1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/fs.h> 8 #include <linux/file.h> 9 #include <linux/sort.h> 10 #include <linux/mount.h> 11 #include <linux/xattr.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/radix-tree.h> 14 #include <linux/vmalloc.h> 15 #include <linux/string.h> 16 #include <linux/compat.h> 17 #include <linux/crc32c.h> 18 19 #include "send.h" 20 #include "backref.h" 21 #include "locking.h" 22 #include "disk-io.h" 23 #include "btrfs_inode.h" 24 #include "transaction.h" 25 #include "compression.h" 26 #include "xattr.h" 27 28 /* 29 * Maximum number of references an extent can have in order for us to attempt to 30 * issue clone operations instead of write operations. This currently exists to 31 * avoid hitting limitations of the backreference walking code (taking a lot of 32 * time and using too much memory for extents with large number of references). 33 */ 34 #define SEND_MAX_EXTENT_REFS 64 35 36 /* 37 * A fs_path is a helper to dynamically build path names with unknown size. 38 * It reallocates the internal buffer on demand. 39 * It allows fast adding of path elements on the right side (normal path) and 40 * fast adding to the left side (reversed path). A reversed path can also be 41 * unreversed if needed. 42 */ 43 struct fs_path { 44 union { 45 struct { 46 char *start; 47 char *end; 48 49 char *buf; 50 unsigned short buf_len:15; 51 unsigned short reversed:1; 52 char inline_buf[]; 53 }; 54 /* 55 * Average path length does not exceed 200 bytes, we'll have 56 * better packing in the slab and higher chance to satisfy 57 * a allocation later during send. 58 */ 59 char pad[256]; 60 }; 61 }; 62 #define FS_PATH_INLINE_SIZE \ 63 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 64 65 66 /* reused for each extent */ 67 struct clone_root { 68 struct btrfs_root *root; 69 u64 ino; 70 u64 offset; 71 72 u64 found_refs; 73 }; 74 75 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 76 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 77 78 struct send_ctx { 79 struct file *send_filp; 80 loff_t send_off; 81 char *send_buf; 82 u32 send_size; 83 u32 send_max_size; 84 u64 total_send_size; 85 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 86 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 87 88 struct btrfs_root *send_root; 89 struct btrfs_root *parent_root; 90 struct clone_root *clone_roots; 91 int clone_roots_cnt; 92 93 /* current state of the compare_tree call */ 94 struct btrfs_path *left_path; 95 struct btrfs_path *right_path; 96 struct btrfs_key *cmp_key; 97 98 /* 99 * infos of the currently processed inode. In case of deleted inodes, 100 * these are the values from the deleted inode. 101 */ 102 u64 cur_ino; 103 u64 cur_inode_gen; 104 int cur_inode_new; 105 int cur_inode_new_gen; 106 int cur_inode_deleted; 107 u64 cur_inode_size; 108 u64 cur_inode_mode; 109 u64 cur_inode_rdev; 110 u64 cur_inode_last_extent; 111 u64 cur_inode_next_write_offset; 112 bool ignore_cur_inode; 113 114 u64 send_progress; 115 116 struct list_head new_refs; 117 struct list_head deleted_refs; 118 119 struct radix_tree_root name_cache; 120 struct list_head name_cache_list; 121 int name_cache_size; 122 123 struct file_ra_state ra; 124 125 /* 126 * We process inodes by their increasing order, so if before an 127 * incremental send we reverse the parent/child relationship of 128 * directories such that a directory with a lower inode number was 129 * the parent of a directory with a higher inode number, and the one 130 * becoming the new parent got renamed too, we can't rename/move the 131 * directory with lower inode number when we finish processing it - we 132 * must process the directory with higher inode number first, then 133 * rename/move it and then rename/move the directory with lower inode 134 * number. Example follows. 135 * 136 * Tree state when the first send was performed: 137 * 138 * . 139 * |-- a (ino 257) 140 * |-- b (ino 258) 141 * | 142 * | 143 * |-- c (ino 259) 144 * | |-- d (ino 260) 145 * | 146 * |-- c2 (ino 261) 147 * 148 * Tree state when the second (incremental) send is performed: 149 * 150 * . 151 * |-- a (ino 257) 152 * |-- b (ino 258) 153 * |-- c2 (ino 261) 154 * |-- d2 (ino 260) 155 * |-- cc (ino 259) 156 * 157 * The sequence of steps that lead to the second state was: 158 * 159 * mv /a/b/c/d /a/b/c2/d2 160 * mv /a/b/c /a/b/c2/d2/cc 161 * 162 * "c" has lower inode number, but we can't move it (2nd mv operation) 163 * before we move "d", which has higher inode number. 164 * 165 * So we just memorize which move/rename operations must be performed 166 * later when their respective parent is processed and moved/renamed. 167 */ 168 169 /* Indexed by parent directory inode number. */ 170 struct rb_root pending_dir_moves; 171 172 /* 173 * Reverse index, indexed by the inode number of a directory that 174 * is waiting for the move/rename of its immediate parent before its 175 * own move/rename can be performed. 176 */ 177 struct rb_root waiting_dir_moves; 178 179 /* 180 * A directory that is going to be rm'ed might have a child directory 181 * which is in the pending directory moves index above. In this case, 182 * the directory can only be removed after the move/rename of its child 183 * is performed. Example: 184 * 185 * Parent snapshot: 186 * 187 * . (ino 256) 188 * |-- a/ (ino 257) 189 * |-- b/ (ino 258) 190 * |-- c/ (ino 259) 191 * | |-- x/ (ino 260) 192 * | 193 * |-- y/ (ino 261) 194 * 195 * Send snapshot: 196 * 197 * . (ino 256) 198 * |-- a/ (ino 257) 199 * |-- b/ (ino 258) 200 * |-- YY/ (ino 261) 201 * |-- x/ (ino 260) 202 * 203 * Sequence of steps that lead to the send snapshot: 204 * rm -f /a/b/c/foo.txt 205 * mv /a/b/y /a/b/YY 206 * mv /a/b/c/x /a/b/YY 207 * rmdir /a/b/c 208 * 209 * When the child is processed, its move/rename is delayed until its 210 * parent is processed (as explained above), but all other operations 211 * like update utimes, chown, chgrp, etc, are performed and the paths 212 * that it uses for those operations must use the orphanized name of 213 * its parent (the directory we're going to rm later), so we need to 214 * memorize that name. 215 * 216 * Indexed by the inode number of the directory to be deleted. 217 */ 218 struct rb_root orphan_dirs; 219 }; 220 221 struct pending_dir_move { 222 struct rb_node node; 223 struct list_head list; 224 u64 parent_ino; 225 u64 ino; 226 u64 gen; 227 struct list_head update_refs; 228 }; 229 230 struct waiting_dir_move { 231 struct rb_node node; 232 u64 ino; 233 /* 234 * There might be some directory that could not be removed because it 235 * was waiting for this directory inode to be moved first. Therefore 236 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 237 */ 238 u64 rmdir_ino; 239 u64 rmdir_gen; 240 bool orphanized; 241 }; 242 243 struct orphan_dir_info { 244 struct rb_node node; 245 u64 ino; 246 u64 gen; 247 u64 last_dir_index_offset; 248 }; 249 250 struct name_cache_entry { 251 struct list_head list; 252 /* 253 * radix_tree has only 32bit entries but we need to handle 64bit inums. 254 * We use the lower 32bit of the 64bit inum to store it in the tree. If 255 * more then one inum would fall into the same entry, we use radix_list 256 * to store the additional entries. radix_list is also used to store 257 * entries where two entries have the same inum but different 258 * generations. 259 */ 260 struct list_head radix_list; 261 u64 ino; 262 u64 gen; 263 u64 parent_ino; 264 u64 parent_gen; 265 int ret; 266 int need_later_update; 267 int name_len; 268 char name[]; 269 }; 270 271 #define ADVANCE 1 272 #define ADVANCE_ONLY_NEXT -1 273 274 enum btrfs_compare_tree_result { 275 BTRFS_COMPARE_TREE_NEW, 276 BTRFS_COMPARE_TREE_DELETED, 277 BTRFS_COMPARE_TREE_CHANGED, 278 BTRFS_COMPARE_TREE_SAME, 279 }; 280 281 __cold 282 static void inconsistent_snapshot_error(struct send_ctx *sctx, 283 enum btrfs_compare_tree_result result, 284 const char *what) 285 { 286 const char *result_string; 287 288 switch (result) { 289 case BTRFS_COMPARE_TREE_NEW: 290 result_string = "new"; 291 break; 292 case BTRFS_COMPARE_TREE_DELETED: 293 result_string = "deleted"; 294 break; 295 case BTRFS_COMPARE_TREE_CHANGED: 296 result_string = "updated"; 297 break; 298 case BTRFS_COMPARE_TREE_SAME: 299 ASSERT(0); 300 result_string = "unchanged"; 301 break; 302 default: 303 ASSERT(0); 304 result_string = "unexpected"; 305 } 306 307 btrfs_err(sctx->send_root->fs_info, 308 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 309 result_string, what, sctx->cmp_key->objectid, 310 sctx->send_root->root_key.objectid, 311 (sctx->parent_root ? 312 sctx->parent_root->root_key.objectid : 0)); 313 } 314 315 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 316 317 static struct waiting_dir_move * 318 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 319 320 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); 321 322 static int need_send_hole(struct send_ctx *sctx) 323 { 324 return (sctx->parent_root && !sctx->cur_inode_new && 325 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 326 S_ISREG(sctx->cur_inode_mode)); 327 } 328 329 static void fs_path_reset(struct fs_path *p) 330 { 331 if (p->reversed) { 332 p->start = p->buf + p->buf_len - 1; 333 p->end = p->start; 334 *p->start = 0; 335 } else { 336 p->start = p->buf; 337 p->end = p->start; 338 *p->start = 0; 339 } 340 } 341 342 static struct fs_path *fs_path_alloc(void) 343 { 344 struct fs_path *p; 345 346 p = kmalloc(sizeof(*p), GFP_KERNEL); 347 if (!p) 348 return NULL; 349 p->reversed = 0; 350 p->buf = p->inline_buf; 351 p->buf_len = FS_PATH_INLINE_SIZE; 352 fs_path_reset(p); 353 return p; 354 } 355 356 static struct fs_path *fs_path_alloc_reversed(void) 357 { 358 struct fs_path *p; 359 360 p = fs_path_alloc(); 361 if (!p) 362 return NULL; 363 p->reversed = 1; 364 fs_path_reset(p); 365 return p; 366 } 367 368 static void fs_path_free(struct fs_path *p) 369 { 370 if (!p) 371 return; 372 if (p->buf != p->inline_buf) 373 kfree(p->buf); 374 kfree(p); 375 } 376 377 static int fs_path_len(struct fs_path *p) 378 { 379 return p->end - p->start; 380 } 381 382 static int fs_path_ensure_buf(struct fs_path *p, int len) 383 { 384 char *tmp_buf; 385 int path_len; 386 int old_buf_len; 387 388 len++; 389 390 if (p->buf_len >= len) 391 return 0; 392 393 if (len > PATH_MAX) { 394 WARN_ON(1); 395 return -ENOMEM; 396 } 397 398 path_len = p->end - p->start; 399 old_buf_len = p->buf_len; 400 401 /* 402 * First time the inline_buf does not suffice 403 */ 404 if (p->buf == p->inline_buf) { 405 tmp_buf = kmalloc(len, GFP_KERNEL); 406 if (tmp_buf) 407 memcpy(tmp_buf, p->buf, old_buf_len); 408 } else { 409 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 410 } 411 if (!tmp_buf) 412 return -ENOMEM; 413 p->buf = tmp_buf; 414 /* 415 * The real size of the buffer is bigger, this will let the fast path 416 * happen most of the time 417 */ 418 p->buf_len = ksize(p->buf); 419 420 if (p->reversed) { 421 tmp_buf = p->buf + old_buf_len - path_len - 1; 422 p->end = p->buf + p->buf_len - 1; 423 p->start = p->end - path_len; 424 memmove(p->start, tmp_buf, path_len + 1); 425 } else { 426 p->start = p->buf; 427 p->end = p->start + path_len; 428 } 429 return 0; 430 } 431 432 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 433 char **prepared) 434 { 435 int ret; 436 int new_len; 437 438 new_len = p->end - p->start + name_len; 439 if (p->start != p->end) 440 new_len++; 441 ret = fs_path_ensure_buf(p, new_len); 442 if (ret < 0) 443 goto out; 444 445 if (p->reversed) { 446 if (p->start != p->end) 447 *--p->start = '/'; 448 p->start -= name_len; 449 *prepared = p->start; 450 } else { 451 if (p->start != p->end) 452 *p->end++ = '/'; 453 *prepared = p->end; 454 p->end += name_len; 455 *p->end = 0; 456 } 457 458 out: 459 return ret; 460 } 461 462 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 463 { 464 int ret; 465 char *prepared; 466 467 ret = fs_path_prepare_for_add(p, name_len, &prepared); 468 if (ret < 0) 469 goto out; 470 memcpy(prepared, name, name_len); 471 472 out: 473 return ret; 474 } 475 476 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 477 { 478 int ret; 479 char *prepared; 480 481 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 482 if (ret < 0) 483 goto out; 484 memcpy(prepared, p2->start, p2->end - p2->start); 485 486 out: 487 return ret; 488 } 489 490 static int fs_path_add_from_extent_buffer(struct fs_path *p, 491 struct extent_buffer *eb, 492 unsigned long off, int len) 493 { 494 int ret; 495 char *prepared; 496 497 ret = fs_path_prepare_for_add(p, len, &prepared); 498 if (ret < 0) 499 goto out; 500 501 read_extent_buffer(eb, prepared, off, len); 502 503 out: 504 return ret; 505 } 506 507 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 508 { 509 int ret; 510 511 p->reversed = from->reversed; 512 fs_path_reset(p); 513 514 ret = fs_path_add_path(p, from); 515 516 return ret; 517 } 518 519 520 static void fs_path_unreverse(struct fs_path *p) 521 { 522 char *tmp; 523 int len; 524 525 if (!p->reversed) 526 return; 527 528 tmp = p->start; 529 len = p->end - p->start; 530 p->start = p->buf; 531 p->end = p->start + len; 532 memmove(p->start, tmp, len + 1); 533 p->reversed = 0; 534 } 535 536 static struct btrfs_path *alloc_path_for_send(void) 537 { 538 struct btrfs_path *path; 539 540 path = btrfs_alloc_path(); 541 if (!path) 542 return NULL; 543 path->search_commit_root = 1; 544 path->skip_locking = 1; 545 path->need_commit_sem = 1; 546 return path; 547 } 548 549 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 550 { 551 int ret; 552 u32 pos = 0; 553 554 while (pos < len) { 555 ret = kernel_write(filp, buf + pos, len - pos, off); 556 /* TODO handle that correctly */ 557 /*if (ret == -ERESTARTSYS) { 558 continue; 559 }*/ 560 if (ret < 0) 561 return ret; 562 if (ret == 0) { 563 return -EIO; 564 } 565 pos += ret; 566 } 567 568 return 0; 569 } 570 571 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 572 { 573 struct btrfs_tlv_header *hdr; 574 int total_len = sizeof(*hdr) + len; 575 int left = sctx->send_max_size - sctx->send_size; 576 577 if (unlikely(left < total_len)) 578 return -EOVERFLOW; 579 580 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 581 put_unaligned_le16(attr, &hdr->tlv_type); 582 put_unaligned_le16(len, &hdr->tlv_len); 583 memcpy(hdr + 1, data, len); 584 sctx->send_size += total_len; 585 586 return 0; 587 } 588 589 #define TLV_PUT_DEFINE_INT(bits) \ 590 static int tlv_put_u##bits(struct send_ctx *sctx, \ 591 u##bits attr, u##bits value) \ 592 { \ 593 __le##bits __tmp = cpu_to_le##bits(value); \ 594 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 595 } 596 597 TLV_PUT_DEFINE_INT(64) 598 599 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 600 const char *str, int len) 601 { 602 if (len == -1) 603 len = strlen(str); 604 return tlv_put(sctx, attr, str, len); 605 } 606 607 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 608 const u8 *uuid) 609 { 610 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 611 } 612 613 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 614 struct extent_buffer *eb, 615 struct btrfs_timespec *ts) 616 { 617 struct btrfs_timespec bts; 618 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 619 return tlv_put(sctx, attr, &bts, sizeof(bts)); 620 } 621 622 623 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 624 do { \ 625 ret = tlv_put(sctx, attrtype, data, attrlen); \ 626 if (ret < 0) \ 627 goto tlv_put_failure; \ 628 } while (0) 629 630 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 631 do { \ 632 ret = tlv_put_u##bits(sctx, attrtype, value); \ 633 if (ret < 0) \ 634 goto tlv_put_failure; \ 635 } while (0) 636 637 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 638 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 639 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 640 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 641 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 642 do { \ 643 ret = tlv_put_string(sctx, attrtype, str, len); \ 644 if (ret < 0) \ 645 goto tlv_put_failure; \ 646 } while (0) 647 #define TLV_PUT_PATH(sctx, attrtype, p) \ 648 do { \ 649 ret = tlv_put_string(sctx, attrtype, p->start, \ 650 p->end - p->start); \ 651 if (ret < 0) \ 652 goto tlv_put_failure; \ 653 } while(0) 654 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 655 do { \ 656 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 657 if (ret < 0) \ 658 goto tlv_put_failure; \ 659 } while (0) 660 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 661 do { \ 662 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 663 if (ret < 0) \ 664 goto tlv_put_failure; \ 665 } while (0) 666 667 static int send_header(struct send_ctx *sctx) 668 { 669 struct btrfs_stream_header hdr; 670 671 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 672 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 673 674 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 675 &sctx->send_off); 676 } 677 678 /* 679 * For each command/item we want to send to userspace, we call this function. 680 */ 681 static int begin_cmd(struct send_ctx *sctx, int cmd) 682 { 683 struct btrfs_cmd_header *hdr; 684 685 if (WARN_ON(!sctx->send_buf)) 686 return -EINVAL; 687 688 BUG_ON(sctx->send_size); 689 690 sctx->send_size += sizeof(*hdr); 691 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 692 put_unaligned_le16(cmd, &hdr->cmd); 693 694 return 0; 695 } 696 697 static int send_cmd(struct send_ctx *sctx) 698 { 699 int ret; 700 struct btrfs_cmd_header *hdr; 701 u32 crc; 702 703 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 704 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 705 put_unaligned_le32(0, &hdr->crc); 706 707 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 708 put_unaligned_le32(crc, &hdr->crc); 709 710 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 711 &sctx->send_off); 712 713 sctx->total_send_size += sctx->send_size; 714 sctx->cmd_send_size[get_unaligned_le16(&hdr->cmd)] += sctx->send_size; 715 sctx->send_size = 0; 716 717 return ret; 718 } 719 720 /* 721 * Sends a move instruction to user space 722 */ 723 static int send_rename(struct send_ctx *sctx, 724 struct fs_path *from, struct fs_path *to) 725 { 726 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 727 int ret; 728 729 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 730 731 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 732 if (ret < 0) 733 goto out; 734 735 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 736 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 737 738 ret = send_cmd(sctx); 739 740 tlv_put_failure: 741 out: 742 return ret; 743 } 744 745 /* 746 * Sends a link instruction to user space 747 */ 748 static int send_link(struct send_ctx *sctx, 749 struct fs_path *path, struct fs_path *lnk) 750 { 751 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 752 int ret; 753 754 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 755 756 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 757 if (ret < 0) 758 goto out; 759 760 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 761 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 762 763 ret = send_cmd(sctx); 764 765 tlv_put_failure: 766 out: 767 return ret; 768 } 769 770 /* 771 * Sends an unlink instruction to user space 772 */ 773 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 774 { 775 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 776 int ret; 777 778 btrfs_debug(fs_info, "send_unlink %s", path->start); 779 780 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 781 if (ret < 0) 782 goto out; 783 784 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 785 786 ret = send_cmd(sctx); 787 788 tlv_put_failure: 789 out: 790 return ret; 791 } 792 793 /* 794 * Sends a rmdir instruction to user space 795 */ 796 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 797 { 798 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 799 int ret; 800 801 btrfs_debug(fs_info, "send_rmdir %s", path->start); 802 803 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 804 if (ret < 0) 805 goto out; 806 807 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 808 809 ret = send_cmd(sctx); 810 811 tlv_put_failure: 812 out: 813 return ret; 814 } 815 816 /* 817 * Helper function to retrieve some fields from an inode item. 818 */ 819 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 820 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 821 u64 *gid, u64 *rdev) 822 { 823 int ret; 824 struct btrfs_inode_item *ii; 825 struct btrfs_key key; 826 827 key.objectid = ino; 828 key.type = BTRFS_INODE_ITEM_KEY; 829 key.offset = 0; 830 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 831 if (ret) { 832 if (ret > 0) 833 ret = -ENOENT; 834 return ret; 835 } 836 837 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 838 struct btrfs_inode_item); 839 if (size) 840 *size = btrfs_inode_size(path->nodes[0], ii); 841 if (gen) 842 *gen = btrfs_inode_generation(path->nodes[0], ii); 843 if (mode) 844 *mode = btrfs_inode_mode(path->nodes[0], ii); 845 if (uid) 846 *uid = btrfs_inode_uid(path->nodes[0], ii); 847 if (gid) 848 *gid = btrfs_inode_gid(path->nodes[0], ii); 849 if (rdev) 850 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 851 852 return ret; 853 } 854 855 static int get_inode_info(struct btrfs_root *root, 856 u64 ino, u64 *size, u64 *gen, 857 u64 *mode, u64 *uid, u64 *gid, 858 u64 *rdev) 859 { 860 struct btrfs_path *path; 861 int ret; 862 863 path = alloc_path_for_send(); 864 if (!path) 865 return -ENOMEM; 866 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 867 rdev); 868 btrfs_free_path(path); 869 return ret; 870 } 871 872 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 873 struct fs_path *p, 874 void *ctx); 875 876 /* 877 * Helper function to iterate the entries in ONE btrfs_inode_ref or 878 * btrfs_inode_extref. 879 * The iterate callback may return a non zero value to stop iteration. This can 880 * be a negative value for error codes or 1 to simply stop it. 881 * 882 * path must point to the INODE_REF or INODE_EXTREF when called. 883 */ 884 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 885 struct btrfs_key *found_key, int resolve, 886 iterate_inode_ref_t iterate, void *ctx) 887 { 888 struct extent_buffer *eb = path->nodes[0]; 889 struct btrfs_item *item; 890 struct btrfs_inode_ref *iref; 891 struct btrfs_inode_extref *extref; 892 struct btrfs_path *tmp_path; 893 struct fs_path *p; 894 u32 cur = 0; 895 u32 total; 896 int slot = path->slots[0]; 897 u32 name_len; 898 char *start; 899 int ret = 0; 900 int num = 0; 901 int index; 902 u64 dir; 903 unsigned long name_off; 904 unsigned long elem_size; 905 unsigned long ptr; 906 907 p = fs_path_alloc_reversed(); 908 if (!p) 909 return -ENOMEM; 910 911 tmp_path = alloc_path_for_send(); 912 if (!tmp_path) { 913 fs_path_free(p); 914 return -ENOMEM; 915 } 916 917 918 if (found_key->type == BTRFS_INODE_REF_KEY) { 919 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 920 struct btrfs_inode_ref); 921 item = btrfs_item_nr(slot); 922 total = btrfs_item_size(eb, item); 923 elem_size = sizeof(*iref); 924 } else { 925 ptr = btrfs_item_ptr_offset(eb, slot); 926 total = btrfs_item_size_nr(eb, slot); 927 elem_size = sizeof(*extref); 928 } 929 930 while (cur < total) { 931 fs_path_reset(p); 932 933 if (found_key->type == BTRFS_INODE_REF_KEY) { 934 iref = (struct btrfs_inode_ref *)(ptr + cur); 935 name_len = btrfs_inode_ref_name_len(eb, iref); 936 name_off = (unsigned long)(iref + 1); 937 index = btrfs_inode_ref_index(eb, iref); 938 dir = found_key->offset; 939 } else { 940 extref = (struct btrfs_inode_extref *)(ptr + cur); 941 name_len = btrfs_inode_extref_name_len(eb, extref); 942 name_off = (unsigned long)&extref->name; 943 index = btrfs_inode_extref_index(eb, extref); 944 dir = btrfs_inode_extref_parent(eb, extref); 945 } 946 947 if (resolve) { 948 start = btrfs_ref_to_path(root, tmp_path, name_len, 949 name_off, eb, dir, 950 p->buf, p->buf_len); 951 if (IS_ERR(start)) { 952 ret = PTR_ERR(start); 953 goto out; 954 } 955 if (start < p->buf) { 956 /* overflow , try again with larger buffer */ 957 ret = fs_path_ensure_buf(p, 958 p->buf_len + p->buf - start); 959 if (ret < 0) 960 goto out; 961 start = btrfs_ref_to_path(root, tmp_path, 962 name_len, name_off, 963 eb, dir, 964 p->buf, p->buf_len); 965 if (IS_ERR(start)) { 966 ret = PTR_ERR(start); 967 goto out; 968 } 969 BUG_ON(start < p->buf); 970 } 971 p->start = start; 972 } else { 973 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 974 name_len); 975 if (ret < 0) 976 goto out; 977 } 978 979 cur += elem_size + name_len; 980 ret = iterate(num, dir, index, p, ctx); 981 if (ret) 982 goto out; 983 num++; 984 } 985 986 out: 987 btrfs_free_path(tmp_path); 988 fs_path_free(p); 989 return ret; 990 } 991 992 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 993 const char *name, int name_len, 994 const char *data, int data_len, 995 u8 type, void *ctx); 996 997 /* 998 * Helper function to iterate the entries in ONE btrfs_dir_item. 999 * The iterate callback may return a non zero value to stop iteration. This can 1000 * be a negative value for error codes or 1 to simply stop it. 1001 * 1002 * path must point to the dir item when called. 1003 */ 1004 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1005 iterate_dir_item_t iterate, void *ctx) 1006 { 1007 int ret = 0; 1008 struct extent_buffer *eb; 1009 struct btrfs_item *item; 1010 struct btrfs_dir_item *di; 1011 struct btrfs_key di_key; 1012 char *buf = NULL; 1013 int buf_len; 1014 u32 name_len; 1015 u32 data_len; 1016 u32 cur; 1017 u32 len; 1018 u32 total; 1019 int slot; 1020 int num; 1021 u8 type; 1022 1023 /* 1024 * Start with a small buffer (1 page). If later we end up needing more 1025 * space, which can happen for xattrs on a fs with a leaf size greater 1026 * then the page size, attempt to increase the buffer. Typically xattr 1027 * values are small. 