 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3330 if (ret < 0) { 3331 goto out; 3332 } else if (ret > 0) { 3333 ret = 0; 3334 goto out; 3335 } 3336 3337 di = btrfs_match_dir_item_name(sctx->parent_root, path, 3338 parent_ref->name, parent_ref->name_len); 3339 if (!di) { 3340 ret = 0; 3341 goto out; 3342 } 3343 /* 3344 * di_key.objectid has the number of the inode that has a dentry in the 3345 * parent directory with the same name that sctx->cur_ino is being 3346 * renamed to. We need to check if that inode is in the send root as 3347 * well and if it is currently marked as an inode with a pending rename, 3348 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3349 * that it happens after that other inode is renamed. 3350 */ 3351 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3352 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3353 ret = 0; 3354 goto out; 3355 } 3356 3357 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3358 &left_gen, NULL, NULL, NULL, NULL); 3359 if (ret < 0) 3360 goto out; 3361 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3362 &right_gen, NULL, NULL, NULL, NULL); 3363 if (ret < 0) { 3364 if (ret == -ENOENT) 3365 ret = 0; 3366 goto out; 3367 } 3368 3369 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3370 if (right_gen != left_gen) { 3371 ret = 0; 3372 goto out; 3373 } 3374 3375 if (is_waiting_for_move(sctx, di_key.objectid)) { 3376 ret = add_pending_dir_move(sctx, 3377 sctx->cur_ino, 3378 sctx->cur_inode_gen, 3379 di_key.objectid, 3380 &sctx->new_refs, 3381 &sctx->deleted_refs, 3382 is_orphan); 3383 if (!ret) 3384 ret = 1; 3385 } 3386 out: 3387 btrfs_free_path(path); 3388 return ret; 3389 } 3390 3391 /* 3392 * Check if ino ino1 is an ancestor of inode ino2 in the given root. 3393 * Return 1 if true, 0 if false and < 0 on error. 3394 */ 3395 static int is_ancestor(struct btrfs_root *root, 3396 const u64 ino1, 3397 const u64 ino1_gen, 3398 const u64 ino2, 3399 struct fs_path *fs_path) 3400 { 3401 u64 ino = ino2; 3402 3403 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3404 int ret; 3405 u64 parent; 3406 u64 parent_gen; 3407 3408 fs_path_reset(fs_path); 3409 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3410 if (ret < 0) { 3411 if (ret == -ENOENT && ino == ino2) 3412 ret = 0; 3413 return ret; 3414 } 3415 if (parent == ino1) 3416 return parent_gen == ino1_gen ? 1 : 0; 3417 ino = parent; 3418 } 3419 return 0; 3420 } 3421 3422 static int wait_for_parent_move(struct send_ctx *sctx, 3423 struct recorded_ref *parent_ref, 3424 const bool is_orphan) 3425 { 3426 int ret = 0; 3427 u64 ino = parent_ref->dir; 3428 u64 parent_ino_before, parent_ino_after; 3429 struct fs_path *path_before = NULL; 3430 struct fs_path *path_after = NULL; 3431 int len1, len2; 3432 3433 path_after = fs_path_alloc(); 3434 path_before = fs_path_alloc(); 3435 if (!path_after || !path_before) { 3436 ret = -ENOMEM; 3437 goto out; 3438 } 3439 3440 /* 3441 * Our current directory inode may not yet be renamed/moved because some 3442 * ancestor (immediate or not) has to be renamed/moved first. So find if 3443 * such ancestor exists and make sure our own rename/move happens after 3444 * that ancestor is processed to avoid path build infinite loops (done 3445 * at get_cur_path()). 3446 */ 3447 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3448 if (is_waiting_for_move(sctx, ino)) { 3449 /* 3450 * If the current inode is an ancestor of ino in the 3451 * parent root, we need to delay the rename of the 3452 * current inode, otherwise don't delayed the rename 3453 * because we can end up with a circular dependency 3454 * of renames, resulting in some directories never 3455 * getting the respective rename operations issued in 3456 * the send stream or getting into infinite path build 3457 * loops. 3458 */ 3459 ret = is_ancestor(sctx->parent_root, 3460 sctx->cur_ino, sctx->cur_inode_gen, 3461 ino, path_before); 3462 break; 3463 } 3464 3465 fs_path_reset(path_before); 3466 fs_path_reset(path_after); 3467 3468 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3469 NULL, path_after); 3470 if (ret < 0) 3471 goto out; 3472 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3473 NULL, path_before); 3474 if (ret < 0 && ret != -ENOENT) { 3475 goto out; 3476 } else if (ret == -ENOENT) { 3477 ret = 0; 3478 break; 3479 } 3480 3481 len1 = fs_path_len(path_before); 3482 len2 = fs_path_len(path_after); 3483 if (ino > sctx->cur_ino && 3484 (parent_ino_before != parent_ino_after || len1 != len2 || 3485 memcmp(path_before->start, path_after->start, len1))) { 3486 ret = 1; 3487 break; 3488 } 3489 ino = parent_ino_after; 3490 } 3491 3492 out: 3493 fs_path_free(path_before); 3494 fs_path_free(path_after); 3495 3496 if (ret == 1) { 3497 ret = add_pending_dir_move(sctx, 3498 sctx->cur_ino, 3499 sctx->cur_inode_gen, 3500 ino, 3501 &sctx->new_refs, 3502 &sctx->deleted_refs, 3503 is_orphan); 3504 if (!ret) 3505 ret = 1; 3506 } 3507 3508 return ret; 3509 } 3510 3511 /* 3512 * This does all the move/link/unlink/rmdir magic. 3513 */ 3514 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3515 { 3516 int ret = 0; 3517 struct recorded_ref *cur; 3518 struct recorded_ref *cur2; 3519 struct list_head check_dirs; 3520 struct fs_path *valid_path = NULL; 3521 u64 ow_inode = 0; 3522 u64 ow_gen; 3523 int did_overwrite = 0; 3524 int is_orphan = 0; 3525 u64 last_dir_ino_rm = 0; 3526 bool can_rename = true; 3527 3528 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino); 3529 3530 /* 3531 * This should never happen as the root dir always has the same ref 3532 * which is always '..' 3533 */ 3534 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3535 INIT_LIST_HEAD(&check_dirs); 3536 3537 valid_path = fs_path_alloc(); 3538 if (!valid_path) { 3539 ret = -ENOMEM; 3540 goto out; 3541 } 3542 3543 /* 3544 * First, check if the first ref of the current inode was overwritten 3545 * before. If yes, we know that the current inode was already orphanized 3546 * and thus use the orphan name. If not, we can use get_cur_path to 3547 * get the path of the first ref as it would like while receiving at 3548 * this point in time. 3549 * New inodes are always orphan at the beginning, so force to use the 3550 * orphan name in this case. 3551 * The first ref is stored in valid_path and will be updated if it 3552 * gets moved around. 3553 */ 3554 if (!sctx->cur_inode_new) { 3555 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3556 sctx->cur_inode_gen); 3557 if (ret < 0) 3558 goto out; 3559 if (ret) 3560 did_overwrite = 1; 3561 } 3562 if (sctx->cur_inode_new || did_overwrite) { 3563 ret = gen_unique_name(sctx, sctx->cur_ino, 3564 sctx->cur_inode_gen, valid_path); 3565 if (ret < 0) 3566 goto out; 3567 is_orphan = 1; 3568 } else { 3569 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3570 valid_path); 3571 if (ret < 0) 3572 goto out; 3573 } 3574 3575 list_for_each_entry(cur, &sctx->new_refs, list) { 3576 /* 3577 * We may have refs where the parent directory does not exist 3578 * yet. This happens if the parent directories inum is higher 3579 * the the current inum. To handle this case, we create the 3580 * parent directory out of order. But we need to check if this 3581 * did already happen before due to other refs in the same dir. 3582 */ 3583 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3584 if (ret < 0) 3585 goto out; 3586 if (ret == inode_state_will_create) { 3587 ret = 0; 3588 /* 3589 * First check if any of the current inodes refs did 3590 * already create the dir. 3591 */ 3592 list_for_each_entry(cur2, &sctx->new_refs, list) { 3593 if (cur == cur2) 3594 break; 3595 if (cur2->dir == cur->dir) { 3596 ret = 1; 3597 break; 3598 } 3599 } 3600 3601 /* 3602 * If that did not happen, check if a previous inode 3603 * did already create the dir. 3604 */ 3605 if (!ret) 3606 ret = did_create_dir(sctx, cur->dir); 3607 if (ret < 0) 3608 goto out; 3609 if (!ret) { 3610 ret = send_create_inode(sctx, cur->dir); 3611 if (ret < 0) 3612 goto out; 3613 } 3614 } 3615 3616 /* 3617 * Check if this new ref would overwrite the first ref of 3618 * another unprocessed inode. If yes, orphanize the 3619 * overwritten inode. If we find an overwritten ref that is 3620 * not the first ref, simply unlink it. 3621 */ 3622 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3623 cur->name, cur->name_len, 3624 &ow_inode, &ow_gen); 3625 if (ret < 0) 3626 goto out; 3627 if (ret) { 3628 ret = is_first_ref(sctx->parent_root, 3629 ow_inode, cur->dir, cur->name, 3630 cur->name_len); 3631 if (ret < 0) 3632 goto out; 3633 if (ret) { 3634 struct name_cache_entry *nce; 3635 3636 ret = orphanize_inode(sctx, ow_inode, ow_gen, 3637 cur->full_path); 3638 if (ret < 0) 3639 goto out; 3640 /* 3641 * Make sure we clear our orphanized inode's 3642 * name from the name cache. This is because the 3643 * inode ow_inode might be an ancestor of some 3644 * other inode that will be orphanized as well 3645 * later and has an inode number greater than 3646 * sctx->send_progress. We need to prevent 3647 * future name lookups from using the old name 3648 * and get instead the orphan name. 3649 */ 3650 nce = name_cache_search(sctx, ow_inode, ow_gen); 3651 if (nce) { 3652 name_cache_delete(sctx, nce); 3653 kfree(nce); 3654 } 3655 } else { 3656 ret = send_unlink(sctx, cur->full_path); 3657 if (ret < 0) 3658 goto out; 3659 } 3660 } 3661 3662 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 3663 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 3664 if (ret < 0) 3665 goto out; 3666 if (ret == 1) { 3667 can_rename = false; 3668 *pending_move = 1; 3669 } 3670 } 3671 3672 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 3673 can_rename) { 3674 ret = wait_for_parent_move(sctx, cur, is_orphan); 3675 if (ret < 0) 3676 goto out; 3677 if (ret == 1) { 3678 can_rename = false; 3679 *pending_move = 1; 3680 } 3681 } 3682 3683 /* 3684 * link/move the ref to the new place. If we have an orphan 3685 * inode, move it and update valid_path. If not, link or move 3686 * it depending on the inode mode. 3687 */ 3688 if (is_orphan && can_rename) { 3689 ret = send_rename(sctx, valid_path, cur->full_path); 3690 if (ret < 0) 3691 goto out; 3692 is_orphan = 0; 3693 ret = fs_path_copy(valid_path, cur->full_path); 3694 if (ret < 0) 3695 goto out; 3696 } else if (can_rename) { 3697 if (S_ISDIR(sctx->cur_inode_mode)) { 3698 /* 3699 * Dirs can't be linked, so move it. For moved 3700 * dirs, we always have one new and one deleted 3701 * ref. The deleted ref is ignored later. 