1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/fs.h> 8 #include <linux/file.h> 9 #include <linux/sort.h> 10 #include <linux/mount.h> 11 #include <linux/xattr.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/radix-tree.h> 14 #include <linux/vmalloc.h> 15 #include <linux/string.h> 16 #include <linux/compat.h> 17 #include <linux/crc32c.h> 18 #include <linux/fsverity.h> 19 20 #include "send.h" 21 #include "ctree.h" 22 #include "backref.h" 23 #include "locking.h" 24 #include "disk-io.h" 25 #include "btrfs_inode.h" 26 #include "transaction.h" 27 #include "compression.h" 28 #include "xattr.h" 29 #include "print-tree.h" 30 31 /* 32 * Maximum number of references an extent can have in order for us to attempt to 33 * issue clone operations instead of write operations. This currently exists to 34 * avoid hitting limitations of the backreference walking code (taking a lot of 35 * time and using too much memory for extents with large number of references). 36 */ 37 #define SEND_MAX_EXTENT_REFS 64 38 39 /* 40 * A fs_path is a helper to dynamically build path names with unknown size. 41 * It reallocates the internal buffer on demand. 42 * It allows fast adding of path elements on the right side (normal path) and 43 * fast adding to the left side (reversed path). A reversed path can also be 44 * unreversed if needed. 45 */ 46 struct fs_path { 47 union { 48 struct { 49 char *start; 50 char *end; 51 52 char *buf; 53 unsigned short buf_len:15; 54 unsigned short reversed:1; 55 char inline_buf[]; 56 }; 57 /* 58 * Average path length does not exceed 200 bytes, we'll have 59 * better packing in the slab and higher chance to satisfy 60 * a allocation later during send. 61 */ 62 char pad[256]; 63 }; 64 }; 65 #define FS_PATH_INLINE_SIZE \ 66 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 67 68 69 /* reused for each extent */ 70 struct clone_root { 71 struct btrfs_root *root; 72 u64 ino; 73 u64 offset; 74 75 u64 found_refs; 76 }; 77 78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 80 81 struct send_ctx { 82 struct file *send_filp; 83 loff_t send_off; 84 char *send_buf; 85 u32 send_size; 86 u32 send_max_size; 87 /* 88 * Whether BTRFS_SEND_A_DATA attribute was already added to current 89 * command (since protocol v2, data must be the last attribute). 90 */ 91 bool put_data; 92 struct page **send_buf_pages; 93 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 94 /* Protocol version compatibility requested */ 95 u32 proto; 96 97 struct btrfs_root *send_root; 98 struct btrfs_root *parent_root; 99 struct clone_root *clone_roots; 100 int clone_roots_cnt; 101 102 /* current state of the compare_tree call */ 103 struct btrfs_path *left_path; 104 struct btrfs_path *right_path; 105 struct btrfs_key *cmp_key; 106 107 /* 108 * Keep track of the generation of the last transaction that was used 109 * for relocating a block group. This is periodically checked in order 110 * to detect if a relocation happened since the last check, so that we 111 * don't operate on stale extent buffers for nodes (level >= 1) or on 112 * stale disk_bytenr values of file extent items. 113 */ 114 u64 last_reloc_trans; 115 116 /* 117 * infos of the currently processed inode. In case of deleted inodes, 118 * these are the values from the deleted inode. 119 */ 120 u64 cur_ino; 121 u64 cur_inode_gen; 122 u64 cur_inode_size; 123 u64 cur_inode_mode; 124 u64 cur_inode_rdev; 125 u64 cur_inode_last_extent; 126 u64 cur_inode_next_write_offset; 127 bool cur_inode_new; 128 bool cur_inode_new_gen; 129 bool cur_inode_deleted; 130 bool ignore_cur_inode; 131 bool cur_inode_needs_verity; 132 void *verity_descriptor; 133 134 u64 send_progress; 135 136 struct list_head new_refs; 137 struct list_head deleted_refs; 138 139 struct radix_tree_root name_cache; 140 struct list_head name_cache_list; 141 int name_cache_size; 142 143 /* 144 * The inode we are currently processing. It's not NULL only when we 145 * need to issue write commands for data extents from this inode. 146 */ 147 struct inode *cur_inode; 148 struct file_ra_state ra; 149 u64 page_cache_clear_start; 150 bool clean_page_cache; 151 152 /* 153 * We process inodes by their increasing order, so if before an 154 * incremental send we reverse the parent/child relationship of 155 * directories such that a directory with a lower inode number was 156 * the parent of a directory with a higher inode number, and the one 157 * becoming the new parent got renamed too, we can't rename/move the 158 * directory with lower inode number when we finish processing it - we 159 * must process the directory with higher inode number first, then 160 * rename/move it and then rename/move the directory with lower inode 161 * number. Example follows. 162 * 163 * Tree state when the first send was performed: 164 * 165 * . 166 * |-- a (ino 257) 167 * |-- b (ino 258) 168 * | 169 * | 170 * |-- c (ino 259) 171 * | |-- d (ino 260) 172 * | 173 * |-- c2 (ino 261) 174 * 175 * Tree state when the second (incremental) send is performed: 176 * 177 * . 178 * |-- a (ino 257) 179 * |-- b (ino 258) 180 * |-- c2 (ino 261) 181 * |-- d2 (ino 260) 182 * |-- cc (ino 259) 183 * 184 * The sequence of steps that lead to the second state was: 185 * 186 * mv /a/b/c/d /a/b/c2/d2 187 * mv /a/b/c /a/b/c2/d2/cc 188 * 189 * "c" has lower inode number, but we can't move it (2nd mv operation) 190 * before we move "d", which has higher inode number. 191 * 192 * So we just memorize which move/rename operations must be performed 193 * later when their respective parent is processed and moved/renamed. 194 */ 195 196 /* Indexed by parent directory inode number. */ 197 struct rb_root pending_dir_moves; 198 199 /* 200 * Reverse index, indexed by the inode number of a directory that 201 * is waiting for the move/rename of its immediate parent before its 202 * own move/rename can be performed. 203 */ 204 struct rb_root waiting_dir_moves; 205 206 /* 207 * A directory that is going to be rm'ed might have a child directory 208 * which is in the pending directory moves index above. In this case, 209 * the directory can only be removed after the move/rename of its child 210 * is performed. Example: 211 * 212 * Parent snapshot: 213 * 214 * . (ino 256) 215 * |-- a/ (ino 257) 216 * |-- b/ (ino 258) 217 * |-- c/ (ino 259) 218 * | |-- x/ (ino 260) 219 * | 220 * |-- y/ (ino 261) 221 * 222 * Send snapshot: 223 * 224 * . (ino 256) 225 * |-- a/ (ino 257) 226 * |-- b/ (ino 258) 227 * |-- YY/ (ino 261) 228 * |-- x/ (ino 260) 229 * 230 * Sequence of steps that lead to the send snapshot: 231 * rm -f /a/b/c/foo.txt 232 * mv /a/b/y /a/b/YY 233 * mv /a/b/c/x /a/b/YY 234 * rmdir /a/b/c 235 * 236 * When the child is processed, its move/rename is delayed until its 237 * parent is processed (as explained above), but all other operations 238 * like update utimes, chown, chgrp, etc, are performed and the paths 239 * that it uses for those operations must use the orphanized name of 240 * its parent (the directory we're going to rm later), so we need to 241 * memorize that name. 242 * 243 * Indexed by the inode number of the directory to be deleted. 244 */ 245 struct rb_root orphan_dirs; 246 247 struct rb_root rbtree_new_refs; 248 struct rb_root rbtree_deleted_refs; 249 }; 250 251 struct pending_dir_move { 252 struct rb_node node; 253 struct list_head list; 254 u64 parent_ino; 255 u64 ino; 256 u64 gen; 257 struct list_head update_refs; 258 }; 259 260 struct waiting_dir_move { 261 struct rb_node node; 262 u64 ino; 263 /* 264 * There might be some directory that could not be removed because it 265 * was waiting for this directory inode to be moved first. Therefore 266 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 267 */ 268 u64 rmdir_ino; 269 u64 rmdir_gen; 270 bool orphanized; 271 }; 272 273 struct orphan_dir_info { 274 struct rb_node node; 275 u64 ino; 276 u64 gen; 277 u64 last_dir_index_offset; 278 }; 279 280 struct name_cache_entry { 281 struct list_head list; 282 /* 283 * radix_tree has only 32bit entries but we need to handle 64bit inums. 284 * We use the lower 32bit of the 64bit inum to store it in the tree. If 285 * more then one inum would fall into the same entry, we use radix_list 286 * to store the additional entries. radix_list is also used to store 287 * entries where two entries have the same inum but different 288 * generations. 289 */ 290 struct list_head radix_list; 291 u64 ino; 292 u64 gen; 293 u64 parent_ino; 294 u64 parent_gen; 295 int ret; 296 int need_later_update; 297 int name_len; 298 char name[]; 299 }; 300 301 #define ADVANCE 1 302 #define ADVANCE_ONLY_NEXT -1 303 304 enum btrfs_compare_tree_result { 305 BTRFS_COMPARE_TREE_NEW, 306 BTRFS_COMPARE_TREE_DELETED, 307 BTRFS_COMPARE_TREE_CHANGED, 308 BTRFS_COMPARE_TREE_SAME, 309 }; 310 311 __cold 312 static void inconsistent_snapshot_error(struct send_ctx *sctx, 313 enum btrfs_compare_tree_result result, 314 const char *what) 315 { 316 const char *result_string; 317 318 switch (result) { 319 case BTRFS_COMPARE_TREE_NEW: 320 result_string = "new"; 321 break; 322 case BTRFS_COMPARE_TREE_DELETED: 323 result_string = "deleted"; 324 break; 325 case BTRFS_COMPARE_TREE_CHANGED: 326 result_string = "updated"; 327 break; 328 case BTRFS_COMPARE_TREE_SAME: 329 ASSERT(0); 330 result_string = "unchanged"; 331 break; 332 default: 333 ASSERT(0); 334 result_string = "unexpected"; 335 } 336 337 btrfs_err(sctx->send_root->fs_info, 338 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 339 result_string, what, sctx->cmp_key->objectid, 340 sctx->send_root->root_key.objectid, 341 (sctx->parent_root ? 