xref: /openbmc/linux/fs/btrfs/send.c (revision c79fe9b436690209954f908a41b19e0bf575877a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 
19 #include "send.h"
20 #include "backref.h"
21 #include "locking.h"
22 #include "disk-io.h"
23 #include "btrfs_inode.h"
24 #include "transaction.h"
25 #include "compression.h"
26 #include "xattr.h"
27 
28 /*
29  * Maximum number of references an extent can have in order for us to attempt to
30  * issue clone operations instead of write operations. This currently exists to
31  * avoid hitting limitations of the backreference walking code (taking a lot of
32  * time and using too much memory for extents with large number of references).
33  */
34 #define SEND_MAX_EXTENT_REFS	64
35 
36 /*
37  * A fs_path is a helper to dynamically build path names with unknown size.
38  * It reallocates the internal buffer on demand.
39  * It allows fast adding of path elements on the right side (normal path) and
40  * fast adding to the left side (reversed path). A reversed path can also be
41  * unreversed if needed.
42  */
43 struct fs_path {
44 	union {
45 		struct {
46 			char *start;
47 			char *end;
48 
49 			char *buf;
50 			unsigned short buf_len:15;
51 			unsigned short reversed:1;
52 			char inline_buf[];
53 		};
54 		/*
55 		 * Average path length does not exceed 200 bytes, we'll have
56 		 * better packing in the slab and higher chance to satisfy
57 		 * a allocation later during send.
58 		 */
59 		char pad[256];
60 	};
61 };
62 #define FS_PATH_INLINE_SIZE \
63 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
64 
65 
66 /* reused for each extent */
67 struct clone_root {
68 	struct btrfs_root *root;
69 	u64 ino;
70 	u64 offset;
71 
72 	u64 found_refs;
73 };
74 
75 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
76 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
77 
78 struct send_ctx {
79 	struct file *send_filp;
80 	loff_t send_off;
81 	char *send_buf;
82 	u32 send_size;
83 	u32 send_max_size;
84 	u64 total_send_size;
85 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
86 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
87 
88 	struct btrfs_root *send_root;
89 	struct btrfs_root *parent_root;
90 	struct clone_root *clone_roots;
91 	int clone_roots_cnt;
92 
93 	/* current state of the compare_tree call */
94 	struct btrfs_path *left_path;
95 	struct btrfs_path *right_path;
96 	struct btrfs_key *cmp_key;
97 
98 	/*
99 	 * infos of the currently processed inode. In case of deleted inodes,
100 	 * these are the values from the deleted inode.
101 	 */
102 	u64 cur_ino;
103 	u64 cur_inode_gen;
104 	int cur_inode_new;
105 	int cur_inode_new_gen;
106 	int cur_inode_deleted;
107 	u64 cur_inode_size;
108 	u64 cur_inode_mode;
109 	u64 cur_inode_rdev;
110 	u64 cur_inode_last_extent;
111 	u64 cur_inode_next_write_offset;
112 	bool ignore_cur_inode;
113 
114 	u64 send_progress;
115 
116 	struct list_head new_refs;
117 	struct list_head deleted_refs;
118 
119 	struct radix_tree_root name_cache;
120 	struct list_head name_cache_list;
121 	int name_cache_size;
122 
123 	struct file_ra_state ra;
124 
125 	/*
126 	 * We process inodes by their increasing order, so if before an
127 	 * incremental send we reverse the parent/child relationship of
128 	 * directories such that a directory with a lower inode number was
129 	 * the parent of a directory with a higher inode number, and the one
130 	 * becoming the new parent got renamed too, we can't rename/move the
131 	 * directory with lower inode number when we finish processing it - we
132 	 * must process the directory with higher inode number first, then
133 	 * rename/move it and then rename/move the directory with lower inode
134 	 * number. Example follows.
135 	 *
136 	 * Tree state when the first send was performed:
137 	 *
138 	 * .
139 	 * |-- a                   (ino 257)
140 	 *     |-- b               (ino 258)
141 	 *         |
142 	 *         |
143 	 *         |-- c           (ino 259)
144 	 *         |   |-- d       (ino 260)
145 	 *         |
146 	 *         |-- c2          (ino 261)
147 	 *
148 	 * Tree state when the second (incremental) send is performed:
149 	 *
150 	 * .
151 	 * |-- a                   (ino 257)
152 	 *     |-- b               (ino 258)
153 	 *         |-- c2          (ino 261)
154 	 *             |-- d2      (ino 260)
155 	 *                 |-- cc  (ino 259)
156 	 *
157 	 * The sequence of steps that lead to the second state was:
158 	 *
159 	 * mv /a/b/c/d /a/b/c2/d2
160 	 * mv /a/b/c /a/b/c2/d2/cc
161 	 *
162 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
163 	 * before we move "d", which has higher inode number.
164 	 *
165 	 * So we just memorize which move/rename operations must be performed
166 	 * later when their respective parent is processed and moved/renamed.
167 	 */
168 
169 	/* Indexed by parent directory inode number. */
170 	struct rb_root pending_dir_moves;
171 
172 	/*
173 	 * Reverse index, indexed by the inode number of a directory that
174 	 * is waiting for the move/rename of its immediate parent before its
175 	 * own move/rename can be performed.
176 	 */
177 	struct rb_root waiting_dir_moves;
178 
179 	/*
180 	 * A directory that is going to be rm'ed might have a child directory
181 	 * which is in the pending directory moves index above. In this case,
182 	 * the directory can only be removed after the move/rename of its child
183 	 * is performed. Example:
184 	 *
185 	 * Parent snapshot:
186 	 *
187 	 * .                        (ino 256)
188 	 * |-- a/                   (ino 257)
189 	 *     |-- b/               (ino 258)
190 	 *         |-- c/           (ino 259)
191 	 *         |   |-- x/       (ino 260)
192 	 *         |
193 	 *         |-- y/           (ino 261)
194 	 *
195 	 * Send snapshot:
196 	 *
197 	 * .                        (ino 256)
198 	 * |-- a/                   (ino 257)
199 	 *     |-- b/               (ino 258)
200 	 *         |-- YY/          (ino 261)
201 	 *              |-- x/      (ino 260)
202 	 *
203 	 * Sequence of steps that lead to the send snapshot:
204 	 * rm -f /a/b/c/foo.txt
205 	 * mv /a/b/y /a/b/YY
206 	 * mv /a/b/c/x /a/b/YY
207 	 * rmdir /a/b/c
208 	 *
209 	 * When the child is processed, its move/rename is delayed until its
210 	 * parent is processed (as explained above), but all other operations
211 	 * like update utimes, chown, chgrp, etc, are performed and the paths
212 	 * that it uses for those operations must use the orphanized name of
213 	 * its parent (the directory we're going to rm later), so we need to
214 	 * memorize that name.
215 	 *
216 	 * Indexed by the inode number of the directory to be deleted.
217 	 */
218 	struct rb_root orphan_dirs;
219 };
220 
221 struct pending_dir_move {
222 	struct rb_node node;
223 	struct list_head list;
224 	u64 parent_ino;
225 	u64 ino;
226 	u64 gen;
227 	struct list_head update_refs;
228 };
229 
230 struct waiting_dir_move {
231 	struct rb_node node;
232 	u64 ino;
233 	/*
234 	 * There might be some directory that could not be removed because it
235 	 * was waiting for this directory inode to be moved first. Therefore
236 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
237 	 */
238 	u64 rmdir_ino;
239 	u64 rmdir_gen;
240 	bool orphanized;
241 };
242 
243 struct orphan_dir_info {
244 	struct rb_node node;
245 	u64 ino;
246 	u64 gen;
247 	u64 last_dir_index_offset;
248 };
249 
250 struct name_cache_entry {
251 	struct list_head list;
252 	/*
253 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
254 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
255 	 * more then one inum would fall into the same entry, we use radix_list
256 	 * to store the additional entries. radix_list is also used to store
257 	 * entries where two entries have the same inum but different
258 	 * generations.
259 	 */
260 	struct list_head radix_list;
261 	u64 ino;
262 	u64 gen;
263 	u64 parent_ino;
264 	u64 parent_gen;
265 	int ret;
266 	int need_later_update;
267 	int name_len;
268 	char name[];
269 };
270 
271 #define ADVANCE							1
272 #define ADVANCE_ONLY_NEXT					-1
273 
274 enum btrfs_compare_tree_result {
275 	BTRFS_COMPARE_TREE_NEW,
276 	BTRFS_COMPARE_TREE_DELETED,
277 	BTRFS_COMPARE_TREE_CHANGED,
278 	BTRFS_COMPARE_TREE_SAME,
279 };
280 
281 __cold
282 static void inconsistent_snapshot_error(struct send_ctx *sctx,
283 					enum btrfs_compare_tree_result result,
284 					const char *what)
285 {
286 	const char *result_string;
287 
288 	switch (result) {
289 	case BTRFS_COMPARE_TREE_NEW:
290 		result_string = "new";
291 		break;
292 	case BTRFS_COMPARE_TREE_DELETED:
293 		result_string = "deleted";
294 		break;
295 	case BTRFS_COMPARE_TREE_CHANGED:
296 		result_string = "updated";
297 		break;
298 	case BTRFS_COMPARE_TREE_SAME:
299 		ASSERT(0);
300 		result_string = "unchanged";
301 		break;
302 	default:
303 		ASSERT(0);
304 		result_string = "unexpected";
305 	}
306 
307 	btrfs_err(sctx->send_root->fs_info,
308 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
309 		  result_string, what, sctx->cmp_key->objectid,
310 		  sctx->send_root->root_key.objectid,
311 		  (sctx->parent_root ?
312 		   sctx->parent_root->root_key.objectid : 0));
313 }
314 
315 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
316 
317 static struct waiting_dir_move *
318 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
319 
320 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
321 
322 static int need_send_hole(struct send_ctx *sctx)
323 {
324 	return (sctx->parent_root && !sctx->cur_inode_new &&
325 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
326 		S_ISREG(sctx->cur_inode_mode));
327 }
328 
329 static void fs_path_reset(struct fs_path *p)
330 {
331 	if (p->reversed) {
332 		p->start = p->buf + p->buf_len - 1;
333 		p->end = p->start;
334 		*p->start = 0;
335 	} else {
336 		p->start = p->buf;
337 		p->end = p->start;
338 		*p->start = 0;
339 	}
340 }
341 
342 static struct fs_path *fs_path_alloc(void)
343 {
344 	struct fs_path *p;
345 
346 	p = kmalloc(sizeof(*p), GFP_KERNEL);
347 	if (!p)
348 		return NULL;
349 	p->reversed = 0;
350 	p->buf = p->inline_buf;
351 	p->buf_len = FS_PATH_INLINE_SIZE;
352 	fs_path_reset(p);
353 	return p;
354 }
355 
356 static struct fs_path *fs_path_alloc_reversed(void)
357 {
358 	struct fs_path *p;
359 
360 	p = fs_path_alloc();
361 	if (!p)
362 		return NULL;
363 	p->reversed = 1;
364 	fs_path_reset(p);
365 	return p;
366 }
367 
368 static void fs_path_free(struct fs_path *p)
369 {
370 	if (!p)
371 		return;
372 	if (p->buf != p->inline_buf)
373 		kfree(p->buf);
374 	kfree(p);
375 }
376 
377 static int fs_path_len(struct fs_path *p)
378 {
379 	return p->end - p->start;
380 }
381 
382 static int fs_path_ensure_buf(struct fs_path *p, int len)
383 {
384 	char *tmp_buf;
385 	int path_len;
386 	int old_buf_len;
387 
388 	len++;
389 
390 	if (p->buf_len >= len)
391 		return 0;
392 
393 	if (len > PATH_MAX) {
394 		WARN_ON(1);
395 		return -ENOMEM;
396 	}
397 
398 	path_len = p->end - p->start;
399 	old_buf_len = p->buf_len;
400 
401 	/*
402 	 * First time the inline_buf does not suffice
403 	 */
404 	if (p->buf == p->inline_buf) {
405 		tmp_buf = kmalloc(len, GFP_KERNEL);
406 		if (tmp_buf)
407 			memcpy(tmp_buf, p->buf, old_buf_len);
408 	} else {
409 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
410 	}
411 	if (!tmp_buf)
412 		return -ENOMEM;
413 	p->buf = tmp_buf;
414 	/*
415 	 * The real size of the buffer is bigger, this will let the fast path
416 	 * happen most of the time
417 	 */
418 	p->buf_len = ksize(p->buf);
419 
420 	if (p->reversed) {
421 		tmp_buf = p->buf + old_buf_len - path_len - 1;
422 		p->end = p->buf + p->buf_len - 1;
423 		p->start = p->end - path_len;
424 		memmove(p->start, tmp_buf, path_len + 1);
425 	} else {
426 		p->start = p->buf;
427 		p->end = p->start + path_len;
428 	}
429 	return 0;
430 }
431 
432 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
433 				   char **prepared)
434 {
435 	int ret;
436 	int new_len;
437 
438 	new_len = p->end - p->start + name_len;
439 	if (p->start != p->end)
440 		new_len++;
441 	ret = fs_path_ensure_buf(p, new_len);
442 	if (ret < 0)
443 		goto out;
444 
445 	if (p->reversed) {
446 		if (p->start != p->end)
447 			*--p->start = '/';
448 		p->start -= name_len;
449 		*prepared = p->start;
450 	} else {
451 		if (p->start != p->end)
452 			*p->end++ = '/';
453 		*prepared = p->end;
454 		p->end += name_len;
455 		*p->end = 0;
456 	}
457 
458 out:
459 	return ret;
460 }
461 
462 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
463 {
464 	int ret;
465 	char *prepared;
466 
467 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
468 	if (ret < 0)
469 		goto out;
470 	memcpy(prepared, name, name_len);
471 
472 out:
473 	return ret;
474 }
475 
476 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
477 {
478 	int ret;
479 	char *prepared;
480 
481 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
482 	if (ret < 0)
483 		goto out;
484 	memcpy(prepared, p2->start, p2->end - p2->start);
485 
486 out:
487 	return ret;
488 }
489 
490 static int fs_path_add_from_extent_buffer(struct fs_path *p,
491 					  struct extent_buffer *eb,
492 					  unsigned long off, int len)
493 {
494 	int ret;
495 	char *prepared;
496 
497 	ret = fs_path_prepare_for_add(p, len, &prepared);
498 	if (ret < 0)
499 		goto out;
500 
501 	read_extent_buffer(eb, prepared, off, len);
502 
503 out:
504 	return ret;
505 }
506 
507 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
508 {
509 	int ret;
510 
511 	p->reversed = from->reversed;
512 	fs_path_reset(p);
513 
514 	ret = fs_path_add_path(p, from);
515 
516 	return ret;
517 }
518 
519 
520 static void fs_path_unreverse(struct fs_path *p)
521 {
522 	char *tmp;
523 	int len;
524 
525 	if (!p->reversed)
526 		return;
527 
528 	tmp = p->start;
529 	len = p->end - p->start;
530 	p->start = p->buf;
531 	p->end = p->start + len;
532 	memmove(p->start, tmp, len + 1);
533 	p->reversed = 0;
534 }
535 
536 static struct btrfs_path *alloc_path_for_send(void)
537 {
538 	struct btrfs_path *path;
539 
540 	path = btrfs_alloc_path();
541 	if (!path)
542 		return NULL;
543 	path->search_commit_root = 1;
544 	path->skip_locking = 1;
545 	path->need_commit_sem = 1;
546 	return path;
547 }
548 
549 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
550 {
551 	int ret;
552 	u32 pos = 0;
553 
554 	while (pos < len) {
555 		ret = kernel_write(filp, buf + pos, len - pos, off);
556 		/* TODO handle that correctly */
557 		/*if (ret == -ERESTARTSYS) {
558 			continue;
559 		}*/
560 		if (ret < 0)
561 			return ret;
562 		if (ret == 0) {
563 			return -EIO;
564 		}
565 		pos += ret;
566 	}
567 
568 	return 0;
569 }
570 
571 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
572 {
573 	struct btrfs_tlv_header *hdr;
574 	int total_len = sizeof(*hdr) + len;
575 	int left = sctx->send_max_size - sctx->send_size;
576 
577 	if (unlikely(left < total_len))
578 		return -EOVERFLOW;
579 
580 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
581 	put_unaligned_le16(attr, &hdr->tlv_type);
582 	put_unaligned_le16(len, &hdr->tlv_len);
583 	memcpy(hdr + 1, data, len);
584 	sctx->send_size += total_len;
585 
586 	return 0;
587 }
588 
589 #define TLV_PUT_DEFINE_INT(bits) \
590 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
591 			u##bits attr, u##bits value)			\
592 	{								\
593 		__le##bits __tmp = cpu_to_le##bits(value);		\
594 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
595 	}
596 
597 TLV_PUT_DEFINE_INT(64)
598 
599 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
600 			  const char *str, int len)
601 {
602 	if (len == -1)
603 		len = strlen(str);
604 	return tlv_put(sctx, attr, str, len);
605 }
606 
607 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
608 			const u8 *uuid)
609 {
610 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
611 }
612 
613 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
614 				  struct extent_buffer *eb,
615 				  struct btrfs_timespec *ts)
616 {
617 	struct btrfs_timespec bts;
618 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
619 	return tlv_put(sctx, attr, &bts, sizeof(bts));
620 }
621 
622 
623 #define TLV_PUT(sctx, attrtype, data, attrlen) \
624 	do { \
625 		ret = tlv_put(sctx, attrtype, data, attrlen); \
626 		if (ret < 0) \
627 			goto tlv_put_failure; \
628 	} while (0)
629 
630 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
631 	do { \
632 		ret = tlv_put_u##bits(sctx, attrtype, value); \
633 		if (ret < 0) \
634 			goto tlv_put_failure; \
635 	} while (0)
636 
637 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
638 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
639 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
640 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
641 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
642 	do { \
643 		ret = tlv_put_string(sctx, attrtype, str, len); \
644 		if (ret < 0) \
645 			goto tlv_put_failure; \
646 	} while (0)
647 #define TLV_PUT_PATH(sctx, attrtype, p) \
648 	do { \
649 		ret = tlv_put_string(sctx, attrtype, p->start, \
650 			p->end - p->start); \
651 		if (ret < 0) \
652 			goto tlv_put_failure; \
653 	} while(0)
654 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
655 	do { \
656 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
657 		if (ret < 0) \
658 			goto tlv_put_failure; \
659 	} while (0)
660 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
661 	do { \
662 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
663 		if (ret < 0) \
664 			goto tlv_put_failure; \
665 	} while (0)
666 
667 static int send_header(struct send_ctx *sctx)
668 {
669 	struct btrfs_stream_header hdr;
670 
671 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
672 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
673 
674 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
675 					&sctx->send_off);
676 }
677 
678 /*
679  * For each command/item we want to send to userspace, we call this function.
680  */
681 static int begin_cmd(struct send_ctx *sctx, int cmd)
682 {
683 	struct btrfs_cmd_header *hdr;
684 
685 	if (WARN_ON(!sctx->send_buf))
686 		return -EINVAL;
687 
688 	BUG_ON(sctx->send_size);
689 
690 	sctx->send_size += sizeof(*hdr);
691 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
692 	put_unaligned_le16(cmd, &hdr->cmd);
693 
694 	return 0;
695 }
696 
697 static int send_cmd(struct send_ctx *sctx)
698 {
699 	int ret;
700 	struct btrfs_cmd_header *hdr;
701 	u32 crc;
702 
703 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
704 	put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
705 	put_unaligned_le32(0, &hdr->crc);
706 
707 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
708 	put_unaligned_le32(crc, &hdr->crc);
709 
710 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
711 					&sctx->send_off);
712 
713 	sctx->total_send_size += sctx->send_size;
714 	sctx->cmd_send_size[get_unaligned_le16(&hdr->cmd)] += sctx->send_size;
715 	sctx->send_size = 0;
716 
717 	return ret;
718 }
719 
720 /*
721  * Sends a move instruction to user space
722  */
723 static int send_rename(struct send_ctx *sctx,
724 		     struct fs_path *from, struct fs_path *to)
725 {
726 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
727 	int ret;
728 
729 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
730 
731 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
732 	if (ret < 0)
733 		goto out;
734 
735 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
736 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
737 
738 	ret = send_cmd(sctx);
739 
740 tlv_put_failure:
741 out:
742 	return ret;
743 }
744 
745 /*
746  * Sends a link instruction to user space
747  */
748 static int send_link(struct send_ctx *sctx,
749 		     struct fs_path *path, struct fs_path *lnk)
750 {
751 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
752 	int ret;
753 
754 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
755 
756 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
757 	if (ret < 0)
758 		goto out;
759 
760 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
761 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
762 
763 	ret = send_cmd(sctx);
764 
765 tlv_put_failure:
766 out:
767 	return ret;
768 }
769 
770 /*
771  * Sends an unlink instruction to user space
772  */
773 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
774 {
775 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
776 	int ret;
777 
778 	btrfs_debug(fs_info, "send_unlink %s", path->start);
779 
780 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
781 	if (ret < 0)
782 		goto out;
783 
784 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
785 
786 	ret = send_cmd(sctx);
787 
788 tlv_put_failure:
789 out:
790 	return ret;
791 }
792 
793 /*
794  * Sends a rmdir instruction to user space
795  */
796 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
797 {
798 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
799 	int ret;
800 
801 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
802 
803 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
804 	if (ret < 0)
805 		goto out;
806 
807 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
808 
809 	ret = send_cmd(sctx);
810 
811 tlv_put_failure:
812 out:
813 	return ret;
814 }
815 
816 /*
817  * Helper function to retrieve some fields from an inode item.
818  */
819 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
820 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
821 			  u64 *gid, u64 *rdev)
822 {
823 	int ret;
824 	struct btrfs_inode_item *ii;
825 	struct btrfs_key key;
826 
827 	key.objectid = ino;
828 	key.type = BTRFS_INODE_ITEM_KEY;
829 	key.offset = 0;
830 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
831 	if (ret) {
832 		if (ret > 0)
833 			ret = -ENOENT;
834 		return ret;
835 	}
836 
837 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
838 			struct btrfs_inode_item);
839 	if (size)
840 		*size = btrfs_inode_size(path->nodes[0], ii);
841 	if (gen)
842 		*gen = btrfs_inode_generation(path->nodes[0], ii);
843 	if (mode)
844 		*mode = btrfs_inode_mode(path->nodes[0], ii);
845 	if (uid)
846 		*uid = btrfs_inode_uid(path->nodes[0], ii);
847 	if (gid)
848 		*gid = btrfs_inode_gid(path->nodes[0], ii);
849 	if (rdev)
850 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
851 
852 	return ret;
853 }
854 
855 static int get_inode_info(struct btrfs_root *root,
856 			  u64 ino, u64 *size, u64 *gen,
857 			  u64 *mode, u64 *uid, u64 *gid,
858 			  u64 *rdev)
859 {
860 	struct btrfs_path *path;
861 	int ret;
862 
863 	path = alloc_path_for_send();
864 	if (!path)
865 		return -ENOMEM;
866 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
867 			       rdev);
868 	btrfs_free_path(path);
869 	return ret;
870 }
871 
872 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
873 				   struct fs_path *p,
874 				   void *ctx);
875 
876 /*
877  * Helper function to iterate the entries in ONE btrfs_inode_ref or
878  * btrfs_inode_extref.
879  * The iterate callback may return a non zero value to stop iteration. This can
880  * be a negative value for error codes or 1 to simply stop it.
881  *
882  * path must point to the INODE_REF or INODE_EXTREF when called.
883  */
884 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
885 			     struct btrfs_key *found_key, int resolve,
886 			     iterate_inode_ref_t iterate, void *ctx)
887 {
888 	struct extent_buffer *eb = path->nodes[0];
889 	struct btrfs_item *item;
890 	struct btrfs_inode_ref *iref;
891 	struct btrfs_inode_extref *extref;
892 	struct btrfs_path *tmp_path;
893 	struct fs_path *p;
894 	u32 cur = 0;
895 	u32 total;
896 	int slot = path->slots[0];
897 	u32 name_len;
898 	char *start;
899 	int ret = 0;
900 	int num = 0;
901 	int index;
902 	u64 dir;
903 	unsigned long name_off;
904 	unsigned long elem_size;
905 	unsigned long ptr;
906 
907 	p = fs_path_alloc_reversed();
908 	if (!p)
909 		return -ENOMEM;
910 
911 	tmp_path = alloc_path_for_send();
912 	if (!tmp_path) {
913 		fs_path_free(p);
914 		return -ENOMEM;
915 	}
916 
917 
918 	if (found_key->type == BTRFS_INODE_REF_KEY) {
919 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
920 						    struct btrfs_inode_ref);
921 		item = btrfs_item_nr(slot);
922 		total = btrfs_item_size(eb, item);
923 		elem_size = sizeof(*iref);
924 	} else {
925 		ptr = btrfs_item_ptr_offset(eb, slot);
926 		total = btrfs_item_size_nr(eb, slot);
927 		elem_size = sizeof(*extref);
928 	}
929 
930 	while (cur < total) {
931 		fs_path_reset(p);
932 
933 		if (found_key->type == BTRFS_INODE_REF_KEY) {
934 			iref = (struct btrfs_inode_ref *)(ptr + cur);
935 			name_len = btrfs_inode_ref_name_len(eb, iref);
936 			name_off = (unsigned long)(iref + 1);
937 			index = btrfs_inode_ref_index(eb, iref);
938 			dir = found_key->offset;
939 		} else {
940 			extref = (struct btrfs_inode_extref *)(ptr + cur);
941 			name_len = btrfs_inode_extref_name_len(eb, extref);
942 			name_off = (unsigned long)&extref->name;
943 			index = btrfs_inode_extref_index(eb, extref);
944 			dir = btrfs_inode_extref_parent(eb, extref);
945 		}
946 
947 		if (resolve) {
948 			start = btrfs_ref_to_path(root, tmp_path, name_len,
949 						  name_off, eb, dir,
950 						  p->buf, p->buf_len);
951 			if (IS_ERR(start)) {
952 				ret = PTR_ERR(start);
953 				goto out;
954 			}
955 			if (start < p->buf) {
956 				/* overflow , try again with larger buffer */
957 				ret = fs_path_ensure_buf(p,
958 						p->buf_len + p->buf - start);
959 				if (ret < 0)
960 					goto out;
961 				start = btrfs_ref_to_path(root, tmp_path,
962 							  name_len, name_off,
963 							  eb, dir,
964 							  p->buf, p->buf_len);
965 				if (IS_ERR(start)) {
966 					ret = PTR_ERR(start);
967 					goto out;
968 				}
969 				BUG_ON(start < p->buf);
970 			}
971 			p->start = start;
972 		} else {
973 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
974 							     name_len);
975 			if (ret < 0)
976 				goto out;
977 		}
978 
979 		cur += elem_size + name_len;
980 		ret = iterate(num, dir, index, p, ctx);
981 		if (ret)
982 			goto out;
983 		num++;
984 	}
985 
986 out:
987 	btrfs_free_path(tmp_path);
988 	fs_path_free(p);
989 	return ret;
990 }
991 
992 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
993 				  const char *name, int name_len,
994 				  const char *data, int data_len,
995 				  u8 type, void *ctx);
996 
997 /*
998  * Helper function to iterate the entries in ONE btrfs_dir_item.
999  * The iterate callback may return a non zero value to stop iteration. This can
1000  * be a negative value for error codes or 1 to simply stop it.
1001  *
1002  * path must point to the dir item when called.
1003  */
1004 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1005 			    iterate_dir_item_t iterate, void *ctx)
1006 {
1007 	int ret = 0;
1008 	struct extent_buffer *eb;
1009 	struct btrfs_item *item;
1010 	struct btrfs_dir_item *di;
1011 	struct btrfs_key di_key;
1012 	char *buf = NULL;
1013 	int buf_len;
1014 	u32 name_len;
1015 	u32 data_len;
1016 	u32 cur;
1017 	u32 len;
1018 	u32 total;
1019 	int slot;
1020 	int num;
1021 	u8 type;
1022 
1023 	/*
1024 	 * Start with a small buffer (1 page). If later we end up needing more
1025 	 * space, which can happen for xattrs on a fs with a leaf size greater
1026 	 * then the page size, attempt to increase the buffer. Typically xattr
1027 	 * values are small.