3702 */ 3703 ret = send_rename(sctx, valid_path, 3704 cur->full_path); 3705 if (!ret) 3706 ret = fs_path_copy(valid_path, 3707 cur->full_path); 3708 if (ret < 0) 3709 goto out; 3710 } else { 3711 ret = send_link(sctx, cur->full_path, 3712 valid_path); 3713 if (ret < 0) 3714 goto out; 3715 } 3716 } 3717 ret = dup_ref(cur, &check_dirs); 3718 if (ret < 0) 3719 goto out; 3720 } 3721 3722 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 3723 /* 3724 * Check if we can already rmdir the directory. If not, 3725 * orphanize it. For every dir item inside that gets deleted 3726 * later, we do this check again and rmdir it then if possible. 3727 * See the use of check_dirs for more details. 3728 */ 3729 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3730 sctx->cur_ino); 3731 if (ret < 0) 3732 goto out; 3733 if (ret) { 3734 ret = send_rmdir(sctx, valid_path); 3735 if (ret < 0) 3736 goto out; 3737 } else if (!is_orphan) { 3738 ret = orphanize_inode(sctx, sctx->cur_ino, 3739 sctx->cur_inode_gen, valid_path); 3740 if (ret < 0) 3741 goto out; 3742 is_orphan = 1; 3743 } 3744 3745 list_for_each_entry(cur, &sctx->deleted_refs, list) { 3746 ret = dup_ref(cur, &check_dirs); 3747 if (ret < 0) 3748 goto out; 3749 } 3750 } else if (S_ISDIR(sctx->cur_inode_mode) && 3751 !list_empty(&sctx->deleted_refs)) { 3752 /* 3753 * We have a moved dir. Add the old parent to check_dirs 3754 */ 3755 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 3756 list); 3757 ret = dup_ref(cur, &check_dirs); 3758 if (ret < 0) 3759 goto out; 3760 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 3761 /* 3762 * We have a non dir inode. Go through all deleted refs and 3763 * unlink them if they were not already overwritten by other 3764 * inodes. 3765 */ 3766 list_for_each_entry(cur, &sctx->deleted_refs, list) { 3767 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3768 sctx->cur_ino, sctx->cur_inode_gen, 3769 cur->name, cur->name_len); 3770 if (ret < 0) 3771 goto out; 3772 if (!ret) { 3773 ret = send_unlink(sctx, cur->full_path); 3774 if (ret < 0) 3775 goto out; 3776 } 3777 ret = dup_ref(cur, &check_dirs); 3778 if (ret < 0) 3779 goto out; 3780 } 3781 /* 3782 * If the inode is still orphan, unlink the orphan. This may 3783 * happen when a previous inode did overwrite the first ref 3784 * of this inode and no new refs were added for the current 3785 * inode. Unlinking does not mean that the inode is deleted in 3786 * all cases. There may still be links to this inode in other 3787 * places. 3788 */ 3789 if (is_orphan) { 3790 ret = send_unlink(sctx, valid_path); 3791 if (ret < 0) 3792 goto out; 3793 } 3794 } 3795 3796 /* 3797 * We did collect all parent dirs where cur_inode was once located. We 3798 * now go through all these dirs and check if they are pending for 3799 * deletion and if it's finally possible to perform the rmdir now. 3800 * We also update the inode stats of the parent dirs here. 3801 */ 3802 list_for_each_entry(cur, &check_dirs, list) { 3803 /* 3804 * In case we had refs into dirs that were not processed yet, 3805 * we don't need to do the utime and rmdir logic for these dirs. 3806 * The dir will be processed later. 3807 */ 3808 if (cur->dir > sctx->cur_ino) 3809 continue; 3810 3811 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3812 if (ret < 0) 3813 goto out; 3814 3815 if (ret == inode_state_did_create || 3816 ret == inode_state_no_change) { 3817 /* TODO delayed utimes */ 3818 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3819 if (ret < 0) 3820 goto out; 3821 } else if (ret == inode_state_did_delete && 3822 cur->dir != last_dir_ino_rm) { 3823 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 3824 sctx->cur_ino); 3825 if (ret < 0) 3826 goto out; 3827 if (ret) { 3828 ret = get_cur_path(sctx, cur->dir, 3829 cur->dir_gen, valid_path); 3830 if (ret < 0) 3831 goto out; 3832 ret = send_rmdir(sctx, valid_path); 3833 if (ret < 0) 3834 goto out; 3835 last_dir_ino_rm = cur->dir; 3836 } 3837 } 3838 } 3839 3840 ret = 0; 3841 3842 out: 3843 __free_recorded_refs(&check_dirs); 3844 free_recorded_refs(sctx); 3845 fs_path_free(valid_path); 3846 return ret; 3847 } 3848 3849 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index, 3850 struct fs_path *name, void *ctx, struct list_head *refs) 3851 { 3852 int ret = 0; 3853 struct send_ctx *sctx = ctx; 3854 struct fs_path *p; 3855 u64 gen; 3856 3857 p = fs_path_alloc(); 3858 if (!p) 3859 return -ENOMEM; 3860 3861 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 3862 NULL, NULL); 3863 if (ret < 0) 3864 goto out; 3865 3866 ret = get_cur_path(sctx, dir, gen, p); 3867 if (ret < 0) 3868 goto out; 3869 ret = fs_path_add_path(p, name); 3870 if (ret < 0) 3871 goto out; 3872 3873 ret = __record_ref(refs, dir, gen, p); 3874 3875 out: 3876 if (ret) 3877 fs_path_free(p); 3878 return ret; 3879 } 3880 3881 static int __record_new_ref(int num, u64 dir, int index, 3882 struct fs_path *name, 3883 void *ctx) 3884 { 3885 struct send_ctx *sctx = ctx; 3886 return record_ref(sctx->send_root, num, dir, index, name, 3887 ctx, &sctx->new_refs); 3888 } 3889 3890 3891 static int __record_deleted_ref(int num, u64 dir, int index, 3892 struct fs_path *name, 3893 void *ctx) 3894 { 3895 struct send_ctx *sctx = ctx; 3896 return record_ref(sctx->parent_root, num, dir, index, name, 3897 ctx, &sctx->deleted_refs); 3898 } 3899 3900 static int record_new_ref(struct send_ctx *sctx) 3901 { 3902 int ret; 3903 3904 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 3905 sctx->cmp_key, 0, __record_new_ref, sctx); 3906 if (ret < 0) 3907 goto out; 3908 ret = 0; 3909 3910 out: 3911 return ret; 3912 } 3913 3914 static int record_deleted_ref(struct send_ctx *sctx) 3915 { 3916 int ret; 3917 3918 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 3919 sctx->cmp_key, 0, __record_deleted_ref, sctx); 3920 if (ret < 0) 3921 goto out; 3922 ret = 0; 3923 3924 out: 3925 return ret; 3926 } 3927 3928 struct find_ref_ctx { 3929 u64 dir; 3930 u64 dir_gen; 3931 struct btrfs_root *root; 3932 struct fs_path *name; 3933 int found_idx; 3934 }; 3935 3936 static int __find_iref(int num, u64 dir, int index, 3937 struct fs_path *name, 3938 void *ctx_) 3939 { 3940 struct find_ref_ctx *ctx = ctx_; 3941 u64 dir_gen; 3942 int ret; 3943 3944 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 3945 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 3946 /* 3947 * To avoid doing extra lookups we'll only do this if everything 3948 * else matches. 3949 */ 3950 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 3951 NULL, NULL, NULL); 3952 if (ret) 3953 return ret; 3954 if (dir_gen != ctx->dir_gen) 3955 return 0; 3956 ctx->found_idx = num; 3957 return 1; 3958 } 3959 return 0; 3960 } 3961 3962 static int find_iref(struct btrfs_root *root, 3963 struct btrfs_path *path, 3964 struct btrfs_key *key, 3965 u64 dir, u64 dir_gen, struct fs_path *name) 3966 { 3967 int ret; 3968 struct find_ref_ctx ctx; 3969 3970 ctx.dir = dir; 3971 ctx.name = name; 3972 ctx.dir_gen = dir_gen; 3973 ctx.found_idx = -1; 3974 ctx.root = root; 3975 3976 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 3977 if (ret < 0) 3978 return ret; 3979 3980 if (ctx.found_idx == -1) 3981 return -ENOENT; 3982 3983 return ctx.found_idx; 3984 } 3985 3986 static int __record_changed_new_ref(int num, u64 dir, int index, 3987 struct fs_path *name, 3988 void *ctx) 3989 { 3990 u64 dir_gen; 3991 int ret; 3992 struct send_ctx *sctx = ctx; 3993 3994 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 3995 NULL, NULL, NULL); 3996 if (ret) 3997 return ret; 3998 3999 ret = find_iref(sctx->parent_root, sctx->right_path, 4000 sctx->cmp_key, dir, dir_gen, name); 4001 if (ret == -ENOENT) 4002 ret = __record_new_ref(num, dir, index, name, sctx); 4003 else if (ret > 0) 4004 ret = 0; 4005 4006 return ret; 4007 } 4008 4009 static int __record_changed_deleted_ref(int num, u64 dir, int index, 4010 struct fs_path *name, 4011 void *ctx) 4012 { 4013 u64 dir_gen; 4014 int ret; 4015 struct send_ctx *sctx = ctx; 4016 4017 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 4018 NULL, NULL, NULL); 4019 if (ret) 4020 return ret; 4021 4022 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4023 dir, dir_gen, name); 4024 if (ret == -ENOENT) 4025 ret = __record_deleted_ref(num, dir, index, name, sctx); 4026 else if (ret > 0) 4027 ret = 0; 4028 4029 return ret; 4030 } 4031 4032 static int record_changed_ref(struct send_ctx *sctx) 4033 { 4034 int ret = 0; 4035 4036 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4037 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 4038 if (ret < 0) 4039 goto out; 4040 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4041 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 4042 if (ret < 0) 4043 goto out; 4044 ret = 0; 4045 4046 out: 4047 return ret; 4048 } 4049 4050 /* 4051 * Record and process all refs at once. Needed when an inode changes the 4052 * generation number, which means that it was deleted and recreated. 