342 sctx->parent_root->root_key.objectid : 0)); 343 } 344 345 __maybe_unused 346 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd) 347 { 348 switch (sctx->proto) { 349 case 1: return cmd <= BTRFS_SEND_C_MAX_V1; 350 case 2: return cmd <= BTRFS_SEND_C_MAX_V2; 351 default: return false; 352 } 353 } 354 355 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 356 357 static struct waiting_dir_move * 358 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 359 360 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); 361 362 static int need_send_hole(struct send_ctx *sctx) 363 { 364 return (sctx->parent_root && !sctx->cur_inode_new && 365 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 366 S_ISREG(sctx->cur_inode_mode)); 367 } 368 369 static void fs_path_reset(struct fs_path *p) 370 { 371 if (p->reversed) { 372 p->start = p->buf + p->buf_len - 1; 373 p->end = p->start; 374 *p->start = 0; 375 } else { 376 p->start = p->buf; 377 p->end = p->start; 378 *p->start = 0; 379 } 380 } 381 382 static struct fs_path *fs_path_alloc(void) 383 { 384 struct fs_path *p; 385 386 p = kmalloc(sizeof(*p), GFP_KERNEL); 387 if (!p) 388 return NULL; 389 p->reversed = 0; 390 p->buf = p->inline_buf; 391 p->buf_len = FS_PATH_INLINE_SIZE; 392 fs_path_reset(p); 393 return p; 394 } 395 396 static struct fs_path *fs_path_alloc_reversed(void) 397 { 398 struct fs_path *p; 399 400 p = fs_path_alloc(); 401 if (!p) 402 return NULL; 403 p->reversed = 1; 404 fs_path_reset(p); 405 return p; 406 } 407 408 static void fs_path_free(struct fs_path *p) 409 { 410 if (!p) 411 return; 412 if (p->buf != p->inline_buf) 413 kfree(p->buf); 414 kfree(p); 415 } 416 417 static int fs_path_len(struct fs_path *p) 418 { 419 return p->end - p->start; 420 } 421 422 static int fs_path_ensure_buf(struct fs_path *p, int len) 423 { 424 char *tmp_buf; 425 int path_len; 426 int old_buf_len; 427 428 len++; 429 430 if (p->buf_len >= len) 431 return 0; 432 433 if (len > PATH_MAX) { 434 WARN_ON(1); 435 return -ENOMEM; 436 } 437 438 path_len = p->end - p->start; 439 old_buf_len = p->buf_len; 440 441 /* 442 * First time the inline_buf does not suffice 443 */ 444 if (p->buf == p->inline_buf) { 445 tmp_buf = kmalloc(len, GFP_KERNEL); 446 if (tmp_buf) 447 memcpy(tmp_buf, p->buf, old_buf_len); 448 } else { 449 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 450 } 451 if (!tmp_buf) 452 return -ENOMEM; 453 p->buf = tmp_buf; 454 /* 455 * The real size of the buffer is bigger, this will let the fast path 456 * happen most of the time 457 */ 458 p->buf_len = ksize(p->buf); 459 460 if (p->reversed) { 461 tmp_buf = p->buf + old_buf_len - path_len - 1; 462 p->end = p->buf + p->buf_len - 1; 463 p->start = p->end - path_len; 464 memmove(p->start, tmp_buf, path_len + 1); 465 } else { 466 p->start = p->buf; 467 p->end = p->start + path_len; 468 } 469 return 0; 470 } 471 472 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 473 char **prepared) 474 { 475 int ret; 476 int new_len; 477 478 new_len = p->end - p->start + name_len; 479 if (p->start != p->end) 480 new_len++; 481 ret = fs_path_ensure_buf(p, new_len); 482 if (ret < 0) 483 goto out; 484 485 if (p->reversed) { 486 if (p->start != p->end) 487 *--p->start = '/'; 488 p->start -= name_len; 489 *prepared = p->start; 490 } else { 491 if (p->start != p->end) 492 *p->end++ = '/'; 493 *prepared = p->end; 494 p->end += name_len; 495 *p->end = 0; 496 } 497 498 out: 499 return ret; 500 } 501 502 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 503 { 504 int ret; 505 char *prepared; 506 507 ret = fs_path_prepare_for_add(p, name_len, &prepared); 508 if (ret < 0) 509 goto out; 510 memcpy(prepared, name, name_len); 511 512 out: 513 return ret; 514 } 515 516 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 517 { 518 int ret; 519 char *prepared; 520 521 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 522 if (ret < 0) 523 goto out; 524 memcpy(prepared, p2->start, p2->end - p2->start); 525 526 out: 527 return ret; 528 } 529 530 static int fs_path_add_from_extent_buffer(struct fs_path *p, 531 struct extent_buffer *eb, 532 unsigned long off, int len) 533 { 534 int ret; 535 char *prepared; 536 537 ret = fs_path_prepare_for_add(p, len, &prepared); 538 if (ret < 0) 539 goto out; 540 541 read_extent_buffer(eb, prepared, off, len); 542 543 out: 544 return ret; 545 } 546 547 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 548 { 549 p->reversed = from->reversed; 550 fs_path_reset(p); 551 552 return fs_path_add_path(p, from); 553 } 554 555 static void fs_path_unreverse(struct fs_path *p) 556 { 557 char *tmp; 558 int len; 559 560 if (!p->reversed) 561 return; 562 563 tmp = p->start; 564 len = p->end - p->start; 565 p->start = p->buf; 566 p->end = p->start + len; 567 memmove(p->start, tmp, len + 1); 568 p->reversed = 0; 569 } 570 571 static struct btrfs_path *alloc_path_for_send(void) 572 { 573 struct btrfs_path *path; 574 575 path = btrfs_alloc_path(); 576 if (!path) 577 return NULL; 578 path->search_commit_root = 1; 579 path->skip_locking = 1; 580 path->need_commit_sem = 1; 581 return path; 582 } 583 584 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 585 { 586 int ret; 587 u32 pos = 0; 588 589 while (pos < len) { 590 ret = kernel_write(filp, buf + pos, len - pos, off); 591 if (ret < 0) 592 return ret; 593 if (ret == 0) 594 return -EIO; 595 pos += ret; 596 } 597 598 return 0; 599 } 600 601 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 602 { 603 struct btrfs_tlv_header *hdr; 604 int total_len = sizeof(*hdr) + len; 605 int left = sctx->send_max_size - sctx->send_size; 606 607 if (WARN_ON_ONCE(sctx->put_data)) 608 return -EINVAL; 609 610 if (unlikely(left < total_len)) 611 return -EOVERFLOW; 612 613 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 614 put_unaligned_le16(attr, &hdr->tlv_type); 615 put_unaligned_le16(len, &hdr->tlv_len); 616 memcpy(hdr + 1, data, len); 617 sctx->send_size += total_len; 618 619 return 0; 620 } 621 622 #define TLV_PUT_DEFINE_INT(bits) \ 623 static int tlv_put_u##bits(struct send_ctx *sctx, \ 624 u##bits attr, u##bits value) \ 625 { \ 626 __le##bits __tmp = cpu_to_le##bits(value); \ 627 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 628 } 629 630 TLV_PUT_DEFINE_INT(8) 631 TLV_PUT_DEFINE_INT(32) 632 TLV_PUT_DEFINE_INT(64) 633 634 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 635 const char *str, int len) 636 { 637 if (len == -1) 638 len = strlen(str); 639 return tlv_put(sctx, attr, str, len); 640 } 641 642 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 643 const u8 *uuid) 644 { 645 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 646 } 647 648 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 649 struct extent_buffer *eb, 650 struct btrfs_timespec *ts) 651 { 652 struct btrfs_timespec bts; 653 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 654 return tlv_put(sctx, attr, &bts, sizeof(bts)); 655 } 656 657 658 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 659 do { \ 660 ret = tlv_put(sctx, attrtype, data, attrlen); \ 661 if (ret < 0) \ 662 goto tlv_put_failure; \ 663 } while (0) 664 665 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 666 do { \ 667 ret = tlv_put_u##bits(sctx, attrtype, value); \ 668 if (ret < 0) \ 669 goto tlv_put_failure; \ 670 } while (0) 671 672 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 673 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 674 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 675 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 676 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 677 do { \ 678 ret = tlv_put_string(sctx, attrtype, str, len); \ 679 if (ret < 0) \ 680 goto tlv_put_failure; \ 681 } while (0) 682 #define TLV_PUT_PATH(sctx, attrtype, p) \ 683 do { \ 684 ret = tlv_put_string(sctx, attrtype, p->start, \ 685 p->end - p->start); \ 686 if (ret < 0) \ 687 goto tlv_put_failure; \ 688 } while(0) 689 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 690 do { \ 691 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 692 if (ret < 0) \ 693 goto tlv_put_failure; \ 694 } while (0) 695 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 696 do { \ 697 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 698 if (ret < 0) \ 699 goto tlv_put_failure; \ 700 } while (0) 701 702 static int send_header(struct send_ctx *sctx) 703 { 704 struct btrfs_stream_header hdr; 705 706 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 707 hdr.version = cpu_to_le32(sctx->proto); 708 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 709 &sctx->send_off); 710 } 711 712 /* 713 * For each command/item we want to send to userspace, we call this function. 