1028 */ 1029 buf_len = PATH_MAX; 1030 buf = kmalloc(buf_len, GFP_KERNEL); 1031 if (!buf) { 1032 ret = -ENOMEM; 1033 goto out; 1034 } 1035 1036 eb = path->nodes[0]; 1037 slot = path->slots[0]; 1038 item = btrfs_item_nr(slot); 1039 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1040 cur = 0; 1041 len = 0; 1042 total = btrfs_item_size(eb, item); 1043 1044 num = 0; 1045 while (cur < total) { 1046 name_len = btrfs_dir_name_len(eb, di); 1047 data_len = btrfs_dir_data_len(eb, di); 1048 type = btrfs_dir_type(eb, di); 1049 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1050 1051 if (type == BTRFS_FT_XATTR) { 1052 if (name_len > XATTR_NAME_MAX) { 1053 ret = -ENAMETOOLONG; 1054 goto out; 1055 } 1056 if (name_len + data_len > 1057 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1058 ret = -E2BIG; 1059 goto out; 1060 } 1061 } else { 1062 /* 1063 * Path too long 1064 */ 1065 if (name_len + data_len > PATH_MAX) { 1066 ret = -ENAMETOOLONG; 1067 goto out; 1068 } 1069 } 1070 1071 if (name_len + data_len > buf_len) { 1072 buf_len = name_len + data_len; 1073 if (is_vmalloc_addr(buf)) { 1074 vfree(buf); 1075 buf = NULL; 1076 } else { 1077 char *tmp = krealloc(buf, buf_len, 1078 GFP_KERNEL | __GFP_NOWARN); 1079 1080 if (!tmp) 1081 kfree(buf); 1082 buf = tmp; 1083 } 1084 if (!buf) { 1085 buf = kvmalloc(buf_len, GFP_KERNEL); 1086 if (!buf) { 1087 ret = -ENOMEM; 1088 goto out; 1089 } 1090 } 1091 } 1092 1093 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1094 name_len + data_len); 1095 1096 len = sizeof(*di) + name_len + data_len; 1097 di = (struct btrfs_dir_item *)((char *)di + len); 1098 cur += len; 1099 1100 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1101 data_len, type, ctx); 1102 if (ret < 0) 1103 goto out; 1104 if (ret) { 1105 ret = 0; 1106 goto out; 1107 } 1108 1109 num++; 1110 } 1111 1112 out: 1113 kvfree(buf); 1114 return ret; 1115 } 1116 1117 static int __copy_first_ref(int num, u64 dir, int index, 1118 struct fs_path *p, void *ctx) 1119 { 1120 int ret; 1121 struct fs_path *pt = ctx; 1122 1123 ret = fs_path_copy(pt, p); 1124 if (ret < 0) 1125 return ret; 1126 1127 /* we want the first only */ 1128 return 1; 1129 } 1130 1131 /* 1132 * Retrieve the first path of an inode. If an inode has more then one 1133 * ref/hardlink, this is ignored. 1134 */ 1135 static int get_inode_path(struct btrfs_root *root, 1136 u64 ino, struct fs_path *path) 1137 { 1138 int ret; 1139 struct btrfs_key key, found_key; 1140 struct btrfs_path *p; 1141 1142 p = alloc_path_for_send(); 1143 if (!p) 1144 return -ENOMEM; 1145 1146 fs_path_reset(path); 1147 1148 key.objectid = ino; 1149 key.type = BTRFS_INODE_REF_KEY; 1150 key.offset = 0; 1151 1152 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1153 if (ret < 0) 1154 goto out; 1155 if (ret) { 1156 ret = 1; 1157 goto out; 1158 } 1159 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1160 if (found_key.objectid != ino || 1161 (found_key.type != BTRFS_INODE_REF_KEY && 1162 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1163 ret = -ENOENT; 1164 goto out; 1165 } 1166 1167 ret = iterate_inode_ref(root, p, &found_key, 1, 1168 __copy_first_ref, path); 1169 if (ret < 0) 1170 goto out; 1171 ret = 0; 1172 1173 out: 1174 btrfs_free_path(p); 1175 return ret; 1176 } 1177 1178 struct backref_ctx { 1179 struct send_ctx *sctx; 1180 1181 /* number of total found references */ 1182 u64 found; 1183 1184 /* 1185 * used for clones found in send_root. clones found behind cur_objectid 1186 * and cur_offset are not considered as allowed clones. 1187 */ 1188 u64 cur_objectid; 1189 u64 cur_offset; 1190 1191 /* may be truncated in case it's the last extent in a file */ 1192 u64 extent_len; 1193 1194 /* Just to check for bugs in backref resolving */ 1195 int found_itself; 1196 }; 1197 1198 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1199 { 1200 u64 root = (u64)(uintptr_t)key; 1201 struct clone_root *cr = (struct clone_root *)elt; 1202 1203 if (root < cr->root->root_key.objectid) 1204 return -1; 1205 if (root > cr->root->root_key.objectid) 1206 return 1; 1207 return 0; 1208 } 1209 1210 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1211 { 1212 struct clone_root *cr1 = (struct clone_root *)e1; 1213 struct clone_root *cr2 = (struct clone_root *)e2; 1214 1215 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid) 1216 return -1; 1217 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid) 1218 return 1; 1219 return 0; 1220 } 1221 1222 /* 1223 * Called for every backref that is found for the current extent. 1224 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1225 */ 1226 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1227 { 1228 struct backref_ctx *bctx = ctx_; 1229 struct clone_root *found; 1230 1231 /* First check if the root is in the list of accepted clone sources */ 1232 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1233 bctx->sctx->clone_roots_cnt, 1234 sizeof(struct clone_root), 1235 __clone_root_cmp_bsearch); 1236 if (!found) 1237 return 0; 1238 1239 if (found->root == bctx->sctx->send_root && 1240 ino == bctx->cur_objectid && 1241 offset == bctx->cur_offset) { 1242 bctx->found_itself = 1; 1243 } 1244 1245 /* 1246 * Make sure we don't consider clones from send_root that are 1247 * behind the current inode/offset. 1248 */ 1249 if (found->root == bctx->sctx->send_root) { 1250 /* 1251 * If the source inode was not yet processed we can't issue a 1252 * clone operation, as the source extent does not exist yet at 1253 * the destination of the stream. 1254 */ 1255 if (ino > bctx->cur_objectid) 1256 return 0; 1257 /* 1258 * We clone from the inode currently being sent as long as the 1259 * source extent is already processed, otherwise we could try 1260 * to clone from an extent that does not exist yet at the 1261 * destination of the stream. 1262 */ 1263 if (ino == bctx->cur_objectid && 1264 offset + bctx->extent_len > 1265 bctx->sctx->cur_inode_next_write_offset) 1266 return 0; 1267 } 1268 1269 bctx->found++; 1270 found->found_refs++; 1271 if (ino < found->ino) { 1272 found->ino = ino; 1273 found->offset = offset; 1274 } else if (found->ino == ino) { 1275 /* 1276 * same extent found more then once in the same file. 1277 */ 1278 if (found->offset > offset + bctx->extent_len) 1279 found->offset = offset; 1280 } 1281 1282 return 0; 1283 } 1284 1285 /* 1286 * Given an inode, offset and extent item, it finds a good clone for a clone 1287 * instruction. Returns -ENOENT when none could be found. The function makes 1288 * sure that the returned clone is usable at the point where sending is at the 1289 * moment. This means, that no clones are accepted which lie behind the current 1290 * inode+offset. 1291 * 1292 * path must point to the extent item when called. 1293 */ 1294 static int find_extent_clone(struct send_ctx *sctx, 1295 struct btrfs_path *path, 1296 u64 ino, u64 data_offset, 1297 u64 ino_size, 1298 struct clone_root **found) 1299 { 1300 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1301 int ret; 1302 int extent_type; 1303 u64 logical; 1304 u64 disk_byte; 1305 u64 num_bytes; 1306 u64 extent_item_pos; 1307 u64 flags = 0; 1308 struct btrfs_file_extent_item *fi; 1309 struct extent_buffer *eb = path->nodes[0]; 1310 struct backref_ctx *backref_ctx = NULL; 1311 struct clone_root *cur_clone_root; 1312 struct btrfs_key found_key; 1313 struct btrfs_path *tmp_path; 1314 struct btrfs_extent_item *ei; 1315 int compressed; 1316 u32 i; 1317 1318 tmp_path = alloc_path_for_send(); 1319 if (!tmp_path) 1320 return -ENOMEM; 1321 1322 /* We only use this path under the commit sem */ 1323 tmp_path->need_commit_sem = 0; 1324 1325 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL); 1326 if (!backref_ctx) { 1327 ret = -ENOMEM; 1328 goto out; 1329 } 1330 1331 if (data_offset >= ino_size) { 1332 /* 1333 * There may be extents that lie behind the file's size. 1334 * I at least had this in combination with snapshotting while 1335 * writing large files. 1336 */ 1337 ret = 0; 1338 goto out; 1339 } 1340 1341 fi = btrfs_item_ptr(eb, path->slots[0], 1342 struct btrfs_file_extent_item); 1343 extent_type = btrfs_file_extent_type(eb, fi); 1344 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1345 ret = -ENOENT; 1346 goto out; 1347 } 1348 compressed = btrfs_file_extent_compression(eb, fi); 1349 1350 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1351 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1352 if (disk_byte == 0) { 1353 ret = -ENOENT; 1354 goto out; 1355 } 1356 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1357 1358 down_read(&fs_info->commit_root_sem); 1359 ret = extent_from_logical(fs_info, disk_byte, tmp_path, 1360 &found_key, &flags); 1361 up_read(&fs_info->commit_root_sem); 1362 1363 if (ret < 0) 1364 goto out; 1365 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1366 ret = -EIO; 1367 goto out; 1368 } 1369 1370 ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0], 1371 struct btrfs_extent_item); 1372 /* 1373 * Backreference walking (iterate_extent_inodes() below) is currently 1374 * too expensive when an extent has a large number of references, both 1375 * in time spent and used memory. So for now just fallback to write 1376 * operations instead of clone operations when an extent has more than 1377 * a certain amount of references. 1378 */ 1379 if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) { 1380 ret = -ENOENT; 1381 goto out; 1382 } 1383 btrfs_release_path(tmp_path); 1384 1385 /* 1386 * Setup the clone roots. 1387 */ 1388 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1389 cur_clone_root = sctx->clone_roots + i; 1390 cur_clone_root->ino = (u64)-1; 1391 cur_clone_root->offset = 0; 1392 cur_clone_root->found_refs = 0; 1393 } 1394 1395 backref_ctx->sctx = sctx; 1396 backref_ctx->found = 0; 1397 backref_ctx->cur_objectid = ino; 1398 backref_ctx->cur_offset = data_offset; 1399 backref_ctx->found_itself = 0; 1400 backref_ctx->extent_len = num_bytes; 1401 1402 /* 1403 * The last extent of a file may be too large due to page alignment. 1404 * We need to adjust extent_len in this case so that the checks in 1405 * __iterate_backrefs work. 1406 */ 1407 if (data_offset + num_bytes >= ino_size) 1408 backref_ctx->extent_len = ino_size - data_offset; 1409 1410 /* 1411 * Now collect all backrefs. 1412 */ 1413 if (compressed == BTRFS_COMPRESS_NONE) 1414 extent_item_pos = logical - found_key.objectid; 1415 else 1416 extent_item_pos = 0; 1417 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1418 extent_item_pos, 1, __iterate_backrefs, 1419 backref_ctx, false); 1420 1421 if (ret < 0) 1422 goto out; 1423 1424 if (!backref_ctx->found_itself) { 1425 /* found a bug in backref code? */ 1426 ret = -EIO; 1427 btrfs_err(fs_info, 1428 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu", 1429 ino, data_offset, disk_byte, found_key.objectid); 1430 goto out; 1431 } 1432 1433 btrfs_debug(fs_info, 1434 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1435 data_offset, ino, num_bytes, logical); 1436 1437 if (!backref_ctx->found) 1438 btrfs_debug(fs_info, "no clones found"); 1439 1440 cur_clone_root = NULL; 1441 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1442 if (sctx->clone_roots[i].found_refs) { 1443 if (!cur_clone_root) 1444 cur_clone_root = sctx->clone_roots + i; 1445 else if (sctx->clone_roots[i].root == sctx->send_root) 1446 /* prefer clones from send_root over others */ 1447 cur_clone_root = sctx->clone_roots + i; 1448 } 1449 1450 } 1451 1452 if (cur_clone_root) { 1453 *found = cur_clone_root; 1454 ret = 0; 1455 } else { 1456 ret = -ENOENT; 1457 } 1458 1459 out: 1460 btrfs_free_path(tmp_path); 1461 kfree(backref_ctx); 1462 return ret; 1463 } 1464 1465 static int read_symlink(struct btrfs_root *root, 1466 u64 ino, 1467 struct fs_path *dest) 1468 { 1469 int ret; 1470 struct btrfs_path *path; 1471 struct btrfs_key key; 1472 struct btrfs_file_extent_item *ei; 1473 u8 type; 1474 u8 compression; 1475 unsigned long off; 1476 int len; 1477 1478 path = alloc_path_for_send(); 1479 if (!path) 1480 return -ENOMEM; 1481 1482 key.objectid = ino; 1483 key.type = BTRFS_EXTENT_DATA_KEY; 1484 key.offset = 0; 1485 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1486 if (ret < 0) 1487 goto out; 1488 if (ret) { 1489 /* 1490 * An empty symlink inode. Can happen in rare error paths when 1491 * creating a symlink (transaction committed before the inode 1492 * eviction handler removed the symlink inode items and a crash 1493 * happened in between or the subvol was snapshoted in between). 1494 * Print an informative message to dmesg/syslog so that the user 1495 * can delete the symlink. 1496 */ 1497 btrfs_err(root->fs_info, 1498 "Found empty symlink inode %llu at root %llu", 1499 ino, root->root_key.objectid); 1500 ret = -EIO; 1501 goto out; 1502 } 1503 1504 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1505 struct btrfs_file_extent_item); 1506 type = btrfs_file_extent_type(path->nodes[0], ei); 1507 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1508 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1509 BUG_ON(compression); 1510 1511 off = btrfs_file_extent_inline_start(ei); 1512 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1513 1514 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1515 1516 out: 1517 btrfs_free_path(path); 1518 return ret; 1519 } 1520 1521 /* 1522 * Helper function to generate a file name that is unique in the root of 1523 * send_root and parent_root. This is used to generate names for orphan inodes. 1524 */ 1525 static int gen_unique_name(struct send_ctx *sctx, 1526 u64 ino, u64 gen, 1527 struct fs_path *dest) 1528 { 1529 int ret = 0; 1530 struct btrfs_path *path; 1531 struct btrfs_dir_item *di; 1532 char tmp[64]; 1533 int len; 1534 u64 idx = 0; 1535 1536 path = alloc_path_for_send(); 1537 if (!path) 1538 return -ENOMEM; 1539 1540 while (1) { 1541 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1542 ino, gen, idx); 1543 ASSERT(len < sizeof(tmp)); 1544 1545 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1546 path, BTRFS_FIRST_FREE_OBJECTID, 1547 tmp, strlen(tmp), 0); 1548 btrfs_release_path(path); 1549 if (IS_ERR(di)) { 1550 ret = PTR_ERR(di); 1551 goto out; 1552 } 1553 if (di) { 1554 /* not unique, try again */ 1555 idx++; 1556 continue; 1557 } 1558 1559 if (!sctx->parent_root) { 1560 /* unique */ 1561 ret = 0; 1562 break; 1563 } 1564 1565 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1566 path, BTRFS_FIRST_FREE_OBJECTID, 1567 tmp, strlen(tmp), 0); 1568 btrfs_release_path(path); 1569 if (IS_ERR(di)) { 1570 ret = PTR_ERR(di); 1571 goto out; 1572 } 1573 if (di) { 1574 /* not unique, try again */ 1575 idx++; 1576 continue; 1577 } 1578 /* unique */ 1579 break; 1580 } 1581 1582 ret = fs_path_add(dest, tmp, strlen(tmp)); 1583 1584 out: 1585 btrfs_free_path(path); 1586 return ret; 1587 } 1588 1589 enum inode_state { 1590 inode_state_no_change, 1591 inode_state_will_create, 1592 inode_state_did_create, 1593 inode_state_will_delete, 1594 inode_state_did_delete, 1595 }; 1596 1597 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1598 { 1599 int ret; 1600 int left_ret; 1601 int right_ret; 1602 u64 left_gen; 1603 u64 right_gen; 1604 1605 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1606 NULL, NULL); 1607 if (ret < 0 && ret != -ENOENT) 1608 goto out; 1609 left_ret = ret; 1610 1611 if (!sctx->parent_root) { 1612 right_ret = -ENOENT; 1613 } else { 1614 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1615 NULL, NULL, NULL, NULL); 1616 if (ret < 0 && ret != -ENOENT) 1617 goto out; 1618 right_ret = ret; 1619 } 1620 1621 if (!left_ret && !right_ret) { 1622 if (left_gen == gen && right_gen == gen) { 1623 ret = inode_state_no_change; 1624 } else if (left_gen == gen) { 1625 if (ino < sctx->send_progress) 1626 ret = inode_state_did_create; 1627 else 1628 ret = inode_state_will_create; 1629 } else if (right_gen == gen) { 1630 if (ino < sctx->send_progress) 1631 ret = inode_state_did_delete; 1632 else 1633 ret = inode_state_will_delete; 1634 } else { 1635 ret = -ENOENT; 1636 } 1637 } else if (!left_ret) { 1638 if (left_gen == gen) { 1639 if (ino < sctx->send_progress) 1640 ret = inode_state_did_create; 1641 else 1642 ret = inode_state_will_create; 1643 } else { 1644 ret = -ENOENT; 1645 } 1646 } else if (!right_ret) { 1647 if (right_gen == gen) { 1648 if (ino < sctx->send_progress) 1649 ret = inode_state_did_delete; 1650 else 1651 ret = inode_state_will_delete; 1652 } else { 1653 ret = -ENOENT; 1654 } 1655 } else { 1656 ret = -ENOENT; 1657 } 1658 1659 out: 1660 return ret; 1661 } 1662 1663 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1664 { 1665 int ret; 1666 1667 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1668 return 1; 1669 1670 ret = get_cur_inode_state(sctx, ino, gen); 1671 if (ret < 0) 1672 goto out; 1673 1674 if (ret == inode_state_no_change || 1675 ret == inode_state_did_create || 1676 ret == inode_state_will_delete) 1677 ret = 1; 1678 else 1679 ret = 0; 1680 1681 out: 1682 return ret; 1683 } 1684 1685 /* 1686 * Helper function to lookup a dir item in a dir. 1687 */ 1688 static int lookup_dir_item_inode(struct btrfs_root *root, 1689 u64 dir, const char *name, int name_len, 1690 u64 *found_inode, 1691 u8 *found_type) 1692 { 1693 int ret = 0; 1694 struct btrfs_dir_item *di; 1695 struct btrfs_key key; 1696 struct btrfs_path *path; 1697 1698 path = alloc_path_for_send(); 1699 if (!path) 1700 return -ENOMEM; 1701 1702 di = btrfs_lookup_dir_item(NULL, root, path, 1703 dir, name, name_len, 0); 1704 if (IS_ERR_OR_NULL(di)) { 1705 ret = di ? PTR_ERR(di) : -ENOENT; 1706 goto out; 1707 } 1708 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1709 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1710 ret = -ENOENT; 1711 goto out; 1712 } 1713 *found_inode = key.objectid; 1714 *found_type = btrfs_dir_type(path->nodes[0], di); 1715 1716 out: 1717 btrfs_free_path(path); 1718 return ret; 1719 } 1720 1721 /* 1722 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1723 * generation of the parent dir and the name of the dir entry. 1724 */ 1725 static int get_first_ref(struct btrfs_root *root, u64 ino, 1726 u64 *dir, u64 *dir_gen, struct fs_path *name) 1727 { 1728 int ret; 1729 struct btrfs_key key; 1730 struct btrfs_key found_key; 1731 struct btrfs_path *path; 1732 int len; 1733 u64 parent_dir; 1734 1735 path = alloc_path_for_send(); 1736 if (!path) 1737 return -ENOMEM; 1738 1739 key.objectid = ino; 1740 key.type = BTRFS_INODE_REF_KEY; 1741 key.offset = 0; 1742 1743 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1744 if (ret < 0) 1745 goto out; 1746 if (!ret) 1747 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1748 path->slots[0]); 1749 if (ret || found_key.objectid != ino || 1750 (found_key.type != BTRFS_INODE_REF_KEY && 1751 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1752 ret = -ENOENT; 1753 goto out; 1754 } 1755 1756 if (found_key.type == BTRFS_INODE_REF_KEY) { 1757 struct btrfs_inode_ref *iref; 1758 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1759 struct btrfs_inode_ref); 1760 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1761 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1762 (unsigned long)(iref + 1), 1763 len); 1764 parent_dir = found_key.offset; 1765 } else { 1766 struct btrfs_inode_extref *extref; 1767 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1768 struct btrfs_inode_extref); 1769 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1770 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1771 (unsigned long)&extref->name, len); 1772 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1773 } 1774 if (ret < 0) 1775 goto out; 1776 btrfs_release_path(path); 1777 1778 if (dir_gen) { 1779 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1780 NULL, NULL, NULL); 1781 if (ret < 0) 1782 goto out; 1783 } 1784 1785 *dir = parent_dir; 1786 1787 out: 1788 btrfs_free_path(path); 1789 return ret; 1790 } 1791 1792 static int is_first_ref(struct btrfs_root *root, 1793 u64 ino, u64 dir, 1794 const char *name, int name_len) 1795 { 1796 int ret; 1797 struct fs_path *tmp_name; 1798 u64 tmp_dir; 1799 1800 tmp_name = fs_path_alloc(); 1801 if (!tmp_name) 1802 return -ENOMEM; 1803 1804 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1805 if (ret < 0) 1806 goto out; 1807 1808 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1809 ret = 0; 1810 goto out; 1811 } 1812 1813 ret = !memcmp(tmp_name->start, name, name_len); 1814 1815 out: 1816 fs_path_free(tmp_name); 1817 return ret; 1818 } 1819 1820 /* 1821 * Used by process_recorded_refs to determine if a new ref would overwrite an 1822 * already existing ref. In case it detects an overwrite, it returns the 1823 * inode/gen in who_ino/who_gen. 1824 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1825 * to make sure later references to the overwritten inode are possible. 1826 * Orphanizing is however only required for the first ref of an inode. 1827 * process_recorded_refs does an additional is_first_ref check to see if 1828 * orphanizing is really required. 1829 */ 1830 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1831 const char *name, int name_len, 1832 u64 *who_ino, u64 *who_gen, u64 *who_mode) 1833 { 1834 int ret = 0; 1835 u64 gen; 1836 u64 other_inode = 0; 1837 u8 other_type = 0; 1838 1839 if (!sctx->parent_root) 1840 goto out; 1841 1842 ret = is_inode_existent(sctx, dir, dir_gen); 1843 if (ret <= 0) 1844 goto out; 1845 1846 /* 1847 * If we have a parent root we need to verify that the parent dir was 1848 * not deleted and then re-created, if it was then we have no overwrite 1849 * and we can just unlink this entry. 1850 */ 1851 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) { 1852 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1853 NULL, NULL, NULL); 1854 if (ret < 0 && ret != -ENOENT) 1855 goto out; 1856 if (ret) { 1857 ret = 0; 1858 goto out; 1859 } 1860 if (gen != dir_gen) 1861 goto out; 1862 } 1863 1864 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1865 &other_inode, &other_type); 1866 if (ret < 0 && ret != -ENOENT) 1867 goto out; 1868 if (ret) { 1869 ret = 0; 1870 goto out; 1871 } 1872 1873 /* 1874 * Check if the overwritten ref was already processed. If yes, the ref 1875 * was already unlinked/moved, so we can safely assume that we will not 1876 * overwrite anything at this point in time. 1877 */ 1878 if (other_inode > sctx->send_progress || 1879 is_waiting_for_move(sctx, other_inode)) { 1880 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1881 who_gen, who_mode, NULL, NULL, NULL); 1882 if (ret < 0) 1883 goto out; 1884 1885 ret = 1; 1886 *who_ino = other_inode; 1887 } else { 1888 ret = 0; 1889 } 1890 1891 out: 1892 return ret; 1893 } 1894 1895 /* 1896 * Checks if the ref was overwritten by an already processed inode. This is 1897 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1898 * thus the orphan name needs be used. 1899 * process_recorded_refs also uses it to avoid unlinking of refs that were 1900 * overwritten. 1901 */ 1902 static int did_overwrite_ref(struct send_ctx *sctx, 1903 u64 dir, u64 dir_gen, 1904 u64 ino, u64 ino_gen, 1905 const char *name, int name_len) 1906 { 1907 int ret = 0; 1908 u64 gen; 1909 u64 ow_inode; 1910 u8 other_type; 1911 1912 if (!sctx->parent_root) 1913 goto out; 1914 1915 ret = is_inode_existent(sctx, dir, dir_gen); 1916 if (ret <= 0) 1917 goto out; 1918 1919 if (dir != BTRFS_FIRST_FREE_OBJECTID) { 1920 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, 1921 NULL, NULL, NULL); 1922 if (ret < 0 && ret != -ENOENT) 1923 goto out; 1924 if (ret) { 1925 ret = 0; 1926 goto out; 1927 } 1928 if (gen != dir_gen) 1929 goto out; 1930 } 1931 1932 /* check if the ref was overwritten by another ref */ 1933 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1934 &ow_inode, &other_type); 1935 if (ret < 0 && ret != -ENOENT) 1936 goto out; 1937 if (ret) { 1938 /* was never and will never be overwritten */ 1939 ret = 0; 1940 goto out; 1941 } 1942 1943 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1944 NULL, NULL); 1945 if (ret < 0) 1946 goto out; 1947 1948 if (ow_inode == ino && gen == ino_gen) { 1949 ret = 0; 1950 goto out; 1951 } 1952 1953 /* 1954 * We know that it is or will be overwritten. Check this now. 1955 * The current inode being processed might have been the one that caused 1956 * inode 'ino' to be orphanized, therefore check if ow_inode matches 1957 * the current inode being processed. 1958 */ 1959 if ((ow_inode < sctx->send_progress) || 1960 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 1961 gen == sctx->cur_inode_gen)) 1962 ret = 1; 1963 else 1964 ret = 0; 1965 1966 out: 1967 return ret; 1968 } 1969 1970 /* 1971 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1972 * that got overwritten. This is used by process_recorded_refs to determine 1973 * if it has to use the path as returned by get_cur_path or the orphan name. 1974 */ 1975 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1976 { 1977 int ret = 0; 1978 struct fs_path *name = NULL; 1979 u64 dir; 1980 u64 dir_gen; 1981 1982 if (!sctx->parent_root) 1983 goto out; 1984 1985 name = fs_path_alloc(); 1986 if (!name) 1987 return -ENOMEM; 1988 1989 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 1990 if (ret < 0) 1991 goto out; 1992 1993 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 1994 name->start, fs_path_len(name)); 1995 1996 out: 1997 fs_path_free(name); 1998 return ret; 1999 } 2000 2001 /* 2002 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 2003 * so we need to do some special handling in case we have clashes. This function 2004 * takes care of this with the help of name_cache_entry::radix_list. 2005 * In case of error, nce is kfreed. 