1028 	 */
1029 	buf_len = PATH_MAX;
1030 	buf = kmalloc(buf_len, GFP_KERNEL);
1031 	if (!buf) {
1032 		ret = -ENOMEM;
1033 		goto out;
1034 	}
1035 
1036 	eb = path->nodes[0];
1037 	slot = path->slots[0];
1038 	item = btrfs_item_nr(slot);
1039 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1040 	cur = 0;
1041 	len = 0;
1042 	total = btrfs_item_size(eb, item);
1043 
1044 	num = 0;
1045 	while (cur < total) {
1046 		name_len = btrfs_dir_name_len(eb, di);
1047 		data_len = btrfs_dir_data_len(eb, di);
1048 		type = btrfs_dir_type(eb, di);
1049 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1050 
1051 		if (type == BTRFS_FT_XATTR) {
1052 			if (name_len > XATTR_NAME_MAX) {
1053 				ret = -ENAMETOOLONG;
1054 				goto out;
1055 			}
1056 			if (name_len + data_len >
1057 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1058 				ret = -E2BIG;
1059 				goto out;
1060 			}
1061 		} else {
1062 			/*
1063 			 * Path too long
1064 			 */
1065 			if (name_len + data_len > PATH_MAX) {
1066 				ret = -ENAMETOOLONG;
1067 				goto out;
1068 			}
1069 		}
1070 
1071 		if (name_len + data_len > buf_len) {
1072 			buf_len = name_len + data_len;
1073 			if (is_vmalloc_addr(buf)) {
1074 				vfree(buf);
1075 				buf = NULL;
1076 			} else {
1077 				char *tmp = krealloc(buf, buf_len,
1078 						GFP_KERNEL | __GFP_NOWARN);
1079 
1080 				if (!tmp)
1081 					kfree(buf);
1082 				buf = tmp;
1083 			}
1084 			if (!buf) {
1085 				buf = kvmalloc(buf_len, GFP_KERNEL);
1086 				if (!buf) {
1087 					ret = -ENOMEM;
1088 					goto out;
1089 				}
1090 			}
1091 		}
1092 
1093 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1094 				name_len + data_len);
1095 
1096 		len = sizeof(*di) + name_len + data_len;
1097 		di = (struct btrfs_dir_item *)((char *)di + len);
1098 		cur += len;
1099 
1100 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1101 				data_len, type, ctx);
1102 		if (ret < 0)
1103 			goto out;
1104 		if (ret) {
1105 			ret = 0;
1106 			goto out;
1107 		}
1108 
1109 		num++;
1110 	}
1111 
1112 out:
1113 	kvfree(buf);
1114 	return ret;
1115 }
1116 
1117 static int __copy_first_ref(int num, u64 dir, int index,
1118 			    struct fs_path *p, void *ctx)
1119 {
1120 	int ret;
1121 	struct fs_path *pt = ctx;
1122 
1123 	ret = fs_path_copy(pt, p);
1124 	if (ret < 0)
1125 		return ret;
1126 
1127 	/* we want the first only */
1128 	return 1;
1129 }
1130 
1131 /*
1132  * Retrieve the first path of an inode. If an inode has more then one
1133  * ref/hardlink, this is ignored.
1134  */
1135 static int get_inode_path(struct btrfs_root *root,
1136 			  u64 ino, struct fs_path *path)
1137 {
1138 	int ret;
1139 	struct btrfs_key key, found_key;
1140 	struct btrfs_path *p;
1141 
1142 	p = alloc_path_for_send();
1143 	if (!p)
1144 		return -ENOMEM;
1145 
1146 	fs_path_reset(path);
1147 
1148 	key.objectid = ino;
1149 	key.type = BTRFS_INODE_REF_KEY;
1150 	key.offset = 0;
1151 
1152 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1153 	if (ret < 0)
1154 		goto out;
1155 	if (ret) {
1156 		ret = 1;
1157 		goto out;
1158 	}
1159 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1160 	if (found_key.objectid != ino ||
1161 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1162 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1163 		ret = -ENOENT;
1164 		goto out;
1165 	}
1166 
1167 	ret = iterate_inode_ref(root, p, &found_key, 1,
1168 				__copy_first_ref, path);
1169 	if (ret < 0)
1170 		goto out;
1171 	ret = 0;
1172 
1173 out:
1174 	btrfs_free_path(p);
1175 	return ret;
1176 }
1177 
1178 struct backref_ctx {
1179 	struct send_ctx *sctx;
1180 
1181 	/* number of total found references */
1182 	u64 found;
1183 
1184 	/*
1185 	 * used for clones found in send_root. clones found behind cur_objectid
1186 	 * and cur_offset are not considered as allowed clones.
1187 	 */
1188 	u64 cur_objectid;
1189 	u64 cur_offset;
1190 
1191 	/* may be truncated in case it's the last extent in a file */
1192 	u64 extent_len;
1193 
1194 	/* data offset in the file extent item */
1195 	u64 data_offset;
1196 
1197 	/* Just to check for bugs in backref resolving */
1198 	int found_itself;
1199 };
1200 
1201 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1202 {
1203 	u64 root = (u64)(uintptr_t)key;
1204 	struct clone_root *cr = (struct clone_root *)elt;
1205 
1206 	if (root < cr->root->root_key.objectid)
1207 		return -1;
1208 	if (root > cr->root->root_key.objectid)
1209 		return 1;
1210 	return 0;
1211 }
1212 
1213 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1214 {
1215 	struct clone_root *cr1 = (struct clone_root *)e1;
1216 	struct clone_root *cr2 = (struct clone_root *)e2;
1217 
1218 	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1219 		return -1;
1220 	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1221 		return 1;
1222 	return 0;
1223 }
1224 
1225 /*
1226  * Called for every backref that is found for the current extent.
1227  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1228  */
1229 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1230 {
1231 	struct backref_ctx *bctx = ctx_;
1232 	struct clone_root *found;
1233 
1234 	/* First check if the root is in the list of accepted clone sources */
1235 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1236 			bctx->sctx->clone_roots_cnt,
1237 			sizeof(struct clone_root),
1238 			__clone_root_cmp_bsearch);
1239 	if (!found)
1240 		return 0;
1241 
1242 	if (found->root == bctx->sctx->send_root &&
1243 	    ino == bctx->cur_objectid &&
1244 	    offset == bctx->cur_offset) {
1245 		bctx->found_itself = 1;
1246 	}
1247 
1248 	/*
1249 	 * Make sure we don't consider clones from send_root that are
1250 	 * behind the current inode/offset.
1251 	 */
1252 	if (found->root == bctx->sctx->send_root) {
1253 		/*
1254 		 * If the source inode was not yet processed we can't issue a
1255 		 * clone operation, as the source extent does not exist yet at
1256 		 * the destination of the stream.
1257 		 */
1258 		if (ino > bctx->cur_objectid)
1259 			return 0;
1260 		/*
1261 		 * We clone from the inode currently being sent as long as the
1262 		 * source extent is already processed, otherwise we could try
1263 		 * to clone from an extent that does not exist yet at the
1264 		 * destination of the stream.
1265 		 */
1266 		if (ino == bctx->cur_objectid &&
1267 		    offset + bctx->extent_len >
1268 		    bctx->sctx->cur_inode_next_write_offset)
1269 			return 0;
1270 	}
1271 
1272 	bctx->found++;
1273 	found->found_refs++;
1274 	if (ino < found->ino) {
1275 		found->ino = ino;
1276 		found->offset = offset;
1277 	} else if (found->ino == ino) {
1278 		/*
1279 		 * same extent found more then once in the same file.
1280 		 */
1281 		if (found->offset > offset + bctx->extent_len)
1282 			found->offset = offset;
1283 	}
1284 
1285 	return 0;
1286 }
1287 
1288 /*
1289  * Given an inode, offset and extent item, it finds a good clone for a clone
1290  * instruction. Returns -ENOENT when none could be found. The function makes
1291  * sure that the returned clone is usable at the point where sending is at the
1292  * moment. This means, that no clones are accepted which lie behind the current
1293  * inode+offset.
1294  *
1295  * path must point to the extent item when called.
1296  */
1297 static int find_extent_clone(struct send_ctx *sctx,
1298 			     struct btrfs_path *path,
1299 			     u64 ino, u64 data_offset,
1300 			     u64 ino_size,
1301 			     struct clone_root **found)
1302 {
1303 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1304 	int ret;
1305 	int extent_type;
1306 	u64 logical;
1307 	u64 disk_byte;
1308 	u64 num_bytes;
1309 	u64 extent_item_pos;
1310 	u64 flags = 0;
1311 	struct btrfs_file_extent_item *fi;
1312 	struct extent_buffer *eb = path->nodes[0];
1313 	struct backref_ctx *backref_ctx = NULL;
1314 	struct clone_root *cur_clone_root;
1315 	struct btrfs_key found_key;
1316 	struct btrfs_path *tmp_path;
1317 	struct btrfs_extent_item *ei;
1318 	int compressed;
1319 	u32 i;
1320 
1321 	tmp_path = alloc_path_for_send();
1322 	if (!tmp_path)
1323 		return -ENOMEM;
1324 
1325 	/* We only use this path under the commit sem */
1326 	tmp_path->need_commit_sem = 0;
1327 
1328 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1329 	if (!backref_ctx) {
1330 		ret = -ENOMEM;
1331 		goto out;
1332 	}
1333 
1334 	if (data_offset >= ino_size) {
1335 		/*
1336 		 * There may be extents that lie behind the file's size.
1337 		 * I at least had this in combination with snapshotting while
1338 		 * writing large files.
1339 		 */
1340 		ret = 0;
1341 		goto out;
1342 	}
1343 
1344 	fi = btrfs_item_ptr(eb, path->slots[0],
1345 			struct btrfs_file_extent_item);
1346 	extent_type = btrfs_file_extent_type(eb, fi);
1347 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1348 		ret = -ENOENT;
1349 		goto out;
1350 	}
1351 	compressed = btrfs_file_extent_compression(eb, fi);
1352 
1353 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1354 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1355 	if (disk_byte == 0) {
1356 		ret = -ENOENT;
1357 		goto out;
1358 	}
1359 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1360 
1361 	down_read(&fs_info->commit_root_sem);
1362 	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1363 				  &found_key, &flags);
1364 	up_read(&fs_info->commit_root_sem);
1365 
1366 	if (ret < 0)
1367 		goto out;
1368 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1369 		ret = -EIO;
1370 		goto out;
1371 	}
1372 
1373 	ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1374 			    struct btrfs_extent_item);
1375 	/*
1376 	 * Backreference walking (iterate_extent_inodes() below) is currently
1377 	 * too expensive when an extent has a large number of references, both
1378 	 * in time spent and used memory. So for now just fallback to write
1379 	 * operations instead of clone operations when an extent has more than
1380 	 * a certain amount of references.
1381 	 */
1382 	if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1383 		ret = -ENOENT;
1384 		goto out;
1385 	}
1386 	btrfs_release_path(tmp_path);
1387 
1388 	/*
1389 	 * Setup the clone roots.
1390 	 */
1391 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1392 		cur_clone_root = sctx->clone_roots + i;
1393 		cur_clone_root->ino = (u64)-1;
1394 		cur_clone_root->offset = 0;
1395 		cur_clone_root->found_refs = 0;
1396 	}
1397 
1398 	backref_ctx->sctx = sctx;
1399 	backref_ctx->found = 0;
1400 	backref_ctx->cur_objectid = ino;
1401 	backref_ctx->cur_offset = data_offset;
1402 	backref_ctx->found_itself = 0;
1403 	backref_ctx->extent_len = num_bytes;
1404 	/*
1405 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1406 	 * offsets that already take into account the data offset, but not for
1407 	 * compressed extents, since the offset is logical and not relative to
1408 	 * the physical extent locations. We must take this into account to
1409 	 * avoid sending clone offsets that go beyond the source file's size,
1410 	 * which would result in the clone ioctl failing with -EINVAL on the
1411 	 * receiving end.
1412 	 */
1413 	if (compressed == BTRFS_COMPRESS_NONE)
1414 		backref_ctx->data_offset = 0;
1415 	else
1416 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1417 
1418 	/*
1419 	 * The last extent of a file may be too large due to page alignment.
1420 	 * We need to adjust extent_len in this case so that the checks in
1421 	 * __iterate_backrefs work.
1422 	 */
1423 	if (data_offset + num_bytes >= ino_size)
1424 		backref_ctx->extent_len = ino_size - data_offset;
1425 
1426 	/*
1427 	 * Now collect all backrefs.
1428 	 */
1429 	if (compressed == BTRFS_COMPRESS_NONE)
1430 		extent_item_pos = logical - found_key.objectid;
1431 	else
1432 		extent_item_pos = 0;
1433 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1434 				    extent_item_pos, 1, __iterate_backrefs,
1435 				    backref_ctx, false);
1436 
1437 	if (ret < 0)
1438 		goto out;
1439 
1440 	if (!backref_ctx->found_itself) {
1441 		/* found a bug in backref code? */
1442 		ret = -EIO;
1443 		btrfs_err(fs_info,
1444 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1445 			  ino, data_offset, disk_byte, found_key.objectid);
1446 		goto out;
1447 	}
1448 
1449 	btrfs_debug(fs_info,
1450 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1451 		    data_offset, ino, num_bytes, logical);
1452 
1453 	if (!backref_ctx->found)
1454 		btrfs_debug(fs_info, "no clones found");
1455 
1456 	cur_clone_root = NULL;
1457 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1458 		if (sctx->clone_roots[i].found_refs) {
1459 			if (!cur_clone_root)
1460 				cur_clone_root = sctx->clone_roots + i;
1461 			else if (sctx->clone_roots[i].root == sctx->send_root)
1462 				/* prefer clones from send_root over others */
1463 				cur_clone_root = sctx->clone_roots + i;
1464 		}
1465 
1466 	}
1467 
1468 	if (cur_clone_root) {
1469 		*found = cur_clone_root;
1470 		ret = 0;
1471 	} else {
1472 		ret = -ENOENT;
1473 	}
1474 
1475 out:
1476 	btrfs_free_path(tmp_path);
1477 	kfree(backref_ctx);
1478 	return ret;
1479 }
1480 
1481 static int read_symlink(struct btrfs_root *root,
1482 			u64 ino,
1483 			struct fs_path *dest)
1484 {
1485 	int ret;
1486 	struct btrfs_path *path;
1487 	struct btrfs_key key;
1488 	struct btrfs_file_extent_item *ei;
1489 	u8 type;
1490 	u8 compression;
1491 	unsigned long off;
1492 	int len;
1493 
1494 	path = alloc_path_for_send();
1495 	if (!path)
1496 		return -ENOMEM;
1497 
1498 	key.objectid = ino;
1499 	key.type = BTRFS_EXTENT_DATA_KEY;
1500 	key.offset = 0;
1501 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1502 	if (ret < 0)
1503 		goto out;
1504 	if (ret) {
1505 		/*
1506 		 * An empty symlink inode. Can happen in rare error paths when
1507 		 * creating a symlink (transaction committed before the inode
1508 		 * eviction handler removed the symlink inode items and a crash
1509 		 * happened in between or the subvol was snapshoted in between).
1510 		 * Print an informative message to dmesg/syslog so that the user
1511 		 * can delete the symlink.
1512 		 */
1513 		btrfs_err(root->fs_info,
1514 			  "Found empty symlink inode %llu at root %llu",
1515 			  ino, root->root_key.objectid);
1516 		ret = -EIO;
1517 		goto out;
1518 	}
1519 
1520 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1521 			struct btrfs_file_extent_item);
1522 	type = btrfs_file_extent_type(path->nodes[0], ei);
1523 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1524 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1525 	BUG_ON(compression);
1526 
1527 	off = btrfs_file_extent_inline_start(ei);
1528 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1529 
1530 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1531 
1532 out:
1533 	btrfs_free_path(path);
1534 	return ret;
1535 }
1536 
1537 /*
1538  * Helper function to generate a file name that is unique in the root of
1539  * send_root and parent_root. This is used to generate names for orphan inodes.
1540  */
1541 static int gen_unique_name(struct send_ctx *sctx,
1542 			   u64 ino, u64 gen,
1543 			   struct fs_path *dest)
1544 {
1545 	int ret = 0;
1546 	struct btrfs_path *path;
1547 	struct btrfs_dir_item *di;
1548 	char tmp[64];
1549 	int len;
1550 	u64 idx = 0;
1551 
1552 	path = alloc_path_for_send();
1553 	if (!path)
1554 		return -ENOMEM;
1555 
1556 	while (1) {
1557 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1558 				ino, gen, idx);
1559 		ASSERT(len < sizeof(tmp));
1560 
1561 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1562 				path, BTRFS_FIRST_FREE_OBJECTID,
1563 				tmp, strlen(tmp), 0);
1564 		btrfs_release_path(path);
1565 		if (IS_ERR(di)) {
1566 			ret = PTR_ERR(di);
1567 			goto out;
1568 		}
1569 		if (di) {
1570 			/* not unique, try again */
1571 			idx++;
1572 			continue;
1573 		}
1574 
1575 		if (!sctx->parent_root) {
1576 			/* unique */
1577 			ret = 0;
1578 			break;
1579 		}
1580 
1581 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1582 				path, BTRFS_FIRST_FREE_OBJECTID,
1583 				tmp, strlen(tmp), 0);
1584 		btrfs_release_path(path);
1585 		if (IS_ERR(di)) {
1586 			ret = PTR_ERR(di);
1587 			goto out;
1588 		}
1589 		if (di) {
1590 			/* not unique, try again */
1591 			idx++;
1592 			continue;
1593 		}
1594 		/* unique */
1595 		break;
1596 	}
1597 
1598 	ret = fs_path_add(dest, tmp, strlen(tmp));
1599 
1600 out:
1601 	btrfs_free_path(path);
1602 	return ret;
1603 }
1604 
1605 enum inode_state {
1606 	inode_state_no_change,
1607 	inode_state_will_create,
1608 	inode_state_did_create,
1609 	inode_state_will_delete,
1610 	inode_state_did_delete,
1611 };
1612 
1613 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1614 {
1615 	int ret;
1616 	int left_ret;
1617 	int right_ret;
1618 	u64 left_gen;
1619 	u64 right_gen;
1620 
1621 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1622 			NULL, NULL);
1623 	if (ret < 0 && ret != -ENOENT)
1624 		goto out;
1625 	left_ret = ret;
1626 
1627 	if (!sctx->parent_root) {
1628 		right_ret = -ENOENT;
1629 	} else {
1630 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1631 				NULL, NULL, NULL, NULL);
1632 		if (ret < 0 && ret != -ENOENT)
1633 			goto out;
1634 		right_ret = ret;
1635 	}
1636 
1637 	if (!left_ret && !right_ret) {
1638 		if (left_gen == gen && right_gen == gen) {
1639 			ret = inode_state_no_change;
1640 		} else if (left_gen == gen) {
1641 			if (ino < sctx->send_progress)
1642 				ret = inode_state_did_create;
1643 			else
1644 				ret = inode_state_will_create;
1645 		} else if (right_gen == gen) {
1646 			if (ino < sctx->send_progress)
1647 				ret = inode_state_did_delete;
1648 			else
1649 				ret = inode_state_will_delete;
1650 		} else  {
1651 			ret = -ENOENT;
1652 		}
1653 	} else if (!left_ret) {
1654 		if (left_gen == gen) {
1655 			if (ino < sctx->send_progress)
1656 				ret = inode_state_did_create;
1657 			else
1658 				ret = inode_state_will_create;
1659 		} else {
1660 			ret = -ENOENT;
1661 		}
1662 	} else if (!right_ret) {
1663 		if (right_gen == gen) {
1664 			if (ino < sctx->send_progress)
1665 				ret = inode_state_did_delete;
1666 			else
1667 				ret = inode_state_will_delete;
1668 		} else {
1669 			ret = -ENOENT;
1670 		}
1671 	} else {
1672 		ret = -ENOENT;
1673 	}
1674 
1675 out:
1676 	return ret;
1677 }
1678 
1679 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1680 {
1681 	int ret;
1682 
1683 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1684 		return 1;
1685 
1686 	ret = get_cur_inode_state(sctx, ino, gen);
1687 	if (ret < 0)
1688 		goto out;
1689 
1690 	if (ret == inode_state_no_change ||
1691 	    ret == inode_state_did_create ||
1692 	    ret == inode_state_will_delete)
1693 		ret = 1;
1694 	else
1695 		ret = 0;
1696 
1697 out:
1698 	return ret;
1699 }
1700 
1701 /*
1702  * Helper function to lookup a dir item in a dir.
1703  */
1704 static int lookup_dir_item_inode(struct btrfs_root *root,
1705 				 u64 dir, const char *name, int name_len,
1706 				 u64 *found_inode,
1707 				 u8 *found_type)
1708 {
1709 	int ret = 0;
1710 	struct btrfs_dir_item *di;
1711 	struct btrfs_key key;
1712 	struct btrfs_path *path;
1713 
1714 	path = alloc_path_for_send();
1715 	if (!path)
1716 		return -ENOMEM;
1717 
1718 	di = btrfs_lookup_dir_item(NULL, root, path,
1719 			dir, name, name_len, 0);
1720 	if (IS_ERR_OR_NULL(di)) {
1721 		ret = di ? PTR_ERR(di) : -ENOENT;
1722 		goto out;
1723 	}
1724 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1725 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1726 		ret = -ENOENT;
1727 		goto out;
1728 	}
1729 	*found_inode = key.objectid;
1730 	*found_type = btrfs_dir_type(path->nodes[0], di);
1731 
1732 out:
1733 	btrfs_free_path(path);
1734 	return ret;
1735 }
1736 
1737 /*
1738  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1739  * generation of the parent dir and the name of the dir entry.
1740  */
1741 static int get_first_ref(struct btrfs_root *root, u64 ino,
1742 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1743 {
1744 	int ret;
1745 	struct btrfs_key key;
1746 	struct btrfs_key found_key;
1747 	struct btrfs_path *path;
1748 	int len;
1749 	u64 parent_dir;
1750 
1751 	path = alloc_path_for_send();
1752 	if (!path)
1753 		return -ENOMEM;
1754 
1755 	key.objectid = ino;
1756 	key.type = BTRFS_INODE_REF_KEY;
1757 	key.offset = 0;
1758 
1759 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1760 	if (ret < 0)
1761 		goto out;
1762 	if (!ret)
1763 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1764 				path->slots[0]);
1765 	if (ret || found_key.objectid != ino ||
1766 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1767 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1768 		ret = -ENOENT;
1769 		goto out;
1770 	}
1771 
1772 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1773 		struct btrfs_inode_ref *iref;
1774 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1775 				      struct btrfs_inode_ref);
1776 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1777 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1778 						     (unsigned long)(iref + 1),
1779 						     len);
1780 		parent_dir = found_key.offset;
1781 	} else {
1782 		struct btrfs_inode_extref *extref;
1783 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1784 					struct btrfs_inode_extref);
1785 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1786 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1787 					(unsigned long)&extref->name, len);
1788 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1789 	}
1790 	if (ret < 0)
1791 		goto out;
1792 	btrfs_release_path(path);
1793 
1794 	if (dir_gen) {
1795 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1796 				     NULL, NULL, NULL);
1797 		if (ret < 0)
1798 			goto out;
1799 	}
1800 
1801 	*dir = parent_dir;
1802 
1803 out:
1804 	btrfs_free_path(path);
1805 	return ret;
1806 }
1807 
1808 static int is_first_ref(struct btrfs_root *root,
1809 			u64 ino, u64 dir,
1810 			const char *name, int name_len)
1811 {
1812 	int ret;
1813 	struct fs_path *tmp_name;
1814 	u64 tmp_dir;
1815 
1816 	tmp_name = fs_path_alloc();
1817 	if (!tmp_name)
1818 		return -ENOMEM;
1819 
1820 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1821 	if (ret < 0)
1822 		goto out;
1823 
1824 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1825 		ret = 0;
1826 		goto out;
1827 	}
1828 
1829 	ret = !memcmp(tmp_name->start, name, name_len);
1830 
1831 out:
1832 	fs_path_free(tmp_name);
1833 	return ret;
1834 }
1835 
1836 /*
1837  * Used by process_recorded_refs to determine if a new ref would overwrite an
1838  * already existing ref. In case it detects an overwrite, it returns the
1839  * inode/gen in who_ino/who_gen.
1840  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1841  * to make sure later references to the overwritten inode are possible.
1842  * Orphanizing is however only required for the first ref of an inode.
1843  * process_recorded_refs does an additional is_first_ref check to see if
1844  * orphanizing is really required.
1845  */
1846 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1847 			      const char *name, int name_len,
1848 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1849 {
1850 	int ret = 0;
1851 	u64 gen;
1852 	u64 other_inode = 0;
1853 	u8 other_type = 0;
1854 
1855 	if (!sctx->parent_root)
1856 		goto out;
1857 
1858 	ret = is_inode_existent(sctx, dir, dir_gen);
1859 	if (ret <= 0)
1860 		goto out;
1861 
1862 	/*
1863 	 * If we have a parent root we need to verify that the parent dir was
1864 	 * not deleted and then re-created, if it was then we have no overwrite
1865 	 * and we can just unlink this entry.
1866 	 */
1867 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1868 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1869 				     NULL, NULL, NULL);
1870 		if (ret < 0 && ret != -ENOENT)
1871 			goto out;
1872 		if (ret) {
1873 			ret = 0;
1874 			goto out;
1875 		}
1876 		if (gen != dir_gen)
1877 			goto out;
1878 	}
1879 
1880 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1881 			&other_inode, &other_type);
1882 	if (ret < 0 && ret != -ENOENT)
1883 		goto out;
1884 	if (ret) {
1885 		ret = 0;
1886 		goto out;
1887 	}
1888 
1889 	/*
1890 	 * Check if the overwritten ref was already processed. If yes, the ref
1891 	 * was already unlinked/moved, so we can safely assume that we will not
1892 	 * overwrite anything at this point in time.
1893 	 */
1894 	if (other_inode > sctx->send_progress ||
1895 	    is_waiting_for_move(sctx, other_inode)) {
1896 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1897 				who_gen, who_mode, NULL, NULL, NULL);
1898 		if (ret < 0)
1899 			goto out;
1900 
1901 		ret = 1;
1902 		*who_ino = other_inode;
1903 	} else {
1904 		ret = 0;
1905 	}
1906 
1907 out:
1908 	return ret;
1909 }
1910 
1911 /*
1912  * Checks if the ref was overwritten by an already processed inode. This is
1913  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1914  * thus the orphan name needs be used.
1915  * process_recorded_refs also uses it to avoid unlinking of refs that were
1916  * overwritten.
1917  */
1918 static int did_overwrite_ref(struct send_ctx *sctx,
1919 			    u64 dir, u64 dir_gen,
1920 			    u64 ino, u64 ino_gen,
1921 			    const char *name, int name_len)
1922 {
1923 	int ret = 0;
1924 	u64 gen;
1925 	u64 ow_inode;
1926 	u8 other_type;
1927 
1928 	if (!sctx->parent_root)
1929 		goto out;
1930 
1931 	ret = is_inode_existent(sctx, dir, dir_gen);
1932 	if (ret <= 0)
1933 		goto out;
1934 
1935 	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1936 		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1937 				     NULL, NULL, NULL);
1938 		if (ret < 0 && ret != -ENOENT)
1939 			goto out;
1940 		if (ret) {
1941 			ret = 0;
1942 			goto out;
1943 		}
1944 		if (gen != dir_gen)
1945 			goto out;
1946 	}
1947 
1948 	/* check if the ref was overwritten by another ref */
1949 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1950 			&ow_inode, &other_type);
1951 	if (ret < 0 && ret != -ENOENT)
1952 		goto out;
1953 	if (ret) {
1954 		/* was never and will never be overwritten */
1955 		ret = 0;
1956 		goto out;
1957 	}
1958 
1959 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1960 			NULL, NULL);
1961 	if (ret < 0)
1962 		goto out;
1963 
1964 	if (ow_inode == ino && gen == ino_gen) {
1965 		ret = 0;
1966 		goto out;
1967 	}
1968 
1969 	/*
1970 	 * We know that it is or will be overwritten. Check this now.
1971 	 * The current inode being processed might have been the one that caused
1972 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1973 	 * the current inode being processed.
1974 	 */
1975 	if ((ow_inode < sctx->send_progress) ||
1976 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1977 	     gen == sctx->cur_inode_gen))
1978 		ret = 1;
1979 	else
1980 		ret = 0;
1981 
1982 out:
1983 	return ret;
1984 }
1985 
1986 /*
1987  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1988  * that got overwritten. This is used by process_recorded_refs to determine
1989  * if it has to use the path as returned by get_cur_path or the orphan name.