714 */ 715 static int begin_cmd(struct send_ctx *sctx, int cmd) 716 { 717 struct btrfs_cmd_header *hdr; 718 719 if (WARN_ON(!sctx->send_buf)) 720 return -EINVAL; 721 722 BUG_ON(sctx->send_size); 723 724 sctx->send_size += sizeof(*hdr); 725 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 726 put_unaligned_le16(cmd, &hdr->cmd); 727 728 return 0; 729 } 730 731 static int send_cmd(struct send_ctx *sctx) 732 { 733 int ret; 734 struct btrfs_cmd_header *hdr; 735 u32 crc; 736 737 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 738 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 739 put_unaligned_le32(0, &hdr->crc); 740 741 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 742 put_unaligned_le32(crc, &hdr->crc); 743 744 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 745 &sctx->send_off); 746 747 sctx->send_size = 0; 748 sctx->put_data = false; 749 750 return ret; 751 } 752 753 /* 754 * Sends a move instruction to user space 755 */ 756 static int send_rename(struct send_ctx *sctx, 757 struct fs_path *from, struct fs_path *to) 758 { 759 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 760 int ret; 761 762 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 763 764 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 765 if (ret < 0) 766 goto out; 767 768 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 769 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 770 771 ret = send_cmd(sctx); 772 773 tlv_put_failure: 774 out: 775 return ret; 776 } 777 778 /* 779 * Sends a link instruction to user space 780 */ 781 static int send_link(struct send_ctx *sctx, 782 struct fs_path *path, struct fs_path *lnk) 783 { 784 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 785 int ret; 786 787 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 788 789 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 790 if (ret < 0) 791 goto out; 792 793 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 794 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 795 796 ret = send_cmd(sctx); 797 798 tlv_put_failure: 799 out: 800 return ret; 801 } 802 803 /* 804 * Sends an unlink instruction to user space 805 */ 806 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 807 { 808 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 809 int ret; 810 811 btrfs_debug(fs_info, "send_unlink %s", path->start); 812 813 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 814 if (ret < 0) 815 goto out; 816 817 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 818 819 ret = send_cmd(sctx); 820 821 tlv_put_failure: 822 out: 823 return ret; 824 } 825 826 /* 827 * Sends a rmdir instruction to user space 828 */ 829 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 830 { 831 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 832 int ret; 833 834 btrfs_debug(fs_info, "send_rmdir %s", path->start); 835 836 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 837 if (ret < 0) 838 goto out; 839 840 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 841 842 ret = send_cmd(sctx); 843 844 tlv_put_failure: 845 out: 846 return ret; 847 } 848 849 struct btrfs_inode_info { 850 u64 size; 851 u64 gen; 852 u64 mode; 853 u64 uid; 854 u64 gid; 855 u64 rdev; 856 u64 fileattr; 857 u64 nlink; 858 }; 859 860 /* 861 * Helper function to retrieve some fields from an inode item. 862 */ 863 static int get_inode_info(struct btrfs_root *root, u64 ino, 864 struct btrfs_inode_info *info) 865 { 866 int ret; 867 struct btrfs_path *path; 868 struct btrfs_inode_item *ii; 869 struct btrfs_key key; 870 871 path = alloc_path_for_send(); 872 if (!path) 873 return -ENOMEM; 874 875 key.objectid = ino; 876 key.type = BTRFS_INODE_ITEM_KEY; 877 key.offset = 0; 878 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 879 if (ret) { 880 if (ret > 0) 881 ret = -ENOENT; 882 goto out; 883 } 884 885 if (!info) 886 goto out; 887 888 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 889 struct btrfs_inode_item); 890 info->size = btrfs_inode_size(path->nodes[0], ii); 891 info->gen = btrfs_inode_generation(path->nodes[0], ii); 892 info->mode = btrfs_inode_mode(path->nodes[0], ii); 893 info->uid = btrfs_inode_uid(path->nodes[0], ii); 894 info->gid = btrfs_inode_gid(path->nodes[0], ii); 895 info->rdev = btrfs_inode_rdev(path->nodes[0], ii); 896 info->nlink = btrfs_inode_nlink(path->nodes[0], ii); 897 /* 898 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's 899 * otherwise logically split to 32/32 parts. 900 */ 901 info->fileattr = btrfs_inode_flags(path->nodes[0], ii); 902 903 out: 904 btrfs_free_path(path); 905 return ret; 906 } 907 908 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen) 909 { 910 int ret; 911 struct btrfs_inode_info info; 912 913 if (!gen) 914 return -EPERM; 915 916 ret = get_inode_info(root, ino, &info); 917 if (!ret) 918 *gen = info.gen; 919 return ret; 920 } 921 922 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 923 struct fs_path *p, 924 void *ctx); 925 926 /* 927 * Helper function to iterate the entries in ONE btrfs_inode_ref or 928 * btrfs_inode_extref. 929 * The iterate callback may return a non zero value to stop iteration. This can 930 * be a negative value for error codes or 1 to simply stop it. 931 * 932 * path must point to the INODE_REF or INODE_EXTREF when called. 933 */ 934 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 935 struct btrfs_key *found_key, int resolve, 936 iterate_inode_ref_t iterate, void *ctx) 937 { 938 struct extent_buffer *eb = path->nodes[0]; 939 struct btrfs_inode_ref *iref; 940 struct btrfs_inode_extref *extref; 941 struct btrfs_path *tmp_path; 942 struct fs_path *p; 943 u32 cur = 0; 944 u32 total; 945 int slot = path->slots[0]; 946 u32 name_len; 947 char *start; 948 int ret = 0; 949 int num = 0; 950 int index; 951 u64 dir; 952 unsigned long name_off; 953 unsigned long elem_size; 954 unsigned long ptr; 955 956 p = fs_path_alloc_reversed(); 957 if (!p) 958 return -ENOMEM; 959 960 tmp_path = alloc_path_for_send(); 961 if (!tmp_path) { 962 fs_path_free(p); 963 return -ENOMEM; 964 } 965 966 967 if (found_key->type == BTRFS_INODE_REF_KEY) { 968 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 969 struct btrfs_inode_ref); 970 total = btrfs_item_size(eb, slot); 971 elem_size = sizeof(*iref); 972 } else { 973 ptr = btrfs_item_ptr_offset(eb, slot); 974 total = btrfs_item_size(eb, slot); 975 elem_size = sizeof(*extref); 976 } 977 978 while (cur < total) { 979 fs_path_reset(p); 980 981 if (found_key->type == BTRFS_INODE_REF_KEY) { 982 iref = (struct btrfs_inode_ref *)(ptr + cur); 983 name_len = btrfs_inode_ref_name_len(eb, iref); 984 name_off = (unsigned long)(iref + 1); 985 index = btrfs_inode_ref_index(eb, iref); 986 dir = found_key->offset; 987 } else { 988 extref = (struct btrfs_inode_extref *)(ptr + cur); 989 name_len = btrfs_inode_extref_name_len(eb, extref); 990 name_off = (unsigned long)&extref->name; 991 index = btrfs_inode_extref_index(eb, extref); 992 dir = btrfs_inode_extref_parent(eb, extref); 993 } 994 995 if (resolve) { 996 start = btrfs_ref_to_path(root, tmp_path, name_len, 997 name_off, eb, dir, 998 p->buf, p->buf_len); 999 if (IS_ERR(start)) { 1000 ret = PTR_ERR(start); 1001 goto out; 1002 } 1003 if (start < p->buf) { 1004 /* overflow , try again with larger buffer */ 1005 ret = fs_path_ensure_buf(p, 1006 p->buf_len + p->buf - start); 1007 if (ret < 0) 1008 goto out; 1009 start = btrfs_ref_to_path(root, tmp_path, 1010 name_len, name_off, 1011 eb, dir, 1012 p->buf, p->buf_len); 1013 if (IS_ERR(start)) { 1014 ret = PTR_ERR(start); 1015 goto out; 1016 } 1017 BUG_ON(start < p->buf); 1018 } 1019 p->start = start; 1020 } else { 1021 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 1022 name_len); 1023 if (ret < 0) 1024 goto out; 1025 } 1026 1027 cur += elem_size + name_len; 1028 ret = iterate(num, dir, index, p, ctx); 1029 if (ret) 1030 goto out; 1031 num++; 1032 } 1033 1034 out: 1035 btrfs_free_path(tmp_path); 1036 fs_path_free(p); 1037 return ret; 1038 } 1039 1040 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 1041 const char *name, int name_len, 1042 const char *data, int data_len, 1043 void *ctx); 1044 1045 /* 1046 * Helper function to iterate the entries in ONE btrfs_dir_item. 1047 * The iterate callback may return a non zero value to stop iteration. This can 1048 * be a negative value for error codes or 1 to simply stop it. 1049 * 1050 * path must point to the dir item when called. 1051 */ 1052 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1053 iterate_dir_item_t iterate, void *ctx) 1054 { 1055 int ret = 0; 1056 struct extent_buffer *eb; 1057 struct btrfs_dir_item *di; 1058 struct btrfs_key di_key; 1059 char *buf = NULL; 1060 int buf_len; 1061 u32 name_len; 1062 u32 data_len; 1063 u32 cur; 1064 u32 len; 1065 u32 total; 1066 int slot; 1067 int num; 1068 1069 /* 1070 * Start with a small buffer (1 page). If later we end up needing more 1071 * space, which can happen for xattrs on a fs with a leaf size greater 1072 * then the page size, attempt to increase the buffer. Typically xattr 1073 * values are small. 1074 */ 1075 buf_len = PATH_MAX; 1076 buf = kmalloc(buf_len, GFP_KERNEL); 1077 if (!buf) { 1078 ret = -ENOMEM; 1079 goto out; 1080 } 1081 1082 eb = path->nodes[0]; 1083 slot = path->slots[0]; 1084 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1085 cur = 0; 1086 len = 0; 1087 total = btrfs_item_size(eb, slot); 1088 1089 num = 0; 1090 while (cur < total) { 1091 name_len = btrfs_dir_name_len(eb, di); 1092 data_len = btrfs_dir_data_len(eb, di); 1093 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1094 1095 if (btrfs_dir_type(eb, di) == BTRFS_FT_XATTR) { 1096 if (name_len > XATTR_NAME_MAX) { 1097 ret = -ENAMETOOLONG; 1098 goto out; 1099 } 1100 if (name_len + data_len > 1101 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1102 ret = -E2BIG; 1103 goto out; 1104 } 1105 } else { 1106 /* 1107 * Path too long 1108 */ 1109 if (name_len + data_len > PATH_MAX) { 1110 ret = -ENAMETOOLONG; 1111 goto out; 1112 } 1113 } 1114 1115 if (name_len + data_len > buf_len) { 1116 buf_len = name_len + data_len; 1117 if (is_vmalloc_addr(buf)) { 1118 vfree(buf); 1119 buf = NULL; 1120 } else { 1121 char *tmp = krealloc(buf, buf_len, 1122 GFP_KERNEL | __GFP_NOWARN); 1123 1124 if (!tmp) 1125 kfree(buf); 1126 buf = tmp; 1127 } 1128 if (!buf) { 1129 buf = kvmalloc(buf_len, GFP_KERNEL); 1130 if (!buf) { 1131 ret = -ENOMEM; 1132 goto out; 1133 } 1134 } 1135 } 1136 1137 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1138 name_len + data_len); 1139 1140 len = sizeof(*di) + name_len + data_len; 1141 di = (struct btrfs_dir_item *)((char *)di + len); 1142 cur += len; 1143 1144 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1145 data_len, ctx); 1146 if (ret < 0) 1147 goto out; 1148 if (ret) { 1149 ret = 0; 1150 goto out; 1151 } 1152 1153 num++; 1154 } 1155 1156 out: 1157 kvfree(buf); 1158 return ret; 1159 } 1160 1161 static int __copy_first_ref(int num, u64 dir, int index, 1162 struct fs_path *p, void *ctx) 1163 { 1164 int ret; 1165 struct fs_path *pt = ctx; 1166 1167 ret = fs_path_copy(pt, p); 1168 if (ret < 0) 1169 return ret; 1170 1171 /* we want the first only */ 1172 return 1; 1173 } 1174 1175 /* 1176 * Retrieve the first path of an inode. If an inode has more then one 1177 * ref/hardlink, this is ignored. 