4053 */ 4054 static int process_all_refs(struct send_ctx *sctx, 4055 enum btrfs_compare_tree_result cmd) 4056 { 4057 int ret; 4058 struct btrfs_root *root; 4059 struct btrfs_path *path; 4060 struct btrfs_key key; 4061 struct btrfs_key found_key; 4062 struct extent_buffer *eb; 4063 int slot; 4064 iterate_inode_ref_t cb; 4065 int pending_move = 0; 4066 4067 path = alloc_path_for_send(); 4068 if (!path) 4069 return -ENOMEM; 4070 4071 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4072 root = sctx->send_root; 4073 cb = __record_new_ref; 4074 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4075 root = sctx->parent_root; 4076 cb = __record_deleted_ref; 4077 } else { 4078 btrfs_err(sctx->send_root->fs_info, 4079 "Wrong command %d in process_all_refs", cmd); 4080 ret = -EINVAL; 4081 goto out; 4082 } 4083 4084 key.objectid = sctx->cmp_key->objectid; 4085 key.type = BTRFS_INODE_REF_KEY; 4086 key.offset = 0; 4087 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4088 if (ret < 0) 4089 goto out; 4090 4091 while (1) { 4092 eb = path->nodes[0]; 4093 slot = path->slots[0]; 4094 if (slot >= btrfs_header_nritems(eb)) { 4095 ret = btrfs_next_leaf(root, path); 4096 if (ret < 0) 4097 goto out; 4098 else if (ret > 0) 4099 break; 4100 continue; 4101 } 4102 4103 btrfs_item_key_to_cpu(eb, &found_key, slot); 4104 4105 if (found_key.objectid != key.objectid || 4106 (found_key.type != BTRFS_INODE_REF_KEY && 4107 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4108 break; 4109 4110 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4111 if (ret < 0) 4112 goto out; 4113 4114 path->slots[0]++; 4115 } 4116 btrfs_release_path(path); 4117 4118 ret = process_recorded_refs(sctx, &pending_move); 4119 /* Only applicable to an incremental send. */ 4120 ASSERT(pending_move == 0); 4121 4122 out: 4123 btrfs_free_path(path); 4124 return ret; 4125 } 4126 4127 static int send_set_xattr(struct send_ctx *sctx, 4128 struct fs_path *path, 4129 const char *name, int name_len, 4130 const char *data, int data_len) 4131 { 4132 int ret = 0; 4133 4134 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4135 if (ret < 0) 4136 goto out; 4137 4138 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4139 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4140 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4141 4142 ret = send_cmd(sctx); 4143 4144 tlv_put_failure: 4145 out: 4146 return ret; 4147 } 4148 4149 static int send_remove_xattr(struct send_ctx *sctx, 4150 struct fs_path *path, 4151 const char *name, int name_len) 4152 { 4153 int ret = 0; 4154 4155 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4156 if (ret < 0) 4157 goto out; 4158 4159 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4160 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4161 4162 ret = send_cmd(sctx); 4163 4164 tlv_put_failure: 4165 out: 4166 return ret; 4167 } 4168 4169 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4170 const char *name, int name_len, 4171 const char *data, int data_len, 4172 u8 type, void *ctx) 4173 { 4174 int ret; 4175 struct send_ctx *sctx = ctx; 4176 struct fs_path *p; 4177 posix_acl_xattr_header dummy_acl; 4178 4179 p = fs_path_alloc(); 4180 if (!p) 4181 return -ENOMEM; 4182 4183 /* 4184 * This hack is needed because empty acl's are stored as zero byte 4185 * data in xattrs. Problem with that is, that receiving these zero byte 4186 * acl's will fail later. To fix this, we send a dummy acl list that 4187 * only contains the version number and no entries. 4188 */ 4189 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4190 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4191 if (data_len == 0) { 4192 dummy_acl.a_version = 4193 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4194 data = (char *)&dummy_acl; 4195 data_len = sizeof(dummy_acl); 4196 } 4197 } 4198 4199 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4200 if (ret < 0) 4201 goto out; 4202 4203 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4204 4205 out: 4206 fs_path_free(p); 4207 return ret; 4208 } 4209 4210 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4211 const char *name, int name_len, 4212 const char *data, int data_len, 4213 u8 type, void *ctx) 4214 { 4215 int ret; 4216 struct send_ctx *sctx = ctx; 4217 struct fs_path *p; 4218 4219 p = fs_path_alloc(); 4220 if (!p) 4221 return -ENOMEM; 4222 4223 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4224 if (ret < 0) 4225 goto out; 4226 4227 ret = send_remove_xattr(sctx, p, name, name_len); 4228 4229 out: 4230 fs_path_free(p); 4231 return ret; 4232 } 4233 4234 static int process_new_xattr(struct send_ctx *sctx) 4235 { 4236 int ret = 0; 4237 4238 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4239 sctx->cmp_key, __process_new_xattr, sctx); 4240 4241 return ret; 4242 } 4243 4244 static int process_deleted_xattr(struct send_ctx *sctx) 4245 { 4246 int ret; 4247 4248 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4249 sctx->cmp_key, __process_deleted_xattr, sctx); 4250 4251 return ret; 4252 } 4253 4254 struct find_xattr_ctx { 4255 const char *name; 4256 int name_len; 4257 int found_idx; 4258 char *found_data; 4259 int found_data_len; 4260 }; 4261 4262 static int __find_xattr(int num, struct btrfs_key *di_key, 4263 const char *name, int name_len, 4264 const char *data, int data_len, 4265 u8 type, void *vctx) 4266 { 4267 struct find_xattr_ctx *ctx = vctx; 4268 4269 if (name_len == ctx->name_len && 4270 strncmp(name, ctx->name, name_len) == 0) { 4271 ctx->found_idx = num; 4272 ctx->found_data_len = data_len; 4273 ctx->found_data = kmemdup(data, data_len, GFP_NOFS); 4274 if (!ctx->found_data) 4275 return -ENOMEM; 4276 return 1; 4277 } 4278 return 0; 4279 } 4280 4281 static int find_xattr(struct btrfs_root *root, 4282 struct btrfs_path *path, 4283 struct btrfs_key *key, 4284 const char *name, int name_len, 4285 char **data, int *data_len) 4286 { 4287 int ret; 4288 struct find_xattr_ctx ctx; 4289 4290 ctx.name = name; 4291 ctx.name_len = name_len; 4292 ctx.found_idx = -1; 4293 ctx.found_data = NULL; 4294 ctx.found_data_len = 0; 4295 4296 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx); 4297 if (ret < 0) 4298 return ret; 4299 4300 if (ctx.found_idx == -1) 4301 return -ENOENT; 4302 if (data) { 4303 *data = ctx.found_data; 4304 *data_len = ctx.found_data_len; 4305 } else { 4306 kfree(ctx.found_data); 4307 } 4308 return ctx.found_idx; 4309 } 4310 4311 4312 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4313 const char *name, int name_len, 4314 const char *data, int data_len, 4315 u8 type, void *ctx) 4316 { 4317 int ret; 4318 struct send_ctx *sctx = ctx; 4319 char *found_data = NULL; 4320 int found_data_len = 0; 4321 4322 ret = find_xattr(sctx->parent_root, sctx->right_path, 4323 sctx->cmp_key, name, name_len, &found_data, 4324 &found_data_len); 4325 if (ret == -ENOENT) { 4326 ret = __process_new_xattr(num, di_key, name, name_len, data, 4327 data_len, type, ctx); 4328 } else if (ret >= 0) { 4329 if (data_len != found_data_len || 4330 memcmp(data, found_data, data_len)) { 4331 ret = __process_new_xattr(num, di_key, name, name_len, 4332 data, data_len, type, ctx); 4333 } else { 4334 ret = 0; 4335 } 4336 } 4337 4338 kfree(found_data); 4339 return ret; 4340 } 4341 4342 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4343 const char *name, int name_len, 4344 const char *data, int data_len, 4345 u8 type, void *ctx) 4346 { 4347 int ret; 4348 struct send_ctx *sctx = ctx; 4349 4350 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4351 name, name_len, NULL, NULL); 4352 if (ret == -ENOENT) 4353 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4354 data_len, type, ctx); 4355 else if (ret >= 0) 4356 ret = 0; 4357 4358 return ret; 4359 } 4360 4361 static int process_changed_xattr(struct send_ctx *sctx) 4362 { 4363 int ret = 0; 4364 4365 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4366 sctx->cmp_key, __process_changed_new_xattr, sctx); 4367 if (ret < 0) 4368 goto out; 4369 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4370 sctx->cmp_key, __process_changed_deleted_xattr, sctx); 4371 4372 out: 4373 return ret; 4374 } 4375 4376 static int process_all_new_xattrs(struct send_ctx *sctx) 4377 { 4378 int ret; 4379 struct btrfs_root *root; 4380 struct btrfs_path *path; 4381 struct btrfs_key key; 4382 struct btrfs_key found_key; 4383 struct extent_buffer *eb; 4384 int slot; 4385 4386 path = alloc_path_for_send(); 4387 if (!path) 4388 return -ENOMEM; 4389 4390 root = sctx->send_root; 4391 4392 key.objectid = sctx->cmp_key->objectid; 4393 key.type = BTRFS_XATTR_ITEM_KEY; 4394 key.offset = 0; 4395 