xref: /openbmc/linux/fs/btrfs/send.c (revision c819e2cf)
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 
38 static int g_verbose = 0;
39 
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
41 
42 /*
43  * A fs_path is a helper to dynamically build path names with unknown size.
44  * It reallocates the internal buffer on demand.
45  * It allows fast adding of path elements on the right side (normal path) and
46  * fast adding to the left side (reversed path). A reversed path can also be
47  * unreversed if needed.
48  */
49 struct fs_path {
50 	union {
51 		struct {
52 			char *start;
53 			char *end;
54 
55 			char *buf;
56 			unsigned short buf_len:15;
57 			unsigned short reversed:1;
58 			char inline_buf[];
59 		};
60 		/*
61 		 * Average path length does not exceed 200 bytes, we'll have
62 		 * better packing in the slab and higher chance to satisfy
63 		 * a allocation later during send.
64 		 */
65 		char pad[256];
66 	};
67 };
68 #define FS_PATH_INLINE_SIZE \
69 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
70 
71 
72 /* reused for each extent */
73 struct clone_root {
74 	struct btrfs_root *root;
75 	u64 ino;
76 	u64 offset;
77 
78 	u64 found_refs;
79 };
80 
81 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
82 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
83 
84 struct send_ctx {
85 	struct file *send_filp;
86 	loff_t send_off;
87 	char *send_buf;
88 	u32 send_size;
89 	u32 send_max_size;
90 	u64 total_send_size;
91 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
92 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
93 
94 	struct btrfs_root *send_root;
95 	struct btrfs_root *parent_root;
96 	struct clone_root *clone_roots;
97 	int clone_roots_cnt;
98 
99 	/* current state of the compare_tree call */
100 	struct btrfs_path *left_path;
101 	struct btrfs_path *right_path;
102 	struct btrfs_key *cmp_key;
103 
104 	/*
105 	 * infos of the currently processed inode. In case of deleted inodes,
106 	 * these are the values from the deleted inode.
107 	 */
108 	u64 cur_ino;
109 	u64 cur_inode_gen;
110 	int cur_inode_new;
111 	int cur_inode_new_gen;
112 	int cur_inode_deleted;
113 	u64 cur_inode_size;
114 	u64 cur_inode_mode;
115 	u64 cur_inode_rdev;
116 	u64 cur_inode_last_extent;
117 
118 	u64 send_progress;
119 
120 	struct list_head new_refs;
121 	struct list_head deleted_refs;
122 
123 	struct radix_tree_root name_cache;
124 	struct list_head name_cache_list;
125 	int name_cache_size;
126 
127 	struct file_ra_state ra;
128 
129 	char *read_buf;
130 
131 	/*
132 	 * We process inodes by their increasing order, so if before an
133 	 * incremental send we reverse the parent/child relationship of
134 	 * directories such that a directory with a lower inode number was
135 	 * the parent of a directory with a higher inode number, and the one
136 	 * becoming the new parent got renamed too, we can't rename/move the
137 	 * directory with lower inode number when we finish processing it - we
138 	 * must process the directory with higher inode number first, then
139 	 * rename/move it and then rename/move the directory with lower inode
140 	 * number. Example follows.
141 	 *
142 	 * Tree state when the first send was performed:
143 	 *
144 	 * .
145 	 * |-- a                   (ino 257)
146 	 *     |-- b               (ino 258)
147 	 *         |
148 	 *         |
149 	 *         |-- c           (ino 259)
150 	 *         |   |-- d       (ino 260)
151 	 *         |
152 	 *         |-- c2          (ino 261)
153 	 *
154 	 * Tree state when the second (incremental) send is performed:
155 	 *
156 	 * .
157 	 * |-- a                   (ino 257)
158 	 *     |-- b               (ino 258)
159 	 *         |-- c2          (ino 261)
160 	 *             |-- d2      (ino 260)
161 	 *                 |-- cc  (ino 259)
162 	 *
163 	 * The sequence of steps that lead to the second state was:
164 	 *
165 	 * mv /a/b/c/d /a/b/c2/d2
166 	 * mv /a/b/c /a/b/c2/d2/cc
167 	 *
168 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
169 	 * before we move "d", which has higher inode number.
170 	 *
171 	 * So we just memorize which move/rename operations must be performed
172 	 * later when their respective parent is processed and moved/renamed.
173 	 */
174 
175 	/* Indexed by parent directory inode number. */
176 	struct rb_root pending_dir_moves;
177 
178 	/*
179 	 * Reverse index, indexed by the inode number of a directory that
180 	 * is waiting for the move/rename of its immediate parent before its
181 	 * own move/rename can be performed.
182 	 */
183 	struct rb_root waiting_dir_moves;
184 
185 	/*
186 	 * A directory that is going to be rm'ed might have a child directory
187 	 * which is in the pending directory moves index above. In this case,
188 	 * the directory can only be removed after the move/rename of its child
189 	 * is performed. Example:
190 	 *
191 	 * Parent snapshot:
192 	 *
193 	 * .                        (ino 256)
194 	 * |-- a/                   (ino 257)
195 	 *     |-- b/               (ino 258)
196 	 *         |-- c/           (ino 259)
197 	 *         |   |-- x/       (ino 260)
198 	 *         |
199 	 *         |-- y/           (ino 261)
200 	 *
201 	 * Send snapshot:
202 	 *
203 	 * .                        (ino 256)
204 	 * |-- a/                   (ino 257)
205 	 *     |-- b/               (ino 258)
206 	 *         |-- YY/          (ino 261)
207 	 *              |-- x/      (ino 260)
208 	 *
209 	 * Sequence of steps that lead to the send snapshot:
210 	 * rm -f /a/b/c/foo.txt
211 	 * mv /a/b/y /a/b/YY
212 	 * mv /a/b/c/x /a/b/YY
213 	 * rmdir /a/b/c
214 	 *
215 	 * When the child is processed, its move/rename is delayed until its
216 	 * parent is processed (as explained above), but all other operations
217 	 * like update utimes, chown, chgrp, etc, are performed and the paths
218 	 * that it uses for those operations must use the orphanized name of
219 	 * its parent (the directory we're going to rm later), so we need to
220 	 * memorize that name.
221 	 *
222 	 * Indexed by the inode number of the directory to be deleted.
223 	 */
224 	struct rb_root orphan_dirs;
225 };
226 
227 struct pending_dir_move {
228 	struct rb_node node;
229 	struct list_head list;
230 	u64 parent_ino;
231 	u64 ino;
232 	u64 gen;
233 	struct list_head update_refs;
234 };
235 
236 struct waiting_dir_move {
237 	struct rb_node node;
238 	u64 ino;
239 	/*
240 	 * There might be some directory that could not be removed because it
241 	 * was waiting for this directory inode to be moved first. Therefore
242 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
243 	 */
244 	u64 rmdir_ino;
245 };
246 
247 struct orphan_dir_info {
248 	struct rb_node node;
249 	u64 ino;
250 	u64 gen;
251 };
252 
253 struct name_cache_entry {
254 	struct list_head list;
255 	/*
256 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
257 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
258 	 * more then one inum would fall into the same entry, we use radix_list
259 	 * to store the additional entries. radix_list is also used to store
260 	 * entries where two entries have the same inum but different
261 	 * generations.
262 	 */
263 	struct list_head radix_list;
264 	u64 ino;
265 	u64 gen;
266 	u64 parent_ino;
267 	u64 parent_gen;
268 	int ret;
269 	int need_later_update;
270 	int name_len;
271 	char name[];
272 };
273 
274 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
275 
276 static struct waiting_dir_move *
277 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
278 
279 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
280 
281 static int need_send_hole(struct send_ctx *sctx)
282 {
283 	return (sctx->parent_root && !sctx->cur_inode_new &&
284 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
285 		S_ISREG(sctx->cur_inode_mode));
286 }
287 
288 static void fs_path_reset(struct fs_path *p)
289 {
290 	if (p->reversed) {
291 		p->start = p->buf + p->buf_len - 1;
292 		p->end = p->start;
293 		*p->start = 0;
294 	} else {
295 		p->start = p->buf;
296 		p->end = p->start;
297 		*p->start = 0;
298 	}
299 }
300 
301 static struct fs_path *fs_path_alloc(void)
302 {
303 	struct fs_path *p;
304 
305 	p = kmalloc(sizeof(*p), GFP_NOFS);
306 	if (!p)
307 		return NULL;
308 	p->reversed = 0;
309 	p->buf = p->inline_buf;
310 	p->buf_len = FS_PATH_INLINE_SIZE;
311 	fs_path_reset(p);
312 	return p;
313 }
314 
315 static struct fs_path *fs_path_alloc_reversed(void)
316 {
317 	struct fs_path *p;
318 
319 	p = fs_path_alloc();
320 	if (!p)
321 		return NULL;
322 	p->reversed = 1;
323 	fs_path_reset(p);
324 	return p;
325 }
326 
327 static void fs_path_free(struct fs_path *p)
328 {
329 	if (!p)
330 		return;
331 	if (p->buf != p->inline_buf)
332 		kfree(p->buf);
333 	kfree(p);
334 }
335 
336 static int fs_path_len(struct fs_path *p)
337 {
338 	return p->end - p->start;
339 }
340 
341 static int fs_path_ensure_buf(struct fs_path *p, int len)
342 {
343 	char *tmp_buf;
344 	int path_len;
345 	int old_buf_len;
346 
347 	len++;
348 
349 	if (p->buf_len >= len)
350 		return 0;
351 
352 	if (len > PATH_MAX) {
353 		WARN_ON(1);
354 		return -ENOMEM;
355 	}
356 
357 	path_len = p->end - p->start;
358 	old_buf_len = p->buf_len;
359 
360 	/*
361 	 * First time the inline_buf does not suffice
362 	 */
363 	if (p->buf == p->inline_buf) {
364 		tmp_buf = kmalloc(len, GFP_NOFS);
365 		if (tmp_buf)
366 			memcpy(tmp_buf, p->buf, old_buf_len);
367 	} else {
368 		tmp_buf = krealloc(p->buf, len, GFP_NOFS);
369 	}
370 	if (!tmp_buf)
371 		return -ENOMEM;
372 	p->buf = tmp_buf;
373 	/*
374 	 * The real size of the buffer is bigger, this will let the fast path
375 	 * happen most of the time
376 	 */
377 	p->buf_len = ksize(p->buf);
378 
379 	if (p->reversed) {
380 		tmp_buf = p->buf + old_buf_len - path_len - 1;
381 		p->end = p->buf + p->buf_len - 1;
382 		p->start = p->end - path_len;
383 		memmove(p->start, tmp_buf, path_len + 1);
384 	} else {
385 		p->start = p->buf;
386 		p->end = p->start + path_len;
387 	}
388 	return 0;
389 }
390 
391 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
392 				   char **prepared)
393 {
394 	int ret;
395 	int new_len;
396 
397 	new_len = p->end - p->start + name_len;
398 	if (p->start != p->end)
399 		new_len++;
400 	ret = fs_path_ensure_buf(p, new_len);
401 	if (ret < 0)
402 		goto out;
403 
404 	if (p->reversed) {
405 		if (p->start != p->end)
406 			*--p->start = '/';
407 		p->start -= name_len;
408 		*prepared = p->start;
409 	} else {
410 		if (p->start != p->end)
411 			*p->end++ = '/';
412 		*prepared = p->end;
413 		p->end += name_len;
414 		*p->end = 0;
415 	}
416 
417 out:
418 	return ret;
419 }
420 
421 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
422 {
423 	int ret;
424 	char *prepared;
425 
426 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
427 	if (ret < 0)
428 		goto out;
429 	memcpy(prepared, name, name_len);
430 
431 out:
432 	return ret;
433 }
434 
435 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
436 {
437 	int ret;
438 	char *prepared;
439 
440 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
441 	if (ret < 0)
442 		goto out;
443 	memcpy(prepared, p2->start, p2->end - p2->start);
444 
445 out:
446 	return ret;
447 }
448 
449 static int fs_path_add_from_extent_buffer(struct fs_path *p,
450 					  struct extent_buffer *eb,
451 					  unsigned long off, int len)
452 {
453 	int ret;
454 	char *prepared;
455 
456 	ret = fs_path_prepare_for_add(p, len, &prepared);
457 	if (ret < 0)
458 		goto out;
459 
460 	read_extent_buffer(eb, prepared, off, len);
461 
462 out:
463 	return ret;
464 }
465 
466 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
467 {
468 	int ret;
469 
470 	p->reversed = from->reversed;
471 	fs_path_reset(p);
472 
473 	ret = fs_path_add_path(p, from);
474 
475 	return ret;
476 }
477 
478 
479 static void fs_path_unreverse(struct fs_path *p)
480 {
481 	char *tmp;
482 	int len;
483 
484 	if (!p->reversed)
485 		return;
486 
487 	tmp = p->start;
488 	len = p->end - p->start;
489 	p->start = p->buf;
490 	p->end = p->start + len;
491 	memmove(p->start, tmp, len + 1);
492 	p->reversed = 0;
493 }
494 
495 static struct btrfs_path *alloc_path_for_send(void)
496 {
497 	struct btrfs_path *path;
498 
499 	path = btrfs_alloc_path();
500 	if (!path)
501 		return NULL;
502 	path->search_commit_root = 1;
503 	path->skip_locking = 1;
504 	path->need_commit_sem = 1;
505 	return path;
506 }
507 
508 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
509 {
510 	int ret;
511 	mm_segment_t old_fs;
512 	u32 pos = 0;
513 
514 	old_fs = get_fs();
515 	set_fs(KERNEL_DS);
516 
517 	while (pos < len) {
518 		ret = vfs_write(filp, (__force const char __user *)buf + pos,
519 				len - pos, off);
520 		/* TODO handle that correctly */
521 		/*if (ret == -ERESTARTSYS) {
522 			continue;
523 		}*/
524 		if (ret < 0)
525 			goto out;
526 		if (ret == 0) {
527 			ret = -EIO;
528 			goto out;
529 		}
530 		pos += ret;
531 	}
532 
533 	ret = 0;
534 
535 out:
536 	set_fs(old_fs);
537 	return ret;
538 }
539 
540 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
541 {
542 	struct btrfs_tlv_header *hdr;
543 	int total_len = sizeof(*hdr) + len;
544 	int left = sctx->send_max_size - sctx->send_size;
545 
546 	if (unlikely(left < total_len))
547 		return -EOVERFLOW;
548 
549 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
550 	hdr->tlv_type = cpu_to_le16(attr);
551 	hdr->tlv_len = cpu_to_le16(len);
552 	memcpy(hdr + 1, data, len);
553 	sctx->send_size += total_len;
554 
555 	return 0;
556 }
557 
558 #define TLV_PUT_DEFINE_INT(bits) \
559 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
560 			u##bits attr, u##bits value)			\
561 	{								\
562 		__le##bits __tmp = cpu_to_le##bits(value);		\
563 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
564 	}
565 
566 TLV_PUT_DEFINE_INT(64)
567 
568 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
569 			  const char *str, int len)
570 {
571 	if (len == -1)
572 		len = strlen(str);
573 	return tlv_put(sctx, attr, str, len);
574 }
575 
576 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
577 			const u8 *uuid)
578 {
579 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
580 }
581 
582 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
583 				  struct extent_buffer *eb,
584 				  struct btrfs_timespec *ts)
585 {
586 	struct btrfs_timespec bts;
587 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
588 	return tlv_put(sctx, attr, &bts, sizeof(bts));
589 }
590 
591 
592 #define TLV_PUT(sctx, attrtype, attrlen, data) \
593 	do { \
594 		ret = tlv_put(sctx, attrtype, attrlen, data); \
595 		if (ret < 0) \
596 			goto tlv_put_failure; \
597 	} while (0)
598 
599 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
600 	do { \
601 		ret = tlv_put_u##bits(sctx, attrtype, value); \
602 		if (ret < 0) \
603 			goto tlv_put_failure; \
604 	} while (0)
605 
606 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
607 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
608 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
609 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
610 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
611 	do { \
612 		ret = tlv_put_string(sctx, attrtype, str, len); \
613 		if (ret < 0) \
614 			goto tlv_put_failure; \
615 	} while (0)
616 #define TLV_PUT_PATH(sctx, attrtype, p) \
617 	do { \
618 		ret = tlv_put_string(sctx, attrtype, p->start, \
619 			p->end - p->start); \
620 		if (ret < 0) \
621 			goto tlv_put_failure; \
622 	} while(0)
623 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
624 	do { \
625 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
626 		if (ret < 0) \
627 			goto tlv_put_failure; \
628 	} while (0)
629 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
630 	do { \
631 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
632 		if (ret < 0) \
633 			goto tlv_put_failure; \
634 	} while (0)
635 
636 static int send_header(struct send_ctx *sctx)
637 {
638 	struct btrfs_stream_header hdr;
639 
640 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
641 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
642 
643 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
644 					&sctx->send_off);
645 }
646 
647 /*
648  * For each command/item we want to send to userspace, we call this function.
649  */
650 static int begin_cmd(struct send_ctx *sctx, int cmd)
651 {
652 	struct btrfs_cmd_header *hdr;
653 
654 	if (WARN_ON(!sctx->send_buf))
655 		return -EINVAL;
656 
657 	BUG_ON(sctx->send_size);
658 
659 	sctx->send_size += sizeof(*hdr);
660 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
661 	hdr->cmd = cpu_to_le16(cmd);
662 
663 	return 0;
664 }
665 
666 static int send_cmd(struct send_ctx *sctx)
667 {
668 	int ret;
669 	struct btrfs_cmd_header *hdr;
670 	u32 crc;
671 
672 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
673 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
674 	hdr->crc = 0;
675 
676 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
677 	hdr->crc = cpu_to_le32(crc);
678 
679 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
680 					&sctx->send_off);
681 
682 	sctx->total_send_size += sctx->send_size;
683 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
684 	sctx->send_size = 0;
685 
686 	return ret;
687 }
688 
689 /*
690  * Sends a move instruction to user space
691  */
692 static int send_rename(struct send_ctx *sctx,
693 		     struct fs_path *from, struct fs_path *to)
694 {
695 	int ret;
696 
697 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
698 
699 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
700 	if (ret < 0)
701 		goto out;
702 
703 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
704 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
705 
706 	ret = send_cmd(sctx);
707 
708 tlv_put_failure:
709 out:
710 	return ret;
711 }
712 
713 /*
714  * Sends a link instruction to user space
715  */
716 static int send_link(struct send_ctx *sctx,
717 		     struct fs_path *path, struct fs_path *lnk)
718 {
719 	int ret;
720 
721 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
722 
723 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
724 	if (ret < 0)
725 		goto out;
726 
727 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
728 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
729 
730 	ret = send_cmd(sctx);
731 
732 tlv_put_failure:
733 out:
734 	return ret;
735 }
736 
737 /*
738  * Sends an unlink instruction to user space
739  */
740 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
741 {
742 	int ret;
743 
744 verbose_printk("btrfs: send_unlink %s\n", path->start);
745 
746 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
747 	if (ret < 0)
748 		goto out;
749 
750 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
751 
752 	ret = send_cmd(sctx);
753 
754 tlv_put_failure:
755 out:
756 	return ret;
757 }
758 
759 /*
760  * Sends a rmdir instruction to user space
761  */
762 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
763 {
764 	int ret;
765 
766 verbose_printk("btrfs: send_rmdir %s\n", path->start);
767 
768 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
769 	if (ret < 0)
770 		goto out;
771 
772 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
773 
774 	ret = send_cmd(sctx);
775 
776 tlv_put_failure:
777 out:
778 	return ret;
779 }
780 
781 /*
782  * Helper function to retrieve some fields from an inode item.
783  */
784 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
785 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
786 			  u64 *gid, u64 *rdev)
787 {
788 	int ret;
789 	struct btrfs_inode_item *ii;
790 	struct btrfs_key key;
791 
792 	key.objectid = ino;
793 	key.type = BTRFS_INODE_ITEM_KEY;
794 	key.offset = 0;
795 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
796 	if (ret) {
797 		if (ret > 0)
798 			ret = -ENOENT;
799 		return ret;
800 	}
801 
802 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
803 			struct btrfs_inode_item);
804 	if (size)
805 		*size = btrfs_inode_size(path->nodes[0], ii);
806 	if (gen)
807 		*gen = btrfs_inode_generation(path->nodes[0], ii);
808 	if (mode)
809 		*mode = btrfs_inode_mode(path->nodes[0], ii);
810 	if (uid)
811 		*uid = btrfs_inode_uid(path->nodes[0], ii);
812 	if (gid)
813 		*gid = btrfs_inode_gid(path->nodes[0], ii);
814 	if (rdev)
815 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
816 
817 	return ret;
818 }
819 
820 static int get_inode_info(struct btrfs_root *root,
821 			  u64 ino, u64 *size, u64 *gen,
822 			  u64 *mode, u64 *uid, u64 *gid,
823 			  u64 *rdev)
824 {
825 	struct btrfs_path *path;
826 	int ret;
827 
828 	path = alloc_path_for_send();
829 	if (!path)
830 		return -ENOMEM;
831 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
832 			       rdev);
833 	btrfs_free_path(path);
834 	return ret;
835 }
836 
837 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
838 				   struct fs_path *p,
839 				   void *ctx);
840 
841 /*
842  * Helper function to iterate the entries in ONE btrfs_inode_ref or
843  * btrfs_inode_extref.
844  * The iterate callback may return a non zero value to stop iteration. This can
845  * be a negative value for error codes or 1 to simply stop it.
846  *
847  * path must point to the INODE_REF or INODE_EXTREF when called.