1178 */ 1179 static int get_inode_path(struct btrfs_root *root, 1180 u64 ino, struct fs_path *path) 1181 { 1182 int ret; 1183 struct btrfs_key key, found_key; 1184 struct btrfs_path *p; 1185 1186 p = alloc_path_for_send(); 1187 if (!p) 1188 return -ENOMEM; 1189 1190 fs_path_reset(path); 1191 1192 key.objectid = ino; 1193 key.type = BTRFS_INODE_REF_KEY; 1194 key.offset = 0; 1195 1196 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1197 if (ret < 0) 1198 goto out; 1199 if (ret) { 1200 ret = 1; 1201 goto out; 1202 } 1203 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1204 if (found_key.objectid != ino || 1205 (found_key.type != BTRFS_INODE_REF_KEY && 1206 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1207 ret = -ENOENT; 1208 goto out; 1209 } 1210 1211 ret = iterate_inode_ref(root, p, &found_key, 1, 1212 __copy_first_ref, path); 1213 if (ret < 0) 1214 goto out; 1215 ret = 0; 1216 1217 out: 1218 btrfs_free_path(p); 1219 return ret; 1220 } 1221 1222 struct backref_ctx { 1223 struct send_ctx *sctx; 1224 1225 /* number of total found references */ 1226 u64 found; 1227 1228 /* 1229 * used for clones found in send_root. clones found behind cur_objectid 1230 * and cur_offset are not considered as allowed clones. 1231 */ 1232 u64 cur_objectid; 1233 u64 cur_offset; 1234 1235 /* may be truncated in case it's the last extent in a file */ 1236 u64 extent_len; 1237 1238 /* Just to check for bugs in backref resolving */ 1239 int found_itself; 1240 }; 1241 1242 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1243 { 1244 u64 root = (u64)(uintptr_t)key; 1245 const struct clone_root *cr = elt; 1246 1247 if (root < cr->root->root_key.objectid) 1248 return -1; 1249 if (root > cr->root->root_key.objectid) 1250 return 1; 1251 return 0; 1252 } 1253 1254 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1255 { 1256 const struct clone_root *cr1 = e1; 1257 const struct clone_root *cr2 = e2; 1258 1259 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid) 1260 return -1; 1261 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid) 1262 return 1; 1263 return 0; 1264 } 1265 1266 /* 1267 * Called for every backref that is found for the current extent. 1268 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1269 */ 1270 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1271 { 1272 struct backref_ctx *bctx = ctx_; 1273 struct clone_root *found; 1274 1275 /* First check if the root is in the list of accepted clone sources */ 1276 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1277 bctx->sctx->clone_roots_cnt, 1278 sizeof(struct clone_root), 1279 __clone_root_cmp_bsearch); 1280 if (!found) 1281 return 0; 1282 1283 if (found->root == bctx->sctx->send_root && 1284 ino == bctx->cur_objectid && 1285 offset == bctx->cur_offset) { 1286 bctx->found_itself = 1; 1287 } 1288 1289 /* 1290 * Make sure we don't consider clones from send_root that are 1291 * behind the current inode/offset. 1292 */ 1293 if (found->root == bctx->sctx->send_root) { 1294 /* 1295 * If the source inode was not yet processed we can't issue a 1296 * clone operation, as the source extent does not exist yet at 1297 * the destination of the stream. 1298 */ 1299 if (ino > bctx->cur_objectid) 1300 return 0; 1301 /* 1302 * We clone from the inode currently being sent as long as the 1303 * source extent is already processed, otherwise we could try 1304 * to clone from an extent that does not exist yet at the 1305 * destination of the stream. 1306 */ 1307 if (ino == bctx->cur_objectid && 1308 offset + bctx->extent_len > 1309 bctx->sctx->cur_inode_next_write_offset) 1310 return 0; 1311 } 1312 1313 bctx->found++; 1314 found->found_refs++; 1315 if (ino < found->ino) { 1316 found->ino = ino; 1317 found->offset = offset; 1318 } else if (found->ino == ino) { 1319 /* 1320 * same extent found more then once in the same file. 1321 */ 1322 if (found->offset > offset + bctx->extent_len) 1323 found->offset = offset; 1324 } 1325 1326 return 0; 1327 } 1328 1329 /* 1330 * Given an inode, offset and extent item, it finds a good clone for a clone 1331 * instruction. Returns -ENOENT when none could be found. The function makes 1332 * sure that the returned clone is usable at the point where sending is at the 1333 * moment. This means, that no clones are accepted which lie behind the current 1334 * inode+offset. 1335 * 1336 * path must point to the extent item when called. 1337 */ 1338 static int find_extent_clone(struct send_ctx *sctx, 1339 struct btrfs_path *path, 1340 u64 ino, u64 data_offset, 1341 u64 ino_size, 1342 struct clone_root **found) 1343 { 1344 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1345 int ret; 1346 int extent_type; 1347 u64 logical; 1348 u64 disk_byte; 1349 u64 num_bytes; 1350 u64 extent_item_pos; 1351 u64 flags = 0; 1352 struct btrfs_file_extent_item *fi; 1353 struct extent_buffer *eb = path->nodes[0]; 1354 struct backref_ctx backref_ctx = {0}; 1355 struct clone_root *cur_clone_root; 1356 struct btrfs_key found_key; 1357 struct btrfs_path *tmp_path; 1358 struct btrfs_extent_item *ei; 1359 int compressed; 1360 u32 i; 1361 1362 tmp_path = alloc_path_for_send(); 1363 if (!tmp_path) 1364 return -ENOMEM; 1365 1366 /* We only use this path under the commit sem */ 1367 tmp_path->need_commit_sem = 0; 1368 1369 if (data_offset >= ino_size) { 1370 /* 1371 * There may be extents that lie behind the file's size. 1372 * I at least had this in combination with snapshotting while 1373 * writing large files. 1374 */ 1375 ret = 0; 1376 goto out; 1377 } 1378 1379 fi = btrfs_item_ptr(eb, path->slots[0], 1380 struct btrfs_file_extent_item); 1381 extent_type = btrfs_file_extent_type(eb, fi); 1382 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1383 ret = -ENOENT; 1384 goto out; 1385 } 1386 compressed = btrfs_file_extent_compression(eb, fi); 1387 1388 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1389 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1390 if (disk_byte == 0) { 1391 ret = -ENOENT; 1392 goto out; 1393 } 1394 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1395 1396 down_read(&fs_info->commit_root_sem); 1397 ret = extent_from_logical(fs_info, disk_byte, tmp_path, 1398 &found_key, &flags); 1399 up_read(&fs_info->commit_root_sem); 1400 1401 if (ret < 0) 1402 goto out; 1403 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1404 ret = -EIO; 1405 goto out; 1406 } 1407 1408 ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0], 1409 struct btrfs_extent_item); 1410 /* 1411 * Backreference walking (iterate_extent_inodes() below) is currently 1412 * too expensive when an extent has a large number of references, both 1413 * in time spent and used memory. So for now just fallback to write 1414 * operations instead of clone operations when an extent has more than 1415 * a certain amount of references. 1416 */ 1417 if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) { 1418 ret = -ENOENT; 1419 goto out; 1420 } 1421 btrfs_release_path(tmp_path); 1422 1423 /* 1424 * Setup the clone roots. 1425 */ 1426 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1427 cur_clone_root = sctx->clone_roots + i; 1428 cur_clone_root->ino = (u64)-1; 1429 cur_clone_root->offset = 0; 1430 cur_clone_root->found_refs = 0; 1431 } 1432 1433 backref_ctx.sctx = sctx; 1434 backref_ctx.found = 0; 1435 backref_ctx.cur_objectid = ino; 1436 backref_ctx.cur_offset = data_offset; 1437 backref_ctx.found_itself = 0; 1438 backref_ctx.extent_len = num_bytes; 1439 1440 /* 1441 * The last extent of a file may be too large due to page alignment. 1442 * We need to adjust extent_len in this case so that the checks in 1443 * __iterate_backrefs work. 1444 */ 1445 if (data_offset + num_bytes >= ino_size) 1446 backref_ctx.extent_len = ino_size - data_offset; 1447 1448 /* 1449 * Now collect all backrefs. 1450 */ 1451 if (compressed == BTRFS_COMPRESS_NONE) 1452 extent_item_pos = logical - found_key.objectid; 1453 else 1454 extent_item_pos = 0; 1455 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1456 extent_item_pos, 1, __iterate_backrefs, 1457 &backref_ctx, false); 1458 1459 if (ret < 0) 1460 goto out; 1461 1462 down_read(&fs_info->commit_root_sem); 1463 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 1464 /* 1465 * A transaction commit for a transaction in which block group 1466 * relocation was done just happened. 1467 * The disk_bytenr of the file extent item we processed is 1468 * possibly stale, referring to the extent's location before 1469 * relocation. So act as if we haven't found any clone sources 1470 * and fallback to write commands, which will read the correct 1471 * data from the new extent location. Otherwise we will fail 1472 * below because we haven't found our own back reference or we 1473 * could be getting incorrect sources in case the old extent 1474 * was already reallocated after the relocation. 