1990  */
1991 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1992 {
1993 	int ret = 0;
1994 	struct fs_path *name = NULL;
1995 	u64 dir;
1996 	u64 dir_gen;
1997 
1998 	if (!sctx->parent_root)
1999 		goto out;
2000 
2001 	name = fs_path_alloc();
2002 	if (!name)
2003 		return -ENOMEM;
2004 
2005 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2006 	if (ret < 0)
2007 		goto out;
2008 
2009 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2010 			name->start, fs_path_len(name));
2011 
2012 out:
2013 	fs_path_free(name);
2014 	return ret;
2015 }
2016 
2017 /*
2018  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2019  * so we need to do some special handling in case we have clashes. This function
2020  * takes care of this with the help of name_cache_entry::radix_list.
2021  * In case of error, nce is kfreed.
2022  */
2023 static int name_cache_insert(struct send_ctx *sctx,
2024 			     struct name_cache_entry *nce)
2025 {
2026 	int ret = 0;
2027 	struct list_head *nce_head;
2028 
2029 	nce_head = radix_tree_lookup(&sctx->name_cache,
2030 			(unsigned long)nce->ino);
2031 	if (!nce_head) {
2032 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2033 		if (!nce_head) {
2034 			kfree(nce);
2035 			return -ENOMEM;
2036 		}
2037 		INIT_LIST_HEAD(nce_head);
2038 
2039 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2040 		if (ret < 0) {
2041 			kfree(nce_head);
2042 			kfree(nce);
2043 			return ret;
2044 		}
2045 	}
2046 	list_add_tail(&nce->radix_list, nce_head);
2047 	list_add_tail(&nce->list, &sctx->name_cache_list);
2048 	sctx->name_cache_size++;
2049 
2050 	return ret;
2051 }
2052 
2053 static void name_cache_delete(struct send_ctx *sctx,
2054 			      struct name_cache_entry *nce)
2055 {
2056 	struct list_head *nce_head;
2057 
2058 	nce_head = radix_tree_lookup(&sctx->name_cache,
2059 			(unsigned long)nce->ino);
2060 	if (!nce_head) {
2061 		btrfs_err(sctx->send_root->fs_info,
2062 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2063 			nce->ino, sctx->name_cache_size);
2064 	}
2065 
2066 	list_del(&nce->radix_list);
2067 	list_del(&nce->list);
2068 	sctx->name_cache_size--;
2069 
2070 	/*
2071 	 * We may not get to the final release of nce_head if the lookup fails
2072 	 */
2073 	if (nce_head && list_empty(nce_head)) {
2074 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2075 		kfree(nce_head);
2076 	}
2077 }
2078 
2079 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2080 						    u64 ino, u64 gen)
2081 {
2082 	struct list_head *nce_head;
2083 	struct name_cache_entry *cur;
2084 
2085 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2086 	if (!nce_head)
2087 		return NULL;
2088 
2089 	list_for_each_entry(cur, nce_head, radix_list) {
2090 		if (cur->ino == ino && cur->gen == gen)
2091 			return cur;
2092 	}
2093 	return NULL;
2094 }
2095 
2096 /*
2097  * Removes the entry from the list and adds it back to the end. This marks the
2098  * entry as recently used so that name_cache_clean_unused does not remove it.
2099  */
2100 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2101 {
2102 	list_del(&nce->list);
2103 	list_add_tail(&nce->list, &sctx->name_cache_list);
2104 }
2105 
2106 /*
2107  * Remove some entries from the beginning of name_cache_list.
2108  */
2109 static void name_cache_clean_unused(struct send_ctx *sctx)
2110 {
2111 	struct name_cache_entry *nce;
2112 
2113 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2114 		return;
2115 
2116 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2117 		nce = list_entry(sctx->name_cache_list.next,
2118 				struct name_cache_entry, list);
2119 		name_cache_delete(sctx, nce);
2120 		kfree(nce);
2121 	}
2122 }
2123 
2124 static void name_cache_free(struct send_ctx *sctx)
2125 {
2126 	struct name_cache_entry *nce;
2127 
2128 	while (!list_empty(&sctx->name_cache_list)) {
2129 		nce = list_entry(sctx->name_cache_list.next,
2130 				struct name_cache_entry, list);
2131 		name_cache_delete(sctx, nce);
2132 		kfree(nce);
2133 	}
2134 }
2135 
2136 /*
2137  * Used by get_cur_path for each ref up to the root.
2138  * Returns 0 if it succeeded.
2139  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2140  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2141  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2142  * Returns <0 in case of error.
2143  */
2144 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2145 				     u64 ino, u64 gen,
2146 				     u64 *parent_ino,
2147 				     u64 *parent_gen,
2148 				     struct fs_path *dest)
2149 {
2150 	int ret;
2151 	int nce_ret;
2152 	struct name_cache_entry *nce = NULL;
2153 
2154 	/*
2155 	 * First check if we already did a call to this function with the same
2156 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2157 	 * return the cached result.
2158 	 */
2159 	nce = name_cache_search(sctx, ino, gen);
2160 	if (nce) {
2161 		if (ino < sctx->send_progress && nce->need_later_update) {
2162 			name_cache_delete(sctx, nce);
2163 			kfree(nce);
2164 			nce = NULL;
2165 		} else {
2166 			name_cache_used(sctx, nce);
2167 			*parent_ino = nce->parent_ino;
2168 			*parent_gen = nce->parent_gen;
2169 			ret = fs_path_add(dest, nce->name, nce->name_len);
2170 			if (ret < 0)
2171 				goto out;
2172 			ret = nce->ret;
2173 			goto out;
2174 		}
2175 	}
2176 
2177 	/*
2178 	 * If the inode is not existent yet, add the orphan name and return 1.
2179 	 * This should only happen for the parent dir that we determine in
2180 	 * __record_new_ref
2181 	 */
2182 	ret = is_inode_existent(sctx, ino, gen);
2183 	if (ret < 0)
2184 		goto out;
2185 
2186 	if (!ret) {
2187 		ret = gen_unique_name(sctx, ino, gen, dest);
2188 		if (ret < 0)
2189 			goto out;
2190 		ret = 1;
2191 		goto out_cache;
2192 	}
2193 
2194 	/*
2195 	 * Depending on whether the inode was already processed or not, use
2196 	 * send_root or parent_root for ref lookup.
2197 	 */
2198 	if (ino < sctx->send_progress)
2199 		ret = get_first_ref(sctx->send_root, ino,
2200 				    parent_ino, parent_gen, dest);
2201 	else
2202 		ret = get_first_ref(sctx->parent_root, ino,
2203 				    parent_ino, parent_gen, dest);
2204 	if (ret < 0)
2205 		goto out;
2206 
2207 	/*
2208 	 * Check if the ref was overwritten by an inode's ref that was processed
2209 	 * earlier. If yes, treat as orphan and return 1.
2210 	 */
2211 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2212 			dest->start, dest->end - dest->start);
2213 	if (ret < 0)
2214 		goto out;
2215 	if (ret) {
2216 		fs_path_reset(dest);
2217 		ret = gen_unique_name(sctx, ino, gen, dest);
2218 		if (ret < 0)
2219 			goto out;
2220 		ret = 1;
2221 	}
2222 
2223 out_cache:
2224 	/*
2225 	 * Store the result of the lookup in the name cache.
2226 	 */
2227 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2228 	if (!nce) {
2229 		ret = -ENOMEM;
2230 		goto out;
2231 	}
2232 
2233 	nce->ino = ino;
2234 	nce->gen = gen;
2235 	nce->parent_ino = *parent_ino;
2236 	nce->parent_gen = *parent_gen;
2237 	nce->name_len = fs_path_len(dest);
2238 	nce->ret = ret;
2239 	strcpy(nce->name, dest->start);
2240 
2241 	if (ino < sctx->send_progress)
2242 		nce->need_later_update = 0;
2243 	else
2244 		nce->need_later_update = 1;
2245 
2246 	nce_ret = name_cache_insert(sctx, nce);
2247 	if (nce_ret < 0)
2248 		ret = nce_ret;
2249 	name_cache_clean_unused(sctx);
2250 
2251 out:
2252 	return ret;
2253 }
2254 
2255 /*
2256  * Magic happens here. This function returns the first ref to an inode as it
2257  * would look like while receiving the stream at this point in time.
2258  * We walk the path up to the root. For every inode in between, we check if it
2259  * was already processed/sent. If yes, we continue with the parent as found
2260  * in send_root. If not, we continue with the parent as found in parent_root.
2261  * If we encounter an inode that was deleted at this point in time, we use the
2262  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2263  * that were not created yet and overwritten inodes/refs.
2264  *
2265  * When do we have orphan inodes:
2266  * 1. When an inode is freshly created and thus no valid refs are available yet
2267  * 2. When a directory lost all it's refs (deleted) but still has dir items
2268  *    inside which were not processed yet (pending for move/delete). If anyone
2269  *    tried to get the path to the dir items, it would get a path inside that
2270  *    orphan directory.
2271  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2272  *    of an unprocessed inode. If in that case the first ref would be
2273  *    overwritten, the overwritten inode gets "orphanized". Later when we
2274  *    process this overwritten inode, it is restored at a new place by moving
2275  *    the orphan inode.
2276  *
2277  * sctx->send_progress tells this function at which point in time receiving
2278  * would be.
2279  */
2280 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2281 			struct fs_path *dest)
2282 {
2283 	int ret = 0;
2284 	struct fs_path *name = NULL;
2285 	u64 parent_inode = 0;
2286 	u64 parent_gen = 0;
2287 	int stop = 0;
2288 
2289 	name = fs_path_alloc();
2290 	if (!name) {
2291 		ret = -ENOMEM;
2292 		goto out;
2293 	}
2294 
2295 	dest->reversed = 1;
2296 	fs_path_reset(dest);
2297 
2298 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2299 		struct waiting_dir_move *wdm;
2300 
2301 		fs_path_reset(name);
2302 
2303 		if (is_waiting_for_rm(sctx, ino, gen)) {
2304 			ret = gen_unique_name(sctx, ino, gen, name);
2305 			if (ret < 0)
2306 				goto out;
2307 			ret = fs_path_add_path(dest, name);
2308 			break;
2309 		}
2310 
2311 		wdm = get_waiting_dir_move(sctx, ino);
2312 		if (wdm && wdm->orphanized) {
2313 			ret = gen_unique_name(sctx, ino, gen, name);
2314 			stop = 1;
2315 		} else if (wdm) {
2316 			ret = get_first_ref(sctx->parent_root, ino,
2317 					    &parent_inode, &parent_gen, name);
2318 		} else {
2319 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2320 							&parent_inode,
2321 							&parent_gen, name);
2322 			if (ret)
2323 				stop = 1;
2324 		}
2325 
2326 		if (ret < 0)
2327 			goto out;
2328 
2329 		ret = fs_path_add_path(dest, name);
2330 		if (ret < 0)
2331 			goto out;
2332 
2333 		ino = parent_inode;
2334 		gen = parent_gen;
2335 	}
2336 
2337 out:
2338 	fs_path_free(name);
2339 	if (!ret)
2340 		fs_path_unreverse(dest);
2341 	return ret;
2342 }
2343 
2344 /*
2345  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2346  */
2347 static int send_subvol_begin(struct send_ctx *sctx)
2348 {
2349 	int ret;
2350 	struct btrfs_root *send_root = sctx->send_root;
2351 	struct btrfs_root *parent_root = sctx->parent_root;
2352 	struct btrfs_path *path;
2353 	struct btrfs_key key;
2354 	struct btrfs_root_ref *ref;
2355 	struct extent_buffer *leaf;
2356 	char *name = NULL;
2357 	int namelen;
2358 
2359 	path = btrfs_alloc_path();
2360 	if (!path)
2361 		return -ENOMEM;
2362 
2363 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2364 	if (!name) {
2365 		btrfs_free_path(path);
2366 		return -ENOMEM;
2367 	}
2368 
2369 	key.objectid = send_root->root_key.objectid;
2370 	key.type = BTRFS_ROOT_BACKREF_KEY;
2371 	key.offset = 0;
2372 
2373 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2374 				&key, path, 1, 0);
2375 	if (ret < 0)
2376 		goto out;
2377 	if (ret) {
2378 		ret = -ENOENT;
2379 		goto out;
2380 	}
2381 
2382 	leaf = path->nodes[0];
2383 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2384 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2385 	    key.objectid != send_root->root_key.objectid) {
2386 		ret = -ENOENT;
2387 		goto out;
2388 	}
2389 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2390 	namelen = btrfs_root_ref_name_len(leaf, ref);
2391 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2392 	btrfs_release_path(path);
2393 
2394 	if (parent_root) {
2395 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2396 		if (ret < 0)
2397 			goto out;
2398 	} else {
2399 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2400 		if (ret < 0)
2401 			goto out;
2402 	}
2403 
2404 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2405 
2406 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2407 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2408 			    sctx->send_root->root_item.received_uuid);
2409 	else
2410 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2411 			    sctx->send_root->root_item.uuid);
2412 
2413 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2414 		    btrfs_root_ctransid(&sctx->send_root->root_item));
2415 	if (parent_root) {
2416 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2417 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2418 				     parent_root->root_item.received_uuid);
2419 		else
2420 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2421 				     parent_root->root_item.uuid);
2422 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2423 			    btrfs_root_ctransid(&sctx->parent_root->root_item));
2424 	}
2425 
2426 	ret = send_cmd(sctx);
2427 
2428 tlv_put_failure:
2429 out:
2430 	btrfs_free_path(path);
2431 	kfree(name);
2432 	return ret;
2433 }
2434 
2435 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2436 {
2437 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2438 	int ret = 0;
2439 	struct fs_path *p;
2440 
2441 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2442 
2443 	p = fs_path_alloc();
2444 	if (!p)
2445 		return -ENOMEM;
2446 
2447 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2448 	if (ret < 0)
2449 		goto out;
2450 
2451 	ret = get_cur_path(sctx, ino, gen, p);
2452 	if (ret < 0)
2453 		goto out;
2454 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2455 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2456 
2457 	ret = send_cmd(sctx);
2458 
2459 tlv_put_failure:
2460 out:
2461 	fs_path_free(p);
2462 	return ret;
2463 }
2464 
2465 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2466 {
2467 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2468 	int ret = 0;
2469 	struct fs_path *p;
2470 
2471 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2472 
2473 	p = fs_path_alloc();
2474 	if (!p)
2475 		return -ENOMEM;
2476 
2477 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2478 	if (ret < 0)
2479 		goto out;
2480 
2481 	ret = get_cur_path(sctx, ino, gen, p);
2482 	if (ret < 0)
2483 		goto out;
2484 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2485 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2486 
2487 	ret = send_cmd(sctx);
2488 
2489 tlv_put_failure:
2490 out:
2491 	fs_path_free(p);
2492 	return ret;
2493 }
2494 
2495 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2496 {
2497 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2498 	int ret = 0;
2499 	struct fs_path *p;
2500 
2501 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2502 		    ino, uid, gid);
2503 
2504 	p = fs_path_alloc();
2505 	if (!p)
2506 		return -ENOMEM;
2507 
2508 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2509 	if (ret < 0)
2510 		goto out;
2511 
2512 	ret = get_cur_path(sctx, ino, gen, p);
2513 	if (ret < 0)
2514 		goto out;
2515 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2516 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2517 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2518 
2519 	ret = send_cmd(sctx);
2520 
2521 tlv_put_failure:
2522 out:
2523 	fs_path_free(p);
2524 	return ret;
2525 }
2526 
2527 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2528 {
2529 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2530 	int ret = 0;
2531 	struct fs_path *p = NULL;
2532 	struct btrfs_inode_item *ii;
2533 	struct btrfs_path *path = NULL;
2534 	struct extent_buffer *eb;
2535 	struct btrfs_key key;
2536 	int slot;
2537 
2538 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2539 
2540 	p = fs_path_alloc();
2541 	if (!p)
2542 		return -ENOMEM;
2543 
2544 	path = alloc_path_for_send();
2545 	if (!path) {
2546 		ret = -ENOMEM;
2547 		goto out;
2548 	}
2549 
2550 	key.objectid = ino;
2551 	key.type = BTRFS_INODE_ITEM_KEY;
2552 	key.offset = 0;
2553 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2554 	if (ret > 0)
2555 		ret = -ENOENT;
2556 	if (ret < 0)
2557 		goto out;
2558 
2559 	eb = path->nodes[0];
2560 	slot = path->slots[0];
2561 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2562 
2563 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2564 	if (ret < 0)
2565 		goto out;
2566 
2567 	ret = get_cur_path(sctx, ino, gen, p);
2568 	if (ret < 0)
2569 		goto out;
2570 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2571 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2572 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2573 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2574 	/* TODO Add otime support when the otime patches get into upstream */
2575 
2576 	ret = send_cmd(sctx);
2577 
2578 tlv_put_failure:
2579 out:
2580 	fs_path_free(p);
2581 	btrfs_free_path(path);
2582 	return ret;
2583 }
2584 
2585 /*
2586  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2587  * a valid path yet because we did not process the refs yet. So, the inode
2588  * is created as orphan.
2589  */
2590 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2591 {
2592 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2593 	int ret = 0;
2594 	struct fs_path *p;
2595 	int cmd;
2596 	u64 gen;
2597 	u64 mode;
2598 	u64 rdev;
2599 
2600 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2601 
2602 	p = fs_path_alloc();
2603 	if (!p)
2604 		return -ENOMEM;
2605 
2606 	if (ino != sctx->cur_ino) {
2607 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2608 				     NULL, NULL, &rdev);
2609 		if (ret < 0)
2610 			goto out;
2611 	} else {
2612 		gen = sctx->cur_inode_gen;
2613 		mode = sctx->cur_inode_mode;
2614 		rdev = sctx->cur_inode_rdev;
2615 	}
2616 
2617 	if (S_ISREG(mode)) {
2618 		cmd = BTRFS_SEND_C_MKFILE;
2619 	} else if (S_ISDIR(mode)) {
2620 		cmd = BTRFS_SEND_C_MKDIR;
2621 	} else if (S_ISLNK(mode)) {
2622 		cmd = BTRFS_SEND_C_SYMLINK;
2623 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2624 		cmd = BTRFS_SEND_C_MKNOD;
2625 	} else if (S_ISFIFO(mode)) {
2626 		cmd = BTRFS_SEND_C_MKFIFO;
2627 	} else if (S_ISSOCK(mode)) {
2628 		cmd = BTRFS_SEND_C_MKSOCK;
2629 	} else {
2630 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2631 				(int)(mode & S_IFMT));
2632 		ret = -EOPNOTSUPP;
2633 		goto out;
2634 	}
2635 
2636 	ret = begin_cmd(sctx, cmd);
2637 	if (ret < 0)
2638 		goto out;
2639 
2640 	ret = gen_unique_name(sctx, ino, gen, p);
2641 	if (ret < 0)
2642 		goto out;
2643 
2644 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2645 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2646 
2647 	if (S_ISLNK(mode)) {
2648 		fs_path_reset(p);
2649 		ret = read_symlink(sctx->send_root, ino, p);
2650 		if (ret < 0)
2651 			goto out;
2652 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2653 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2654 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2655 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2656 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2657 	}
2658 
2659 	ret = send_cmd(sctx);
2660 	if (ret < 0)
2661 		goto out;
2662 
2663 
2664 tlv_put_failure:
2665 out:
2666 	fs_path_free(p);
2667 	return ret;
2668 }
2669 
2670 /*
2671  * We need some special handling for inodes that get processed before the parent
2672  * directory got created. See process_recorded_refs for details.
2673  * This function does the check if we already created the dir out of order.
2674  */
2675 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2676 {
2677 	int ret = 0;
2678 	struct btrfs_path *path = NULL;
2679 	struct btrfs_key key;
2680 	struct btrfs_key found_key;
2681 	struct btrfs_key di_key;
2682 	struct extent_buffer *eb;
2683 	struct btrfs_dir_item *di;
2684 	int slot;
2685 
2686 	path = alloc_path_for_send();
2687 	if (!path) {
2688 		ret = -ENOMEM;
2689 		goto out;
2690 	}
2691 
2692 	key.objectid = dir;
2693 	key.type = BTRFS_DIR_INDEX_KEY;
2694 	key.offset = 0;
2695 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2696 	if (ret < 0)
2697 		goto out;
2698 
2699 	while (1) {
2700 		eb = path->nodes[0];
2701 		slot = path->slots[0];
2702 		if (slot >= btrfs_header_nritems(eb)) {
2703 			ret = btrfs_next_leaf(sctx->send_root, path);
2704 			if (ret < 0) {
2705 				goto out;
2706 			} else if (ret > 0) {
2707 				ret = 0;
2708 				break;
2709 			}
2710 			continue;
2711 		}
2712 
2713 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2714 		if (found_key.objectid != key.objectid ||
2715 		    found_key.type != key.type) {
2716 			ret = 0;
2717 			goto out;
2718 		}
2719 
2720 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2721 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2722 
2723 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2724 		    di_key.objectid < sctx->send_progress) {
2725 			ret = 1;
2726 			goto out;
2727 		}
2728 
2729 		path->slots[0]++;
2730 	}
2731 
2732 out:
2733 	btrfs_free_path(path);
2734 	return ret;
2735 }
2736 
2737 /*
2738  * Only creates the inode if it is:
2739  * 1. Not a directory
2740  * 2. Or a directory which was not created already due to out of order
2741  *    directories. See did_create_dir and process_recorded_refs for details.
2742  */
2743 static int send_create_inode_if_needed(struct send_ctx *sctx)
2744 {
2745 	int ret;
2746 
2747 	if (S_ISDIR(sctx->cur_inode_mode)) {
2748 		ret = did_create_dir(sctx, sctx->cur_ino);
2749 		if (ret < 0)
2750 			goto out;
2751 		if (ret) {
2752 			ret = 0;
2753 			goto out;
2754 		}
2755 	}
2756 
2757 	ret = send_create_inode(sctx, sctx->cur_ino);
2758 	if (ret < 0)
2759 		goto out;
2760 
2761 out:
2762 	return ret;
2763 }
2764 
2765 struct recorded_ref {
2766 	struct list_head list;
2767 	char *name;
2768 	struct fs_path *full_path;
2769 	u64 dir;
2770 	u64 dir_gen;
2771 	int name_len;
2772 };
2773 
2774 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2775 {
2776 	ref->full_path = path;
2777 	ref->name = (char *)kbasename(ref->full_path->start);
2778 	ref->name_len = ref->full_path->end - ref->name;
2779 }
2780 
2781 /*
2782  * We need to process new refs before deleted refs, but compare_tree gives us
2783  * everything mixed. So we first record all refs and later process them.
2784  * This function is a helper to record one ref.
2785  */
2786 static int __record_ref(struct list_head *head, u64 dir,
2787 		      u64 dir_gen, struct fs_path *path)
2788 {
2789 	struct recorded_ref *ref;
2790 
2791 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2792 	if (!ref)
2793 		return -ENOMEM;
2794 
2795 	ref->dir = dir;
2796 	ref->dir_gen = dir_gen;
2797 	set_ref_path(ref, path);
2798 	list_add_tail(&ref->list, head);
2799 	return 0;
2800 }
2801 
2802 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2803 {
2804 	struct recorded_ref *new;
2805 
2806 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2807 	if (!new)
2808 		return -ENOMEM;
2809 
2810 	new->dir = ref->dir;
2811 	new->dir_gen = ref->dir_gen;
2812 	new->full_path = NULL;
2813 	INIT_LIST_HEAD(&new->list);
2814 	list_add_tail(&new->list, list);
2815 	return 0;
2816 }
2817 
2818 static void __free_recorded_refs(struct list_head *head)
2819 {
2820 	struct recorded_ref *cur;
2821 
2822 	while (!list_empty(head)) {
2823 		cur = list_entry(head->next, struct recorded_ref, list);
2824 		fs_path_free(cur->full_path);
2825 		list_del(&cur->list);
2826 		kfree(cur);
2827 	}
2828 }
2829 
2830 static void free_recorded_refs(struct send_ctx *sctx)
2831 {
2832 	__free_recorded_refs(&sctx->new_refs);
2833 	__free_recorded_refs(&sctx->deleted_refs);
2834 }
2835 
2836 /*
2837  * Renames/moves a file/dir to its orphan name. Used when the first
2838  * ref of an unprocessed inode gets overwritten and for all non empty
2839  * directories.
2840  */
2841 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2842 			  struct fs_path *path)
2843 {
2844 	int ret;
2845 	struct fs_path *orphan;
2846 
2847 	orphan = fs_path_alloc();
2848 	if (!orphan)
2849 		return -ENOMEM;
2850 
2851 	ret = gen_unique_name(sctx, ino, gen, orphan);
2852 	if (ret < 0)
2853 		goto out;
2854 
2855 	ret = send_rename(sctx, path, orphan);
2856 
2857 out:
2858 	fs_path_free(orphan);
2859 	return ret;
2860 }
2861 
2862 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
2863 						   u64 dir_ino, u64 dir_gen)
2864 {
2865 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2866 	struct rb_node *parent = NULL;
2867 	struct orphan_dir_info *entry, *odi;
2868 
2869 	while (*p) {
2870 		parent = *p;
2871 		entry = rb_entry(parent, struct orphan_dir_info, node);
2872 		if (dir_ino < entry->ino)
2873 			p = &(*p)->rb_left;
2874 		else if (dir_ino > entry->ino)
2875 			p = &(*p)->rb_right;
2876 		else if (dir_gen < entry->gen)
2877 			p = &(*p)->rb_left;
2878 		else if (dir_gen > entry->gen)
2879 			p = &(*p)->rb_right;
2880 		else
2881 			return entry;
2882 	}
2883 
2884 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2885 	if (!odi)
2886 		return ERR_PTR(-ENOMEM);
2887 	odi->ino = dir_ino;
2888 	odi->gen = dir_gen;
2889 	odi->last_dir_index_offset = 0;
2890 
2891 	rb_link_node(&odi->node, parent, p);
2892 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2893 	return odi;
2894 }
2895 
2896 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
2897 						   u64 dir_ino, u64 gen)
2898 {
2899 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2900 	struct orphan_dir_info *entry;
2901 
2902 	while (n) {
2903 		entry = rb_entry(n, struct orphan_dir_info, node);
2904 		if (dir_ino < entry->ino)
2905 			n = n->rb_left;
2906 		else if (dir_ino > entry->ino)
2907 			n = n->rb_right;
2908 		else if (gen < entry->gen)
2909 			n = n->rb_left;
2910 		else if (gen > entry->gen)
2911 			n = n->rb_right;
2912 		else
2913 			return entry;
2914 	}
2915 	return NULL;
2916 }
2917 
2918 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
2919 {
2920 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
2921 
2922 	return odi != NULL;
2923 }
2924 
2925 static void free_orphan_dir_info(struct send_ctx *sctx,
2926 				 struct orphan_dir_info *odi)
2927 {
2928 	if (!odi)
2929 		return;
2930 	rb_erase(&odi->node, &sctx->orphan_dirs);
2931 	kfree(odi);
2932 }
2933 
2934 /*
2935  * Returns 1 if a directory can be removed at this point in time.
2936  * We check this by iterating all dir items and checking if the inode behind
2937  * the dir item was already processed.
2938  */
2939 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2940 		     u64 send_progress)
2941 {
2942 	int ret = 0;
2943 	struct btrfs_root *root = sctx->parent_root;
2944 	struct btrfs_path *path;
2945 	struct btrfs_key key;
2946 	struct btrfs_key found_key;
2947 	struct btrfs_key loc;
2948 	struct btrfs_dir_item *di;
2949 	struct orphan_dir_info *odi = NULL;
2950 
2951 	/*
2952 	 * Don't try to rmdir the top/root subvolume dir.