2006 */ 2007 static int name_cache_insert(struct send_ctx *sctx, 2008 struct name_cache_entry *nce) 2009 { 2010 int ret = 0; 2011 struct list_head *nce_head; 2012 2013 nce_head = radix_tree_lookup(&sctx->name_cache, 2014 (unsigned long)nce->ino); 2015 if (!nce_head) { 2016 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 2017 if (!nce_head) { 2018 kfree(nce); 2019 return -ENOMEM; 2020 } 2021 INIT_LIST_HEAD(nce_head); 2022 2023 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 2024 if (ret < 0) { 2025 kfree(nce_head); 2026 kfree(nce); 2027 return ret; 2028 } 2029 } 2030 list_add_tail(&nce->radix_list, nce_head); 2031 list_add_tail(&nce->list, &sctx->name_cache_list); 2032 sctx->name_cache_size++; 2033 2034 return ret; 2035 } 2036 2037 static void name_cache_delete(struct send_ctx *sctx, 2038 struct name_cache_entry *nce) 2039 { 2040 struct list_head *nce_head; 2041 2042 nce_head = radix_tree_lookup(&sctx->name_cache, 2043 (unsigned long)nce->ino); 2044 if (!nce_head) { 2045 btrfs_err(sctx->send_root->fs_info, 2046 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2047 nce->ino, sctx->name_cache_size); 2048 } 2049 2050 list_del(&nce->radix_list); 2051 list_del(&nce->list); 2052 sctx->name_cache_size--; 2053 2054 /* 2055 * We may not get to the final release of nce_head if the lookup fails 2056 */ 2057 if (nce_head && list_empty(nce_head)) { 2058 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2059 kfree(nce_head); 2060 } 2061 } 2062 2063 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2064 u64 ino, u64 gen) 2065 { 2066 struct list_head *nce_head; 2067 struct name_cache_entry *cur; 2068 2069 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2070 if (!nce_head) 2071 return NULL; 2072 2073 list_for_each_entry(cur, nce_head, radix_list) { 2074 if (cur->ino == ino && cur->gen == gen) 2075 return cur; 2076 } 2077 return NULL; 2078 } 2079 2080 /* 2081 * Remove some entries from the beginning of name_cache_list. 2082 */ 2083 static void name_cache_clean_unused(struct send_ctx *sctx) 2084 { 2085 struct name_cache_entry *nce; 2086 2087 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2088 return; 2089 2090 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2091 nce = list_entry(sctx->name_cache_list.next, 2092 struct name_cache_entry, list); 2093 name_cache_delete(sctx, nce); 2094 kfree(nce); 2095 } 2096 } 2097 2098 static void name_cache_free(struct send_ctx *sctx) 2099 { 2100 struct name_cache_entry *nce; 2101 2102 while (!list_empty(&sctx->name_cache_list)) { 2103 nce = list_entry(sctx->name_cache_list.next, 2104 struct name_cache_entry, list); 2105 name_cache_delete(sctx, nce); 2106 kfree(nce); 2107 } 2108 } 2109 2110 /* 2111 * Used by get_cur_path for each ref up to the root. 2112 * Returns 0 if it succeeded. 2113 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2114 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2115 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2116 * Returns <0 in case of error. 2117 */ 2118 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2119 u64 ino, u64 gen, 2120 u64 *parent_ino, 2121 u64 *parent_gen, 2122 struct fs_path *dest) 2123 { 2124 int ret; 2125 int nce_ret; 2126 struct name_cache_entry *nce = NULL; 2127 2128 /* 2129 * First check if we already did a call to this function with the same 2130 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2131 * return the cached result. 2132 */ 2133 nce = name_cache_search(sctx, ino, gen); 2134 if (nce) { 2135 if (ino < sctx->send_progress && nce->need_later_update) { 2136 name_cache_delete(sctx, nce); 2137 kfree(nce); 2138 nce = NULL; 2139 } else { 2140 /* 2141 * Removes the entry from the list and adds it back to 2142 * the end. This marks the entry as recently used so 2143 * that name_cache_clean_unused does not remove it. 2144 */ 2145 list_move_tail(&nce->list, &sctx->name_cache_list); 2146 2147 *parent_ino = nce->parent_ino; 2148 *parent_gen = nce->parent_gen; 2149 ret = fs_path_add(dest, nce->name, nce->name_len); 2150 if (ret < 0) 2151 goto out; 2152 ret = nce->ret; 2153 goto out; 2154 } 2155 } 2156 2157 /* 2158 * If the inode is not existent yet, add the orphan name and return 1. 2159 * This should only happen for the parent dir that we determine in 2160 * __record_new_ref 2161 */ 2162 ret = is_inode_existent(sctx, ino, gen); 2163 if (ret < 0) 2164 goto out; 2165 2166 if (!ret) { 2167 ret = gen_unique_name(sctx, ino, gen, dest); 2168 if (ret < 0) 2169 goto out; 2170 ret = 1; 2171 goto out_cache; 2172 } 2173 2174 /* 2175 * Depending on whether the inode was already processed or not, use 2176 * send_root or parent_root for ref lookup. 2177 */ 2178 if (ino < sctx->send_progress) 2179 ret = get_first_ref(sctx->send_root, ino, 2180 parent_ino, parent_gen, dest); 2181 else 2182 ret = get_first_ref(sctx->parent_root, ino, 2183 parent_ino, parent_gen, dest); 2184 if (ret < 0) 2185 goto out; 2186 2187 /* 2188 * Check if the ref was overwritten by an inode's ref that was processed 2189 * earlier. If yes, treat as orphan and return 1. 2190 */ 2191 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2192 dest->start, dest->end - dest->start); 2193 if (ret < 0) 2194 goto out; 2195 if (ret) { 2196 fs_path_reset(dest); 2197 ret = gen_unique_name(sctx, ino, gen, dest); 2198 if (ret < 0) 2199 goto out; 2200 ret = 1; 2201 } 2202 2203 out_cache: 2204 /* 2205 * Store the result of the lookup in the name cache. 2206 */ 2207 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2208 if (!nce) { 2209 ret = -ENOMEM; 2210 goto out; 2211 } 2212 2213 nce->ino = ino; 2214 nce->gen = gen; 2215 nce->parent_ino = *parent_ino; 2216 nce->parent_gen = *parent_gen; 2217 nce->name_len = fs_path_len(dest); 2218 nce->ret = ret; 2219 strcpy(nce->name, dest->start); 2220 2221 if (ino < sctx->send_progress) 2222 nce->need_later_update = 0; 2223 else 2224 nce->need_later_update = 1; 2225 2226 nce_ret = name_cache_insert(sctx, nce); 2227 if (nce_ret < 0) 2228 ret = nce_ret; 2229 name_cache_clean_unused(sctx); 2230 2231 out: 2232 return ret; 2233 } 2234 2235 /* 2236 * Magic happens here. This function returns the first ref to an inode as it 2237 * would look like while receiving the stream at this point in time. 2238 * We walk the path up to the root. For every inode in between, we check if it 2239 * was already processed/sent. If yes, we continue with the parent as found 2240 * in send_root. If not, we continue with the parent as found in parent_root. 2241 * If we encounter an inode that was deleted at this point in time, we use the 2242 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2243 * that were not created yet and overwritten inodes/refs. 2244 * 2245 * When do we have orphan inodes: 2246 * 1. When an inode is freshly created and thus no valid refs are available yet 2247 * 2. When a directory lost all it's refs (deleted) but still has dir items 2248 * inside which were not processed yet (pending for move/delete). If anyone 2249 * tried to get the path to the dir items, it would get a path inside that 2250 * orphan directory. 2251 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2252 * of an unprocessed inode. If in that case the first ref would be 2253 * overwritten, the overwritten inode gets "orphanized". Later when we 2254 * process this overwritten inode, it is restored at a new place by moving 2255 * the orphan inode. 2256 * 2257 * sctx->send_progress tells this function at which point in time receiving 2258 * would be. 2259 */ 2260 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2261 struct fs_path *dest) 2262 { 2263 int ret = 0; 2264 struct fs_path *name = NULL; 2265 u64 parent_inode = 0; 2266 u64 parent_gen = 0; 2267 int stop = 0; 2268 2269 name = fs_path_alloc(); 2270 if (!name) { 2271 ret = -ENOMEM; 2272 goto out; 2273 } 2274 2275 dest->reversed = 1; 2276 fs_path_reset(dest); 2277 2278 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2279 struct waiting_dir_move *wdm; 2280 2281 fs_path_reset(name); 2282 2283 if (is_waiting_for_rm(sctx, ino, gen)) { 2284 ret = gen_unique_name(sctx, ino, gen, name); 2285 if (ret < 0) 2286 goto out; 2287 ret = fs_path_add_path(dest, name); 2288 break; 2289 } 2290 2291 wdm = get_waiting_dir_move(sctx, ino); 2292 if (wdm && wdm->orphanized) { 2293 ret = gen_unique_name(sctx, ino, gen, name); 2294 stop = 1; 2295 } else if (wdm) { 2296 ret = get_first_ref(sctx->parent_root, ino, 2297 &parent_inode, &parent_gen, name); 2298 } else { 2299 ret = __get_cur_name_and_parent(sctx, ino, gen, 2300 &parent_inode, 2301 &parent_gen, name); 2302 if (ret) 2303 stop = 1; 2304 } 2305 2306 if (ret < 0) 2307 goto out; 2308 2309 ret = fs_path_add_path(dest, name); 2310 if (ret < 0) 2311 goto out; 2312 2313 ino = parent_inode; 2314 gen = parent_gen; 2315 } 2316 2317 out: 2318 fs_path_free(name); 2319 if (!ret) 2320 fs_path_unreverse(dest); 2321 return ret; 2322 } 2323 2324 /* 2325 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2326 */ 2327 static int send_subvol_begin(struct send_ctx *sctx) 2328 { 2329 int ret; 2330 struct btrfs_root *send_root = sctx->send_root; 2331 struct btrfs_root *parent_root = sctx->parent_root; 2332 struct btrfs_path *path; 2333 struct btrfs_key key; 2334 struct btrfs_root_ref *ref; 2335 struct extent_buffer *leaf; 2336 char *name = NULL; 2337 int namelen; 2338 2339 path = btrfs_alloc_path(); 2340 if (!path) 2341 return -ENOMEM; 2342 2343 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2344 if (!name) { 2345 btrfs_free_path(path); 2346 return -ENOMEM; 2347 } 2348 2349 key.objectid = send_root->root_key.objectid; 2350 key.type = BTRFS_ROOT_BACKREF_KEY; 2351 key.offset = 0; 2352 2353 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2354 &key, path, 1, 0); 2355 if (ret < 0) 2356 goto out; 2357 if (ret) { 2358 ret = -ENOENT; 2359 goto out; 2360 } 2361 2362 leaf = path->nodes[0]; 2363 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2364 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2365 key.objectid != send_root->root_key.objectid) { 2366 ret = -ENOENT; 2367 goto out; 2368 } 2369 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2370 namelen = btrfs_root_ref_name_len(leaf, ref); 2371 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2372 btrfs_release_path(path); 2373 2374 if (parent_root) { 2375 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2376 if (ret < 0) 2377 goto out; 2378 } else { 2379 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2380 if (ret < 0) 2381 goto out; 2382 } 2383 2384 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2385 2386 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2387 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2388 sctx->send_root->root_item.received_uuid); 2389 else 2390 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2391 sctx->send_root->root_item.uuid); 2392 2393 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2394 btrfs_root_ctransid(&sctx->send_root->root_item)); 2395 if (parent_root) { 2396 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2397 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2398 parent_root->root_item.received_uuid); 2399 else 2400 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2401 parent_root->root_item.uuid); 2402 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2403 btrfs_root_ctransid(&sctx->parent_root->root_item)); 2404 } 2405 2406 ret = send_cmd(sctx); 2407 2408 tlv_put_failure: 2409 out: 2410 btrfs_free_path(path); 2411 kfree(name); 2412 return ret; 2413 } 2414 2415 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2416 { 2417 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2418 int ret = 0; 2419 struct fs_path *p; 2420 2421 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2422 2423 p = fs_path_alloc(); 2424 if (!p) 2425 return -ENOMEM; 2426 2427 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2428 if (ret < 0) 2429 goto out; 2430 2431 ret = get_cur_path(sctx, ino, gen, p); 2432 if (ret < 0) 2433 goto out; 2434 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2435 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2436 2437 ret = send_cmd(sctx); 2438 2439 tlv_put_failure: 2440 out: 2441 fs_path_free(p); 2442 return ret; 2443 } 2444 2445 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2446 { 2447 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2448 int ret = 0; 2449 struct fs_path *p; 2450 2451 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2452 2453 p = fs_path_alloc(); 2454 if (!p) 2455 return -ENOMEM; 2456 2457 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2458 if (ret < 0) 2459 goto out; 2460 2461 ret = get_cur_path(sctx, ino, gen, p); 2462 if (ret < 0) 2463 goto out; 2464 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2465 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2466 2467 ret = send_cmd(sctx); 2468 2469 tlv_put_failure: 2470 out: 2471 fs_path_free(p); 2472 return ret; 2473 } 2474 2475 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2476 { 2477 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2478 int ret = 0; 2479 struct fs_path *p; 2480 2481 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2482 ino, uid, gid); 2483 2484 p = fs_path_alloc(); 2485 if (!p) 2486 return -ENOMEM; 2487 2488 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2489 if (ret < 0) 2490 goto out; 2491 2492 ret = get_cur_path(sctx, ino, gen, p); 2493 if (ret < 0) 2494 goto out; 2495 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2496 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2497 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2498 2499 ret = send_cmd(sctx); 2500 2501 tlv_put_failure: 2502 out: 2503 fs_path_free(p); 2504 return ret; 2505 } 2506 2507 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2508 { 2509 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2510 int ret = 0; 2511 struct fs_path *p = NULL; 2512 struct btrfs_inode_item *ii; 2513 struct btrfs_path *path = NULL; 2514 struct extent_buffer *eb; 2515 struct btrfs_key key; 2516 int slot; 2517 2518 btrfs_debug(fs_info, "send_utimes %llu", ino); 2519 2520 p = fs_path_alloc(); 2521 if (!p) 2522 return -ENOMEM; 2523 2524 path = alloc_path_for_send(); 2525 if (!path) { 2526 ret = -ENOMEM; 2527 goto out; 2528 } 2529 2530 key.objectid = ino; 2531 key.type = BTRFS_INODE_ITEM_KEY; 2532 key.offset = 0; 2533 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2534 if (ret > 0) 2535 ret = -ENOENT; 2536 if (ret < 0) 2537 goto out; 2538 2539 eb = path->nodes[0]; 2540 slot = path->slots[0]; 2541 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2542 2543 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2544 if (ret < 0) 2545 goto out; 2546 2547 ret = get_cur_path(sctx, ino, gen, p); 2548 if (ret < 0) 2549 goto out; 2550 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2551 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2552 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2553 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2554 /* TODO Add otime support when the otime patches get into upstream */ 2555 2556 ret = send_cmd(sctx); 2557 2558 tlv_put_failure: 2559 out: 2560 fs_path_free(p); 2561 btrfs_free_path(path); 2562 return ret; 2563 } 2564 2565 /* 2566 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2567 * a valid path yet because we did not process the refs yet. So, the inode 2568 * is created as orphan. 2569 */ 2570 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2571 { 2572 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2573 int ret = 0; 2574 struct fs_path *p; 2575 int cmd; 2576 u64 gen; 2577 u64 mode; 2578 u64 rdev; 2579 2580 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2581 2582 p = fs_path_alloc(); 2583 if (!p) 2584 return -ENOMEM; 2585 2586 if (ino != sctx->cur_ino) { 2587 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2588 NULL, NULL, &rdev); 2589 if (ret < 0) 2590 goto out; 2591 } else { 2592 gen = sctx->cur_inode_gen; 2593 mode = sctx->cur_inode_mode; 2594 rdev = sctx->cur_inode_rdev; 2595 } 2596 2597 if (S_ISREG(mode)) { 2598 cmd = BTRFS_SEND_C_MKFILE; 2599 } else if (S_ISDIR(mode)) { 2600 cmd = BTRFS_SEND_C_MKDIR; 2601 } else if (S_ISLNK(mode)) { 2602 cmd = BTRFS_SEND_C_SYMLINK; 2603 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2604 cmd = BTRFS_SEND_C_MKNOD; 2605 } else if (S_ISFIFO(mode)) { 2606 cmd = BTRFS_SEND_C_MKFIFO; 2607 } else if (S_ISSOCK(mode)) { 2608 cmd = BTRFS_SEND_C_MKSOCK; 2609 } else { 2610 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2611 (int)(mode & S_IFMT)); 2612 ret = -EOPNOTSUPP; 2613 goto out; 2614 } 2615 2616 ret = begin_cmd(sctx, cmd); 2617 if (ret < 0) 2618 goto out; 2619 2620 ret = gen_unique_name(sctx, ino, gen, p); 2621 if (ret < 0) 2622 goto out; 2623 2624 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2625 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2626 2627 if (S_ISLNK(mode)) { 2628 fs_path_reset(p); 2629 ret = read_symlink(sctx->send_root, ino, p); 2630 if (ret < 0) 2631 goto out; 2632 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2633 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2634 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2635 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2636 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2637 } 2638 2639 ret = send_cmd(sctx); 2640 if (ret < 0) 2641 goto out; 2642 2643 2644 tlv_put_failure: 2645 out: 2646 fs_path_free(p); 2647 return ret; 2648 } 2649 2650 /* 2651 * We need some special handling for inodes that get processed before the parent 2652 * directory got created. See process_recorded_refs for details. 2653 * This function does the check if we already created the dir out of order. 2654 */ 2655 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2656 { 2657 int ret = 0; 2658 struct btrfs_path *path = NULL; 2659 struct btrfs_key key; 2660 struct btrfs_key found_key; 2661 struct btrfs_key di_key; 2662 struct extent_buffer *eb; 2663 struct btrfs_dir_item *di; 2664 int slot; 2665 2666 path = alloc_path_for_send(); 2667 if (!path) { 2668 ret = -ENOMEM; 2669 goto out; 2670 } 2671 2672 key.objectid = dir; 2673 key.type = BTRFS_DIR_INDEX_KEY; 2674 key.offset = 0; 2675 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2676 if (ret < 0) 2677 goto out; 2678 2679 while (1) { 2680 eb = path->nodes[0]; 2681 slot = path->slots[0]; 2682 if (slot >= btrfs_header_nritems(eb)) { 2683 ret = btrfs_next_leaf(sctx->send_root, path); 2684 if (ret < 0) { 2685 goto out; 2686 } else if (ret > 0) { 2687 ret = 0; 2688 break; 2689 } 2690 continue; 2691 } 2692 2693 btrfs_item_key_to_cpu(eb, &found_key, slot); 2694 if (found_key.objectid != key.objectid || 2695 found_key.type != key.type) { 2696 ret = 0; 2697 goto out; 2698 } 2699 2700 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2701 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2702 2703 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2704 di_key.objectid < sctx->send_progress) { 2705 ret = 1; 2706 goto out; 2707 } 2708 2709 path->slots[0]++; 2710 } 2711 2712 out: 2713 btrfs_free_path(path); 2714 return ret; 2715 } 2716 2717 /* 2718 * Only creates the inode if it is: 2719 * 1. Not a directory 2720 * 2. Or a directory which was not created already due to out of order 2721 * directories. See did_create_dir and process_recorded_refs for details. 2722 */ 2723 static int send_create_inode_if_needed(struct send_ctx *sctx) 2724 { 2725 int ret; 2726 2727 if (S_ISDIR(sctx->cur_inode_mode)) { 2728 ret = did_create_dir(sctx, sctx->cur_ino); 2729 if (ret < 0) 2730 goto out; 2731 if (ret) { 2732 ret = 0; 2733 goto out; 2734 } 2735 } 2736 2737 ret = send_create_inode(sctx, sctx->cur_ino); 2738 if (ret < 0) 2739 goto out; 2740 2741 out: 2742 return ret; 2743 } 2744 2745 struct recorded_ref { 2746 struct list_head list; 2747 char *name; 2748 struct fs_path *full_path; 2749 u64 dir; 2750 u64 dir_gen; 2751 int name_len; 2752 }; 2753 2754 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 2755 { 2756 ref->full_path = path; 2757 ref->name = (char *)kbasename(ref->full_path->start); 2758 ref->name_len = ref->full_path->end - ref->name; 2759 } 2760 2761 /* 2762 * We need to process new refs before deleted refs, but compare_tree gives us 2763 * everything mixed. So we first record all refs and later process them. 2764 * This function is a helper to record one ref. 2765 */ 2766 static int __record_ref(struct list_head *head, u64 dir, 2767 u64 dir_gen, struct fs_path *path) 2768 { 2769 struct recorded_ref *ref; 2770 2771 ref = kmalloc(sizeof(*ref), GFP_KERNEL); 2772 if (!ref) 2773 return -ENOMEM; 2774 2775 ref->dir = dir; 2776 ref->dir_gen = dir_gen; 2777 set_ref_path(ref, path); 2778 list_add_tail(&ref->list, head); 2779 return 0; 2780 } 2781 2782 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2783 { 2784 struct recorded_ref *new; 2785 2786 new = kmalloc(sizeof(*ref), GFP_KERNEL); 2787 if (!new) 2788 return -ENOMEM; 2789 2790 new->dir = ref->dir; 2791 new->dir_gen = ref->dir_gen; 2792 new->full_path = NULL; 2793 INIT_LIST_HEAD(&new->list); 2794 list_add_tail(&new->list, list); 2795 return 0; 2796 } 2797 2798 static void __free_recorded_refs(struct list_head *head) 2799 { 2800 struct recorded_ref *cur; 2801 2802 while (!list_empty(head)) { 2803 cur = list_entry(head->next, struct recorded_ref, list); 2804 fs_path_free(cur->full_path); 2805 list_del(&cur->list); 2806 kfree(cur); 2807 } 2808 } 2809 2810 static void free_recorded_refs(struct send_ctx *sctx) 2811 { 2812 __free_recorded_refs(&sctx->new_refs); 2813 __free_recorded_refs(&sctx->deleted_refs); 2814 } 2815 2816 /* 2817 * Renames/moves a file/dir to its orphan name. Used when the first 2818 * ref of an unprocessed inode gets overwritten and for all non empty 2819 * directories. 2820 */ 2821 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2822 struct fs_path *path) 2823 { 2824 int ret; 2825 struct fs_path *orphan; 2826 2827 orphan = fs_path_alloc(); 2828 if (!orphan) 2829 return -ENOMEM; 2830 2831 ret = gen_unique_name(sctx, ino, gen, orphan); 2832 if (ret < 0) 2833 goto out; 2834 2835 ret = send_rename(sctx, path, orphan); 2836 2837 out: 2838 fs_path_free(orphan); 2839 return ret; 2840 } 2841 2842 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, 2843 u64 dir_ino, u64 dir_gen) 2844 { 2845 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2846 struct rb_node *parent = NULL; 2847 struct orphan_dir_info *entry, *odi; 2848 2849 while (*p) { 2850 parent = *p; 2851 entry = rb_entry(parent, struct orphan_dir_info, node); 2852 if (dir_ino < entry->ino) 2853 p = &(*p)->rb_left; 2854 else if (dir_ino > entry->ino) 2855 p = &(*p)->rb_right; 2856 else if (dir_gen < entry->gen) 2857 p = &(*p)->rb_left; 2858 else if (dir_gen > entry->gen) 2859 p = &(*p)->rb_right; 2860 else 2861 return entry; 2862 } 2863 2864 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 2865 if (!odi) 2866 return ERR_PTR(-ENOMEM); 2867 odi->ino = dir_ino; 2868 odi->gen = dir_gen; 2869 odi->last_dir_index_offset = 0; 2870 2871 rb_link_node(&odi->node, parent, p); 2872 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2873 return odi; 2874 } 2875 2876 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, 2877 u64 dir_ino, u64 gen) 2878 { 2879 struct rb_node *n = sctx->orphan_dirs.rb_node; 2880 struct orphan_dir_info *entry; 2881 2882 while (n) { 2883 entry = rb_entry(n, struct orphan_dir_info, node); 2884 if (dir_ino < entry->ino) 2885 n = n->rb_left; 2886 else if (dir_ino > entry->ino) 2887 n = n->rb_right; 2888 else if (gen < entry->gen) 2889 n = n->rb_left; 2890 else if (gen > entry->gen) 2891 n = n->rb_right; 2892 else 2893 return entry; 2894 } 2895 return NULL; 2896 } 2897 2898 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) 2899 { 2900 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); 2901 2902 return odi != NULL; 2903 } 2904 2905 static void free_orphan_dir_info(struct send_ctx *sctx, 2906 struct orphan_dir_info *odi) 2907 { 2908 if (!odi) 2909 return; 2910 rb_erase(&odi->node, &sctx->orphan_dirs); 2911 kfree(odi); 2912 } 2913 2914 /* 2915 * Returns 1 if a directory can be removed at this point in time. 2916 * We check this by iterating all dir items and checking if the inode behind 2917 * the dir item was already processed. 