1475 */ 1476 up_read(&fs_info->commit_root_sem); 1477 ret = -ENOENT; 1478 goto out; 1479 } 1480 up_read(&fs_info->commit_root_sem); 1481 1482 if (!backref_ctx.found_itself) { 1483 /* found a bug in backref code? */ 1484 ret = -EIO; 1485 btrfs_err(fs_info, 1486 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu", 1487 ino, data_offset, disk_byte, found_key.objectid); 1488 goto out; 1489 } 1490 1491 btrfs_debug(fs_info, 1492 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1493 data_offset, ino, num_bytes, logical); 1494 1495 if (!backref_ctx.found) 1496 btrfs_debug(fs_info, "no clones found"); 1497 1498 cur_clone_root = NULL; 1499 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1500 if (sctx->clone_roots[i].found_refs) { 1501 if (!cur_clone_root) 1502 cur_clone_root = sctx->clone_roots + i; 1503 else if (sctx->clone_roots[i].root == sctx->send_root) 1504 /* prefer clones from send_root over others */ 1505 cur_clone_root = sctx->clone_roots + i; 1506 } 1507 1508 } 1509 1510 if (cur_clone_root) { 1511 *found = cur_clone_root; 1512 ret = 0; 1513 } else { 1514 ret = -ENOENT; 1515 } 1516 1517 out: 1518 btrfs_free_path(tmp_path); 1519 return ret; 1520 } 1521 1522 static int read_symlink(struct btrfs_root *root, 1523 u64 ino, 1524 struct fs_path *dest) 1525 { 1526 int ret; 1527 struct btrfs_path *path; 1528 struct btrfs_key key; 1529 struct btrfs_file_extent_item *ei; 1530 u8 type; 1531 u8 compression; 1532 unsigned long off; 1533 int len; 1534 1535 path = alloc_path_for_send(); 1536 if (!path) 1537 return -ENOMEM; 1538 1539 key.objectid = ino; 1540 key.type = BTRFS_EXTENT_DATA_KEY; 1541 key.offset = 0; 1542 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1543 if (ret < 0) 1544 goto out; 1545 if (ret) { 1546 /* 1547 * An empty symlink inode. Can happen in rare error paths when 1548 * creating a symlink (transaction committed before the inode 1549 * eviction handler removed the symlink inode items and a crash 1550 * happened in between or the subvol was snapshoted in between). 1551 * Print an informative message to dmesg/syslog so that the user 1552 * can delete the symlink. 1553 */ 1554 btrfs_err(root->fs_info, 1555 "Found empty symlink inode %llu at root %llu", 1556 ino, root->root_key.objectid); 1557 ret = -EIO; 1558 goto out; 1559 } 1560 1561 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1562 struct btrfs_file_extent_item); 1563 type = btrfs_file_extent_type(path->nodes[0], ei); 1564 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1565 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1566 BUG_ON(compression); 1567 1568 off = btrfs_file_extent_inline_start(ei); 1569 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1570 1571 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1572 1573 out: 1574 btrfs_free_path(path); 1575 return ret; 1576 } 1577 1578 /* 1579 * Helper function to generate a file name that is unique in the root of 1580 * send_root and parent_root. This is used to generate names for orphan inodes. 1581 */ 1582 static int gen_unique_name(struct send_ctx *sctx, 1583 u64 ino, u64 gen, 1584 struct fs_path *dest) 1585 { 1586 int ret = 0; 1587 struct btrfs_path *path; 1588 struct btrfs_dir_item *di; 1589 char tmp[64]; 1590 int len; 1591 u64 idx = 0; 1592 1593 path = alloc_path_for_send(); 1594 if (!path) 1595 return -ENOMEM; 1596 1597 while (1) { 1598 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1599 ino, gen, idx); 1600 ASSERT(len < sizeof(tmp)); 1601 1602 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1603 path, BTRFS_FIRST_FREE_OBJECTID, 1604 tmp, strlen(tmp), 0); 1605 btrfs_release_path(path); 1606 if (IS_ERR(di)) { 1607 ret = PTR_ERR(di); 1608 goto out; 1609 } 1610 if (di) { 1611 /* not unique, try again */ 1612 idx++; 1613 continue; 1614 } 1615 1616 if (!sctx->parent_root) { 1617 /* unique */ 1618 ret = 0; 1619 break; 1620 } 1621 1622 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1623 path, BTRFS_FIRST_FREE_OBJECTID, 1624 tmp, strlen(tmp), 0); 1625 btrfs_release_path(path); 1626 if (IS_ERR(di)) { 1627 ret = PTR_ERR(di); 1628 goto out; 1629 } 1630 if (di) { 1631 /* not unique, try again */ 1632 idx++; 1633 continue; 1634 } 1635 /* unique */ 1636 break; 1637 } 1638 1639 ret = fs_path_add(dest, tmp, strlen(tmp)); 1640 1641 out: 1642 btrfs_free_path(path); 1643 return ret; 1644 } 1645 1646 enum inode_state { 1647 inode_state_no_change, 1648 inode_state_will_create, 1649 inode_state_did_create, 1650 inode_state_will_delete, 1651 inode_state_did_delete, 1652 }; 1653 1654 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1655 { 1656 int ret; 1657 int left_ret; 1658 int right_ret; 1659 u64 left_gen; 1660 u64 right_gen; 1661 struct btrfs_inode_info info; 1662 1663 ret = get_inode_info(sctx->send_root, ino, &info); 1664 if (ret < 0 && ret != -ENOENT) 1665 goto out; 1666 left_ret = (info.nlink == 0) ? -ENOENT : ret; 1667 left_gen = info.gen; 1668 1669 if (!sctx->parent_root) { 1670 right_ret = -ENOENT; 1671 } else { 1672 ret = get_inode_info(sctx->parent_root, ino, &info); 1673 if (ret < 0 && ret != -ENOENT) 1674 goto out; 1675 right_ret = (info.nlink == 0) ? -ENOENT : ret; 1676 right_gen = info.gen; 1677 } 1678 1679 if (!left_ret && !right_ret) { 1680 if (left_gen == gen && right_gen == gen) { 1681 ret = inode_state_no_change; 1682 } else if (left_gen == gen) { 1683 if (ino < sctx->send_progress) 1684 ret = inode_state_did_create; 1685 else 1686 ret = inode_state_will_create; 1687 } else if (right_gen == gen) { 1688 if (ino < sctx->send_progress) 1689 ret = inode_state_did_delete; 1690 else 1691 ret = inode_state_will_delete; 1692 } else { 1693 ret = -ENOENT; 1694 } 1695 } else if (!left_ret) { 1696 if (left_gen == gen) { 1697 if (ino < sctx->send_progress) 1698 ret = inode_state_did_create; 1699 else 1700 ret = inode_state_will_create; 1701 } else { 1702 ret = -ENOENT; 1703 } 1704 } else if (!right_ret) { 1705 if (right_gen == gen) { 1706 if (ino < sctx->send_progress) 1707 ret = inode_state_did_delete; 1708 else 1709 ret = inode_state_will_delete; 1710 } else { 1711 ret = -ENOENT; 1712 } 1713 } else { 1714 ret = -ENOENT; 1715 } 1716 1717 out: 1718 return ret; 1719 } 1720 1721 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1722 { 1723 int ret; 1724 1725 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1726 return 1; 1727 1728 ret = get_cur_inode_state(sctx, ino, gen); 1729 if (ret < 0) 1730 goto out; 1731 1732 if (ret == inode_state_no_change || 1733 ret == inode_state_did_create || 1734 ret == inode_state_will_delete) 1735 ret = 1; 1736 else 1737 ret = 0; 1738 1739 out: 1740 return ret; 1741 } 1742 1743 /* 1744 * Helper function to lookup a dir item in a dir. 1745 */ 1746 static int lookup_dir_item_inode(struct btrfs_root *root, 1747 u64 dir, const char *name, int name_len, 1748 u64 *found_inode) 1749 { 1750 int ret = 0; 1751 struct btrfs_dir_item *di; 1752 struct btrfs_key key; 1753 struct btrfs_path *path; 1754 1755 path = alloc_path_for_send(); 1756 if (!path) 1757 return -ENOMEM; 1758 1759 di = btrfs_lookup_dir_item(NULL, root, path, 1760 dir, name, name_len, 0); 1761 if (IS_ERR_OR_NULL(di)) { 1762 ret = di ? PTR_ERR(di) : -ENOENT; 1763 goto out; 1764 } 1765 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1766 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1767 ret = -ENOENT; 1768 goto out; 1769 } 1770 *found_inode = key.objectid; 1771 1772 out: 1773 btrfs_free_path(path); 1774 return ret; 1775 } 1776 1777 /* 1778 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1779 * generation of the parent dir and the name of the dir entry. 1780 */ 1781 static int get_first_ref(struct btrfs_root *root, u64 ino, 1782 u64 *dir, u64 *dir_gen, struct fs_path *name) 1783 { 1784 int ret; 1785 struct btrfs_key key; 1786 struct btrfs_key found_key; 1787 struct btrfs_path *path; 1788 int len; 1789 u64 parent_dir; 1790 1791 path = alloc_path_for_send(); 1792 if (!path) 1793 return -ENOMEM; 1794 1795 key.objectid = ino; 1796 key.type = BTRFS_INODE_REF_KEY; 1797 key.offset = 0; 1798 1799 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1800 if (ret < 0) 1801 goto out; 1802 if (!ret) 1803 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1804 path->slots[0]); 1805 if (ret || found_key.objectid != ino || 1806 (found_key.type != BTRFS_INODE_REF_KEY && 1807 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1808 ret = -ENOENT; 1809 goto out; 1810 } 1811 1812 if (found_key.type == BTRFS_INODE_REF_KEY) { 1813 struct btrfs_inode_ref *iref; 1814 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1815 struct btrfs_inode_ref); 1816 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1817 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1818 (unsigned long)(iref + 1), 1819 len); 1820 parent_dir = found_key.offset; 1821 } else { 1822 struct btrfs_inode_extref *extref; 1823 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1824 struct btrfs_inode_extref); 1825 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1826 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1827 (unsigned long)&extref->name, len); 1828 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1829 } 1830 if (ret < 0) 1831 goto out; 1832 btrfs_release_path(path); 1833 1834 if (dir_gen) { 1835 ret = get_inode_gen(root, parent_dir, dir_gen); 1836 if (ret < 0) 1837 goto out; 1838 } 1839 1840 *dir = parent_dir; 1841 1842 out: 1843 btrfs_free_path(path); 1844 return ret; 1845 } 1846 1847 static int is_first_ref(struct btrfs_root *root, 1848 u64 ino, u64 dir, 1849 const char *name, int name_len) 1850 { 1851 int ret; 1852 struct fs_path *tmp_name; 1853 u64 tmp_dir; 1854 1855 tmp_name = fs_path_alloc(); 1856 if (!tmp_name) 1857 return -ENOMEM; 1858 1859 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1860 if (ret < 0) 1861 goto out; 1862 1863 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1864 ret = 0; 1865 goto out; 1866 } 1867 1868 ret = !memcmp(tmp_name->start, name, name_len); 1869 1870 out: 1871 fs_path_free(tmp_name); 1872 return ret; 1873 } 1874 1875 /* 1876 * Used by process_recorded_refs to determine if a new ref would overwrite an 1877 * already existing ref. In case it detects an overwrite, it returns the 1878 * inode/gen in who_ino/who_gen. 1879 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1880 * to make sure later references to the overwritten inode are possible. 1881 * Orphanizing is however only required for the first ref of an inode. 