2953 	 */
2954 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2955 		return 0;
2956 
2957 	path = alloc_path_for_send();
2958 	if (!path)
2959 		return -ENOMEM;
2960 
2961 	key.objectid = dir;
2962 	key.type = BTRFS_DIR_INDEX_KEY;
2963 	key.offset = 0;
2964 
2965 	odi = get_orphan_dir_info(sctx, dir, dir_gen);
2966 	if (odi)
2967 		key.offset = odi->last_dir_index_offset;
2968 
2969 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2970 	if (ret < 0)
2971 		goto out;
2972 
2973 	while (1) {
2974 		struct waiting_dir_move *dm;
2975 
2976 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2977 			ret = btrfs_next_leaf(root, path);
2978 			if (ret < 0)
2979 				goto out;
2980 			else if (ret > 0)
2981 				break;
2982 			continue;
2983 		}
2984 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2985 				      path->slots[0]);
2986 		if (found_key.objectid != key.objectid ||
2987 		    found_key.type != key.type)
2988 			break;
2989 
2990 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2991 				struct btrfs_dir_item);
2992 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2993 
2994 		dm = get_waiting_dir_move(sctx, loc.objectid);
2995 		if (dm) {
2996 			odi = add_orphan_dir_info(sctx, dir, dir_gen);
2997 			if (IS_ERR(odi)) {
2998 				ret = PTR_ERR(odi);
2999 				goto out;
3000 			}
3001 			odi->gen = dir_gen;
3002 			odi->last_dir_index_offset = found_key.offset;
3003 			dm->rmdir_ino = dir;
3004 			dm->rmdir_gen = dir_gen;
3005 			ret = 0;
3006 			goto out;
3007 		}
3008 
3009 		if (loc.objectid > send_progress) {
3010 			odi = add_orphan_dir_info(sctx, dir, dir_gen);
3011 			if (IS_ERR(odi)) {
3012 				ret = PTR_ERR(odi);
3013 				goto out;
3014 			}
3015 			odi->gen = dir_gen;
3016 			odi->last_dir_index_offset = found_key.offset;
3017 			ret = 0;
3018 			goto out;
3019 		}
3020 
3021 		path->slots[0]++;
3022 	}
3023 	free_orphan_dir_info(sctx, odi);
3024 
3025 	ret = 1;
3026 
3027 out:
3028 	btrfs_free_path(path);
3029 	return ret;
3030 }
3031 
3032 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3033 {
3034 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3035 
3036 	return entry != NULL;
3037 }
3038 
3039 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3040 {
3041 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3042 	struct rb_node *parent = NULL;
3043 	struct waiting_dir_move *entry, *dm;
3044 
3045 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3046 	if (!dm)
3047 		return -ENOMEM;
3048 	dm->ino = ino;
3049 	dm->rmdir_ino = 0;
3050 	dm->rmdir_gen = 0;
3051 	dm->orphanized = orphanized;
3052 
3053 	while (*p) {
3054 		parent = *p;
3055 		entry = rb_entry(parent, struct waiting_dir_move, node);
3056 		if (ino < entry->ino) {
3057 			p = &(*p)->rb_left;
3058 		} else if (ino > entry->ino) {
3059 			p = &(*p)->rb_right;
3060 		} else {
3061 			kfree(dm);
3062 			return -EEXIST;
3063 		}
3064 	}
3065 
3066 	rb_link_node(&dm->node, parent, p);
3067 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3068 	return 0;
3069 }
3070 
3071 static struct waiting_dir_move *
3072 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3073 {
3074 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3075 	struct waiting_dir_move *entry;
3076 
3077 	while (n) {
3078 		entry = rb_entry(n, struct waiting_dir_move, node);
3079 		if (ino < entry->ino)
3080 			n = n->rb_left;
3081 		else if (ino > entry->ino)
3082 			n = n->rb_right;
3083 		else
3084 			return entry;
3085 	}
3086 	return NULL;
3087 }
3088 
3089 static void free_waiting_dir_move(struct send_ctx *sctx,
3090 				  struct waiting_dir_move *dm)
3091 {
3092 	if (!dm)
3093 		return;
3094 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3095 	kfree(dm);
3096 }
3097 
3098 static int add_pending_dir_move(struct send_ctx *sctx,
3099 				u64 ino,
3100 				u64 ino_gen,
3101 				u64 parent_ino,
3102 				struct list_head *new_refs,
3103 				struct list_head *deleted_refs,
3104 				const bool is_orphan)
3105 {
3106 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3107 	struct rb_node *parent = NULL;
3108 	struct pending_dir_move *entry = NULL, *pm;
3109 	struct recorded_ref *cur;
3110 	int exists = 0;
3111 	int ret;
3112 
3113 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3114 	if (!pm)
3115 		return -ENOMEM;
3116 	pm->parent_ino = parent_ino;
3117 	pm->ino = ino;
3118 	pm->gen = ino_gen;
3119 	INIT_LIST_HEAD(&pm->list);
3120 	INIT_LIST_HEAD(&pm->update_refs);
3121 	RB_CLEAR_NODE(&pm->node);
3122 
3123 	while (*p) {
3124 		parent = *p;
3125 		entry = rb_entry(parent, struct pending_dir_move, node);
3126 		if (parent_ino < entry->parent_ino) {
3127 			p = &(*p)->rb_left;
3128 		} else if (parent_ino > entry->parent_ino) {
3129 			p = &(*p)->rb_right;
3130 		} else {
3131 			exists = 1;
3132 			break;
3133 		}
3134 	}
3135 
3136 	list_for_each_entry(cur, deleted_refs, list) {
3137 		ret = dup_ref(cur, &pm->update_refs);
3138 		if (ret < 0)
3139 			goto out;
3140 	}
3141 	list_for_each_entry(cur, new_refs, list) {
3142 		ret = dup_ref(cur, &pm->update_refs);
3143 		if (ret < 0)
3144 			goto out;
3145 	}
3146 
3147 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3148 	if (ret)
3149 		goto out;
3150 
3151 	if (exists) {
3152 		list_add_tail(&pm->list, &entry->list);
3153 	} else {
3154 		rb_link_node(&pm->node, parent, p);
3155 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3156 	}
3157 	ret = 0;
3158 out:
3159 	if (ret) {
3160 		__free_recorded_refs(&pm->update_refs);
3161 		kfree(pm);
3162 	}
3163 	return ret;
3164 }
3165 
3166 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3167 						      u64 parent_ino)
3168 {
3169 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3170 	struct pending_dir_move *entry;
3171 
3172 	while (n) {
3173 		entry = rb_entry(n, struct pending_dir_move, node);
3174 		if (parent_ino < entry->parent_ino)
3175 			n = n->rb_left;
3176 		else if (parent_ino > entry->parent_ino)
3177 			n = n->rb_right;
3178 		else
3179 			return entry;
3180 	}
3181 	return NULL;
3182 }
3183 
3184 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3185 		     u64 ino, u64 gen, u64 *ancestor_ino)
3186 {
3187 	int ret = 0;
3188 	u64 parent_inode = 0;
3189 	u64 parent_gen = 0;
3190 	u64 start_ino = ino;
3191 
3192 	*ancestor_ino = 0;
3193 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3194 		fs_path_reset(name);
3195 
3196 		if (is_waiting_for_rm(sctx, ino, gen))
3197 			break;
3198 		if (is_waiting_for_move(sctx, ino)) {
3199 			if (*ancestor_ino == 0)
3200 				*ancestor_ino = ino;
3201 			ret = get_first_ref(sctx->parent_root, ino,
3202 					    &parent_inode, &parent_gen, name);
3203 		} else {
3204 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3205 							&parent_inode,
3206 							&parent_gen, name);
3207 			if (ret > 0) {
3208 				ret = 0;
3209 				break;
3210 			}
3211 		}
3212 		if (ret < 0)
3213 			break;
3214 		if (parent_inode == start_ino) {
3215 			ret = 1;
3216 			if (*ancestor_ino == 0)
3217 				*ancestor_ino = ino;
3218 			break;
3219 		}
3220 		ino = parent_inode;
3221 		gen = parent_gen;
3222 	}
3223 	return ret;
3224 }
3225 
3226 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3227 {
3228 	struct fs_path *from_path = NULL;
3229 	struct fs_path *to_path = NULL;
3230 	struct fs_path *name = NULL;
3231 	u64 orig_progress = sctx->send_progress;
3232 	struct recorded_ref *cur;
3233 	u64 parent_ino, parent_gen;
3234 	struct waiting_dir_move *dm = NULL;
3235 	u64 rmdir_ino = 0;
3236 	u64 rmdir_gen;
3237 	u64 ancestor;
3238 	bool is_orphan;
3239 	int ret;
3240 
3241 	name = fs_path_alloc();
3242 	from_path = fs_path_alloc();
3243 	if (!name || !from_path) {
3244 		ret = -ENOMEM;
3245 		goto out;
3246 	}
3247 
3248 	dm = get_waiting_dir_move(sctx, pm->ino);
3249 	ASSERT(dm);
3250 	rmdir_ino = dm->rmdir_ino;
3251 	rmdir_gen = dm->rmdir_gen;
3252 	is_orphan = dm->orphanized;
3253 	free_waiting_dir_move(sctx, dm);
3254 
3255 	if (is_orphan) {
3256 		ret = gen_unique_name(sctx, pm->ino,
3257 				      pm->gen, from_path);
3258 	} else {
3259 		ret = get_first_ref(sctx->parent_root, pm->ino,
3260 				    &parent_ino, &parent_gen, name);
3261 		if (ret < 0)
3262 			goto out;
3263 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3264 				   from_path);
3265 		if (ret < 0)
3266 			goto out;
3267 		ret = fs_path_add_path(from_path, name);
3268 	}
3269 	if (ret < 0)
3270 		goto out;
3271 
3272 	sctx->send_progress = sctx->cur_ino + 1;
3273 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3274 	if (ret < 0)
3275 		goto out;
3276 	if (ret) {
3277 		LIST_HEAD(deleted_refs);
3278 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3279 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3280 					   &pm->update_refs, &deleted_refs,
3281 					   is_orphan);
3282 		if (ret < 0)
3283 			goto out;
3284 		if (rmdir_ino) {
3285 			dm = get_waiting_dir_move(sctx, pm->ino);
3286 			ASSERT(dm);
3287 			dm->rmdir_ino = rmdir_ino;
3288 			dm->rmdir_gen = rmdir_gen;
3289 		}
3290 		goto out;
3291 	}
3292 	fs_path_reset(name);
3293 	to_path = name;
3294 	name = NULL;
3295 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3296 	if (ret < 0)
3297 		goto out;
3298 
3299 	ret = send_rename(sctx, from_path, to_path);
3300 	if (ret < 0)
3301 		goto out;
3302 
3303 	if (rmdir_ino) {
3304 		struct orphan_dir_info *odi;
3305 		u64 gen;
3306 
3307 		odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3308 		if (!odi) {
3309 			/* already deleted */
3310 			goto finish;
3311 		}
3312 		gen = odi->gen;
3313 
3314 		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3315 		if (ret < 0)
3316 			goto out;
3317 		if (!ret)
3318 			goto finish;
3319 
3320 		name = fs_path_alloc();
3321 		if (!name) {
3322 			ret = -ENOMEM;
3323 			goto out;
3324 		}
3325 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3326 		if (ret < 0)
3327 			goto out;
3328 		ret = send_rmdir(sctx, name);
3329 		if (ret < 0)
3330 			goto out;
3331 	}
3332 
3333 finish:
3334 	ret = send_utimes(sctx, pm->ino, pm->gen);
3335 	if (ret < 0)
3336 		goto out;
3337 
3338 	/*
3339 	 * After rename/move, need to update the utimes of both new parent(s)
3340 	 * and old parent(s).
3341 	 */
3342 	list_for_each_entry(cur, &pm->update_refs, list) {
3343 		/*
3344 		 * The parent inode might have been deleted in the send snapshot
3345 		 */
3346 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3347 				     NULL, NULL, NULL, NULL, NULL);
3348 		if (ret == -ENOENT) {
3349 			ret = 0;
3350 			continue;
3351 		}
3352 		if (ret < 0)
3353 			goto out;
3354 
3355 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3356 		if (ret < 0)
3357 			goto out;
3358 	}
3359 
3360 out:
3361 	fs_path_free(name);
3362 	fs_path_free(from_path);
3363 	fs_path_free(to_path);
3364 	sctx->send_progress = orig_progress;
3365 
3366 	return ret;
3367 }
3368 
3369 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3370 {
3371 	if (!list_empty(&m->list))
3372 		list_del(&m->list);
3373 	if (!RB_EMPTY_NODE(&m->node))
3374 		rb_erase(&m->node, &sctx->pending_dir_moves);
3375 	__free_recorded_refs(&m->update_refs);
3376 	kfree(m);
3377 }
3378 
3379 static void tail_append_pending_moves(struct send_ctx *sctx,
3380 				      struct pending_dir_move *moves,
3381 				      struct list_head *stack)
3382 {
3383 	if (list_empty(&moves->list)) {
3384 		list_add_tail(&moves->list, stack);
3385 	} else {
3386 		LIST_HEAD(list);
3387 		list_splice_init(&moves->list, &list);
3388 		list_add_tail(&moves->list, stack);
3389 		list_splice_tail(&list, stack);
3390 	}
3391 	if (!RB_EMPTY_NODE(&moves->node)) {
3392 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3393 		RB_CLEAR_NODE(&moves->node);
3394 	}
3395 }
3396 
3397 static int apply_children_dir_moves(struct send_ctx *sctx)
3398 {
3399 	struct pending_dir_move *pm;
3400 	struct list_head stack;
3401 	u64 parent_ino = sctx->cur_ino;
3402 	int ret = 0;
3403 
3404 	pm = get_pending_dir_moves(sctx, parent_ino);
3405 	if (!pm)
3406 		return 0;
3407 
3408 	INIT_LIST_HEAD(&stack);
3409 	tail_append_pending_moves(sctx, pm, &stack);
3410 
3411 	while (!list_empty(&stack)) {
3412 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3413 		parent_ino = pm->ino;
3414 		ret = apply_dir_move(sctx, pm);
3415 		free_pending_move(sctx, pm);
3416 		if (ret)
3417 			goto out;
3418 		pm = get_pending_dir_moves(sctx, parent_ino);
3419 		if (pm)
3420 			tail_append_pending_moves(sctx, pm, &stack);
3421 	}
3422 	return 0;
3423 
3424 out:
3425 	while (!list_empty(&stack)) {
3426 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3427 		free_pending_move(sctx, pm);
3428 	}
3429 	return ret;
3430 }
3431 
3432 /*
3433  * We might need to delay a directory rename even when no ancestor directory
3434  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3435  * renamed. This happens when we rename a directory to the old name (the name
3436  * in the parent root) of some other unrelated directory that got its rename
3437  * delayed due to some ancestor with higher number that got renamed.
3438  *
3439  * Example:
3440  *
3441  * Parent snapshot:
3442  * .                                       (ino 256)
3443  * |---- a/                                (ino 257)
3444  * |     |---- file                        (ino 260)
3445  * |
3446  * |---- b/                                (ino 258)
3447  * |---- c/                                (ino 259)
3448  *
3449  * Send snapshot:
3450  * .                                       (ino 256)
3451  * |---- a/                                (ino 258)
3452  * |---- x/                                (ino 259)
3453  *       |---- y/                          (ino 257)
3454  *             |----- file                 (ino 260)
3455  *
3456  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3457  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3458  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3459  * must issue is:
3460  *
3461  * 1 - rename 259 from 'c' to 'x'
3462  * 2 - rename 257 from 'a' to 'x/y'
3463  * 3 - rename 258 from 'b' to 'a'
3464  *
3465  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3466  * be done right away and < 0 on error.
3467  */
3468 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3469 				  struct recorded_ref *parent_ref,
3470 				  const bool is_orphan)
3471 {
3472 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3473 	struct btrfs_path *path;
3474 	struct btrfs_key key;
3475 	struct btrfs_key di_key;
3476 	struct btrfs_dir_item *di;
3477 	u64 left_gen;
3478 	u64 right_gen;
3479 	int ret = 0;
3480 	struct waiting_dir_move *wdm;
3481 
3482 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3483 		return 0;
3484 
3485 	path = alloc_path_for_send();
3486 	if (!path)
3487 		return -ENOMEM;
3488 
3489 	key.objectid = parent_ref->dir;
3490 	key.type = BTRFS_DIR_ITEM_KEY;
3491 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3492 
3493 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3494 	if (ret < 0) {
3495 		goto out;
3496 	} else if (ret > 0) {
3497 		ret = 0;
3498 		goto out;
3499 	}
3500 
3501 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3502 				       parent_ref->name_len);
3503 	if (!di) {
3504 		ret = 0;
3505 		goto out;
3506 	}
3507 	/*
3508 	 * di_key.objectid has the number of the inode that has a dentry in the
3509 	 * parent directory with the same name that sctx->cur_ino is being
3510 	 * renamed to. We need to check if that inode is in the send root as
3511 	 * well and if it is currently marked as an inode with a pending rename,
3512 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3513 	 * that it happens after that other inode is renamed.
3514 	 */
3515 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3516 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3517 		ret = 0;
3518 		goto out;
3519 	}
3520 
3521 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3522 			     &left_gen, NULL, NULL, NULL, NULL);
3523 	if (ret < 0)
3524 		goto out;
3525 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3526 			     &right_gen, NULL, NULL, NULL, NULL);
3527 	if (ret < 0) {
3528 		if (ret == -ENOENT)
3529 			ret = 0;
3530 		goto out;
3531 	}
3532 
3533 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3534 	if (right_gen != left_gen) {
3535 		ret = 0;
3536 		goto out;
3537 	}
3538 
3539 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3540 	if (wdm && !wdm->orphanized) {
3541 		ret = add_pending_dir_move(sctx,
3542 					   sctx->cur_ino,
3543 					   sctx->cur_inode_gen,
3544 					   di_key.objectid,
3545 					   &sctx->new_refs,
3546 					   &sctx->deleted_refs,
3547 					   is_orphan);
3548 		if (!ret)
3549 			ret = 1;
3550 	}
3551 out:
3552 	btrfs_free_path(path);
3553 	return ret;
3554 }
3555 
3556 /*
3557  * Check if inode ino2, or any of its ancestors, is inode ino1.
3558  * Return 1 if true, 0 if false and < 0 on error.
3559  */
3560 static int check_ino_in_path(struct btrfs_root *root,
3561 			     const u64 ino1,
3562 			     const u64 ino1_gen,
3563 			     const u64 ino2,
3564 			     const u64 ino2_gen,
3565 			     struct fs_path *fs_path)
3566 {
3567 	u64 ino = ino2;
3568 
3569 	if (ino1 == ino2)
3570 		return ino1_gen == ino2_gen;
3571 
3572 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3573 		u64 parent;
3574 		u64 parent_gen;
3575 		int ret;
3576 
3577 		fs_path_reset(fs_path);
3578 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3579 		if (ret < 0)
3580 			return ret;
3581 		if (parent == ino1)
3582 			return parent_gen == ino1_gen;
3583 		ino = parent;
3584 	}
3585 	return 0;
3586 }
3587 
3588 /*
3589  * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3590  * possible path (in case ino2 is not a directory and has multiple hard links).
3591  * Return 1 if true, 0 if false and < 0 on error.
3592  */
3593 static int is_ancestor(struct btrfs_root *root,
3594 		       const u64 ino1,
3595 		       const u64 ino1_gen,
3596 		       const u64 ino2,
3597 		       struct fs_path *fs_path)
3598 {
3599 	bool free_fs_path = false;
3600 	int ret = 0;
3601 	struct btrfs_path *path = NULL;
3602 	struct btrfs_key key;
3603 
3604 	if (!fs_path) {
3605 		fs_path = fs_path_alloc();
3606 		if (!fs_path)
3607 			return -ENOMEM;
3608 		free_fs_path = true;
3609 	}
3610 
3611 	path = alloc_path_for_send();
3612 	if (!path) {
3613 		ret = -ENOMEM;
3614 		goto out;
3615 	}
3616 
3617 	key.objectid = ino2;
3618 	key.type = BTRFS_INODE_REF_KEY;
3619 	key.offset = 0;
3620 
3621 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3622 	if (ret < 0)
3623 		goto out;
3624 
3625 	while (true) {
3626 		struct extent_buffer *leaf = path->nodes[0];
3627 		int slot = path->slots[0];
3628 		u32 cur_offset = 0;
3629 		u32 item_size;
3630 
3631 		if (slot >= btrfs_header_nritems(leaf)) {
3632 			ret = btrfs_next_leaf(root, path);
3633 			if (ret < 0)
3634 				goto out;
3635 			if (ret > 0)
3636 				break;
3637 			continue;
3638 		}
3639 
3640 		btrfs_item_key_to_cpu(leaf, &key, slot);
3641 		if (key.objectid != ino2)
3642 			break;
3643 		if (key.type != BTRFS_INODE_REF_KEY &&
3644 		    key.type != BTRFS_INODE_EXTREF_KEY)
3645 			break;
3646 
3647 		item_size = btrfs_item_size_nr(leaf, slot);
3648 		while (cur_offset < item_size) {
3649 			u64 parent;
3650 			u64 parent_gen;
3651 
3652 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3653 				unsigned long ptr;
3654 				struct btrfs_inode_extref *extref;
3655 
3656 				ptr = btrfs_item_ptr_offset(leaf, slot);
3657 				extref = (struct btrfs_inode_extref *)
3658 					(ptr + cur_offset);
3659 				parent = btrfs_inode_extref_parent(leaf,
3660 								   extref);
3661 				cur_offset += sizeof(*extref);
3662 				cur_offset += btrfs_inode_extref_name_len(leaf,
3663 								  extref);
3664 			} else {
3665 				parent = key.offset;
3666 				cur_offset = item_size;
3667 			}
3668 
3669 			ret = get_inode_info(root, parent, NULL, &parent_gen,
3670 					     NULL, NULL, NULL, NULL);
3671 			if (ret < 0)
3672 				goto out;
3673 			ret = check_ino_in_path(root, ino1, ino1_gen,
3674 						parent, parent_gen, fs_path);
3675 			if (ret)
3676 				goto out;
3677 		}
3678 		path->slots[0]++;
3679 	}
3680 	ret = 0;
3681  out:
3682 	btrfs_free_path(path);
3683 	if (free_fs_path)
3684 		fs_path_free(fs_path);
3685 	return ret;
3686 }
3687 
3688 static int wait_for_parent_move(struct send_ctx *sctx,
3689 				struct recorded_ref *parent_ref,
3690 				const bool is_orphan)
3691 {
3692 	int ret = 0;
3693 	u64 ino = parent_ref->dir;
3694 	u64 ino_gen = parent_ref->dir_gen;
3695 	u64 parent_ino_before, parent_ino_after;
3696 	struct fs_path *path_before = NULL;
3697 	struct fs_path *path_after = NULL;
3698 	int len1, len2;
3699 
3700 	path_after = fs_path_alloc();
3701 	path_before = fs_path_alloc();
3702 	if (!path_after || !path_before) {
3703 		ret = -ENOMEM;
3704 		goto out;
3705 	}
3706 
3707 	/*
3708 	 * Our current directory inode may not yet be renamed/moved because some
3709 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3710 	 * such ancestor exists and make sure our own rename/move happens after
3711 	 * that ancestor is processed to avoid path build infinite loops (done
3712 	 * at get_cur_path()).
3713 	 */
3714 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3715 		u64 parent_ino_after_gen;
3716 
3717 		if (is_waiting_for_move(sctx, ino)) {
3718 			/*
3719 			 * If the current inode is an ancestor of ino in the
3720 			 * parent root, we need to delay the rename of the
3721 			 * current inode, otherwise don't delayed the rename
3722 			 * because we can end up with a circular dependency
3723 			 * of renames, resulting in some directories never
3724 			 * getting the respective rename operations issued in
3725 			 * the send stream or getting into infinite path build
3726 			 * loops.
3727 			 */
3728 			ret = is_ancestor(sctx->parent_root,
3729 					  sctx->cur_ino, sctx->cur_inode_gen,
3730 					  ino, path_before);
3731 			if (ret)
3732 				break;
3733 		}
3734 
3735 		fs_path_reset(path_before);
3736 		fs_path_reset(path_after);
3737 
3738 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3739 				    &parent_ino_after_gen, path_after);
3740 		if (ret < 0)
3741 			goto out;
3742 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3743 				    NULL, path_before);
3744 		if (ret < 0 && ret != -ENOENT) {
3745 			goto out;
3746 		} else if (ret == -ENOENT) {
3747 			ret = 0;
3748 			break;
3749 		}
3750 
3751 		len1 = fs_path_len(path_before);
3752 		len2 = fs_path_len(path_after);
3753 		if (ino > sctx->cur_ino &&
3754 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3755 		     memcmp(path_before->start, path_after->start, len1))) {
3756 			u64 parent_ino_gen;
3757 
3758 			ret = get_inode_info(sctx->parent_root, ino, NULL,
3759 					     &parent_ino_gen, NULL, NULL, NULL,
3760 					     NULL);
3761 			if (ret < 0)
3762 				goto out;
3763 			if (ino_gen == parent_ino_gen) {
3764 				ret = 1;
3765 				break;
3766 			}
3767 		}
3768 		ino = parent_ino_after;
3769 		ino_gen = parent_ino_after_gen;
3770 	}
3771 
3772 out:
3773 	fs_path_free(path_before);
3774 	fs_path_free(path_after);
3775 
3776 	if (ret == 1) {
3777 		ret = add_pending_dir_move(sctx,
3778 					   sctx->cur_ino,
3779 					   sctx->cur_inode_gen,
3780 					   ino,
3781 					   &sctx->new_refs,
3782 					   &sctx->deleted_refs,
3783 					   is_orphan);
3784 		if (!ret)
3785 			ret = 1;
3786 	}
3787 
3788 	return ret;
3789 }
3790 
3791 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3792 {
3793 	int ret;
3794 	struct fs_path *new_path;
3795 
3796 	/*
3797 	 * Our reference's name member points to its full_path member string, so
3798 	 * we use here a new path.
3799 	 */
3800 	new_path = fs_path_alloc();
3801 	if (!new_path)
3802 		return -ENOMEM;
3803 
3804 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3805 	if (ret < 0) {
3806 		fs_path_free(new_path);
3807 		return ret;
3808 	}
3809 	ret = fs_path_add(new_path, ref->name, ref->name_len);
3810 	if (ret < 0) {
3811 		fs_path_free(new_path);
3812 		return ret;
3813 	}
3814 
3815 	fs_path_free(ref->full_path);
3816 	set_ref_path(ref, new_path);
3817 
3818 	return 0;
3819 }
3820 
3821 /*
3822  * When processing the new references for an inode we may orphanize an existing
3823  * directory inode because its old name conflicts with one of the new references
3824  * of the current inode. Later, when processing another new reference of our
3825  * inode, we might need to orphanize another inode, but the path we have in the
3826  * reference reflects the pre-orphanization name of the directory we previously
3827  * orphanized. For example:
3828  *
3829  * parent snapshot looks like:
3830  *
3831  * .                                     (ino 256)
3832  * |----- f1                             (ino 257)
3833  * |----- f2                             (ino 258)
3834  * |----- d1/                            (ino 259)
3835  *        |----- d2/                     (ino 260)
3836  *
3837  * send snapshot looks like:
3838  *
3839  * .                                     (ino 256)
3840  * |----- d1                             (ino 258)
3841  * |----- f2/                            (ino 259)
3842  *        |----- f2_link/                (ino 260)
3843  *        |       |----- f1              (ino 257)
3844  *        |
3845  *        |----- d2                      (ino 258)
3846  *
3847  * When processing inode 257 we compute the name for inode 259 as "d1", and we
3848  * cache it in the name cache. Later when we start processing inode 258, when
3849  * collecting all its new references we set a full path of "d1/d2" for its new
3850  * reference with name "d2". When we start processing the new references we
3851  * start by processing the new reference with name "d1", and this results in
3852  * orphanizing inode 259, since its old reference causes a conflict. Then we
3853  * move on the next new reference, with name "d2", and we find out we must
3854  * orphanize inode 260, as its old reference conflicts with ours - but for the
3855  * orphanization we use a source path corresponding to the path we stored in the
3856  * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
3857  * receiver fail since the path component "d1/" no longer exists, it was renamed
3858  * to "o259-6-0/" when processing the previous new reference. So in this case we
3859  * must recompute the path in the new reference and use it for the new
3860  * orphanization operation.
3861  */
3862 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3863 {
3864 	char *name;
3865 	int ret;
3866 
3867 	name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
3868 	if (!name)
3869 		return -ENOMEM;
3870 
3871 	fs_path_reset(ref->full_path);
3872 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
3873 	if (ret < 0)
3874 		goto out;
3875 
3876 	ret = fs_path_add(ref->full_path, name, ref->name_len);
3877 	if (ret < 0)
3878 		goto out;
3879 
3880 	/* Update the reference's base name pointer. */
3881 	set_ref_path(ref, ref->full_path);
3882 out:
3883 	kfree(name);
3884 	return ret;
3885 }
3886 
3887 /*
3888  * This does all the move/link/unlink/rmdir magic.
3889  */
3890 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3891 {
3892 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3893 	int ret = 0;
3894 	struct recorded_ref *cur;
3895 	struct recorded_ref *cur2;
3896 	struct list_head check_dirs;
3897 	struct fs_path *valid_path = NULL;
3898 	u64 ow_inode = 0;
3899 	u64 ow_gen;
3900 	u64 ow_mode;
3901 	int did_overwrite = 0;
3902 	int is_orphan = 0;
3903 	u64 last_dir_ino_rm = 0;
3904 	bool can_rename = true;
3905 	bool orphanized_dir = false;
3906 	bool orphanized_ancestor = false;
3907 
3908 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3909 
3910 	/*
3911 	 * This should never happen as the root dir always has the same ref
3912 	 * which is always '..'