848  */
849 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
850 			     struct btrfs_key *found_key, int resolve,
851 			     iterate_inode_ref_t iterate, void *ctx)
852 {
853 	struct extent_buffer *eb = path->nodes[0];
854 	struct btrfs_item *item;
855 	struct btrfs_inode_ref *iref;
856 	struct btrfs_inode_extref *extref;
857 	struct btrfs_path *tmp_path;
858 	struct fs_path *p;
859 	u32 cur = 0;
860 	u32 total;
861 	int slot = path->slots[0];
862 	u32 name_len;
863 	char *start;
864 	int ret = 0;
865 	int num = 0;
866 	int index;
867 	u64 dir;
868 	unsigned long name_off;
869 	unsigned long elem_size;
870 	unsigned long ptr;
871 
872 	p = fs_path_alloc_reversed();
873 	if (!p)
874 		return -ENOMEM;
875 
876 	tmp_path = alloc_path_for_send();
877 	if (!tmp_path) {
878 		fs_path_free(p);
879 		return -ENOMEM;
880 	}
881 
882 
883 	if (found_key->type == BTRFS_INODE_REF_KEY) {
884 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
885 						    struct btrfs_inode_ref);
886 		item = btrfs_item_nr(slot);
887 		total = btrfs_item_size(eb, item);
888 		elem_size = sizeof(*iref);
889 	} else {
890 		ptr = btrfs_item_ptr_offset(eb, slot);
891 		total = btrfs_item_size_nr(eb, slot);
892 		elem_size = sizeof(*extref);
893 	}
894 
895 	while (cur < total) {
896 		fs_path_reset(p);
897 
898 		if (found_key->type == BTRFS_INODE_REF_KEY) {
899 			iref = (struct btrfs_inode_ref *)(ptr + cur);
900 			name_len = btrfs_inode_ref_name_len(eb, iref);
901 			name_off = (unsigned long)(iref + 1);
902 			index = btrfs_inode_ref_index(eb, iref);
903 			dir = found_key->offset;
904 		} else {
905 			extref = (struct btrfs_inode_extref *)(ptr + cur);
906 			name_len = btrfs_inode_extref_name_len(eb, extref);
907 			name_off = (unsigned long)&extref->name;
908 			index = btrfs_inode_extref_index(eb, extref);
909 			dir = btrfs_inode_extref_parent(eb, extref);
910 		}
911 
912 		if (resolve) {
913 			start = btrfs_ref_to_path(root, tmp_path, name_len,
914 						  name_off, eb, dir,
915 						  p->buf, p->buf_len);
916 			if (IS_ERR(start)) {
917 				ret = PTR_ERR(start);
918 				goto out;
919 			}
920 			if (start < p->buf) {
921 				/* overflow , try again with larger buffer */
922 				ret = fs_path_ensure_buf(p,
923 						p->buf_len + p->buf - start);
924 				if (ret < 0)
925 					goto out;
926 				start = btrfs_ref_to_path(root, tmp_path,
927 							  name_len, name_off,
928 							  eb, dir,
929 							  p->buf, p->buf_len);
930 				if (IS_ERR(start)) {
931 					ret = PTR_ERR(start);
932 					goto out;
933 				}
934 				BUG_ON(start < p->buf);
935 			}
936 			p->start = start;
937 		} else {
938 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
939 							     name_len);
940 			if (ret < 0)
941 				goto out;
942 		}
943 
944 		cur += elem_size + name_len;
945 		ret = iterate(num, dir, index, p, ctx);
946 		if (ret)
947 			goto out;
948 		num++;
949 	}
950 
951 out:
952 	btrfs_free_path(tmp_path);
953 	fs_path_free(p);
954 	return ret;
955 }
956 
957 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
958 				  const char *name, int name_len,
959 				  const char *data, int data_len,
960 				  u8 type, void *ctx);
961 
962 /*
963  * Helper function to iterate the entries in ONE btrfs_dir_item.
964  * The iterate callback may return a non zero value to stop iteration. This can
965  * be a negative value for error codes or 1 to simply stop it.
966  *
967  * path must point to the dir item when called.
968  */
969 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
970 			    struct btrfs_key *found_key,
971 			    iterate_dir_item_t iterate, void *ctx)
972 {
973 	int ret = 0;
974 	struct extent_buffer *eb;
975 	struct btrfs_item *item;
976 	struct btrfs_dir_item *di;
977 	struct btrfs_key di_key;
978 	char *buf = NULL;
979 	int buf_len;
980 	u32 name_len;
981 	u32 data_len;
982 	u32 cur;
983 	u32 len;
984 	u32 total;
985 	int slot;
986 	int num;
987 	u8 type;
988 
989 	/*
990 	 * Start with a small buffer (1 page). If later we end up needing more
991 	 * space, which can happen for xattrs on a fs with a leaf size greater
992 	 * then the page size, attempt to increase the buffer. Typically xattr
993 	 * values are small.
994 	 */
995 	buf_len = PATH_MAX;
996 	buf = kmalloc(buf_len, GFP_NOFS);
997 	if (!buf) {
998 		ret = -ENOMEM;
999 		goto out;
1000 	}
1001 
1002 	eb = path->nodes[0];
1003 	slot = path->slots[0];
1004 	item = btrfs_item_nr(slot);
1005 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1006 	cur = 0;
1007 	len = 0;
1008 	total = btrfs_item_size(eb, item);
1009 
1010 	num = 0;
1011 	while (cur < total) {
1012 		name_len = btrfs_dir_name_len(eb, di);
1013 		data_len = btrfs_dir_data_len(eb, di);
1014 		type = btrfs_dir_type(eb, di);
1015 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1016 
1017 		if (type == BTRFS_FT_XATTR) {
1018 			if (name_len > XATTR_NAME_MAX) {
1019 				ret = -ENAMETOOLONG;
1020 				goto out;
1021 			}
1022 			if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
1023 				ret = -E2BIG;
1024 				goto out;
1025 			}
1026 		} else {
1027 			/*
1028 			 * Path too long
1029 			 */
1030 			if (name_len + data_len > PATH_MAX) {
1031 				ret = -ENAMETOOLONG;
1032 				goto out;
1033 			}
1034 		}
1035 
1036 		if (name_len + data_len > buf_len) {
1037 			buf_len = name_len + data_len;
1038 			if (is_vmalloc_addr(buf)) {
1039 				vfree(buf);
1040 				buf = NULL;
1041 			} else {
1042 				char *tmp = krealloc(buf, buf_len,
1043 						     GFP_NOFS | __GFP_NOWARN);
1044 
1045 				if (!tmp)
1046 					kfree(buf);
1047 				buf = tmp;
1048 			}
1049 			if (!buf) {
1050 				buf = vmalloc(buf_len);
1051 				if (!buf) {
1052 					ret = -ENOMEM;
1053 					goto out;
1054 				}
1055 			}
1056 		}
1057 
1058 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1059 				name_len + data_len);
1060 
1061 		len = sizeof(*di) + name_len + data_len;
1062 		di = (struct btrfs_dir_item *)((char *)di + len);
1063 		cur += len;
1064 
1065 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1066 				data_len, type, ctx);
1067 		if (ret < 0)
1068 			goto out;
1069 		if (ret) {
1070 			ret = 0;
1071 			goto out;
1072 		}
1073 
1074 		num++;
1075 	}
1076 
1077 out:
1078 	kvfree(buf);
1079 	return ret;
1080 }
1081 
1082 static int __copy_first_ref(int num, u64 dir, int index,
1083 			    struct fs_path *p, void *ctx)
1084 {
1085 	int ret;
1086 	struct fs_path *pt = ctx;
1087 
1088 	ret = fs_path_copy(pt, p);
1089 	if (ret < 0)
1090 		return ret;
1091 
1092 	/* we want the first only */
1093 	return 1;
1094 }
1095 
1096 /*
1097  * Retrieve the first path of an inode. If an inode has more then one
1098  * ref/hardlink, this is ignored.
1099  */
1100 static int get_inode_path(struct btrfs_root *root,
1101 			  u64 ino, struct fs_path *path)
1102 {
1103 	int ret;
1104 	struct btrfs_key key, found_key;
1105 	struct btrfs_path *p;
1106 
1107 	p = alloc_path_for_send();
1108 	if (!p)
1109 		return -ENOMEM;
1110 
1111 	fs_path_reset(path);
1112 
1113 	key.objectid = ino;
1114 	key.type = BTRFS_INODE_REF_KEY;
1115 	key.offset = 0;
1116 
1117 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1118 	if (ret < 0)
1119 		goto out;
1120 	if (ret) {
1121 		ret = 1;
1122 		goto out;
1123 	}
1124 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1125 	if (found_key.objectid != ino ||
1126 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1127 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1128 		ret = -ENOENT;
1129 		goto out;
1130 	}
1131 
1132 	ret = iterate_inode_ref(root, p, &found_key, 1,
1133 				__copy_first_ref, path);
1134 	if (ret < 0)
1135 		goto out;
1136 	ret = 0;
1137 
1138 out:
1139 	btrfs_free_path(p);
1140 	return ret;
1141 }
1142 
1143 struct backref_ctx {
1144 	struct send_ctx *sctx;
1145 
1146 	struct btrfs_path *path;
1147 	/* number of total found references */
1148 	u64 found;
1149 
1150 	/*
1151 	 * used for clones found in send_root. clones found behind cur_objectid
1152 	 * and cur_offset are not considered as allowed clones.
1153 	 */
1154 	u64 cur_objectid;
1155 	u64 cur_offset;
1156 
1157 	/* may be truncated in case it's the last extent in a file */
1158 	u64 extent_len;
1159 
1160 	/* Just to check for bugs in backref resolving */
1161 	int found_itself;
1162 };
1163 
1164 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1165 {
1166 	u64 root = (u64)(uintptr_t)key;
1167 	struct clone_root *cr = (struct clone_root *)elt;
1168 
1169 	if (root < cr->root->objectid)
1170 		return -1;
1171 	if (root > cr->root->objectid)
1172 		return 1;
1173 	return 0;
1174 }
1175 
1176 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1177 {
1178 	struct clone_root *cr1 = (struct clone_root *)e1;
1179 	struct clone_root *cr2 = (struct clone_root *)e2;
1180 
1181 	if (cr1->root->objectid < cr2->root->objectid)
1182 		return -1;
1183 	if (cr1->root->objectid > cr2->root->objectid)
1184 		return 1;
1185 	return 0;
1186 }
1187 
1188 /*
1189  * Called for every backref that is found for the current extent.
1190  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1191  */
1192 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1193 {
1194 	struct backref_ctx *bctx = ctx_;
1195 	struct clone_root *found;
1196 	int ret;
1197 	u64 i_size;
1198 
1199 	/* First check if the root is in the list of accepted clone sources */
1200 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1201 			bctx->sctx->clone_roots_cnt,
1202 			sizeof(struct clone_root),
1203 			__clone_root_cmp_bsearch);
1204 	if (!found)
1205 		return 0;
1206 
1207 	if (found->root == bctx->sctx->send_root &&
1208 	    ino == bctx->cur_objectid &&
1209 	    offset == bctx->cur_offset) {
1210 		bctx->found_itself = 1;
1211 	}
1212 
1213 	/*
1214 	 * There are inodes that have extents that lie behind its i_size. Don't
1215 	 * accept clones from these extents.
1216 	 */
1217 	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1218 			       NULL, NULL, NULL);
1219 	btrfs_release_path(bctx->path);
1220 	if (ret < 0)
1221 		return ret;
1222 
1223 	if (offset + bctx->extent_len > i_size)
1224 		return 0;
1225 
1226 	/*
1227 	 * Make sure we don't consider clones from send_root that are
1228 	 * behind the current inode/offset.
1229 	 */
1230 	if (found->root == bctx->sctx->send_root) {
1231 		/*
1232 		 * TODO for the moment we don't accept clones from the inode
1233 		 * that is currently send. We may change this when
1234 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1235 		 * file.
1236 		 */
1237 		if (ino >= bctx->cur_objectid)
1238 			return 0;
1239 #if 0
1240 		if (ino > bctx->cur_objectid)
1241 			return 0;
1242 		if (offset + bctx->extent_len > bctx->cur_offset)
1243 			return 0;
1244 #endif
1245 	}
1246 
1247 	bctx->found++;
1248 	found->found_refs++;
1249 	if (ino < found->ino) {
1250 		found->ino = ino;
1251 		found->offset = offset;
1252 	} else if (found->ino == ino) {
1253 		/*
1254 		 * same extent found more then once in the same file.
1255 		 */
1256 		if (found->offset > offset + bctx->extent_len)
1257 			found->offset = offset;
1258 	}
1259 
1260 	return 0;
1261 }
1262 
1263 /*
1264  * Given an inode, offset and extent item, it finds a good clone for a clone
1265  * instruction. Returns -ENOENT when none could be found. The function makes
1266  * sure that the returned clone is usable at the point where sending is at the
1267  * moment. This means, that no clones are accepted which lie behind the current
1268  * inode+offset.
1269  *
1270  * path must point to the extent item when called.
1271  */
1272 static int find_extent_clone(struct send_ctx *sctx,
1273 			     struct btrfs_path *path,
1274 			     u64 ino, u64 data_offset,
1275 			     u64 ino_size,
1276 			     struct clone_root **found)
1277 {
1278 	int ret;
1279 	int extent_type;
1280 	u64 logical;
1281 	u64 disk_byte;
1282 	u64 num_bytes;
1283 	u64 extent_item_pos;
1284 	u64 flags = 0;
1285 	struct btrfs_file_extent_item *fi;
1286 	struct extent_buffer *eb = path->nodes[0];
1287 	struct backref_ctx *backref_ctx = NULL;
1288 	struct clone_root *cur_clone_root;
1289 	struct btrfs_key found_key;
1290 	struct btrfs_path *tmp_path;
1291 	int compressed;
1292 	u32 i;
1293 
1294 	tmp_path = alloc_path_for_send();
1295 	if (!tmp_path)
1296 		return -ENOMEM;
1297 
1298 	/* We only use this path under the commit sem */
1299 	tmp_path->need_commit_sem = 0;
1300 
1301 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1302 	if (!backref_ctx) {
1303 		ret = -ENOMEM;
1304 		goto out;
1305 	}
1306 
1307 	backref_ctx->path = tmp_path;
1308 
1309 	if (data_offset >= ino_size) {
1310 		/*
1311 		 * There may be extents that lie behind the file's size.
1312 		 * I at least had this in combination with snapshotting while
1313 		 * writing large files.
1314 		 */
1315 		ret = 0;
1316 		goto out;
1317 	}
1318 
1319 	fi = btrfs_item_ptr(eb, path->slots[0],
1320 			struct btrfs_file_extent_item);
1321 	extent_type = btrfs_file_extent_type(eb, fi);
1322 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1323 		ret = -ENOENT;
1324 		goto out;
1325 	}
1326 	compressed = btrfs_file_extent_compression(eb, fi);
1327 
1328 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1329 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1330 	if (disk_byte == 0) {
1331 		ret = -ENOENT;
1332 		goto out;
1333 	}
1334 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1335 
1336 	down_read(&sctx->send_root->fs_info->commit_root_sem);
1337 	ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1338 				  &found_key, &flags);
1339 	up_read(&sctx->send_root->fs_info->commit_root_sem);
1340 	btrfs_release_path(tmp_path);
1341 
1342 	if (ret < 0)
1343 		goto out;
1344 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1345 		ret = -EIO;
1346 		goto out;
1347 	}
1348 
1349 	/*
1350 	 * Setup the clone roots.
1351 	 */
1352 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1353 		cur_clone_root = sctx->clone_roots + i;
1354 		cur_clone_root->ino = (u64)-1;
1355 		cur_clone_root->offset = 0;
1356 		cur_clone_root->found_refs = 0;
1357 	}
1358 
1359 	backref_ctx->sctx = sctx;
1360 	backref_ctx->found = 0;
1361 	backref_ctx->cur_objectid = ino;
1362 	backref_ctx->cur_offset = data_offset;
1363 	backref_ctx->found_itself = 0;
1364 	backref_ctx->extent_len = num_bytes;
1365 
1366 	/*
1367 	 * The last extent of a file may be too large due to page alignment.
1368 	 * We need to adjust extent_len in this case so that the checks in
1369 	 * __iterate_backrefs work.
1370 	 */
1371 	if (data_offset + num_bytes >= ino_size)
1372 		backref_ctx->extent_len = ino_size - data_offset;
1373 
1374 	/*
1375 	 * Now collect all backrefs.
1376 	 */
1377 	if (compressed == BTRFS_COMPRESS_NONE)
1378 		extent_item_pos = logical - found_key.objectid;
1379 	else
1380 		extent_item_pos = 0;
1381 	ret = iterate_extent_inodes(sctx->send_root->fs_info,
1382 					found_key.objectid, extent_item_pos, 1,
1383 					__iterate_backrefs, backref_ctx);
1384 
1385 	if (ret < 0)
1386 		goto out;
1387 
1388 	if (!backref_ctx->found_itself) {
1389 		/* found a bug in backref code? */
1390 		ret = -EIO;
1391 		btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1392 				"send_root. inode=%llu, offset=%llu, "
1393 				"disk_byte=%llu found extent=%llu",
1394 				ino, data_offset, disk_byte, found_key.objectid);
1395 		goto out;
1396 	}
1397 
1398 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1399 		"ino=%llu, "
1400 		"num_bytes=%llu, logical=%llu\n",
1401 		data_offset, ino, num_bytes, logical);
1402 
1403 	if (!backref_ctx->found)
1404 		verbose_printk("btrfs:    no clones found\n");
1405 
1406 	cur_clone_root = NULL;
1407 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1408 		if (sctx->clone_roots[i].found_refs) {
1409 			if (!cur_clone_root)
1410 				cur_clone_root = sctx->clone_roots + i;
1411 			else if (sctx->clone_roots[i].root == sctx->send_root)
1412 				/* prefer clones from send_root over others */
1413 				cur_clone_root = sctx->clone_roots + i;
1414 		}
1415 
1416 	}
1417 
1418 	if (cur_clone_root) {
1419 		if (compressed != BTRFS_COMPRESS_NONE) {
1420 			/*
1421 			 * Offsets given by iterate_extent_inodes() are relative
1422 			 * to the start of the extent, we need to add logical
1423 			 * offset from the file extent item.
1424 			 * (See why at backref.c:check_extent_in_eb())
1425 			 */
1426 			cur_clone_root->offset += btrfs_file_extent_offset(eb,
1427 									   fi);
1428 		}
1429 		*found = cur_clone_root;
1430 		ret = 0;
1431 	} else {
1432 		ret = -ENOENT;
1433 	}
1434 
1435 out:
1436 	btrfs_free_path(tmp_path);
1437 	kfree(backref_ctx);
1438 	return ret;
1439 }
1440 
1441 static int read_symlink(struct btrfs_root *root,
1442 			u64 ino,
1443 			struct fs_path *dest)
1444 {
1445 	int ret;
1446 	struct btrfs_path *path;
1447 	struct btrfs_key key;
1448 	struct btrfs_file_extent_item *ei;
1449 	u8 type;
1450 	u8 compression;
1451 	unsigned long off;
1452 	int len;
1453 
1454 	path = alloc_path_for_send();
1455 	if (!path)
1456 		return -ENOMEM;
1457 
1458 	key.objectid = ino;
1459 	key.type = BTRFS_EXTENT_DATA_KEY;
1460 	key.offset = 0;
1461 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1462 	if (ret < 0)
1463 		goto out;
1464 	BUG_ON(ret);
1465 
1466 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1467 			struct btrfs_file_extent_item);
1468 	type = btrfs_file_extent_type(path->nodes[0], ei);
1469 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1470 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1471 	BUG_ON(compression);
1472 
1473 	off = btrfs_file_extent_inline_start(ei);
1474 	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1475 
1476 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1477 
1478 out:
1479 	btrfs_free_path(path);
1480 	return ret;
1481 }
1482 
1483 /*
1484  * Helper function to generate a file name that is unique in the root of
1485  * send_root and parent_root. This is used to generate names for orphan inodes.