1882 * process_recorded_refs does an additional is_first_ref check to see if 1883 * orphanizing is really required. 1884 */ 1885 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1886 const char *name, int name_len, 1887 u64 *who_ino, u64 *who_gen, u64 *who_mode) 1888 { 1889 int ret = 0; 1890 u64 gen; 1891 u64 other_inode = 0; 1892 struct btrfs_inode_info info; 1893 1894 if (!sctx->parent_root) 1895 goto out; 1896 1897 ret = is_inode_existent(sctx, dir, dir_gen); 1898 if (ret <= 0) 1899 goto out; 1900 1901 /* 1902 * If we have a parent root we need to verify that the parent dir was 1903 * not deleted and then re-created, if it was then we have no overwrite 1904 * and we can just unlink this entry. 1905 */ 1906 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) { 1907 ret = get_inode_gen(sctx->parent_root, dir, &gen); 1908 if (ret < 0 && ret != -ENOENT) 1909 goto out; 1910 if (ret) { 1911 ret = 0; 1912 goto out; 1913 } 1914 if (gen != dir_gen) 1915 goto out; 1916 } 1917 1918 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1919 &other_inode); 1920 if (ret < 0 && ret != -ENOENT) 1921 goto out; 1922 if (ret) { 1923 ret = 0; 1924 goto out; 1925 } 1926 1927 /* 1928 * Check if the overwritten ref was already processed. If yes, the ref 1929 * was already unlinked/moved, so we can safely assume that we will not 1930 * overwrite anything at this point in time. 1931 */ 1932 if (other_inode > sctx->send_progress || 1933 is_waiting_for_move(sctx, other_inode)) { 1934 ret = get_inode_info(sctx->parent_root, other_inode, &info); 1935 if (ret < 0) 1936 goto out; 1937 1938 ret = 1; 1939 *who_ino = other_inode; 1940 *who_gen = info.gen; 1941 *who_mode = info.mode; 1942 } else { 1943 ret = 0; 1944 } 1945 1946 out: 1947 return ret; 1948 } 1949 1950 /* 1951 * Checks if the ref was overwritten by an already processed inode. This is 1952 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1953 * thus the orphan name needs be used. 1954 * process_recorded_refs also uses it to avoid unlinking of refs that were 1955 * overwritten. 1956 */ 1957 static int did_overwrite_ref(struct send_ctx *sctx, 1958 u64 dir, u64 dir_gen, 1959 u64 ino, u64 ino_gen, 1960 const char *name, int name_len) 1961 { 1962 int ret = 0; 1963 u64 gen; 1964 u64 ow_inode; 1965 1966 if (!sctx->parent_root) 1967 goto out; 1968 1969 ret = is_inode_existent(sctx, dir, dir_gen); 1970 if (ret <= 0) 1971 goto out; 1972 1973 if (dir != BTRFS_FIRST_FREE_OBJECTID) { 1974 ret = get_inode_gen(sctx->send_root, dir, &gen); 1975 if (ret < 0 && ret != -ENOENT) 1976 goto out; 1977 if (ret) { 1978 ret = 0; 1979 goto out; 1980 } 1981 if (gen != dir_gen) 1982 goto out; 1983 } 1984 1985 /* check if the ref was overwritten by another ref */ 1986 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1987 &ow_inode); 1988 if (ret < 0 && ret != -ENOENT) 1989 goto out; 1990 if (ret) { 1991 /* was never and will never be overwritten */ 1992 ret = 0; 1993 goto out; 1994 } 1995 1996 ret = get_inode_gen(sctx->send_root, ow_inode, &gen); 1997 if (ret < 0) 1998 goto out; 1999 2000 if (ow_inode == ino && gen == ino_gen) { 2001 ret = 0; 2002 goto out; 2003 } 2004 2005 /* 2006 * We know that it is or will be overwritten. Check this now. 2007 * The current inode being processed might have been the one that caused 2008 * inode 'ino' to be orphanized, therefore check if ow_inode matches 2009 * the current inode being processed. 2010 */ 2011 if ((ow_inode < sctx->send_progress) || 2012 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 2013 gen == sctx->cur_inode_gen)) 2014 ret = 1; 2015 else 2016 ret = 0; 2017 2018 out: 2019 return ret; 2020 } 2021 2022 /* 2023 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 2024 * that got overwritten. This is used by process_recorded_refs to determine 2025 * if it has to use the path as returned by get_cur_path or the orphan name. 2026 */ 2027 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 2028 { 2029 int ret = 0; 2030 struct fs_path *name = NULL; 2031 u64 dir; 2032 u64 dir_gen; 2033 2034 if (!sctx->parent_root) 2035 goto out; 2036 2037 name = fs_path_alloc(); 2038 if (!name) 2039 return -ENOMEM; 2040 2041 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2042 if (ret < 0) 2043 goto out; 2044 2045 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2046 name->start, fs_path_len(name)); 2047 2048 out: 2049 fs_path_free(name); 2050 return ret; 2051 } 2052 2053 /* 2054 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 2055 * so we need to do some special handling in case we have clashes. This function 2056 * takes care of this with the help of name_cache_entry::radix_list. 2057 * In case of error, nce is kfreed. 2058 */ 2059 static int name_cache_insert(struct send_ctx *sctx, 2060 struct name_cache_entry *nce) 2061 { 2062 int ret = 0; 2063 struct list_head *nce_head; 2064 2065 nce_head = radix_tree_lookup(&sctx->name_cache, 2066 (unsigned long)nce->ino); 2067 if (!nce_head) { 2068 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 2069 if (!nce_head) { 2070 kfree(nce); 2071 return -ENOMEM; 2072 } 2073 INIT_LIST_HEAD(nce_head); 2074 2075 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 2076 if (ret < 0) { 2077 kfree(nce_head); 2078 kfree(nce); 2079 return ret; 2080 } 2081 } 2082 list_add_tail(&nce->radix_list, nce_head); 2083 list_add_tail(&nce->list, &sctx->name_cache_list); 2084 sctx->name_cache_size++; 2085 2086 return ret; 2087 } 2088 2089 static void name_cache_delete(struct send_ctx *sctx, 2090 struct name_cache_entry *nce) 2091 { 2092 struct list_head *nce_head; 2093 2094 nce_head = radix_tree_lookup(&sctx->name_cache, 2095 (unsigned long)nce->ino); 2096 if (!nce_head) { 2097 btrfs_err(sctx->send_root->fs_info, 2098 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2099 nce->ino, sctx->name_cache_size); 2100 } 2101 2102 list_del(&nce->radix_list); 2103 list_del(&nce->list); 2104 sctx->name_cache_size--; 2105 2106 /* 2107 * We may not get to the final release of nce_head if the lookup fails 2108 */ 2109 if (nce_head && list_empty(nce_head)) { 2110 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2111 kfree(nce_head); 2112 } 2113 } 2114 2115 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2116 u64 ino, u64 gen) 2117 { 2118 struct list_head *nce_head; 2119 struct name_cache_entry *cur; 2120 2121 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2122 if (!nce_head) 2123 return NULL; 2124 2125 list_for_each_entry(cur, nce_head, radix_list) { 2126 if (cur->ino == ino && cur->gen == gen) 2127 return cur; 2128 } 2129 return NULL; 2130 } 2131 2132 /* 2133 * Remove some entries from the beginning of name_cache_list. 2134 */ 2135 static void name_cache_clean_unused(struct send_ctx *sctx) 2136 { 2137 struct name_cache_entry *nce; 2138 2139 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2140 return; 2141 2142 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2143 nce = list_entry(sctx->name_cache_list.next, 2144 struct name_cache_entry, list); 2145 name_cache_delete(sctx, nce); 2146 kfree(nce); 2147 } 2148 } 2149 2150 static void name_cache_free(struct send_ctx *sctx) 2151 { 2152 struct name_cache_entry *nce; 2153 2154 while (!list_empty(&sctx->name_cache_list)) { 2155 nce = list_entry(sctx->name_cache_list.next, 2156 struct name_cache_entry, list); 2157 name_cache_delete(sctx, nce); 2158 kfree(nce); 2159 } 2160 } 2161 2162 /* 2163 * Used by get_cur_path for each ref up to the root. 2164 * Returns 0 if it succeeded. 2165 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2166 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2167 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2168 * Returns <0 in case of error. 2169 */ 2170 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2171 u64 ino, u64 gen, 2172 u64 *parent_ino, 2173 u64 *parent_gen, 2174 struct fs_path *dest) 2175 { 2176 int ret; 2177 int nce_ret; 2178 struct name_cache_entry *nce = NULL; 2179 2180 /* 2181 * First check if we already did a call to this function with the same 2182 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2183 * return the cached result. 2184 */ 2185 nce = name_cache_search(sctx, ino, gen); 2186 if (nce) { 2187 if (ino < sctx->send_progress && nce->need_later_update) { 2188 name_cache_delete(sctx, nce); 2189 kfree(nce); 2190 nce = NULL; 2191 } else { 2192 /* 2193 * Removes the entry from the list and adds it back to 2194 * the end. This marks the entry as recently used so 2195 * that name_cache_clean_unused does not remove it. 2196 */ 2197 list_move_tail(&nce->list, &sctx->name_cache_list); 2198 2199 *parent_ino = nce->parent_ino; 2200 *parent_gen = nce->parent_gen; 2201 ret = fs_path_add(dest, nce->name, nce->name_len); 2202 if (ret < 0) 2203 goto out; 2204 ret = nce->ret; 2205 goto out; 2206 } 2207 } 2208 2209 /* 2210 * If the inode is not existent yet, add the orphan name and return 1. 2211 * This should only happen for the parent dir that we determine in 2212 * record_new_ref_if_needed(). 2213 */ 2214 ret = is_inode_existent(sctx, ino, gen); 2215 if (ret < 0) 2216 goto out; 2217 2218 if (!ret) { 2219 ret = gen_unique_name(sctx, ino, gen, dest); 2220 if (ret < 0) 2221 goto out; 2222 ret = 1; 2223 goto out_cache; 2224 } 2225 2226 /* 2227 * Depending on whether the inode was already processed or not, use 2228 * send_root or parent_root for ref lookup. 2229 */ 2230 if (ino < sctx->send_progress) 2231 ret = get_first_ref(sctx->send_root, ino, 2232 parent_ino, parent_gen, dest); 2233 else 2234 ret = get_first_ref(sctx->parent_root, ino, 2235 parent_ino, parent_gen, dest); 2236 if (ret < 0) 2237 goto out; 2238 2239 /* 2240 * Check if the ref was overwritten by an inode's ref that was processed 2241 * earlier. If yes, treat as orphan and return 1. 