3913 	 */
3914 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3915 	INIT_LIST_HEAD(&check_dirs);
3916 
3917 	valid_path = fs_path_alloc();
3918 	if (!valid_path) {
3919 		ret = -ENOMEM;
3920 		goto out;
3921 	}
3922 
3923 	/*
3924 	 * First, check if the first ref of the current inode was overwritten
3925 	 * before. If yes, we know that the current inode was already orphanized
3926 	 * and thus use the orphan name. If not, we can use get_cur_path to
3927 	 * get the path of the first ref as it would like while receiving at
3928 	 * this point in time.
3929 	 * New inodes are always orphan at the beginning, so force to use the
3930 	 * orphan name in this case.
3931 	 * The first ref is stored in valid_path and will be updated if it
3932 	 * gets moved around.
3933 	 */
3934 	if (!sctx->cur_inode_new) {
3935 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3936 				sctx->cur_inode_gen);
3937 		if (ret < 0)
3938 			goto out;
3939 		if (ret)
3940 			did_overwrite = 1;
3941 	}
3942 	if (sctx->cur_inode_new || did_overwrite) {
3943 		ret = gen_unique_name(sctx, sctx->cur_ino,
3944 				sctx->cur_inode_gen, valid_path);
3945 		if (ret < 0)
3946 			goto out;
3947 		is_orphan = 1;
3948 	} else {
3949 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3950 				valid_path);
3951 		if (ret < 0)
3952 			goto out;
3953 	}
3954 
3955 	/*
3956 	 * Before doing any rename and link operations, do a first pass on the
3957 	 * new references to orphanize any unprocessed inodes that may have a
3958 	 * reference that conflicts with one of the new references of the current
3959 	 * inode. This needs to happen first because a new reference may conflict
3960 	 * with the old reference of a parent directory, so we must make sure
3961 	 * that the path used for link and rename commands don't use an
3962 	 * orphanized name when an ancestor was not yet orphanized.
3963 	 *
3964 	 * Example:
3965 	 *
3966 	 * Parent snapshot:
3967 	 *
3968 	 * .                                                      (ino 256)
3969 	 * |----- testdir/                                        (ino 259)
3970 	 * |          |----- a                                    (ino 257)
3971 	 * |
3972 	 * |----- b                                               (ino 258)
3973 	 *
3974 	 * Send snapshot:
3975 	 *
3976 	 * .                                                      (ino 256)
3977 	 * |----- testdir_2/                                      (ino 259)
3978 	 * |          |----- a                                    (ino 260)
3979 	 * |
3980 	 * |----- testdir                                         (ino 257)
3981 	 * |----- b                                               (ino 257)
3982 	 * |----- b2                                              (ino 258)
3983 	 *
3984 	 * Processing the new reference for inode 257 with name "b" may happen
3985 	 * before processing the new reference with name "testdir". If so, we
3986 	 * must make sure that by the time we send a link command to create the
3987 	 * hard link "b", inode 259 was already orphanized, since the generated
3988 	 * path in "valid_path" already contains the orphanized name for 259.
3989 	 * We are processing inode 257, so only later when processing 259 we do
3990 	 * the rename operation to change its temporary (orphanized) name to
3991 	 * "testdir_2".
3992 	 */
3993 	list_for_each_entry(cur, &sctx->new_refs, list) {
3994 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3995 		if (ret < 0)
3996 			goto out;
3997 		if (ret == inode_state_will_create)
3998 			continue;
3999 
4000 		/*
4001 		 * Check if this new ref would overwrite the first ref of another
4002 		 * unprocessed inode. If yes, orphanize the overwritten inode.
4003 		 * If we find an overwritten ref that is not the first ref,
4004 		 * simply unlink it.
4005 		 */
4006 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4007 				cur->name, cur->name_len,
4008 				&ow_inode, &ow_gen, &ow_mode);
4009 		if (ret < 0)
4010 			goto out;
4011 		if (ret) {
4012 			ret = is_first_ref(sctx->parent_root,
4013 					   ow_inode, cur->dir, cur->name,
4014 					   cur->name_len);
4015 			if (ret < 0)
4016 				goto out;
4017 			if (ret) {
4018 				struct name_cache_entry *nce;
4019 				struct waiting_dir_move *wdm;
4020 
4021 				if (orphanized_dir) {
4022 					ret = refresh_ref_path(sctx, cur);
4023 					if (ret < 0)
4024 						goto out;
4025 				}
4026 
4027 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
4028 						cur->full_path);
4029 				if (ret < 0)
4030 					goto out;
4031 				if (S_ISDIR(ow_mode))
4032 					orphanized_dir = true;
4033 
4034 				/*
4035 				 * If ow_inode has its rename operation delayed
4036 				 * make sure that its orphanized name is used in
4037 				 * the source path when performing its rename
4038 				 * operation.
4039 				 */
4040 				if (is_waiting_for_move(sctx, ow_inode)) {
4041 					wdm = get_waiting_dir_move(sctx,
4042 								   ow_inode);
4043 					ASSERT(wdm);
4044 					wdm->orphanized = true;
4045 				}
4046 
4047 				/*
4048 				 * Make sure we clear our orphanized inode's
4049 				 * name from the name cache. This is because the
4050 				 * inode ow_inode might be an ancestor of some
4051 				 * other inode that will be orphanized as well
4052 				 * later and has an inode number greater than
4053 				 * sctx->send_progress. We need to prevent
4054 				 * future name lookups from using the old name
4055 				 * and get instead the orphan name.
4056 				 */
4057 				nce = name_cache_search(sctx, ow_inode, ow_gen);
4058 				if (nce) {
4059 					name_cache_delete(sctx, nce);
4060 					kfree(nce);
4061 				}
4062 
4063 				/*
4064 				 * ow_inode might currently be an ancestor of
4065 				 * cur_ino, therefore compute valid_path (the
4066 				 * current path of cur_ino) again because it
4067 				 * might contain the pre-orphanization name of
4068 				 * ow_inode, which is no longer valid.
4069 				 */
4070 				ret = is_ancestor(sctx->parent_root,
4071 						  ow_inode, ow_gen,
4072 						  sctx->cur_ino, NULL);
4073 				if (ret > 0) {
4074 					orphanized_ancestor = true;
4075 					fs_path_reset(valid_path);
4076 					ret = get_cur_path(sctx, sctx->cur_ino,
4077 							   sctx->cur_inode_gen,
4078 							   valid_path);
4079 				}
4080 				if (ret < 0)
4081 					goto out;
4082 			} else {
4083 				ret = send_unlink(sctx, cur->full_path);
4084 				if (ret < 0)
4085 					goto out;
4086 			}
4087 		}
4088 
4089 	}
4090 
4091 	list_for_each_entry(cur, &sctx->new_refs, list) {
4092 		/*
4093 		 * We may have refs where the parent directory does not exist
4094 		 * yet. This happens if the parent directories inum is higher
4095 		 * than the current inum. To handle this case, we create the
4096 		 * parent directory out of order. But we need to check if this
4097 		 * did already happen before due to other refs in the same dir.
4098 		 */
4099 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4100 		if (ret < 0)
4101 			goto out;
4102 		if (ret == inode_state_will_create) {
4103 			ret = 0;
4104 			/*
4105 			 * First check if any of the current inodes refs did
4106 			 * already create the dir.
4107 			 */
4108 			list_for_each_entry(cur2, &sctx->new_refs, list) {
4109 				if (cur == cur2)
4110 					break;
4111 				if (cur2->dir == cur->dir) {
4112 					ret = 1;
4113 					break;
4114 				}
4115 			}
4116 
4117 			/*
4118 			 * If that did not happen, check if a previous inode
4119 			 * did already create the dir.
4120 			 */
4121 			if (!ret)
4122 				ret = did_create_dir(sctx, cur->dir);
4123 			if (ret < 0)
4124 				goto out;
4125 			if (!ret) {
4126 				ret = send_create_inode(sctx, cur->dir);
4127 				if (ret < 0)
4128 					goto out;
4129 			}
4130 		}
4131 
4132 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4133 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4134 			if (ret < 0)
4135 				goto out;
4136 			if (ret == 1) {
4137 				can_rename = false;
4138 				*pending_move = 1;
4139 			}
4140 		}
4141 
4142 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4143 		    can_rename) {
4144 			ret = wait_for_parent_move(sctx, cur, is_orphan);
4145 			if (ret < 0)
4146 				goto out;
4147 			if (ret == 1) {
4148 				can_rename = false;
4149 				*pending_move = 1;
4150 			}
4151 		}
4152 
4153 		/*
4154 		 * link/move the ref to the new place. If we have an orphan
4155 		 * inode, move it and update valid_path. If not, link or move
4156 		 * it depending on the inode mode.
4157 		 */
4158 		if (is_orphan && can_rename) {
4159 			ret = send_rename(sctx, valid_path, cur->full_path);
4160 			if (ret < 0)
4161 				goto out;
4162 			is_orphan = 0;
4163 			ret = fs_path_copy(valid_path, cur->full_path);
4164 			if (ret < 0)
4165 				goto out;
4166 		} else if (can_rename) {
4167 			if (S_ISDIR(sctx->cur_inode_mode)) {
4168 				/*
4169 				 * Dirs can't be linked, so move it. For moved
4170 				 * dirs, we always have one new and one deleted
4171 				 * ref. The deleted ref is ignored later.
4172 				 */
4173 				ret = send_rename(sctx, valid_path,
4174 						  cur->full_path);
4175 				if (!ret)
4176 					ret = fs_path_copy(valid_path,
4177 							   cur->full_path);
4178 				if (ret < 0)
4179 					goto out;
4180 			} else {
4181 				/*
4182 				 * We might have previously orphanized an inode
4183 				 * which is an ancestor of our current inode,
4184 				 * so our reference's full path, which was
4185 				 * computed before any such orphanizations, must
4186 				 * be updated.
4187 				 */
4188 				if (orphanized_dir) {
4189 					ret = update_ref_path(sctx, cur);
4190 					if (ret < 0)
4191 						goto out;
4192 				}
4193 				ret = send_link(sctx, cur->full_path,
4194 						valid_path);
4195 				if (ret < 0)
4196 					goto out;
4197 			}
4198 		}
4199 		ret = dup_ref(cur, &check_dirs);
4200 		if (ret < 0)
4201 			goto out;
4202 	}
4203 
4204 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4205 		/*
4206 		 * Check if we can already rmdir the directory. If not,
4207 		 * orphanize it. For every dir item inside that gets deleted
4208 		 * later, we do this check again and rmdir it then if possible.
4209 		 * See the use of check_dirs for more details.
4210 		 */
4211 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4212 				sctx->cur_ino);
4213 		if (ret < 0)
4214 			goto out;
4215 		if (ret) {
4216 			ret = send_rmdir(sctx, valid_path);
4217 			if (ret < 0)
4218 				goto out;
4219 		} else if (!is_orphan) {
4220 			ret = orphanize_inode(sctx, sctx->cur_ino,
4221 					sctx->cur_inode_gen, valid_path);
4222 			if (ret < 0)
4223 				goto out;
4224 			is_orphan = 1;
4225 		}
4226 
4227 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4228 			ret = dup_ref(cur, &check_dirs);
4229 			if (ret < 0)
4230 				goto out;
4231 		}
4232 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4233 		   !list_empty(&sctx->deleted_refs)) {
4234 		/*
4235 		 * We have a moved dir. Add the old parent to check_dirs
4236 		 */
4237 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4238 				list);
4239 		ret = dup_ref(cur, &check_dirs);
4240 		if (ret < 0)
4241 			goto out;
4242 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4243 		/*
4244 		 * We have a non dir inode. Go through all deleted refs and
4245 		 * unlink them if they were not already overwritten by other
4246 		 * inodes.
4247 		 */
4248 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4249 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4250 					sctx->cur_ino, sctx->cur_inode_gen,
4251 					cur->name, cur->name_len);
4252 			if (ret < 0)
4253 				goto out;
4254 			if (!ret) {
4255 				/*
4256 				 * If we orphanized any ancestor before, we need
4257 				 * to recompute the full path for deleted names,
4258 				 * since any such path was computed before we
4259 				 * processed any references and orphanized any
4260 				 * ancestor inode.
4261 				 */
4262 				if (orphanized_ancestor) {
4263 					ret = update_ref_path(sctx, cur);
4264 					if (ret < 0)
4265 						goto out;
4266 				}
4267 				ret = send_unlink(sctx, cur->full_path);
4268 				if (ret < 0)
4269 					goto out;
4270 			}
4271 			ret = dup_ref(cur, &check_dirs);
4272 			if (ret < 0)
4273 				goto out;
4274 		}
4275 		/*
4276 		 * If the inode is still orphan, unlink the orphan. This may
4277 		 * happen when a previous inode did overwrite the first ref
4278 		 * of this inode and no new refs were added for the current
4279 		 * inode. Unlinking does not mean that the inode is deleted in
4280 		 * all cases. There may still be links to this inode in other
4281 		 * places.
4282 		 */
4283 		if (is_orphan) {
4284 			ret = send_unlink(sctx, valid_path);
4285 			if (ret < 0)
4286 				goto out;
4287 		}
4288 	}
4289 
4290 	/*
4291 	 * We did collect all parent dirs where cur_inode was once located. We
4292 	 * now go through all these dirs and check if they are pending for
4293 	 * deletion and if it's finally possible to perform the rmdir now.
4294 	 * We also update the inode stats of the parent dirs here.
4295 	 */
4296 	list_for_each_entry(cur, &check_dirs, list) {
4297 		/*
4298 		 * In case we had refs into dirs that were not processed yet,
4299 		 * we don't need to do the utime and rmdir logic for these dirs.
4300 		 * The dir will be processed later.
4301 		 */
4302 		if (cur->dir > sctx->cur_ino)
4303 			continue;
4304 
4305 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4306 		if (ret < 0)
4307 			goto out;
4308 
4309 		if (ret == inode_state_did_create ||
4310 		    ret == inode_state_no_change) {
4311 			/* TODO delayed utimes */
4312 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4313 			if (ret < 0)
4314 				goto out;
4315 		} else if (ret == inode_state_did_delete &&
4316 			   cur->dir != last_dir_ino_rm) {
4317 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4318 					sctx->cur_ino);
4319 			if (ret < 0)
4320 				goto out;
4321 			if (ret) {
4322 				ret = get_cur_path(sctx, cur->dir,
4323 						   cur->dir_gen, valid_path);
4324 				if (ret < 0)
4325 					goto out;
4326 				ret = send_rmdir(sctx, valid_path);
4327 				if (ret < 0)
4328 					goto out;
4329 				last_dir_ino_rm = cur->dir;
4330 			}
4331 		}
4332 	}
4333 
4334 	ret = 0;
4335 
4336 out:
4337 	__free_recorded_refs(&check_dirs);
4338 	free_recorded_refs(sctx);
4339 	fs_path_free(valid_path);
4340 	return ret;
4341 }
4342 
4343 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4344 		      void *ctx, struct list_head *refs)
4345 {
4346 	int ret = 0;
4347 	struct send_ctx *sctx = ctx;
4348 	struct fs_path *p;
4349 	u64 gen;
4350 
4351 	p = fs_path_alloc();
4352 	if (!p)
4353 		return -ENOMEM;
4354 
4355 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4356 			NULL, NULL);
4357 	if (ret < 0)
4358 		goto out;
4359 
4360 	ret = get_cur_path(sctx, dir, gen, p);
4361 	if (ret < 0)
4362 		goto out;
4363 	ret = fs_path_add_path(p, name);
4364 	if (ret < 0)
4365 		goto out;
4366 
4367 	ret = __record_ref(refs, dir, gen, p);
4368 
4369 out:
4370 	if (ret)
4371 		fs_path_free(p);
4372 	return ret;
4373 }
4374 
4375 static int __record_new_ref(int num, u64 dir, int index,
4376 			    struct fs_path *name,
4377 			    void *ctx)
4378 {
4379 	struct send_ctx *sctx = ctx;
4380 	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4381 }
4382 
4383 
4384 static int __record_deleted_ref(int num, u64 dir, int index,
4385 				struct fs_path *name,
4386 				void *ctx)
4387 {
4388 	struct send_ctx *sctx = ctx;
4389 	return record_ref(sctx->parent_root, dir, name, ctx,
4390 			  &sctx->deleted_refs);
4391 }
4392 
4393 static int record_new_ref(struct send_ctx *sctx)
4394 {
4395 	int ret;
4396 
4397 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4398 				sctx->cmp_key, 0, __record_new_ref, sctx);
4399 	if (ret < 0)
4400 		goto out;
4401 	ret = 0;
4402 
4403 out:
4404 	return ret;
4405 }
4406 
4407 static int record_deleted_ref(struct send_ctx *sctx)
4408 {
4409 	int ret;
4410 
4411 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4412 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4413 	if (ret < 0)
4414 		goto out;
4415 	ret = 0;
4416 
4417 out:
4418 	return ret;
4419 }
4420 
4421 struct find_ref_ctx {
4422 	u64 dir;
4423 	u64 dir_gen;
4424 	struct btrfs_root *root;
4425 	struct fs_path *name;
4426 	int found_idx;
4427 };
4428 
4429 static int __find_iref(int num, u64 dir, int index,
4430 		       struct fs_path *name,
4431 		       void *ctx_)
4432 {
4433 	struct find_ref_ctx *ctx = ctx_;
4434 	u64 dir_gen;
4435 	int ret;
4436 
4437 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4438 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4439 		/*
4440 		 * To avoid doing extra lookups we'll only do this if everything
4441 		 * else matches.
4442 		 */
4443 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4444 				     NULL, NULL, NULL);
4445 		if (ret)
4446 			return ret;
4447 		if (dir_gen != ctx->dir_gen)
4448 			return 0;
4449 		ctx->found_idx = num;
4450 		return 1;
4451 	}
4452 	return 0;
4453 }
4454 
4455 static int find_iref(struct btrfs_root *root,
4456 		     struct btrfs_path *path,
4457 		     struct btrfs_key *key,
4458 		     u64 dir, u64 dir_gen, struct fs_path *name)
4459 {
4460 	int ret;
4461 	struct find_ref_ctx ctx;
4462 
4463 	ctx.dir = dir;
4464 	ctx.name = name;
4465 	ctx.dir_gen = dir_gen;
4466 	ctx.found_idx = -1;
4467 	ctx.root = root;
4468 
4469 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4470 	if (ret < 0)
4471 		return ret;
4472 
4473 	if (ctx.found_idx == -1)
4474 		return -ENOENT;
4475 
4476 	return ctx.found_idx;
4477 }
4478 
4479 static int __record_changed_new_ref(int num, u64 dir, int index,
4480 				    struct fs_path *name,
4481 				    void *ctx)
4482 {
4483 	u64 dir_gen;
4484 	int ret;
4485 	struct send_ctx *sctx = ctx;
4486 
4487 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4488 			     NULL, NULL, NULL);
4489 	if (ret)
4490 		return ret;
4491 
4492 	ret = find_iref(sctx->parent_root, sctx->right_path,
4493 			sctx->cmp_key, dir, dir_gen, name);
4494 	if (ret == -ENOENT)
4495 		ret = __record_new_ref(num, dir, index, name, sctx);
4496 	else if (ret > 0)
4497 		ret = 0;
4498 
4499 	return ret;
4500 }
4501 
4502 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4503 					struct fs_path *name,
4504 					void *ctx)
4505 {
4506 	u64 dir_gen;
4507 	int ret;
4508 	struct send_ctx *sctx = ctx;
4509 
4510 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4511 			     NULL, NULL, NULL);
4512 	if (ret)
4513 		return ret;
4514 
4515 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4516 			dir, dir_gen, name);
4517 	if (ret == -ENOENT)
4518 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4519 	else if (ret > 0)
4520 		ret = 0;
4521 
4522 	return ret;
4523 }
4524 
4525 static int record_changed_ref(struct send_ctx *sctx)
4526 {
4527 	int ret = 0;
4528 
4529 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4530 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4531 	if (ret < 0)
4532 		goto out;
4533 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4534 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4535 	if (ret < 0)
4536 		goto out;
4537 	ret = 0;
4538 
4539 out:
4540 	return ret;
4541 }
4542 
4543 /*
4544  * Record and process all refs at once. Needed when an inode changes the
4545  * generation number, which means that it was deleted and recreated.
4546  */
4547 static int process_all_refs(struct send_ctx *sctx,
4548 			    enum btrfs_compare_tree_result cmd)
4549 {
4550 	int ret;
4551 	struct btrfs_root *root;
4552 	struct btrfs_path *path;
4553 	struct btrfs_key key;
4554 	struct btrfs_key found_key;
4555 	struct extent_buffer *eb;
4556 	int slot;
4557 	iterate_inode_ref_t cb;
4558 	int pending_move = 0;
4559 
4560 	path = alloc_path_for_send();
4561 	if (!path)
4562 		return -ENOMEM;
4563 
4564 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4565 		root = sctx->send_root;
4566 		cb = __record_new_ref;
4567 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4568 		root = sctx->parent_root;
4569 		cb = __record_deleted_ref;
4570 	} else {
4571 		btrfs_err(sctx->send_root->fs_info,
4572 				"Wrong command %d in process_all_refs", cmd);
4573 		ret = -EINVAL;
4574 		goto out;
4575 	}
4576 
4577 	key.objectid = sctx->cmp_key->objectid;
4578 	key.type = BTRFS_INODE_REF_KEY;
4579 	key.offset = 0;
4580 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4581 	if (ret < 0)
4582 		goto out;
4583 
4584 	while (1) {
4585 		eb = path->nodes[0];
4586 		slot = path->slots[0];
4587 		if (slot >= btrfs_header_nritems(eb)) {
4588 			ret = btrfs_next_leaf(root, path);
4589 			if (ret < 0)
4590 				goto out;
4591 			else if (ret > 0)
4592 				break;
4593 			continue;
4594 		}
4595 
4596 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4597 
4598 		if (found_key.objectid != key.objectid ||
4599 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4600 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4601 			break;
4602 
4603 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4604 		if (ret < 0)
4605 			goto out;
4606 
4607 		path->slots[0]++;
4608 	}
4609 	btrfs_release_path(path);
4610 
4611 	/*
4612 	 * We don't actually care about pending_move as we are simply
4613 	 * re-creating this inode and will be rename'ing it into place once we
4614 	 * rename the parent directory.
4615 	 */
4616 	ret = process_recorded_refs(sctx, &pending_move);
4617 out:
4618 	btrfs_free_path(path);
4619 	return ret;
4620 }
4621 
4622 static int send_set_xattr(struct send_ctx *sctx,
4623 			  struct fs_path *path,
4624 			  const char *name, int name_len,
4625 			  const char *data, int data_len)
4626 {
4627 	int ret = 0;
4628 
4629 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4630 	if (ret < 0)
4631 		goto out;
4632 
4633 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4634 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4635 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4636 
4637 	ret = send_cmd(sctx);
4638 
4639 tlv_put_failure:
4640 out:
4641 	return ret;
4642 }
4643 
4644 static int send_remove_xattr(struct send_ctx *sctx,
4645 			  struct fs_path *path,
4646 			  const char *name, int name_len)
4647 {
4648 	int ret = 0;
4649 
4650 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4651 	if (ret < 0)
4652 		goto out;
4653 
4654 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4655 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4656 
4657 	ret = send_cmd(sctx);
4658 
4659 tlv_put_failure:
4660 out:
4661 	return ret;
4662 }
4663 
4664 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4665 			       const char *name, int name_len,
4666 			       const char *data, int data_len,
4667 			       u8 type, void *ctx)
4668 {
4669 	int ret;
4670 	struct send_ctx *sctx = ctx;
4671 	struct fs_path *p;
4672 	struct posix_acl_xattr_header dummy_acl;
4673 
4674 	/* Capabilities are emitted by finish_inode_if_needed */
4675 	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4676 		return 0;
4677 
4678 	p = fs_path_alloc();
4679 	if (!p)
4680 		return -ENOMEM;
4681 
4682 	/*
4683 	 * This hack is needed because empty acls are stored as zero byte
4684 	 * data in xattrs. Problem with that is, that receiving these zero byte
4685 	 * acls will fail later. To fix this, we send a dummy acl list that
4686 	 * only contains the version number and no entries.