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4396 if (ret < 0) 4397 goto out; 4398 4399 while (1) { 4400 eb = path->nodes[0]; 4401 slot = path->slots[0]; 4402 if (slot >= btrfs_header_nritems(eb)) { 4403 ret = btrfs_next_leaf(root, path); 4404 if (ret < 0) { 4405 goto out; 4406 } else if (ret > 0) { 4407 ret = 0; 4408 break; 4409 } 4410 continue; 4411 } 4412 4413 btrfs_item_key_to_cpu(eb, &found_key, slot); 4414 if (found_key.objectid != key.objectid || 4415 found_key.type != key.type) { 4416 ret = 0; 4417 goto out; 4418 } 4419 4420 ret = iterate_dir_item(root, path, &found_key, 4421 __process_new_xattr, sctx); 4422 if (ret < 0) 4423 goto out; 4424 4425 path->slots[0]++; 4426 } 4427 4428 out: 4429 btrfs_free_path(path); 4430 return ret; 4431 } 4432 4433 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len) 4434 { 4435 struct btrfs_root *root = sctx->send_root; 4436 struct btrfs_fs_info *fs_info = root->fs_info; 4437 struct inode *inode; 4438 struct page *page; 4439 char *addr; 4440 struct btrfs_key key; 4441 pgoff_t index = offset >> PAGE_CACHE_SHIFT; 4442 pgoff_t last_index; 4443 unsigned pg_offset = offset & ~PAGE_CACHE_MASK; 4444 ssize_t ret = 0; 4445 4446 key.objectid = sctx->cur_ino; 4447 key.type = BTRFS_INODE_ITEM_KEY; 4448 key.offset = 0; 4449 4450 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4451 if (IS_ERR(inode)) 4452 return PTR_ERR(inode); 4453 4454 if (offset + len > i_size_read(inode)) { 4455 if (offset > i_size_read(inode)) 4456 len = 0; 4457 else 4458 len = offset - i_size_read(inode); 4459 } 4460 if (len == 0) 4461 goto out; 4462 4463 last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT; 4464 4465 /* initial readahead */ 4466 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 4467 file_ra_state_init(&sctx->ra, inode->i_mapping); 4468 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index, 4469 last_index - index + 1); 4470 4471 while (index <= last_index) { 4472 unsigned cur_len = min_t(unsigned, len, 4473 PAGE_CACHE_SIZE - pg_offset); 4474 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 4475 if (!page) { 4476 ret = -ENOMEM; 4477 break; 4478 } 4479 4480 if (!PageUptodate(page)) { 4481 btrfs_readpage(NULL, page); 4482 lock_page(page); 4483 if (!PageUptodate(page)) { 4484 unlock_page(page); 4485 page_cache_release(page); 4486 ret = -EIO; 4487 break; 4488 } 4489 } 4490 4491 addr = kmap(page); 4492 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len); 4493 kunmap(page); 4494 unlock_page(page); 4495 page_cache_release(page); 4496 index++; 4497 pg_offset = 0; 4498 len -= cur_len; 4499 ret += cur_len; 4500 } 4501 out: 4502 iput(inode); 4503 return ret; 4504 } 4505 4506 /* 4507 * Read some bytes from the current inode/file and send a write command to 4508 * user space. 4509 */ 4510 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 4511 { 4512 int ret = 0; 4513 struct fs_path *p; 4514 ssize_t num_read = 0; 4515 4516 p = fs_path_alloc(); 4517 if (!p) 4518 return -ENOMEM; 4519 4520 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len); 4521 4522 num_read = fill_read_buf(sctx, offset, len); 4523 if (num_read <= 0) { 4524 if (num_read < 0) 4525 ret = num_read; 4526 goto out; 4527 } 4528 4529 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4530 if (ret < 0) 4531 goto out; 4532 4533 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4534 if (ret < 0) 4535 goto out; 4536 4537 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4538 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4539 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read); 4540 4541 ret = send_cmd(sctx); 4542 4543 tlv_put_failure: 4544 out: 4545 fs_path_free(p); 4546 if (ret < 0) 4547 return ret; 4548 return num_read; 4549 } 4550 4551 /* 4552 * Send a clone command to user space. 4553 */ 4554 static int send_clone(struct send_ctx *sctx, 4555 u64 offset, u32 len, 4556 struct clone_root *clone_root) 4557 { 4558 int ret = 0; 4559 struct fs_path *p; 4560 u64 gen; 4561 4562 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, " 4563 "clone_inode=%llu, clone_offset=%llu\n", offset, len, 4564 clone_root->root->objectid, clone_root->ino, 4565 clone_root->offset); 4566 4567 p = fs_path_alloc(); 4568 if (!p) 4569 return -ENOMEM; 4570 4571 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 4572 if (ret < 0) 4573 goto out; 4574 4575 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4576 if (ret < 0) 4577 goto out; 4578 4579 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4580 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 4581 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4582 4583 if (clone_root->root == sctx->send_root) { 4584 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 4585 &gen, NULL, NULL, NULL, NULL); 4586 if (ret < 0) 4587 goto out; 4588 ret = get_cur_path(sctx, clone_root->ino, gen, p); 4589 } else { 4590 ret = get_inode_path(clone_root->root, clone_root->ino, p); 4591 } 4592 if (ret < 0) 4593 goto out; 4594 4595 /* 4596 * If the parent we're using has a received_uuid set then use that as 4597 * our clone source as that is what we will look for when doing a 4598 * receive. 4599 * 4600 * This covers the case that we create a snapshot off of a received 4601 * subvolume and then use that as the parent and try to receive on a 4602 * different host. 4603 */ 4604 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 4605 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4606 clone_root->root->root_item.received_uuid); 4607 else 4608 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4609 clone_root->root->root_item.uuid); 4610 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 4611 le64_to_cpu(clone_root->root->root_item.ctransid)); 4612 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 4613 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 4614 clone_root->offset); 4615 4616 ret = send_cmd(sctx); 4617 4618 tlv_put_failure: 4619 out: 4620 fs_path_free(p); 4621 return ret; 4622 } 4623 4624 /* 4625 * Send an update extent command to user space. 4626 */ 4627 static int send_update_extent(struct send_ctx *sctx, 4628 u64 offset, u32 len) 4629 { 4630 int ret = 0; 4631 struct fs_path *p; 4632 4633 p = fs_path_alloc(); 4634 if (!p) 4635 return -ENOMEM; 4636 4637 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 4638 if (ret < 0) 4639 goto out; 4640 4641 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4642 if (ret < 0) 4643 goto out; 4644 4645 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4646 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4647 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 4648 4649 ret = send_cmd(sctx); 4650 4651 tlv_put_failure: 4652 out: 4653 fs_path_free(p); 4654 return ret; 4655 } 4656 4657 static int send_hole(struct send_ctx *sctx, u64 end) 4658 { 4659 struct fs_path *p = NULL; 4660 u64 offset = sctx->cur_inode_last_extent; 4661 u64 len; 4662 int ret = 0; 4663 4664 p = fs_path_alloc(); 4665 if (!p) 4666 return -ENOMEM; 4667 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4668 if (ret < 0) 4669 goto tlv_put_failure; 4670 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE); 4671 while (offset < end) { 4672 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE); 4673 4674 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4675 if (ret < 0) 4676 break; 4677 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4678 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4679 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len); 4680 ret = send_cmd(sctx); 4681 if (ret < 0) 4682 break; 4683 offset += len; 4684 } 4685 tlv_put_failure: 4686 fs_path_free(p); 4687 return ret; 4688 } 4689 4690 static int send_write_or_clone(struct send_ctx *sctx, 4691 struct btrfs_path *path, 4692 struct btrfs_key *key, 4693 struct clone_root *clone_root) 4694 { 4695 int ret = 0; 4696 struct btrfs_file_extent_item *ei; 4697 u64 offset = key->offset; 4698 u64 pos = 0; 4699 u64 len; 4700 u32 l; 4701 u8 type; 4702 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 4703 4704 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 4705 struct btrfs_file_extent_item); 4706 type = btrfs_file_extent_type(path->nodes[0], ei); 4707 if (type == BTRFS_FILE_EXTENT_INLINE) { 4708 len = btrfs_file_extent_inline_len(path->nodes[0], 4709 path->slots[0], ei); 4710 /* 4711 * it is possible the inline item won't cover the whole page, 4712 * but there may be items after this page. Make 4713 * sure to send the whole thing 4714 */ 4715 len = PAGE_CACHE_ALIGN(len); 4716 } else { 4717 len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 4718 } 4719 4720 if (offset + len > sctx->cur_inode_size) 4721 len = sctx->cur_inode_size - offset; 4722 if (len == 0) { 4723 ret = 0; 4724 goto out; 4725 } 4726 4727 if (clone_root && IS_ALIGNED(offset + len, bs)) { 4728 ret = send_clone(sctx, offset, len, clone_root); 4729 } else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) { 4730 ret = send_update_extent(sctx, offset, len); 4731 } else { 4732 while (pos < len) { 4733 l = len - pos; 4734 if (l > BTRFS_SEND_READ_SIZE) 4735 l = BTRFS_SEND_READ_SIZE; 4736 ret = send_write(sctx, pos + offset, l); 4737 if (ret < 0) 4738 goto out; 4739 if (!ret) 4740 break; 4741 pos += ret; 4742 } 4743 ret = 0; 4744 } 4745 out: 4746 return ret; 4747 } 4748 4749 static int is_extent_unchanged(struct send_ctx *sctx, 4750 struct btrfs_path *left_path, 4751 struct btrfs_key *ekey) 4752 { 4753 int ret = 0; 4754 struct btrfs_key key; 4755 struct btrfs_path *path = NULL; 4756 struct extent_buffer *eb; 4757 int slot; 4758 struct btrfs_key found_key; 4759 struct btrfs_file_extent_item *ei; 4760 u64 left_disknr; 4761 u64 right_disknr; 4762 u64 left_offset; 4763 u64 right_offset; 4764 u64 left_offset_fixed; 4765 u64 left_len; 4766 u64 right_len; 4767 u64 left_gen; 4768 u64 right_gen; 4769 u8 left_type; 4770 u8 right_type; 4771 4772 path = alloc_path_for_send(); 4773 if (!path) 4774 return -ENOMEM; 4775 4776 eb = left_path->nodes[0]; 4777 slot = left_path->slots[0]; 4778 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 4779 left_type = btrfs_file_extent_type(eb, ei); 4780 4781 if (left_type != BTRFS_FILE_EXTENT_REG) { 4782 ret = 0; 4783 goto out; 4784 } 4785 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 4786 left_len = btrfs_file_extent_num_bytes(eb, ei); 4787 left_offset = btrfs_file_extent_offset(eb, ei); 4788 left_gen = btrfs_file_extent_generation(eb, ei); 4789 4790 /* 4791 * Following comments will refer to these graphics. L is the left 4792 * extents which we are checking at the moment. 