2242 */ 2243 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2244 dest->start, dest->end - dest->start); 2245 if (ret < 0) 2246 goto out; 2247 if (ret) { 2248 fs_path_reset(dest); 2249 ret = gen_unique_name(sctx, ino, gen, dest); 2250 if (ret < 0) 2251 goto out; 2252 ret = 1; 2253 } 2254 2255 out_cache: 2256 /* 2257 * Store the result of the lookup in the name cache. 2258 */ 2259 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2260 if (!nce) { 2261 ret = -ENOMEM; 2262 goto out; 2263 } 2264 2265 nce->ino = ino; 2266 nce->gen = gen; 2267 nce->parent_ino = *parent_ino; 2268 nce->parent_gen = *parent_gen; 2269 nce->name_len = fs_path_len(dest); 2270 nce->ret = ret; 2271 strcpy(nce->name, dest->start); 2272 2273 if (ino < sctx->send_progress) 2274 nce->need_later_update = 0; 2275 else 2276 nce->need_later_update = 1; 2277 2278 nce_ret = name_cache_insert(sctx, nce); 2279 if (nce_ret < 0) 2280 ret = nce_ret; 2281 name_cache_clean_unused(sctx); 2282 2283 out: 2284 return ret; 2285 } 2286 2287 /* 2288 * Magic happens here. This function returns the first ref to an inode as it 2289 * would look like while receiving the stream at this point in time. 2290 * We walk the path up to the root. For every inode in between, we check if it 2291 * was already processed/sent. If yes, we continue with the parent as found 2292 * in send_root. If not, we continue with the parent as found in parent_root. 2293 * If we encounter an inode that was deleted at this point in time, we use the 2294 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2295 * that were not created yet and overwritten inodes/refs. 2296 * 2297 * When do we have orphan inodes: 2298 * 1. When an inode is freshly created and thus no valid refs are available yet 2299 * 2. When a directory lost all it's refs (deleted) but still has dir items 2300 * inside which were not processed yet (pending for move/delete). If anyone 2301 * tried to get the path to the dir items, it would get a path inside that 2302 * orphan directory. 2303 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2304 * of an unprocessed inode. If in that case the first ref would be 2305 * overwritten, the overwritten inode gets "orphanized". Later when we 2306 * process this overwritten inode, it is restored at a new place by moving 2307 * the orphan inode. 2308 * 2309 * sctx->send_progress tells this function at which point in time receiving 2310 * would be. 2311 */ 2312 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2313 struct fs_path *dest) 2314 { 2315 int ret = 0; 2316 struct fs_path *name = NULL; 2317 u64 parent_inode = 0; 2318 u64 parent_gen = 0; 2319 int stop = 0; 2320 2321 name = fs_path_alloc(); 2322 if (!name) { 2323 ret = -ENOMEM; 2324 goto out; 2325 } 2326 2327 dest->reversed = 1; 2328 fs_path_reset(dest); 2329 2330 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2331 struct waiting_dir_move *wdm; 2332 2333 fs_path_reset(name); 2334 2335 if (is_waiting_for_rm(sctx, ino, gen)) { 2336 ret = gen_unique_name(sctx, ino, gen, name); 2337 if (ret < 0) 2338 goto out; 2339 ret = fs_path_add_path(dest, name); 2340 break; 2341 } 2342 2343 wdm = get_waiting_dir_move(sctx, ino); 2344 if (wdm && wdm->orphanized) { 2345 ret = gen_unique_name(sctx, ino, gen, name); 2346 stop = 1; 2347 } else if (wdm) { 2348 ret = get_first_ref(sctx->parent_root, ino, 2349 &parent_inode, &parent_gen, name); 2350 } else { 2351 ret = __get_cur_name_and_parent(sctx, ino, gen, 2352 &parent_inode, 2353 &parent_gen, name); 2354 if (ret) 2355 stop = 1; 2356 } 2357 2358 if (ret < 0) 2359 goto out; 2360 2361 ret = fs_path_add_path(dest, name); 2362 if (ret < 0) 2363 goto out; 2364 2365 ino = parent_inode; 2366 gen = parent_gen; 2367 } 2368 2369 out: 2370 fs_path_free(name); 2371 if (!ret) 2372 fs_path_unreverse(dest); 2373 return ret; 2374 } 2375 2376 /* 2377 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2378 */ 2379 static int send_subvol_begin(struct send_ctx *sctx) 2380 { 2381 int ret; 2382 struct btrfs_root *send_root = sctx->send_root; 2383 struct btrfs_root *parent_root = sctx->parent_root; 2384 struct btrfs_path *path; 2385 struct btrfs_key key; 2386 struct btrfs_root_ref *ref; 2387 struct extent_buffer *leaf; 2388 char *name = NULL; 2389 int namelen; 2390 2391 path = btrfs_alloc_path(); 2392 if (!path) 2393 return -ENOMEM; 2394 2395 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2396 if (!name) { 2397 btrfs_free_path(path); 2398 return -ENOMEM; 2399 } 2400 2401 key.objectid = send_root->root_key.objectid; 2402 key.type = BTRFS_ROOT_BACKREF_KEY; 2403 key.offset = 0; 2404 2405 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2406 &key, path, 1, 0); 2407 if (ret < 0) 2408 goto out; 2409 if (ret) { 2410 ret = -ENOENT; 2411 goto out; 2412 } 2413 2414 leaf = path->nodes[0]; 2415 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2416 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2417 key.objectid != send_root->root_key.objectid) { 2418 ret = -ENOENT; 2419 goto out; 2420 } 2421 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2422 namelen = btrfs_root_ref_name_len(leaf, ref); 2423 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2424 btrfs_release_path(path); 2425 2426 if (parent_root) { 2427 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2428 if (ret < 0) 2429 goto out; 2430 } else { 2431 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2432 if (ret < 0) 2433 goto out; 2434 } 2435 2436 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2437 2438 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2439 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2440 sctx->send_root->root_item.received_uuid); 2441 else 2442 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2443 sctx->send_root->root_item.uuid); 2444 2445 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2446 btrfs_root_ctransid(&sctx->send_root->root_item)); 2447 if (parent_root) { 2448 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2449 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2450 parent_root->root_item.received_uuid); 2451 else 2452 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2453 parent_root->root_item.uuid); 2454 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2455 btrfs_root_ctransid(&sctx->parent_root->root_item)); 2456 } 2457 2458 ret = send_cmd(sctx); 2459 2460 tlv_put_failure: 2461 out: 2462 btrfs_free_path(path); 2463 kfree(name); 2464 return ret; 2465 } 2466 2467 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2468 { 2469 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2470 int ret = 0; 2471 struct fs_path *p; 2472 2473 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2474 2475 p = fs_path_alloc(); 2476 if (!p) 2477 return -ENOMEM; 2478 2479 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2480 if (ret < 0) 2481 goto out; 2482 2483 ret = get_cur_path(sctx, ino, gen, p); 2484 if (ret < 0) 2485 goto out; 2486 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2487 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2488 2489 ret = send_cmd(sctx); 2490 2491 tlv_put_failure: 2492 out: 2493 fs_path_free(p); 2494 return ret; 2495 } 2496 2497 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2498 { 2499 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2500 int ret = 0; 2501 struct fs_path *p; 2502 2503 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2504 2505 p = fs_path_alloc(); 2506 if (!p) 2507 return -ENOMEM; 2508 2509 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2510 if (ret < 0) 2511 goto out; 2512 2513 ret = get_cur_path(sctx, ino, gen, p); 2514 if (ret < 0) 2515 goto out; 2516 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2517 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2518 2519 ret = send_cmd(sctx); 2520 2521 tlv_put_failure: 2522 out: 2523 fs_path_free(p); 2524 return ret; 2525 } 2526 2527 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr) 2528 { 2529 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2530 int ret = 0; 2531 struct fs_path *p; 2532 2533 if (sctx->proto < 2) 2534 return 0; 2535 2536 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr); 2537 2538 p = fs_path_alloc(); 2539 if (!p) 2540 return -ENOMEM; 2541 2542 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR); 2543 if (ret < 0) 2544 goto out; 2545 2546 ret = get_cur_path(sctx, ino, gen, p); 2547 if (ret < 0) 2548 goto out; 2549 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2550 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr); 2551 2552 ret = send_cmd(sctx); 2553 2554 tlv_put_failure: 2555 out: 2556 fs_path_free(p); 2557 return ret; 2558 } 2559 2560 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2561 { 2562 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2563 int ret = 0; 2564 struct fs_path *p; 2565 2566 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2567 ino, uid, gid); 2568 2569 p = fs_path_alloc(); 2570 if (!p) 2571 return -ENOMEM; 2572 2573 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2574 if (ret < 0) 2575 goto out; 2576 2577 ret = get_cur_path(sctx, ino, gen, p); 2578 if (ret < 0) 2579 goto out; 2580 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2581 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2582 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2583 2584 ret = send_cmd(sctx); 2585 2586 tlv_put_failure: 2587 out: 2588 fs_path_free(p); 2589 return ret; 2590 } 2591 2592 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2593 { 2594 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2595 int ret = 0; 2596 struct fs_path *p = NULL; 2597 struct btrfs_inode_item *ii; 2598 struct btrfs_path *path = NULL; 2599 struct extent_buffer *eb; 2600 struct btrfs_key key; 2601 int slot; 2602 2603 btrfs_debug(fs_info, "send_utimes %llu", ino); 2604 2605 p = fs_path_alloc(); 2606 if (!p) 2607 return -ENOMEM; 2608 2609 path = alloc_path_for_send(); 2610 if (!path) { 2611 ret = -ENOMEM; 2612 goto out; 2613 } 2614 2615 key.objectid = ino; 2616 key.type = BTRFS_INODE_ITEM_KEY; 2617 key.offset = 0; 2618 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2619 if (ret > 0) 2620 ret = -ENOENT; 2621 if (ret < 0) 2622 goto out; 2623 2624 eb = path->nodes[0]; 2625 slot = path->slots[0]; 2626 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2627 2628 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2629 if (ret < 0) 2630 goto out; 2631 2632 ret = get_cur_path(sctx, ino, gen, p); 2633 if (ret < 0) 2634 goto out; 2635 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2636 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2637 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2638 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2639 if (sctx->proto >= 2) 2640 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime); 2641 2642 ret = send_cmd(sctx); 2643 2644 tlv_put_failure: 2645 out: 2646 fs_path_free(p); 2647 btrfs_free_path(path); 2648 return ret; 2649 } 2650 2651 /* 2652 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2653 * a valid path yet because we did not process the refs yet. So, the inode 2654 * is created as orphan. 