1486  */
1487 static int gen_unique_name(struct send_ctx *sctx,
1488 			   u64 ino, u64 gen,
1489 			   struct fs_path *dest)
1490 {
1491 	int ret = 0;
1492 	struct btrfs_path *path;
1493 	struct btrfs_dir_item *di;
1494 	char tmp[64];
1495 	int len;
1496 	u64 idx = 0;
1497 
1498 	path = alloc_path_for_send();
1499 	if (!path)
1500 		return -ENOMEM;
1501 
1502 	while (1) {
1503 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1504 				ino, gen, idx);
1505 		ASSERT(len < sizeof(tmp));
1506 
1507 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1508 				path, BTRFS_FIRST_FREE_OBJECTID,
1509 				tmp, strlen(tmp), 0);
1510 		btrfs_release_path(path);
1511 		if (IS_ERR(di)) {
1512 			ret = PTR_ERR(di);
1513 			goto out;
1514 		}
1515 		if (di) {
1516 			/* not unique, try again */
1517 			idx++;
1518 			continue;
1519 		}
1520 
1521 		if (!sctx->parent_root) {
1522 			/* unique */
1523 			ret = 0;
1524 			break;
1525 		}
1526 
1527 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1528 				path, BTRFS_FIRST_FREE_OBJECTID,
1529 				tmp, strlen(tmp), 0);
1530 		btrfs_release_path(path);
1531 		if (IS_ERR(di)) {
1532 			ret = PTR_ERR(di);
1533 			goto out;
1534 		}
1535 		if (di) {
1536 			/* not unique, try again */
1537 			idx++;
1538 			continue;
1539 		}
1540 		/* unique */
1541 		break;
1542 	}
1543 
1544 	ret = fs_path_add(dest, tmp, strlen(tmp));
1545 
1546 out:
1547 	btrfs_free_path(path);
1548 	return ret;
1549 }
1550 
1551 enum inode_state {
1552 	inode_state_no_change,
1553 	inode_state_will_create,
1554 	inode_state_did_create,
1555 	inode_state_will_delete,
1556 	inode_state_did_delete,
1557 };
1558 
1559 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1560 {
1561 	int ret;
1562 	int left_ret;
1563 	int right_ret;
1564 	u64 left_gen;
1565 	u64 right_gen;
1566 
1567 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1568 			NULL, NULL);
1569 	if (ret < 0 && ret != -ENOENT)
1570 		goto out;
1571 	left_ret = ret;
1572 
1573 	if (!sctx->parent_root) {
1574 		right_ret = -ENOENT;
1575 	} else {
1576 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1577 				NULL, NULL, NULL, NULL);
1578 		if (ret < 0 && ret != -ENOENT)
1579 			goto out;
1580 		right_ret = ret;
1581 	}
1582 
1583 	if (!left_ret && !right_ret) {
1584 		if (left_gen == gen && right_gen == gen) {
1585 			ret = inode_state_no_change;
1586 		} else if (left_gen == gen) {
1587 			if (ino < sctx->send_progress)
1588 				ret = inode_state_did_create;
1589 			else
1590 				ret = inode_state_will_create;
1591 		} else if (right_gen == gen) {
1592 			if (ino < sctx->send_progress)
1593 				ret = inode_state_did_delete;
1594 			else
1595 				ret = inode_state_will_delete;
1596 		} else  {
1597 			ret = -ENOENT;
1598 		}
1599 	} else if (!left_ret) {
1600 		if (left_gen == gen) {
1601 			if (ino < sctx->send_progress)
1602 				ret = inode_state_did_create;
1603 			else
1604 				ret = inode_state_will_create;
1605 		} else {
1606 			ret = -ENOENT;
1607 		}
1608 	} else if (!right_ret) {
1609 		if (right_gen == gen) {
1610 			if (ino < sctx->send_progress)
1611 				ret = inode_state_did_delete;
1612 			else
1613 				ret = inode_state_will_delete;
1614 		} else {
1615 			ret = -ENOENT;
1616 		}
1617 	} else {
1618 		ret = -ENOENT;
1619 	}
1620 
1621 out:
1622 	return ret;
1623 }
1624 
1625 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1626 {
1627 	int ret;
1628 
1629 	ret = get_cur_inode_state(sctx, ino, gen);
1630 	if (ret < 0)
1631 		goto out;
1632 
1633 	if (ret == inode_state_no_change ||
1634 	    ret == inode_state_did_create ||
1635 	    ret == inode_state_will_delete)
1636 		ret = 1;
1637 	else
1638 		ret = 0;
1639 
1640 out:
1641 	return ret;
1642 }
1643 
1644 /*
1645  * Helper function to lookup a dir item in a dir.
1646  */
1647 static int lookup_dir_item_inode(struct btrfs_root *root,
1648 				 u64 dir, const char *name, int name_len,
1649 				 u64 *found_inode,
1650 				 u8 *found_type)
1651 {
1652 	int ret = 0;
1653 	struct btrfs_dir_item *di;
1654 	struct btrfs_key key;
1655 	struct btrfs_path *path;
1656 
1657 	path = alloc_path_for_send();
1658 	if (!path)
1659 		return -ENOMEM;
1660 
1661 	di = btrfs_lookup_dir_item(NULL, root, path,
1662 			dir, name, name_len, 0);
1663 	if (!di) {
1664 		ret = -ENOENT;
1665 		goto out;
1666 	}
1667 	if (IS_ERR(di)) {
1668 		ret = PTR_ERR(di);
1669 		goto out;
1670 	}
1671 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1672 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1673 		ret = -ENOENT;
1674 		goto out;
1675 	}
1676 	*found_inode = key.objectid;
1677 	*found_type = btrfs_dir_type(path->nodes[0], di);
1678 
1679 out:
1680 	btrfs_free_path(path);
1681 	return ret;
1682 }
1683 
1684 /*
1685  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1686  * generation of the parent dir and the name of the dir entry.
1687  */
1688 static int get_first_ref(struct btrfs_root *root, u64 ino,
1689 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1690 {
1691 	int ret;
1692 	struct btrfs_key key;
1693 	struct btrfs_key found_key;
1694 	struct btrfs_path *path;
1695 	int len;
1696 	u64 parent_dir;
1697 
1698 	path = alloc_path_for_send();
1699 	if (!path)
1700 		return -ENOMEM;
1701 
1702 	key.objectid = ino;
1703 	key.type = BTRFS_INODE_REF_KEY;
1704 	key.offset = 0;
1705 
1706 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1707 	if (ret < 0)
1708 		goto out;
1709 	if (!ret)
1710 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1711 				path->slots[0]);
1712 	if (ret || found_key.objectid != ino ||
1713 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1714 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1715 		ret = -ENOENT;
1716 		goto out;
1717 	}
1718 
1719 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1720 		struct btrfs_inode_ref *iref;
1721 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1722 				      struct btrfs_inode_ref);
1723 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1724 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1725 						     (unsigned long)(iref + 1),
1726 						     len);
1727 		parent_dir = found_key.offset;
1728 	} else {
1729 		struct btrfs_inode_extref *extref;
1730 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1731 					struct btrfs_inode_extref);
1732 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1733 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1734 					(unsigned long)&extref->name, len);
1735 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1736 	}
1737 	if (ret < 0)
1738 		goto out;
1739 	btrfs_release_path(path);
1740 
1741 	if (dir_gen) {
1742 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1743 				     NULL, NULL, NULL);
1744 		if (ret < 0)
1745 			goto out;
1746 	}
1747 
1748 	*dir = parent_dir;
1749 
1750 out:
1751 	btrfs_free_path(path);
1752 	return ret;
1753 }
1754 
1755 static int is_first_ref(struct btrfs_root *root,
1756 			u64 ino, u64 dir,
1757 			const char *name, int name_len)
1758 {
1759 	int ret;
1760 	struct fs_path *tmp_name;
1761 	u64 tmp_dir;
1762 
1763 	tmp_name = fs_path_alloc();
1764 	if (!tmp_name)
1765 		return -ENOMEM;
1766 
1767 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1768 	if (ret < 0)
1769 		goto out;
1770 
1771 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1772 		ret = 0;
1773 		goto out;
1774 	}
1775 
1776 	ret = !memcmp(tmp_name->start, name, name_len);
1777 
1778 out:
1779 	fs_path_free(tmp_name);
1780 	return ret;
1781 }
1782 
1783 /*
1784  * Used by process_recorded_refs to determine if a new ref would overwrite an
1785  * already existing ref. In case it detects an overwrite, it returns the
1786  * inode/gen in who_ino/who_gen.
1787  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1788  * to make sure later references to the overwritten inode are possible.
1789  * Orphanizing is however only required for the first ref of an inode.
1790  * process_recorded_refs does an additional is_first_ref check to see if
1791  * orphanizing is really required.
1792  */
1793 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1794 			      const char *name, int name_len,
1795 			      u64 *who_ino, u64 *who_gen)
1796 {
1797 	int ret = 0;
1798 	u64 gen;
1799 	u64 other_inode = 0;
1800 	u8 other_type = 0;
1801 
1802 	if (!sctx->parent_root)
1803 		goto out;
1804 
1805 	ret = is_inode_existent(sctx, dir, dir_gen);
1806 	if (ret <= 0)
1807 		goto out;
1808 
1809 	/*
1810 	 * If we have a parent root we need to verify that the parent dir was
1811 	 * not delted and then re-created, if it was then we have no overwrite
1812 	 * and we can just unlink this entry.
1813 	 */
1814 	if (sctx->parent_root) {
1815 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1816 				     NULL, NULL, NULL);
1817 		if (ret < 0 && ret != -ENOENT)
1818 			goto out;
1819 		if (ret) {
1820 			ret = 0;
1821 			goto out;
1822 		}
1823 		if (gen != dir_gen)
1824 			goto out;
1825 	}
1826 
1827 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1828 			&other_inode, &other_type);
1829 	if (ret < 0 && ret != -ENOENT)
1830 		goto out;
1831 	if (ret) {
1832 		ret = 0;
1833 		goto out;
1834 	}
1835 
1836 	/*
1837 	 * Check if the overwritten ref was already processed. If yes, the ref
1838 	 * was already unlinked/moved, so we can safely assume that we will not
1839 	 * overwrite anything at this point in time.
1840 	 */
1841 	if (other_inode > sctx->send_progress) {
1842 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1843 				who_gen, NULL, NULL, NULL, NULL);
1844 		if (ret < 0)
1845 			goto out;
1846 
1847 		ret = 1;
1848 		*who_ino = other_inode;
1849 	} else {
1850 		ret = 0;
1851 	}
1852 
1853 out:
1854 	return ret;
1855 }
1856 
1857 /*
1858  * Checks if the ref was overwritten by an already processed inode. This is
1859  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1860  * thus the orphan name needs be used.
1861  * process_recorded_refs also uses it to avoid unlinking of refs that were
1862  * overwritten.
1863  */
1864 static int did_overwrite_ref(struct send_ctx *sctx,
1865 			    u64 dir, u64 dir_gen,
1866 			    u64 ino, u64 ino_gen,
1867 			    const char *name, int name_len)
1868 {
1869 	int ret = 0;
1870 	u64 gen;
1871 	u64 ow_inode;
1872 	u8 other_type;
1873 
1874 	if (!sctx->parent_root)
1875 		goto out;
1876 
1877 	ret = is_inode_existent(sctx, dir, dir_gen);
1878 	if (ret <= 0)
1879 		goto out;
1880 
1881 	/* check if the ref was overwritten by another ref */
1882 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1883 			&ow_inode, &other_type);
1884 	if (ret < 0 && ret != -ENOENT)
1885 		goto out;
1886 	if (ret) {
1887 		/* was never and will never be overwritten */
1888 		ret = 0;
1889 		goto out;
1890 	}
1891 
1892 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1893 			NULL, NULL);
1894 	if (ret < 0)
1895 		goto out;
1896 
1897 	if (ow_inode == ino && gen == ino_gen) {
1898 		ret = 0;
1899 		goto out;
1900 	}
1901 
1902 	/* we know that it is or will be overwritten. check this now */
1903 	if (ow_inode < sctx->send_progress)
1904 		ret = 1;
1905 	else
1906 		ret = 0;
1907 
1908 out:
1909 	return ret;
1910 }
1911 
1912 /*
1913  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1914  * that got overwritten. This is used by process_recorded_refs to determine
1915  * if it has to use the path as returned by get_cur_path or the orphan name.
1916  */
1917 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1918 {
1919 	int ret = 0;
1920 	struct fs_path *name = NULL;
1921 	u64 dir;
1922 	u64 dir_gen;
1923 
1924 	if (!sctx->parent_root)
1925 		goto out;
1926 
1927 	name = fs_path_alloc();
1928 	if (!name)
1929 		return -ENOMEM;
1930 
1931 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1932 	if (ret < 0)
1933 		goto out;
1934 
1935 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1936 			name->start, fs_path_len(name));
1937 
1938 out:
1939 	fs_path_free(name);
1940 	return ret;
1941 }
1942 
1943 /*
1944  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1945  * so we need to do some special handling in case we have clashes. This function
1946  * takes care of this with the help of name_cache_entry::radix_list.
1947  * In case of error, nce is kfreed.
1948  */
1949 static int name_cache_insert(struct send_ctx *sctx,
1950 			     struct name_cache_entry *nce)
1951 {
1952 	int ret = 0;
1953 	struct list_head *nce_head;
1954 
1955 	nce_head = radix_tree_lookup(&sctx->name_cache,
1956 			(unsigned long)nce->ino);
1957 	if (!nce_head) {
1958 		nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1959 		if (!nce_head) {
1960 			kfree(nce);
1961 			return -ENOMEM;
1962 		}
1963 		INIT_LIST_HEAD(nce_head);
1964 
1965 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1966 		if (ret < 0) {
1967 			kfree(nce_head);
1968 			kfree(nce);
1969 			return ret;
1970 		}
1971 	}
1972 	list_add_tail(&nce->radix_list, nce_head);
1973 	list_add_tail(&nce->list, &sctx->name_cache_list);
1974 	sctx->name_cache_size++;
1975 
1976 	return ret;
1977 }
1978 
1979 static void name_cache_delete(struct send_ctx *sctx,
1980 			      struct name_cache_entry *nce)
1981 {
1982 	struct list_head *nce_head;
1983 
1984 	nce_head = radix_tree_lookup(&sctx->name_cache,
1985 			(unsigned long)nce->ino);
1986 	if (!nce_head) {
1987 		btrfs_err(sctx->send_root->fs_info,
1988 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
1989 			nce->ino, sctx->name_cache_size);
1990 	}
1991 
1992 	list_del(&nce->radix_list);
1993 	list_del(&nce->list);
1994 	sctx->name_cache_size--;
1995 
1996 	/*
1997 	 * We may not get to the final release of nce_head if the lookup fails
1998 	 */
1999 	if (nce_head && list_empty(nce_head)) {
2000 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2001 		kfree(nce_head);
2002 	}
2003 }
2004 
2005 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2006 						    u64 ino, u64 gen)
2007 {
2008 	struct list_head *nce_head;
2009 	struct name_cache_entry *cur;
2010 
2011 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2012 	if (!nce_head)
2013 		return NULL;
2014 
2015 	list_for_each_entry(cur, nce_head, radix_list) {
2016 		if (cur->ino == ino && cur->gen == gen)
2017 			return cur;
2018 	}
2019 	return NULL;
2020 }
2021 
2022 /*
2023  * Removes the entry from the list and adds it back to the end. This marks the
2024  * entry as recently used so that name_cache_clean_unused does not remove it.
2025  */
2026 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2027 {
2028 	list_del(&nce->list);
2029 	list_add_tail(&nce->list, &sctx->name_cache_list);
2030 }
2031 
2032 /*
2033  * Remove some entries from the beginning of name_cache_list.
2034  */
2035 static void name_cache_clean_unused(struct send_ctx *sctx)
2036 {
2037 	struct name_cache_entry *nce;
2038 
2039 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2040 		return;
2041 
2042 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2043 		nce = list_entry(sctx->name_cache_list.next,
2044 				struct name_cache_entry, list);
2045 		name_cache_delete(sctx, nce);
2046 		kfree(nce);
2047 	}
2048 }
2049 
2050 static void name_cache_free(struct send_ctx *sctx)
2051 {
2052 	struct name_cache_entry *nce;
2053 
2054 	while (!list_empty(&sctx->name_cache_list)) {
2055 		nce = list_entry(sctx->name_cache_list.next,
2056 				struct name_cache_entry, list);
2057 		name_cache_delete(sctx, nce);
2058 		kfree(nce);
2059 	}
2060 }
2061 
2062 /*
2063  * Used by get_cur_path for each ref up to the root.
2064  * Returns 0 if it succeeded.
2065  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2066  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2067  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2068  * Returns <0 in case of error.
2069  */
2070 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2071 				     u64 ino, u64 gen,
2072 				     u64 *parent_ino,
2073 				     u64 *parent_gen,
2074 				     struct fs_path *dest)
2075 {
2076 	int ret;
2077 	int nce_ret;
2078 	struct name_cache_entry *nce = NULL;
2079 
2080 	/*
2081 	 * First check if we already did a call to this function with the same
2082 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2083 	 * return the cached result.
2084 	 */
2085 	nce = name_cache_search(sctx, ino, gen);
2086 	if (nce) {
2087 		if (ino < sctx->send_progress && nce->need_later_update) {
2088 			name_cache_delete(sctx, nce);
2089 			kfree(nce);
2090 			nce = NULL;
2091 		} else {
2092 			name_cache_used(sctx, nce);
2093 			*parent_ino = nce->parent_ino;
2094 			*parent_gen = nce->parent_gen;
2095 			ret = fs_path_add(dest, nce->name, nce->name_len);
2096 			if (ret < 0)
2097 				goto out;
2098 			ret = nce->ret;
2099 			goto out;
2100 		}
2101 	}
2102 
2103 	/*
2104 	 * If the inode is not existent yet, add the orphan name and return 1.
2105 	 * This should only happen for the parent dir that we determine in
2106 	 * __record_new_ref
2107 	 */
2108 	ret = is_inode_existent(sctx, ino, gen);
2109 	if (ret < 0)
2110 		goto out;
2111 
2112 	if (!ret) {
2113 		ret = gen_unique_name(sctx, ino, gen, dest);
2114 		if (ret < 0)
2115 			goto out;
2116 		ret = 1;
2117 		goto out_cache;
2118 	}
2119 
2120 	/*
2121 	 * Depending on whether the inode was already processed or not, use
2122 	 * send_root or parent_root for ref lookup.
2123 	 */
2124 	if (ino < sctx->send_progress)
2125 		ret = get_first_ref(sctx->send_root, ino,
2126 				    parent_ino, parent_gen, dest);
2127 	else
2128 		ret = get_first_ref(sctx->parent_root, ino,
2129 				    parent_ino, parent_gen, dest);
2130 	if (ret < 0)
2131 		goto out;
2132 
2133 	/*
2134 	 * Check if the ref was overwritten by an inode's ref that was processed
2135 	 * earlier. If yes, treat as orphan and return 1.
2136 	 */
2137 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2138 			dest->start, dest->end - dest->start);
2139 	if (ret < 0)
2140 		goto out;
2141 	if (ret) {
2142 		fs_path_reset(dest);
2143 		ret = gen_unique_name(sctx, ino, gen, dest);
2144 		if (ret < 0)
2145 			goto out;
2146 		ret = 1;
2147 	}
2148 
2149 out_cache:
2150 	/*
2151 	 * Store the result of the lookup in the name cache.
2152 	 */
2153 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2154 	if (!nce) {
2155 		ret = -ENOMEM;
2156 		goto out;
2157 	}
2158 
2159 	nce->ino = ino;
2160 	nce->gen = gen;
2161 	nce->parent_ino = *parent_ino;
2162 	nce->parent_gen = *parent_gen;
2163 	nce->name_len = fs_path_len(dest);
2164 	nce->ret = ret;
2165 	strcpy(nce->name, dest->start);
2166 
2167 	if (ino < sctx->send_progress)
2168 		nce->need_later_update = 0;
2169 	else
2170 		nce->need_later_update = 1;
2171 
2172 	nce_ret = name_cache_insert(sctx, nce);
2173 	if (nce_ret < 0)
2174 		ret = nce_ret;
2175 	name_cache_clean_unused(sctx);
2176 
2177 out:
2178 	return ret;
2179 }
2180 
2181 /*
2182  * Magic happens here. This function returns the first ref to an inode as it
2183  * would look like while receiving the stream at this point in time.
2184  * We walk the path up to the root. For every inode in between, we check if it
2185  * was already processed/sent. If yes, we continue with the parent as found
2186  * in send_root. If not, we continue with the parent as found in parent_root.
2187  * If we encounter an inode that was deleted at this point in time, we use the
2188  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2189  * that were not created yet and overwritten inodes/refs.
2190  *
2191  * When do we have have orphan inodes:
2192  * 1. When an inode is freshly created and thus no valid refs are available yet
2193  * 2. When a directory lost all it's refs (deleted) but still has dir items
2194  *    inside which were not processed yet (pending for move/delete). If anyone
2195  *    tried to get the path to the dir items, it would get a path inside that
2196  *    orphan directory.
2197  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2198  *    of an unprocessed inode. If in that case the first ref would be
2199  *    overwritten, the overwritten inode gets "orphanized". Later when we
2200  *    process this overwritten inode, it is restored at a new place by moving
2201  *    the orphan inode.
2202  *
2203  * sctx->send_progress tells this function at which point in time receiving
2204  * would be.