4687 	 */
4688 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4689 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4690 		if (data_len == 0) {
4691 			dummy_acl.a_version =
4692 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4693 			data = (char *)&dummy_acl;
4694 			data_len = sizeof(dummy_acl);
4695 		}
4696 	}
4697 
4698 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4699 	if (ret < 0)
4700 		goto out;
4701 
4702 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4703 
4704 out:
4705 	fs_path_free(p);
4706 	return ret;
4707 }
4708 
4709 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4710 				   const char *name, int name_len,
4711 				   const char *data, int data_len,
4712 				   u8 type, void *ctx)
4713 {
4714 	int ret;
4715 	struct send_ctx *sctx = ctx;
4716 	struct fs_path *p;
4717 
4718 	p = fs_path_alloc();
4719 	if (!p)
4720 		return -ENOMEM;
4721 
4722 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4723 	if (ret < 0)
4724 		goto out;
4725 
4726 	ret = send_remove_xattr(sctx, p, name, name_len);
4727 
4728 out:
4729 	fs_path_free(p);
4730 	return ret;
4731 }
4732 
4733 static int process_new_xattr(struct send_ctx *sctx)
4734 {
4735 	int ret = 0;
4736 
4737 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4738 			       __process_new_xattr, sctx);
4739 
4740 	return ret;
4741 }
4742 
4743 static int process_deleted_xattr(struct send_ctx *sctx)
4744 {
4745 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4746 				__process_deleted_xattr, sctx);
4747 }
4748 
4749 struct find_xattr_ctx {
4750 	const char *name;
4751 	int name_len;
4752 	int found_idx;
4753 	char *found_data;
4754 	int found_data_len;
4755 };
4756 
4757 static int __find_xattr(int num, struct btrfs_key *di_key,
4758 			const char *name, int name_len,
4759 			const char *data, int data_len,
4760 			u8 type, void *vctx)
4761 {
4762 	struct find_xattr_ctx *ctx = vctx;
4763 
4764 	if (name_len == ctx->name_len &&
4765 	    strncmp(name, ctx->name, name_len) == 0) {
4766 		ctx->found_idx = num;
4767 		ctx->found_data_len = data_len;
4768 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4769 		if (!ctx->found_data)
4770 			return -ENOMEM;
4771 		return 1;
4772 	}
4773 	return 0;
4774 }
4775 
4776 static int find_xattr(struct btrfs_root *root,
4777 		      struct btrfs_path *path,
4778 		      struct btrfs_key *key,
4779 		      const char *name, int name_len,
4780 		      char **data, int *data_len)
4781 {
4782 	int ret;
4783 	struct find_xattr_ctx ctx;
4784 
4785 	ctx.name = name;
4786 	ctx.name_len = name_len;
4787 	ctx.found_idx = -1;
4788 	ctx.found_data = NULL;
4789 	ctx.found_data_len = 0;
4790 
4791 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4792 	if (ret < 0)
4793 		return ret;
4794 
4795 	if (ctx.found_idx == -1)
4796 		return -ENOENT;
4797 	if (data) {
4798 		*data = ctx.found_data;
4799 		*data_len = ctx.found_data_len;
4800 	} else {
4801 		kfree(ctx.found_data);
4802 	}
4803 	return ctx.found_idx;
4804 }
4805 
4806 
4807 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4808 				       const char *name, int name_len,
4809 				       const char *data, int data_len,
4810 				       u8 type, void *ctx)
4811 {
4812 	int ret;
4813 	struct send_ctx *sctx = ctx;
4814 	char *found_data = NULL;
4815 	int found_data_len  = 0;
4816 
4817 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4818 			 sctx->cmp_key, name, name_len, &found_data,
4819 			 &found_data_len);
4820 	if (ret == -ENOENT) {
4821 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4822 				data_len, type, ctx);
4823 	} else if (ret >= 0) {
4824 		if (data_len != found_data_len ||
4825 		    memcmp(data, found_data, data_len)) {
4826 			ret = __process_new_xattr(num, di_key, name, name_len,
4827 					data, data_len, type, ctx);
4828 		} else {
4829 			ret = 0;
4830 		}
4831 	}
4832 
4833 	kfree(found_data);
4834 	return ret;
4835 }
4836 
4837 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4838 					   const char *name, int name_len,
4839 					   const char *data, int data_len,
4840 					   u8 type, void *ctx)
4841 {
4842 	int ret;
4843 	struct send_ctx *sctx = ctx;
4844 
4845 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4846 			 name, name_len, NULL, NULL);
4847 	if (ret == -ENOENT)
4848 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4849 				data_len, type, ctx);
4850 	else if (ret >= 0)
4851 		ret = 0;
4852 
4853 	return ret;
4854 }
4855 
4856 static int process_changed_xattr(struct send_ctx *sctx)
4857 {
4858 	int ret = 0;
4859 
4860 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4861 			__process_changed_new_xattr, sctx);
4862 	if (ret < 0)
4863 		goto out;
4864 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4865 			__process_changed_deleted_xattr, sctx);
4866 
4867 out:
4868 	return ret;
4869 }
4870 
4871 static int process_all_new_xattrs(struct send_ctx *sctx)
4872 {
4873 	int ret;
4874 	struct btrfs_root *root;
4875 	struct btrfs_path *path;
4876 	struct btrfs_key key;
4877 	struct btrfs_key found_key;
4878 	struct extent_buffer *eb;
4879 	int slot;
4880 
4881 	path = alloc_path_for_send();
4882 	if (!path)
4883 		return -ENOMEM;
4884 
4885 	root = sctx->send_root;
4886 
4887 	key.objectid = sctx->cmp_key->objectid;
4888 	key.type = BTRFS_XATTR_ITEM_KEY;
4889 	key.offset = 0;
4890 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4891 	if (ret < 0)
4892 		goto out;
4893 
4894 	while (1) {
4895 		eb = path->nodes[0];
4896 		slot = path->slots[0];
4897 		if (slot >= btrfs_header_nritems(eb)) {
4898 			ret = btrfs_next_leaf(root, path);
4899 			if (ret < 0) {
4900 				goto out;
4901 			} else if (ret > 0) {
4902 				ret = 0;
4903 				break;
4904 			}
4905 			continue;
4906 		}
4907 
4908 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4909 		if (found_key.objectid != key.objectid ||
4910 		    found_key.type != key.type) {
4911 			ret = 0;
4912 			goto out;
4913 		}
4914 
4915 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4916 		if (ret < 0)
4917 			goto out;
4918 
4919 		path->slots[0]++;
4920 	}
4921 
4922 out:
4923 	btrfs_free_path(path);
4924 	return ret;
4925 }
4926 
4927 static inline u64 max_send_read_size(const struct send_ctx *sctx)
4928 {
4929 	return sctx->send_max_size - SZ_16K;
4930 }
4931 
4932 static int put_data_header(struct send_ctx *sctx, u32 len)
4933 {
4934 	struct btrfs_tlv_header *hdr;
4935 
4936 	if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
4937 		return -EOVERFLOW;
4938 	hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
4939 	put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
4940 	put_unaligned_le16(len, &hdr->tlv_len);
4941 	sctx->send_size += sizeof(*hdr);
4942 	return 0;
4943 }
4944 
4945 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
4946 {
4947 	struct btrfs_root *root = sctx->send_root;
4948 	struct btrfs_fs_info *fs_info = root->fs_info;
4949 	struct inode *inode;
4950 	struct page *page;
4951 	char *addr;
4952 	pgoff_t index = offset >> PAGE_SHIFT;
4953 	pgoff_t last_index;
4954 	unsigned pg_offset = offset_in_page(offset);
4955 	int ret;
4956 
4957 	ret = put_data_header(sctx, len);
4958 	if (ret)
4959 		return ret;
4960 
4961 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
4962 	if (IS_ERR(inode))
4963 		return PTR_ERR(inode);
4964 
4965 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4966 
4967 	/* initial readahead */
4968 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4969 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4970 
4971 	while (index <= last_index) {
4972 		unsigned cur_len = min_t(unsigned, len,
4973 					 PAGE_SIZE - pg_offset);
4974 
4975 		page = find_lock_page(inode->i_mapping, index);
4976 		if (!page) {
4977 			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4978 				NULL, index, last_index + 1 - index);
4979 
4980 			page = find_or_create_page(inode->i_mapping, index,
4981 					GFP_KERNEL);
4982 			if (!page) {
4983 				ret = -ENOMEM;
4984 				break;
4985 			}
4986 		}
4987 
4988 		if (PageReadahead(page)) {
4989 			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4990 				NULL, page, index, last_index + 1 - index);
4991 		}
4992 
4993 		if (!PageUptodate(page)) {
4994 			btrfs_readpage(NULL, page);
4995 			lock_page(page);
4996 			if (!PageUptodate(page)) {
4997 				unlock_page(page);
4998 				put_page(page);
4999 				ret = -EIO;
5000 				break;
5001 			}
5002 		}
5003 
5004 		addr = kmap(page);
5005 		memcpy(sctx->send_buf + sctx->send_size, addr + pg_offset,
5006 		       cur_len);
5007 		kunmap(page);
5008 		unlock_page(page);
5009 		put_page(page);
5010 		index++;
5011 		pg_offset = 0;
5012 		len -= cur_len;
5013 		sctx->send_size += cur_len;
5014 	}
5015 	iput(inode);
5016 	return ret;
5017 }
5018 
5019 /*
5020  * Read some bytes from the current inode/file and send a write command to
5021  * user space.
5022  */
5023 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5024 {
5025 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5026 	int ret = 0;
5027 	struct fs_path *p;
5028 
5029 	p = fs_path_alloc();
5030 	if (!p)
5031 		return -ENOMEM;
5032 
5033 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5034 
5035 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5036 	if (ret < 0)
5037 		goto out;
5038 
5039 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5040 	if (ret < 0)
5041 		goto out;
5042 
5043 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5044 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5045 	ret = put_file_data(sctx, offset, len);
5046 	if (ret < 0)
5047 		goto out;
5048 
5049 	ret = send_cmd(sctx);
5050 
5051 tlv_put_failure:
5052 out:
5053 	fs_path_free(p);
5054 	return ret;
5055 }
5056 
5057 /*
5058  * Send a clone command to user space.
5059  */
5060 static int send_clone(struct send_ctx *sctx,
5061 		      u64 offset, u32 len,
5062 		      struct clone_root *clone_root)
5063 {
5064 	int ret = 0;
5065 	struct fs_path *p;
5066 	u64 gen;
5067 
5068 	btrfs_debug(sctx->send_root->fs_info,
5069 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5070 		    offset, len, clone_root->root->root_key.objectid,
5071 		    clone_root->ino, clone_root->offset);
5072 
5073 	p = fs_path_alloc();
5074 	if (!p)
5075 		return -ENOMEM;
5076 
5077 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5078 	if (ret < 0)
5079 		goto out;
5080 
5081 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5082 	if (ret < 0)
5083 		goto out;
5084 
5085 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5086 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5087 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5088 
5089 	if (clone_root->root == sctx->send_root) {
5090 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
5091 				&gen, NULL, NULL, NULL, NULL);
5092 		if (ret < 0)
5093 			goto out;
5094 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
5095 	} else {
5096 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
5097 	}
5098 	if (ret < 0)
5099 		goto out;
5100 
5101 	/*
5102 	 * If the parent we're using has a received_uuid set then use that as
5103 	 * our clone source as that is what we will look for when doing a
5104 	 * receive.
5105 	 *
5106 	 * This covers the case that we create a snapshot off of a received
5107 	 * subvolume and then use that as the parent and try to receive on a
5108 	 * different host.
5109 	 */
5110 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5111 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5112 			     clone_root->root->root_item.received_uuid);
5113 	else
5114 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5115 			     clone_root->root->root_item.uuid);
5116 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5117 		    btrfs_root_ctransid(&clone_root->root->root_item));
5118 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5119 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5120 			clone_root->offset);
5121 
5122 	ret = send_cmd(sctx);
5123 
5124 tlv_put_failure:
5125 out:
5126 	fs_path_free(p);
5127 	return ret;
5128 }
5129 
5130 /*
5131  * Send an update extent command to user space.
5132  */
5133 static int send_update_extent(struct send_ctx *sctx,
5134 			      u64 offset, u32 len)
5135 {
5136 	int ret = 0;
5137 	struct fs_path *p;
5138 
5139 	p = fs_path_alloc();
5140 	if (!p)
5141 		return -ENOMEM;
5142 
5143 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5144 	if (ret < 0)
5145 		goto out;
5146 
5147 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5148 	if (ret < 0)
5149 		goto out;
5150 
5151 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5152 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5153 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5154 
5155 	ret = send_cmd(sctx);
5156 
5157 tlv_put_failure:
5158 out:
5159 	fs_path_free(p);
5160 	return ret;
5161 }
5162 
5163 static int send_hole(struct send_ctx *sctx, u64 end)
5164 {
5165 	struct fs_path *p = NULL;
5166 	u64 read_size = max_send_read_size(sctx);
5167 	u64 offset = sctx->cur_inode_last_extent;
5168 	int ret = 0;
5169 
5170 	/*
5171 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5172 	 * fallocate (for extent preallocation and hole punching), sending a
5173 	 * write of zeroes starting at EOF or beyond would later require issuing
5174 	 * a truncate operation which would undo the write and achieve nothing.
5175 	 */
5176 	if (offset >= sctx->cur_inode_size)
5177 		return 0;
5178 
5179 	/*
5180 	 * Don't go beyond the inode's i_size due to prealloc extents that start
5181 	 * after the i_size.
5182 	 */
5183 	end = min_t(u64, end, sctx->cur_inode_size);
5184 
5185 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5186 		return send_update_extent(sctx, offset, end - offset);
5187 
5188 	p = fs_path_alloc();
5189 	if (!p)
5190 		return -ENOMEM;
5191 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5192 	if (ret < 0)
5193 		goto tlv_put_failure;
5194 	while (offset < end) {
5195 		u64 len = min(end - offset, read_size);
5196 
5197 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5198 		if (ret < 0)
5199 			break;
5200 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5201 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5202 		ret = put_data_header(sctx, len);
5203 		if (ret < 0)
5204 			break;
5205 		memset(sctx->send_buf + sctx->send_size, 0, len);
5206 		sctx->send_size += len;
5207 		ret = send_cmd(sctx);
5208 		if (ret < 0)
5209 			break;
5210 		offset += len;
5211 	}
5212 	sctx->cur_inode_next_write_offset = offset;
5213 tlv_put_failure:
5214 	fs_path_free(p);
5215 	return ret;
5216 }
5217 
5218 static int send_extent_data(struct send_ctx *sctx,
5219 			    const u64 offset,
5220 			    const u64 len)
5221 {
5222 	u64 read_size = max_send_read_size(sctx);
5223 	u64 sent = 0;
5224 
5225 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5226 		return send_update_extent(sctx, offset, len);
5227 
5228 	while (sent < len) {
5229 		u64 size = min(len - sent, read_size);
5230 		int ret;
5231 
5232 		ret = send_write(sctx, offset + sent, size);
5233 		if (ret < 0)
5234 			return ret;
5235 		sent += size;
5236 	}
5237 	return 0;
5238 }
5239 
5240 /*
5241  * Search for a capability xattr related to sctx->cur_ino. If the capability is
5242  * found, call send_set_xattr function to emit it.
5243  *
5244  * Return 0 if there isn't a capability, or when the capability was emitted
5245  * successfully, or < 0 if an error occurred.
5246  */
5247 static int send_capabilities(struct send_ctx *sctx)
5248 {
5249 	struct fs_path *fspath = NULL;
5250 	struct btrfs_path *path;
5251 	struct btrfs_dir_item *di;
5252 	struct extent_buffer *leaf;
5253 	unsigned long data_ptr;
5254 	char *buf = NULL;
5255 	int buf_len;
5256 	int ret = 0;
5257 
5258 	path = alloc_path_for_send();
5259 	if (!path)
5260 		return -ENOMEM;
5261 
5262 	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5263 				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5264 	if (!di) {
5265 		/* There is no xattr for this inode */
5266 		goto out;
5267 	} else if (IS_ERR(di)) {
5268 		ret = PTR_ERR(di);
5269 		goto out;
5270 	}
5271 
5272 	leaf = path->nodes[0];
5273 	buf_len = btrfs_dir_data_len(leaf, di);
5274 
5275 	fspath = fs_path_alloc();
5276 	buf = kmalloc(buf_len, GFP_KERNEL);
5277 	if (!fspath || !buf) {
5278 		ret = -ENOMEM;
5279 		goto out;
5280 	}
5281 
5282 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5283 	if (ret < 0)
5284 		goto out;
5285 
5286 	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5287 	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5288 
5289 	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5290 			strlen(XATTR_NAME_CAPS), buf, buf_len);
5291 out:
5292 	kfree(buf);
5293 	fs_path_free(fspath);
5294 	btrfs_free_path(path);
5295 	return ret;
5296 }
5297 
5298 static int clone_range(struct send_ctx *sctx,
5299 		       struct clone_root *clone_root,
5300 		       const u64 disk_byte,
5301 		       u64 data_offset,
5302 		       u64 offset,
5303 		       u64 len)
5304 {
5305 	struct btrfs_path *path;
5306 	struct btrfs_key key;
5307 	int ret;
5308 	u64 clone_src_i_size = 0;
5309 
5310 	/*
5311 	 * Prevent cloning from a zero offset with a length matching the sector
5312 	 * size because in some scenarios this will make the receiver fail.
5313 	 *
5314 	 * For example, if in the source filesystem the extent at offset 0
5315 	 * has a length of sectorsize and it was written using direct IO, then
5316 	 * it can never be an inline extent (even if compression is enabled).
5317 	 * Then this extent can be cloned in the original filesystem to a non
5318 	 * zero file offset, but it may not be possible to clone in the
5319 	 * destination filesystem because it can be inlined due to compression
5320 	 * on the destination filesystem (as the receiver's write operations are
5321 	 * always done using buffered IO). The same happens when the original
5322 	 * filesystem does not have compression enabled but the destination
5323 	 * filesystem has.
5324 	 */
5325 	if (clone_root->offset == 0 &&
5326 	    len == sctx->send_root->fs_info->sectorsize)
5327 		return send_extent_data(sctx, offset, len);
5328 
5329 	path = alloc_path_for_send();
5330 	if (!path)
5331 		return -ENOMEM;
5332 
5333 	/*
5334 	 * There are inodes that have extents that lie behind its i_size. Don't
5335 	 * accept clones from these extents.
5336 	 */
5337 	ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5338 			       &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5339 	btrfs_release_path(path);
5340 	if (ret < 0)
5341 		goto out;
5342 
5343 	/*
5344 	 * We can't send a clone operation for the entire range if we find
5345 	 * extent items in the respective range in the source file that
5346 	 * refer to different extents or if we find holes.
5347 	 * So check for that and do a mix of clone and regular write/copy
5348 	 * operations if needed.
5349 	 *
5350 	 * Example:
5351 	 *
5352 	 * mkfs.btrfs -f /dev/sda
5353 	 * mount /dev/sda /mnt
5354 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5355 	 * cp --reflink=always /mnt/foo /mnt/bar
5356 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5357 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5358 	 *
5359 	 * If when we send the snapshot and we are processing file bar (which
5360 	 * has a higher inode number than foo) we blindly send a clone operation
5361 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5362 	 * a file bar that matches the content of file foo - iow, doesn't match
5363 	 * the content from bar in the original filesystem.
5364 	 */
5365 	key.objectid = clone_root->ino;
5366 	key.type = BTRFS_EXTENT_DATA_KEY;
5367 	key.offset = clone_root->offset;
5368 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5369 	if (ret < 0)
5370 		goto out;
5371 	if (ret > 0 && path->slots[0] > 0) {
5372 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5373 		if (key.objectid == clone_root->ino &&
5374 		    key.type == BTRFS_EXTENT_DATA_KEY)
5375 			path->slots[0]--;
5376 	}
5377 
5378 	while (true) {
5379 		struct extent_buffer *leaf = path->nodes[0];
5380 		int slot = path->slots[0];
5381 		struct btrfs_file_extent_item *ei;
5382 		u8 type;
5383 		u64 ext_len;
5384 		u64 clone_len;
5385 		u64 clone_data_offset;
5386 
5387 		if (slot >= btrfs_header_nritems(leaf)) {
5388 			ret = btrfs_next_leaf(clone_root->root, path);
5389 			if (ret < 0)
5390 				goto out;
5391 			else if (ret > 0)
5392 				break;
5393 			continue;
5394 		}
5395 
5396 		btrfs_item_key_to_cpu(leaf, &key, slot);
5397 
5398 		/*
5399 		 * We might have an implicit trailing hole (NO_HOLES feature
5400 		 * enabled). We deal with it after leaving this loop.
5401 		 */
5402 		if (key.objectid != clone_root->ino ||
5403 		    key.type != BTRFS_EXTENT_DATA_KEY)
5404 			break;
5405 
5406 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5407 		type = btrfs_file_extent_type(leaf, ei);
5408 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5409 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5410 			ext_len = PAGE_ALIGN(ext_len);
5411 		} else {
5412 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5413 		}
5414 
5415 		if (key.offset + ext_len <= clone_root->offset)
5416 			goto next;
5417 
5418 		if (key.offset > clone_root->offset) {
5419 			/* Implicit hole, NO_HOLES feature enabled. */
5420 			u64 hole_len = key.offset - clone_root->offset;
5421 
5422 			if (hole_len > len)
5423 				hole_len = len;
5424 			ret = send_extent_data(sctx, offset, hole_len);
5425 			if (ret < 0)
5426 				goto out;
5427 
5428 			len -= hole_len;
5429 			if (len == 0)
5430 				break;
5431 			offset += hole_len;
5432 			clone_root->offset += hole_len;
5433 			data_offset += hole_len;
5434 		}
5435 
5436 		if (key.offset >= clone_root->offset + len)
5437 			break;
5438 
5439 		if (key.offset >= clone_src_i_size)
5440 			break;
5441 
5442 		if (key.offset + ext_len > clone_src_i_size)
5443 			ext_len = clone_src_i_size - key.offset;
5444 
5445 		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5446 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5447 			clone_root->offset = key.offset;
5448 			if (clone_data_offset < data_offset &&
5449 				clone_data_offset + ext_len > data_offset) {
5450 				u64 extent_offset;
5451 
5452 				extent_offset = data_offset - clone_data_offset;
5453 				ext_len -= extent_offset;
5454 				clone_data_offset += extent_offset;
5455 				clone_root->offset += extent_offset;
5456 			}
5457 		}
5458 
5459 		clone_len = min_t(u64, ext_len, len);
5460 
5461 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5462 		    clone_data_offset == data_offset) {
5463 			const u64 src_end = clone_root->offset + clone_len;
5464 			const u64 sectorsize = SZ_64K;
5465 
5466 			/*
5467 			 * We can't clone the last block, when its size is not
5468 			 * sector size aligned, into the middle of a file. If we
5469 			 * do so, the receiver will get a failure (-EINVAL) when
5470 			 * trying to clone or will silently corrupt the data in
5471 			 * the destination file if it's on a kernel without the
5472 			 * fix introduced by commit ac765f83f1397646
5473 			 * ("Btrfs: fix data corruption due to cloning of eof
5474 			 * block).
5475 			 *
5476 			 * So issue a clone of the aligned down range plus a
5477 			 * regular write for the eof block, if we hit that case.
5478 			 *
5479 			 * Also, we use the maximum possible sector size, 64K,
5480 			 * because we don't know what's the sector size of the
5481 			 * filesystem that receives the stream, so we have to
5482 			 * assume the largest possible sector size.
5483 			 */
5484 			if (src_end == clone_src_i_size &&
5485 			    !IS_ALIGNED(src_end, sectorsize) &&
5486 			    offset + clone_len < sctx->cur_inode_size) {
5487 				u64 slen;
5488 
5489 				slen = ALIGN_DOWN(src_end - clone_root->offset,
5490 						  sectorsize);
5491 				if (slen > 0) {
5492 					ret = send_clone(sctx, offset, slen,
5493 							 clone_root);
5494 					if (ret < 0)
5495 						goto out;
5496 				}
5497 				ret = send_extent_data(sctx, offset + slen,
5498 						       clone_len - slen);
5499 			} else {
5500 				ret = send_clone(sctx, offset, clone_len,
5501 						 clone_root);
5502 			}
5503 		} else {
5504 			ret = send_extent_data(sctx, offset, clone_len);
5505 		}
5506 
5507 		if (ret < 0)
5508 			goto out;
5509 
5510 		len -= clone_len;
5511 		if (len == 0)
5512 			break;
5513 		offset += clone_len;
5514 		clone_root->offset += clone_len;
5515 
5516 		/*
5517 		 * If we are cloning from the file we are currently processing,
5518 		 * and using the send root as the clone root, we must stop once
5519 		 * the current clone offset reaches the current eof of the file
5520 		 * at the receiver, otherwise we would issue an invalid clone
5521 		 * operation (source range going beyond eof) and cause the
5522 		 * receiver to fail. So if we reach the current eof, bail out
5523 		 * and fallback to a regular write.
5524 		 */
5525 		if (clone_root->root == sctx->send_root &&
5526 		    clone_root->ino == sctx->cur_ino &&
5527 		    clone_root->offset >= sctx->cur_inode_next_write_offset)
5528 			break;
5529 
5530 		data_offset += clone_len;
5531 next:
5532 		path->slots[0]++;
5533 	}
5534 
5535 	if (len > 0)
5536 		ret = send_extent_data(sctx, offset, len);
5537 	else
5538 		ret = 0;
5539 out:
5540 	btrfs_free_path(path);
5541 	return ret;
5542 }
5543 
5544 static int send_write_or_clone(struct send_ctx *sctx,
5545 			       struct btrfs_path *path,
5546 			       struct btrfs_key *key,
5547 			       struct clone_root *clone_root)
5548 {
5549 	int ret = 0;
5550 	u64 offset = key->offset;
5551 	u64 end;
5552 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5553 
5554 	end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
5555 	if (offset >= end)
5556 		return 0;
5557 
5558 	if (clone_root && IS_ALIGNED(end, bs)) {
5559 		struct btrfs_file_extent_item *ei;
5560 		u64 disk_byte;
5561 		u64 data_offset;
5562 
5563 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5564 				    struct btrfs_file_extent_item);
5565 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5566 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5567 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5568 				  offset, end - offset);
5569 	} else {
5570 		ret = send_extent_data(sctx, offset, end - offset);
5571 	}
5572 	sctx->cur_inode_next_write_offset = end;
5573 	return ret;
5574 }
5575 
5576 static int is_extent_unchanged(struct send_ctx *sctx,
5577 			       struct btrfs_path *left_path,
5578 			       struct btrfs_key *ekey)
5579 {
5580 	int ret = 0;
5581 	struct btrfs_key key;
5582 	struct btrfs_path *path = NULL;
5583 	struct extent_buffer *eb;
5584 	int slot;
5585 	struct btrfs_key found_key;
5586 	struct btrfs_file_extent_item *ei;
5587 	u64 left_disknr;
5588 	u64 right_disknr;
5589 	u64 left_offset;
5590 	u64 right_offset;
5591 	u64 left_offset_fixed;
5592 	u64 left_len;
5593 	u64 right_len;
5594 	u64 left_gen;
5595 	u64 right_gen;
5596 	u8 left_type;
5597 	u8 right_type;
5598 
5599 	path = alloc_path_for_send();
5600 	if (!path)
5601 		return -ENOMEM;
5602 
5603 	eb = left_path->nodes[0];
5604 	slot = left_path->slots[0];
5605 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5606 	left_type = btrfs_file_extent_type(eb, ei);
5607 
5608 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5609 		ret = 0;
5610 		goto out;
5611 	}
5612 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5613 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5614 	left_offset = btrfs_file_extent_offset(eb, ei);
5615 	left_gen = btrfs_file_extent_generation(eb, ei);
5616 
5617 	/*
5618 	 * Following comments will refer to these graphics. L is the left
5619 	 * extents which we are checking at the moment. 1-8 are the right
5620 	 * extents that we iterate.
5621 	 *
5622 	 *       |-----L-----|
5623 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5624 	 *
5625 	 *       |-----L-----|
5626 	 * |--1--|-2b-|...(same as above)
5627 	 *
5628 	 * Alternative situation. Happens on files where extents got split.
5629 	 *       |-----L-----|
5630 	 * |-----------7-----------|-6-|
5631 	 *
5632 	 * Alternative situation. Happens on files which got larger.
5633 	 *       |-----L-----|
5634 	 * |-8-|
5635 	 * Nothing follows after 8.
5636 	 */
5637 
5638 	key.objectid = ekey->objectid;
5639 	key.type = BTRFS_EXTENT_DATA_KEY;
5640 	key.offset = ekey->offset;
5641 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5642 	if (ret < 0)
5643 		goto out;
5644 	if (ret) {
5645 		ret = 0;
5646 		goto out;
5647 	}
5648 
5649 	/*
5650 	 * Handle special case where the right side has no extents at all.
5651 	 */
5652 	eb = path->nodes[0];
5653 	slot = path->slots[0];
5654 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5655 	if (found_key.objectid != key.objectid ||
5656 	    found_key.type != key.type) {
5657 		/* If we're a hole then just pretend nothing changed */
5658 		ret = (left_disknr) ? 0 : 1;
5659 		goto out;
5660 	}
5661 
5662 	/*
5663 	 * We're now on 2a, 2b or 7.
5664 	 */
5665 	key = found_key;
5666 	while (key.offset < ekey->offset + left_len) {
5667 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5668 		right_type = btrfs_file_extent_type(eb, ei);
5669 		if (right_type != BTRFS_FILE_EXTENT_REG &&
5670 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5671 			ret = 0;
5672 			goto out;
5673 		}
5674 
5675 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5676 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
5677 			right_len = PAGE_ALIGN(right_len);
5678 		} else {
5679 			right_len = btrfs_file_extent_num_bytes(eb, ei);
5680 		}
5681 
5682 		/*
5683 		 * Are we at extent 8? If yes, we know the extent is changed.
5684 		 * This may only happen on the first iteration.
5685 		 */
5686 		if (found_key.offset + right_len <= ekey->offset) {
5687 			/* If we're a hole just pretend nothing changed */
5688 			ret = (left_disknr) ? 0 : 1;
5689 			goto out;
5690 		}
5691 
5692 		/*
5693 		 * We just wanted to see if when we have an inline extent, what
5694 		 * follows it is a regular extent (wanted to check the above
5695 		 * condition for inline extents too). This should normally not
5696 		 * happen but it's possible for example when we have an inline
5697 		 * compressed extent representing data with a size matching
5698 		 * the page size (currently the same as sector size).
5699 		 */
5700 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5701 			ret = 0;
5702 			goto out;
5703 		}
5704 
5705 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5706 		right_offset = btrfs_file_extent_offset(eb, ei);
5707 		right_gen = btrfs_file_extent_generation(eb, ei);
5708 
5709 		left_offset_fixed = left_offset;
5710 		if (key.offset < ekey->offset) {
5711 			/* Fix the right offset for 2a and 7. */
5712 			right_offset += ekey->offset - key.offset;
5713 		} else {
5714 			/* Fix the left offset for all behind 2a and 2b */
5715 			left_offset_fixed += key.offset - ekey->offset;
5716 		}
5717 
5718 		/*
5719 		 * Check if we have the same extent.
5720 		 */
5721 		if (left_disknr != right_disknr ||
5722 		    left_offset_fixed != right_offset ||
5723 		    left_gen != right_gen) {
5724 			ret = 0;
5725 			goto out;
5726 		}
5727 
5728 		/*
5729 		 * Go to the next extent.
5730 		 */
5731 		ret = btrfs_next_item(sctx->parent_root, path);
5732 		if (ret < 0)
5733 			goto out;
5734 		if (!ret) {
5735 			eb = path->nodes[0];
5736 			slot = path->slots[0];
5737 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5738 		}
5739 		if (ret || found_key.objectid != key.objectid ||
5740 		    found_key.type != key.type) {
5741 			key.offset += right_len;
5742 			break;
5743 		}
5744 		if (found_key.offset != key.offset + right_len) {
5745 			ret = 0;
5746 			goto out;
5747 		}
5748 		key = found_key;
5749 	}
5750 
5751 	/*
5752 	 * We're now behind the left extent (treat as unchanged) or at the end
5753 	 * of the right side (treat as changed).