1-8 are the right 4793 * extents that we iterate. 4794 * 4795 * |-----L-----| 4796 * |-1-|-2a-|-3-|-4-|-5-|-6-| 4797 * 4798 * |-----L-----| 4799 * |--1--|-2b-|...(same as above) 4800 * 4801 * Alternative situation. Happens on files where extents got split. 4802 * |-----L-----| 4803 * |-----------7-----------|-6-| 4804 * 4805 * Alternative situation. Happens on files which got larger. 4806 * |-----L-----| 4807 * |-8-| 4808 * Nothing follows after 8. 4809 */ 4810 4811 key.objectid = ekey->objectid; 4812 key.type = BTRFS_EXTENT_DATA_KEY; 4813 key.offset = ekey->offset; 4814 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 4815 if (ret < 0) 4816 goto out; 4817 if (ret) { 4818 ret = 0; 4819 goto out; 4820 } 4821 4822 /* 4823 * Handle special case where the right side has no extents at all. 4824 */ 4825 eb = path->nodes[0]; 4826 slot = path->slots[0]; 4827 btrfs_item_key_to_cpu(eb, &found_key, slot); 4828 if (found_key.objectid != key.objectid || 4829 found_key.type != key.type) { 4830 /* If we're a hole then just pretend nothing changed */ 4831 ret = (left_disknr) ? 0 : 1; 4832 goto out; 4833 } 4834 4835 /* 4836 * We're now on 2a, 2b or 7. 4837 */ 4838 key = found_key; 4839 while (key.offset < ekey->offset + left_len) { 4840 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 4841 right_type = btrfs_file_extent_type(eb, ei); 4842 if (right_type != BTRFS_FILE_EXTENT_REG) { 4843 ret = 0; 4844 goto out; 4845 } 4846 4847 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 4848 right_len = btrfs_file_extent_num_bytes(eb, ei); 4849 right_offset = btrfs_file_extent_offset(eb, ei); 4850 right_gen = btrfs_file_extent_generation(eb, ei); 4851 4852 /* 4853 * Are we at extent 8? If yes, we know the extent is changed. 4854 * This may only happen on the first iteration. 4855 */ 4856 if (found_key.offset + right_len <= ekey->offset) { 4857 /* If we're a hole just pretend nothing changed */ 4858 ret = (left_disknr) ? 0 : 1; 4859 goto out; 4860 } 4861 4862 left_offset_fixed = left_offset; 4863 if (key.offset < ekey->offset) { 4864 /* Fix the right offset for 2a and 7. */ 4865 right_offset += ekey->offset - key.offset; 4866 } else { 4867 /* Fix the left offset for all behind 2a and 2b */ 4868 left_offset_fixed += key.offset - ekey->offset; 4869 } 4870 4871 /* 4872 * Check if we have the same extent. 4873 */ 4874 if (left_disknr != right_disknr || 4875 left_offset_fixed != right_offset || 4876 left_gen != right_gen) { 4877 ret = 0; 4878 goto out; 4879 } 4880 4881 /* 4882 * Go to the next extent. 4883 */ 4884 ret = btrfs_next_item(sctx->parent_root, path); 4885 if (ret < 0) 4886 goto out; 4887 if (!ret) { 4888 eb = path->nodes[0]; 4889 slot = path->slots[0]; 4890 btrfs_item_key_to_cpu(eb, &found_key, slot); 4891 } 4892 if (ret || found_key.objectid != key.objectid || 4893 found_key.type != key.type) { 4894 key.offset += right_len; 4895 break; 4896 } 4897 if (found_key.offset != key.offset + right_len) { 4898 ret = 0; 4899 goto out; 4900 } 4901 key = found_key; 4902 } 4903 4904 /* 4905 * We're now behind the left extent (treat as unchanged) or at the end 4906 * of the right side (treat as changed). 4907 */ 4908 if (key.offset >= ekey->offset + left_len) 4909 ret = 1; 4910 else 4911 ret = 0; 4912 4913 4914 out: 4915 btrfs_free_path(path); 4916 return ret; 4917 } 4918 4919 static int get_last_extent(struct send_ctx *sctx, u64 offset) 4920 { 4921 struct btrfs_path *path; 4922 struct btrfs_root *root = sctx->send_root; 4923 struct btrfs_file_extent_item *fi; 4924 struct btrfs_key key; 4925 u64 extent_end; 4926 u8 type; 4927 int ret; 4928 4929 path = alloc_path_for_send(); 4930 if (!path) 4931 return -ENOMEM; 4932 4933 sctx->cur_inode_last_extent = 0; 4934 4935 key.objectid = sctx->cur_ino; 4936 key.type = BTRFS_EXTENT_DATA_KEY; 4937 key.offset = offset; 4938 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 4939 if (ret < 0) 4940 goto out; 4941 ret = 0; 4942 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4943 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 4944 goto out; 4945 4946 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 4947 struct btrfs_file_extent_item); 4948 type = btrfs_file_extent_type(path->nodes[0], fi); 4949 if (type == BTRFS_FILE_EXTENT_INLINE) { 4950 u64 size = btrfs_file_extent_inline_len(path->nodes[0], 4951 path->slots[0], fi); 4952 extent_end = ALIGN(key.offset + size, 4953 sctx->send_root->sectorsize); 4954 } else { 4955 extent_end = key.offset + 4956 btrfs_file_extent_num_bytes(path->nodes[0], fi); 4957 } 4958 sctx->cur_inode_last_extent = extent_end; 4959 out: 4960 btrfs_free_path(path); 4961 return ret; 4962 } 4963 4964 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 4965 struct btrfs_key *key) 4966 { 4967 struct btrfs_file_extent_item *fi; 4968 u64 extent_end; 4969 u8 type; 4970 int ret = 0; 4971 4972 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 4973 return 0; 4974 4975 if (sctx->cur_inode_last_extent == (u64)-1) { 4976 ret = get_last_extent(sctx, key->offset - 1); 4977 if (ret) 4978 return ret; 4979 } 4980 4981 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 4982 struct btrfs_file_extent_item); 4983 type = btrfs_file_extent_type(path->nodes[0], fi); 4984 if (type == BTRFS_FILE_EXTENT_INLINE) { 4985 u64 size = btrfs_file_extent_inline_len(path->nodes[0], 4986 path->slots[0], fi); 4987 extent_end = ALIGN(key->offset + size, 4988 sctx->send_root->sectorsize); 4989 } else { 4990 extent_end = key->offset + 4991 btrfs_file_extent_num_bytes(path->nodes[0], fi); 4992 } 4993 4994 if (path->slots[0] == 0 && 4995 sctx->cur_inode_last_extent < key->offset) { 4996 /* 4997 * We might have skipped entire leafs that contained only 4998 * file extent items for our current inode. These leafs have 4999 * a generation number smaller (older) than the one in the 5000 * current leaf and the leaf our last extent came from, and 5001 * are located between these 2 leafs. 5002 */ 5003 ret = get_last_extent(sctx, key->offset - 1); 5004 if (ret) 5005 return ret; 5006 } 5007 5008 if (sctx->cur_inode_last_extent < key->offset) 5009 ret = send_hole(sctx, key->offset); 5010 sctx->cur_inode_last_extent = extent_end; 5011 return ret; 5012 } 5013 5014 static int process_extent(struct send_ctx *sctx, 5015 struct btrfs_path *path, 5016 struct btrfs_key *key) 5017 { 5018 struct clone_root *found_clone = NULL; 5019 int ret = 0; 5020 5021 if (S_ISLNK(sctx->cur_inode_mode)) 5022 return 0; 5023 5024 if (sctx->parent_root && !sctx->cur_inode_new) { 5025 ret = is_extent_unchanged(sctx, path, key); 5026 if (ret < 0) 5027 goto out; 5028 if (ret) { 5029 ret = 0; 5030 goto out_hole; 5031 } 5032 } else { 5033 struct btrfs_file_extent_item *ei; 5034 u8 type; 5035 5036 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5037 struct btrfs_file_extent_item); 5038 type = btrfs_file_extent_type(path->nodes[0], ei); 5039 if (type == BTRFS_FILE_EXTENT_PREALLOC || 5040 type == BTRFS_FILE_EXTENT_REG) { 5041 /* 5042 * The send spec does not have a prealloc command yet, 5043 * so just leave a hole for prealloc'ed extents until 5044 * we have enough commands queued up to justify rev'ing 5045 * the send spec. 5046 */ 5047 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 5048 ret = 0; 5049 goto out; 5050 } 5051 5052 /* Have a hole, just skip it. */ 5053 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 5054 ret = 0; 5055 goto out; 5056 } 5057 } 5058 } 5059 5060 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 5061 sctx->cur_inode_size, &found_clone); 5062 if (ret != -ENOENT && ret < 0) 5063 goto out; 5064 5065 ret = send_write_or_clone(sctx, path, key, found_clone); 5066 if (ret) 5067 goto out; 5068 out_hole: 5069 ret = maybe_send_hole(sctx, path, key); 5070 out: 5071 return ret; 5072 } 5073 5074 static int process_all_extents(struct send_ctx *sctx) 5075 { 5076 int ret; 5077 struct btrfs_root *root; 5078 struct btrfs_path *path; 5079 struct btrfs_key key; 5080 struct btrfs_key found_key; 5081 struct extent_buffer *eb; 5082 int slot; 5083 5084 root = sctx->send_root; 5085 path = alloc_path_for_send(); 5086 if (!path) 5087 return -ENOMEM; 5088 5089 key.objectid = sctx->cmp_key->objectid; 5090 key.type = BTRFS_EXTENT_DATA_KEY; 