2918 */ 2919 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2920 u64 send_progress) 2921 { 2922 int ret = 0; 2923 struct btrfs_root *root = sctx->parent_root; 2924 struct btrfs_path *path; 2925 struct btrfs_key key; 2926 struct btrfs_key found_key; 2927 struct btrfs_key loc; 2928 struct btrfs_dir_item *di; 2929 struct orphan_dir_info *odi = NULL; 2930 2931 /* 2932 * Don't try to rmdir the top/root subvolume dir. 2933 */ 2934 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2935 return 0; 2936 2937 path = alloc_path_for_send(); 2938 if (!path) 2939 return -ENOMEM; 2940 2941 key.objectid = dir; 2942 key.type = BTRFS_DIR_INDEX_KEY; 2943 key.offset = 0; 2944 2945 odi = get_orphan_dir_info(sctx, dir, dir_gen); 2946 if (odi) 2947 key.offset = odi->last_dir_index_offset; 2948 2949 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2950 if (ret < 0) 2951 goto out; 2952 2953 while (1) { 2954 struct waiting_dir_move *dm; 2955 2956 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2957 ret = btrfs_next_leaf(root, path); 2958 if (ret < 0) 2959 goto out; 2960 else if (ret > 0) 2961 break; 2962 continue; 2963 } 2964 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2965 path->slots[0]); 2966 if (found_key.objectid != key.objectid || 2967 found_key.type != key.type) 2968 break; 2969 2970 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2971 struct btrfs_dir_item); 2972 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2973 2974 dm = get_waiting_dir_move(sctx, loc.objectid); 2975 if (dm) { 2976 odi = add_orphan_dir_info(sctx, dir, dir_gen); 2977 if (IS_ERR(odi)) { 2978 ret = PTR_ERR(odi); 2979 goto out; 2980 } 2981 odi->gen = dir_gen; 2982 odi->last_dir_index_offset = found_key.offset; 2983 dm->rmdir_ino = dir; 2984 dm->rmdir_gen = dir_gen; 2985 ret = 0; 2986 goto out; 2987 } 2988 2989 if (loc.objectid > send_progress) { 2990 odi = add_orphan_dir_info(sctx, dir, dir_gen); 2991 if (IS_ERR(odi)) { 2992 ret = PTR_ERR(odi); 2993 goto out; 2994 } 2995 odi->gen = dir_gen; 2996 odi->last_dir_index_offset = found_key.offset; 2997 ret = 0; 2998 goto out; 2999 } 3000 3001 path->slots[0]++; 3002 } 3003 free_orphan_dir_info(sctx, odi); 3004 3005 ret = 1; 3006 3007 out: 3008 btrfs_free_path(path); 3009 return ret; 3010 } 3011 3012 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3013 { 3014 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3015 3016 return entry != NULL; 3017 } 3018 3019 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3020 { 3021 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3022 struct rb_node *parent = NULL; 3023 struct waiting_dir_move *entry, *dm; 3024 3025 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3026 if (!dm) 3027 return -ENOMEM; 3028 dm->ino = ino; 3029 dm->rmdir_ino = 0; 3030 dm->rmdir_gen = 0; 3031 dm->orphanized = orphanized; 3032 3033 while (*p) { 3034 parent = *p; 3035 entry = rb_entry(parent, struct waiting_dir_move, node); 3036 if (ino < entry->ino) { 3037 p = &(*p)->rb_left; 3038 } else if (ino > entry->ino) { 3039 p = &(*p)->rb_right; 3040 } else { 3041 kfree(dm); 3042 return -EEXIST; 3043 } 3044 } 3045 3046 rb_link_node(&dm->node, parent, p); 3047 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3048 return 0; 3049 } 3050 3051 static struct waiting_dir_move * 3052 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3053 { 3054 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3055 struct waiting_dir_move *entry; 3056 3057 while (n) { 3058 entry = rb_entry(n, struct waiting_dir_move, node); 3059 if (ino < entry->ino) 3060 n = n->rb_left; 3061 else if (ino > entry->ino) 3062 n = n->rb_right; 3063 else 3064 return entry; 3065 } 3066 return NULL; 3067 } 3068 3069 static void free_waiting_dir_move(struct send_ctx *sctx, 3070 struct waiting_dir_move *dm) 3071 { 3072 if (!dm) 3073 return; 3074 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3075 kfree(dm); 3076 } 3077 3078 static int add_pending_dir_move(struct send_ctx *sctx, 3079 u64 ino, 3080 u64 ino_gen, 3081 u64 parent_ino, 3082 struct list_head *new_refs, 3083 struct list_head *deleted_refs, 3084 const bool is_orphan) 3085 { 3086 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3087 struct rb_node *parent = NULL; 3088 struct pending_dir_move *entry = NULL, *pm; 3089 struct recorded_ref *cur; 3090 int exists = 0; 3091 int ret; 3092 3093 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3094 if (!pm) 3095 return -ENOMEM; 3096 pm->parent_ino = parent_ino; 3097 pm->ino = ino; 3098 pm->gen = ino_gen; 3099 INIT_LIST_HEAD(&pm->list); 3100 INIT_LIST_HEAD(&pm->update_refs); 3101 RB_CLEAR_NODE(&pm->node); 3102 3103 while (*p) { 3104 parent = *p; 3105 entry = rb_entry(parent, struct pending_dir_move, node); 3106 if (parent_ino < entry->parent_ino) { 3107 p = &(*p)->rb_left; 3108 } else if (parent_ino > entry->parent_ino) { 3109 p = &(*p)->rb_right; 3110 } else { 3111 exists = 1; 3112 break; 3113 } 3114 } 3115 3116 list_for_each_entry(cur, deleted_refs, list) { 3117 ret = dup_ref(cur, &pm->update_refs); 3118 if (ret < 0) 3119 goto out; 3120 } 3121 list_for_each_entry(cur, new_refs, list) { 3122 ret = dup_ref(cur, &pm->update_refs); 3123 if (ret < 0) 3124 goto out; 3125 } 3126 3127 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3128 if (ret) 3129 goto out; 3130 3131 if (exists) { 3132 list_add_tail(&pm->list, &entry->list); 3133 } else { 3134 rb_link_node(&pm->node, parent, p); 3135 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3136 } 3137 ret = 0; 3138 out: 3139 if (ret) { 3140 __free_recorded_refs(&pm->update_refs); 3141 kfree(pm); 3142 } 3143 return ret; 3144 } 3145 3146 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3147 u64 parent_ino) 3148 { 3149 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3150 struct pending_dir_move *entry; 3151 3152 while (n) { 3153 entry = rb_entry(n, struct pending_dir_move, node); 3154 if (parent_ino < entry->parent_ino) 3155 n = n->rb_left; 3156 else if (parent_ino > entry->parent_ino) 3157 n = n->rb_right; 3158 else 3159 return entry; 3160 } 3161 return NULL; 3162 } 3163 3164 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3165 u64 ino, u64 gen, u64 *ancestor_ino) 3166 { 3167 int ret = 0; 3168 u64 parent_inode = 0; 3169 u64 parent_gen = 0; 3170 u64 start_ino = ino; 3171 3172 *ancestor_ino = 0; 3173 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3174 fs_path_reset(name); 3175 3176 if (is_waiting_for_rm(sctx, ino, gen)) 3177 break; 3178 if (is_waiting_for_move(sctx, ino)) { 3179 if (*ancestor_ino == 0) 3180 *ancestor_ino = ino; 3181 ret = get_first_ref(sctx->parent_root, ino, 3182 &parent_inode, &parent_gen, name); 3183 } else { 3184 ret = __get_cur_name_and_parent(sctx, ino, gen, 3185 &parent_inode, 3186 &parent_gen, name); 3187 if (ret > 0) { 3188 ret = 0; 3189 break; 3190 } 3191 } 3192 if (ret < 0) 3193 break; 3194 if (parent_inode == start_ino) { 3195 ret = 1; 3196 if (*ancestor_ino == 0) 3197 *ancestor_ino = ino; 3198 break; 3199 } 3200 ino = parent_inode; 3201 gen = parent_gen; 3202 } 3203 return ret; 3204 } 3205 3206 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3207 { 3208 struct fs_path *from_path = NULL; 3209 struct fs_path *to_path = NULL; 3210 struct fs_path *name = NULL; 3211 u64 orig_progress = sctx->send_progress; 3212 struct recorded_ref *cur; 3213 u64 parent_ino, parent_gen; 3214 struct waiting_dir_move *dm = NULL; 3215 u64 rmdir_ino = 0; 3216 u64 rmdir_gen; 3217 u64 ancestor; 3218 bool is_orphan; 3219 int ret; 3220 3221 name = fs_path_alloc(); 3222 from_path = fs_path_alloc(); 3223 if (!name || !from_path) { 3224 ret = -ENOMEM; 3225 goto out; 3226 } 3227 3228 dm = get_waiting_dir_move(sctx, pm->ino); 3229 ASSERT(dm); 3230 rmdir_ino = dm->rmdir_ino; 3231 rmdir_gen = dm->rmdir_gen; 3232 is_orphan = dm->orphanized; 3233 free_waiting_dir_move(sctx, dm); 3234 3235 if (is_orphan) { 3236 ret = gen_unique_name(sctx, pm->ino, 3237 pm->gen, from_path); 3238 } else { 3239 ret = get_first_ref(sctx->parent_root, pm->ino, 3240 &parent_ino, &parent_gen, name); 3241 if (ret < 0) 3242 goto out; 3243 ret = get_cur_path(sctx, parent_ino, parent_gen, 3244 from_path); 3245 if (ret < 0) 3246 goto out; 3247 ret = fs_path_add_path(from_path, name); 3248 } 3249 if (ret < 0) 3250 goto out; 3251 3252 sctx->send_progress = sctx->cur_ino + 1; 3253 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3254 if (ret < 0) 3255 goto out; 3256 if (ret) { 3257 LIST_HEAD(deleted_refs); 3258 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3259 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3260 &pm->update_refs, &deleted_refs, 3261 is_orphan); 3262 if (ret < 0) 3263 goto out; 3264 if (rmdir_ino) { 3265 dm = get_waiting_dir_move(sctx, pm->ino); 3266 ASSERT(dm); 3267 dm->rmdir_ino = rmdir_ino; 3268 dm->rmdir_gen = rmdir_gen; 3269 } 3270 goto out; 3271 } 3272 fs_path_reset(name); 3273 to_path = name; 3274 name = NULL; 3275 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3276 if (ret < 0) 3277 goto out; 3278 3279 ret = send_rename(sctx, from_path, to_path); 3280 if (ret < 0) 3281 goto out; 3282 3283 if (rmdir_ino) { 3284 struct orphan_dir_info *odi; 3285 u64 gen; 3286 3287 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); 3288 if (!odi) { 3289 /* already deleted */ 3290 goto finish; 3291 } 3292 gen = odi->gen; 3293 3294 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino); 3295 if (ret < 0) 3296 goto out; 3297 if (!ret) 3298 goto finish; 3299 3300 name = fs_path_alloc(); 3301 if (!name) { 3302 ret = -ENOMEM; 3303 goto out; 3304 } 3305 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3306 if (ret < 0) 3307 goto out; 3308 ret = send_rmdir(sctx, name); 3309 if (ret < 0) 3310 goto out; 3311 } 3312 3313 finish: 3314 ret = send_utimes(sctx, pm->ino, pm->gen); 3315 if (ret < 0) 3316 goto out; 3317 3318 /* 3319 * After rename/move, need to update the utimes of both new parent(s) 3320 * and old parent(s). 3321 */ 3322 list_for_each_entry(cur, &pm->update_refs, list) { 3323 /* 3324 * The parent inode might have been deleted in the send snapshot 3325 */ 3326 ret = get_inode_info(sctx->send_root, cur->dir, NULL, 3327 NULL, NULL, NULL, NULL, NULL); 3328 if (ret == -ENOENT) { 3329 ret = 0; 3330 continue; 3331 } 3332 if (ret < 0) 3333 goto out; 3334 3335 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3336 if (ret < 0) 3337 goto out; 3338 } 3339 3340 out: 3341 fs_path_free(name); 3342 fs_path_free(from_path); 3343 fs_path_free(to_path); 3344 sctx->send_progress = orig_progress; 3345 3346 return ret; 3347 } 3348 3349 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3350 { 3351 if (!list_empty(&m->list)) 3352 list_del(&m->list); 3353 if (!RB_EMPTY_NODE(&m->node)) 3354 rb_erase(&m->node, &sctx->pending_dir_moves); 3355 __free_recorded_refs(&m->update_refs); 3356 kfree(m); 3357 } 3358 3359 static void tail_append_pending_moves(struct send_ctx *sctx, 3360 struct pending_dir_move *moves, 3361 struct list_head *stack) 3362 { 3363 if (list_empty(&moves->list)) { 3364 list_add_tail(&moves->list, stack); 3365 } else { 3366 LIST_HEAD(list); 3367 list_splice_init(&moves->list, &list); 3368 list_add_tail(&moves->list, stack); 3369 list_splice_tail(&list, stack); 3370 } 3371 if (!RB_EMPTY_NODE(&moves->node)) { 3372 rb_erase(&moves->node, &sctx->pending_dir_moves); 3373 RB_CLEAR_NODE(&moves->node); 3374 } 3375 } 3376 3377 static int apply_children_dir_moves(struct send_ctx *sctx) 3378 { 3379 struct pending_dir_move *pm; 3380 struct list_head stack; 3381 u64 parent_ino = sctx->cur_ino; 3382 int ret = 0; 3383 3384 pm = get_pending_dir_moves(sctx, parent_ino); 3385 if (!pm) 3386 return 0; 3387 3388 INIT_LIST_HEAD(&stack); 3389 tail_append_pending_moves(sctx, pm, &stack); 3390 3391 while (!list_empty(&stack)) { 3392 pm = list_first_entry(&stack, struct pending_dir_move, list); 3393 parent_ino = pm->ino; 3394 ret = apply_dir_move(sctx, pm); 3395 free_pending_move(sctx, pm); 3396 if (ret) 3397 goto out; 3398 pm = get_pending_dir_moves(sctx, parent_ino); 3399 if (pm) 3400 tail_append_pending_moves(sctx, pm, &stack); 3401 } 3402 return 0; 3403 3404 out: 3405 while (!list_empty(&stack)) { 3406 pm = list_first_entry(&stack, struct pending_dir_move, list); 3407 free_pending_move(sctx, pm); 3408 } 3409 return ret; 3410 } 3411 3412 /* 3413 * We might need to delay a directory rename even when no ancestor directory 3414 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3415 * renamed. This happens when we rename a directory to the old name (the name 3416 * in the parent root) of some other unrelated directory that got its rename 3417 * delayed due to some ancestor with higher number that got renamed. 3418 * 3419 * Example: 3420 * 3421 * Parent snapshot: 3422 * . (ino 256) 3423 * |---- a/ (ino 257) 3424 * | |---- file (ino 260) 3425 * | 3426 * |---- b/ (ino 258) 3427 * |---- c/ (ino 259) 3428 * 3429 * Send snapshot: 3430 * . (ino 256) 3431 * |---- a/ (ino 258) 3432 * |---- x/ (ino 259) 3433 * |---- y/ (ino 257) 3434 * |----- file (ino 260) 3435 * 3436 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3437 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3438 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3439 * must issue is: 3440 * 3441 * 1 - rename 259 from 'c' to 'x' 3442 * 2 - rename 257 from 'a' to 'x/y' 3443 * 3 - rename 258 from 'b' to 'a' 3444 * 3445 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3446 * be done right away and < 0 on error. 3447 */ 3448 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3449 struct recorded_ref *parent_ref, 3450 const bool is_orphan) 3451 { 3452 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3453 struct btrfs_path *path; 3454 struct btrfs_key key; 3455 struct btrfs_key di_key; 3456 struct btrfs_dir_item *di; 3457 u64 left_gen; 3458 u64 right_gen; 3459 int ret = 0; 3460 struct waiting_dir_move *wdm; 3461 3462 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3463 return 0; 3464 3465 path = alloc_path_for_send(); 3466 if (!path) 3467 return -ENOMEM; 3468 3469 key.objectid = parent_ref->dir; 3470 key.type = BTRFS_DIR_ITEM_KEY; 3471 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3472 3473 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3474 if (ret < 0) { 3475 goto out; 3476 } else if (ret > 0) { 3477 ret = 0; 3478 goto out; 3479 } 3480 3481 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3482 parent_ref->name_len); 3483 if (!di) { 3484 ret = 0; 3485 goto out; 3486 } 3487 /* 3488 * di_key.objectid has the number of the inode that has a dentry in the 3489 * parent directory with the same name that sctx->cur_ino is being 3490 * renamed to. We need to check if that inode is in the send root as 3491 * well and if it is currently marked as an inode with a pending rename, 3492 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3493 * that it happens after that other inode is renamed. 3494 */ 3495 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3496 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3497 ret = 0; 3498 goto out; 3499 } 3500 3501 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3502 &left_gen, NULL, NULL, NULL, NULL); 3503 if (ret < 0) 3504 goto out; 3505 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3506 &right_gen, NULL, NULL, NULL, NULL); 3507 if (ret < 0) { 3508 if (ret == -ENOENT) 3509 ret = 0; 3510 goto out; 3511 } 3512 3513 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3514 if (right_gen != left_gen) { 3515 ret = 0; 3516 goto out; 3517 } 3518 3519 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3520 if (wdm && !wdm->orphanized) { 3521 ret = add_pending_dir_move(sctx, 3522 sctx->cur_ino, 3523 sctx->cur_inode_gen, 3524 di_key.objectid, 3525 &sctx->new_refs, 3526 &sctx->deleted_refs, 3527 is_orphan); 3528 if (!ret) 3529 ret = 1; 3530 } 3531 out: 3532 btrfs_free_path(path); 3533 return ret; 3534 } 3535 3536 /* 3537 * Check if inode ino2, or any of its ancestors, is inode ino1. 3538 * Return 1 if true, 0 if false and < 0 on error. 3539 */ 3540 static int check_ino_in_path(struct btrfs_root *root, 3541 const u64 ino1, 3542 const u64 ino1_gen, 3543 const u64 ino2, 3544 const u64 ino2_gen, 3545 struct fs_path *fs_path) 3546 { 3547 u64 ino = ino2; 3548 3549 if (ino1 == ino2) 3550 return ino1_gen == ino2_gen; 3551 3552 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3553 u64 parent; 3554 u64 parent_gen; 3555 int ret; 3556 3557 fs_path_reset(fs_path); 3558 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3559 if (ret < 0) 3560 return ret; 3561 if (parent == ino1) 3562 return parent_gen == ino1_gen; 3563 ino = parent; 3564 } 3565 return 0; 3566 } 3567 3568 /* 3569 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any 3570 * possible path (in case ino2 is not a directory and has multiple hard links). 3571 * Return 1 if true, 0 if false and < 0 on error. 3572 */ 3573 static int is_ancestor(struct btrfs_root *root, 3574 const u64 ino1, 3575 const u64 ino1_gen, 3576 const u64 ino2, 3577 struct fs_path *fs_path) 3578 { 3579 bool free_fs_path = false; 3580 int ret = 0; 3581 struct btrfs_path *path = NULL; 3582 struct btrfs_key key; 3583 3584 if (!fs_path) { 3585 fs_path = fs_path_alloc(); 3586 if (!fs_path) 3587 return -ENOMEM; 3588 free_fs_path = true; 3589 } 3590 3591 path = alloc_path_for_send(); 3592 if (!path) { 3593 ret = -ENOMEM; 3594 goto out; 3595 } 3596 3597 key.objectid = ino2; 3598 key.type = BTRFS_INODE_REF_KEY; 3599 key.offset = 0; 3600 3601 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3602 if (ret < 0) 3603 goto out; 3604 3605 while (true) { 3606 struct extent_buffer *leaf = path->nodes[0]; 3607 int slot = path->slots[0]; 3608 u32 cur_offset = 0; 3609 u32 item_size; 3610 3611 if (slot >= btrfs_header_nritems(leaf)) { 3612 ret = btrfs_next_leaf(root, path); 3613 if (ret < 0) 3614 goto out; 3615 if (ret > 0) 3616 break; 3617 continue; 3618 } 3619 3620 btrfs_item_key_to_cpu(leaf, &key, slot); 3621 if (key.objectid != ino2) 3622 break; 3623 if (key.type != BTRFS_INODE_REF_KEY && 3624 key.type != BTRFS_INODE_EXTREF_KEY) 3625 break; 3626 3627 item_size = btrfs_item_size_nr(leaf, slot); 3628 while (cur_offset < item_size) { 3629 u64 parent; 3630 u64 parent_gen; 3631 3632 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3633 unsigned long ptr; 3634 struct btrfs_inode_extref *extref; 3635 3636 ptr = btrfs_item_ptr_offset(leaf, slot); 3637 extref = (struct btrfs_inode_extref *) 3638 (ptr + cur_offset); 3639 parent = btrfs_inode_extref_parent(leaf, 3640 extref); 3641 cur_offset += sizeof(*extref); 3642 cur_offset += btrfs_inode_extref_name_len(leaf, 3643 extref); 3644 } else { 3645 parent = key.offset; 3646 cur_offset = item_size; 3647 } 3648 3649 ret = get_inode_info(root, parent, NULL, &parent_gen, 3650 NULL, NULL, NULL, NULL); 3651 if (ret < 0) 3652 goto out; 3653 ret = check_ino_in_path(root, ino1, ino1_gen, 3654 parent, parent_gen, fs_path); 3655 if (ret) 3656 goto out; 3657 } 3658 path->slots[0]++; 3659 } 3660 ret = 0; 3661 out: 3662 btrfs_free_path(path); 3663 if (free_fs_path) 3664 fs_path_free(fs_path); 3665 return ret; 3666 } 3667 3668 static int wait_for_parent_move(struct send_ctx *sctx, 3669 struct recorded_ref *parent_ref, 3670 const bool is_orphan) 3671 { 3672 int ret = 0; 3673 u64 ino = parent_ref->dir; 3674 u64 ino_gen = parent_ref->dir_gen; 3675 u64 parent_ino_before, parent_ino_after; 3676 struct fs_path *path_before = NULL; 3677 struct fs_path *path_after = NULL; 3678 int len1, len2; 3679 3680 path_after = fs_path_alloc(); 3681 path_before = fs_path_alloc(); 3682 if (!path_after || !path_before) { 3683 ret = -ENOMEM; 3684 goto out; 3685 } 3686 3687 /* 3688 * Our current directory inode may not yet be renamed/moved because some 3689 * ancestor (immediate or not) has to be renamed/moved first. So find if 3690 * such ancestor exists and make sure our own rename/move happens after 3691 * that ancestor is processed to avoid path build infinite loops (done 3692 * at get_cur_path()). 3693 */ 3694 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3695 u64 parent_ino_after_gen; 3696 3697 if (is_waiting_for_move(sctx, ino)) { 3698 /* 3699 * If the current inode is an ancestor of ino in the 3700 * parent root, we need to delay the rename of the 3701 * current inode, otherwise don't delayed the rename 3702 * because we can end up with a circular dependency 3703 * of renames, resulting in some directories never 3704 * getting the respective rename operations issued in 3705 * the send stream or getting into infinite path build 3706 * loops. 3707 */ 3708 ret = is_ancestor(sctx->parent_root, 3709 sctx->cur_ino, sctx->cur_inode_gen, 3710 ino, path_before); 3711 if (ret) 3712 break; 3713 } 3714 3715 fs_path_reset(path_before); 3716 fs_path_reset(path_after); 3717 3718 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3719 &parent_ino_after_gen, path_after); 3720 if (ret < 0) 3721 goto out; 3722 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3723 NULL, path_before); 3724 if (ret < 0 && ret != -ENOENT) { 3725 goto out; 3726 } else if (ret == -ENOENT) { 3727 ret = 0; 3728 break; 3729 } 3730 3731 len1 = fs_path_len(path_before); 3732 len2 = fs_path_len(path_after); 3733 if (ino > sctx->cur_ino && 3734 (parent_ino_before != parent_ino_after || len1 != len2 || 3735 memcmp(path_before->start, path_after->start, len1))) { 3736 u64 parent_ino_gen; 3737 3738 ret = get_inode_info(sctx->parent_root, ino, NULL, 3739 &parent_ino_gen, NULL, NULL, NULL, 3740 NULL); 3741 if (ret < 0) 3742 goto out; 3743 if (ino_gen == parent_ino_gen) { 3744 ret = 1; 3745 break; 3746 } 3747 } 3748 ino = parent_ino_after; 3749 ino_gen = parent_ino_after_gen; 3750 } 3751 3752 out: 3753 fs_path_free(path_before); 3754 fs_path_free(path_after); 3755 3756 if (ret == 1) { 3757 ret = add_pending_dir_move(sctx, 3758 sctx->cur_ino, 3759 sctx->cur_inode_gen, 3760 ino, 3761 &sctx->new_refs, 3762 &sctx->deleted_refs, 3763 is_orphan); 3764 if (!ret) 3765 ret = 1; 3766 } 3767 3768 return ret; 3769 } 3770 3771 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3772 { 3773 int ret; 3774 struct fs_path *new_path; 3775 3776 /* 3777 * Our reference's name member points to its full_path member string, so 3778 * we use here a new path. 3779 */ 3780 new_path = fs_path_alloc(); 3781 if (!new_path) 3782 return -ENOMEM; 3783 3784 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 3785 if (ret < 0) { 3786 fs_path_free(new_path); 3787 return ret; 3788 } 3789 ret = fs_path_add(new_path, ref->name, ref->name_len); 3790 if (ret < 0) { 3791 fs_path_free(new_path); 3792 return ret; 3793 } 3794 3795 fs_path_free(ref->full_path); 3796 set_ref_path(ref, new_path); 3797 3798 return 0; 3799 } 3800 3801 /* 3802 * When processing the new references for an inode we may orphanize an existing 3803 * directory inode because its old name conflicts with one of the new references 3804 * of the current inode. Later, when processing another new reference of our 3805 * inode, we might need to orphanize another inode, but the path we have in the 3806 * reference reflects the pre-orphanization name of the directory we previously 3807 * orphanized. For example: 3808 * 3809 * parent snapshot looks like: 3810 * 3811 * . (ino 256) 3812 * |----- f1 (ino 257) 3813 * |----- f2 (ino 258) 3814 * |----- d1/ (ino 259) 3815 * |----- d2/ (ino 260) 3816 * 3817 * send snapshot looks like: 3818 * 3819 * . (ino 256) 3820 * |----- d1 (ino 258) 3821 * |----- f2/ (ino 259) 3822 * |----- f2_link/ (ino 260) 3823 * | |----- f1 (ino 257) 3824 * | 3825 * |----- d2 (ino 258) 3826 * 3827 * When processing inode 257 we compute the name for inode 259 as "d1", and we 3828 * cache it in the name cache. Later when we start processing inode 258, when 3829 * collecting all its new references we set a full path of "d1/d2" for its new 3830 * reference with name "d2". When we start processing the new references we 3831 * start by processing the new reference with name "d1", and this results in 3832 * orphanizing inode 259, since its old reference causes a conflict. Then we 3833 * move on the next new reference, with name "d2", and we find out we must 3834 * orphanize inode 260, as its old reference conflicts with ours - but for the 3835 * orphanization we use a source path corresponding to the path we stored in the 3836 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 3837 * receiver fail since the path component "d1/" no longer exists, it was renamed 3838 * to "o259-6-0/" when processing the previous new reference. So in this case we 3839 * must recompute the path in the new reference and use it for the new 3840 * orphanization operation. 3841 */ 3842 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3843 { 3844 char *name; 3845 int ret; 3846 3847 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 3848 if (!name) 3849 return -ENOMEM; 3850 3851 fs_path_reset(ref->full_path); 3852 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 3853 if (ret < 0) 3854 goto out; 3855 3856 ret = fs_path_add(ref->full_path, name, ref->name_len); 3857 if (ret < 0) 3858 goto out; 3859 3860 /* Update the reference's base name pointer. */ 3861 set_ref_path(ref, ref->full_path); 3862 out: 3863 kfree(name); 3864 return ret; 3865 } 3866 3867 /* 3868 * This does all the move/link/unlink/rmdir magic. 3869 */ 3870 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3871 { 3872 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 3873 int ret = 0; 3874 struct recorded_ref *cur; 3875 struct recorded_ref *cur2; 3876 struct list_head check_dirs; 3877 struct fs_path *valid_path = NULL; 3878 u64 ow_inode = 0; 3879 u64 ow_gen; 3880 u64 ow_mode; 3881 int did_overwrite = 0; 3882 int is_orphan = 0; 3883 u64 last_dir_ino_rm = 0; 3884 bool can_rename = true; 3885 bool orphanized_dir = false; 3886 bool orphanized_ancestor = false; 3887 3888 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 3889 3890 /* 3891 * This should never happen as the root dir always has the same ref 3892 * which is always '..' 3893 */ 3894 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3895 INIT_LIST_HEAD(&check_dirs); 3896 3897 valid_path = fs_path_alloc(); 3898 if (!valid_path) { 3899 ret = -ENOMEM; 3900 goto out; 3901 } 3902 3903 /* 3904 * First, check if the first ref of the current inode was overwritten 3905 * before. If yes, we know that the current inode was already orphanized 3906 * and thus use the orphan name. If not, we can use get_cur_path to 3907 * get the path of the first ref as it would like while receiving at 3908 * this point in time. 3909 * New inodes are always orphan at the beginning, so force to use the 3910 * orphan name in this case. 3911 * The first ref is stored in valid_path and will be updated if it 3912 * gets moved around. 