2205  */
2206 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2207 			struct fs_path *dest)
2208 {
2209 	int ret = 0;
2210 	struct fs_path *name = NULL;
2211 	u64 parent_inode = 0;
2212 	u64 parent_gen = 0;
2213 	int stop = 0;
2214 
2215 	name = fs_path_alloc();
2216 	if (!name) {
2217 		ret = -ENOMEM;
2218 		goto out;
2219 	}
2220 
2221 	dest->reversed = 1;
2222 	fs_path_reset(dest);
2223 
2224 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2225 		fs_path_reset(name);
2226 
2227 		if (is_waiting_for_rm(sctx, ino)) {
2228 			ret = gen_unique_name(sctx, ino, gen, name);
2229 			if (ret < 0)
2230 				goto out;
2231 			ret = fs_path_add_path(dest, name);
2232 			break;
2233 		}
2234 
2235 		if (is_waiting_for_move(sctx, ino)) {
2236 			ret = get_first_ref(sctx->parent_root, ino,
2237 					    &parent_inode, &parent_gen, name);
2238 		} else {
2239 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2240 							&parent_inode,
2241 							&parent_gen, name);
2242 			if (ret)
2243 				stop = 1;
2244 		}
2245 
2246 		if (ret < 0)
2247 			goto out;
2248 
2249 		ret = fs_path_add_path(dest, name);
2250 		if (ret < 0)
2251 			goto out;
2252 
2253 		ino = parent_inode;
2254 		gen = parent_gen;
2255 	}
2256 
2257 out:
2258 	fs_path_free(name);
2259 	if (!ret)
2260 		fs_path_unreverse(dest);
2261 	return ret;
2262 }
2263 
2264 /*
2265  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2266  */
2267 static int send_subvol_begin(struct send_ctx *sctx)
2268 {
2269 	int ret;
2270 	struct btrfs_root *send_root = sctx->send_root;
2271 	struct btrfs_root *parent_root = sctx->parent_root;
2272 	struct btrfs_path *path;
2273 	struct btrfs_key key;
2274 	struct btrfs_root_ref *ref;
2275 	struct extent_buffer *leaf;
2276 	char *name = NULL;
2277 	int namelen;
2278 
2279 	path = btrfs_alloc_path();
2280 	if (!path)
2281 		return -ENOMEM;
2282 
2283 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2284 	if (!name) {
2285 		btrfs_free_path(path);
2286 		return -ENOMEM;
2287 	}
2288 
2289 	key.objectid = send_root->objectid;
2290 	key.type = BTRFS_ROOT_BACKREF_KEY;
2291 	key.offset = 0;
2292 
2293 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2294 				&key, path, 1, 0);
2295 	if (ret < 0)
2296 		goto out;
2297 	if (ret) {
2298 		ret = -ENOENT;
2299 		goto out;
2300 	}
2301 
2302 	leaf = path->nodes[0];
2303 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2304 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2305 	    key.objectid != send_root->objectid) {
2306 		ret = -ENOENT;
2307 		goto out;
2308 	}
2309 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2310 	namelen = btrfs_root_ref_name_len(leaf, ref);
2311 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2312 	btrfs_release_path(path);
2313 
2314 	if (parent_root) {
2315 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2316 		if (ret < 0)
2317 			goto out;
2318 	} else {
2319 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2320 		if (ret < 0)
2321 			goto out;
2322 	}
2323 
2324 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2325 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2326 			sctx->send_root->root_item.uuid);
2327 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2328 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2329 	if (parent_root) {
2330 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2331 				sctx->parent_root->root_item.uuid);
2332 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2333 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2334 	}
2335 
2336 	ret = send_cmd(sctx);
2337 
2338 tlv_put_failure:
2339 out:
2340 	btrfs_free_path(path);
2341 	kfree(name);
2342 	return ret;
2343 }
2344 
2345 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2346 {
2347 	int ret = 0;
2348 	struct fs_path *p;
2349 
2350 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2351 
2352 	p = fs_path_alloc();
2353 	if (!p)
2354 		return -ENOMEM;
2355 
2356 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2357 	if (ret < 0)
2358 		goto out;
2359 
2360 	ret = get_cur_path(sctx, ino, gen, p);
2361 	if (ret < 0)
2362 		goto out;
2363 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2364 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2365 
2366 	ret = send_cmd(sctx);
2367 
2368 tlv_put_failure:
2369 out:
2370 	fs_path_free(p);
2371 	return ret;
2372 }
2373 
2374 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2375 {
2376 	int ret = 0;
2377 	struct fs_path *p;
2378 
2379 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2380 
2381 	p = fs_path_alloc();
2382 	if (!p)
2383 		return -ENOMEM;
2384 
2385 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2386 	if (ret < 0)
2387 		goto out;
2388 
2389 	ret = get_cur_path(sctx, ino, gen, p);
2390 	if (ret < 0)
2391 		goto out;
2392 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2393 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2394 
2395 	ret = send_cmd(sctx);
2396 
2397 tlv_put_failure:
2398 out:
2399 	fs_path_free(p);
2400 	return ret;
2401 }
2402 
2403 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2404 {
2405 	int ret = 0;
2406 	struct fs_path *p;
2407 
2408 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2409 
2410 	p = fs_path_alloc();
2411 	if (!p)
2412 		return -ENOMEM;
2413 
2414 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2415 	if (ret < 0)
2416 		goto out;
2417 
2418 	ret = get_cur_path(sctx, ino, gen, p);
2419 	if (ret < 0)
2420 		goto out;
2421 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2422 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2423 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2424 
2425 	ret = send_cmd(sctx);
2426 
2427 tlv_put_failure:
2428 out:
2429 	fs_path_free(p);
2430 	return ret;
2431 }
2432 
2433 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2434 {
2435 	int ret = 0;
2436 	struct fs_path *p = NULL;
2437 	struct btrfs_inode_item *ii;
2438 	struct btrfs_path *path = NULL;
2439 	struct extent_buffer *eb;
2440 	struct btrfs_key key;
2441 	int slot;
2442 
2443 verbose_printk("btrfs: send_utimes %llu\n", ino);
2444 
2445 	p = fs_path_alloc();
2446 	if (!p)
2447 		return -ENOMEM;
2448 
2449 	path = alloc_path_for_send();
2450 	if (!path) {
2451 		ret = -ENOMEM;
2452 		goto out;
2453 	}
2454 
2455 	key.objectid = ino;
2456 	key.type = BTRFS_INODE_ITEM_KEY;
2457 	key.offset = 0;
2458 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2459 	if (ret < 0)
2460 		goto out;
2461 
2462 	eb = path->nodes[0];
2463 	slot = path->slots[0];
2464 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2465 
2466 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2467 	if (ret < 0)
2468 		goto out;
2469 
2470 	ret = get_cur_path(sctx, ino, gen, p);
2471 	if (ret < 0)
2472 		goto out;
2473 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2474 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb,
2475 			btrfs_inode_atime(ii));
2476 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb,
2477 			btrfs_inode_mtime(ii));
2478 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb,
2479 			btrfs_inode_ctime(ii));
2480 	/* TODO Add otime support when the otime patches get into upstream */
2481 
2482 	ret = send_cmd(sctx);
2483 
2484 tlv_put_failure:
2485 out:
2486 	fs_path_free(p);
2487 	btrfs_free_path(path);
2488 	return ret;
2489 }
2490 
2491 /*
2492  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2493  * a valid path yet because we did not process the refs yet. So, the inode
2494  * is created as orphan.
2495  */
2496 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2497 {
2498 	int ret = 0;
2499 	struct fs_path *p;
2500 	int cmd;
2501 	u64 gen;
2502 	u64 mode;
2503 	u64 rdev;
2504 
2505 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2506 
2507 	p = fs_path_alloc();
2508 	if (!p)
2509 		return -ENOMEM;
2510 
2511 	if (ino != sctx->cur_ino) {
2512 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2513 				     NULL, NULL, &rdev);
2514 		if (ret < 0)
2515 			goto out;
2516 	} else {
2517 		gen = sctx->cur_inode_gen;
2518 		mode = sctx->cur_inode_mode;
2519 		rdev = sctx->cur_inode_rdev;
2520 	}
2521 
2522 	if (S_ISREG(mode)) {
2523 		cmd = BTRFS_SEND_C_MKFILE;
2524 	} else if (S_ISDIR(mode)) {
2525 		cmd = BTRFS_SEND_C_MKDIR;
2526 	} else if (S_ISLNK(mode)) {
2527 		cmd = BTRFS_SEND_C_SYMLINK;
2528 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2529 		cmd = BTRFS_SEND_C_MKNOD;
2530 	} else if (S_ISFIFO(mode)) {
2531 		cmd = BTRFS_SEND_C_MKFIFO;
2532 	} else if (S_ISSOCK(mode)) {
2533 		cmd = BTRFS_SEND_C_MKSOCK;
2534 	} else {
2535 		printk(KERN_WARNING "btrfs: unexpected inode type %o",
2536 				(int)(mode & S_IFMT));
2537 		ret = -ENOTSUPP;
2538 		goto out;
2539 	}
2540 
2541 	ret = begin_cmd(sctx, cmd);
2542 	if (ret < 0)
2543 		goto out;
2544 
2545 	ret = gen_unique_name(sctx, ino, gen, p);
2546 	if (ret < 0)
2547 		goto out;
2548 
2549 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2550 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2551 
2552 	if (S_ISLNK(mode)) {
2553 		fs_path_reset(p);
2554 		ret = read_symlink(sctx->send_root, ino, p);
2555 		if (ret < 0)
2556 			goto out;
2557 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2558 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2559 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2560 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2561 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2562 	}
2563 
2564 	ret = send_cmd(sctx);
2565 	if (ret < 0)
2566 		goto out;
2567 
2568 
2569 tlv_put_failure:
2570 out:
2571 	fs_path_free(p);
2572 	return ret;
2573 }
2574 
2575 /*
2576  * We need some special handling for inodes that get processed before the parent
2577  * directory got created. See process_recorded_refs for details.
2578  * This function does the check if we already created the dir out of order.
2579  */
2580 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2581 {
2582 	int ret = 0;
2583 	struct btrfs_path *path = NULL;
2584 	struct btrfs_key key;
2585 	struct btrfs_key found_key;
2586 	struct btrfs_key di_key;
2587 	struct extent_buffer *eb;
2588 	struct btrfs_dir_item *di;
2589 	int slot;
2590 
2591 	path = alloc_path_for_send();
2592 	if (!path) {
2593 		ret = -ENOMEM;
2594 		goto out;
2595 	}
2596 
2597 	key.objectid = dir;
2598 	key.type = BTRFS_DIR_INDEX_KEY;
2599 	key.offset = 0;
2600 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2601 	if (ret < 0)
2602 		goto out;
2603 
2604 	while (1) {
2605 		eb = path->nodes[0];
2606 		slot = path->slots[0];
2607 		if (slot >= btrfs_header_nritems(eb)) {
2608 			ret = btrfs_next_leaf(sctx->send_root, path);
2609 			if (ret < 0) {
2610 				goto out;
2611 			} else if (ret > 0) {
2612 				ret = 0;
2613 				break;
2614 			}
2615 			continue;
2616 		}
2617 
2618 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2619 		if (found_key.objectid != key.objectid ||
2620 		    found_key.type != key.type) {
2621 			ret = 0;
2622 			goto out;
2623 		}
2624 
2625 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2626 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2627 
2628 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2629 		    di_key.objectid < sctx->send_progress) {
2630 			ret = 1;
2631 			goto out;
2632 		}
2633 
2634 		path->slots[0]++;
2635 	}
2636 
2637 out:
2638 	btrfs_free_path(path);
2639 	return ret;
2640 }
2641 
2642 /*
2643  * Only creates the inode if it is:
2644  * 1. Not a directory
2645  * 2. Or a directory which was not created already due to out of order
2646  *    directories. See did_create_dir and process_recorded_refs for details.
2647  */
2648 static int send_create_inode_if_needed(struct send_ctx *sctx)
2649 {
2650 	int ret;
2651 
2652 	if (S_ISDIR(sctx->cur_inode_mode)) {
2653 		ret = did_create_dir(sctx, sctx->cur_ino);
2654 		if (ret < 0)
2655 			goto out;
2656 		if (ret) {
2657 			ret = 0;
2658 			goto out;
2659 		}
2660 	}
2661 
2662 	ret = send_create_inode(sctx, sctx->cur_ino);
2663 	if (ret < 0)
2664 		goto out;
2665 
2666 out:
2667 	return ret;
2668 }
2669 
2670 struct recorded_ref {
2671 	struct list_head list;
2672 	char *dir_path;
2673 	char *name;
2674 	struct fs_path *full_path;
2675 	u64 dir;
2676 	u64 dir_gen;
2677 	int dir_path_len;
2678 	int name_len;
2679 };
2680 
2681 /*
2682  * We need to process new refs before deleted refs, but compare_tree gives us
2683  * everything mixed. So we first record all refs and later process them.
2684  * This function is a helper to record one ref.
2685  */
2686 static int __record_ref(struct list_head *head, u64 dir,
2687 		      u64 dir_gen, struct fs_path *path)
2688 {
2689 	struct recorded_ref *ref;
2690 
2691 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
2692 	if (!ref)
2693 		return -ENOMEM;
2694 
2695 	ref->dir = dir;
2696 	ref->dir_gen = dir_gen;
2697 	ref->full_path = path;
2698 
2699 	ref->name = (char *)kbasename(ref->full_path->start);
2700 	ref->name_len = ref->full_path->end - ref->name;
2701 	ref->dir_path = ref->full_path->start;
2702 	if (ref->name == ref->full_path->start)
2703 		ref->dir_path_len = 0;
2704 	else
2705 		ref->dir_path_len = ref->full_path->end -
2706 				ref->full_path->start - 1 - ref->name_len;
2707 
2708 	list_add_tail(&ref->list, head);
2709 	return 0;
2710 }
2711 
2712 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2713 {
2714 	struct recorded_ref *new;
2715 
2716 	new = kmalloc(sizeof(*ref), GFP_NOFS);
2717 	if (!new)
2718 		return -ENOMEM;
2719 
2720 	new->dir = ref->dir;
2721 	new->dir_gen = ref->dir_gen;
2722 	new->full_path = NULL;
2723 	INIT_LIST_HEAD(&new->list);
2724 	list_add_tail(&new->list, list);
2725 	return 0;
2726 }
2727 
2728 static void __free_recorded_refs(struct list_head *head)
2729 {
2730 	struct recorded_ref *cur;
2731 
2732 	while (!list_empty(head)) {
2733 		cur = list_entry(head->next, struct recorded_ref, list);
2734 		fs_path_free(cur->full_path);
2735 		list_del(&cur->list);
2736 		kfree(cur);
2737 	}
2738 }
2739 
2740 static void free_recorded_refs(struct send_ctx *sctx)
2741 {
2742 	__free_recorded_refs(&sctx->new_refs);
2743 	__free_recorded_refs(&sctx->deleted_refs);
2744 }
2745 
2746 /*
2747  * Renames/moves a file/dir to its orphan name. Used when the first
2748  * ref of an unprocessed inode gets overwritten and for all non empty
2749  * directories.
2750  */
2751 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2752 			  struct fs_path *path)
2753 {
2754 	int ret;
2755 	struct fs_path *orphan;
2756 
2757 	orphan = fs_path_alloc();
2758 	if (!orphan)
2759 		return -ENOMEM;
2760 
2761 	ret = gen_unique_name(sctx, ino, gen, orphan);
2762 	if (ret < 0)
2763 		goto out;
2764 
2765 	ret = send_rename(sctx, path, orphan);
2766 
2767 out:
2768 	fs_path_free(orphan);
2769 	return ret;
2770 }
2771 
2772 static struct orphan_dir_info *
2773 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2774 {
2775 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2776 	struct rb_node *parent = NULL;
2777 	struct orphan_dir_info *entry, *odi;
2778 
2779 	odi = kmalloc(sizeof(*odi), GFP_NOFS);
2780 	if (!odi)
2781 		return ERR_PTR(-ENOMEM);
2782 	odi->ino = dir_ino;
2783 	odi->gen = 0;
2784 
2785 	while (*p) {
2786 		parent = *p;
2787 		entry = rb_entry(parent, struct orphan_dir_info, node);
2788 		if (dir_ino < entry->ino) {
2789 			p = &(*p)->rb_left;
2790 		} else if (dir_ino > entry->ino) {
2791 			p = &(*p)->rb_right;
2792 		} else {
2793 			kfree(odi);
2794 			return entry;
2795 		}
2796 	}
2797 
2798 	rb_link_node(&odi->node, parent, p);
2799 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2800 	return odi;
2801 }
2802 
2803 static struct orphan_dir_info *
2804 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2805 {
2806 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2807 	struct orphan_dir_info *entry;
2808 
2809 	while (n) {
2810 		entry = rb_entry(n, struct orphan_dir_info, node);
2811 		if (dir_ino < entry->ino)
2812 			n = n->rb_left;
2813 		else if (dir_ino > entry->ino)
2814 			n = n->rb_right;
2815 		else
2816 			return entry;
2817 	}
2818 	return NULL;
2819 }
2820 
2821 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2822 {
2823 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2824 
2825 	return odi != NULL;
2826 }
2827 
2828 static void free_orphan_dir_info(struct send_ctx *sctx,
2829 				 struct orphan_dir_info *odi)
2830 {
2831 	if (!odi)
2832 		return;
2833 	rb_erase(&odi->node, &sctx->orphan_dirs);
2834 	kfree(odi);
2835 }
2836 
2837 /*
2838  * Returns 1 if a directory can be removed at this point in time.
2839  * We check this by iterating all dir items and checking if the inode behind
2840  * the dir item was already processed.
2841  */
2842 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2843 		     u64 send_progress)
2844 {
2845 	int ret = 0;
2846 	struct btrfs_root *root = sctx->parent_root;
2847 	struct btrfs_path *path;
2848 	struct btrfs_key key;
2849 	struct btrfs_key found_key;
2850 	struct btrfs_key loc;
2851 	struct btrfs_dir_item *di;
2852 
2853 	/*
2854 	 * Don't try to rmdir the top/root subvolume dir.
2855 	 */
2856 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2857 		return 0;
2858 
2859 	path = alloc_path_for_send();
2860 	if (!path)
2861 		return -ENOMEM;
2862 
2863 	key.objectid = dir;
2864 	key.type = BTRFS_DIR_INDEX_KEY;
2865 	key.offset = 0;
2866 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2867 	if (ret < 0)
2868 		goto out;
2869 
2870 	while (1) {
2871 		struct waiting_dir_move *dm;
2872 
2873 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2874 			ret = btrfs_next_leaf(root, path);
2875 			if (ret < 0)
2876 				goto out;
2877 			else if (ret > 0)
2878 				break;
2879 			continue;
2880 		}
2881 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2882 				      path->slots[0]);
2883 		if (found_key.objectid != key.objectid ||
2884 		    found_key.type != key.type)
2885 			break;
2886 
2887 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2888 				struct btrfs_dir_item);
2889 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2890 
2891 		dm = get_waiting_dir_move(sctx, loc.objectid);
2892 		if (dm) {
2893 			struct orphan_dir_info *odi;
2894 
2895 			odi = add_orphan_dir_info(sctx, dir);
2896 			if (IS_ERR(odi)) {
2897 				ret = PTR_ERR(odi);
2898 				goto out;
2899 			}
2900 			odi->gen = dir_gen;
2901 			dm->rmdir_ino = dir;
2902 			ret = 0;
2903 			goto out;
2904 		}
2905 
2906 		if (loc.objectid > send_progress) {
2907 			ret = 0;
2908 			goto out;
2909 		}
2910 
2911 		path->slots[0]++;
2912 	}
2913 
2914 	ret = 1;
2915 
2916 out:
2917 	btrfs_free_path(path);
2918 	return ret;
2919 }
2920 
2921 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2922 {
2923 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2924 
2925 	return entry != NULL;
2926 }
2927 
2928 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2929 {
2930 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2931 	struct rb_node *parent = NULL;
2932 	struct waiting_dir_move *entry, *dm;
2933 
2934 	dm = kmalloc(sizeof(*dm), GFP_NOFS);
2935 	if (!dm)
2936 		return -ENOMEM;
2937 	dm->ino = ino;
2938 	dm->rmdir_ino = 0;
2939 
2940 	while (*p) {
2941 		parent = *p;
2942 		entry = rb_entry(parent, struct waiting_dir_move, node);
2943 		if (ino < entry->ino) {
2944 			p = &(*p)->rb_left;
2945 		} else if (ino > entry->ino) {
2946 			p = &(*p)->rb_right;
2947 		} else {
2948 			kfree(dm);
2949 			return -EEXIST;
2950 		}
2951 	}
2952 
2953 	rb_link_node(&dm->node, parent, p);
2954 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2955 	return 0;
2956 }
2957 
2958 static struct waiting_dir_move *
2959 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2960 {
2961 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2962 	struct waiting_dir_move *entry;
2963 
2964 	while (n) {
2965 		entry = rb_entry(n, struct waiting_dir_move, node);
2966 		if (ino < entry->ino)
2967 			n = n->rb_left;
2968 		else if (ino > entry->ino)
2969 			n = n->rb_right;
2970 		else
2971 			return entry;
2972 	}
2973 	return NULL;
2974 }
2975 
2976 static void free_waiting_dir_move(struct send_ctx *sctx,
2977 				  struct waiting_dir_move *dm)
2978 {
2979 	if (!dm)
2980 		return;
2981 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
2982 	kfree(dm);
2983 }
2984 
2985 static int add_pending_dir_move(struct send_ctx *sctx,
2986 				u64 ino,
2987 				u64 ino_gen,
2988 				u64 parent_ino,
2989 				struct list_head *new_refs,
2990 				struct list_head *deleted_refs)
2991 {
2992 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
2993 	struct rb_node *parent = NULL;
2994 	struct pending_dir_move *entry = NULL, *pm;
2995 	struct recorded_ref *cur;
2996 	int exists = 0;
2997 	int ret;
2998 
2999 	pm = kmalloc(sizeof(*pm), GFP_NOFS);
3000 	if (!pm)
3001 		return -ENOMEM;
3002 	pm->parent_ino = parent_ino;
3003 	pm->ino = ino;
3004 	pm->gen = ino_gen;
3005 	INIT_LIST_HEAD(&pm->list);
3006 	INIT_LIST_HEAD(&pm->update_refs);
3007 	RB_CLEAR_NODE(&pm->node);
3008 
3009 	while (*p) {
3010 		parent = *p;
3011 		entry = rb_entry(parent, struct pending_dir_move, node);
3012 		if (parent_ino < entry->parent_ino) {
3013 			p = &(*p)->rb_left;
3014 		} else if (parent_ino > entry->parent_ino) {
3015 			p = &(*p)->rb_right;
3016 		} else {
3017 			exists = 1;
3018 			break;
3019 		}
3020 	}
3021 
3022 	list_for_each_entry(cur, deleted_refs, list) {
3023 		ret = dup_ref(cur, &pm->update_refs);
3024 		if (ret < 0)
3025 			goto out;
3026 	}
3027 	list_for_each_entry(cur, new_refs, list) {
3028 		ret = dup_ref(cur, &pm->update_refs);
3029 		if (ret < 0)
3030 			goto out;
3031 	}
3032 
3033 	ret = add_waiting_dir_move(sctx, pm->ino);
3034 	if (ret)
3035 		goto out;
3036 
3037 	if (exists) {
3038 		list_add_tail(&pm->list, &entry->list);
3039 	} else {
3040 		rb_link_node(&pm->node, parent, p);
3041 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3042 	}
3043 	ret = 0;
3044 out:
3045 	if (ret) {
3046 		__free_recorded_refs(&pm->update_refs);
3047 		kfree(pm);
3048 	}
3049 	return ret;
3050 }
3051 
3052 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3053 						      u64 parent_ino)
3054 {
3055 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3056 	struct pending_dir_move *entry;
3057 
3058 	while (n) {
3059 		entry = rb_entry(n, struct pending_dir_move, node);
3060 		if (parent_ino < entry->parent_ino)
3061 			n = n->rb_left;
3062 		else if (parent_ino > entry->parent_ino)
3063 			n = n->rb_right;
3064 		else
3065 			return entry;
3066 	}
3067 	return NULL;
3068 }
3069 
3070 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3071 		     u64 ino, u64 gen, u64 *ancestor_ino)
3072 {
3073 	int ret = 0;
3074 	u64 parent_inode = 0;
3075 	u64 parent_gen = 0;
3076 	u64 start_ino = ino;
3077 
3078 	*ancestor_ino = 0;
3079 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3080 		fs_path_reset(name);
3081 
3082 		if (is_waiting_for_rm(sctx, ino))
3083 			break;
3084 		if (is_waiting_for_move(sctx, ino)) {
3085 			if (*ancestor_ino == 0)
3086 				*ancestor_ino = ino;
3087 			ret = get_first_ref(sctx->parent_root, ino,
3088 					    &parent_inode, &parent_gen, name);
3089 		} else {
3090 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3091 							&parent_inode,
3092 							&parent_gen, name);
3093 			if (ret > 0) {
3094 				ret = 0;
3095 				break;
3096 			}
3097 		}
3098 		if (ret < 0)
3099 			break;
3100 		if (parent_inode == start_ino) {
3101 			ret = 1;
3102 			if (*ancestor_ino == 0)
3103 				*ancestor_ino = ino;
3104 			break;
3105 		}
3106 		ino = parent_inode;
3107 		gen = parent_gen;
3108 	}
3109 	return ret;
3110 }
3111 
3112 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3113 {
3114 	struct fs_path *from_path = NULL;
3115 	struct fs_path *to_path = NULL;
3116 	struct fs_path *name = NULL;
3117 	u64 orig_progress = sctx->send_progress;
3118 	struct recorded_ref *cur;
3119 	u64 parent_ino, parent_gen;
3120 	struct waiting_dir_move *dm = NULL;
3121 	u64 rmdir_ino = 0;
3122 	int ret;
3123 	u64 ancestor = 0;
3124 
3125 	name = fs_path_alloc();
3126 	from_path = fs_path_alloc();
3127 	if (!name || !from_path) {
3128 		ret = -ENOMEM;
3129 		goto out;
3130 	}
3131 
3132 	dm = get_waiting_dir_move(sctx, pm->ino);
3133 	ASSERT(dm);
3134 	rmdir_ino = dm->rmdir_ino;
3135 	free_waiting_dir_move(sctx, dm);
3136 
3137 	ret = get_first_ref(sctx->parent_root, pm->ino,
3138 			    &parent_ino, &parent_gen, name);
3139 	if (ret < 0)
3140 		goto out;
3141 
3142 	ret = get_cur_path(sctx, parent_ino, parent_gen,
3143 			   from_path);
3144 	if (ret < 0)
3145 		goto out;
3146 	ret = fs_path_add_path(from_path, name);
3147 	if (ret < 0)
3148 		goto out;
3149 
3150 	sctx->send_progress = sctx->cur_ino + 1;
3151 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3152 	if (ret) {
3153 		LIST_HEAD(deleted_refs);
3154 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3155 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3156 					   &pm->update_refs, &deleted_refs);
3157 		if (ret < 0)
3158 			goto out;
3159 		if (rmdir_ino) {
3160 			dm = get_waiting_dir_move(sctx, pm->ino);
3161 			ASSERT(dm);
3162 			dm->rmdir_ino = rmdir_ino;
3163 		}
3164 		goto out;
3165 	}
3166 	fs_path_reset(name);
3167 	to_path = name;
3168 	name = NULL;
3169 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3170 	if (ret < 0)
3171 		goto out;
3172 
3173 	ret = send_rename(sctx, from_path, to_path);
3174 	if (ret < 0)
3175 		goto out;
3176 
3177 	if (rmdir_ino) {
3178 		struct orphan_dir_info *odi;
3179 
3180 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3181 		if (!odi) {
3182 			/* already deleted */
3183 			goto finish;
3184 		}
3185 		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3186 		if (ret < 0)
3187 			goto out;
3188 		if (!ret)
3189 			goto finish;
3190 
3191 		name = fs_path_alloc();
3192 		if (!name) {
3193 			ret = -ENOMEM;
3194 			goto out;
3195 		}
3196 		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3197 		if (ret < 0)
3198 			goto out;
3199 		ret = send_rmdir(sctx, name);
3200 		if (ret < 0)
3201 			goto out;
3202 		free_orphan_dir_info(sctx, odi);
3203 	}
3204 
3205 finish:
3206 	ret = send_utimes(sctx, pm->ino, pm->gen);
3207 	if (ret < 0)
3208 		goto out;
3209 
3210 	/*
3211 	 * After rename/move, need to update the utimes of both new parent(s)
3212 	 * and old parent(s).