5754 	 */
5755 	if (key.offset >= ekey->offset + left_len)
5756 		ret = 1;
5757 	else
5758 		ret = 0;
5759 
5760 
5761 out:
5762 	btrfs_free_path(path);
5763 	return ret;
5764 }
5765 
5766 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5767 {
5768 	struct btrfs_path *path;
5769 	struct btrfs_root *root = sctx->send_root;
5770 	struct btrfs_key key;
5771 	int ret;
5772 
5773 	path = alloc_path_for_send();
5774 	if (!path)
5775 		return -ENOMEM;
5776 
5777 	sctx->cur_inode_last_extent = 0;
5778 
5779 	key.objectid = sctx->cur_ino;
5780 	key.type = BTRFS_EXTENT_DATA_KEY;
5781 	key.offset = offset;
5782 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5783 	if (ret < 0)
5784 		goto out;
5785 	ret = 0;
5786 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5787 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5788 		goto out;
5789 
5790 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5791 out:
5792 	btrfs_free_path(path);
5793 	return ret;
5794 }
5795 
5796 static int range_is_hole_in_parent(struct send_ctx *sctx,
5797 				   const u64 start,
5798 				   const u64 end)
5799 {
5800 	struct btrfs_path *path;
5801 	struct btrfs_key key;
5802 	struct btrfs_root *root = sctx->parent_root;
5803 	u64 search_start = start;
5804 	int ret;
5805 
5806 	path = alloc_path_for_send();
5807 	if (!path)
5808 		return -ENOMEM;
5809 
5810 	key.objectid = sctx->cur_ino;
5811 	key.type = BTRFS_EXTENT_DATA_KEY;
5812 	key.offset = search_start;
5813 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5814 	if (ret < 0)
5815 		goto out;
5816 	if (ret > 0 && path->slots[0] > 0)
5817 		path->slots[0]--;
5818 
5819 	while (search_start < end) {
5820 		struct extent_buffer *leaf = path->nodes[0];
5821 		int slot = path->slots[0];
5822 		struct btrfs_file_extent_item *fi;
5823 		u64 extent_end;
5824 
5825 		if (slot >= btrfs_header_nritems(leaf)) {
5826 			ret = btrfs_next_leaf(root, path);
5827 			if (ret < 0)
5828 				goto out;
5829 			else if (ret > 0)
5830 				break;
5831 			continue;
5832 		}
5833 
5834 		btrfs_item_key_to_cpu(leaf, &key, slot);
5835 		if (key.objectid < sctx->cur_ino ||
5836 		    key.type < BTRFS_EXTENT_DATA_KEY)
5837 			goto next;
5838 		if (key.objectid > sctx->cur_ino ||
5839 		    key.type > BTRFS_EXTENT_DATA_KEY ||
5840 		    key.offset >= end)
5841 			break;
5842 
5843 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5844 		extent_end = btrfs_file_extent_end(path);
5845 		if (extent_end <= start)
5846 			goto next;
5847 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5848 			search_start = extent_end;
5849 			goto next;
5850 		}
5851 		ret = 0;
5852 		goto out;
5853 next:
5854 		path->slots[0]++;
5855 	}
5856 	ret = 1;
5857 out:
5858 	btrfs_free_path(path);
5859 	return ret;
5860 }
5861 
5862 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5863 			   struct btrfs_key *key)
5864 {
5865 	int ret = 0;
5866 
5867 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5868 		return 0;
5869 
5870 	if (sctx->cur_inode_last_extent == (u64)-1) {
5871 		ret = get_last_extent(sctx, key->offset - 1);
5872 		if (ret)
5873 			return ret;
5874 	}
5875 
5876 	if (path->slots[0] == 0 &&
5877 	    sctx->cur_inode_last_extent < key->offset) {
5878 		/*
5879 		 * We might have skipped entire leafs that contained only
5880 		 * file extent items for our current inode. These leafs have
5881 		 * a generation number smaller (older) than the one in the
5882 		 * current leaf and the leaf our last extent came from, and
5883 		 * are located between these 2 leafs.
5884 		 */
5885 		ret = get_last_extent(sctx, key->offset - 1);
5886 		if (ret)
5887 			return ret;
5888 	}
5889 
5890 	if (sctx->cur_inode_last_extent < key->offset) {
5891 		ret = range_is_hole_in_parent(sctx,
5892 					      sctx->cur_inode_last_extent,
5893 					      key->offset);
5894 		if (ret < 0)
5895 			return ret;
5896 		else if (ret == 0)
5897 			ret = send_hole(sctx, key->offset);
5898 		else
5899 			ret = 0;
5900 	}
5901 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5902 	return ret;
5903 }
5904 
5905 static int process_extent(struct send_ctx *sctx,
5906 			  struct btrfs_path *path,
5907 			  struct btrfs_key *key)
5908 {
5909 	struct clone_root *found_clone = NULL;
5910 	int ret = 0;
5911 
5912 	if (S_ISLNK(sctx->cur_inode_mode))
5913 		return 0;
5914 
5915 	if (sctx->parent_root && !sctx->cur_inode_new) {
5916 		ret = is_extent_unchanged(sctx, path, key);
5917 		if (ret < 0)
5918 			goto out;
5919 		if (ret) {
5920 			ret = 0;
5921 			goto out_hole;
5922 		}
5923 	} else {
5924 		struct btrfs_file_extent_item *ei;
5925 		u8 type;
5926 
5927 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5928 				    struct btrfs_file_extent_item);
5929 		type = btrfs_file_extent_type(path->nodes[0], ei);
5930 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5931 		    type == BTRFS_FILE_EXTENT_REG) {
5932 			/*
5933 			 * The send spec does not have a prealloc command yet,
5934 			 * so just leave a hole for prealloc'ed extents until
5935 			 * we have enough commands queued up to justify rev'ing
5936 			 * the send spec.
5937 			 */
5938 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5939 				ret = 0;
5940 				goto out;
5941 			}
5942 
5943 			/* Have a hole, just skip it. */
5944 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5945 				ret = 0;
5946 				goto out;
5947 			}
5948 		}
5949 	}
5950 
5951 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5952 			sctx->cur_inode_size, &found_clone);
5953 	if (ret != -ENOENT && ret < 0)
5954 		goto out;
5955 
5956 	ret = send_write_or_clone(sctx, path, key, found_clone);
5957 	if (ret)
5958 		goto out;
5959 out_hole:
5960 	ret = maybe_send_hole(sctx, path, key);
5961 out:
5962 	return ret;
5963 }
5964 
5965 static int process_all_extents(struct send_ctx *sctx)
5966 {
5967 	int ret;
5968 	struct btrfs_root *root;
5969 	struct btrfs_path *path;
5970 	struct btrfs_key key;
5971 	struct btrfs_key found_key;
5972 	struct extent_buffer *eb;
5973 	int slot;
5974 
5975 	root = sctx->send_root;
5976 	path = alloc_path_for_send();
5977 	if (!path)
5978 		return -ENOMEM;
5979 
5980 	key.objectid = sctx->cmp_key->objectid;
5981 	key.type = BTRFS_EXTENT_DATA_KEY;
5982 	key.offset = 0;
5983 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5984 	if (ret < 0)
5985 		goto out;
5986 
5987 	while (1) {
5988 		eb = path->nodes[0];
5989 		slot = path->slots[0];
5990 
5991 		if (slot >= btrfs_header_nritems(eb)) {
5992 			ret = btrfs_next_leaf(root, path);
5993 			if (ret < 0) {
5994 				goto out;
5995 			} else if (ret > 0) {
5996 				ret = 0;
5997 				break;
5998 			}
5999 			continue;
6000 		}
6001 
6002 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6003 
6004 		if (found_key.objectid != key.objectid ||
6005 		    found_key.type != key.type) {
6006 			ret = 0;
6007 			goto out;
6008 		}
6009 
6010 		ret = process_extent(sctx, path, &found_key);
6011 		if (ret < 0)
6012 			goto out;
6013 
6014 		path->slots[0]++;
6015 	}
6016 
6017 out:
6018 	btrfs_free_path(path);
6019 	return ret;
6020 }
6021 
6022 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6023 					   int *pending_move,
6024 					   int *refs_processed)
6025 {
6026 	int ret = 0;
6027 
6028 	if (sctx->cur_ino == 0)
6029 		goto out;
6030 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6031 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6032 		goto out;
6033 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6034 		goto out;
6035 
6036 	ret = process_recorded_refs(sctx, pending_move);
6037 	if (ret < 0)
6038 		goto out;
6039 
6040 	*refs_processed = 1;
6041 out:
6042 	return ret;
6043 }
6044 
6045 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6046 {
6047 	int ret = 0;
6048 	u64 left_mode;
6049 	u64 left_uid;
6050 	u64 left_gid;
6051 	u64 right_mode;
6052 	u64 right_uid;
6053 	u64 right_gid;
6054 	int need_chmod = 0;
6055 	int need_chown = 0;
6056 	int need_truncate = 1;
6057 	int pending_move = 0;
6058 	int refs_processed = 0;
6059 
6060 	if (sctx->ignore_cur_inode)
6061 		return 0;
6062 
6063 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6064 					      &refs_processed);
6065 	if (ret < 0)
6066 		goto out;
6067 
6068 	/*
6069 	 * We have processed the refs and thus need to advance send_progress.
6070 	 * Now, calls to get_cur_xxx will take the updated refs of the current
6071 	 * inode into account.
6072 	 *
6073 	 * On the other hand, if our current inode is a directory and couldn't
6074 	 * be moved/renamed because its parent was renamed/moved too and it has
6075 	 * a higher inode number, we can only move/rename our current inode
6076 	 * after we moved/renamed its parent. Therefore in this case operate on
6077 	 * the old path (pre move/rename) of our current inode, and the
6078 	 * move/rename will be performed later.
6079 	 */
6080 	if (refs_processed && !pending_move)
6081 		sctx->send_progress = sctx->cur_ino + 1;
6082 
6083 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6084 		goto out;
6085 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6086 		goto out;
6087 
6088 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
6089 			&left_mode, &left_uid, &left_gid, NULL);
6090 	if (ret < 0)
6091 		goto out;
6092 
6093 	if (!sctx->parent_root || sctx->cur_inode_new) {
6094 		need_chown = 1;
6095 		if (!S_ISLNK(sctx->cur_inode_mode))
6096 			need_chmod = 1;
6097 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6098 			need_truncate = 0;
6099 	} else {
6100 		u64 old_size;
6101 
6102 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
6103 				&old_size, NULL, &right_mode, &right_uid,
6104 				&right_gid, NULL);
6105 		if (ret < 0)
6106 			goto out;
6107 
6108 		if (left_uid != right_uid || left_gid != right_gid)
6109 			need_chown = 1;
6110 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6111 			need_chmod = 1;
6112 		if ((old_size == sctx->cur_inode_size) ||
6113 		    (sctx->cur_inode_size > old_size &&
6114 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6115 			need_truncate = 0;
6116 	}
6117 
6118 	if (S_ISREG(sctx->cur_inode_mode)) {
6119 		if (need_send_hole(sctx)) {
6120 			if (sctx->cur_inode_last_extent == (u64)-1 ||
6121 			    sctx->cur_inode_last_extent <
6122 			    sctx->cur_inode_size) {
6123 				ret = get_last_extent(sctx, (u64)-1);
6124 				if (ret)
6125 					goto out;
6126 			}
6127 			if (sctx->cur_inode_last_extent <
6128 			    sctx->cur_inode_size) {
6129 				ret = send_hole(sctx, sctx->cur_inode_size);
6130 				if (ret)
6131 					goto out;
6132 			}
6133 		}
6134 		if (need_truncate) {
6135 			ret = send_truncate(sctx, sctx->cur_ino,
6136 					    sctx->cur_inode_gen,
6137 					    sctx->cur_inode_size);
6138 			if (ret < 0)
6139 				goto out;
6140 		}
6141 	}
6142 
6143 	if (need_chown) {
6144 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6145 				left_uid, left_gid);
6146 		if (ret < 0)
6147 			goto out;
6148 	}
6149 	if (need_chmod) {
6150 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6151 				left_mode);
6152 		if (ret < 0)
6153 			goto out;
6154 	}
6155 
6156 	ret = send_capabilities(sctx);
6157 	if (ret < 0)
6158 		goto out;
6159 
6160 	/*
6161 	 * If other directory inodes depended on our current directory
6162 	 * inode's move/rename, now do their move/rename operations.
6163 	 */
6164 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6165 		ret = apply_children_dir_moves(sctx);
6166 		if (ret)
6167 			goto out;
6168 		/*
6169 		 * Need to send that every time, no matter if it actually
6170 		 * changed between the two trees as we have done changes to
6171 		 * the inode before. If our inode is a directory and it's
6172 		 * waiting to be moved/renamed, we will send its utimes when
6173 		 * it's moved/renamed, therefore we don't need to do it here.
6174 		 */
6175 		sctx->send_progress = sctx->cur_ino + 1;
6176 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6177 		if (ret < 0)
6178 			goto out;
6179 	}
6180 
6181 out:
6182 	return ret;
6183 }
6184 
6185 struct parent_paths_ctx {
6186 	struct list_head *refs;
6187 	struct send_ctx *sctx;
6188 };
6189 
6190 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6191 			     void *ctx)
6192 {
6193 	struct parent_paths_ctx *ppctx = ctx;
6194 
6195 	return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6196 			  ppctx->refs);
6197 }
6198 
6199 /*
6200  * Issue unlink operations for all paths of the current inode found in the
6201  * parent snapshot.
6202  */
6203 static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6204 {
6205 	LIST_HEAD(deleted_refs);
6206 	struct btrfs_path *path;
6207 	struct btrfs_key key;
6208 	struct parent_paths_ctx ctx;
6209 	int ret;
6210 
6211 	path = alloc_path_for_send();
6212 	if (!path)
6213 		return -ENOMEM;
6214 
6215 	key.objectid = sctx->cur_ino;
6216 	key.type = BTRFS_INODE_REF_KEY;
6217 	key.offset = 0;
6218 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6219 	if (ret < 0)
6220 		goto out;
6221 
6222 	ctx.refs = &deleted_refs;
6223 	ctx.sctx = sctx;
6224 
6225 	while (true) {
6226 		struct extent_buffer *eb = path->nodes[0];
6227 		int slot = path->slots[0];
6228 
6229 		if (slot >= btrfs_header_nritems(eb)) {
6230 			ret = btrfs_next_leaf(sctx->parent_root, path);
6231 			if (ret < 0)
6232 				goto out;
6233 			else if (ret > 0)
6234 				break;
6235 			continue;
6236 		}
6237 
6238 		btrfs_item_key_to_cpu(eb, &key, slot);
6239 		if (key.objectid != sctx->cur_ino)
6240 			break;
6241 		if (key.type != BTRFS_INODE_REF_KEY &&
6242 		    key.type != BTRFS_INODE_EXTREF_KEY)
6243 			break;
6244 
6245 		ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6246 					record_parent_ref, &ctx);
6247 		if (ret < 0)
6248 			goto out;
6249 
6250 		path->slots[0]++;
6251 	}
6252 
6253 	while (!list_empty(&deleted_refs)) {
6254 		struct recorded_ref *ref;
6255 
6256 		ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6257 		ret = send_unlink(sctx, ref->full_path);
6258 		if (ret < 0)
6259 			goto out;
6260 		fs_path_free(ref->full_path);
6261 		list_del(&ref->list);
6262 		kfree(ref);
6263 	}
6264 	ret = 0;
6265 out:
6266 	btrfs_free_path(path);
6267 	if (ret)
6268 		__free_recorded_refs(&deleted_refs);
6269 	return ret;
6270 }
6271 
6272 static int changed_inode(struct send_ctx *sctx,
6273 			 enum btrfs_compare_tree_result result)
6274 {
6275 	int ret = 0;
6276 	struct btrfs_key *key = sctx->cmp_key;
6277 	struct btrfs_inode_item *left_ii = NULL;
6278 	struct btrfs_inode_item *right_ii = NULL;
6279 	u64 left_gen = 0;
6280 	u64 right_gen = 0;
6281 
6282 	sctx->cur_ino = key->objectid;
6283 	sctx->cur_inode_new_gen = 0;
6284 	sctx->cur_inode_last_extent = (u64)-1;
6285 	sctx->cur_inode_next_write_offset = 0;
6286 	sctx->ignore_cur_inode = false;
6287 
6288 	/*
6289 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6290 	 * functions that the current inode's refs are not updated yet. Later,
6291 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6292 	 */
6293 	sctx->send_progress = sctx->cur_ino;
6294 
6295 	if (result == BTRFS_COMPARE_TREE_NEW ||
6296 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6297 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6298 				sctx->left_path->slots[0],
6299 				struct btrfs_inode_item);
6300 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6301 				left_ii);
6302 	} else {
6303 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6304 				sctx->right_path->slots[0],
6305 				struct btrfs_inode_item);
6306 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6307 				right_ii);
6308 	}
6309 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6310 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6311 				sctx->right_path->slots[0],
6312 				struct btrfs_inode_item);
6313 
6314 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6315 				right_ii);
6316 
6317 		/*
6318 		 * The cur_ino = root dir case is special here. We can't treat
6319 		 * the inode as deleted+reused because it would generate a
6320 		 * stream that tries to delete/mkdir the root dir.
6321 		 */
6322 		if (left_gen != right_gen &&
6323 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6324 			sctx->cur_inode_new_gen = 1;
6325 	}
6326 
6327 	/*
6328 	 * Normally we do not find inodes with a link count of zero (orphans)
6329 	 * because the most common case is to create a snapshot and use it
6330 	 * for a send operation. However other less common use cases involve
6331 	 * using a subvolume and send it after turning it to RO mode just
6332 	 * after deleting all hard links of a file while holding an open
6333 	 * file descriptor against it or turning a RO snapshot into RW mode,
6334 	 * keep an open file descriptor against a file, delete it and then
6335 	 * turn the snapshot back to RO mode before using it for a send
6336 	 * operation. So if we find such cases, ignore the inode and all its
6337 	 * items completely if it's a new inode, or if it's a changed inode
6338 	 * make sure all its previous paths (from the parent snapshot) are all
6339 	 * unlinked and all other the inode items are ignored.
6340 	 */
6341 	if (result == BTRFS_COMPARE_TREE_NEW ||
6342 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6343 		u32 nlinks;
6344 
6345 		nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6346 		if (nlinks == 0) {
6347 			sctx->ignore_cur_inode = true;
6348 			if (result == BTRFS_COMPARE_TREE_CHANGED)
6349 				ret = btrfs_unlink_all_paths(sctx);
6350 			goto out;
6351 		}
6352 	}
6353 
6354 	if (result == BTRFS_COMPARE_TREE_NEW) {
6355 		sctx->cur_inode_gen = left_gen;
6356 		sctx->cur_inode_new = 1;
6357 		sctx->cur_inode_deleted = 0;
6358 		sctx->cur_inode_size = btrfs_inode_size(
6359 				sctx->left_path->nodes[0], left_ii);
6360 		sctx->cur_inode_mode = btrfs_inode_mode(
6361 				sctx->left_path->nodes[0], left_ii);
6362 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6363 				sctx->left_path->nodes[0], left_ii);
6364 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6365 			ret = send_create_inode_if_needed(sctx);
6366 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6367 		sctx->cur_inode_gen = right_gen;
6368 		sctx->cur_inode_new = 0;
6369 		sctx->cur_inode_deleted = 1;
6370 		sctx->cur_inode_size = btrfs_inode_size(
6371 				sctx->right_path->nodes[0], right_ii);
6372 		sctx->cur_inode_mode = btrfs_inode_mode(
6373 				sctx->right_path->nodes[0], right_ii);
6374 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6375 		/*
6376 		 * We need to do some special handling in case the inode was
6377 		 * reported as changed with a changed generation number. This
6378 		 * means that the original inode was deleted and new inode
6379 		 * reused the same inum. So we have to treat the old inode as
6380 		 * deleted and the new one as new.
6381 		 */
6382 		if (sctx->cur_inode_new_gen) {
6383 			/*
6384 			 * First, process the inode as if it was deleted.
6385 			 */
6386 			sctx->cur_inode_gen = right_gen;
6387 			sctx->cur_inode_new = 0;
6388 			sctx->cur_inode_deleted = 1;
6389 			sctx->cur_inode_size = btrfs_inode_size(
6390 					sctx->right_path->nodes[0], right_ii);
6391 			sctx->cur_inode_mode = btrfs_inode_mode(
6392 					sctx->right_path->nodes[0], right_ii);
6393 			ret = process_all_refs(sctx,
6394 					BTRFS_COMPARE_TREE_DELETED);
6395 			if (ret < 0)
6396 				goto out;
6397 
6398 			/*
6399 			 * Now process the inode as if it was new.
6400 			 */
6401 			sctx->cur_inode_gen = left_gen;
6402 			sctx->cur_inode_new = 1;
6403 			sctx->cur_inode_deleted = 0;
6404 			sctx->cur_inode_size = btrfs_inode_size(
6405 					sctx->left_path->nodes[0], left_ii);
6406 			sctx->cur_inode_mode = btrfs_inode_mode(
6407 					sctx->left_path->nodes[0], left_ii);
6408 			sctx->cur_inode_rdev = btrfs_inode_rdev(
6409 					sctx->left_path->nodes[0], left_ii);
6410 			ret = send_create_inode_if_needed(sctx);
6411 			if (ret < 0)
6412 				goto out;
6413 
6414 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6415 			if (ret < 0)
6416 				goto out;
6417 			/*
6418 			 * Advance send_progress now as we did not get into
6419 			 * process_recorded_refs_if_needed in the new_gen case.
6420 			 */
6421 			sctx->send_progress = sctx->cur_ino + 1;
6422 
6423 			/*
6424 			 * Now process all extents and xattrs of the inode as if
6425 			 * they were all new.
6426 			 */
6427 			ret = process_all_extents(sctx);
6428 			if (ret < 0)
6429 				goto out;
6430 			ret = process_all_new_xattrs(sctx);
6431 			if (ret < 0)
6432 				goto out;
6433 		} else {
6434 			sctx->cur_inode_gen = left_gen;
6435 			sctx->cur_inode_new = 0;
6436 			sctx->cur_inode_new_gen = 0;
6437 			sctx->cur_inode_deleted = 0;
6438 			sctx->cur_inode_size = btrfs_inode_size(
6439 					sctx->left_path->nodes[0], left_ii);
6440 			sctx->cur_inode_mode = btrfs_inode_mode(
6441 					sctx->left_path->nodes[0], left_ii);
6442 		}
6443 	}
6444 
6445 out:
6446 	return ret;
6447 }
6448 
6449 /*
6450  * We have to process new refs before deleted refs, but compare_trees gives us
6451  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6452  * first and later process them in process_recorded_refs.
6453  * For the cur_inode_new_gen case, we skip recording completely because
6454  * changed_inode did already initiate processing of refs. The reason for this is
6455  * that in this case, compare_tree actually compares the refs of 2 different
6456  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6457  * refs of the right tree as deleted and all refs of the left tree as new.
6458  */
6459 static int changed_ref(struct send_ctx *sctx,
6460 		       enum btrfs_compare_tree_result result)
6461 {
6462 	int ret = 0;
6463 
6464 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6465 		inconsistent_snapshot_error(sctx, result, "reference");
6466 		return -EIO;
6467 	}
6468 
6469 	if (!sctx->cur_inode_new_gen &&
6470 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6471 		if (result == BTRFS_COMPARE_TREE_NEW)
6472 			ret = record_new_ref(sctx);
6473 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6474 			ret = record_deleted_ref(sctx);
6475 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6476 			ret = record_changed_ref(sctx);
6477 	}
6478 
6479 	return ret;
6480 }
6481 
6482 /*
6483  * Process new/deleted/changed xattrs. We skip processing in the
6484  * cur_inode_new_gen case because changed_inode did already initiate processing
6485  * of xattrs. The reason is the same as in changed_ref
6486  */
6487 static int changed_xattr(struct send_ctx *sctx,
6488 			 enum btrfs_compare_tree_result result)
6489 {
6490 	int ret = 0;
6491 
6492 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6493 		inconsistent_snapshot_error(sctx, result, "xattr");
6494 		return -EIO;
6495 	}
6496 
6497 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6498 		if (result == BTRFS_COMPARE_TREE_NEW)
6499 			ret = process_new_xattr(sctx);
6500 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6501 			ret = process_deleted_xattr(sctx);
6502 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6503 			ret = process_changed_xattr(sctx);
6504 	}
6505 
6506 	return ret;
6507 }
6508 
6509 /*
6510  * Process new/deleted/changed extents. We skip processing in the
6511  * cur_inode_new_gen case because changed_inode did already initiate processing
6512  * of extents. The reason is the same as in changed_ref
6513  */
6514 static int changed_extent(struct send_ctx *sctx,
6515 			  enum btrfs_compare_tree_result result)
6516 {
6517 	int ret = 0;
6518 
6519 	/*
6520 	 * We have found an extent item that changed without the inode item
6521 	 * having changed. This can happen either after relocation (where the
6522 	 * disk_bytenr of an extent item is replaced at
6523 	 * relocation.c:replace_file_extents()) or after deduplication into a
6524 	 * file in both the parent and send snapshots (where an extent item can
6525 	 * get modified or replaced with a new one). Note that deduplication
6526 	 * updates the inode item, but it only changes the iversion (sequence
6527 	 * field in the inode item) of the inode, so if a file is deduplicated
6528 	 * the same amount of times in both the parent and send snapshots, its
6529 	 * iversion becames the same in both snapshots, whence the inode item is
6530 	 * the same on both snapshots.
6531 	 */
6532 	if (sctx->cur_ino != sctx->cmp_key->objectid)
6533 		return 0;
6534 
6535 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6536 		if (result != BTRFS_COMPARE_TREE_DELETED)
6537 			ret = process_extent(sctx, sctx->left_path,
6538 					sctx->cmp_key);
6539 	}
6540 
6541 	return ret;
6542 }
6543 
6544 static int dir_changed(struct send_ctx *sctx, u64 dir)
6545 {
6546 	u64 orig_gen, new_gen;
6547 	int ret;
6548 
6549 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6550 			     NULL, NULL);
6551 	if (ret)
6552 		return ret;
6553 
6554 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6555 			     NULL, NULL, NULL);
6556 	if (ret)
6557 		return ret;
6558 
6559 	return (orig_gen != new_gen) ? 1 : 0;
6560 }
6561 
6562 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6563 			struct btrfs_key *key)
6564 {
6565 	struct btrfs_inode_extref *extref;
6566 	struct extent_buffer *leaf;
6567 	u64 dirid = 0, last_dirid = 0;
6568 	unsigned long ptr;
6569 	u32 item_size;
6570 	u32 cur_offset = 0;
6571 	int ref_name_len;
6572 	int ret = 0;
6573 
6574 	/* Easy case, just check this one dirid */
6575 	if (key->type == BTRFS_INODE_REF_KEY) {
6576 		dirid = key->offset;
6577 
6578 		ret = dir_changed(sctx, dirid);
6579 		goto out;
6580 	}
6581 
6582 	leaf = path->nodes[0];
6583 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6584 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6585 	while (cur_offset < item_size) {
6586 		extref = (struct btrfs_inode_extref *)(ptr +
6587 						       cur_offset);
6588 		dirid = btrfs_inode_extref_parent(leaf, extref);
6589 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6590 		cur_offset += ref_name_len + sizeof(*extref);
6591 		if (dirid == last_dirid)
6592 			continue;
6593 		ret = dir_changed(sctx, dirid);
6594 		if (ret)
6595 			break;
6596 		last_dirid = dirid;
6597 	}
6598 out:
6599 	return ret;
6600 }
6601 
6602 /*
6603  * Updates compare related fields in sctx and simply forwards to the actual
6604  * changed_xxx functions.