3913 */ 3914 if (!sctx->cur_inode_new) { 3915 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3916 sctx->cur_inode_gen); 3917 if (ret < 0) 3918 goto out; 3919 if (ret) 3920 did_overwrite = 1; 3921 } 3922 if (sctx->cur_inode_new || did_overwrite) { 3923 ret = gen_unique_name(sctx, sctx->cur_ino, 3924 sctx->cur_inode_gen, valid_path); 3925 if (ret < 0) 3926 goto out; 3927 is_orphan = 1; 3928 } else { 3929 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3930 valid_path); 3931 if (ret < 0) 3932 goto out; 3933 } 3934 3935 /* 3936 * Before doing any rename and link operations, do a first pass on the 3937 * new references to orphanize any unprocessed inodes that may have a 3938 * reference that conflicts with one of the new references of the current 3939 * inode. This needs to happen first because a new reference may conflict 3940 * with the old reference of a parent directory, so we must make sure 3941 * that the path used for link and rename commands don't use an 3942 * orphanized name when an ancestor was not yet orphanized. 3943 * 3944 * Example: 3945 * 3946 * Parent snapshot: 3947 * 3948 * . (ino 256) 3949 * |----- testdir/ (ino 259) 3950 * | |----- a (ino 257) 3951 * | 3952 * |----- b (ino 258) 3953 * 3954 * Send snapshot: 3955 * 3956 * . (ino 256) 3957 * |----- testdir_2/ (ino 259) 3958 * | |----- a (ino 260) 3959 * | 3960 * |----- testdir (ino 257) 3961 * |----- b (ino 257) 3962 * |----- b2 (ino 258) 3963 * 3964 * Processing the new reference for inode 257 with name "b" may happen 3965 * before processing the new reference with name "testdir". If so, we 3966 * must make sure that by the time we send a link command to create the 3967 * hard link "b", inode 259 was already orphanized, since the generated 3968 * path in "valid_path" already contains the orphanized name for 259. 3969 * We are processing inode 257, so only later when processing 259 we do 3970 * the rename operation to change its temporary (orphanized) name to 3971 * "testdir_2". 3972 */ 3973 list_for_each_entry(cur, &sctx->new_refs, list) { 3974 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3975 if (ret < 0) 3976 goto out; 3977 if (ret == inode_state_will_create) 3978 continue; 3979 3980 /* 3981 * Check if this new ref would overwrite the first ref of another 3982 * unprocessed inode. If yes, orphanize the overwritten inode. 3983 * If we find an overwritten ref that is not the first ref, 3984 * simply unlink it. 3985 */ 3986 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3987 cur->name, cur->name_len, 3988 &ow_inode, &ow_gen, &ow_mode); 3989 if (ret < 0) 3990 goto out; 3991 if (ret) { 3992 ret = is_first_ref(sctx->parent_root, 3993 ow_inode, cur->dir, cur->name, 3994 cur->name_len); 3995 if (ret < 0) 3996 goto out; 3997 if (ret) { 3998 struct name_cache_entry *nce; 3999 struct waiting_dir_move *wdm; 4000 4001 if (orphanized_dir) { 4002 ret = refresh_ref_path(sctx, cur); 4003 if (ret < 0) 4004 goto out; 4005 } 4006 4007 ret = orphanize_inode(sctx, ow_inode, ow_gen, 4008 cur->full_path); 4009 if (ret < 0) 4010 goto out; 4011 if (S_ISDIR(ow_mode)) 4012 orphanized_dir = true; 4013 4014 /* 4015 * If ow_inode has its rename operation delayed 4016 * make sure that its orphanized name is used in 4017 * the source path when performing its rename 4018 * operation. 4019 */ 4020 if (is_waiting_for_move(sctx, ow_inode)) { 4021 wdm = get_waiting_dir_move(sctx, 4022 ow_inode); 4023 ASSERT(wdm); 4024 wdm->orphanized = true; 4025 } 4026 4027 /* 4028 * Make sure we clear our orphanized inode's 4029 * name from the name cache. This is because the 4030 * inode ow_inode might be an ancestor of some 4031 * other inode that will be orphanized as well 4032 * later and has an inode number greater than 4033 * sctx->send_progress. We need to prevent 4034 * future name lookups from using the old name 4035 * and get instead the orphan name. 4036 */ 4037 nce = name_cache_search(sctx, ow_inode, ow_gen); 4038 if (nce) { 4039 name_cache_delete(sctx, nce); 4040 kfree(nce); 4041 } 4042 4043 /* 4044 * ow_inode might currently be an ancestor of 4045 * cur_ino, therefore compute valid_path (the 4046 * current path of cur_ino) again because it 4047 * might contain the pre-orphanization name of 4048 * ow_inode, which is no longer valid. 4049 */ 4050 ret = is_ancestor(sctx->parent_root, 4051 ow_inode, ow_gen, 4052 sctx->cur_ino, NULL); 4053 if (ret > 0) { 4054 orphanized_ancestor = true; 4055 fs_path_reset(valid_path); 4056 ret = get_cur_path(sctx, sctx->cur_ino, 4057 sctx->cur_inode_gen, 4058 valid_path); 4059 } 4060 if (ret < 0) 4061 goto out; 4062 } else { 4063 /* 4064 * If we previously orphanized a directory that 4065 * collided with a new reference that we already 4066 * processed, recompute the current path because 4067 * that directory may be part of the path. 4068 */ 4069 if (orphanized_dir) { 4070 ret = refresh_ref_path(sctx, cur); 4071 if (ret < 0) 4072 goto out; 4073 } 4074 ret = send_unlink(sctx, cur->full_path); 4075 if (ret < 0) 4076 goto out; 4077 } 4078 } 4079 4080 } 4081 4082 list_for_each_entry(cur, &sctx->new_refs, list) { 4083 /* 4084 * We may have refs where the parent directory does not exist 4085 * yet. This happens if the parent directories inum is higher 4086 * than the current inum. To handle this case, we create the 4087 * parent directory out of order. But we need to check if this 4088 * did already happen before due to other refs in the same dir. 4089 */ 4090 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4091 if (ret < 0) 4092 goto out; 4093 if (ret == inode_state_will_create) { 4094 ret = 0; 4095 /* 4096 * First check if any of the current inodes refs did 4097 * already create the dir. 4098 */ 4099 list_for_each_entry(cur2, &sctx->new_refs, list) { 4100 if (cur == cur2) 4101 break; 4102 if (cur2->dir == cur->dir) { 4103 ret = 1; 4104 break; 4105 } 4106 } 4107 4108 /* 4109 * If that did not happen, check if a previous inode 4110 * did already create the dir. 4111 */ 4112 if (!ret) 4113 ret = did_create_dir(sctx, cur->dir); 4114 if (ret < 0) 4115 goto out; 4116 if (!ret) { 4117 ret = send_create_inode(sctx, cur->dir); 4118 if (ret < 0) 4119 goto out; 4120 } 4121 } 4122 4123 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4124 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4125 if (ret < 0) 4126 goto out; 4127 if (ret == 1) { 4128 can_rename = false; 4129 *pending_move = 1; 4130 } 4131 } 4132 4133 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4134 can_rename) { 4135 ret = wait_for_parent_move(sctx, cur, is_orphan); 4136 if (ret < 0) 4137 goto out; 4138 if (ret == 1) { 4139 can_rename = false; 4140 *pending_move = 1; 4141 } 4142 } 4143 4144 /* 4145 * link/move the ref to the new place. If we have an orphan 4146 * inode, move it and update valid_path. If not, link or move 4147 * it depending on the inode mode. 4148 */ 4149 if (is_orphan && can_rename) { 4150 ret = send_rename(sctx, valid_path, cur->full_path); 4151 if (ret < 0) 4152 goto out; 4153 is_orphan = 0; 4154 ret = fs_path_copy(valid_path, cur->full_path); 4155 if (ret < 0) 4156 goto out; 4157 } else if (can_rename) { 4158 if (S_ISDIR(sctx->cur_inode_mode)) { 4159 /* 4160 * Dirs can't be linked, so move it. For moved 4161 * dirs, we always have one new and one deleted 4162 * ref. The deleted ref is ignored later. 4163 */ 4164 ret = send_rename(sctx, valid_path, 4165 cur->full_path); 4166 if (!ret) 4167 ret = fs_path_copy(valid_path, 4168 cur->full_path); 4169 if (ret < 0) 4170 goto out; 4171 } else { 4172 /* 4173 * We might have previously orphanized an inode 4174 * which is an ancestor of our current inode, 4175 * so our reference's full path, which was 4176 * computed before any such orphanizations, must 4177 * be updated. 4178 */ 4179 if (orphanized_dir) { 4180 ret = update_ref_path(sctx, cur); 4181 if (ret < 0) 4182 goto out; 4183 } 4184 ret = send_link(sctx, cur->full_path, 4185 valid_path); 4186 if (ret < 0) 4187 goto out; 4188 } 4189 } 4190 ret = dup_ref(cur, &check_dirs); 4191 if (ret < 0) 4192 goto out; 4193 } 4194 4195 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4196 /* 4197 * Check if we can already rmdir the directory. If not, 4198 * orphanize it. For every dir item inside that gets deleted 4199 * later, we do this check again and rmdir it then if possible. 4200 * See the use of check_dirs for more details. 4201 */ 4202 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4203 sctx->cur_ino); 4204 if (ret < 0) 4205 goto out; 4206 if (ret) { 4207 ret = send_rmdir(sctx, valid_path); 4208 if (ret < 0) 4209 goto out; 4210 } else if (!is_orphan) { 4211 ret = orphanize_inode(sctx, sctx->cur_ino, 4212 sctx->cur_inode_gen, valid_path); 4213 if (ret < 0) 4214 goto out; 4215 is_orphan = 1; 4216 } 4217 4218 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4219 ret = dup_ref(cur, &check_dirs); 4220 if (ret < 0) 4221 goto out; 4222 } 4223 } else if (S_ISDIR(sctx->cur_inode_mode) && 4224 !list_empty(&sctx->deleted_refs)) { 4225 /* 4226 * We have a moved dir. Add the old parent to check_dirs 4227 */ 4228 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4229 list); 4230 ret = dup_ref(cur, &check_dirs); 4231 if (ret < 0) 4232 goto out; 4233 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4234 /* 4235 * We have a non dir inode. Go through all deleted refs and 4236 * unlink them if they were not already overwritten by other 4237 * inodes. 4238 */ 4239 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4240 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4241 sctx->cur_ino, sctx->cur_inode_gen, 4242 cur->name, cur->name_len); 4243 if (ret < 0) 4244 goto out; 4245 if (!ret) { 4246 /* 4247 * If we orphanized any ancestor before, we need 4248 * to recompute the full path for deleted names, 4249 * since any such path was computed before we 4250 * processed any references and orphanized any 4251 * ancestor inode. 4252 */ 4253 if (orphanized_ancestor) { 4254 ret = update_ref_path(sctx, cur); 4255 if (ret < 0) 4256 goto out; 4257 } 4258 ret = send_unlink(sctx, cur->full_path); 4259 if (ret < 0) 4260 goto out; 4261 } 4262 ret = dup_ref(cur, &check_dirs); 4263 if (ret < 0) 4264 goto out; 4265 } 4266 /* 4267 * If the inode is still orphan, unlink the orphan. This may 4268 * happen when a previous inode did overwrite the first ref 4269 * of this inode and no new refs were added for the current 4270 * inode. Unlinking does not mean that the inode is deleted in 4271 * all cases. There may still be links to this inode in other 4272 * places. 4273 */ 4274 if (is_orphan) { 4275 ret = send_unlink(sctx, valid_path); 4276 if (ret < 0) 4277 goto out; 4278 } 4279 } 4280 4281 /* 4282 * We did collect all parent dirs where cur_inode was once located. We 4283 * now go through all these dirs and check if they are pending for 4284 * deletion and if it's finally possible to perform the rmdir now. 4285 * We also update the inode stats of the parent dirs here. 4286 */ 4287 list_for_each_entry(cur, &check_dirs, list) { 4288 /* 4289 * In case we had refs into dirs that were not processed yet, 4290 * we don't need to do the utime and rmdir logic for these dirs. 4291 * The dir will be processed later. 4292 */ 4293 if (cur->dir > sctx->cur_ino) 4294 continue; 4295 4296 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4297 if (ret < 0) 4298 goto out; 4299 4300 if (ret == inode_state_did_create || 4301 ret == inode_state_no_change) { 4302 /* TODO delayed utimes */ 4303 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 4304 if (ret < 0) 4305 goto out; 4306 } else if (ret == inode_state_did_delete && 4307 cur->dir != last_dir_ino_rm) { 4308 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 4309 sctx->cur_ino); 4310 if (ret < 0) 4311 goto out; 4312 if (ret) { 4313 ret = get_cur_path(sctx, cur->dir, 4314 cur->dir_gen, valid_path); 4315 if (ret < 0) 4316 goto out; 4317 ret = send_rmdir(sctx, valid_path); 4318 if (ret < 0) 4319 goto out; 4320 last_dir_ino_rm = cur->dir; 4321 } 4322 } 4323 } 4324 4325 ret = 0; 4326 4327 out: 4328 __free_recorded_refs(&check_dirs); 4329 free_recorded_refs(sctx); 4330 fs_path_free(valid_path); 4331 return ret; 4332 } 4333 4334 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name, 4335 void *ctx, struct list_head *refs) 4336 { 4337 int ret = 0; 4338 struct send_ctx *sctx = ctx; 4339 struct fs_path *p; 4340 u64 gen; 4341 4342 p = fs_path_alloc(); 4343 if (!p) 4344 return -ENOMEM; 4345 4346 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 4347 NULL, NULL); 4348 if (ret < 0) 4349 goto out; 4350 4351 ret = get_cur_path(sctx, dir, gen, p); 4352 if (ret < 0) 4353 goto out; 4354 ret = fs_path_add_path(p, name); 4355 if (ret < 0) 4356 goto out; 4357 4358 ret = __record_ref(refs, dir, gen, p); 4359 4360 out: 4361 if (ret) 4362 fs_path_free(p); 4363 return ret; 4364 } 4365 4366 static int __record_new_ref(int num, u64 dir, int index, 4367 struct fs_path *name, 4368 void *ctx) 4369 { 4370 struct send_ctx *sctx = ctx; 4371 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs); 4372 } 4373 4374 4375 static int __record_deleted_ref(int num, u64 dir, int index, 4376 struct fs_path *name, 4377 void *ctx) 4378 { 4379 struct send_ctx *sctx = ctx; 4380 return record_ref(sctx->parent_root, dir, name, ctx, 4381 &sctx->deleted_refs); 4382 } 4383 4384 static int record_new_ref(struct send_ctx *sctx) 4385 { 4386 int ret; 4387 4388 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4389 sctx->cmp_key, 0, __record_new_ref, sctx); 4390 if (ret < 0) 4391 goto out; 4392 ret = 0; 4393 4394 out: 4395 return ret; 4396 } 4397 4398 static int record_deleted_ref(struct send_ctx *sctx) 4399 { 4400 int ret; 4401 4402 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4403 sctx->cmp_key, 0, __record_deleted_ref, sctx); 4404 if (ret < 0) 4405 goto out; 4406 ret = 0; 4407 4408 out: 4409 return ret; 4410 } 4411 4412 struct find_ref_ctx { 4413 u64 dir; 4414 u64 dir_gen; 4415 struct btrfs_root *root; 4416 struct fs_path *name; 4417 int found_idx; 4418 }; 4419 4420 static int __find_iref(int num, u64 dir, int index, 4421 struct fs_path *name, 4422 void *ctx_) 4423 { 4424 struct find_ref_ctx *ctx = ctx_; 4425 u64 dir_gen; 4426 int ret; 4427 4428 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 4429 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 4430 /* 4431 * To avoid doing extra lookups we'll only do this if everything 4432 * else matches. 4433 */ 4434 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 4435 NULL, NULL, NULL); 4436 if (ret) 4437 return ret; 4438 if (dir_gen != ctx->dir_gen) 4439 return 0; 4440 ctx->found_idx = num; 4441 return 1; 4442 } 4443 return 0; 4444 } 4445 4446 static int find_iref(struct btrfs_root *root, 4447 struct btrfs_path *path, 4448 struct btrfs_key *key, 4449 u64 dir, u64 dir_gen, struct fs_path *name) 4450 { 4451 int ret; 4452 struct find_ref_ctx ctx; 4453 4454 ctx.dir = dir; 4455 ctx.name = name; 4456 ctx.dir_gen = dir_gen; 4457 ctx.found_idx = -1; 4458 ctx.root = root; 4459 4460 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 4461 if (ret < 0) 4462 return ret; 4463 4464 if (ctx.found_idx == -1) 4465 return -ENOENT; 4466 4467 return ctx.found_idx; 4468 } 4469 4470 static int __record_changed_new_ref(int num, u64 dir, int index, 4471 struct fs_path *name, 4472 void *ctx) 4473 { 4474 u64 dir_gen; 4475 int ret; 4476 struct send_ctx *sctx = ctx; 4477 4478 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 4479 NULL, NULL, NULL); 4480 if (ret) 4481 return ret; 4482 4483 ret = find_iref(sctx->parent_root, sctx->right_path, 4484 sctx->cmp_key, dir, dir_gen, name); 4485 if (ret == -ENOENT) 4486 ret = __record_new_ref(num, dir, index, name, sctx); 4487 else if (ret > 0) 4488 ret = 0; 4489 4490 return ret; 4491 } 4492 4493 static int __record_changed_deleted_ref(int num, u64 dir, int index, 4494 struct fs_path *name, 4495 void *ctx) 4496 { 4497 u64 dir_gen; 4498 int ret; 4499 struct send_ctx *sctx = ctx; 4500 4501 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 4502 NULL, NULL, NULL); 4503 if (ret) 4504 return ret; 4505 4506 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4507 dir, dir_gen, name); 4508 if (ret == -ENOENT) 4509 ret = __record_deleted_ref(num, dir, index, name, sctx); 4510 else if (ret > 0) 4511 ret = 0; 4512 4513 return ret; 4514 } 4515 4516 static int record_changed_ref(struct send_ctx *sctx) 4517 { 4518 int ret = 0; 4519 4520 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4521 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 4522 if (ret < 0) 4523 goto out; 4524 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4525 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 4526 if (ret < 0) 4527 goto out; 4528 ret = 0; 4529 4530 out: 4531 return ret; 4532 } 4533 4534 /* 4535 * Record and process all refs at once. Needed when an inode changes the 4536 * generation number, which means that it was deleted and recreated. 4537 */ 4538 static int process_all_refs(struct send_ctx *sctx, 4539 enum btrfs_compare_tree_result cmd) 4540 { 4541 int ret; 4542 struct btrfs_root *root; 4543 struct btrfs_path *path; 4544 struct btrfs_key key; 4545 struct btrfs_key found_key; 4546 struct extent_buffer *eb; 4547 int slot; 4548 iterate_inode_ref_t cb; 4549 int pending_move = 0; 4550 4551 path = alloc_path_for_send(); 4552 if (!path) 4553 return -ENOMEM; 4554 4555 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4556 root = sctx->send_root; 4557 cb = __record_new_ref; 4558 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4559 root = sctx->parent_root; 4560 cb = __record_deleted_ref; 4561 } else { 4562 btrfs_err(sctx->send_root->fs_info, 4563 "Wrong command %d in process_all_refs", cmd); 4564 ret = -EINVAL; 4565 goto out; 4566 } 4567 4568 key.objectid = sctx->cmp_key->objectid; 4569 key.type = BTRFS_INODE_REF_KEY; 4570 key.offset = 0; 4571 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4572 if (ret < 0) 4573 goto out; 4574 4575 while (1) { 4576 eb = path->nodes[0]; 4577 slot = path->slots[0]; 4578 if (slot >= btrfs_header_nritems(eb)) { 4579 ret = btrfs_next_leaf(root, path); 4580 if (ret < 0) 4581 goto out; 4582 else if (ret > 0) 4583 break; 4584 continue; 4585 } 4586 4587 btrfs_item_key_to_cpu(eb, &found_key, slot); 4588 4589 if (found_key.objectid != key.objectid || 4590 (found_key.type != BTRFS_INODE_REF_KEY && 4591 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4592 break; 4593 4594 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4595 if (ret < 0) 4596 goto out; 4597 4598 path->slots[0]++; 4599 } 4600 btrfs_release_path(path); 4601 4602 /* 4603 * We don't actually care about pending_move as we are simply 4604 * re-creating this inode and will be rename'ing it into place once we 4605 * rename the parent directory. 4606 */ 4607 ret = process_recorded_refs(sctx, &pending_move); 4608 out: 4609 btrfs_free_path(path); 4610 return ret; 4611 } 4612 4613 static int send_set_xattr(struct send_ctx *sctx, 4614 struct fs_path *path, 4615 const char *name, int name_len, 4616 const char *data, int data_len) 4617 { 4618 int ret = 0; 4619 4620 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4621 if (ret < 0) 4622 goto out; 4623 4624 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4625 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4626 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4627 4628 ret = send_cmd(sctx); 4629 4630 tlv_put_failure: 4631 out: 4632 return ret; 4633 } 4634 4635 static int send_remove_xattr(struct send_ctx *sctx, 4636 struct fs_path *path, 4637 const char *name, int name_len) 4638 { 4639 int ret = 0; 4640 4641 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4642 if (ret < 0) 4643 goto out; 4644 4645 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4646 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4647 4648 ret = send_cmd(sctx); 4649 4650 tlv_put_failure: 4651 out: 4652 return ret; 4653 } 4654 4655 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4656 const char *name, int name_len, 4657 const char *data, int data_len, 4658 u8 type, void *ctx) 4659 { 4660 int ret; 4661 struct send_ctx *sctx = ctx; 4662 struct fs_path *p; 4663 struct posix_acl_xattr_header dummy_acl; 4664 4665 /* Capabilities are emitted by finish_inode_if_needed */ 4666 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4667 return 0; 4668 4669 p = fs_path_alloc(); 4670 if (!p) 4671 return -ENOMEM; 4672 4673 /* 4674 * This hack is needed because empty acls are stored as zero byte 4675 * data in xattrs. Problem with that is, that receiving these zero byte 4676 * acls will fail later. To fix this, we send a dummy acl list that 4677 * only contains the version number and no entries. 4678 */ 4679 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4680 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4681 if (data_len == 0) { 4682 dummy_acl.a_version = 4683 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4684 data = (char *)&dummy_acl; 4685 data_len = sizeof(dummy_acl); 4686 } 4687 } 4688 4689 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4690 if (ret < 0) 4691 goto out; 4692 4693 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4694 4695 out: 4696 fs_path_free(p); 4697 return ret; 4698 } 4699 4700 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4701 const char *name, int name_len, 4702 const char *data, int data_len, 4703 u8 type, void *ctx) 4704 { 4705 int ret; 4706 struct send_ctx *sctx = ctx; 4707 struct fs_path *p; 4708 4709 p = fs_path_alloc(); 4710 if (!p) 4711 return -ENOMEM; 4712 4713 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4714 if (ret < 0) 4715 goto out; 4716 4717 ret = send_remove_xattr(sctx, p, name, name_len); 4718 4719 out: 4720 fs_path_free(p); 4721 return ret; 4722 } 4723 4724 static int process_new_xattr(struct send_ctx *sctx) 4725 { 4726 int ret = 0; 4727 4728 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4729 __process_new_xattr, sctx); 4730 4731 return ret; 4732 } 4733 4734 static int process_deleted_xattr(struct send_ctx *sctx) 4735 { 4736 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4737 __process_deleted_xattr, sctx); 4738 } 4739 4740 struct find_xattr_ctx { 4741 const char *name; 4742 int name_len; 4743 int found_idx; 4744 char *found_data; 4745 int found_data_len; 4746 }; 4747 4748 static int __find_xattr(int num, struct btrfs_key *di_key, 4749 const char *name, int name_len, 4750 const char *data, int data_len, 4751 u8 type, void *vctx) 4752 { 4753 struct find_xattr_ctx *ctx = vctx; 4754 4755 if (name_len == ctx->name_len && 4756 strncmp(name, ctx->name, name_len) == 0) { 4757 ctx->found_idx = num; 4758 ctx->found_data_len = data_len; 4759 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4760 if (!ctx->found_data) 4761 return -ENOMEM; 4762 return 1; 4763 } 4764 return 0; 4765 } 4766 4767 static int find_xattr(struct btrfs_root *root, 4768 struct btrfs_path *path, 4769 struct btrfs_key *key, 4770 const char *name, int name_len, 4771 char **data, int *data_len) 4772 { 4773 int ret; 4774 struct find_xattr_ctx ctx; 4775 4776 ctx.name = name; 4777 ctx.name_len = name_len; 4778 ctx.found_idx = -1; 4779 ctx.found_data = NULL; 4780 ctx.found_data_len = 0; 4781 4782 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 4783 if (ret < 0) 4784 return ret; 4785 4786 if (ctx.found_idx == -1) 4787 return -ENOENT; 4788 if (data) { 4789 *data = ctx.found_data; 4790 *data_len = ctx.found_data_len; 4791 } else { 4792 kfree(ctx.found_data); 4793 } 4794 return ctx.found_idx; 4795 } 4796 4797 4798 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4799 const char *name, int name_len, 4800 const char *data, int data_len, 4801 u8 type, void *ctx) 4802 { 4803 int ret; 4804 struct send_ctx *sctx = ctx; 4805 char *found_data = NULL; 4806 int found_data_len = 0; 4807 4808 ret = find_xattr(sctx->parent_root, sctx->right_path, 4809 sctx->cmp_key, name, name_len, &found_data, 4810 &found_data_len); 4811 if (ret == -ENOENT) { 4812 ret = __process_new_xattr(num, di_key, name, name_len, data, 4813 data_len, type, ctx); 4814 } else if (ret >= 0) { 4815 if (data_len != found_data_len || 4816 memcmp(data, found_data, data_len)) { 4817 ret = __process_new_xattr(num, di_key, name, name_len, 4818 data, data_len, type, ctx); 4819 } else { 4820 ret = 0; 4821 } 4822 } 4823 4824 kfree(found_data); 4825 return ret; 4826 } 4827 4828 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4829 const char *name, int name_len, 4830 const char *data, int data_len, 4831 u8 type, void *ctx) 4832 { 4833 int ret; 4834 struct send_ctx *sctx = ctx; 4835 4836 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4837 name, name_len, NULL, NULL); 4838 if (ret == -ENOENT) 4839 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4840 data_len, type, ctx); 4841 else if (ret >= 0) 4842 ret = 0; 4843 4844 return ret; 4845 } 4846 4847 static int process_changed_xattr(struct send_ctx *sctx) 4848 { 4849 int ret = 0; 4850 4851 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4852 __process_changed_new_xattr, sctx); 4853 if (ret < 0) 4854 goto out; 4855 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4856 __process_changed_deleted_xattr, sctx); 4857 4858 out: 4859 return ret; 4860 } 4861 4862 static int process_all_new_xattrs(struct send_ctx *sctx) 4863 { 4864 int ret; 4865 struct btrfs_root *root; 4866 struct btrfs_path *path; 4867 struct btrfs_key key; 4868 struct btrfs_key found_key; 4869 struct extent_buffer *eb; 4870 int slot; 4871 4872 path = alloc_path_for_send(); 4873 if (!path) 4874 return -ENOMEM; 4875 4876 root = sctx->send_root; 4877 4878 key.objectid = sctx->cmp_key->objectid; 4879 key.type = BTRFS_XATTR_ITEM_KEY; 4880 key.offset = 0; 4881 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4882 if (ret < 0) 4883 goto out; 4884 4885 while (1) { 4886 eb = path->nodes[0]; 4887 slot = path->slots[0]; 4888 if (slot >= btrfs_header_nritems(eb)) { 4889 ret = btrfs_next_leaf(root, path); 4890 if (ret < 0) { 4891 goto out; 4892 } else if (ret > 0) { 4893 ret = 0; 4894 break; 4895 } 4896 continue; 4897 } 4898 4899 btrfs_item_key_to_cpu(eb, &found_key, slot); 4900 if (found_key.objectid != key.objectid || 4901 found_key.type != key.type) { 4902 ret = 0; 4903 goto out; 4904 } 4905 4906 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 4907 if (ret < 0) 4908 goto out; 4909 4910 path->slots[0]++; 4911 } 4912 4913 out: 4914 btrfs_free_path(path); 4915 return ret; 4916 } 4917 4918 static inline u64 max_send_read_size(const struct send_ctx *sctx) 4919 { 4920 return sctx->send_max_size - SZ_16K; 4921 } 4922 4923 static int put_data_header(struct send_ctx *sctx, u32 len) 4924 { 4925 struct btrfs_tlv_header *hdr; 4926 4927 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) 4928 return -EOVERFLOW; 4929 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 4930 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 4931 put_unaligned_le16(len, &hdr->tlv_len); 4932 sctx->send_size += sizeof(*hdr); 4933 return 0; 4934 } 4935 4936 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 4937 { 4938 struct btrfs_root *root = sctx->send_root; 4939 struct btrfs_fs_info *fs_info = root->fs_info; 4940 struct inode *inode; 4941 struct page *page; 4942 pgoff_t index = offset >> PAGE_SHIFT; 4943 pgoff_t last_index; 4944 unsigned pg_offset = offset_in_page(offset); 4945 int ret; 4946 4947 ret = put_data_header(sctx, len); 4948 if (ret) 4949 return ret; 4950 4951 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root); 4952 if (IS_ERR(inode)) 4953 return PTR_ERR(inode); 4954 4955 last_index = (offset + len - 1) >> PAGE_SHIFT; 4956 4957 /* initial readahead */ 4958 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 4959 file_ra_state_init(&sctx->ra, inode->i_mapping); 4960 4961 while (index <= last_index) { 4962 unsigned cur_len = min_t(unsigned, len, 4963 PAGE_SIZE - pg_offset); 4964 4965 page = find_lock_page(inode->i_mapping, index); 4966 if (!page) { 4967 page_cache_sync_readahead(inode->i_mapping, &sctx->ra, 4968 NULL, index, last_index + 1 - index); 4969 4970 page = find_or_create_page(inode->i_mapping, index, 4971 GFP_KERNEL); 4972 if (!page) { 4973 ret = -ENOMEM; 4974 break; 4975 } 4976 } 4977 4978 if (PageReadahead(page)) { 4979 page_cache_async_readahead(inode->i_mapping, &sctx->ra, 4980 NULL, page, index, last_index + 1 - index); 4981 } 4982 4983 if (!PageUptodate(page)) { 4984 btrfs_readpage(NULL, page); 4985 lock_page(page); 4986 if (!PageUptodate(page)) { 4987 unlock_page(page); 4988 put_page(page); 4989 ret = -EIO; 4990 break; 4991 } 4992 } 4993 4994 memcpy_from_page(sctx->send_buf + sctx->send_size, page, 4995 pg_offset, cur_len); 4996 unlock_page(page); 4997 put_page(page); 4998 index++; 4999 pg_offset = 0; 5000 len -= cur_len; 5001 sctx->send_size += cur_len; 5002 } 5003 iput(inode); 5004 return ret; 5005 } 5006 5007 /* 5008 * Read some bytes from the current inode/file and send a write command to 5009 * user space. 