3213 	 */
3214 	list_for_each_entry(cur, &pm->update_refs, list) {
3215 		if (cur->dir == rmdir_ino)
3216 			continue;
3217 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3218 		if (ret < 0)
3219 			goto out;
3220 	}
3221 
3222 out:
3223 	fs_path_free(name);
3224 	fs_path_free(from_path);
3225 	fs_path_free(to_path);
3226 	sctx->send_progress = orig_progress;
3227 
3228 	return ret;
3229 }
3230 
3231 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3232 {
3233 	if (!list_empty(&m->list))
3234 		list_del(&m->list);
3235 	if (!RB_EMPTY_NODE(&m->node))
3236 		rb_erase(&m->node, &sctx->pending_dir_moves);
3237 	__free_recorded_refs(&m->update_refs);
3238 	kfree(m);
3239 }
3240 
3241 static void tail_append_pending_moves(struct pending_dir_move *moves,
3242 				      struct list_head *stack)
3243 {
3244 	if (list_empty(&moves->list)) {
3245 		list_add_tail(&moves->list, stack);
3246 	} else {
3247 		LIST_HEAD(list);
3248 		list_splice_init(&moves->list, &list);
3249 		list_add_tail(&moves->list, stack);
3250 		list_splice_tail(&list, stack);
3251 	}
3252 }
3253 
3254 static int apply_children_dir_moves(struct send_ctx *sctx)
3255 {
3256 	struct pending_dir_move *pm;
3257 	struct list_head stack;
3258 	u64 parent_ino = sctx->cur_ino;
3259 	int ret = 0;
3260 
3261 	pm = get_pending_dir_moves(sctx, parent_ino);
3262 	if (!pm)
3263 		return 0;
3264 
3265 	INIT_LIST_HEAD(&stack);
3266 	tail_append_pending_moves(pm, &stack);
3267 
3268 	while (!list_empty(&stack)) {
3269 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3270 		parent_ino = pm->ino;
3271 		ret = apply_dir_move(sctx, pm);
3272 		free_pending_move(sctx, pm);
3273 		if (ret)
3274 			goto out;
3275 		pm = get_pending_dir_moves(sctx, parent_ino);
3276 		if (pm)
3277 			tail_append_pending_moves(pm, &stack);
3278 	}
3279 	return 0;
3280 
3281 out:
3282 	while (!list_empty(&stack)) {
3283 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3284 		free_pending_move(sctx, pm);
3285 	}
3286 	return ret;
3287 }
3288 
3289 static int wait_for_parent_move(struct send_ctx *sctx,
3290 				struct recorded_ref *parent_ref)
3291 {
3292 	int ret = 0;
3293 	u64 ino = parent_ref->dir;
3294 	u64 parent_ino_before, parent_ino_after;
3295 	struct fs_path *path_before = NULL;
3296 	struct fs_path *path_after = NULL;
3297 	int len1, len2;
3298 
3299 	path_after = fs_path_alloc();
3300 	path_before = fs_path_alloc();
3301 	if (!path_after || !path_before) {
3302 		ret = -ENOMEM;
3303 		goto out;
3304 	}
3305 
3306 	/*
3307 	 * Our current directory inode may not yet be renamed/moved because some
3308 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3309 	 * such ancestor exists and make sure our own rename/move happens after
3310 	 * that ancestor is processed.
3311 	 */
3312 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3313 		if (is_waiting_for_move(sctx, ino)) {
3314 			ret = 1;
3315 			break;
3316 		}
3317 
3318 		fs_path_reset(path_before);
3319 		fs_path_reset(path_after);
3320 
3321 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3322 				    NULL, path_after);
3323 		if (ret < 0)
3324 			goto out;
3325 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3326 				    NULL, path_before);
3327 		if (ret < 0 && ret != -ENOENT) {
3328 			goto out;
3329 		} else if (ret == -ENOENT) {
3330 			ret = 0;
3331 			break;
3332 		}
3333 
3334 		len1 = fs_path_len(path_before);
3335 		len2 = fs_path_len(path_after);
3336 		if (ino > sctx->cur_ino &&
3337 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3338 		     memcmp(path_before->start, path_after->start, len1))) {
3339 			ret = 1;
3340 			break;
3341 		}
3342 		ino = parent_ino_after;
3343 	}
3344 
3345 out:
3346 	fs_path_free(path_before);
3347 	fs_path_free(path_after);
3348 
3349 	if (ret == 1) {
3350 		ret = add_pending_dir_move(sctx,
3351 					   sctx->cur_ino,
3352 					   sctx->cur_inode_gen,
3353 					   ino,
3354 					   &sctx->new_refs,
3355 					   &sctx->deleted_refs);
3356 		if (!ret)
3357 			ret = 1;
3358 	}
3359 
3360 	return ret;
3361 }
3362 
3363 /*
3364  * This does all the move/link/unlink/rmdir magic.
3365  */
3366 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3367 {
3368 	int ret = 0;
3369 	struct recorded_ref *cur;
3370 	struct recorded_ref *cur2;
3371 	struct list_head check_dirs;
3372 	struct fs_path *valid_path = NULL;
3373 	u64 ow_inode = 0;
3374 	u64 ow_gen;
3375 	int did_overwrite = 0;
3376 	int is_orphan = 0;
3377 	u64 last_dir_ino_rm = 0;
3378 
3379 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3380 
3381 	/*
3382 	 * This should never happen as the root dir always has the same ref
3383 	 * which is always '..'
3384 	 */
3385 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3386 	INIT_LIST_HEAD(&check_dirs);
3387 
3388 	valid_path = fs_path_alloc();
3389 	if (!valid_path) {
3390 		ret = -ENOMEM;
3391 		goto out;
3392 	}
3393 
3394 	/*
3395 	 * First, check if the first ref of the current inode was overwritten
3396 	 * before. If yes, we know that the current inode was already orphanized
3397 	 * and thus use the orphan name. If not, we can use get_cur_path to
3398 	 * get the path of the first ref as it would like while receiving at
3399 	 * this point in time.
3400 	 * New inodes are always orphan at the beginning, so force to use the
3401 	 * orphan name in this case.
3402 	 * The first ref is stored in valid_path and will be updated if it
3403 	 * gets moved around.
3404 	 */
3405 	if (!sctx->cur_inode_new) {
3406 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3407 				sctx->cur_inode_gen);
3408 		if (ret < 0)
3409 			goto out;
3410 		if (ret)
3411 			did_overwrite = 1;
3412 	}
3413 	if (sctx->cur_inode_new || did_overwrite) {
3414 		ret = gen_unique_name(sctx, sctx->cur_ino,
3415 				sctx->cur_inode_gen, valid_path);
3416 		if (ret < 0)
3417 			goto out;
3418 		is_orphan = 1;
3419 	} else {
3420 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3421 				valid_path);
3422 		if (ret < 0)
3423 			goto out;
3424 	}
3425 
3426 	list_for_each_entry(cur, &sctx->new_refs, list) {
3427 		/*
3428 		 * We may have refs where the parent directory does not exist
3429 		 * yet. This happens if the parent directories inum is higher
3430 		 * the the current inum. To handle this case, we create the
3431 		 * parent directory out of order. But we need to check if this
3432 		 * did already happen before due to other refs in the same dir.
3433 		 */
3434 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3435 		if (ret < 0)
3436 			goto out;
3437 		if (ret == inode_state_will_create) {
3438 			ret = 0;
3439 			/*
3440 			 * First check if any of the current inodes refs did
3441 			 * already create the dir.
3442 			 */
3443 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3444 				if (cur == cur2)
3445 					break;
3446 				if (cur2->dir == cur->dir) {
3447 					ret = 1;
3448 					break;
3449 				}
3450 			}
3451 
3452 			/*
3453 			 * If that did not happen, check if a previous inode
3454 			 * did already create the dir.
3455 			 */
3456 			if (!ret)
3457 				ret = did_create_dir(sctx, cur->dir);
3458 			if (ret < 0)
3459 				goto out;
3460 			if (!ret) {
3461 				ret = send_create_inode(sctx, cur->dir);
3462 				if (ret < 0)
3463 					goto out;
3464 			}
3465 		}
3466 
3467 		/*
3468 		 * Check if this new ref would overwrite the first ref of
3469 		 * another unprocessed inode. If yes, orphanize the
3470 		 * overwritten inode. If we find an overwritten ref that is
3471 		 * not the first ref, simply unlink it.
3472 		 */
3473 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3474 				cur->name, cur->name_len,
3475 				&ow_inode, &ow_gen);
3476 		if (ret < 0)
3477 			goto out;
3478 		if (ret) {
3479 			ret = is_first_ref(sctx->parent_root,
3480 					   ow_inode, cur->dir, cur->name,
3481 					   cur->name_len);
3482 			if (ret < 0)
3483 				goto out;
3484 			if (ret) {
3485 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3486 						cur->full_path);
3487 				if (ret < 0)
3488 					goto out;
3489 			} else {
3490 				ret = send_unlink(sctx, cur->full_path);
3491 				if (ret < 0)
3492 					goto out;
3493 			}
3494 		}
3495 
3496 		/*
3497 		 * link/move the ref to the new place. If we have an orphan
3498 		 * inode, move it and update valid_path. If not, link or move
3499 		 * it depending on the inode mode.
3500 		 */
3501 		if (is_orphan) {
3502 			ret = send_rename(sctx, valid_path, cur->full_path);
3503 			if (ret < 0)
3504 				goto out;
3505 			is_orphan = 0;
3506 			ret = fs_path_copy(valid_path, cur->full_path);
3507 			if (ret < 0)
3508 				goto out;
3509 		} else {
3510 			if (S_ISDIR(sctx->cur_inode_mode)) {
3511 				/*
3512 				 * Dirs can't be linked, so move it. For moved
3513 				 * dirs, we always have one new and one deleted
3514 				 * ref. The deleted ref is ignored later.
3515 				 */
3516 				ret = wait_for_parent_move(sctx, cur);
3517 				if (ret < 0)
3518 					goto out;
3519 				if (ret) {
3520 					*pending_move = 1;
3521 				} else {
3522 					ret = send_rename(sctx, valid_path,
3523 							  cur->full_path);
3524 					if (!ret)
3525 						ret = fs_path_copy(valid_path,
3526 							       cur->full_path);
3527 				}
3528 				if (ret < 0)
3529 					goto out;
3530 			} else {
3531 				ret = send_link(sctx, cur->full_path,
3532 						valid_path);
3533 				if (ret < 0)
3534 					goto out;
3535 			}
3536 		}
3537 		ret = dup_ref(cur, &check_dirs);
3538 		if (ret < 0)
3539 			goto out;
3540 	}
3541 
3542 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3543 		/*
3544 		 * Check if we can already rmdir the directory. If not,
3545 		 * orphanize it. For every dir item inside that gets deleted
3546 		 * later, we do this check again and rmdir it then if possible.
3547 		 * See the use of check_dirs for more details.
3548 		 */
3549 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3550 				sctx->cur_ino);
3551 		if (ret < 0)
3552 			goto out;
3553 		if (ret) {
3554 			ret = send_rmdir(sctx, valid_path);
3555 			if (ret < 0)
3556 				goto out;
3557 		} else if (!is_orphan) {
3558 			ret = orphanize_inode(sctx, sctx->cur_ino,
3559 					sctx->cur_inode_gen, valid_path);
3560 			if (ret < 0)
3561 				goto out;
3562 			is_orphan = 1;
3563 		}
3564 
3565 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3566 			ret = dup_ref(cur, &check_dirs);
3567 			if (ret < 0)
3568 				goto out;
3569 		}
3570 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
3571 		   !list_empty(&sctx->deleted_refs)) {
3572 		/*
3573 		 * We have a moved dir. Add the old parent to check_dirs
3574 		 */
3575 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3576 				list);
3577 		ret = dup_ref(cur, &check_dirs);
3578 		if (ret < 0)
3579 			goto out;
3580 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
3581 		/*
3582 		 * We have a non dir inode. Go through all deleted refs and
3583 		 * unlink them if they were not already overwritten by other
3584 		 * inodes.
3585 		 */
3586 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3587 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3588 					sctx->cur_ino, sctx->cur_inode_gen,
3589 					cur->name, cur->name_len);
3590 			if (ret < 0)
3591 				goto out;
3592 			if (!ret) {
3593 				ret = send_unlink(sctx, cur->full_path);
3594 				if (ret < 0)
3595 					goto out;
3596 			}
3597 			ret = dup_ref(cur, &check_dirs);
3598 			if (ret < 0)
3599 				goto out;
3600 		}
3601 		/*
3602 		 * If the inode is still orphan, unlink the orphan. This may
3603 		 * happen when a previous inode did overwrite the first ref
3604 		 * of this inode and no new refs were added for the current
3605 		 * inode. Unlinking does not mean that the inode is deleted in
3606 		 * all cases. There may still be links to this inode in other
3607 		 * places.
3608 		 */
3609 		if (is_orphan) {
3610 			ret = send_unlink(sctx, valid_path);
3611 			if (ret < 0)
3612 				goto out;
3613 		}
3614 	}
3615 
3616 	/*
3617 	 * We did collect all parent dirs where cur_inode was once located. We
3618 	 * now go through all these dirs and check if they are pending for
3619 	 * deletion and if it's finally possible to perform the rmdir now.
3620 	 * We also update the inode stats of the parent dirs here.
3621 	 */
3622 	list_for_each_entry(cur, &check_dirs, list) {
3623 		/*
3624 		 * In case we had refs into dirs that were not processed yet,
3625 		 * we don't need to do the utime and rmdir logic for these dirs.
3626 		 * The dir will be processed later.
3627 		 */
3628 		if (cur->dir > sctx->cur_ino)
3629 			continue;
3630 
3631 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3632 		if (ret < 0)
3633 			goto out;
3634 
3635 		if (ret == inode_state_did_create ||
3636 		    ret == inode_state_no_change) {
3637 			/* TODO delayed utimes */
3638 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3639 			if (ret < 0)
3640 				goto out;
3641 		} else if (ret == inode_state_did_delete &&
3642 			   cur->dir != last_dir_ino_rm) {
3643 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3644 					sctx->cur_ino);
3645 			if (ret < 0)
3646 				goto out;
3647 			if (ret) {
3648 				ret = get_cur_path(sctx, cur->dir,
3649 						   cur->dir_gen, valid_path);
3650 				if (ret < 0)
3651 					goto out;
3652 				ret = send_rmdir(sctx, valid_path);
3653 				if (ret < 0)
3654 					goto out;
3655 				last_dir_ino_rm = cur->dir;
3656 			}
3657 		}
3658 	}
3659 
3660 	ret = 0;
3661 
3662 out:
3663 	__free_recorded_refs(&check_dirs);
3664 	free_recorded_refs(sctx);
3665 	fs_path_free(valid_path);
3666 	return ret;
3667 }
3668 
3669 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3670 		      struct fs_path *name, void *ctx, struct list_head *refs)
3671 {
3672 	int ret = 0;
3673 	struct send_ctx *sctx = ctx;
3674 	struct fs_path *p;
3675 	u64 gen;
3676 
3677 	p = fs_path_alloc();
3678 	if (!p)
3679 		return -ENOMEM;
3680 
3681 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3682 			NULL, NULL);
3683 	if (ret < 0)
3684 		goto out;
3685 
3686 	ret = get_cur_path(sctx, dir, gen, p);
3687 	if (ret < 0)
3688 		goto out;
3689 	ret = fs_path_add_path(p, name);
3690 	if (ret < 0)
3691 		goto out;
3692 
3693 	ret = __record_ref(refs, dir, gen, p);
3694 
3695 out:
3696 	if (ret)
3697 		fs_path_free(p);
3698 	return ret;
3699 }
3700 
3701 static int __record_new_ref(int num, u64 dir, int index,
3702 			    struct fs_path *name,
3703 			    void *ctx)
3704 {
3705 	struct send_ctx *sctx = ctx;
3706 	return record_ref(sctx->send_root, num, dir, index, name,
3707 			  ctx, &sctx->new_refs);
3708 }
3709 
3710 
3711 static int __record_deleted_ref(int num, u64 dir, int index,
3712 				struct fs_path *name,
3713 				void *ctx)
3714 {
3715 	struct send_ctx *sctx = ctx;
3716 	return record_ref(sctx->parent_root, num, dir, index, name,
3717 			  ctx, &sctx->deleted_refs);
3718 }
3719 
3720 static int record_new_ref(struct send_ctx *sctx)
3721 {
3722 	int ret;
3723 
3724 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3725 				sctx->cmp_key, 0, __record_new_ref, sctx);
3726 	if (ret < 0)
3727 		goto out;
3728 	ret = 0;
3729 
3730 out:
3731 	return ret;
3732 }
3733 
3734 static int record_deleted_ref(struct send_ctx *sctx)
3735 {
3736 	int ret;
3737 
3738 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3739 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
3740 	if (ret < 0)
3741 		goto out;
3742 	ret = 0;
3743 
3744 out:
3745 	return ret;
3746 }
3747 
3748 struct find_ref_ctx {
3749 	u64 dir;
3750 	u64 dir_gen;
3751 	struct btrfs_root *root;
3752 	struct fs_path *name;
3753 	int found_idx;
3754 };
3755 
3756 static int __find_iref(int num, u64 dir, int index,
3757 		       struct fs_path *name,
3758 		       void *ctx_)
3759 {
3760 	struct find_ref_ctx *ctx = ctx_;
3761 	u64 dir_gen;
3762 	int ret;
3763 
3764 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3765 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3766 		/*
3767 		 * To avoid doing extra lookups we'll only do this if everything
3768 		 * else matches.