6605  */
6606 static int changed_cb(struct btrfs_path *left_path,
6607 		      struct btrfs_path *right_path,
6608 		      struct btrfs_key *key,
6609 		      enum btrfs_compare_tree_result result,
6610 		      void *ctx)
6611 {
6612 	int ret = 0;
6613 	struct send_ctx *sctx = ctx;
6614 
6615 	if (result == BTRFS_COMPARE_TREE_SAME) {
6616 		if (key->type == BTRFS_INODE_REF_KEY ||
6617 		    key->type == BTRFS_INODE_EXTREF_KEY) {
6618 			ret = compare_refs(sctx, left_path, key);
6619 			if (!ret)
6620 				return 0;
6621 			if (ret < 0)
6622 				return ret;
6623 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6624 			return maybe_send_hole(sctx, left_path, key);
6625 		} else {
6626 			return 0;
6627 		}
6628 		result = BTRFS_COMPARE_TREE_CHANGED;
6629 		ret = 0;
6630 	}
6631 
6632 	sctx->left_path = left_path;
6633 	sctx->right_path = right_path;
6634 	sctx->cmp_key = key;
6635 
6636 	ret = finish_inode_if_needed(sctx, 0);
6637 	if (ret < 0)
6638 		goto out;
6639 
6640 	/* Ignore non-FS objects */
6641 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6642 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6643 		goto out;
6644 
6645 	if (key->type == BTRFS_INODE_ITEM_KEY) {
6646 		ret = changed_inode(sctx, result);
6647 	} else if (!sctx->ignore_cur_inode) {
6648 		if (key->type == BTRFS_INODE_REF_KEY ||
6649 		    key->type == BTRFS_INODE_EXTREF_KEY)
6650 			ret = changed_ref(sctx, result);
6651 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
6652 			ret = changed_xattr(sctx, result);
6653 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
6654 			ret = changed_extent(sctx, result);
6655 	}
6656 
6657 out:
6658 	return ret;
6659 }
6660 
6661 static int full_send_tree(struct send_ctx *sctx)
6662 {
6663 	int ret;
6664 	struct btrfs_root *send_root = sctx->send_root;
6665 	struct btrfs_key key;
6666 	struct btrfs_path *path;
6667 	struct extent_buffer *eb;
6668 	int slot;
6669 
6670 	path = alloc_path_for_send();
6671 	if (!path)
6672 		return -ENOMEM;
6673 
6674 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6675 	key.type = BTRFS_INODE_ITEM_KEY;
6676 	key.offset = 0;
6677 
6678 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6679 	if (ret < 0)
6680 		goto out;
6681 	if (ret)
6682 		goto out_finish;
6683 
6684 	while (1) {
6685 		eb = path->nodes[0];
6686 		slot = path->slots[0];
6687 		btrfs_item_key_to_cpu(eb, &key, slot);
6688 
6689 		ret = changed_cb(path, NULL, &key,
6690 				 BTRFS_COMPARE_TREE_NEW, sctx);
6691 		if (ret < 0)
6692 			goto out;
6693 
6694 		ret = btrfs_next_item(send_root, path);
6695 		if (ret < 0)
6696 			goto out;
6697 		if (ret) {
6698 			ret  = 0;
6699 			break;
6700 		}
6701 	}
6702 
6703 out_finish:
6704 	ret = finish_inode_if_needed(sctx, 1);
6705 
6706 out:
6707 	btrfs_free_path(path);
6708 	return ret;
6709 }
6710 
6711 static int tree_move_down(struct btrfs_path *path, int *level)
6712 {
6713 	struct extent_buffer *eb;
6714 
6715 	BUG_ON(*level == 0);
6716 	eb = btrfs_read_node_slot(path->nodes[*level], path->slots[*level]);
6717 	if (IS_ERR(eb))
6718 		return PTR_ERR(eb);
6719 
6720 	path->nodes[*level - 1] = eb;
6721 	path->slots[*level - 1] = 0;
6722 	(*level)--;
6723 	return 0;
6724 }
6725 
6726 static int tree_move_next_or_upnext(struct btrfs_path *path,
6727 				    int *level, int root_level)
6728 {
6729 	int ret = 0;
6730 	int nritems;
6731 	nritems = btrfs_header_nritems(path->nodes[*level]);
6732 
6733 	path->slots[*level]++;
6734 
6735 	while (path->slots[*level] >= nritems) {
6736 		if (*level == root_level)
6737 			return -1;
6738 
6739 		/* move upnext */
6740 		path->slots[*level] = 0;
6741 		free_extent_buffer(path->nodes[*level]);
6742 		path->nodes[*level] = NULL;
6743 		(*level)++;
6744 		path->slots[*level]++;
6745 
6746 		nritems = btrfs_header_nritems(path->nodes[*level]);
6747 		ret = 1;
6748 	}
6749 	return ret;
6750 }
6751 
6752 /*
6753  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6754  * or down.
6755  */
6756 static int tree_advance(struct btrfs_path *path,
6757 			int *level, int root_level,
6758 			int allow_down,
6759 			struct btrfs_key *key)
6760 {
6761 	int ret;
6762 
6763 	if (*level == 0 || !allow_down) {
6764 		ret = tree_move_next_or_upnext(path, level, root_level);
6765 	} else {
6766 		ret = tree_move_down(path, level);
6767 	}
6768 	if (ret >= 0) {
6769 		if (*level == 0)
6770 			btrfs_item_key_to_cpu(path->nodes[*level], key,
6771 					path->slots[*level]);
6772 		else
6773 			btrfs_node_key_to_cpu(path->nodes[*level], key,
6774 					path->slots[*level]);
6775 	}
6776 	return ret;
6777 }
6778 
6779 static int tree_compare_item(struct btrfs_path *left_path,
6780 			     struct btrfs_path *right_path,
6781 			     char *tmp_buf)
6782 {
6783 	int cmp;
6784 	int len1, len2;
6785 	unsigned long off1, off2;
6786 
6787 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
6788 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
6789 	if (len1 != len2)
6790 		return 1;
6791 
6792 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6793 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6794 				right_path->slots[0]);
6795 
6796 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6797 
6798 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6799 	if (cmp)
6800 		return 1;
6801 	return 0;
6802 }
6803 
6804 /*
6805  * This function compares two trees and calls the provided callback for
6806  * every changed/new/deleted item it finds.
6807  * If shared tree blocks are encountered, whole subtrees are skipped, making
6808  * the compare pretty fast on snapshotted subvolumes.
6809  *
6810  * This currently works on commit roots only. As commit roots are read only,
6811  * we don't do any locking. The commit roots are protected with transactions.
6812  * Transactions are ended and rejoined when a commit is tried in between.
6813  *
6814  * This function checks for modifications done to the trees while comparing.
6815  * If it detects a change, it aborts immediately.
6816  */
6817 static int btrfs_compare_trees(struct btrfs_root *left_root,
6818 			struct btrfs_root *right_root, void *ctx)
6819 {
6820 	struct btrfs_fs_info *fs_info = left_root->fs_info;
6821 	int ret;
6822 	int cmp;
6823 	struct btrfs_path *left_path = NULL;
6824 	struct btrfs_path *right_path = NULL;
6825 	struct btrfs_key left_key;
6826 	struct btrfs_key right_key;
6827 	char *tmp_buf = NULL;
6828 	int left_root_level;
6829 	int right_root_level;
6830 	int left_level;
6831 	int right_level;
6832 	int left_end_reached;
6833 	int right_end_reached;
6834 	int advance_left;
6835 	int advance_right;
6836 	u64 left_blockptr;
6837 	u64 right_blockptr;
6838 	u64 left_gen;
6839 	u64 right_gen;
6840 
6841 	left_path = btrfs_alloc_path();
6842 	if (!left_path) {
6843 		ret = -ENOMEM;
6844 		goto out;
6845 	}
6846 	right_path = btrfs_alloc_path();
6847 	if (!right_path) {
6848 		ret = -ENOMEM;
6849 		goto out;
6850 	}
6851 
6852 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
6853 	if (!tmp_buf) {
6854 		ret = -ENOMEM;
6855 		goto out;
6856 	}
6857 
6858 	left_path->search_commit_root = 1;
6859 	left_path->skip_locking = 1;
6860 	right_path->search_commit_root = 1;
6861 	right_path->skip_locking = 1;
6862 
6863 	/*
6864 	 * Strategy: Go to the first items of both trees. Then do
6865 	 *
6866 	 * If both trees are at level 0
6867 	 *   Compare keys of current items
6868 	 *     If left < right treat left item as new, advance left tree
6869 	 *       and repeat
6870 	 *     If left > right treat right item as deleted, advance right tree
6871 	 *       and repeat
6872 	 *     If left == right do deep compare of items, treat as changed if
6873 	 *       needed, advance both trees and repeat
6874 	 * If both trees are at the same level but not at level 0
6875 	 *   Compare keys of current nodes/leafs
6876 	 *     If left < right advance left tree and repeat
6877 	 *     If left > right advance right tree and repeat
6878 	 *     If left == right compare blockptrs of the next nodes/leafs
6879 	 *       If they match advance both trees but stay at the same level
6880 	 *         and repeat
6881 	 *       If they don't match advance both trees while allowing to go
6882 	 *         deeper and repeat
6883 	 * If tree levels are different
6884 	 *   Advance the tree that needs it and repeat
6885 	 *
6886 	 * Advancing a tree means:
6887 	 *   If we are at level 0, try to go to the next slot. If that's not
6888 	 *   possible, go one level up and repeat. Stop when we found a level
6889 	 *   where we could go to the next slot. We may at this point be on a
6890 	 *   node or a leaf.
6891 	 *
6892 	 *   If we are not at level 0 and not on shared tree blocks, go one
6893 	 *   level deeper.
6894 	 *
6895 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
6896 	 *   the right if possible or go up and right.
6897 	 */
6898 
6899 	down_read(&fs_info->commit_root_sem);
6900 	left_level = btrfs_header_level(left_root->commit_root);
6901 	left_root_level = left_level;
6902 	left_path->nodes[left_level] =
6903 			btrfs_clone_extent_buffer(left_root->commit_root);
6904 	if (!left_path->nodes[left_level]) {
6905 		up_read(&fs_info->commit_root_sem);
6906 		ret = -ENOMEM;
6907 		goto out;
6908 	}
6909 
6910 	right_level = btrfs_header_level(right_root->commit_root);
6911 	right_root_level = right_level;
6912 	right_path->nodes[right_level] =
6913 			btrfs_clone_extent_buffer(right_root->commit_root);
6914 	if (!right_path->nodes[right_level]) {
6915 		up_read(&fs_info->commit_root_sem);
6916 		ret = -ENOMEM;
6917 		goto out;
6918 	}
6919 	up_read(&fs_info->commit_root_sem);
6920 
6921 	if (left_level == 0)
6922 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
6923 				&left_key, left_path->slots[left_level]);
6924 	else
6925 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
6926 				&left_key, left_path->slots[left_level]);
6927 	if (right_level == 0)
6928 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
6929 				&right_key, right_path->slots[right_level]);
6930 	else
6931 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
6932 				&right_key, right_path->slots[right_level]);
6933 
6934 	left_end_reached = right_end_reached = 0;
6935 	advance_left = advance_right = 0;
6936 
6937 	while (1) {
6938 		cond_resched();
6939 		if (advance_left && !left_end_reached) {
6940 			ret = tree_advance(left_path, &left_level,
6941 					left_root_level,
6942 					advance_left != ADVANCE_ONLY_NEXT,
6943 					&left_key);
6944 			if (ret == -1)
6945 				left_end_reached = ADVANCE;
6946 			else if (ret < 0)
6947 				goto out;
6948 			advance_left = 0;
6949 		}
6950 		if (advance_right && !right_end_reached) {
6951 			ret = tree_advance(right_path, &right_level,
6952 					right_root_level,
6953 					advance_right != ADVANCE_ONLY_NEXT,
6954 					&right_key);
6955 			if (ret == -1)
6956 				right_end_reached = ADVANCE;
6957 			else if (ret < 0)
6958 				goto out;
6959 			advance_right = 0;
6960 		}
6961 
6962 		if (left_end_reached && right_end_reached) {
6963 			ret = 0;
6964 			goto out;
6965 		} else if (left_end_reached) {
6966 			if (right_level == 0) {
6967 				ret = changed_cb(left_path, right_path,
6968 						&right_key,
6969 						BTRFS_COMPARE_TREE_DELETED,
6970 						ctx);
6971 				if (ret < 0)
6972 					goto out;
6973 			}
6974 			advance_right = ADVANCE;
6975 			continue;
6976 		} else if (right_end_reached) {
6977 			if (left_level == 0) {
6978 				ret = changed_cb(left_path, right_path,
6979 						&left_key,
6980 						BTRFS_COMPARE_TREE_NEW,
6981 						ctx);
6982 				if (ret < 0)
6983 					goto out;
6984 			}
6985 			advance_left = ADVANCE;
6986 			continue;
6987 		}
6988 
6989 		if (left_level == 0 && right_level == 0) {
6990 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6991 			if (cmp < 0) {
6992 				ret = changed_cb(left_path, right_path,
6993 						&left_key,
6994 						BTRFS_COMPARE_TREE_NEW,
6995 						ctx);
6996 				if (ret < 0)
6997 					goto out;
6998 				advance_left = ADVANCE;
6999 			} else if (cmp > 0) {
7000 				ret = changed_cb(left_path, right_path,
7001 						&right_key,
7002 						BTRFS_COMPARE_TREE_DELETED,
7003 						ctx);
7004 				if (ret < 0)
7005 					goto out;
7006 				advance_right = ADVANCE;
7007 			} else {
7008 				enum btrfs_compare_tree_result result;
7009 
7010 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7011 				ret = tree_compare_item(left_path, right_path,
7012 							tmp_buf);
7013 				if (ret)
7014 					result = BTRFS_COMPARE_TREE_CHANGED;
7015 				else
7016 					result = BTRFS_COMPARE_TREE_SAME;
7017 				ret = changed_cb(left_path, right_path,
7018 						 &left_key, result, ctx);
7019 				if (ret < 0)
7020 					goto out;
7021 				advance_left = ADVANCE;
7022 				advance_right = ADVANCE;
7023 			}
7024 		} else if (left_level == right_level) {
7025 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7026 			if (cmp < 0) {
7027 				advance_left = ADVANCE;
7028 			} else if (cmp > 0) {
7029 				advance_right = ADVANCE;
7030 			} else {
7031 				left_blockptr = btrfs_node_blockptr(
7032 						left_path->nodes[left_level],
7033 						left_path->slots[left_level]);
7034 				right_blockptr = btrfs_node_blockptr(
7035 						right_path->nodes[right_level],
7036 						right_path->slots[right_level]);
7037 				left_gen = btrfs_node_ptr_generation(
7038 						left_path->nodes[left_level],
7039 						left_path->slots[left_level]);
7040 				right_gen = btrfs_node_ptr_generation(
7041 						right_path->nodes[right_level],
7042 						right_path->slots[right_level]);
7043 				if (left_blockptr == right_blockptr &&
7044 				    left_gen == right_gen) {
7045 					/*
7046 					 * As we're on a shared block, don't
7047 					 * allow to go deeper.
7048 					 */
7049 					advance_left = ADVANCE_ONLY_NEXT;
7050 					advance_right = ADVANCE_ONLY_NEXT;
7051 				} else {
7052 					advance_left = ADVANCE;
7053 					advance_right = ADVANCE;
7054 				}
7055 			}
7056 		} else if (left_level < right_level) {
7057 			advance_right = ADVANCE;
7058 		} else {
7059 			advance_left = ADVANCE;
7060 		}
7061 	}
7062 
7063 out:
7064 	btrfs_free_path(left_path);
7065 	btrfs_free_path(right_path);
7066 	kvfree(tmp_buf);
7067 	return ret;
7068 }
7069 
7070 static int send_subvol(struct send_ctx *sctx)
7071 {
7072 	int ret;
7073 
7074 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7075 		ret = send_header(sctx);
7076 		if (ret < 0)
7077 			goto out;
7078 	}
7079 
7080 	ret = send_subvol_begin(sctx);
7081 	if (ret < 0)
7082 		goto out;
7083 
7084 	if (sctx->parent_root) {
7085 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7086 		if (ret < 0)
7087 			goto out;
7088 		ret = finish_inode_if_needed(sctx, 1);
7089 		if (ret < 0)
7090 			goto out;
7091 	} else {
7092 		ret = full_send_tree(sctx);
7093 		if (ret < 0)
7094 			goto out;
7095 	}
7096 
7097 out:
7098 	free_recorded_refs(sctx);
7099 	return ret;
7100 }
7101 
7102 /*
7103  * If orphan cleanup did remove any orphans from a root, it means the tree
7104  * was modified and therefore the commit root is not the same as the current
7105  * root anymore. This is a problem, because send uses the commit root and
7106  * therefore can see inode items that don't exist in the current root anymore,
7107  * and for example make calls to btrfs_iget, which will do tree lookups based
7108  * on the current root and not on the commit root. Those lookups will fail,
7109  * returning a -ESTALE error, and making send fail with that error. So make
7110  * sure a send does not see any orphans we have just removed, and that it will
7111  * see the same inodes regardless of whether a transaction commit happened
7112  * before it started (meaning that the commit root will be the same as the
7113  * current root) or not.
7114  */
7115 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7116 {
7117 	int i;
7118 	struct btrfs_trans_handle *trans = NULL;
7119 
7120 again:
7121 	if (sctx->parent_root &&
7122 	    sctx->parent_root->node != sctx->parent_root->commit_root)
7123 		goto commit_trans;
7124 
7125 	for (i = 0; i < sctx->clone_roots_cnt; i++)
7126 		if (sctx->clone_roots[i].root->node !=
7127 		    sctx->clone_roots[i].root->commit_root)
7128 			goto commit_trans;
7129 
7130 	if (trans)
7131 		return btrfs_end_transaction(trans);
7132 
7133 	return 0;
7134 
7135 commit_trans:
7136 	/* Use any root, all fs roots will get their commit roots updated. */
7137 	if (!trans) {
7138 		trans = btrfs_join_transaction(sctx->send_root);
7139 		if (IS_ERR(trans))
7140 			return PTR_ERR(trans);
7141 		goto again;
7142 	}
7143 
7144 	return btrfs_commit_transaction(trans);
7145 }
7146 
7147 /*
7148  * Make sure any existing dellaloc is flushed for any root used by a send
7149  * operation so that we do not miss any data and we do not race with writeback
7150  * finishing and changing a tree while send is using the tree. This could
7151  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7152  * a send operation then uses the subvolume.
7153  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7154  */
7155 static int flush_delalloc_roots(struct send_ctx *sctx)
7156 {
7157 	struct btrfs_root *root = sctx->parent_root;
7158 	int ret;
7159 	int i;
7160 
7161 	if (root) {
7162 		ret = btrfs_start_delalloc_snapshot(root);
7163 		if (ret)
7164 			return ret;
7165 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7166 	}
7167 
7168 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
7169 		root = sctx->clone_roots[i].root;
7170 		ret = btrfs_start_delalloc_snapshot(root);
7171 		if (ret)
7172 			return ret;
7173 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7174 	}
7175 
7176 	return 0;
7177 }
7178 
7179 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7180 {
7181 	spin_lock(&root->root_item_lock);
7182 	root->send_in_progress--;
7183 	/*
7184 	 * Not much left to do, we don't know why it's unbalanced and
7185 	 * can't blindly reset it to 0.
7186 	 */
7187 	if (root->send_in_progress < 0)
7188 		btrfs_err(root->fs_info,
7189 			  "send_in_progress unbalanced %d root %llu",
7190 			  root->send_in_progress, root->root_key.objectid);
7191 	spin_unlock(&root->root_item_lock);
7192 }
7193 
7194 static void dedupe_in_progress_warn(const struct btrfs_root *root)
7195 {
7196 	btrfs_warn_rl(root->fs_info,
7197 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7198 		      root->root_key.objectid, root->dedupe_in_progress);
7199 }
7200 
7201 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
7202 {
7203 	int ret = 0;
7204 	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
7205 	struct btrfs_fs_info *fs_info = send_root->fs_info;
7206 	struct btrfs_root *clone_root;
7207 	struct send_ctx *sctx = NULL;
7208 	u32 i;
7209 	u64 *clone_sources_tmp = NULL;
7210 	int clone_sources_to_rollback = 0;
7211 	size_t alloc_size;
7212 	int sort_clone_roots = 0;
7213 
7214 	if (!capable(CAP_SYS_ADMIN))
7215 		return -EPERM;
7216 
7217 	/*
7218 	 * The subvolume must remain read-only during send, protect against
7219 	 * making it RW. This also protects against deletion.
7220 	 */
7221 	spin_lock(&send_root->root_item_lock);
7222 	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7223 		dedupe_in_progress_warn(send_root);
7224 		spin_unlock(&send_root->root_item_lock);
7225 		return -EAGAIN;
7226 	}
7227 	send_root->send_in_progress++;
7228 	spin_unlock(&send_root->root_item_lock);
7229 
7230 	/*
7231 	 * Userspace tools do the checks and warn the user if it's
7232 	 * not RO.
7233 	 */
7234 	if (!btrfs_root_readonly(send_root)) {
7235 		ret = -EPERM;
7236 		goto out;
7237 	}
7238 
7239 	/*
7240 	 * Check that we don't overflow at later allocations, we request
7241 	 * clone_sources_count + 1 items, and compare to unsigned long inside
7242 	 * access_ok.
7243 	 */
7244 	if (arg->clone_sources_count >
7245 	    ULONG_MAX / sizeof(struct clone_root) - 1) {
7246 		ret = -EINVAL;
7247 		goto out;
7248 	}
7249 
7250 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7251 		ret = -EINVAL;
7252 		goto out;
7253 	}
7254 
7255 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7256 	if (!sctx) {
7257 		ret = -ENOMEM;
7258 		goto out;
7259 	}
7260 
7261 	INIT_LIST_HEAD(&sctx->new_refs);
7262 	INIT_LIST_HEAD(&sctx->deleted_refs);
7263 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7264 	INIT_LIST_HEAD(&sctx->name_cache_list);
7265 
7266 	sctx->flags = arg->flags;
7267 
7268 	sctx->send_filp = fget(arg->send_fd);
7269 	if (!sctx->send_filp) {
7270 		ret = -EBADF;
7271 		goto out;
7272 	}
7273 
7274 	sctx->send_root = send_root;
7275 	/*
7276 	 * Unlikely but possible, if the subvolume is marked for deletion but
7277 	 * is slow to remove the directory entry, send can still be started
7278 	 */
7279 	if (btrfs_root_dead(sctx->send_root)) {
7280 		ret = -EPERM;
7281 		goto out;
7282 	}
7283 
7284 	sctx->clone_roots_cnt = arg->clone_sources_count;
7285 
7286 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
7287 	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7288 	if (!sctx->send_buf) {
7289 		ret = -ENOMEM;
7290 		goto out;
7291 	}
7292 
7293 	sctx->pending_dir_moves = RB_ROOT;
7294 	sctx->waiting_dir_moves = RB_ROOT;
7295 	sctx->orphan_dirs = RB_ROOT;
7296 
7297 	sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
7298 				     arg->clone_sources_count + 1,
7299 				     GFP_KERNEL);
7300 	if (!sctx->clone_roots) {
7301 		ret = -ENOMEM;
7302 		goto out;
7303 	}
7304 
7305 	alloc_size = array_size(sizeof(*arg->clone_sources),
7306 				arg->clone_sources_count);
7307 
7308 	if (arg->clone_sources_count) {
7309 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7310 		if (!clone_sources_tmp) {
7311 			ret = -ENOMEM;
7312 			goto out;
7313 		}
7314 
7315 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7316 				alloc_size);
7317 		if (ret) {
7318 			ret = -EFAULT;
7319 			goto out;
7320 		}
7321 
7322 		for (i = 0; i < arg->clone_sources_count; i++) {
7323 			clone_root = btrfs_get_fs_root(fs_info,
7324 						clone_sources_tmp[i], true);
7325 			if (IS_ERR(clone_root)) {
7326 				ret = PTR_ERR(clone_root);
7327 				goto out;
7328 			}
7329 			spin_lock(&clone_root->root_item_lock);
7330 			if (!btrfs_root_readonly(clone_root) ||
7331 			    btrfs_root_dead(clone_root)) {
7332 				spin_unlock(&clone_root->root_item_lock);
7333 				btrfs_put_root(clone_root);
7334 				ret = -EPERM;
7335 				goto out;
7336 			}
7337 			if (clone_root->dedupe_in_progress) {
7338 				dedupe_in_progress_warn(clone_root);
7339 				spin_unlock(&clone_root->root_item_lock);
7340 				btrfs_put_root(clone_root);
7341 				ret = -EAGAIN;
7342 				goto out;
7343 			}
7344 			clone_root->send_in_progress++;
7345 			spin_unlock(&clone_root->root_item_lock);
7346 
7347 			sctx->clone_roots[i].root = clone_root;
7348 			clone_sources_to_rollback = i + 1;
7349 		}
7350 		kvfree(clone_sources_tmp);
7351 		clone_sources_tmp = NULL;
7352 	}
7353 
7354 	if (arg->parent_root) {
7355 		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
7356 						      true);
7357 		if (IS_ERR(sctx->parent_root)) {
7358 			ret = PTR_ERR(sctx->parent_root);
7359 			goto out;
7360 		}
7361 
7362 		spin_lock(&sctx->parent_root->root_item_lock);
7363 		sctx->parent_root->send_in_progress++;
7364 		if (!btrfs_root_readonly(sctx->parent_root) ||
7365 				btrfs_root_dead(sctx->parent_root)) {
7366 			spin_unlock(&sctx->parent_root->root_item_lock);
7367 			ret = -EPERM;
7368 			goto out;
7369 		}
7370 		if (sctx->parent_root->dedupe_in_progress) {
7371 			dedupe_in_progress_warn(sctx->parent_root);
7372 			spin_unlock(&sctx->parent_root->root_item_lock);
7373 			ret = -EAGAIN;
7374 			goto out;
7375 		}
7376 		spin_unlock(&sctx->parent_root->root_item_lock);
7377 	}
7378 
7379 	/*
7380 	 * Clones from send_root are allowed, but only if the clone source
7381 	 * is behind the current send position. This is checked while searching
7382 	 * for possible clone sources.
7383 	 */
7384 	sctx->clone_roots[sctx->clone_roots_cnt++].root =
7385 		btrfs_grab_root(sctx->send_root);
7386 
7387 	/* We do a bsearch later */
7388 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
7389 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7390 			NULL);
7391 	sort_clone_roots = 1;
7392 
7393 	ret = flush_delalloc_roots(sctx);
7394 	if (ret)
7395 		goto out;
7396 
7397 	ret = ensure_commit_roots_uptodate(sctx);
7398 	if (ret)
7399 		goto out;
7400 
7401 	mutex_lock(&fs_info->balance_mutex);
7402 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
7403 		mutex_unlock(&fs_info->balance_mutex);
7404 		btrfs_warn_rl(fs_info,
7405 		"cannot run send because a balance operation is in progress");
7406 		ret = -EAGAIN;
7407 		goto out;
7408 	}
7409 	fs_info->send_in_progress++;
7410 	mutex_unlock(&fs_info->balance_mutex);
7411 
7412 	current->journal_info = BTRFS_SEND_TRANS_STUB;
7413 	ret = send_subvol(sctx);
7414 	current->journal_info = NULL;
7415 	mutex_lock(&fs_info->balance_mutex);
7416 	fs_info->send_in_progress--;
7417 	mutex_unlock(&fs_info->balance_mutex);
7418 	if (ret < 0)
7419 		goto out;
7420 
7421 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7422 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7423 		if (ret < 0)
7424 			goto out;
7425 		ret = send_cmd(sctx);
7426 		if (ret < 0)
7427 			goto out;
7428 	}
7429 
7430 out:
7431 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7432 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7433 		struct rb_node *n;
7434 		struct pending_dir_move *pm;
7435 
7436 		n = rb_first(&sctx->pending_dir_moves);
7437 		pm = rb_entry(n, struct pending_dir_move, node);
7438 		while (!list_empty(&pm->list)) {
7439 			struct pending_dir_move *pm2;
7440 
7441 			pm2 = list_first_entry(&pm->list,
7442 					       struct pending_dir_move, list);
7443 			free_pending_move(sctx, pm2);
7444 		}
7445 		free_pending_move(sctx, pm);
7446 	}
7447 
7448 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7449 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7450 		struct rb_node *n;
7451 		struct waiting_dir_move *dm;
7452 
7453 		n = rb_first(&sctx->waiting_dir_moves);
7454 		dm = rb_entry(n, struct waiting_dir_move, node);
7455 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
7456 		kfree(dm);
7457 	}
7458 
7459 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7460 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7461 		struct rb_node *n;
7462 		struct orphan_dir_info *odi;
7463 
7464 		n = rb_first(&sctx->orphan_dirs);
7465 		odi = rb_entry(n, struct orphan_dir_info, node);
7466 		free_orphan_dir_info(sctx, odi);
7467 	}
7468 
7469 	if (sort_clone_roots) {
7470 		for (i = 0; i < sctx->clone_roots_cnt; i++) {
7471 			btrfs_root_dec_send_in_progress(
7472 					sctx->clone_roots[i].root);
7473 			btrfs_put_root(sctx->clone_roots[i].root);
7474 		}
7475 	} else {
7476 		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
7477 			btrfs_root_dec_send_in_progress(
7478 					sctx->clone_roots[i].root);
7479 			btrfs_put_root(sctx->clone_roots[i].root);
7480 		}
7481 
7482 		btrfs_root_dec_send_in_progress(send_root);
7483 	}
7484 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
7485 		btrfs_root_dec_send_in_progress(sctx->parent_root);
7486 		btrfs_put_root(sctx->parent_root);
7487 	}
7488 
7489 	kvfree(clone_sources_tmp);
7490 
7491 	if (sctx) {
7492 		if (sctx->send_filp)
7493 			fput(sctx->send_filp);
7494 
7495 		kvfree(sctx->clone_roots);
7496 		kvfree(sctx->send_buf);
7497 
7498 		name_cache_free(sctx);
7499 
7500 		kfree(sctx);
7501 	}
7502 
7503 	return ret;
7504 }
7505