5010 */ 5011 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 5012 { 5013 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5014 int ret = 0; 5015 struct fs_path *p; 5016 5017 p = fs_path_alloc(); 5018 if (!p) 5019 return -ENOMEM; 5020 5021 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 5022 5023 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5024 if (ret < 0) 5025 goto out; 5026 5027 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5028 if (ret < 0) 5029 goto out; 5030 5031 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5032 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5033 ret = put_file_data(sctx, offset, len); 5034 if (ret < 0) 5035 goto out; 5036 5037 ret = send_cmd(sctx); 5038 5039 tlv_put_failure: 5040 out: 5041 fs_path_free(p); 5042 return ret; 5043 } 5044 5045 /* 5046 * Send a clone command to user space. 5047 */ 5048 static int send_clone(struct send_ctx *sctx, 5049 u64 offset, u32 len, 5050 struct clone_root *clone_root) 5051 { 5052 int ret = 0; 5053 struct fs_path *p; 5054 u64 gen; 5055 5056 btrfs_debug(sctx->send_root->fs_info, 5057 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 5058 offset, len, clone_root->root->root_key.objectid, 5059 clone_root->ino, clone_root->offset); 5060 5061 p = fs_path_alloc(); 5062 if (!p) 5063 return -ENOMEM; 5064 5065 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5066 if (ret < 0) 5067 goto out; 5068 5069 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5070 if (ret < 0) 5071 goto out; 5072 5073 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5074 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5075 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5076 5077 if (clone_root->root == sctx->send_root) { 5078 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 5079 &gen, NULL, NULL, NULL, NULL); 5080 if (ret < 0) 5081 goto out; 5082 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5083 } else { 5084 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5085 } 5086 if (ret < 0) 5087 goto out; 5088 5089 /* 5090 * If the parent we're using has a received_uuid set then use that as 5091 * our clone source as that is what we will look for when doing a 5092 * receive. 5093 * 5094 * This covers the case that we create a snapshot off of a received 5095 * subvolume and then use that as the parent and try to receive on a 5096 * different host. 5097 */ 5098 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5099 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5100 clone_root->root->root_item.received_uuid); 5101 else 5102 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5103 clone_root->root->root_item.uuid); 5104 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5105 btrfs_root_ctransid(&clone_root->root->root_item)); 5106 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5107 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5108 clone_root->offset); 5109 5110 ret = send_cmd(sctx); 5111 5112 tlv_put_failure: 5113 out: 5114 fs_path_free(p); 5115 return ret; 5116 } 5117 5118 /* 5119 * Send an update extent command to user space. 5120 */ 5121 static int send_update_extent(struct send_ctx *sctx, 5122 u64 offset, u32 len) 5123 { 5124 int ret = 0; 5125 struct fs_path *p; 5126 5127 p = fs_path_alloc(); 5128 if (!p) 5129 return -ENOMEM; 5130 5131 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5132 if (ret < 0) 5133 goto out; 5134 5135 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5136 if (ret < 0) 5137 goto out; 5138 5139 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5140 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5141 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5142 5143 ret = send_cmd(sctx); 5144 5145 tlv_put_failure: 5146 out: 5147 fs_path_free(p); 5148 return ret; 5149 } 5150 5151 static int send_hole(struct send_ctx *sctx, u64 end) 5152 { 5153 struct fs_path *p = NULL; 5154 u64 read_size = max_send_read_size(sctx); 5155 u64 offset = sctx->cur_inode_last_extent; 5156 int ret = 0; 5157 5158 /* 5159 * A hole that starts at EOF or beyond it. Since we do not yet support 5160 * fallocate (for extent preallocation and hole punching), sending a 5161 * write of zeroes starting at EOF or beyond would later require issuing 5162 * a truncate operation which would undo the write and achieve nothing. 5163 */ 5164 if (offset >= sctx->cur_inode_size) 5165 return 0; 5166 5167 /* 5168 * Don't go beyond the inode's i_size due to prealloc extents that start 5169 * after the i_size. 5170 */ 5171 end = min_t(u64, end, sctx->cur_inode_size); 5172 5173 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5174 return send_update_extent(sctx, offset, end - offset); 5175 5176 p = fs_path_alloc(); 5177 if (!p) 5178 return -ENOMEM; 5179 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5180 if (ret < 0) 5181 goto tlv_put_failure; 5182 while (offset < end) { 5183 u64 len = min(end - offset, read_size); 5184 5185 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5186 if (ret < 0) 5187 break; 5188 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5189 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5190 ret = put_data_header(sctx, len); 5191 if (ret < 0) 5192 break; 5193 memset(sctx->send_buf + sctx->send_size, 0, len); 5194 sctx->send_size += len; 5195 ret = send_cmd(sctx); 5196 if (ret < 0) 5197 break; 5198 offset += len; 5199 } 5200 sctx->cur_inode_next_write_offset = offset; 5201 tlv_put_failure: 5202 fs_path_free(p); 5203 return ret; 5204 } 5205 5206 static int send_extent_data(struct send_ctx *sctx, 5207 const u64 offset, 5208 const u64 len) 5209 { 5210 u64 read_size = max_send_read_size(sctx); 5211 u64 sent = 0; 5212 5213 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5214 return send_update_extent(sctx, offset, len); 5215 5216 while (sent < len) { 5217 u64 size = min(len - sent, read_size); 5218 int ret; 5219 5220 ret = send_write(sctx, offset + sent, size); 5221 if (ret < 0) 5222 return ret; 5223 sent += size; 5224 } 5225 return 0; 5226 } 5227 5228 /* 5229 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5230 * found, call send_set_xattr function to emit it. 5231 * 5232 * Return 0 if there isn't a capability, or when the capability was emitted 5233 * successfully, or < 0 if an error occurred. 5234 */ 5235 static int send_capabilities(struct send_ctx *sctx) 5236 { 5237 struct fs_path *fspath = NULL; 5238 struct btrfs_path *path; 5239 struct btrfs_dir_item *di; 5240 struct extent_buffer *leaf; 5241 unsigned long data_ptr; 5242 char *buf = NULL; 5243 int buf_len; 5244 int ret = 0; 5245 5246 path = alloc_path_for_send(); 5247 if (!path) 5248 return -ENOMEM; 5249 5250 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5251 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5252 if (!di) { 5253 /* There is no xattr for this inode */ 5254 goto out; 5255 } else if (IS_ERR(di)) { 5256 ret = PTR_ERR(di); 5257 goto out; 5258 } 5259 5260 leaf = path->nodes[0]; 5261 buf_len = btrfs_dir_data_len(leaf, di); 5262 5263 fspath = fs_path_alloc(); 5264 buf = kmalloc(buf_len, GFP_KERNEL); 5265 if (!fspath || !buf) { 5266 ret = -ENOMEM; 5267 goto out; 5268 } 5269 5270 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5271 if (ret < 0) 5272 goto out; 5273 5274 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5275 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5276 5277 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS, 5278 strlen(XATTR_NAME_CAPS), buf, buf_len); 5279 out: 5280 kfree(buf); 5281 fs_path_free(fspath); 5282 btrfs_free_path(path); 5283 return ret; 5284 } 5285 5286 static int clone_range(struct send_ctx *sctx, 5287 struct clone_root *clone_root, 5288 const u64 disk_byte, 5289 u64 data_offset, 5290 u64 offset, 5291 u64 len) 5292 { 5293 struct btrfs_path *path; 5294 struct btrfs_key key; 5295 int ret; 5296 u64 clone_src_i_size = 0; 5297 5298 /* 5299 * Prevent cloning from a zero offset with a length matching the sector 5300 * size because in some scenarios this will make the receiver fail. 5301 * 5302 * For example, if in the source filesystem the extent at offset 0 5303 * has a length of sectorsize and it was written using direct IO, then 5304 * it can never be an inline extent (even if compression is enabled). 5305 * Then this extent can be cloned in the original filesystem to a non 5306 * zero file offset, but it may not be possible to clone in the 5307 * destination filesystem because it can be inlined due to compression 5308 * on the destination filesystem (as the receiver's write operations are 5309 * always done using buffered IO). The same happens when the original 5310 * filesystem does not have compression enabled but the destination 5311 * filesystem has. 5312 */ 5313 if (clone_root->offset == 0 && 5314 len == sctx->send_root->fs_info->sectorsize) 5315 return send_extent_data(sctx, offset, len); 5316 5317 path = alloc_path_for_send(); 5318 if (!path) 5319 return -ENOMEM; 5320 5321 /* 5322 * There are inodes that have extents that lie behind its i_size. Don't 5323 * accept clones from these extents. 5324 */ 5325 ret = __get_inode_info(clone_root->root, path, clone_root->ino, 5326 &clone_src_i_size, NULL, NULL, NULL, NULL, NULL); 5327 btrfs_release_path(path); 5328 if (ret < 0) 5329 goto out; 5330 5331 /* 5332 * We can't send a clone operation for the entire range if we find 5333 * extent items in the respective range in the source file that 5334 * refer to different extents or if we find holes. 5335 * So check for that and do a mix of clone and regular write/copy 5336 * operations if needed. 5337 * 5338 * Example: 5339 * 5340 * mkfs.btrfs -f /dev/sda 5341 * mount /dev/sda /mnt 5342 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5343 * cp --reflink=always /mnt/foo /mnt/bar 5344 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5345 * btrfs subvolume snapshot -r /mnt /mnt/snap 5346 * 5347 * If when we send the snapshot and we are processing file bar (which 5348 * has a higher inode number than foo) we blindly send a clone operation 5349 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5350 * a file bar that matches the content of file foo - iow, doesn't match 5351 * the content from bar in the original filesystem. 5352 */ 5353 key.objectid = clone_root->ino; 5354 key.type = BTRFS_EXTENT_DATA_KEY; 5355 key.offset = clone_root->offset; 5356 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5357 if (ret < 0) 5358 goto out; 5359 if (ret > 0 && path->slots[0] > 0) { 5360 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5361 if (key.objectid == clone_root->ino && 5362 key.type == BTRFS_EXTENT_DATA_KEY) 5363 path->slots[0]--; 5364 } 5365 5366 while (true) { 5367 struct extent_buffer *leaf = path->nodes[0]; 5368 int slot = path->slots[0]; 5369 struct btrfs_file_extent_item *ei; 5370 u8 type; 5371 u64 ext_len; 5372 u64 clone_len; 5373 u64 clone_data_offset; 5374 5375 if (slot >= btrfs_header_nritems(leaf)) { 5376 ret = btrfs_next_leaf(clone_root->root, path); 5377 if (ret < 0) 5378 goto out; 5379 else if (ret > 0) 5380 break; 5381 continue; 5382 } 5383 5384 btrfs_item_key_to_cpu(leaf, &key, slot); 5385 5386 /* 5387 * We might have an implicit trailing hole (NO_HOLES feature 5388 * enabled). We deal with it after leaving this loop. 5389 */ 5390 if (key.objectid != clone_root->ino || 5391 key.type != BTRFS_EXTENT_DATA_KEY) 5392 break; 5393 5394 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5395 type = btrfs_file_extent_type(leaf, ei); 5396 if (type == BTRFS_FILE_EXTENT_INLINE) { 5397 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5398 ext_len = PAGE_ALIGN(ext_len); 5399 } else { 5400 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5401 } 5402 5403 if (key.offset + ext_len <= clone_root->offset) 5404 goto next; 5405 5406 if (key.offset > clone_root->offset) { 5407 /* Implicit hole, NO_HOLES feature enabled. */ 5408 u64 hole_len = key.offset - clone_root->offset; 5409 5410 if (hole_len > len) 5411 hole_len = len; 5412 ret = send_extent_data(sctx, offset, hole_len); 5413 if (ret < 0) 5414 goto out; 5415 5416 len -= hole_len; 5417 if (len == 0) 5418 break; 5419 offset += hole_len; 5420 clone_root->offset += hole_len; 5421 data_offset += hole_len; 5422 } 5423 5424 if (key.offset >= clone_root->offset + len) 5425 break; 5426 5427 if (key.offset >= clone_src_i_size) 5428 break; 5429 5430 if (key.offset + ext_len > clone_src_i_size) 5431 ext_len = clone_src_i_size - key.offset; 5432 5433 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 5434 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 5435 clone_root->offset = key.offset; 5436 if (clone_data_offset < data_offset && 5437 clone_data_offset + ext_len > data_offset) { 5438 u64 extent_offset; 5439 5440 extent_offset = data_offset - clone_data_offset; 5441 ext_len -= extent_offset; 5442 clone_data_offset += extent_offset; 5443 clone_root->offset += extent_offset; 5444 } 5445 } 5446 5447 clone_len = min_t(u64, ext_len, len); 5448 5449 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5450 clone_data_offset == data_offset) { 5451 const u64 src_end = clone_root->offset + clone_len; 5452 const u64 sectorsize = SZ_64K; 5453 5454 /* 5455 * We can't clone the last block, when its size is not 5456 * sector size aligned, into the middle of a file. If we 5457 * do so, the receiver will get a failure (-EINVAL) when 5458 * trying to clone or will silently corrupt the data in 5459 * the destination file if it's on a kernel without the 5460 * fix introduced by commit ac765f83f1397646 5461 * ("Btrfs: fix data corruption due to cloning of eof 5462 * block). 5463 * 5464 * So issue a clone of the aligned down range plus a 5465 * regular write for the eof block, if we hit that case. 5466 * 5467 * Also, we use the maximum possible sector size, 64K, 5468 * because we don't know what's the sector size of the 5469 * filesystem that receives the stream, so we have to 5470 * assume the largest possible sector size. 5471 */ 5472 if (src_end == clone_src_i_size && 5473 !IS_ALIGNED(src_end, sectorsize) && 5474 offset + clone_len < sctx->cur_inode_size) { 5475 u64 slen; 5476 5477 slen = ALIGN_DOWN(src_end - clone_root->offset, 5478 sectorsize); 5479 if (slen > 0) { 5480 ret = send_clone(sctx, offset, slen, 5481 clone_root); 5482 if (ret < 0) 5483 goto out; 5484 } 5485 ret = send_extent_data(sctx, offset + slen, 5486 clone_len - slen); 5487 } else { 5488 ret = send_clone(sctx, offset, clone_len, 5489 clone_root); 5490 } 5491 } else { 5492 ret = send_extent_data(sctx, offset, clone_len); 5493 } 5494 5495 if (ret < 0) 5496 goto out; 5497 5498 len -= clone_len; 5499 if (len == 0) 5500 break; 5501 offset += clone_len; 5502 clone_root->offset += clone_len; 5503 5504 /* 5505 * If we are cloning from the file we are currently processing, 5506 * and using the send root as the clone root, we must stop once 5507 * the current clone offset reaches the current eof of the file 5508 * at the receiver, otherwise we would issue an invalid clone 5509 * operation (source range going beyond eof) and cause the 5510 * receiver to fail. So if we reach the current eof, bail out 5511 * and fallback to a regular write. 5512 */ 5513 if (clone_root->root == sctx->send_root && 5514 clone_root->ino == sctx->cur_ino && 5515 clone_root->offset >= sctx->cur_inode_next_write_offset) 5516 break; 5517 5518 data_offset += clone_len; 5519 next: 5520 path->slots[0]++; 5521 } 5522 5523 if (len > 0) 5524 ret = send_extent_data(sctx, offset, len); 5525 else 5526 ret = 0; 5527 out: 5528 btrfs_free_path(path); 5529 return ret; 5530 } 5531 5532 static int send_write_or_clone(struct send_ctx *sctx, 5533 struct btrfs_path *path, 5534 struct btrfs_key *key, 5535 struct clone_root *clone_root) 5536 { 5537 int ret = 0; 5538 u64 offset = key->offset; 5539 u64 end; 5540 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 5541 5542 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 5543 if (offset >= end) 5544 return 0; 5545 5546 if (clone_root && IS_ALIGNED(end, bs)) { 5547 struct btrfs_file_extent_item *ei; 5548 u64 disk_byte; 5549 u64 data_offset; 5550 5551 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5552 struct btrfs_file_extent_item); 5553 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 5554 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 5555 ret = clone_range(sctx, clone_root, disk_byte, data_offset, 5556 offset, end - offset); 5557 } else { 5558 ret = send_extent_data(sctx, offset, end - offset); 5559 } 5560 sctx->cur_inode_next_write_offset = end; 5561 return ret; 5562 } 5563 5564 static int is_extent_unchanged(struct send_ctx *sctx, 5565 struct btrfs_path *left_path, 5566 struct btrfs_key *ekey) 5567 { 5568 int ret = 0; 5569 struct btrfs_key key; 5570 struct btrfs_path *path = NULL; 5571 struct extent_buffer *eb; 5572 int slot; 5573 struct btrfs_key found_key; 5574 struct btrfs_file_extent_item *ei; 5575 u64 left_disknr; 5576 u64 right_disknr; 5577 u64 left_offset; 5578 u64 right_offset; 5579 u64 left_offset_fixed; 5580 u64 left_len; 5581 u64 right_len; 5582 u64 left_gen; 5583 u64 right_gen; 5584 u8 left_type; 5585 u8 right_type; 5586 5587 path = alloc_path_for_send(); 5588 if (!path) 5589 return -ENOMEM; 5590 5591 eb = left_path->nodes[0]; 5592 slot = left_path->slots[0]; 5593 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5594 left_type = btrfs_file_extent_type(eb, ei); 5595 5596 if (left_type != BTRFS_FILE_EXTENT_REG) { 5597 ret = 0; 5598 goto out; 5599 } 5600 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5601 left_len = btrfs_file_extent_num_bytes(eb, ei); 5602 left_offset = btrfs_file_extent_offset(eb, ei); 5603 left_gen = btrfs_file_extent_generation(eb, ei); 5604 5605 /* 5606 * Following comments will refer to these graphics. L is the left 5607 * extents which we are checking at the moment. 1-8 are the right 5608 * extents that we iterate. 5609 * 5610 * |-----L-----| 5611 * |-1-|-2a-|-3-|-4-|-5-|-6-| 5612 * 5613 * |-----L-----| 5614 * |--1--|-2b-|...(same as above) 5615 * 5616 * Alternative situation. Happens on files where extents got split. 5617 * |-----L-----| 5618 * |-----------7-----------|-6-| 5619 * 5620 * Alternative situation. Happens on files which got larger. 5621 * |-----L-----| 5622 * |-8-| 5623 * Nothing follows after 8. 5624 */ 5625 5626 key.objectid = ekey->objectid; 5627 key.type = BTRFS_EXTENT_DATA_KEY; 5628 key.offset = ekey->offset; 5629 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 5630 if (ret < 0) 5631 goto out; 5632 if (ret) { 5633 ret = 0; 5634 goto out; 5635 } 5636 5637 /* 5638 * Handle special case where the right side has no extents at all. 5639 */ 5640 eb = path->nodes[0]; 5641 slot = path->slots[0]; 5642 btrfs_item_key_to_cpu(eb, &found_key, slot); 5643 if (found_key.objectid != key.objectid || 5644 found_key.type != key.type) { 5645 /* If we're a hole then just pretend nothing changed */ 5646 ret = (left_disknr) ? 0 : 1; 5647 goto out; 5648 } 5649 5650 /* 5651 * We're now on 2a, 2b or 7. 5652 */ 5653 key = found_key; 5654 while (key.offset < ekey->offset + left_len) { 5655 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5656 right_type = btrfs_file_extent_type(eb, ei); 5657 if (right_type != BTRFS_FILE_EXTENT_REG && 5658 right_type != BTRFS_FILE_EXTENT_INLINE) { 5659 ret = 0; 5660 goto out; 5661 } 5662 5663 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5664 right_len = btrfs_file_extent_ram_bytes(eb, ei); 5665 right_len = PAGE_ALIGN(right_len); 5666 } else { 5667 right_len = btrfs_file_extent_num_bytes(eb, ei); 5668 } 5669 5670 /* 5671 * Are we at extent 8? If yes, we know the extent is changed. 5672 * This may only happen on the first iteration. 5673 */ 5674 if (found_key.offset + right_len <= ekey->offset) { 5675 /* If we're a hole just pretend nothing changed */ 5676 ret = (left_disknr) ? 0 : 1; 5677 goto out; 5678 } 5679 5680 /* 5681 * We just wanted to see if when we have an inline extent, what 5682 * follows it is a regular extent (wanted to check the above 5683 * condition for inline extents too). This should normally not 5684 * happen but it's possible for example when we have an inline 5685 * compressed extent representing data with a size matching 5686 * the page size (currently the same as sector size). 5687 */ 5688 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5689 ret = 0; 5690 goto out; 5691 } 5692 5693 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5694 right_offset = btrfs_file_extent_offset(eb, ei); 5695 right_gen = btrfs_file_extent_generation(eb, ei); 5696 5697 left_offset_fixed = left_offset; 5698 if (key.offset < ekey->offset) { 5699 /* Fix the right offset for 2a and 7. */ 5700 right_offset += ekey->offset - key.offset; 5701 } else { 5702 /* Fix the left offset for all behind 2a and 2b */ 5703 left_offset_fixed += key.offset - ekey->offset; 5704 } 5705 5706 /* 5707 * Check if we have the same extent. 5708 */ 5709 if (left_disknr != right_disknr || 5710 left_offset_fixed != right_offset || 5711 left_gen != right_gen) { 5712 ret = 0; 5713 goto out; 5714 } 5715 5716 /* 5717 * Go to the next extent. 5718 */ 5719 ret = btrfs_next_item(sctx->parent_root, path); 5720 if (ret < 0) 5721 goto out; 5722 if (!ret) { 5723 eb = path->nodes[0]; 5724 slot = path->slots[0]; 5725 btrfs_item_key_to_cpu(eb, &found_key, slot); 5726 } 5727 if (ret || found_key.objectid != key.objectid || 5728 found_key.type != key.type) { 5729 key.offset += right_len; 5730 break; 5731 } 5732 if (found_key.offset != key.offset + right_len) { 5733 ret = 0; 5734 goto out; 5735 } 5736 key = found_key; 5737 } 5738 5739 /* 5740 * We're now behind the left extent (treat as unchanged) or at the end 5741 * of the right side (treat as changed). 