3769 		 */
3770 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3771 				     NULL, NULL, NULL);
3772 		if (ret)
3773 			return ret;
3774 		if (dir_gen != ctx->dir_gen)
3775 			return 0;
3776 		ctx->found_idx = num;
3777 		return 1;
3778 	}
3779 	return 0;
3780 }
3781 
3782 static int find_iref(struct btrfs_root *root,
3783 		     struct btrfs_path *path,
3784 		     struct btrfs_key *key,
3785 		     u64 dir, u64 dir_gen, struct fs_path *name)
3786 {
3787 	int ret;
3788 	struct find_ref_ctx ctx;
3789 
3790 	ctx.dir = dir;
3791 	ctx.name = name;
3792 	ctx.dir_gen = dir_gen;
3793 	ctx.found_idx = -1;
3794 	ctx.root = root;
3795 
3796 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3797 	if (ret < 0)
3798 		return ret;
3799 
3800 	if (ctx.found_idx == -1)
3801 		return -ENOENT;
3802 
3803 	return ctx.found_idx;
3804 }
3805 
3806 static int __record_changed_new_ref(int num, u64 dir, int index,
3807 				    struct fs_path *name,
3808 				    void *ctx)
3809 {
3810 	u64 dir_gen;
3811 	int ret;
3812 	struct send_ctx *sctx = ctx;
3813 
3814 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3815 			     NULL, NULL, NULL);
3816 	if (ret)
3817 		return ret;
3818 
3819 	ret = find_iref(sctx->parent_root, sctx->right_path,
3820 			sctx->cmp_key, dir, dir_gen, name);
3821 	if (ret == -ENOENT)
3822 		ret = __record_new_ref(num, dir, index, name, sctx);
3823 	else if (ret > 0)
3824 		ret = 0;
3825 
3826 	return ret;
3827 }
3828 
3829 static int __record_changed_deleted_ref(int num, u64 dir, int index,
3830 					struct fs_path *name,
3831 					void *ctx)
3832 {
3833 	u64 dir_gen;
3834 	int ret;
3835 	struct send_ctx *sctx = ctx;
3836 
3837 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
3838 			     NULL, NULL, NULL);
3839 	if (ret)
3840 		return ret;
3841 
3842 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
3843 			dir, dir_gen, name);
3844 	if (ret == -ENOENT)
3845 		ret = __record_deleted_ref(num, dir, index, name, sctx);
3846 	else if (ret > 0)
3847 		ret = 0;
3848 
3849 	return ret;
3850 }
3851 
3852 static int record_changed_ref(struct send_ctx *sctx)
3853 {
3854 	int ret = 0;
3855 
3856 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3857 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3858 	if (ret < 0)
3859 		goto out;
3860 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3861 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3862 	if (ret < 0)
3863 		goto out;
3864 	ret = 0;
3865 
3866 out:
3867 	return ret;
3868 }
3869 
3870 /*
3871  * Record and process all refs at once. Needed when an inode changes the
3872  * generation number, which means that it was deleted and recreated.
3873  */
3874 static int process_all_refs(struct send_ctx *sctx,
3875 			    enum btrfs_compare_tree_result cmd)
3876 {
3877 	int ret;
3878 	struct btrfs_root *root;
3879 	struct btrfs_path *path;
3880 	struct btrfs_key key;
3881 	struct btrfs_key found_key;
3882 	struct extent_buffer *eb;
3883 	int slot;
3884 	iterate_inode_ref_t cb;
3885 	int pending_move = 0;
3886 
3887 	path = alloc_path_for_send();
3888 	if (!path)
3889 		return -ENOMEM;
3890 
3891 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
3892 		root = sctx->send_root;
3893 		cb = __record_new_ref;
3894 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
3895 		root = sctx->parent_root;
3896 		cb = __record_deleted_ref;
3897 	} else {
3898 		btrfs_err(sctx->send_root->fs_info,
3899 				"Wrong command %d in process_all_refs", cmd);
3900 		ret = -EINVAL;
3901 		goto out;
3902 	}
3903 
3904 	key.objectid = sctx->cmp_key->objectid;
3905 	key.type = BTRFS_INODE_REF_KEY;
3906 	key.offset = 0;
3907 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3908 	if (ret < 0)
3909 		goto out;
3910 
3911 	while (1) {
3912 		eb = path->nodes[0];
3913 		slot = path->slots[0];
3914 		if (slot >= btrfs_header_nritems(eb)) {
3915 			ret = btrfs_next_leaf(root, path);
3916 			if (ret < 0)
3917 				goto out;
3918 			else if (ret > 0)
3919 				break;
3920 			continue;
3921 		}
3922 
3923 		btrfs_item_key_to_cpu(eb, &found_key, slot);
3924 
3925 		if (found_key.objectid != key.objectid ||
3926 		    (found_key.type != BTRFS_INODE_REF_KEY &&
3927 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
3928 			break;
3929 
3930 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
3931 		if (ret < 0)
3932 			goto out;
3933 
3934 		path->slots[0]++;
3935 	}
3936 	btrfs_release_path(path);
3937 
3938 	ret = process_recorded_refs(sctx, &pending_move);
3939 	/* Only applicable to an incremental send. */
3940 	ASSERT(pending_move == 0);
3941 
3942 out:
3943 	btrfs_free_path(path);
3944 	return ret;
3945 }
3946 
3947 static int send_set_xattr(struct send_ctx *sctx,
3948 			  struct fs_path *path,
3949 			  const char *name, int name_len,
3950 			  const char *data, int data_len)
3951 {
3952 	int ret = 0;
3953 
3954 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
3955 	if (ret < 0)
3956 		goto out;
3957 
3958 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3959 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3960 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
3961 
3962 	ret = send_cmd(sctx);
3963 
3964 tlv_put_failure:
3965 out:
3966 	return ret;
3967 }
3968 
3969 static int send_remove_xattr(struct send_ctx *sctx,
3970 			  struct fs_path *path,
3971 			  const char *name, int name_len)
3972 {
3973 	int ret = 0;
3974 
3975 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
3976 	if (ret < 0)
3977 		goto out;
3978 
3979 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3980 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3981 
3982 	ret = send_cmd(sctx);
3983 
3984 tlv_put_failure:
3985 out:
3986 	return ret;
3987 }
3988 
3989 static int __process_new_xattr(int num, struct btrfs_key *di_key,
3990 			       const char *name, int name_len,
3991 			       const char *data, int data_len,
3992 			       u8 type, void *ctx)
3993 {
3994 	int ret;
3995 	struct send_ctx *sctx = ctx;
3996 	struct fs_path *p;
3997 	posix_acl_xattr_header dummy_acl;
3998 
3999 	p = fs_path_alloc();
4000 	if (!p)
4001 		return -ENOMEM;
4002 
4003 	/*
4004 	 * This hack is needed because empty acl's are stored as zero byte
4005 	 * data in xattrs. Problem with that is, that receiving these zero byte
4006 	 * acl's will fail later. To fix this, we send a dummy acl list that
4007 	 * only contains the version number and no entries.
4008 	 */
4009 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4010 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4011 		if (data_len == 0) {
4012 			dummy_acl.a_version =
4013 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4014 			data = (char *)&dummy_acl;
4015 			data_len = sizeof(dummy_acl);
4016 		}
4017 	}
4018 
4019 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4020 	if (ret < 0)
4021 		goto out;
4022 
4023 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4024 
4025 out:
4026 	fs_path_free(p);
4027 	return ret;
4028 }
4029 
4030 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4031 				   const char *name, int name_len,
4032 				   const char *data, int data_len,
4033 				   u8 type, void *ctx)
4034 {
4035 	int ret;
4036 	struct send_ctx *sctx = ctx;
4037 	struct fs_path *p;
4038 
4039 	p = fs_path_alloc();
4040 	if (!p)
4041 		return -ENOMEM;
4042 
4043 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4044 	if (ret < 0)
4045 		goto out;
4046 
4047 	ret = send_remove_xattr(sctx, p, name, name_len);
4048 
4049 out:
4050 	fs_path_free(p);
4051 	return ret;
4052 }
4053 
4054 static int process_new_xattr(struct send_ctx *sctx)
4055 {
4056 	int ret = 0;
4057 
4058 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4059 			       sctx->cmp_key, __process_new_xattr, sctx);
4060 
4061 	return ret;
4062 }
4063 
4064 static int process_deleted_xattr(struct send_ctx *sctx)
4065 {
4066 	int ret;
4067 
4068 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4069 			       sctx->cmp_key, __process_deleted_xattr, sctx);
4070 
4071 	return ret;
4072 }
4073 
4074 struct find_xattr_ctx {
4075 	const char *name;
4076 	int name_len;
4077 	int found_idx;
4078 	char *found_data;
4079 	int found_data_len;
4080 };
4081 
4082 static int __find_xattr(int num, struct btrfs_key *di_key,
4083 			const char *name, int name_len,
4084 			const char *data, int data_len,
4085 			u8 type, void *vctx)
4086 {
4087 	struct find_xattr_ctx *ctx = vctx;
4088 
4089 	if (name_len == ctx->name_len &&
4090 	    strncmp(name, ctx->name, name_len) == 0) {
4091 		ctx->found_idx = num;
4092 		ctx->found_data_len = data_len;
4093 		ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
4094 		if (!ctx->found_data)
4095 			return -ENOMEM;
4096 		return 1;
4097 	}
4098 	return 0;
4099 }
4100 
4101 static int find_xattr(struct btrfs_root *root,
4102 		      struct btrfs_path *path,
4103 		      struct btrfs_key *key,
4104 		      const char *name, int name_len,
4105 		      char **data, int *data_len)
4106 {
4107 	int ret;
4108 	struct find_xattr_ctx ctx;
4109 
4110 	ctx.name = name;
4111 	ctx.name_len = name_len;
4112 	ctx.found_idx = -1;
4113 	ctx.found_data = NULL;
4114 	ctx.found_data_len = 0;
4115 
4116 	ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4117 	if (ret < 0)
4118 		return ret;
4119 
4120 	if (ctx.found_idx == -1)
4121 		return -ENOENT;
4122 	if (data) {
4123 		*data = ctx.found_data;
4124 		*data_len = ctx.found_data_len;
4125 	} else {
4126 		kfree(ctx.found_data);
4127 	}
4128 	return ctx.found_idx;
4129 }
4130 
4131 
4132 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4133 				       const char *name, int name_len,
4134 				       const char *data, int data_len,
4135 				       u8 type, void *ctx)
4136 {
4137 	int ret;
4138 	struct send_ctx *sctx = ctx;
4139 	char *found_data = NULL;
4140 	int found_data_len  = 0;
4141 
4142 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4143 			 sctx->cmp_key, name, name_len, &found_data,
4144 			 &found_data_len);
4145 	if (ret == -ENOENT) {
4146 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4147 				data_len, type, ctx);
4148 	} else if (ret >= 0) {
4149 		if (data_len != found_data_len ||
4150 		    memcmp(data, found_data, data_len)) {
4151 			ret = __process_new_xattr(num, di_key, name, name_len,
4152 					data, data_len, type, ctx);
4153 		} else {
4154 			ret = 0;
4155 		}
4156 	}
4157 
4158 	kfree(found_data);
4159 	return ret;
4160 }
4161 
4162 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4163 					   const char *name, int name_len,
4164 					   const char *data, int data_len,
4165 					   u8 type, void *ctx)
4166 {
4167 	int ret;
4168 	struct send_ctx *sctx = ctx;
4169 
4170 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4171 			 name, name_len, NULL, NULL);
4172 	if (ret == -ENOENT)
4173 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4174 				data_len, type, ctx);
4175 	else if (ret >= 0)
4176 		ret = 0;
4177 
4178 	return ret;
4179 }
4180 
4181 static int process_changed_xattr(struct send_ctx *sctx)
4182 {
4183 	int ret = 0;
4184 
4185 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4186 			sctx->cmp_key, __process_changed_new_xattr, sctx);
4187 	if (ret < 0)
4188 		goto out;
4189 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4190 			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4191 
4192 out:
4193 	return ret;
4194 }
4195 
4196 static int process_all_new_xattrs(struct send_ctx *sctx)
4197 {
4198 	int ret;
4199 	struct btrfs_root *root;
4200 	struct btrfs_path *path;
4201 	struct btrfs_key key;
4202 	struct btrfs_key found_key;
4203 	struct extent_buffer *eb;
4204 	int slot;
4205 
4206 	path = alloc_path_for_send();
4207 	if (!path)
4208 		return -ENOMEM;
4209 
4210 	root = sctx->send_root;
4211 
4212 	key.objectid = sctx->cmp_key->objectid;
4213 	key.type = BTRFS_XATTR_ITEM_KEY;
4214 	key.offset = 0;
4215 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4216 	if (ret < 0)
4217 		goto out;
4218 
4219 	while (1) {
4220 		eb = path->nodes[0];
4221 		slot = path->slots[0];
4222 		if (slot >= btrfs_header_nritems(eb)) {
4223 			ret = btrfs_next_leaf(root, path);
4224 			if (ret < 0) {
4225 				goto out;
4226 			} else if (ret > 0) {
4227 				ret = 0;
4228 				break;
4229 			}
4230 			continue;
4231 		}
4232 
4233 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4234 		if (found_key.objectid != key.objectid ||
4235 		    found_key.type != key.type) {
4236 			ret = 0;
4237 			goto out;
4238 		}
4239 
4240 		ret = iterate_dir_item(root, path, &found_key,
4241 				       __process_new_xattr, sctx);
4242 		if (ret < 0)
4243 			goto out;
4244 
4245 		path->slots[0]++;
4246 	}
4247 
4248 out:
4249 	btrfs_free_path(path);
4250 	return ret;
4251 }
4252 
4253 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4254 {
4255 	struct btrfs_root *root = sctx->send_root;
4256 	struct btrfs_fs_info *fs_info = root->fs_info;
4257 	struct inode *inode;
4258 	struct page *page;
4259 	char *addr;
4260 	struct btrfs_key key;
4261 	pgoff_t index = offset >> PAGE_CACHE_SHIFT;
4262 	pgoff_t last_index;
4263 	unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
4264 	ssize_t ret = 0;
4265 
4266 	key.objectid = sctx->cur_ino;
4267 	key.type = BTRFS_INODE_ITEM_KEY;
4268 	key.offset = 0;
4269 
4270 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4271 	if (IS_ERR(inode))
4272 		return PTR_ERR(inode);
4273 
4274 	if (offset + len > i_size_read(inode)) {
4275 		if (offset > i_size_read(inode))
4276 			len = 0;
4277 		else
4278 			len = offset - i_size_read(inode);
4279 	}
4280 	if (len == 0)
4281 		goto out;
4282 
4283 	last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
4284 
4285 	/* initial readahead */
4286 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4287 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4288 	btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4289 		       last_index - index + 1);
4290 
4291 	while (index <= last_index) {
4292 		unsigned cur_len = min_t(unsigned, len,
4293 					 PAGE_CACHE_SIZE - pg_offset);
4294 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4295 		if (!page) {
4296 			ret = -ENOMEM;
4297 			break;
4298 		}
4299 
4300 		if (!PageUptodate(page)) {
4301 			btrfs_readpage(NULL, page);
4302 			lock_page(page);
4303 			if (!PageUptodate(page)) {
4304 				unlock_page(page);
4305 				page_cache_release(page);
4306 				ret = -EIO;
4307 				break;
4308 			}
4309 		}
4310 
4311 		addr = kmap(page);
4312 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4313 		kunmap(page);
4314 		unlock_page(page);
4315 		page_cache_release(page);
4316 		index++;
4317 		pg_offset = 0;
4318 		len -= cur_len;
4319 		ret += cur_len;
4320 	}
4321 out:
4322 	iput(inode);
4323 	return ret;
4324 }
4325 
4326 /*
4327  * Read some bytes from the current inode/file and send a write command to
4328  * user space.
4329  */
4330 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4331 {
4332 	int ret = 0;
4333 	struct fs_path *p;
4334 	ssize_t num_read = 0;
4335 
4336 	p = fs_path_alloc();
4337 	if (!p)
4338 		return -ENOMEM;
4339 
4340 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4341 
4342 	num_read = fill_read_buf(sctx, offset, len);
4343 	if (num_read <= 0) {
4344 		if (num_read < 0)
4345 			ret = num_read;
4346 		goto out;
4347 	}
4348 
4349 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4350 	if (ret < 0)
4351 		goto out;
4352 
4353 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4354 	if (ret < 0)
4355 		goto out;
4356 
4357 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4358 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4359 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4360 
4361 	ret = send_cmd(sctx);
4362 
4363 tlv_put_failure:
4364 out:
4365 	fs_path_free(p);
4366 	if (ret < 0)
4367 		return ret;
4368 	return num_read;
4369 }
4370 
4371 /*
4372  * Send a clone command to user space.
4373  */
4374 static int send_clone(struct send_ctx *sctx,
4375 		      u64 offset, u32 len,
4376 		      struct clone_root *clone_root)
4377 {
4378 	int ret = 0;
4379 	struct fs_path *p;
4380 	u64 gen;
4381 
4382 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4383 	       "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4384 		clone_root->root->objectid, clone_root->ino,
4385 		clone_root->offset);
4386 
4387 	p = fs_path_alloc();
4388 	if (!p)
4389 		return -ENOMEM;
4390 
4391 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4392 	if (ret < 0)
4393 		goto out;
4394 
4395 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4396 	if (ret < 0)
4397 		goto out;
4398 
4399 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4400 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4401 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4402 
4403 	if (clone_root->root == sctx->send_root) {
4404 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4405 				&gen, NULL, NULL, NULL, NULL);
4406 		if (ret < 0)
4407 			goto out;
4408 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4409 	} else {
4410 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4411 	}
4412 	if (ret < 0)
4413 		goto out;
4414 
4415 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4416 			clone_root->root->root_item.uuid);
4417 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4418 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4419 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4420 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4421 			clone_root->offset);
4422 
4423 	ret = send_cmd(sctx);
4424 
4425 tlv_put_failure:
4426 out:
4427 	fs_path_free(p);
4428 	return ret;
4429 }
4430 
4431 /*
4432  * Send an update extent command to user space.
4433  */
4434 static int send_update_extent(struct send_ctx *sctx,
4435 			      u64 offset, u32 len)
4436 {
4437 	int ret = 0;
4438 	struct fs_path *p;
4439 
4440 	p = fs_path_alloc();
4441 	if (!p)
4442 		return -ENOMEM;
4443 
4444 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4445 	if (ret < 0)
4446 		goto out;
4447 
4448 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4449 	if (ret < 0)
4450 		goto out;
4451 
4452 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4453 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4454 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4455 
4456 	ret = send_cmd(sctx);
4457 
4458 tlv_put_failure:
4459 out:
4460 	fs_path_free(p);
4461 	return ret;
4462 }
4463 
4464 static int send_hole(struct send_ctx *sctx, u64 end)
4465 {
4466 	struct fs_path *p = NULL;
4467 	u64 offset = sctx->cur_inode_last_extent;
4468 	u64 len;
4469 	int ret = 0;
4470 
4471 	p = fs_path_alloc();
4472 	if (!p)
4473 		return -ENOMEM;
4474 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4475 	if (ret < 0)
4476 		goto tlv_put_failure;
4477 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4478 	while (offset < end) {
4479 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4480 
4481 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4482 		if (ret < 0)
4483 			break;
4484 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4485 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4486 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4487 		ret = send_cmd(sctx);
4488 		if (ret < 0)
4489 			break;
4490 		offset += len;
4491 	}
4492 tlv_put_failure:
4493 	fs_path_free(p);
4494 	return ret;
4495 }
4496 
4497 static int send_write_or_clone(struct send_ctx *sctx,
4498 			       struct btrfs_path *path,
4499 			       struct btrfs_key *key,
4500 			       struct clone_root *clone_root)
4501 {
4502 	int ret = 0;
4503 	struct btrfs_file_extent_item *ei;
4504 	u64 offset = key->offset;
4505 	u64 pos = 0;
4506 	u64 len;
4507 	u32 l;
4508 	u8 type;
4509 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4510 
4511 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4512 			struct btrfs_file_extent_item);
4513 	type = btrfs_file_extent_type(path->nodes[0], ei);
4514 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4515 		len = btrfs_file_extent_inline_len(path->nodes[0],
4516 						   path->slots[0], ei);
4517 		/*
4518 		 * it is possible the inline item won't cover the whole page,
4519 		 * but there may be items after this page.  Make
4520 		 * sure to send the whole thing
4521 		 */
4522 		len = PAGE_CACHE_ALIGN(len);
4523 	} else {
4524 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4525 	}
4526 
4527 	if (offset + len > sctx->cur_inode_size)
4528 		len = sctx->cur_inode_size - offset;
4529 	if (len == 0) {
4530 		ret = 0;
4531 		goto out;
4532 	}
4533 
4534 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
4535 		ret = send_clone(sctx, offset, len, clone_root);
4536 	} else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
4537 		ret = send_update_extent(sctx, offset, len);
4538 	} else {
4539 		while (pos < len) {
4540 			l = len - pos;
4541 			if (l > BTRFS_SEND_READ_SIZE)
4542 				l = BTRFS_SEND_READ_SIZE;
4543 			ret = send_write(sctx, pos + offset, l);
4544 			if (ret < 0)
4545 				goto out;
4546 			if (!ret)
4547 				break;
4548 			pos += ret;
4549 		}
4550 		ret = 0;
4551 	}
4552 out:
4553 	return ret;
4554 }
4555 
4556 static int is_extent_unchanged(struct send_ctx *sctx,
4557 			       struct btrfs_path *left_path,
4558 			       struct btrfs_key *ekey)
4559 {
4560 	int ret = 0;
4561 	struct btrfs_key key;
4562 	struct btrfs_path *path = NULL;
4563 	struct extent_buffer *eb;
4564 	int slot;
4565 	struct btrfs_key found_key;
4566 	struct btrfs_file_extent_item *ei;
4567 	u64 left_disknr;
4568 	u64 right_disknr;
4569 	u64 left_offset;
4570 	u64 right_offset;
4571 	u64 left_offset_fixed;
4572 	u64 left_len;
4573 	u64 right_len;
4574 	u64 left_gen;
4575 	u64 right_gen;
4576 	u8 left_type;
4577 	u8 right_type;
4578 
4579 	path = alloc_path_for_send();
4580 	if (!path)
4581 		return -ENOMEM;
4582 
4583 	eb = left_path->nodes[0];
4584 	slot = left_path->slots[0];
4585 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4586 	left_type = btrfs_file_extent_type(eb, ei);
4587 
4588 	if (left_type != BTRFS_FILE_EXTENT_REG) {
4589 		ret = 0;
4590 		goto out;
4591 	}
4592 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4593 	left_len = btrfs_file_extent_num_bytes(eb, ei);
4594 	left_offset = btrfs_file_extent_offset(eb, ei);
4595 	left_gen = btrfs_file_extent_generation(eb, ei);
4596 
4597 	/*
4598 	 * Following comments will refer to these graphics. L is the left
4599 	 * extents which we are checking at the moment. 1-8 are the right
4600 	 * extents that we iterate.