5091 key.offset = 0; 5092 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5093 if (ret < 0) 5094 goto out; 5095 5096 while (1) { 5097 eb = path->nodes[0]; 5098 slot = path->slots[0]; 5099 5100 if (slot >= btrfs_header_nritems(eb)) { 5101 ret = btrfs_next_leaf(root, path); 5102 if (ret < 0) { 5103 goto out; 5104 } else if (ret > 0) { 5105 ret = 0; 5106 break; 5107 } 5108 continue; 5109 } 5110 5111 btrfs_item_key_to_cpu(eb, &found_key, slot); 5112 5113 if (found_key.objectid != key.objectid || 5114 found_key.type != key.type) { 5115 ret = 0; 5116 goto out; 5117 } 5118 5119 ret = process_extent(sctx, path, &found_key); 5120 if (ret < 0) 5121 goto out; 5122 5123 path->slots[0]++; 5124 } 5125 5126 out: 5127 btrfs_free_path(path); 5128 return ret; 5129 } 5130 5131 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 5132 int *pending_move, 5133 int *refs_processed) 5134 { 5135 int ret = 0; 5136 5137 if (sctx->cur_ino == 0) 5138 goto out; 5139 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 5140 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 5141 goto out; 5142 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 5143 goto out; 5144 5145 ret = process_recorded_refs(sctx, pending_move); 5146 if (ret < 0) 5147 goto out; 5148 5149 *refs_processed = 1; 5150 out: 5151 return ret; 5152 } 5153 5154 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 5155 { 5156 int ret = 0; 5157 u64 left_mode; 5158 u64 left_uid; 5159 u64 left_gid; 5160 u64 right_mode; 5161 u64 right_uid; 5162 u64 right_gid; 5163 int need_chmod = 0; 5164 int need_chown = 0; 5165 int pending_move = 0; 5166 int refs_processed = 0; 5167 5168 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 5169 &refs_processed); 5170 if (ret < 0) 5171 goto out; 5172 5173 /* 5174 * We have processed the refs and thus need to advance send_progress. 5175 * Now, calls to get_cur_xxx will take the updated refs of the current 5176 * inode into account. 5177 * 5178 * On the other hand, if our current inode is a directory and couldn't 5179 * be moved/renamed because its parent was renamed/moved too and it has 5180 * a higher inode number, we can only move/rename our current inode 5181 * after we moved/renamed its parent. Therefore in this case operate on 5182 * the old path (pre move/rename) of our current inode, and the 5183 * move/rename will be performed later. 5184 */ 5185 if (refs_processed && !pending_move) 5186 sctx->send_progress = sctx->cur_ino + 1; 5187 5188 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 5189 goto out; 5190 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 5191 goto out; 5192 5193 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 5194 &left_mode, &left_uid, &left_gid, NULL); 5195 if (ret < 0) 5196 goto out; 5197 5198 if (!sctx->parent_root || sctx->cur_inode_new) { 5199 need_chown = 1; 5200 if (!S_ISLNK(sctx->cur_inode_mode)) 5201 need_chmod = 1; 5202 } else { 5203 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 5204 NULL, NULL, &right_mode, &right_uid, 5205 &right_gid, NULL); 5206 if (ret < 0) 5207 goto out; 5208 5209 if (left_uid != right_uid || left_gid != right_gid) 5210 need_chown = 1; 5211 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 5212 need_chmod = 1; 5213 } 5214 5215 if (S_ISREG(sctx->cur_inode_mode)) { 5216 if (need_send_hole(sctx)) { 5217 if (sctx->cur_inode_last_extent == (u64)-1 || 5218 sctx->cur_inode_last_extent < 5219 sctx->cur_inode_size) { 5220 ret = get_last_extent(sctx, (u64)-1); 5221 if (ret) 5222 goto out; 5223 } 5224 if (sctx->cur_inode_last_extent < 5225 sctx->cur_inode_size) { 5226 ret = send_hole(sctx, sctx->cur_inode_size); 5227 if (ret) 5228 goto out; 5229 } 5230 } 5231 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5232 sctx->cur_inode_size); 5233 if (ret < 0) 5234 goto out; 5235 } 5236 5237 if (need_chown) { 5238 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5239 left_uid, left_gid); 5240 if (ret < 0) 5241 goto out; 5242 } 5243 if (need_chmod) { 5244 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5245 left_mode); 5246 if (ret < 0) 5247 goto out; 5248 } 5249 5250 /* 5251 * If other directory inodes depended on our current directory 5252 * inode's move/rename, now do their move/rename operations. 5253 */ 5254 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 5255 ret = apply_children_dir_moves(sctx); 5256 if (ret) 5257 goto out; 5258 /* 5259 * Need to send that every time, no matter if it actually 5260 * changed between the two trees as we have done changes to 5261 * the inode before. If our inode is a directory and it's 5262 * waiting to be moved/renamed, we will send its utimes when 5263 * it's moved/renamed, therefore we don't need to do it here. 5264 */ 5265 sctx->send_progress = sctx->cur_ino + 1; 5266 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 5267 if (ret < 0) 5268 goto out; 5269 } 5270 5271 out: 5272 return ret; 5273 } 5274 5275 static int changed_inode(struct send_ctx *sctx, 5276 enum btrfs_compare_tree_result result) 5277 { 5278 int ret = 0; 5279 struct btrfs_key *key = sctx->cmp_key; 5280 struct btrfs_inode_item *left_ii = NULL; 5281 struct btrfs_inode_item *right_ii = NULL; 5282 u64 left_gen = 0; 5283 u64 right_gen = 0; 5284 5285 sctx->cur_ino = key->objectid; 5286 sctx->cur_inode_new_gen = 0; 5287 sctx->cur_inode_last_extent = (u64)-1; 5288 5289 /* 5290 * Set send_progress to current inode. This will tell all get_cur_xxx 5291 * functions that the current inode's refs are not updated yet. Later, 5292 * when process_recorded_refs is finished, it is set to cur_ino + 1. 5293 */ 5294 sctx->send_progress = sctx->cur_ino; 5295 5296 if (result == BTRFS_COMPARE_TREE_NEW || 5297 result == BTRFS_COMPARE_TREE_CHANGED) { 5298 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 5299 sctx->left_path->slots[0], 5300 struct btrfs_inode_item); 5301 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 5302 left_ii); 5303 } else { 5304 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 5305 sctx->right_path->slots[0], 5306 struct btrfs_inode_item); 5307 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 5308 right_ii); 5309 } 5310 if (result == BTRFS_COMPARE_TREE_CHANGED) { 5311 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 5312 sctx->right_path->slots[0], 5313 struct btrfs_inode_item); 5314 5315 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 5316 right_ii); 5317 5318 /* 5319 * The cur_ino = root dir case is special here. We can't treat 5320 * the inode as deleted+reused because it would generate a 5321 * stream that tries to delete/mkdir the root dir. 5322 */ 5323 if (left_gen != right_gen && 5324 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 5325 sctx->cur_inode_new_gen = 1; 5326 } 5327 5328 if (result == BTRFS_COMPARE_TREE_NEW) { 5329 sctx->cur_inode_gen = left_gen; 5330 sctx->cur_inode_new = 1; 5331 sctx->cur_inode_deleted = 0; 5332 sctx->cur_inode_size = btrfs_inode_size( 5333 sctx->left_path->nodes[0], left_ii); 5334 sctx->cur_inode_mode = btrfs_inode_mode( 5335 sctx->left_path->nodes[0], left_ii); 5336 sctx->cur_inode_rdev = btrfs_inode_rdev( 5337 sctx->left_path->nodes[0], left_ii); 5338 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 5339 ret = send_create_inode_if_needed(sctx); 5340 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 5341 sctx->cur_inode_gen = right_gen; 5342 sctx->cur_inode_new = 0; 5343 sctx->cur_inode_deleted = 1; 5344 sctx->cur_inode_size = btrfs_inode_size( 5345 sctx->right_path->nodes[0], right_ii); 5346 sctx->cur_inode_mode = btrfs_inode_mode( 5347 sctx->right_path->nodes[0], right_ii); 5348 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 5349 /* 5350 * We need to do some special handling in case the inode was 5351 * reported as changed with a changed generation number. This 5352 * means that the original inode was deleted and new inode 5353 * reused the same inum. So we have to treat the old inode as 5354 * deleted and the new one as new. 5355 */ 5356 if (sctx->cur_inode_new_gen) { 5357 /* 5358 * First, process the inode as if it was deleted. 