5742 */ 5743 if (key.offset >= ekey->offset + left_len) 5744 ret = 1; 5745 else 5746 ret = 0; 5747 5748 5749 out: 5750 btrfs_free_path(path); 5751 return ret; 5752 } 5753 5754 static int get_last_extent(struct send_ctx *sctx, u64 offset) 5755 { 5756 struct btrfs_path *path; 5757 struct btrfs_root *root = sctx->send_root; 5758 struct btrfs_key key; 5759 int ret; 5760 5761 path = alloc_path_for_send(); 5762 if (!path) 5763 return -ENOMEM; 5764 5765 sctx->cur_inode_last_extent = 0; 5766 5767 key.objectid = sctx->cur_ino; 5768 key.type = BTRFS_EXTENT_DATA_KEY; 5769 key.offset = offset; 5770 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 5771 if (ret < 0) 5772 goto out; 5773 ret = 0; 5774 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 5775 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 5776 goto out; 5777 5778 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 5779 out: 5780 btrfs_free_path(path); 5781 return ret; 5782 } 5783 5784 static int range_is_hole_in_parent(struct send_ctx *sctx, 5785 const u64 start, 5786 const u64 end) 5787 { 5788 struct btrfs_path *path; 5789 struct btrfs_key key; 5790 struct btrfs_root *root = sctx->parent_root; 5791 u64 search_start = start; 5792 int ret; 5793 5794 path = alloc_path_for_send(); 5795 if (!path) 5796 return -ENOMEM; 5797 5798 key.objectid = sctx->cur_ino; 5799 key.type = BTRFS_EXTENT_DATA_KEY; 5800 key.offset = search_start; 5801 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5802 if (ret < 0) 5803 goto out; 5804 if (ret > 0 && path->slots[0] > 0) 5805 path->slots[0]--; 5806 5807 while (search_start < end) { 5808 struct extent_buffer *leaf = path->nodes[0]; 5809 int slot = path->slots[0]; 5810 struct btrfs_file_extent_item *fi; 5811 u64 extent_end; 5812 5813 if (slot >= btrfs_header_nritems(leaf)) { 5814 ret = btrfs_next_leaf(root, path); 5815 if (ret < 0) 5816 goto out; 5817 else if (ret > 0) 5818 break; 5819 continue; 5820 } 5821 5822 btrfs_item_key_to_cpu(leaf, &key, slot); 5823 if (key.objectid < sctx->cur_ino || 5824 key.type < BTRFS_EXTENT_DATA_KEY) 5825 goto next; 5826 if (key.objectid > sctx->cur_ino || 5827 key.type > BTRFS_EXTENT_DATA_KEY || 5828 key.offset >= end) 5829 break; 5830 5831 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5832 extent_end = btrfs_file_extent_end(path); 5833 if (extent_end <= start) 5834 goto next; 5835 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 5836 search_start = extent_end; 5837 goto next; 5838 } 5839 ret = 0; 5840 goto out; 5841 next: 5842 path->slots[0]++; 5843 } 5844 ret = 1; 5845 out: 5846 btrfs_free_path(path); 5847 return ret; 5848 } 5849 5850 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 5851 struct btrfs_key *key) 5852 { 5853 int ret = 0; 5854 5855 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 5856 return 0; 5857 5858 if (sctx->cur_inode_last_extent == (u64)-1) { 5859 ret = get_last_extent(sctx, key->offset - 1); 5860 if (ret) 5861 return ret; 5862 } 5863 5864 if (path->slots[0] == 0 && 5865 sctx->cur_inode_last_extent < key->offset) { 5866 /* 5867 * We might have skipped entire leafs that contained only 5868 * file extent items for our current inode. These leafs have 5869 * a generation number smaller (older) than the one in the 5870 * current leaf and the leaf our last extent came from, and 5871 * are located between these 2 leafs. 5872 */ 5873 ret = get_last_extent(sctx, key->offset - 1); 5874 if (ret) 5875 return ret; 5876 } 5877 5878 if (sctx->cur_inode_last_extent < key->offset) { 5879 ret = range_is_hole_in_parent(sctx, 5880 sctx->cur_inode_last_extent, 5881 key->offset); 5882 if (ret < 0) 5883 return ret; 5884 else if (ret == 0) 5885 ret = send_hole(sctx, key->offset); 5886 else 5887 ret = 0; 5888 } 5889 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 5890 return ret; 5891 } 5892 5893 static int process_extent(struct send_ctx *sctx, 5894 struct btrfs_path *path, 5895 struct btrfs_key *key) 5896 { 5897 struct clone_root *found_clone = NULL; 5898 int ret = 0; 5899 5900 if (S_ISLNK(sctx->cur_inode_mode)) 5901 return 0; 5902 5903 if (sctx->parent_root && !sctx->cur_inode_new) { 5904 ret = is_extent_unchanged(sctx, path, key); 5905 if (ret < 0) 5906 goto out; 5907 if (ret) { 5908 ret = 0; 5909 goto out_hole; 5910 } 5911 } else { 5912 struct btrfs_file_extent_item *ei; 5913 u8 type; 5914 5915 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5916 struct btrfs_file_extent_item); 5917 type = btrfs_file_extent_type(path->nodes[0], ei); 5918 if (type == BTRFS_FILE_EXTENT_PREALLOC || 5919 type == BTRFS_FILE_EXTENT_REG) { 5920 /* 5921 * The send spec does not have a prealloc command yet, 5922 * so just leave a hole for prealloc'ed extents until 5923 * we have enough commands queued up to justify rev'ing 5924 * the send spec. 5925 */ 5926 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 5927 ret = 0; 5928 goto out; 5929 } 5930 5931 /* Have a hole, just skip it. */ 5932 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 5933 ret = 0; 5934 goto out; 5935 } 5936 } 5937 } 5938 5939 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 5940 sctx->cur_inode_size, &found_clone); 5941 if (ret != -ENOENT && ret < 0) 5942 goto out; 5943 5944 ret = send_write_or_clone(sctx, path, key, found_clone); 5945 if (ret) 5946 goto out; 5947 out_hole: 5948 ret = maybe_send_hole(sctx, path, key); 5949 out: 5950 return ret; 5951 } 5952 5953 static int process_all_extents(struct send_ctx *sctx) 5954 { 5955 int ret; 5956 struct btrfs_root *root; 5957 struct btrfs_path *path; 5958 struct btrfs_key key; 5959 struct btrfs_key found_key; 5960 struct extent_buffer *eb; 5961 int slot; 5962 5963 root = sctx->send_root; 5964 path = alloc_path_for_send(); 5965 if (!path) 5966 return -ENOMEM; 5967 5968 key.objectid = sctx->cmp_key->objectid; 5969 key.type = BTRFS_EXTENT_DATA_KEY; 5970 key.offset = 0; 5971 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5972 if (ret < 0) 5973 goto out; 5974 5975 while (1) { 5976 eb = path->nodes[0]; 5977 slot = path->slots[0]; 5978 5979 if (slot >= btrfs_header_nritems(eb)) { 5980 ret = btrfs_next_leaf(root, path); 5981 if (ret < 0) { 5982 goto out; 5983 } else if (ret > 0) { 5984 ret = 0; 5985 break; 5986 } 5987 continue; 5988 } 5989 5990 btrfs_item_key_to_cpu(eb, &found_key, slot); 5991 5992 if (found_key.objectid != key.objectid || 5993 found_key.type != key.type) { 5994 ret = 0; 5995 goto out; 5996 } 5997 5998 ret = process_extent(sctx, path, &found_key); 5999 if (ret < 0) 6000 goto out; 6001 6002 path->slots[0]++; 6003 } 6004 6005 out: 6006 btrfs_free_path(path); 6007 return ret; 6008 } 6009 6010 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 6011 int *pending_move, 6012 int *refs_processed) 6013 { 6014 int ret = 0; 6015 6016 if (sctx->cur_ino == 0) 6017 goto out; 6018 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 6019 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 6020 goto out; 6021 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 6022 goto out; 6023 6024 ret = process_recorded_refs(sctx, pending_move); 6025 if (ret < 0) 6026 goto out; 6027 6028 *refs_processed = 1; 6029 out: 6030 return ret; 6031 } 6032 6033 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 6034 { 6035 int ret = 0; 6036 u64 left_mode; 6037 u64 left_uid; 6038 u64 left_gid; 6039 u64 right_mode; 6040 u64 right_uid; 6041 u64 right_gid; 6042 int need_chmod = 0; 6043 int need_chown = 0; 6044 int need_truncate = 1; 6045 int pending_move = 0; 6046 int refs_processed = 0; 6047 6048 if (sctx->ignore_cur_inode) 6049 return 0; 6050 6051 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 6052 &refs_processed); 6053 if (ret < 0) 6054 goto out; 6055 6056 /* 6057 * We have processed the refs and thus need to advance send_progress. 6058 * Now, calls to get_cur_xxx will take the updated refs of the current 6059 * inode into account. 6060 * 6061 * On the other hand, if our current inode is a directory and couldn't 6062 * be moved/renamed because its parent was renamed/moved too and it has 6063 * a higher inode number, we can only move/rename our current inode 6064 * after we moved/renamed its parent. Therefore in this case operate on 6065 * the old path (pre move/rename) of our current inode, and the 6066 * move/rename will be performed later. 6067 */ 6068 if (refs_processed && !pending_move) 6069 sctx->send_progress = sctx->cur_ino + 1; 6070 6071 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 6072 goto out; 6073 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 6074 goto out; 6075 6076 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 6077 &left_mode, &left_uid, &left_gid, NULL); 6078 if (ret < 0) 6079 goto out; 6080 6081 if (!sctx->parent_root || sctx->cur_inode_new) { 6082 need_chown = 1; 6083 if (!S_ISLNK(sctx->cur_inode_mode)) 6084 need_chmod = 1; 6085 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 6086 need_truncate = 0; 6087 } else { 6088 u64 old_size; 6089 6090 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 6091 &old_size, NULL, &right_mode, &right_uid, 6092 &right_gid, NULL); 6093 if (ret < 0) 6094 goto out; 6095 6096 if (left_uid != right_uid || left_gid != right_gid) 6097 need_chown = 1; 6098 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 6099 need_chmod = 1; 6100 if ((old_size == sctx->cur_inode_size) || 6101 (sctx->cur_inode_size > old_size && 6102 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 6103 need_truncate = 0; 6104 } 6105 6106 if (S_ISREG(sctx->cur_inode_mode)) { 6107 if (need_send_hole(sctx)) { 6108 if (sctx->cur_inode_last_extent == (u64)-1 || 6109 sctx->cur_inode_last_extent < 6110 sctx->cur_inode_size) { 6111 ret = get_last_extent(sctx, (u64)-1); 6112 if (ret) 6113 goto out; 6114 } 6115 if (sctx->cur_inode_last_extent < 6116 sctx->cur_inode_size) { 6117 ret = send_hole(sctx, sctx->cur_inode_size); 6118 if (ret) 6119 goto out; 6120 } 6121 } 6122 if (need_truncate) { 6123 ret = send_truncate(sctx, sctx->cur_ino, 6124 sctx->cur_inode_gen, 6125 sctx->cur_inode_size); 6126 if (ret < 0) 6127 goto out; 6128 } 6129 } 6130 6131 if (need_chown) { 6132 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6133 left_uid, left_gid); 6134 if (ret < 0) 6135 goto out; 6136 } 6137 if (need_chmod) { 6138 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6139 left_mode); 6140 if (ret < 0) 6141 goto out; 6142 } 6143 6144 ret = send_capabilities(sctx); 6145 if (ret < 0) 6146 goto out; 6147 6148 /* 6149 * If other directory inodes depended on our current directory 6150 * inode's move/rename, now do their move/rename operations. 6151 */ 6152 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6153 ret = apply_children_dir_moves(sctx); 6154 if (ret) 6155 goto out; 6156 /* 6157 * Need to send that every time, no matter if it actually 6158 * changed between the two trees as we have done changes to 6159 * the inode before. If our inode is a directory and it's 6160 * waiting to be moved/renamed, we will send its utimes when 6161 * it's moved/renamed, therefore we don't need to do it here. 6162 */ 6163 sctx->send_progress = sctx->cur_ino + 1; 6164 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6165 if (ret < 0) 6166 goto out; 6167 } 6168 6169 out: 6170 return ret; 6171 } 6172 6173 struct parent_paths_ctx { 6174 struct list_head *refs; 6175 struct send_ctx *sctx; 6176 }; 6177 6178 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name, 6179 void *ctx) 6180 { 6181 struct parent_paths_ctx *ppctx = ctx; 6182 6183 return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx, 6184 ppctx->refs); 6185 } 6186 6187 /* 6188 * Issue unlink operations for all paths of the current inode found in the 6189 * parent snapshot. 6190 */ 6191 static int btrfs_unlink_all_paths(struct send_ctx *sctx) 6192 { 6193 LIST_HEAD(deleted_refs); 6194 struct btrfs_path *path; 6195 struct btrfs_key key; 6196 struct parent_paths_ctx ctx; 6197 int ret; 6198 6199 path = alloc_path_for_send(); 6200 if (!path) 6201 return -ENOMEM; 6202 6203 key.objectid = sctx->cur_ino; 6204 key.type = BTRFS_INODE_REF_KEY; 6205 key.offset = 0; 6206 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 6207 if (ret < 0) 6208 goto out; 6209 6210 ctx.refs = &deleted_refs; 6211 ctx.sctx = sctx; 6212 6213 while (true) { 6214 struct extent_buffer *eb = path->nodes[0]; 6215 int slot = path->slots[0]; 6216 6217 if (slot >= btrfs_header_nritems(eb)) { 6218 ret = btrfs_next_leaf(sctx->parent_root, path); 6219 if (ret < 0) 6220 goto out; 6221 else if (ret > 0) 6222 break; 6223 continue; 6224 } 6225 6226 btrfs_item_key_to_cpu(eb, &key, slot); 6227 if (key.objectid != sctx->cur_ino) 6228 break; 6229 if (key.type != BTRFS_INODE_REF_KEY && 6230 key.type != BTRFS_INODE_EXTREF_KEY) 6231 break; 6232 6233 ret = iterate_inode_ref(sctx->parent_root, path, &key, 1, 6234 record_parent_ref, &ctx); 6235 if (ret < 0) 6236 goto out; 6237 6238 path->slots[0]++; 6239 } 6240 6241 while (!list_empty(&deleted_refs)) { 6242 struct recorded_ref *ref; 6243 6244 ref = list_first_entry(&deleted_refs, struct recorded_ref, list); 6245 ret = send_unlink(sctx, ref->full_path); 6246 if (ret < 0) 6247 goto out; 6248 fs_path_free(ref->full_path); 6249 list_del(&ref->list); 6250 kfree(ref); 6251 } 6252 ret = 0; 6253 out: 6254 btrfs_free_path(path); 6255 if (ret) 6256 __free_recorded_refs(&deleted_refs); 6257 return ret; 6258 } 6259 6260 static int changed_inode(struct send_ctx *sctx, 6261 enum btrfs_compare_tree_result result) 6262 { 6263 int ret = 0; 6264 struct btrfs_key *key = sctx->cmp_key; 6265 struct btrfs_inode_item *left_ii = NULL; 6266 struct btrfs_inode_item *right_ii = NULL; 6267 u64 left_gen = 0; 6268 u64 right_gen = 0; 6269 6270 sctx->cur_ino = key->objectid; 6271 sctx->cur_inode_new_gen = 0; 6272 sctx->cur_inode_last_extent = (u64)-1; 6273 sctx->cur_inode_next_write_offset = 0; 6274 sctx->ignore_cur_inode = false; 6275 6276 /* 6277 * Set send_progress to current inode. This will tell all get_cur_xxx 6278 * functions that the current inode's refs are not updated yet. Later, 6279 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6280 */ 6281 sctx->send_progress = sctx->cur_ino; 6282 6283 if (result == BTRFS_COMPARE_TREE_NEW || 6284 result == BTRFS_COMPARE_TREE_CHANGED) { 6285 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6286 sctx->left_path->slots[0], 6287 struct btrfs_inode_item); 6288 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6289 left_ii); 6290 } else { 6291 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6292 sctx->right_path->slots[0], 6293 struct btrfs_inode_item); 6294 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6295 right_ii); 6296 } 6297 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6298 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6299 sctx->right_path->slots[0], 6300 struct btrfs_inode_item); 6301 6302 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6303 right_ii); 6304 6305 /* 6306 * The cur_ino = root dir case is special here. We can't treat 6307 * the inode as deleted+reused because it would generate a 6308 * stream that tries to delete/mkdir the root dir. 6309 */ 6310 if (left_gen != right_gen && 6311 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6312 sctx->cur_inode_new_gen = 1; 6313 } 6314 6315 /* 6316 * Normally we do not find inodes with a link count of zero (orphans) 6317 * because the most common case is to create a snapshot and use it 6318 * for a send operation. However other less common use cases involve 6319 * using a subvolume and send it after turning it to RO mode just 6320 * after deleting all hard links of a file while holding an open 6321 * file descriptor against it or turning a RO snapshot into RW mode, 6322 * keep an open file descriptor against a file, delete it and then 6323 * turn the snapshot back to RO mode before using it for a send 6324 * operation. So if we find such cases, ignore the inode and all its 6325 * items completely if it's a new inode, or if it's a changed inode 6326 * make sure all its previous paths (from the parent snapshot) are all 6327 * unlinked and all other the inode items are ignored. 6328 */ 6329 if (result == BTRFS_COMPARE_TREE_NEW || 6330 result == BTRFS_COMPARE_TREE_CHANGED) { 6331 u32 nlinks; 6332 6333 nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6334 if (nlinks == 0) { 6335 sctx->ignore_cur_inode = true; 6336 if (result == BTRFS_COMPARE_TREE_CHANGED) 6337 ret = btrfs_unlink_all_paths(sctx); 6338 goto out; 6339 } 6340 } 6341 6342 if (result == BTRFS_COMPARE_TREE_NEW) { 6343 sctx->cur_inode_gen = left_gen; 6344 sctx->cur_inode_new = 1; 6345 sctx->cur_inode_deleted = 0; 6346 sctx->cur_inode_size = btrfs_inode_size( 6347 sctx->left_path->nodes[0], left_ii); 6348 sctx->cur_inode_mode = btrfs_inode_mode( 6349 sctx->left_path->nodes[0], left_ii); 6350 sctx->cur_inode_rdev = btrfs_inode_rdev( 6351 sctx->left_path->nodes[0], left_ii); 6352 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6353 ret = send_create_inode_if_needed(sctx); 6354 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6355 sctx->cur_inode_gen = right_gen; 6356 sctx->cur_inode_new = 0; 6357 sctx->cur_inode_deleted = 1; 6358 sctx->cur_inode_size = btrfs_inode_size( 6359 sctx->right_path->nodes[0], right_ii); 6360 sctx->cur_inode_mode = btrfs_inode_mode( 6361 sctx->right_path->nodes[0], right_ii); 6362 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6363 /* 6364 * We need to do some special handling in case the inode was 6365 * reported as changed with a changed generation number. This 6366 * means that the original inode was deleted and new inode 6367 * reused the same inum. So we have to treat the old inode as 6368 * deleted and the new one as new. 6369 */ 6370 if (sctx->cur_inode_new_gen) { 6371 /* 6372 * First, process the inode as if it was deleted. 6373 */ 6374 sctx->cur_inode_gen = right_gen; 6375 sctx->cur_inode_new = 0; 6376 sctx->cur_inode_deleted = 1; 6377 sctx->cur_inode_size = btrfs_inode_size( 6378 sctx->right_path->nodes[0], right_ii); 6379 sctx->cur_inode_mode = btrfs_inode_mode( 6380 sctx->right_path->nodes[0], right_ii); 6381 ret = process_all_refs(sctx, 6382 BTRFS_COMPARE_TREE_DELETED); 6383 if (ret < 0) 6384 goto out; 6385 6386 /* 6387 * Now process the inode as if it was new. 6388 */ 6389 sctx->cur_inode_gen = left_gen; 6390 sctx->cur_inode_new = 1; 6391 sctx->cur_inode_deleted = 0; 6392 sctx->cur_inode_size = btrfs_inode_size( 6393 sctx->left_path->nodes[0], left_ii); 6394 sctx->cur_inode_mode = btrfs_inode_mode( 6395 sctx->left_path->nodes[0], left_ii); 6396 sctx->cur_inode_rdev = btrfs_inode_rdev( 6397 sctx->left_path->nodes[0], left_ii); 6398 ret = send_create_inode_if_needed(sctx); 6399 if (ret < 0) 6400 goto out; 6401 6402 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 6403 if (ret < 0) 6404 goto out; 6405 /* 6406 * Advance send_progress now as we did not get into 6407 * process_recorded_refs_if_needed in the new_gen case. 6408 */ 6409 sctx->send_progress = sctx->cur_ino + 1; 6410 6411 /* 6412 * Now process all extents and xattrs of the inode as if 6413 * they were all new. 6414 */ 6415 ret = process_all_extents(sctx); 6416 if (ret < 0) 6417 goto out; 6418 ret = process_all_new_xattrs(sctx); 6419 if (ret < 0) 6420 goto out; 6421 } else { 6422 sctx->cur_inode_gen = left_gen; 6423 sctx->cur_inode_new = 0; 6424 sctx->cur_inode_new_gen = 0; 6425 sctx->cur_inode_deleted = 0; 6426 sctx->cur_inode_size = btrfs_inode_size( 6427 sctx->left_path->nodes[0], left_ii); 6428 sctx->cur_inode_mode = btrfs_inode_mode( 6429 sctx->left_path->nodes[0], left_ii); 6430 } 6431 } 6432 6433 out: 6434 return ret; 6435 } 6436 6437 /* 6438 * We have to process new refs before deleted refs, but compare_trees gives us 6439 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 6440 * first and later process them in process_recorded_refs. 6441 * For the cur_inode_new_gen case, we skip recording completely because 6442 * changed_inode did already initiate processing of refs. The reason for this is 6443 * that in this case, compare_tree actually compares the refs of 2 different 6444 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 6445 * refs of the right tree as deleted and all refs of the left tree as new. 6446 */ 6447 static int changed_ref(struct send_ctx *sctx, 6448 enum btrfs_compare_tree_result result) 6449 { 6450 int ret = 0; 6451 6452 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6453 inconsistent_snapshot_error(sctx, result, "reference"); 6454 return -EIO; 6455 } 6456 6457 if (!sctx->cur_inode_new_gen && 6458 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 6459 if (result == BTRFS_COMPARE_TREE_NEW) 6460 ret = record_new_ref(sctx); 6461 else if (result == BTRFS_COMPARE_TREE_DELETED) 6462 ret = record_deleted_ref(sctx); 6463 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6464 ret = record_changed_ref(sctx); 6465 } 6466 6467 return ret; 6468 } 6469 6470 /* 6471 * Process new/deleted/changed xattrs. We skip processing in the 6472 * cur_inode_new_gen case because changed_inode did already initiate processing 6473 * of xattrs. The reason is the same as in changed_ref 6474 */ 6475 static int changed_xattr(struct send_ctx *sctx, 6476 enum btrfs_compare_tree_result result) 6477 { 6478 int ret = 0; 6479 6480 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6481 inconsistent_snapshot_error(sctx, result, "xattr"); 6482 return -EIO; 6483 } 6484 6485 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6486 if (result == BTRFS_COMPARE_TREE_NEW) 6487 ret = process_new_xattr(sctx); 6488 else if (result == BTRFS_COMPARE_TREE_DELETED) 6489 ret = process_deleted_xattr(sctx); 6490 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6491 ret = process_changed_xattr(sctx); 6492 } 6493 6494 return ret; 6495 } 6496 6497 /* 6498 * Process new/deleted/changed extents. We skip processing in the 6499 * cur_inode_new_gen case because changed_inode did already initiate processing 6500 * of extents. The reason is the same as in changed_ref 6501 */ 6502 static int changed_extent(struct send_ctx *sctx, 6503 enum btrfs_compare_tree_result result) 6504 { 6505 int ret = 0; 6506 6507 /* 6508 * We have found an extent item that changed without the inode item 6509 * having changed. This can happen either after relocation (where the 6510 * disk_bytenr of an extent item is replaced at 6511 * relocation.c:replace_file_extents()) or after deduplication into a 6512 * file in both the parent and send snapshots (where an extent item can 6513 * get modified or replaced with a new one). Note that deduplication 6514 * updates the inode item, but it only changes the iversion (sequence 6515 * field in the inode item) of the inode, so if a file is deduplicated 6516 * the same amount of times in both the parent and send snapshots, its 6517 * iversion becomes the same in both snapshots, whence the inode item is 6518 * the same on both snapshots. 6519 */ 6520 if (sctx->cur_ino != sctx->cmp_key->objectid) 6521 return 0; 6522 6523 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6524 if (result != BTRFS_COMPARE_TREE_DELETED) 6525 ret = process_extent(sctx, sctx->left_path, 6526 sctx->cmp_key); 6527 } 6528 6529 return ret; 6530 } 6531 6532 static int dir_changed(struct send_ctx *sctx, u64 dir) 6533 { 6534 u64 orig_gen, new_gen; 6535 int ret; 6536 6537 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 6538 NULL, NULL); 6539 if (ret) 6540 return ret; 6541 6542 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 6543 NULL, NULL, NULL); 6544 if (ret) 6545 return ret; 6546 6547 return (orig_gen != new_gen) ? 1 : 0; 6548 } 6549 6550 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 6551 struct btrfs_key *key) 6552 { 6553 struct btrfs_inode_extref *extref; 6554 struct extent_buffer *leaf; 6555 u64 dirid = 0, last_dirid = 0; 6556 unsigned long ptr; 6557 u32 item_size; 6558 u32 cur_offset = 0; 6559 int ref_name_len; 6560 int ret = 0; 6561 6562 /* Easy case, just check this one dirid */ 6563 if (key->type == BTRFS_INODE_REF_KEY) { 6564 dirid = key->offset; 6565 6566 ret = dir_changed(sctx, dirid); 6567 goto out; 6568 } 6569 6570 leaf = path->nodes[0]; 6571 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 6572 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 6573 while (cur_offset < item_size) { 6574 extref = (struct btrfs_inode_extref *)(ptr + 6575 cur_offset); 6576 dirid = btrfs_inode_extref_parent(leaf, extref); 6577 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 6578 cur_offset += ref_name_len + sizeof(*extref); 6579 if (dirid == last_dirid) 6580 continue; 6581 ret = dir_changed(sctx, dirid); 6582 if (ret) 6583 break; 6584 last_dirid = dirid; 6585 } 6586 out: 6587 return ret; 6588 } 6589 6590 /* 6591 * Updates compare related fields in sctx and simply forwards to the actual 6592 * changed_xxx functions. 