4601 	 *
4602 	 *       |-----L-----|
4603 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4604 	 *
4605 	 *       |-----L-----|
4606 	 * |--1--|-2b-|...(same as above)
4607 	 *
4608 	 * Alternative situation. Happens on files where extents got split.
4609 	 *       |-----L-----|
4610 	 * |-----------7-----------|-6-|
4611 	 *
4612 	 * Alternative situation. Happens on files which got larger.
4613 	 *       |-----L-----|
4614 	 * |-8-|
4615 	 * Nothing follows after 8.
4616 	 */
4617 
4618 	key.objectid = ekey->objectid;
4619 	key.type = BTRFS_EXTENT_DATA_KEY;
4620 	key.offset = ekey->offset;
4621 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4622 	if (ret < 0)
4623 		goto out;
4624 	if (ret) {
4625 		ret = 0;
4626 		goto out;
4627 	}
4628 
4629 	/*
4630 	 * Handle special case where the right side has no extents at all.
4631 	 */
4632 	eb = path->nodes[0];
4633 	slot = path->slots[0];
4634 	btrfs_item_key_to_cpu(eb, &found_key, slot);
4635 	if (found_key.objectid != key.objectid ||
4636 	    found_key.type != key.type) {
4637 		/* If we're a hole then just pretend nothing changed */
4638 		ret = (left_disknr) ? 0 : 1;
4639 		goto out;
4640 	}
4641 
4642 	/*
4643 	 * We're now on 2a, 2b or 7.
4644 	 */
4645 	key = found_key;
4646 	while (key.offset < ekey->offset + left_len) {
4647 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4648 		right_type = btrfs_file_extent_type(eb, ei);
4649 		if (right_type != BTRFS_FILE_EXTENT_REG) {
4650 			ret = 0;
4651 			goto out;
4652 		}
4653 
4654 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4655 		right_len = btrfs_file_extent_num_bytes(eb, ei);
4656 		right_offset = btrfs_file_extent_offset(eb, ei);
4657 		right_gen = btrfs_file_extent_generation(eb, ei);
4658 
4659 		/*
4660 		 * Are we at extent 8? If yes, we know the extent is changed.
4661 		 * This may only happen on the first iteration.
4662 		 */
4663 		if (found_key.offset + right_len <= ekey->offset) {
4664 			/* If we're a hole just pretend nothing changed */
4665 			ret = (left_disknr) ? 0 : 1;
4666 			goto out;
4667 		}
4668 
4669 		left_offset_fixed = left_offset;
4670 		if (key.offset < ekey->offset) {
4671 			/* Fix the right offset for 2a and 7. */
4672 			right_offset += ekey->offset - key.offset;
4673 		} else {
4674 			/* Fix the left offset for all behind 2a and 2b */
4675 			left_offset_fixed += key.offset - ekey->offset;
4676 		}
4677 
4678 		/*
4679 		 * Check if we have the same extent.
4680 		 */
4681 		if (left_disknr != right_disknr ||
4682 		    left_offset_fixed != right_offset ||
4683 		    left_gen != right_gen) {
4684 			ret = 0;
4685 			goto out;
4686 		}
4687 
4688 		/*
4689 		 * Go to the next extent.
4690 		 */
4691 		ret = btrfs_next_item(sctx->parent_root, path);
4692 		if (ret < 0)
4693 			goto out;
4694 		if (!ret) {
4695 			eb = path->nodes[0];
4696 			slot = path->slots[0];
4697 			btrfs_item_key_to_cpu(eb, &found_key, slot);
4698 		}
4699 		if (ret || found_key.objectid != key.objectid ||
4700 		    found_key.type != key.type) {
4701 			key.offset += right_len;
4702 			break;
4703 		}
4704 		if (found_key.offset != key.offset + right_len) {
4705 			ret = 0;
4706 			goto out;
4707 		}
4708 		key = found_key;
4709 	}
4710 
4711 	/*
4712 	 * We're now behind the left extent (treat as unchanged) or at the end
4713 	 * of the right side (treat as changed).
4714 	 */
4715 	if (key.offset >= ekey->offset + left_len)
4716 		ret = 1;
4717 	else
4718 		ret = 0;
4719 
4720 
4721 out:
4722 	btrfs_free_path(path);
4723 	return ret;
4724 }
4725 
4726 static int get_last_extent(struct send_ctx *sctx, u64 offset)
4727 {
4728 	struct btrfs_path *path;
4729 	struct btrfs_root *root = sctx->send_root;
4730 	struct btrfs_file_extent_item *fi;
4731 	struct btrfs_key key;
4732 	u64 extent_end;
4733 	u8 type;
4734 	int ret;
4735 
4736 	path = alloc_path_for_send();
4737 	if (!path)
4738 		return -ENOMEM;
4739 
4740 	sctx->cur_inode_last_extent = 0;
4741 
4742 	key.objectid = sctx->cur_ino;
4743 	key.type = BTRFS_EXTENT_DATA_KEY;
4744 	key.offset = offset;
4745 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
4746 	if (ret < 0)
4747 		goto out;
4748 	ret = 0;
4749 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4750 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
4751 		goto out;
4752 
4753 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4754 			    struct btrfs_file_extent_item);
4755 	type = btrfs_file_extent_type(path->nodes[0], fi);
4756 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4757 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4758 							path->slots[0], fi);
4759 		extent_end = ALIGN(key.offset + size,
4760 				   sctx->send_root->sectorsize);
4761 	} else {
4762 		extent_end = key.offset +
4763 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
4764 	}
4765 	sctx->cur_inode_last_extent = extent_end;
4766 out:
4767 	btrfs_free_path(path);
4768 	return ret;
4769 }
4770 
4771 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
4772 			   struct btrfs_key *key)
4773 {
4774 	struct btrfs_file_extent_item *fi;
4775 	u64 extent_end;
4776 	u8 type;
4777 	int ret = 0;
4778 
4779 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
4780 		return 0;
4781 
4782 	if (sctx->cur_inode_last_extent == (u64)-1) {
4783 		ret = get_last_extent(sctx, key->offset - 1);
4784 		if (ret)
4785 			return ret;
4786 	}
4787 
4788 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4789 			    struct btrfs_file_extent_item);
4790 	type = btrfs_file_extent_type(path->nodes[0], fi);
4791 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4792 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4793 							path->slots[0], fi);
4794 		extent_end = ALIGN(key->offset + size,
4795 				   sctx->send_root->sectorsize);
4796 	} else {
4797 		extent_end = key->offset +
4798 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
4799 	}
4800 
4801 	if (path->slots[0] == 0 &&
4802 	    sctx->cur_inode_last_extent < key->offset) {
4803 		/*
4804 		 * We might have skipped entire leafs that contained only
4805 		 * file extent items for our current inode. These leafs have
4806 		 * a generation number smaller (older) than the one in the
4807 		 * current leaf and the leaf our last extent came from, and
4808 		 * are located between these 2 leafs.
4809 		 */
4810 		ret = get_last_extent(sctx, key->offset - 1);
4811 		if (ret)
4812 			return ret;
4813 	}
4814 
4815 	if (sctx->cur_inode_last_extent < key->offset)
4816 		ret = send_hole(sctx, key->offset);
4817 	sctx->cur_inode_last_extent = extent_end;
4818 	return ret;
4819 }
4820 
4821 static int process_extent(struct send_ctx *sctx,
4822 			  struct btrfs_path *path,
4823 			  struct btrfs_key *key)
4824 {
4825 	struct clone_root *found_clone = NULL;
4826 	int ret = 0;
4827 
4828 	if (S_ISLNK(sctx->cur_inode_mode))
4829 		return 0;
4830 
4831 	if (sctx->parent_root && !sctx->cur_inode_new) {
4832 		ret = is_extent_unchanged(sctx, path, key);
4833 		if (ret < 0)
4834 			goto out;
4835 		if (ret) {
4836 			ret = 0;
4837 			goto out_hole;
4838 		}
4839 	} else {
4840 		struct btrfs_file_extent_item *ei;
4841 		u8 type;
4842 
4843 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4844 				    struct btrfs_file_extent_item);
4845 		type = btrfs_file_extent_type(path->nodes[0], ei);
4846 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
4847 		    type == BTRFS_FILE_EXTENT_REG) {
4848 			/*
4849 			 * The send spec does not have a prealloc command yet,
4850 			 * so just leave a hole for prealloc'ed extents until
4851 			 * we have enough commands queued up to justify rev'ing
4852 			 * the send spec.
4853 			 */
4854 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
4855 				ret = 0;
4856 				goto out;
4857 			}
4858 
4859 			/* Have a hole, just skip it. */
4860 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
4861 				ret = 0;
4862 				goto out;
4863 			}
4864 		}
4865 	}
4866 
4867 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
4868 			sctx->cur_inode_size, &found_clone);
4869 	if (ret != -ENOENT && ret < 0)
4870 		goto out;
4871 
4872 	ret = send_write_or_clone(sctx, path, key, found_clone);
4873 	if (ret)
4874 		goto out;
4875 out_hole:
4876 	ret = maybe_send_hole(sctx, path, key);
4877 out:
4878 	return ret;
4879 }
4880 
4881 static int process_all_extents(struct send_ctx *sctx)
4882 {
4883 	int ret;
4884 	struct btrfs_root *root;
4885 	struct btrfs_path *path;
4886 	struct btrfs_key key;
4887 	struct btrfs_key found_key;
4888 	struct extent_buffer *eb;
4889 	int slot;
4890 
4891 	root = sctx->send_root;
4892 	path = alloc_path_for_send();
4893 	if (!path)
4894 		return -ENOMEM;
4895 
4896 	key.objectid = sctx->cmp_key->objectid;
4897 	key.type = BTRFS_EXTENT_DATA_KEY;
4898 	key.offset = 0;
4899 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4900 	if (ret < 0)
4901 		goto out;
4902 
4903 	while (1) {
4904 		eb = path->nodes[0];
4905 		slot = path->slots[0];
4906 
4907 		if (slot >= btrfs_header_nritems(eb)) {
4908 			ret = btrfs_next_leaf(root, path);
4909 			if (ret < 0) {
4910 				goto out;
4911 			} else if (ret > 0) {
4912 				ret = 0;
4913 				break;
4914 			}
4915 			continue;
4916 		}
4917 
4918 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4919 
4920 		if (found_key.objectid != key.objectid ||
4921 		    found_key.type != key.type) {
4922 			ret = 0;
4923 			goto out;
4924 		}
4925 
4926 		ret = process_extent(sctx, path, &found_key);
4927 		if (ret < 0)
4928 			goto out;
4929 
4930 		path->slots[0]++;
4931 	}
4932 
4933 out:
4934 	btrfs_free_path(path);
4935 	return ret;
4936 }
4937 
4938 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
4939 					   int *pending_move,
4940 					   int *refs_processed)
4941 {
4942 	int ret = 0;
4943 
4944 	if (sctx->cur_ino == 0)
4945 		goto out;
4946 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
4947 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
4948 		goto out;
4949 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
4950 		goto out;
4951 
4952 	ret = process_recorded_refs(sctx, pending_move);
4953 	if (ret < 0)
4954 		goto out;
4955 
4956 	*refs_processed = 1;
4957 out:
4958 	return ret;
4959 }
4960 
4961 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
4962 {
4963 	int ret = 0;
4964 	u64 left_mode;
4965 	u64 left_uid;
4966 	u64 left_gid;
4967 	u64 right_mode;
4968 	u64 right_uid;
4969 	u64 right_gid;
4970 	int need_chmod = 0;
4971 	int need_chown = 0;
4972 	int pending_move = 0;
4973 	int refs_processed = 0;
4974 
4975 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
4976 					      &refs_processed);
4977 	if (ret < 0)
4978 		goto out;
4979 
4980 	/*
4981 	 * We have processed the refs and thus need to advance send_progress.
4982 	 * Now, calls to get_cur_xxx will take the updated refs of the current
4983 	 * inode into account.
4984 	 *
4985 	 * On the other hand, if our current inode is a directory and couldn't
4986 	 * be moved/renamed because its parent was renamed/moved too and it has
4987 	 * a higher inode number, we can only move/rename our current inode
4988 	 * after we moved/renamed its parent. Therefore in this case operate on
4989 	 * the old path (pre move/rename) of our current inode, and the
4990 	 * move/rename will be performed later.
4991 	 */
4992 	if (refs_processed && !pending_move)
4993 		sctx->send_progress = sctx->cur_ino + 1;
4994 
4995 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
4996 		goto out;
4997 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
4998 		goto out;
4999 
5000 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5001 			&left_mode, &left_uid, &left_gid, NULL);
5002 	if (ret < 0)
5003 		goto out;
5004 
5005 	if (!sctx->parent_root || sctx->cur_inode_new) {
5006 		need_chown = 1;
5007 		if (!S_ISLNK(sctx->cur_inode_mode))
5008 			need_chmod = 1;
5009 	} else {
5010 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5011 				NULL, NULL, &right_mode, &right_uid,
5012 				&right_gid, NULL);
5013 		if (ret < 0)
5014 			goto out;
5015 
5016 		if (left_uid != right_uid || left_gid != right_gid)
5017 			need_chown = 1;
5018 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5019 			need_chmod = 1;
5020 	}
5021 
5022 	if (S_ISREG(sctx->cur_inode_mode)) {
5023 		if (need_send_hole(sctx)) {
5024 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5025 			    sctx->cur_inode_last_extent <
5026 			    sctx->cur_inode_size) {
5027 				ret = get_last_extent(sctx, (u64)-1);
5028 				if (ret)
5029 					goto out;
5030 			}
5031 			if (sctx->cur_inode_last_extent <
5032 			    sctx->cur_inode_size) {
5033 				ret = send_hole(sctx, sctx->cur_inode_size);
5034 				if (ret)
5035 					goto out;
5036 			}
5037 		}
5038 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5039 				sctx->cur_inode_size);
5040 		if (ret < 0)
5041 			goto out;
5042 	}
5043 
5044 	if (need_chown) {
5045 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5046 				left_uid, left_gid);
5047 		if (ret < 0)
5048 			goto out;
5049 	}
5050 	if (need_chmod) {
5051 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5052 				left_mode);
5053 		if (ret < 0)
5054 			goto out;
5055 	}
5056 
5057 	/*
5058 	 * If other directory inodes depended on our current directory
5059 	 * inode's move/rename, now do their move/rename operations.
5060 	 */
5061 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5062 		ret = apply_children_dir_moves(sctx);
5063 		if (ret)
5064 			goto out;
5065 		/*
5066 		 * Need to send that every time, no matter if it actually
5067 		 * changed between the two trees as we have done changes to
5068 		 * the inode before. If our inode is a directory and it's
5069 		 * waiting to be moved/renamed, we will send its utimes when
5070 		 * it's moved/renamed, therefore we don't need to do it here.
5071 		 */
5072 		sctx->send_progress = sctx->cur_ino + 1;
5073 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5074 		if (ret < 0)
5075 			goto out;
5076 	}
5077 
5078 out:
5079 	return ret;
5080 }
5081 
5082 static int changed_inode(struct send_ctx *sctx,
5083 			 enum btrfs_compare_tree_result result)
5084 {
5085 	int ret = 0;
5086 	struct btrfs_key *key = sctx->cmp_key;
5087 	struct btrfs_inode_item *left_ii = NULL;
5088 	struct btrfs_inode_item *right_ii = NULL;
5089 	u64 left_gen = 0;
5090 	u64 right_gen = 0;
5091 
5092 	sctx->cur_ino = key->objectid;
5093 	sctx->cur_inode_new_gen = 0;
5094 	sctx->cur_inode_last_extent = (u64)-1;
5095 
5096 	/*
5097 	 * Set send_progress to current inode. This will tell all get_cur_xxx
5098 	 * functions that the current inode's refs are not updated yet. Later,
5099 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5100 	 */
5101 	sctx->send_progress = sctx->cur_ino;
5102 
5103 	if (result == BTRFS_COMPARE_TREE_NEW ||
5104 	    result == BTRFS_COMPARE_TREE_CHANGED) {
5105 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5106 				sctx->left_path->slots[0],
5107 				struct btrfs_inode_item);
5108 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5109 				left_ii);
5110 	} else {
5111 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5112 				sctx->right_path->slots[0],
5113 				struct btrfs_inode_item);
5114 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5115 				right_ii);
5116 	}
5117 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
5118 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5119 				sctx->right_path->slots[0],
5120 				struct btrfs_inode_item);
5121 
5122 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5123 				right_ii);
5124 
5125 		/*
5126 		 * The cur_ino = root dir case is special here. We can't treat
5127 		 * the inode as deleted+reused because it would generate a
5128 		 * stream that tries to delete/mkdir the root dir.
5129 		 */
5130 		if (left_gen != right_gen &&
5131 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5132 			sctx->cur_inode_new_gen = 1;
5133 	}
5134 
5135 	if (result == BTRFS_COMPARE_TREE_NEW) {
5136 		sctx->cur_inode_gen = left_gen;
5137 		sctx->cur_inode_new = 1;
5138 		sctx->cur_inode_deleted = 0;
5139 		sctx->cur_inode_size = btrfs_inode_size(
5140 				sctx->left_path->nodes[0], left_ii);
5141 		sctx->cur_inode_mode = btrfs_inode_mode(
5142 				sctx->left_path->nodes[0], left_ii);
5143 		sctx->cur_inode_rdev = btrfs_inode_rdev(
5144 				sctx->left_path->nodes[0], left_ii);
5145 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5146 			ret = send_create_inode_if_needed(sctx);
5147 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
5148 		sctx->cur_inode_gen = right_gen;
5149 		sctx->cur_inode_new = 0;
5150 		sctx->cur_inode_deleted = 1;
5151 		sctx->cur_inode_size = btrfs_inode_size(
5152 				sctx->right_path->nodes[0], right_ii);
5153 		sctx->cur_inode_mode = btrfs_inode_mode(
5154 				sctx->right_path->nodes[0], right_ii);
5155 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5156 		/*
5157 		 * We need to do some special handling in case the inode was
5158 		 * reported as changed with a changed generation number. This
5159 		 * means that the original inode was deleted and new inode
5160 		 * reused the same inum. So we have to treat the old inode as
5161 		 * deleted and the new one as new.
5162 		 */
5163 		if (sctx->cur_inode_new_gen) {
5164 			/*
5165 			 * First, process the inode as if it was deleted.
5166 			 */
5167 			sctx->cur_inode_gen = right_gen;
5168 			sctx->cur_inode_new = 0;
5169 			sctx->cur_inode_deleted = 1;
5170 			sctx->cur_inode_size = btrfs_inode_size(
5171 					sctx->right_path->nodes[0], right_ii);
5172 			sctx->cur_inode_mode = btrfs_inode_mode(
5173 					sctx->right_path->nodes[0], right_ii);
5174 			ret = process_all_refs(sctx,
5175 					BTRFS_COMPARE_TREE_DELETED);
5176 			if (ret < 0)
5177 				goto out;
5178 
5179 			/*
5180 			 * Now process the inode as if it was new.
5181 			 */
5182 			sctx->cur_inode_gen = left_gen;
5183 			sctx->cur_inode_new = 1;
5184 			sctx->cur_inode_deleted = 0;
5185 			sctx->cur_inode_size = btrfs_inode_size(
5186 					sctx->left_path->nodes[0], left_ii);
5187 			sctx->cur_inode_mode = btrfs_inode_mode(
5188 					sctx->left_path->nodes[0], left_ii);
5189 			sctx->cur_inode_rdev = btrfs_inode_rdev(
5190 					sctx->left_path->nodes[0], left_ii);
5191 			ret = send_create_inode_if_needed(sctx);
5192 			if (ret < 0)
5193 				goto out;
5194 
5195 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5196 			if (ret < 0)
5197 				goto out;
5198 			/*
5199 			 * Advance send_progress now as we did not get into
5200 			 * process_recorded_refs_if_needed in the new_gen case.