5359 */ 5360 sctx->cur_inode_gen = right_gen; 5361 sctx->cur_inode_new = 0; 5362 sctx->cur_inode_deleted = 1; 5363 sctx->cur_inode_size = btrfs_inode_size( 5364 sctx->right_path->nodes[0], right_ii); 5365 sctx->cur_inode_mode = btrfs_inode_mode( 5366 sctx->right_path->nodes[0], right_ii); 5367 ret = process_all_refs(sctx, 5368 BTRFS_COMPARE_TREE_DELETED); 5369 if (ret < 0) 5370 goto out; 5371 5372 /* 5373 * Now process the inode as if it was new. 5374 */ 5375 sctx->cur_inode_gen = left_gen; 5376 sctx->cur_inode_new = 1; 5377 sctx->cur_inode_deleted = 0; 5378 sctx->cur_inode_size = btrfs_inode_size( 5379 sctx->left_path->nodes[0], left_ii); 5380 sctx->cur_inode_mode = btrfs_inode_mode( 5381 sctx->left_path->nodes[0], left_ii); 5382 sctx->cur_inode_rdev = btrfs_inode_rdev( 5383 sctx->left_path->nodes[0], left_ii); 5384 ret = send_create_inode_if_needed(sctx); 5385 if (ret < 0) 5386 goto out; 5387 5388 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 5389 if (ret < 0) 5390 goto out; 5391 /* 5392 * Advance send_progress now as we did not get into 5393 * process_recorded_refs_if_needed in the new_gen case. 5394 */ 5395 sctx->send_progress = sctx->cur_ino + 1; 5396 5397 /* 5398 * Now process all extents and xattrs of the inode as if 5399 * they were all new. 5400 */ 5401 ret = process_all_extents(sctx); 5402 if (ret < 0) 5403 goto out; 5404 ret = process_all_new_xattrs(sctx); 5405 if (ret < 0) 5406 goto out; 5407 } else { 5408 sctx->cur_inode_gen = left_gen; 5409 sctx->cur_inode_new = 0; 5410 sctx->cur_inode_new_gen = 0; 5411 sctx->cur_inode_deleted = 0; 5412 sctx->cur_inode_size = btrfs_inode_size( 5413 sctx->left_path->nodes[0], left_ii); 5414 sctx->cur_inode_mode = btrfs_inode_mode( 5415 sctx->left_path->nodes[0], left_ii); 5416 } 5417 } 5418 5419 out: 5420 return ret; 5421 } 5422 5423 /* 5424 * We have to process new refs before deleted refs, but compare_trees gives us 5425 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 5426 * first and later process them in process_recorded_refs. 5427 * For the cur_inode_new_gen case, we skip recording completely because 5428 * changed_inode did already initiate processing of refs. The reason for this is 5429 * that in this case, compare_tree actually compares the refs of 2 different 5430 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 5431 * refs of the right tree as deleted and all refs of the left tree as new. 5432 */ 5433 static int changed_ref(struct send_ctx *sctx, 5434 enum btrfs_compare_tree_result result) 5435 { 5436 int ret = 0; 5437 5438 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 5439 5440 if (!sctx->cur_inode_new_gen && 5441 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 5442 if (result == BTRFS_COMPARE_TREE_NEW) 5443 ret = record_new_ref(sctx); 5444 else if (result == BTRFS_COMPARE_TREE_DELETED) 5445 ret = record_deleted_ref(sctx); 5446 else if (result == BTRFS_COMPARE_TREE_CHANGED) 5447 ret = record_changed_ref(sctx); 5448 } 5449 5450 return ret; 5451 } 5452 5453 /* 5454 * Process new/deleted/changed xattrs. We skip processing in the 5455 * cur_inode_new_gen case because changed_inode did already initiate processing 5456 * of xattrs. The reason is the same as in changed_ref 5457 */ 5458 static int changed_xattr(struct send_ctx *sctx, 5459 enum btrfs_compare_tree_result result) 5460 { 5461 int ret = 0; 5462 5463 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 5464 5465 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 5466 if (result == BTRFS_COMPARE_TREE_NEW) 5467 ret = process_new_xattr(sctx); 5468 else if (result == BTRFS_COMPARE_TREE_DELETED) 5469 ret = process_deleted_xattr(sctx); 5470 else if (result == BTRFS_COMPARE_TREE_CHANGED) 5471 ret = process_changed_xattr(sctx); 5472 } 5473 5474 return ret; 5475 } 5476 5477 /* 5478 * Process new/deleted/changed extents. We skip processing in the 5479 * cur_inode_new_gen case because changed_inode did already initiate processing 5480 * of extents. The reason is the same as in changed_ref 5481 */ 5482 static int changed_extent(struct send_ctx *sctx, 5483 enum btrfs_compare_tree_result result) 5484 { 5485 int ret = 0; 5486 5487 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 5488 5489 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 5490 if (result != BTRFS_COMPARE_TREE_DELETED) 5491 ret = process_extent(sctx, sctx->left_path, 5492 sctx->cmp_key); 5493 } 5494 5495 return ret; 5496 } 5497 5498 static int dir_changed(struct send_ctx *sctx, u64 dir) 5499 { 5500 u64 orig_gen, new_gen; 5501 int ret; 5502 5503 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 5504 NULL, NULL); 5505 if (ret) 5506 return ret; 5507 5508 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 5509 NULL, NULL, NULL); 5510 if (ret) 5511 return ret; 5512 5513 return (orig_gen != new_gen) ? 1 : 0; 5514 } 5515 5516 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 5517 struct btrfs_key *key) 5518 { 5519 struct btrfs_inode_extref *extref; 5520 struct extent_buffer *leaf; 5521 u64 dirid = 0, last_dirid = 0; 5522 unsigned long ptr; 5523 u32 item_size; 5524 u32 cur_offset = 0; 5525 int ref_name_len; 5526 int ret = 0; 5527 5528 /* Easy case, just check this one dirid */ 5529 if (key->type == BTRFS_INODE_REF_KEY) { 5530 dirid = key->offset; 5531 5532 ret = dir_changed(sctx, dirid); 5533 goto out; 5534 } 5535 5536 leaf = path->nodes[0]; 5537 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 5538 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 5539 while (cur_offset < item_size) { 5540 extref = (struct btrfs_inode_extref *)(ptr + 5541 cur_offset); 5542 dirid = btrfs_inode_extref_parent(leaf, extref); 5543 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 5544 cur_offset += ref_name_len + sizeof(*extref); 5545 if (dirid == last_dirid) 5546 continue; 5547 ret = dir_changed(sctx, dirid); 5548 if (ret) 5549 break; 5550 last_dirid = dirid; 5551 } 5552 out: 5553 return ret; 5554 } 5555 5556 /* 5557 * Updates compare related fields in sctx and simply forwards to the actual 5558 * changed_xxx functions. 5559 */ 5560 static int changed_cb(struct btrfs_root *left_root, 5561 struct btrfs_root *right_root, 5562 struct btrfs_path *left_path, 5563 struct btrfs_path *right_path, 5564 struct btrfs_key *key, 5565 enum btrfs_compare_tree_result result, 5566 void *ctx) 5567 { 5568 int ret = 0; 5569 struct send_ctx *sctx = ctx; 5570 5571 if (result == BTRFS_COMPARE_TREE_SAME) { 5572 if (key->type == BTRFS_INODE_REF_KEY || 5573 key->type == BTRFS_INODE_EXTREF_KEY) { 5574 ret = compare_refs(sctx, left_path, key); 5575 if (!ret) 5576 return 0; 5577 if (ret < 0) 5578 return ret; 5579 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 5580 return maybe_send_hole(sctx, left_path, key); 5581 } else { 5582 return 0; 5583 } 5584 result = BTRFS_COMPARE_TREE_CHANGED; 5585 ret = 0; 5586 } 5587 5588 sctx->left_path = left_path; 5589 sctx->right_path = right_path; 5590 sctx->cmp_key = key; 5591 5592 ret = finish_inode_if_needed(sctx, 0); 5593 if (ret < 0) 5594 goto out; 5595 5596 /* Ignore non-FS objects */ 5597 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 5598 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 5599 goto out; 5600 5601 if (key->type == BTRFS_INODE_ITEM_KEY) 5602 ret = changed_inode(sctx, result); 5603 else if (key->type == BTRFS_INODE_REF_KEY || 5604 key->type == BTRFS_INODE_EXTREF_KEY) 5605 ret = changed_ref(sctx, result); 5606 else if (key->type == BTRFS_XATTR_ITEM_KEY) 5607 ret = changed_xattr(sctx, result); 5608 else if (key->type == BTRFS_EXTENT_DATA_KEY) 5609 ret = changed_extent(sctx, result); 5610 5611 out: 5612 return ret; 5613 } 5614 5615 static int full_send_tree(struct send_ctx *sctx) 5616 { 5617 int ret; 5618 struct btrfs_root *send_root = sctx->send_root; 5619 struct btrfs_key key; 5620 struct btrfs_key found_key; 5621 struct btrfs_path *path; 5622 struct extent_buffer *eb; 5623 int slot; 5624 5625 path = alloc_path_for_send(); 5626 if (!path) 5627 return -ENOMEM; 5628 5629 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 5630 key.type = BTRFS_INODE_ITEM_KEY; 5631 key.offset = 0; 5632 5633 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 5634 if (ret < 0) 5635 goto out; 5636 if (ret) 5637 goto out_finish; 5638 5639 while (1) { 5640 eb = path->nodes[0]; 5641 slot = path->slots[0]; 5642 btrfs_item_key_to_cpu(eb, &found_key, slot); 5643 5644 ret = changed_cb(send_root, NULL, path, NULL, 5645 &found_key, BTRFS_COMPARE_TREE_NEW, sctx); 5646 if (ret < 0) 5647 goto out; 5648 5649 key.objectid = found_key.objectid; 5650 key.type = found_key.type; 5651 key.offset = found_key.offset + 1; 5652 5653 ret = btrfs_next_item(send_root, path); 5654 if (ret < 0) 5655 goto out; 5656 if (ret) { 5657 ret = 0; 5658 break; 5659 } 5660 } 5661 5662 out_finish: 5663 ret = finish_inode_if_needed(sctx, 1); 5664 5665 out: 5666 btrfs_free_path(path); 5667 return ret; 5668 } 5669 5670 static int send_subvol(struct send_ctx *sctx) 5671 { 5672 int ret; 5673 5674 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 5675 ret = send_header(sctx); 5676 if (ret < 0) 5677 goto out; 5678 } 5679 5680 ret = send_subvol_begin(sctx); 5681 if (ret < 0) 5682 goto out; 5683 5684 if (sctx->parent_root) { 5685 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, 5686 changed_cb, sctx); 5687 if (ret < 0) 5688 goto out; 5689 ret = finish_inode_if_needed(sctx, 1); 5690 if (ret < 0) 5691 goto out; 5692 } else { 5693 ret = full_send_tree(sctx); 5694 if (ret < 0) 5695 goto out; 5696 } 5697 5698 out: 5699 free_recorded_refs(sctx); 5700 return ret; 5701 } 5702 5703 /* 5704 * If orphan cleanup did remove any orphans from a root, it means the tree 5705 * was modified and therefore the commit root is not the same as the current 5706 * root anymore. This is a problem, because send uses the commit root and 5707 * therefore can see inode items that don't exist in the current root anymore, 5708 * and for example make calls to btrfs_iget, which will do tree lookups based 5709 * on the current root and not on the commit root. Those lookups will fail, 5710 * returning a -ESTALE error, and making send fail with that error. So make 5711 * sure a send does not see any orphans we have just removed, and that it will 5712 * see the same inodes regardless of whether a transaction commit happened 5713 * before it started (meaning that the commit root will be the same as the 5714 * current root) or not. 5715 */ 5716 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 5717 { 5718 int i; 5719 struct btrfs_trans_handle *trans = NULL; 5720 5721 again: 5722 if (sctx->parent_root && 5723 sctx->parent_root->node != sctx->parent_root->commit_root) 5724 goto commit_trans; 5725 5726 for (i = 0; i < sctx->clone_roots_cnt; i++) 5727 if (sctx->clone_roots[i].root->node != 5728 sctx->clone_roots[i].root->commit_root) 5729 goto commit_trans; 5730 5731 if (trans) 5732 return btrfs_end_transaction(trans, sctx->send_root); 5733 5734 return 0; 5735 5736 commit_trans: 5737 /* Use any root, all fs roots will get their commit roots updated. */ 5738 if (!trans) { 5739 trans = btrfs_join_transaction(sctx->send_root); 5740 if (IS_ERR(trans)) 5741 return PTR_ERR(trans); 5742 goto again; 5743 } 5744 5745 return btrfs_commit_transaction(trans, sctx->send_root); 5746 } 5747 5748 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 5749 { 5750 spin_lock(&root->root_item_lock); 5751 root->send_in_progress--; 5752 /* 5753 * Not much left to do, we don't know why it's unbalanced and 5754 * can't blindly reset it to 0. 