6593 */ 6594 static int changed_cb(struct btrfs_path *left_path, 6595 struct btrfs_path *right_path, 6596 struct btrfs_key *key, 6597 enum btrfs_compare_tree_result result, 6598 struct send_ctx *sctx) 6599 { 6600 int ret = 0; 6601 6602 if (result == BTRFS_COMPARE_TREE_SAME) { 6603 if (key->type == BTRFS_INODE_REF_KEY || 6604 key->type == BTRFS_INODE_EXTREF_KEY) { 6605 ret = compare_refs(sctx, left_path, key); 6606 if (!ret) 6607 return 0; 6608 if (ret < 0) 6609 return ret; 6610 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 6611 return maybe_send_hole(sctx, left_path, key); 6612 } else { 6613 return 0; 6614 } 6615 result = BTRFS_COMPARE_TREE_CHANGED; 6616 ret = 0; 6617 } 6618 6619 sctx->left_path = left_path; 6620 sctx->right_path = right_path; 6621 sctx->cmp_key = key; 6622 6623 ret = finish_inode_if_needed(sctx, 0); 6624 if (ret < 0) 6625 goto out; 6626 6627 /* Ignore non-FS objects */ 6628 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 6629 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 6630 goto out; 6631 6632 if (key->type == BTRFS_INODE_ITEM_KEY) { 6633 ret = changed_inode(sctx, result); 6634 } else if (!sctx->ignore_cur_inode) { 6635 if (key->type == BTRFS_INODE_REF_KEY || 6636 key->type == BTRFS_INODE_EXTREF_KEY) 6637 ret = changed_ref(sctx, result); 6638 else if (key->type == BTRFS_XATTR_ITEM_KEY) 6639 ret = changed_xattr(sctx, result); 6640 else if (key->type == BTRFS_EXTENT_DATA_KEY) 6641 ret = changed_extent(sctx, result); 6642 } 6643 6644 out: 6645 return ret; 6646 } 6647 6648 static int full_send_tree(struct send_ctx *sctx) 6649 { 6650 int ret; 6651 struct btrfs_root *send_root = sctx->send_root; 6652 struct btrfs_key key; 6653 struct btrfs_path *path; 6654 struct extent_buffer *eb; 6655 int slot; 6656 6657 path = alloc_path_for_send(); 6658 if (!path) 6659 return -ENOMEM; 6660 path->reada = READA_FORWARD_ALWAYS; 6661 6662 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 6663 key.type = BTRFS_INODE_ITEM_KEY; 6664 key.offset = 0; 6665 6666 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 6667 if (ret < 0) 6668 goto out; 6669 if (ret) 6670 goto out_finish; 6671 6672 while (1) { 6673 eb = path->nodes[0]; 6674 slot = path->slots[0]; 6675 btrfs_item_key_to_cpu(eb, &key, slot); 6676 6677 ret = changed_cb(path, NULL, &key, 6678 BTRFS_COMPARE_TREE_NEW, sctx); 6679 if (ret < 0) 6680 goto out; 6681 6682 ret = btrfs_next_item(send_root, path); 6683 if (ret < 0) 6684 goto out; 6685 if (ret) { 6686 ret = 0; 6687 break; 6688 } 6689 } 6690 6691 out_finish: 6692 ret = finish_inode_if_needed(sctx, 1); 6693 6694 out: 6695 btrfs_free_path(path); 6696 return ret; 6697 } 6698 6699 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen) 6700 { 6701 struct extent_buffer *eb; 6702 struct extent_buffer *parent = path->nodes[*level]; 6703 int slot = path->slots[*level]; 6704 const int nritems = btrfs_header_nritems(parent); 6705 u64 reada_max; 6706 u64 reada_done = 0; 6707 6708 BUG_ON(*level == 0); 6709 eb = btrfs_read_node_slot(parent, slot); 6710 if (IS_ERR(eb)) 6711 return PTR_ERR(eb); 6712 6713 /* 6714 * Trigger readahead for the next leaves we will process, so that it is 6715 * very likely that when we need them they are already in memory and we 6716 * will not block on disk IO. For nodes we only do readahead for one, 6717 * since the time window between processing nodes is typically larger. 6718 */ 6719 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize); 6720 6721 for (slot++; slot < nritems && reada_done < reada_max; slot++) { 6722 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) { 6723 btrfs_readahead_node_child(parent, slot); 6724 reada_done += eb->fs_info->nodesize; 6725 } 6726 } 6727 6728 path->nodes[*level - 1] = eb; 6729 path->slots[*level - 1] = 0; 6730 (*level)--; 6731 return 0; 6732 } 6733 6734 static int tree_move_next_or_upnext(struct btrfs_path *path, 6735 int *level, int root_level) 6736 { 6737 int ret = 0; 6738 int nritems; 6739 nritems = btrfs_header_nritems(path->nodes[*level]); 6740 6741 path->slots[*level]++; 6742 6743 while (path->slots[*level] >= nritems) { 6744 if (*level == root_level) 6745 return -1; 6746 6747 /* move upnext */ 6748 path->slots[*level] = 0; 6749 free_extent_buffer(path->nodes[*level]); 6750 path->nodes[*level] = NULL; 6751 (*level)++; 6752 path->slots[*level]++; 6753 6754 nritems = btrfs_header_nritems(path->nodes[*level]); 6755 ret = 1; 6756 } 6757 return ret; 6758 } 6759 6760 /* 6761 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 6762 * or down. 6763 */ 6764 static int tree_advance(struct btrfs_path *path, 6765 int *level, int root_level, 6766 int allow_down, 6767 struct btrfs_key *key, 6768 u64 reada_min_gen) 6769 { 6770 int ret; 6771 6772 if (*level == 0 || !allow_down) { 6773 ret = tree_move_next_or_upnext(path, level, root_level); 6774 } else { 6775 ret = tree_move_down(path, level, reada_min_gen); 6776 } 6777 if (ret >= 0) { 6778 if (*level == 0) 6779 btrfs_item_key_to_cpu(path->nodes[*level], key, 6780 path->slots[*level]); 6781 else 6782 btrfs_node_key_to_cpu(path->nodes[*level], key, 6783 path->slots[*level]); 6784 } 6785 return ret; 6786 } 6787 6788 static int tree_compare_item(struct btrfs_path *left_path, 6789 struct btrfs_path *right_path, 6790 char *tmp_buf) 6791 { 6792 int cmp; 6793 int len1, len2; 6794 unsigned long off1, off2; 6795 6796 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 6797 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 6798 if (len1 != len2) 6799 return 1; 6800 6801 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 6802 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 6803 right_path->slots[0]); 6804 6805 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 6806 6807 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 6808 if (cmp) 6809 return 1; 6810 return 0; 6811 } 6812 6813 /* 6814 * This function compares two trees and calls the provided callback for 6815 * every changed/new/deleted item it finds. 6816 * If shared tree blocks are encountered, whole subtrees are skipped, making 6817 * the compare pretty fast on snapshotted subvolumes. 6818 * 6819 * This currently works on commit roots only. As commit roots are read only, 6820 * we don't do any locking. The commit roots are protected with transactions. 6821 * Transactions are ended and rejoined when a commit is tried in between. 6822 * 6823 * This function checks for modifications done to the trees while comparing. 6824 * If it detects a change, it aborts immediately. 6825 */ 6826 static int btrfs_compare_trees(struct btrfs_root *left_root, 6827 struct btrfs_root *right_root, struct send_ctx *sctx) 6828 { 6829 struct btrfs_fs_info *fs_info = left_root->fs_info; 6830 int ret; 6831 int cmp; 6832 struct btrfs_path *left_path = NULL; 6833 struct btrfs_path *right_path = NULL; 6834 struct btrfs_key left_key; 6835 struct btrfs_key right_key; 6836 char *tmp_buf = NULL; 6837 int left_root_level; 6838 int right_root_level; 6839 int left_level; 6840 int right_level; 6841 int left_end_reached; 6842 int right_end_reached; 6843 int advance_left; 6844 int advance_right; 6845 u64 left_blockptr; 6846 u64 right_blockptr; 6847 u64 left_gen; 6848 u64 right_gen; 6849 u64 reada_min_gen; 6850 6851 left_path = btrfs_alloc_path(); 6852 if (!left_path) { 6853 ret = -ENOMEM; 6854 goto out; 6855 } 6856 right_path = btrfs_alloc_path(); 6857 if (!right_path) { 6858 ret = -ENOMEM; 6859 goto out; 6860 } 6861 6862 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 6863 if (!tmp_buf) { 6864 ret = -ENOMEM; 6865 goto out; 6866 } 6867 6868 left_path->search_commit_root = 1; 6869 left_path->skip_locking = 1; 6870 right_path->search_commit_root = 1; 6871 right_path->skip_locking = 1; 6872 6873 /* 6874 * Strategy: Go to the first items of both trees. Then do 6875 * 6876 * If both trees are at level 0 6877 * Compare keys of current items 6878 * If left < right treat left item as new, advance left tree 6879 * and repeat 6880 * If left > right treat right item as deleted, advance right tree 6881 * and repeat 6882 * If left == right do deep compare of items, treat as changed if 6883 * needed, advance both trees and repeat 6884 * If both trees are at the same level but not at level 0 6885 * Compare keys of current nodes/leafs 6886 * If left < right advance left tree and repeat 6887 * If left > right advance right tree and repeat 6888 * If left == right compare blockptrs of the next nodes/leafs 6889 * If they match advance both trees but stay at the same level 6890 * and repeat 6891 * If they don't match advance both trees while allowing to go 6892 * deeper and repeat 6893 * If tree levels are different 6894 * Advance the tree that needs it and repeat 6895 * 6896 * Advancing a tree means: 6897 * If we are at level 0, try to go to the next slot. If that's not 6898 * possible, go one level up and repeat. Stop when we found a level 6899 * where we could go to the next slot. We may at this point be on a 6900 * node or a leaf. 6901 * 6902 * If we are not at level 0 and not on shared tree blocks, go one 6903 * level deeper. 6904 * 6905 * If we are not at level 0 and on shared tree blocks, go one slot to 6906 * the right if possible or go up and right. 6907 */ 6908 6909 down_read(&fs_info->commit_root_sem); 6910 left_level = btrfs_header_level(left_root->commit_root); 6911 left_root_level = left_level; 6912 left_path->nodes[left_level] = 6913 btrfs_clone_extent_buffer(left_root->commit_root); 6914 if (!left_path->nodes[left_level]) { 6915 up_read(&fs_info->commit_root_sem); 6916 ret = -ENOMEM; 6917 goto out; 6918 } 6919 6920 right_level = btrfs_header_level(right_root->commit_root); 6921 right_root_level = right_level; 6922 right_path->nodes[right_level] = 6923 btrfs_clone_extent_buffer(right_root->commit_root); 6924 if (!right_path->nodes[right_level]) { 6925 up_read(&fs_info->commit_root_sem); 6926 ret = -ENOMEM; 6927 goto out; 6928 } 6929 /* 6930 * Our right root is the parent root, while the left root is the "send" 6931 * root. We know that all new nodes/leaves in the left root must have 6932 * a generation greater than the right root's generation, so we trigger 6933 * readahead for those nodes and leaves of the left root, as we know we 6934 * will need to read them at some point. 6935 */ 6936 reada_min_gen = btrfs_header_generation(right_root->commit_root); 6937 up_read(&fs_info->commit_root_sem); 6938 6939 if (left_level == 0) 6940 btrfs_item_key_to_cpu(left_path->nodes[left_level], 6941 &left_key, left_path->slots[left_level]); 6942 else 6943 btrfs_node_key_to_cpu(left_path->nodes[left_level], 6944 &left_key, left_path->slots[left_level]); 6945 if (right_level == 0) 6946 btrfs_item_key_to_cpu(right_path->nodes[right_level], 6947 &right_key, right_path->slots[right_level]); 6948 else 6949 btrfs_node_key_to_cpu(right_path->nodes[right_level], 6950 &right_key, right_path->slots[right_level]); 6951 6952 left_end_reached = right_end_reached = 0; 6953 advance_left = advance_right = 0; 6954 6955 while (1) { 6956 cond_resched(); 6957 if (advance_left && !left_end_reached) { 6958 ret = tree_advance(left_path, &left_level, 6959 left_root_level, 6960 advance_left != ADVANCE_ONLY_NEXT, 6961 &left_key, reada_min_gen); 6962 if (ret == -1) 6963 left_end_reached = ADVANCE; 6964 else if (ret < 0) 6965 goto out; 6966 advance_left = 0; 6967 } 6968 if (advance_right && !right_end_reached) { 6969 ret = tree_advance(right_path, &right_level, 6970 right_root_level, 6971 advance_right != ADVANCE_ONLY_NEXT, 6972 &right_key, reada_min_gen); 6973 if (ret == -1) 6974 right_end_reached = ADVANCE; 6975 else if (ret < 0) 6976 goto out; 6977 advance_right = 0; 6978 } 6979 6980 if (left_end_reached && right_end_reached) { 6981 ret = 0; 6982 goto out; 6983 } else if (left_end_reached) { 6984 if (right_level == 0) { 6985 ret = changed_cb(left_path, right_path, 6986 &right_key, 6987 BTRFS_COMPARE_TREE_DELETED, 6988 sctx); 6989 if (ret < 0) 6990 goto out; 6991 } 6992 advance_right = ADVANCE; 6993 continue; 6994 } else if (right_end_reached) { 6995 if (left_level == 0) { 6996 ret = changed_cb(left_path, right_path, 6997 &left_key, 6998 BTRFS_COMPARE_TREE_NEW, 6999 sctx); 7000 if (ret < 0) 7001 goto out; 7002 } 7003 advance_left = ADVANCE; 7004 continue; 7005 } 7006 7007 if (left_level == 0 && right_level == 0) { 7008 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7009 if (cmp < 0) { 7010 ret = changed_cb(left_path, right_path, 7011 &left_key, 7012 BTRFS_COMPARE_TREE_NEW, 7013 sctx); 7014 if (ret < 0) 7015 goto out; 7016 advance_left = ADVANCE; 7017 } else if (cmp > 0) { 7018 ret = changed_cb(left_path, right_path, 7019 &right_key, 7020 BTRFS_COMPARE_TREE_DELETED, 7021 sctx); 7022 if (ret < 0) 7023 goto out; 7024 advance_right = ADVANCE; 7025 } else { 7026 enum btrfs_compare_tree_result result; 7027 7028 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 7029 ret = tree_compare_item(left_path, right_path, 7030 tmp_buf); 7031 if (ret) 7032 result = BTRFS_COMPARE_TREE_CHANGED; 7033 else 7034 result = BTRFS_COMPARE_TREE_SAME; 7035 ret = changed_cb(left_path, right_path, 7036 &left_key, result, sctx); 7037 if (ret < 0) 7038 goto out; 7039 advance_left = ADVANCE; 7040 advance_right = ADVANCE; 7041 } 7042 } else if (left_level == right_level) { 7043 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7044 if (cmp < 0) { 7045 advance_left = ADVANCE; 7046 } else if (cmp > 0) { 7047 advance_right = ADVANCE; 7048 } else { 7049 left_blockptr = btrfs_node_blockptr( 7050 left_path->nodes[left_level], 7051 left_path->slots[left_level]); 7052 right_blockptr = btrfs_node_blockptr( 7053 right_path->nodes[right_level], 7054 right_path->slots[right_level]); 7055 left_gen = btrfs_node_ptr_generation( 7056 left_path->nodes[left_level], 7057 left_path->slots[left_level]); 7058 right_gen = btrfs_node_ptr_generation( 7059 right_path->nodes[right_level], 7060 right_path->slots[right_level]); 7061 if (left_blockptr == right_blockptr && 7062 left_gen == right_gen) { 7063 /* 7064 * As we're on a shared block, don't 7065 * allow to go deeper. 7066 */ 7067 advance_left = ADVANCE_ONLY_NEXT; 7068 advance_right = ADVANCE_ONLY_NEXT; 7069 } else { 7070 advance_left = ADVANCE; 7071 advance_right = ADVANCE; 7072 } 7073 } 7074 } else if (left_level < right_level) { 7075 advance_right = ADVANCE; 7076 } else { 7077 advance_left = ADVANCE; 7078 } 7079 } 7080 7081 out: 7082 btrfs_free_path(left_path); 7083 btrfs_free_path(right_path); 7084 kvfree(tmp_buf); 7085 return ret; 7086 } 7087 7088 static int send_subvol(struct send_ctx *sctx) 7089 { 7090 int ret; 7091 7092 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 7093 ret = send_header(sctx); 7094 if (ret < 0) 7095 goto out; 7096 } 7097 7098 ret = send_subvol_begin(sctx); 7099 if (ret < 0) 7100 goto out; 7101 7102 if (sctx->parent_root) { 7103 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); 7104 if (ret < 0) 7105 goto out; 7106 ret = finish_inode_if_needed(sctx, 1); 7107 if (ret < 0) 7108 goto out; 7109 } else { 7110 ret = full_send_tree(sctx); 7111 if (ret < 0) 7112 goto out; 7113 } 7114 7115 out: 7116 free_recorded_refs(sctx); 7117 return ret; 7118 } 7119 7120 /* 7121 * If orphan cleanup did remove any orphans from a root, it means the tree 7122 * was modified and therefore the commit root is not the same as the current 7123 * root anymore. This is a problem, because send uses the commit root and 7124 * therefore can see inode items that don't exist in the current root anymore, 7125 * and for example make calls to btrfs_iget, which will do tree lookups based 7126 * on the current root and not on the commit root. Those lookups will fail, 7127 * returning a -ESTALE error, and making send fail with that error. So make 7128 * sure a send does not see any orphans we have just removed, and that it will 7129 * see the same inodes regardless of whether a transaction commit happened 7130 * before it started (meaning that the commit root will be the same as the 7131 * current root) or not. 7132 */ 7133 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 7134 { 7135 int i; 7136 struct btrfs_trans_handle *trans = NULL; 7137 7138 again: 7139 if (sctx->parent_root && 7140 sctx->parent_root->node != sctx->parent_root->commit_root) 7141 goto commit_trans; 7142 7143 for (i = 0; i < sctx->clone_roots_cnt; i++) 7144 if (sctx->clone_roots[i].root->node != 7145 sctx->clone_roots[i].root->commit_root) 7146 goto commit_trans; 7147 7148 if (trans) 7149 return btrfs_end_transaction(trans); 7150 7151 return 0; 7152 7153 commit_trans: 7154 /* Use any root, all fs roots will get their commit roots updated. */ 7155 if (!trans) { 7156 trans = btrfs_join_transaction(sctx->send_root); 7157 if (IS_ERR(trans)) 7158 return PTR_ERR(trans); 7159 goto again; 7160 } 7161 7162 return btrfs_commit_transaction(trans); 7163 } 7164 7165 /* 7166 * Make sure any existing dellaloc is flushed for any root used by a send 7167 * operation so that we do not miss any data and we do not race with writeback 7168 * finishing and changing a tree while send is using the tree. This could 7169 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 7170 * a send operation then uses the subvolume. 7171 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 7172 */ 7173 static int flush_delalloc_roots(struct send_ctx *sctx) 7174 { 7175 struct btrfs_root *root = sctx->parent_root; 7176 int ret; 7177 int i; 7178 7179 if (root) { 7180 ret = btrfs_start_delalloc_snapshot(root, false); 7181 if (ret) 7182 return ret; 7183 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 7184 } 7185 7186 for (i = 0; i < sctx->clone_roots_cnt; i++) { 7187 root = sctx->clone_roots[i].root; 7188 ret = btrfs_start_delalloc_snapshot(root, false); 7189 if (ret) 7190 return ret; 7191 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 7192 } 7193 7194 return 0; 7195 } 7196 7197 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 7198 { 7199 spin_lock(&root->root_item_lock); 7200 root->send_in_progress--; 7201 /* 7202 * Not much left to do, we don't know why it's unbalanced and 7203 * can't blindly reset it to 0. 7204 */ 7205 if (root->send_in_progress < 0) 7206 btrfs_err(root->fs_info, 7207 "send_in_progress unbalanced %d root %llu", 7208 root->send_in_progress, root->root_key.objectid); 7209 spin_unlock(&root->root_item_lock); 7210 } 7211 7212 static void dedupe_in_progress_warn(const struct btrfs_root *root) 7213 { 7214 btrfs_warn_rl(root->fs_info, 7215 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 7216 root->root_key.objectid, root->dedupe_in_progress); 7217 } 7218 7219 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg) 7220 { 7221 int ret = 0; 7222 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root; 7223 struct btrfs_fs_info *fs_info = send_root->fs_info; 7224 struct btrfs_root *clone_root; 7225 struct send_ctx *sctx = NULL; 7226 u32 i; 7227 u64 *clone_sources_tmp = NULL; 7228 int clone_sources_to_rollback = 0; 7229 size_t alloc_size; 7230 int sort_clone_roots = 0; 7231 7232 if (!capable(CAP_SYS_ADMIN)) 7233 return -EPERM; 7234 7235 /* 7236 * The subvolume must remain read-only during send, protect against 7237 * making it RW. This also protects against deletion. 7238 */ 7239 spin_lock(&send_root->root_item_lock); 7240 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) { 7241 dedupe_in_progress_warn(send_root); 7242 spin_unlock(&send_root->root_item_lock); 7243 return -EAGAIN; 7244 } 7245 send_root->send_in_progress++; 7246 spin_unlock(&send_root->root_item_lock); 7247 7248 /* 7249 * Userspace tools do the checks and warn the user if it's 7250 * not RO. 7251 */ 7252 if (!btrfs_root_readonly(send_root)) { 7253 ret = -EPERM; 7254 goto out; 7255 } 7256 7257 /* 7258 * Check that we don't overflow at later allocations, we request 7259 * clone_sources_count + 1 items, and compare to unsigned long inside 7260 * access_ok. 7261 */ 7262 if (arg->clone_sources_count > 7263 ULONG_MAX / sizeof(struct clone_root) - 1) { 7264 ret = -EINVAL; 7265 goto out; 7266 } 7267 7268 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 7269 ret = -EINVAL; 7270 goto out; 7271 } 7272 7273 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 7274 if (!sctx) { 7275 ret = -ENOMEM; 7276 goto out; 7277 } 7278 7279 INIT_LIST_HEAD(&sctx->new_refs); 7280 INIT_LIST_HEAD(&sctx->deleted_refs); 7281 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL); 7282 INIT_LIST_HEAD(&sctx->name_cache_list); 7283 7284 sctx->flags = arg->flags; 7285 7286 sctx->send_filp = fget(arg->send_fd); 7287 if (!sctx->send_filp) { 7288 ret = -EBADF; 7289 goto out; 7290 } 7291 7292 sctx->send_root = send_root; 7293 /* 7294 * Unlikely but possible, if the subvolume is marked for deletion but 7295 * is slow to remove the directory entry, send can still be started 7296 */ 7297 if (btrfs_root_dead(sctx->send_root)) { 7298 ret = -EPERM; 7299 goto out; 7300 } 7301 7302 sctx->clone_roots_cnt = arg->clone_sources_count; 7303 7304 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 7305 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 7306 if (!sctx->send_buf) { 7307 ret = -ENOMEM; 7308 goto out; 7309 } 7310 7311 sctx->pending_dir_moves = RB_ROOT; 7312 sctx->waiting_dir_moves = RB_ROOT; 7313 sctx->orphan_dirs = RB_ROOT; 7314 7315 sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots), 7316 arg->clone_sources_count + 1, 7317 GFP_KERNEL); 7318 if (!sctx->clone_roots) { 7319 ret = -ENOMEM; 7320 goto out; 7321 } 7322 7323 alloc_size = array_size(sizeof(*arg->clone_sources), 7324 arg->clone_sources_count); 7325 7326 if (arg->clone_sources_count) { 7327 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 7328 if (!clone_sources_tmp) { 7329 ret = -ENOMEM; 7330 goto out; 7331 } 7332 7333 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 7334 alloc_size); 7335 if (ret) { 7336 ret = -EFAULT; 7337 goto out; 7338 } 7339 7340 for (i = 0; i < arg->clone_sources_count; i++) { 7341 clone_root = btrfs_get_fs_root(fs_info, 7342 clone_sources_tmp[i], true); 7343 if (IS_ERR(clone_root)) { 7344 ret = PTR_ERR(clone_root); 7345 goto out; 7346 } 7347 spin_lock(&clone_root->root_item_lock); 7348 if (!btrfs_root_readonly(clone_root) || 7349 btrfs_root_dead(clone_root)) { 7350 spin_unlock(&clone_root->root_item_lock); 7351 btrfs_put_root(clone_root); 7352 ret = -EPERM; 7353 goto out; 7354 } 7355 if (clone_root->dedupe_in_progress) { 7356 dedupe_in_progress_warn(clone_root); 7357 spin_unlock(&clone_root->root_item_lock); 7358 btrfs_put_root(clone_root); 7359 ret = -EAGAIN; 7360 goto out; 7361 } 7362 clone_root->send_in_progress++; 7363 spin_unlock(&clone_root->root_item_lock); 7364 7365 sctx->clone_roots[i].root = clone_root; 7366 clone_sources_to_rollback = i + 1; 7367 } 7368 kvfree(clone_sources_tmp); 7369 clone_sources_tmp = NULL; 7370 } 7371 7372 if (arg->parent_root) { 7373 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, 7374 true); 7375 if (IS_ERR(sctx->parent_root)) { 7376 ret = PTR_ERR(sctx->parent_root); 7377 goto out; 7378 } 7379 7380 spin_lock(&sctx->parent_root->root_item_lock); 7381 sctx->parent_root->send_in_progress++; 7382 if (!btrfs_root_readonly(sctx->parent_root) || 7383 btrfs_root_dead(sctx->parent_root)) { 7384 spin_unlock(&sctx->parent_root->root_item_lock); 7385 ret = -EPERM; 7386 goto out; 7387 } 7388 if (sctx->parent_root->dedupe_in_progress) { 7389 dedupe_in_progress_warn(sctx->parent_root); 7390 spin_unlock(&sctx->parent_root->root_item_lock); 7391 ret = -EAGAIN; 7392 goto out; 7393 } 7394 spin_unlock(&sctx->parent_root->root_item_lock); 7395 } 7396 7397 /* 7398 * Clones from send_root are allowed, but only if the clone source 7399 * is behind the current send position. This is checked while searching 7400 * for possible clone sources. 7401 */ 7402 sctx->clone_roots[sctx->clone_roots_cnt++].root = 7403 btrfs_grab_root(sctx->send_root); 7404 7405 /* We do a bsearch later */ 7406 sort(sctx->clone_roots, sctx->clone_roots_cnt, 7407 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 7408 NULL); 7409 sort_clone_roots = 1; 7410 7411 ret = flush_delalloc_roots(sctx); 7412 if (ret) 7413 goto out; 7414 7415 ret = ensure_commit_roots_uptodate(sctx); 7416 if (ret) 7417 goto out; 7418 7419 spin_lock(&fs_info->send_reloc_lock); 7420 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) { 7421 spin_unlock(&fs_info->send_reloc_lock); 7422 btrfs_warn_rl(fs_info, 7423 "cannot run send because a relocation operation is in progress"); 7424 ret = -EAGAIN; 7425 goto out; 7426 } 7427 fs_info->send_in_progress++; 7428 spin_unlock(&fs_info->send_reloc_lock); 7429 7430 ret = send_subvol(sctx); 7431 spin_lock(&fs_info->send_reloc_lock); 7432 fs_info->send_in_progress--; 7433 spin_unlock(&fs_info->send_reloc_lock); 7434 if (ret < 0) 7435 goto out; 7436 7437 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 7438 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 7439 if (ret < 0) 7440 goto out; 7441 ret = send_cmd(sctx); 7442 if (ret < 0) 7443 goto out; 7444 } 7445 7446 out: 7447 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 7448 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 7449 struct rb_node *n; 7450 struct pending_dir_move *pm; 7451 7452 n = rb_first(&sctx->pending_dir_moves); 7453 pm = rb_entry(n, struct pending_dir_move, node); 7454 while (!list_empty(&pm->list)) { 7455 struct pending_dir_move *pm2; 7456 7457 pm2 = list_first_entry(&pm->list, 7458 struct pending_dir_move, list); 7459 free_pending_move(sctx, pm2); 7460 } 7461 free_pending_move(sctx, pm); 7462 } 7463 7464 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 7465 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 7466 struct rb_node *n; 7467 struct waiting_dir_move *dm; 7468 7469 n = rb_first(&sctx->waiting_dir_moves); 7470 dm = rb_entry(n, struct waiting_dir_move, node); 7471 rb_erase(&dm->node, &sctx->waiting_dir_moves); 7472 kfree(dm); 7473 } 7474 7475 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 7476 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 7477 struct rb_node *n; 7478 struct orphan_dir_info *odi; 7479 7480 n = rb_first(&sctx->orphan_dirs); 7481 odi = rb_entry(n, struct orphan_dir_info, node); 7482 free_orphan_dir_info(sctx, odi); 7483 } 7484 7485 if (sort_clone_roots) { 7486 for (i = 0; i < sctx->clone_roots_cnt; i++) { 7487 btrfs_root_dec_send_in_progress( 7488 sctx->clone_roots[i].root); 7489 btrfs_put_root(sctx->clone_roots[i].root); 7490 } 7491 } else { 7492 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 7493 btrfs_root_dec_send_in_progress( 7494 sctx->clone_roots[i].root); 7495 btrfs_put_root(sctx->clone_roots[i].root); 7496 } 7497 7498 btrfs_root_dec_send_in_progress(send_root); 7499 } 7500 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 7501 btrfs_root_dec_send_in_progress(sctx->parent_root); 7502 btrfs_put_root(sctx->parent_root); 7503 } 7504 7505 kvfree(clone_sources_tmp); 7506 7507 if (sctx) { 7508 if (sctx->send_filp) 7509 fput(sctx->send_filp); 7510 7511 kvfree(sctx->clone_roots); 7512 kvfree(sctx->send_buf); 7513 7514 name_cache_free(sctx); 7515 7516 kfree(sctx); 7517 } 7518 7519 return ret; 7520 } 7521