5201 			 */
5202 			sctx->send_progress = sctx->cur_ino + 1;
5203 
5204 			/*
5205 			 * Now process all extents and xattrs of the inode as if
5206 			 * they were all new.
5207 			 */
5208 			ret = process_all_extents(sctx);
5209 			if (ret < 0)
5210 				goto out;
5211 			ret = process_all_new_xattrs(sctx);
5212 			if (ret < 0)
5213 				goto out;
5214 		} else {
5215 			sctx->cur_inode_gen = left_gen;
5216 			sctx->cur_inode_new = 0;
5217 			sctx->cur_inode_new_gen = 0;
5218 			sctx->cur_inode_deleted = 0;
5219 			sctx->cur_inode_size = btrfs_inode_size(
5220 					sctx->left_path->nodes[0], left_ii);
5221 			sctx->cur_inode_mode = btrfs_inode_mode(
5222 					sctx->left_path->nodes[0], left_ii);
5223 		}
5224 	}
5225 
5226 out:
5227 	return ret;
5228 }
5229 
5230 /*
5231  * We have to process new refs before deleted refs, but compare_trees gives us
5232  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5233  * first and later process them in process_recorded_refs.
5234  * For the cur_inode_new_gen case, we skip recording completely because
5235  * changed_inode did already initiate processing of refs. The reason for this is
5236  * that in this case, compare_tree actually compares the refs of 2 different
5237  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5238  * refs of the right tree as deleted and all refs of the left tree as new.
5239  */
5240 static int changed_ref(struct send_ctx *sctx,
5241 		       enum btrfs_compare_tree_result result)
5242 {
5243 	int ret = 0;
5244 
5245 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5246 
5247 	if (!sctx->cur_inode_new_gen &&
5248 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5249 		if (result == BTRFS_COMPARE_TREE_NEW)
5250 			ret = record_new_ref(sctx);
5251 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5252 			ret = record_deleted_ref(sctx);
5253 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5254 			ret = record_changed_ref(sctx);
5255 	}
5256 
5257 	return ret;
5258 }
5259 
5260 /*
5261  * Process new/deleted/changed xattrs. We skip processing in the
5262  * cur_inode_new_gen case because changed_inode did already initiate processing
5263  * of xattrs. The reason is the same as in changed_ref
5264  */
5265 static int changed_xattr(struct send_ctx *sctx,
5266 			 enum btrfs_compare_tree_result result)
5267 {
5268 	int ret = 0;
5269 
5270 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5271 
5272 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5273 		if (result == BTRFS_COMPARE_TREE_NEW)
5274 			ret = process_new_xattr(sctx);
5275 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5276 			ret = process_deleted_xattr(sctx);
5277 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5278 			ret = process_changed_xattr(sctx);
5279 	}
5280 
5281 	return ret;
5282 }
5283 
5284 /*
5285  * Process new/deleted/changed extents. We skip processing in the
5286  * cur_inode_new_gen case because changed_inode did already initiate processing
5287  * of extents. The reason is the same as in changed_ref
5288  */
5289 static int changed_extent(struct send_ctx *sctx,
5290 			  enum btrfs_compare_tree_result result)
5291 {
5292 	int ret = 0;
5293 
5294 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5295 
5296 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5297 		if (result != BTRFS_COMPARE_TREE_DELETED)
5298 			ret = process_extent(sctx, sctx->left_path,
5299 					sctx->cmp_key);
5300 	}
5301 
5302 	return ret;
5303 }
5304 
5305 static int dir_changed(struct send_ctx *sctx, u64 dir)
5306 {
5307 	u64 orig_gen, new_gen;
5308 	int ret;
5309 
5310 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5311 			     NULL, NULL);
5312 	if (ret)
5313 		return ret;
5314 
5315 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5316 			     NULL, NULL, NULL);
5317 	if (ret)
5318 		return ret;
5319 
5320 	return (orig_gen != new_gen) ? 1 : 0;
5321 }
5322 
5323 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5324 			struct btrfs_key *key)
5325 {
5326 	struct btrfs_inode_extref *extref;
5327 	struct extent_buffer *leaf;
5328 	u64 dirid = 0, last_dirid = 0;
5329 	unsigned long ptr;
5330 	u32 item_size;
5331 	u32 cur_offset = 0;
5332 	int ref_name_len;
5333 	int ret = 0;
5334 
5335 	/* Easy case, just check this one dirid */
5336 	if (key->type == BTRFS_INODE_REF_KEY) {
5337 		dirid = key->offset;
5338 
5339 		ret = dir_changed(sctx, dirid);
5340 		goto out;
5341 	}
5342 
5343 	leaf = path->nodes[0];
5344 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5345 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5346 	while (cur_offset < item_size) {
5347 		extref = (struct btrfs_inode_extref *)(ptr +
5348 						       cur_offset);
5349 		dirid = btrfs_inode_extref_parent(leaf, extref);
5350 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5351 		cur_offset += ref_name_len + sizeof(*extref);
5352 		if (dirid == last_dirid)
5353 			continue;
5354 		ret = dir_changed(sctx, dirid);
5355 		if (ret)
5356 			break;
5357 		last_dirid = dirid;
5358 	}
5359 out:
5360 	return ret;
5361 }
5362 
5363 /*
5364  * Updates compare related fields in sctx and simply forwards to the actual
5365  * changed_xxx functions.
5366  */
5367 static int changed_cb(struct btrfs_root *left_root,
5368 		      struct btrfs_root *right_root,
5369 		      struct btrfs_path *left_path,
5370 		      struct btrfs_path *right_path,
5371 		      struct btrfs_key *key,
5372 		      enum btrfs_compare_tree_result result,
5373 		      void *ctx)
5374 {
5375 	int ret = 0;
5376 	struct send_ctx *sctx = ctx;
5377 
5378 	if (result == BTRFS_COMPARE_TREE_SAME) {
5379 		if (key->type == BTRFS_INODE_REF_KEY ||
5380 		    key->type == BTRFS_INODE_EXTREF_KEY) {
5381 			ret = compare_refs(sctx, left_path, key);
5382 			if (!ret)
5383 				return 0;
5384 			if (ret < 0)
5385 				return ret;
5386 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5387 			return maybe_send_hole(sctx, left_path, key);
5388 		} else {
5389 			return 0;
5390 		}
5391 		result = BTRFS_COMPARE_TREE_CHANGED;
5392 		ret = 0;
5393 	}
5394 
5395 	sctx->left_path = left_path;
5396 	sctx->right_path = right_path;
5397 	sctx->cmp_key = key;
5398 
5399 	ret = finish_inode_if_needed(sctx, 0);
5400 	if (ret < 0)
5401 		goto out;
5402 
5403 	/* Ignore non-FS objects */
5404 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5405 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5406 		goto out;
5407 
5408 	if (key->type == BTRFS_INODE_ITEM_KEY)
5409 		ret = changed_inode(sctx, result);
5410 	else if (key->type == BTRFS_INODE_REF_KEY ||
5411 		 key->type == BTRFS_INODE_EXTREF_KEY)
5412 		ret = changed_ref(sctx, result);
5413 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
5414 		ret = changed_xattr(sctx, result);
5415 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
5416 		ret = changed_extent(sctx, result);
5417 
5418 out:
5419 	return ret;
5420 }
5421 
5422 static int full_send_tree(struct send_ctx *sctx)
5423 {
5424 	int ret;
5425 	struct btrfs_root *send_root = sctx->send_root;
5426 	struct btrfs_key key;
5427 	struct btrfs_key found_key;
5428 	struct btrfs_path *path;
5429 	struct extent_buffer *eb;
5430 	int slot;
5431 
5432 	path = alloc_path_for_send();
5433 	if (!path)
5434 		return -ENOMEM;
5435 
5436 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5437 	key.type = BTRFS_INODE_ITEM_KEY;
5438 	key.offset = 0;
5439 
5440 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5441 	if (ret < 0)
5442 		goto out;
5443 	if (ret)
5444 		goto out_finish;
5445 
5446 	while (1) {
5447 		eb = path->nodes[0];
5448 		slot = path->slots[0];
5449 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5450 
5451 		ret = changed_cb(send_root, NULL, path, NULL,
5452 				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5453 		if (ret < 0)
5454 			goto out;
5455 
5456 		key.objectid = found_key.objectid;
5457 		key.type = found_key.type;
5458 		key.offset = found_key.offset + 1;
5459 
5460 		ret = btrfs_next_item(send_root, path);
5461 		if (ret < 0)
5462 			goto out;
5463 		if (ret) {
5464 			ret  = 0;
5465 			break;
5466 		}
5467 	}
5468 
5469 out_finish:
5470 	ret = finish_inode_if_needed(sctx, 1);
5471 
5472 out:
5473 	btrfs_free_path(path);
5474 	return ret;
5475 }
5476 
5477 static int send_subvol(struct send_ctx *sctx)
5478 {
5479 	int ret;
5480 
5481 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5482 		ret = send_header(sctx);
5483 		if (ret < 0)
5484 			goto out;
5485 	}
5486 
5487 	ret = send_subvol_begin(sctx);
5488 	if (ret < 0)
5489 		goto out;
5490 
5491 	if (sctx->parent_root) {
5492 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5493 				changed_cb, sctx);
5494 		if (ret < 0)
5495 			goto out;
5496 		ret = finish_inode_if_needed(sctx, 1);
5497 		if (ret < 0)
5498 			goto out;
5499 	} else {
5500 		ret = full_send_tree(sctx);
5501 		if (ret < 0)
5502 			goto out;
5503 	}
5504 
5505 out:
5506 	free_recorded_refs(sctx);
5507 	return ret;
5508 }
5509 
5510 /*
5511  * If orphan cleanup did remove any orphans from a root, it means the tree
5512  * was modified and therefore the commit root is not the same as the current
5513  * root anymore. This is a problem, because send uses the commit root and
5514  * therefore can see inode items that don't exist in the current root anymore,
5515  * and for example make calls to btrfs_iget, which will do tree lookups based
5516  * on the current root and not on the commit root. Those lookups will fail,
5517  * returning a -ESTALE error, and making send fail with that error. So make
5518  * sure a send does not see any orphans we have just removed, and that it will
5519  * see the same inodes regardless of whether a transaction commit happened
5520  * before it started (meaning that the commit root will be the same as the
5521  * current root) or not.
5522  */
5523 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
5524 {
5525 	int i;
5526 	struct btrfs_trans_handle *trans = NULL;
5527 
5528 again:
5529 	if (sctx->parent_root &&
5530 	    sctx->parent_root->node != sctx->parent_root->commit_root)
5531 		goto commit_trans;
5532 
5533 	for (i = 0; i < sctx->clone_roots_cnt; i++)
5534 		if (sctx->clone_roots[i].root->node !=
5535 		    sctx->clone_roots[i].root->commit_root)
5536 			goto commit_trans;
5537 
5538 	if (trans)
5539 		return btrfs_end_transaction(trans, sctx->send_root);
5540 
5541 	return 0;
5542 
5543 commit_trans:
5544 	/* Use any root, all fs roots will get their commit roots updated. */
5545 	if (!trans) {
5546 		trans = btrfs_join_transaction(sctx->send_root);
5547 		if (IS_ERR(trans))
5548 			return PTR_ERR(trans);
5549 		goto again;
5550 	}
5551 
5552 	return btrfs_commit_transaction(trans, sctx->send_root);
5553 }
5554 
5555 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5556 {
5557 	spin_lock(&root->root_item_lock);
5558 	root->send_in_progress--;
5559 	/*
5560 	 * Not much left to do, we don't know why it's unbalanced and
5561 	 * can't blindly reset it to 0.
5562 	 */
5563 	if (root->send_in_progress < 0)
5564 		btrfs_err(root->fs_info,
5565 			"send_in_progres unbalanced %d root %llu",
5566 			root->send_in_progress, root->root_key.objectid);
5567 	spin_unlock(&root->root_item_lock);
5568 }
5569 
5570 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5571 {
5572 	int ret = 0;
5573 	struct btrfs_root *send_root;
5574 	struct btrfs_root *clone_root;
5575 	struct btrfs_fs_info *fs_info;
5576 	struct btrfs_ioctl_send_args *arg = NULL;
5577 	struct btrfs_key key;
5578 	struct send_ctx *sctx = NULL;
5579 	u32 i;
5580 	u64 *clone_sources_tmp = NULL;
5581 	int clone_sources_to_rollback = 0;
5582 	int sort_clone_roots = 0;
5583 	int index;
5584 
5585 	if (!capable(CAP_SYS_ADMIN))
5586 		return -EPERM;
5587 
5588 	send_root = BTRFS_I(file_inode(mnt_file))->root;
5589 	fs_info = send_root->fs_info;
5590 
5591 	/*
5592 	 * The subvolume must remain read-only during send, protect against
5593 	 * making it RW. This also protects against deletion.
5594 	 */
5595 	spin_lock(&send_root->root_item_lock);
5596 	send_root->send_in_progress++;
5597 	spin_unlock(&send_root->root_item_lock);
5598 
5599 	/*
5600 	 * This is done when we lookup the root, it should already be complete
5601 	 * by the time we get here.
5602 	 */
5603 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5604 
5605 	/*
5606 	 * Userspace tools do the checks and warn the user if it's
5607 	 * not RO.
5608 	 */
5609 	if (!btrfs_root_readonly(send_root)) {
5610 		ret = -EPERM;
5611 		goto out;
5612 	}
5613 
5614 	arg = memdup_user(arg_, sizeof(*arg));
5615 	if (IS_ERR(arg)) {
5616 		ret = PTR_ERR(arg);
5617 		arg = NULL;
5618 		goto out;
5619 	}
5620 
5621 	if (!access_ok(VERIFY_READ, arg->clone_sources,
5622 			sizeof(*arg->clone_sources) *
5623 			arg->clone_sources_count)) {
5624 		ret = -EFAULT;
5625 		goto out;
5626 	}
5627 
5628 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5629 		ret = -EINVAL;
5630 		goto out;
5631 	}
5632 
5633 	sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5634 	if (!sctx) {
5635 		ret = -ENOMEM;
5636 		goto out;
5637 	}
5638 
5639 	INIT_LIST_HEAD(&sctx->new_refs);
5640 	INIT_LIST_HEAD(&sctx->deleted_refs);
5641 	INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5642 	INIT_LIST_HEAD(&sctx->name_cache_list);
5643 
5644 	sctx->flags = arg->flags;
5645 
5646 	sctx->send_filp = fget(arg->send_fd);
5647 	if (!sctx->send_filp) {
5648 		ret = -EBADF;
5649 		goto out;
5650 	}
5651 
5652 	sctx->send_root = send_root;
5653 	/*
5654 	 * Unlikely but possible, if the subvolume is marked for deletion but
5655 	 * is slow to remove the directory entry, send can still be started
5656 	 */
5657 	if (btrfs_root_dead(sctx->send_root)) {
5658 		ret = -EPERM;
5659 		goto out;
5660 	}
5661 
5662 	sctx->clone_roots_cnt = arg->clone_sources_count;
5663 
5664 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
5665 	sctx->send_buf = vmalloc(sctx->send_max_size);
5666 	if (!sctx->send_buf) {
5667 		ret = -ENOMEM;
5668 		goto out;
5669 	}
5670 
5671 	sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
5672 	if (!sctx->read_buf) {
5673 		ret = -ENOMEM;
5674 		goto out;
5675 	}
5676 
5677 	sctx->pending_dir_moves = RB_ROOT;
5678 	sctx->waiting_dir_moves = RB_ROOT;
5679 	sctx->orphan_dirs = RB_ROOT;
5680 
5681 	sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
5682 			(arg->clone_sources_count + 1));
5683 	if (!sctx->clone_roots) {
5684 		ret = -ENOMEM;
5685 		goto out;
5686 	}
5687 
5688 	if (arg->clone_sources_count) {
5689 		clone_sources_tmp = vmalloc(arg->clone_sources_count *
5690 				sizeof(*arg->clone_sources));
5691 		if (!clone_sources_tmp) {
5692 			ret = -ENOMEM;
5693 			goto out;
5694 		}
5695 
5696 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
5697 				arg->clone_sources_count *
5698 				sizeof(*arg->clone_sources));
5699 		if (ret) {
5700 			ret = -EFAULT;
5701 			goto out;
5702 		}
5703 
5704 		for (i = 0; i < arg->clone_sources_count; i++) {
5705 			key.objectid = clone_sources_tmp[i];
5706 			key.type = BTRFS_ROOT_ITEM_KEY;
5707 			key.offset = (u64)-1;
5708 
5709 			index = srcu_read_lock(&fs_info->subvol_srcu);
5710 
5711 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
5712 			if (IS_ERR(clone_root)) {
5713 				srcu_read_unlock(&fs_info->subvol_srcu, index);
5714 				ret = PTR_ERR(clone_root);
5715 				goto out;
5716 			}
5717 			clone_sources_to_rollback = i + 1;
5718 			spin_lock(&clone_root->root_item_lock);
5719 			clone_root->send_in_progress++;
5720 			if (!btrfs_root_readonly(clone_root)) {
5721 				spin_unlock(&clone_root->root_item_lock);
5722 				srcu_read_unlock(&fs_info->subvol_srcu, index);
5723 				ret = -EPERM;
5724 				goto out;
5725 			}
5726 			spin_unlock(&clone_root->root_item_lock);
5727 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5728 
5729 			sctx->clone_roots[i].root = clone_root;
5730 		}
5731 		vfree(clone_sources_tmp);
5732 		clone_sources_tmp = NULL;
5733 	}
5734 
5735 	if (arg->parent_root) {
5736 		key.objectid = arg->parent_root;
5737 		key.type = BTRFS_ROOT_ITEM_KEY;
5738 		key.offset = (u64)-1;
5739 
5740 		index = srcu_read_lock(&fs_info->subvol_srcu);
5741 
5742 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
5743 		if (IS_ERR(sctx->parent_root)) {
5744 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5745 			ret = PTR_ERR(sctx->parent_root);
5746 			goto out;
5747 		}
5748 
5749 		spin_lock(&sctx->parent_root->root_item_lock);
5750 		sctx->parent_root->send_in_progress++;
5751 		if (!btrfs_root_readonly(sctx->parent_root) ||
5752 				btrfs_root_dead(sctx->parent_root)) {
5753 			spin_unlock(&sctx->parent_root->root_item_lock);
5754 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5755 			ret = -EPERM;
5756 			goto out;
5757 		}
5758 		spin_unlock(&sctx->parent_root->root_item_lock);
5759 
5760 		srcu_read_unlock(&fs_info->subvol_srcu, index);
5761 	}
5762 
5763 	/*
5764 	 * Clones from send_root are allowed, but only if the clone source
5765 	 * is behind the current send position. This is checked while searching
5766 	 * for possible clone sources.
5767 	 */
5768 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
5769 
5770 	/* We do a bsearch later */
5771 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
5772 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
5773 			NULL);
5774 	sort_clone_roots = 1;
5775 
5776 	ret = ensure_commit_roots_uptodate(sctx);
5777 	if (ret)
5778 		goto out;
5779 
5780 	current->journal_info = BTRFS_SEND_TRANS_STUB;
5781 	ret = send_subvol(sctx);
5782 	current->journal_info = NULL;
5783 	if (ret < 0)
5784 		goto out;
5785 
5786 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
5787 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
5788 		if (ret < 0)
5789 			goto out;
5790 		ret = send_cmd(sctx);
5791 		if (ret < 0)
5792 			goto out;
5793 	}
5794 
5795 out:
5796 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
5797 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
5798 		struct rb_node *n;
5799 		struct pending_dir_move *pm;
5800 
5801 		n = rb_first(&sctx->pending_dir_moves);
5802 		pm = rb_entry(n, struct pending_dir_move, node);
5803 		while (!list_empty(&pm->list)) {
5804 			struct pending_dir_move *pm2;
5805 
5806 			pm2 = list_first_entry(&pm->list,
5807 					       struct pending_dir_move, list);
5808 			free_pending_move(sctx, pm2);
5809 		}
5810 		free_pending_move(sctx, pm);
5811 	}
5812 
5813 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
5814 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
5815 		struct rb_node *n;
5816 		struct waiting_dir_move *dm;
5817 
5818 		n = rb_first(&sctx->waiting_dir_moves);
5819 		dm = rb_entry(n, struct waiting_dir_move, node);
5820 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
5821 		kfree(dm);
5822 	}
5823 
5824 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
5825 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
5826 		struct rb_node *n;
5827 		struct orphan_dir_info *odi;
5828 
5829 		n = rb_first(&sctx->orphan_dirs);
5830 		odi = rb_entry(n, struct orphan_dir_info, node);
5831 		free_orphan_dir_info(sctx, odi);
5832 	}
5833 
5834 	if (sort_clone_roots) {
5835 		for (i = 0; i < sctx->clone_roots_cnt; i++)
5836 			btrfs_root_dec_send_in_progress(
5837 					sctx->clone_roots[i].root);
5838 	} else {
5839 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
5840 			btrfs_root_dec_send_in_progress(
5841 					sctx->clone_roots[i].root);
5842 
5843 		btrfs_root_dec_send_in_progress(send_root);
5844 	}
5845 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
5846 		btrfs_root_dec_send_in_progress(sctx->parent_root);
5847 
5848 	kfree(arg);
5849 	vfree(clone_sources_tmp);
5850 
5851 	if (sctx) {
5852 		if (sctx->send_filp)
5853 			fput(sctx->send_filp);
5854 
5855 		vfree(sctx->clone_roots);
5856 		vfree(sctx->send_buf);
5857 		vfree(sctx->read_buf);
5858 
5859 		name_cache_free(sctx);
5860 
5861 		kfree(sctx);
5862 	}
5863 
5864 	return ret;
5865 }
5866