5755 */ 5756 if (root->send_in_progress < 0) 5757 btrfs_err(root->fs_info, 5758 "send_in_progres unbalanced %d root %llu", 5759 root->send_in_progress, root->root_key.objectid); 5760 spin_unlock(&root->root_item_lock); 5761 } 5762 5763 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_) 5764 { 5765 int ret = 0; 5766 struct btrfs_root *send_root; 5767 struct btrfs_root *clone_root; 5768 struct btrfs_fs_info *fs_info; 5769 struct btrfs_ioctl_send_args *arg = NULL; 5770 struct btrfs_key key; 5771 struct send_ctx *sctx = NULL; 5772 u32 i; 5773 u64 *clone_sources_tmp = NULL; 5774 int clone_sources_to_rollback = 0; 5775 int sort_clone_roots = 0; 5776 int index; 5777 5778 if (!capable(CAP_SYS_ADMIN)) 5779 return -EPERM; 5780 5781 send_root = BTRFS_I(file_inode(mnt_file))->root; 5782 fs_info = send_root->fs_info; 5783 5784 /* 5785 * The subvolume must remain read-only during send, protect against 5786 * making it RW. This also protects against deletion. 5787 */ 5788 spin_lock(&send_root->root_item_lock); 5789 send_root->send_in_progress++; 5790 spin_unlock(&send_root->root_item_lock); 5791 5792 /* 5793 * This is done when we lookup the root, it should already be complete 5794 * by the time we get here. 5795 */ 5796 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE); 5797 5798 /* 5799 * Userspace tools do the checks and warn the user if it's 5800 * not RO. 5801 */ 5802 if (!btrfs_root_readonly(send_root)) { 5803 ret = -EPERM; 5804 goto out; 5805 } 5806 5807 arg = memdup_user(arg_, sizeof(*arg)); 5808 if (IS_ERR(arg)) { 5809 ret = PTR_ERR(arg); 5810 arg = NULL; 5811 goto out; 5812 } 5813 5814 if (!access_ok(VERIFY_READ, arg->clone_sources, 5815 sizeof(*arg->clone_sources) * 5816 arg->clone_sources_count)) { 5817 ret = -EFAULT; 5818 goto out; 5819 } 5820 5821 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 5822 ret = -EINVAL; 5823 goto out; 5824 } 5825 5826 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS); 5827 if (!sctx) { 5828 ret = -ENOMEM; 5829 goto out; 5830 } 5831 5832 INIT_LIST_HEAD(&sctx->new_refs); 5833 INIT_LIST_HEAD(&sctx->deleted_refs); 5834 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS); 5835 INIT_LIST_HEAD(&sctx->name_cache_list); 5836 5837 sctx->flags = arg->flags; 5838 5839 sctx->send_filp = fget(arg->send_fd); 5840 if (!sctx->send_filp) { 5841 ret = -EBADF; 5842 goto out; 5843 } 5844 5845 sctx->send_root = send_root; 5846 /* 5847 * Unlikely but possible, if the subvolume is marked for deletion but 5848 * is slow to remove the directory entry, send can still be started 5849 */ 5850 if (btrfs_root_dead(sctx->send_root)) { 5851 ret = -EPERM; 5852 goto out; 5853 } 5854 5855 sctx->clone_roots_cnt = arg->clone_sources_count; 5856 5857 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 5858 sctx->send_buf = vmalloc(sctx->send_max_size); 5859 if (!sctx->send_buf) { 5860 ret = -ENOMEM; 5861 goto out; 5862 } 5863 5864 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE); 5865 if (!sctx->read_buf) { 5866 ret = -ENOMEM; 5867 goto out; 5868 } 5869 5870 sctx->pending_dir_moves = RB_ROOT; 5871 sctx->waiting_dir_moves = RB_ROOT; 5872 sctx->orphan_dirs = RB_ROOT; 5873 5874 sctx->clone_roots = vzalloc(sizeof(struct clone_root) * 5875 (arg->clone_sources_count + 1)); 5876 if (!sctx->clone_roots) { 5877 ret = -ENOMEM; 5878 goto out; 5879 } 5880 5881 if (arg->clone_sources_count) { 5882 clone_sources_tmp = vmalloc(arg->clone_sources_count * 5883 sizeof(*arg->clone_sources)); 5884 if (!clone_sources_tmp) { 5885 ret = -ENOMEM; 5886 goto out; 5887 } 5888 5889 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 5890 arg->clone_sources_count * 5891 sizeof(*arg->clone_sources)); 5892 if (ret) { 5893 ret = -EFAULT; 5894 goto out; 5895 } 5896 5897 for (i = 0; i < arg->clone_sources_count; i++) { 5898 key.objectid = clone_sources_tmp[i]; 5899 key.type = BTRFS_ROOT_ITEM_KEY; 5900 key.offset = (u64)-1; 5901 5902 index = srcu_read_lock(&fs_info->subvol_srcu); 5903 5904 clone_root = btrfs_read_fs_root_no_name(fs_info, &key); 5905 if (IS_ERR(clone_root)) { 5906 srcu_read_unlock(&fs_info->subvol_srcu, index); 5907 ret = PTR_ERR(clone_root); 5908 goto out; 5909 } 5910 spin_lock(&clone_root->root_item_lock); 5911 if (!btrfs_root_readonly(clone_root) || 5912 btrfs_root_dead(clone_root)) { 5913 spin_unlock(&clone_root->root_item_lock); 5914 srcu_read_unlock(&fs_info->subvol_srcu, index); 5915 ret = -EPERM; 5916 goto out; 5917 } 5918 clone_root->send_in_progress++; 5919 spin_unlock(&clone_root->root_item_lock); 5920 srcu_read_unlock(&fs_info->subvol_srcu, index); 5921 5922 sctx->clone_roots[i].root = clone_root; 5923 clone_sources_to_rollback = i + 1; 5924 } 5925 vfree(clone_sources_tmp); 5926 clone_sources_tmp = NULL; 5927 } 5928 5929 if (arg->parent_root) { 5930 key.objectid = arg->parent_root; 5931 key.type = BTRFS_ROOT_ITEM_KEY; 5932 key.offset = (u64)-1; 5933 5934 index = srcu_read_lock(&fs_info->subvol_srcu); 5935 5936 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key); 5937 if (IS_ERR(sctx->parent_root)) { 5938 srcu_read_unlock(&fs_info->subvol_srcu, index); 5939 ret = PTR_ERR(sctx->parent_root); 5940 goto out; 5941 } 5942 5943 spin_lock(&sctx->parent_root->root_item_lock); 5944 sctx->parent_root->send_in_progress++; 5945 if (!btrfs_root_readonly(sctx->parent_root) || 5946 btrfs_root_dead(sctx->parent_root)) { 5947 spin_unlock(&sctx->parent_root->root_item_lock); 5948 srcu_read_unlock(&fs_info->subvol_srcu, index); 5949 ret = -EPERM; 5950 goto out; 5951 } 5952 spin_unlock(&sctx->parent_root->root_item_lock); 5953 5954 srcu_read_unlock(&fs_info->subvol_srcu, index); 5955 } 5956 5957 /* 5958 * Clones from send_root are allowed, but only if the clone source 5959 * is behind the current send position. This is checked while searching 5960 * for possible clone sources. 5961 */ 5962 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root; 5963 5964 /* We do a bsearch later */ 5965 sort(sctx->clone_roots, sctx->clone_roots_cnt, 5966 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 5967 NULL); 5968 sort_clone_roots = 1; 5969 5970 ret = ensure_commit_roots_uptodate(sctx); 5971 if (ret) 5972 goto out; 5973 5974 current->journal_info = BTRFS_SEND_TRANS_STUB; 5975 ret = send_subvol(sctx); 5976 current->journal_info = NULL; 5977 if (ret < 0) 5978 goto out; 5979 5980 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 5981 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 5982 if (ret < 0) 5983 goto out; 5984 ret = send_cmd(sctx); 5985 if (ret < 0) 5986 goto out; 5987 } 5988 5989 out: 5990 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 5991 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 5992 struct rb_node *n; 5993 struct pending_dir_move *pm; 5994 5995 n = rb_first(&sctx->pending_dir_moves); 5996 pm = rb_entry(n, struct pending_dir_move, node); 5997 while (!list_empty(&pm->list)) { 5998 struct pending_dir_move *pm2; 5999 6000 pm2 = list_first_entry(&pm->list, 6001 struct pending_dir_move, list); 6002 free_pending_move(sctx, pm2); 6003 } 6004 free_pending_move(sctx, pm); 6005 } 6006 6007 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 6008 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 6009 struct rb_node *n; 6010 struct waiting_dir_move *dm; 6011 6012 n = rb_first(&sctx->waiting_dir_moves); 6013 dm = rb_entry(n, struct waiting_dir_move, node); 6014 rb_erase(&dm->node, &sctx->waiting_dir_moves); 6015 kfree(dm); 6016 } 6017 6018 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 6019 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 6020 struct rb_node *n; 6021 struct orphan_dir_info *odi; 6022 6023 n = rb_first(&sctx->orphan_dirs); 6024 odi = rb_entry(n, struct orphan_dir_info, node); 6025 free_orphan_dir_info(sctx, odi); 6026 } 6027 6028 if (sort_clone_roots) { 6029 for (i = 0; i < sctx->clone_roots_cnt; i++) 6030 btrfs_root_dec_send_in_progress( 6031 sctx->clone_roots[i].root); 6032 } else { 6033 for (i = 0; sctx && i < clone_sources_to_rollback; i++) 6034 btrfs_root_dec_send_in_progress( 6035 sctx->clone_roots[i].root); 6036 6037 btrfs_root_dec_send_in_progress(send_root); 6038 } 6039 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) 6040 btrfs_root_dec_send_in_progress(sctx->parent_root); 6041 6042 kfree(arg); 6043 vfree(clone_sources_tmp); 6044 6045 if (sctx) { 6046 if (sctx->send_filp) 6047 fput(sctx->send_filp); 6048 6049 vfree(sctx->clone_roots); 6050 vfree(sctx->send_buf); 6051 vfree(sctx->read_buf); 6052 6053 name_cache_free(sctx); 6054 6055 kfree(sctx); 6056 } 6057 6058 return ret; 6059 } 6060