2655 */ 2656 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2657 { 2658 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2659 int ret = 0; 2660 struct fs_path *p; 2661 int cmd; 2662 struct btrfs_inode_info info; 2663 u64 gen; 2664 u64 mode; 2665 u64 rdev; 2666 2667 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2668 2669 p = fs_path_alloc(); 2670 if (!p) 2671 return -ENOMEM; 2672 2673 if (ino != sctx->cur_ino) { 2674 ret = get_inode_info(sctx->send_root, ino, &info); 2675 if (ret < 0) 2676 goto out; 2677 gen = info.gen; 2678 mode = info.mode; 2679 rdev = info.rdev; 2680 } else { 2681 gen = sctx->cur_inode_gen; 2682 mode = sctx->cur_inode_mode; 2683 rdev = sctx->cur_inode_rdev; 2684 } 2685 2686 if (S_ISREG(mode)) { 2687 cmd = BTRFS_SEND_C_MKFILE; 2688 } else if (S_ISDIR(mode)) { 2689 cmd = BTRFS_SEND_C_MKDIR; 2690 } else if (S_ISLNK(mode)) { 2691 cmd = BTRFS_SEND_C_SYMLINK; 2692 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2693 cmd = BTRFS_SEND_C_MKNOD; 2694 } else if (S_ISFIFO(mode)) { 2695 cmd = BTRFS_SEND_C_MKFIFO; 2696 } else if (S_ISSOCK(mode)) { 2697 cmd = BTRFS_SEND_C_MKSOCK; 2698 } else { 2699 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2700 (int)(mode & S_IFMT)); 2701 ret = -EOPNOTSUPP; 2702 goto out; 2703 } 2704 2705 ret = begin_cmd(sctx, cmd); 2706 if (ret < 0) 2707 goto out; 2708 2709 ret = gen_unique_name(sctx, ino, gen, p); 2710 if (ret < 0) 2711 goto out; 2712 2713 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2714 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2715 2716 if (S_ISLNK(mode)) { 2717 fs_path_reset(p); 2718 ret = read_symlink(sctx->send_root, ino, p); 2719 if (ret < 0) 2720 goto out; 2721 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2722 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2723 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2724 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2725 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2726 } 2727 2728 ret = send_cmd(sctx); 2729 if (ret < 0) 2730 goto out; 2731 2732 2733 tlv_put_failure: 2734 out: 2735 fs_path_free(p); 2736 return ret; 2737 } 2738 2739 /* 2740 * We need some special handling for inodes that get processed before the parent 2741 * directory got created. See process_recorded_refs for details. 2742 * This function does the check if we already created the dir out of order. 2743 */ 2744 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2745 { 2746 int ret = 0; 2747 int iter_ret = 0; 2748 struct btrfs_path *path = NULL; 2749 struct btrfs_key key; 2750 struct btrfs_key found_key; 2751 struct btrfs_key di_key; 2752 struct btrfs_dir_item *di; 2753 2754 path = alloc_path_for_send(); 2755 if (!path) 2756 return -ENOMEM; 2757 2758 key.objectid = dir; 2759 key.type = BTRFS_DIR_INDEX_KEY; 2760 key.offset = 0; 2761 2762 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) { 2763 struct extent_buffer *eb = path->nodes[0]; 2764 2765 if (found_key.objectid != key.objectid || 2766 found_key.type != key.type) { 2767 ret = 0; 2768 break; 2769 } 2770 2771 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item); 2772 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2773 2774 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2775 di_key.objectid < sctx->send_progress) { 2776 ret = 1; 2777 break; 2778 } 2779 } 2780 /* Catch error found during iteration */ 2781 if (iter_ret < 0) 2782 ret = iter_ret; 2783 2784 btrfs_free_path(path); 2785 return ret; 2786 } 2787 2788 /* 2789 * Only creates the inode if it is: 2790 * 1. Not a directory 2791 * 2. Or a directory which was not created already due to out of order 2792 * directories. See did_create_dir and process_recorded_refs for details. 2793 */ 2794 static int send_create_inode_if_needed(struct send_ctx *sctx) 2795 { 2796 int ret; 2797 2798 if (S_ISDIR(sctx->cur_inode_mode)) { 2799 ret = did_create_dir(sctx, sctx->cur_ino); 2800 if (ret < 0) 2801 return ret; 2802 else if (ret > 0) 2803 return 0; 2804 } 2805 2806 return send_create_inode(sctx, sctx->cur_ino); 2807 } 2808 2809 struct recorded_ref { 2810 struct list_head list; 2811 char *name; 2812 struct fs_path *full_path; 2813 u64 dir; 2814 u64 dir_gen; 2815 int name_len; 2816 struct rb_node node; 2817 struct rb_root *root; 2818 }; 2819 2820 static struct recorded_ref *recorded_ref_alloc(void) 2821 { 2822 struct recorded_ref *ref; 2823 2824 ref = kzalloc(sizeof(*ref), GFP_KERNEL); 2825 if (!ref) 2826 return NULL; 2827 RB_CLEAR_NODE(&ref->node); 2828 INIT_LIST_HEAD(&ref->list); 2829 return ref; 2830 } 2831 2832 static void recorded_ref_free(struct recorded_ref *ref) 2833 { 2834 if (!ref) 2835 return; 2836 if (!RB_EMPTY_NODE(&ref->node)) 2837 rb_erase(&ref->node, ref->root); 2838 list_del(&ref->list); 2839 fs_path_free(ref->full_path); 2840 kfree(ref); 2841 } 2842 2843 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 2844 { 2845 ref->full_path = path; 2846 ref->name = (char *)kbasename(ref->full_path->start); 2847 ref->name_len = ref->full_path->end - ref->name; 2848 } 2849 2850 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2851 { 2852 struct recorded_ref *new; 2853 2854 new = recorded_ref_alloc(); 2855 if (!new) 2856 return -ENOMEM; 2857 2858 new->dir = ref->dir; 2859 new->dir_gen = ref->dir_gen; 2860 list_add_tail(&new->list, list); 2861 return 0; 2862 } 2863 2864 static void __free_recorded_refs(struct list_head *head) 2865 { 2866 struct recorded_ref *cur; 2867 2868 while (!list_empty(head)) { 2869 cur = list_entry(head->next, struct recorded_ref, list); 2870 recorded_ref_free(cur); 2871 } 2872 } 2873 2874 static void free_recorded_refs(struct send_ctx *sctx) 2875 { 2876 __free_recorded_refs(&sctx->new_refs); 2877 __free_recorded_refs(&sctx->deleted_refs); 2878 } 2879 2880 /* 2881 * Renames/moves a file/dir to its orphan name. Used when the first 2882 * ref of an unprocessed inode gets overwritten and for all non empty 2883 * directories. 2884 */ 2885 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2886 struct fs_path *path) 2887 { 2888 int ret; 2889 struct fs_path *orphan; 2890 2891 orphan = fs_path_alloc(); 2892 if (!orphan) 2893 return -ENOMEM; 2894 2895 ret = gen_unique_name(sctx, ino, gen, orphan); 2896 if (ret < 0) 2897 goto out; 2898 2899 ret = send_rename(sctx, path, orphan); 2900 2901 out: 2902 fs_path_free(orphan); 2903 return ret; 2904 } 2905 2906 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, 2907 u64 dir_ino, u64 dir_gen) 2908 { 2909 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2910 struct rb_node *parent = NULL; 2911 struct orphan_dir_info *entry, *odi; 2912 2913 while (*p) { 2914 parent = *p; 2915 entry = rb_entry(parent, struct orphan_dir_info, node); 2916 if (dir_ino < entry->ino) 2917 p = &(*p)->rb_left; 2918 else if (dir_ino > entry->ino) 2919 p = &(*p)->rb_right; 2920 else if (dir_gen < entry->gen) 2921 p = &(*p)->rb_left; 2922 else if (dir_gen > entry->gen) 2923 p = &(*p)->rb_right; 2924 else 2925 return entry; 2926 } 2927 2928 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 2929 if (!odi) 2930 return ERR_PTR(-ENOMEM); 2931 odi->ino = dir_ino; 2932 odi->gen = dir_gen; 2933 odi->last_dir_index_offset = 0; 2934 2935 rb_link_node(&odi->node, parent, p); 2936 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2937 return odi; 2938 } 2939 2940 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, 2941 u64 dir_ino, u64 gen) 2942 { 2943 struct rb_node *n = sctx->orphan_dirs.rb_node; 2944 struct orphan_dir_info *entry; 2945 2946 while (n) { 2947 entry = rb_entry(n, struct orphan_dir_info, node); 2948 if (dir_ino < entry->ino) 2949 n = n->rb_left; 2950 else if (dir_ino > entry->ino) 2951 n = n->rb_right; 2952 else if (gen < entry->gen) 2953 n = n->rb_left; 2954 else if (gen > entry->gen) 2955 n = n->rb_right; 2956 else 2957 return entry; 2958 } 2959 return NULL; 2960 } 2961 2962 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) 2963 { 2964 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); 2965 2966 return odi != NULL; 2967 } 2968 2969 static void free_orphan_dir_info(struct send_ctx *sctx, 2970 struct orphan_dir_info *odi) 2971 { 2972 if (!odi) 2973 return; 2974 rb_erase(&odi->node, &sctx->orphan_dirs); 2975 kfree(odi); 2976 } 2977 2978 /* 2979 * Returns 1 if a directory can be removed at this point in time. 2980 * We check this by iterating all dir items and checking if the inode behind 2981 * the dir item was already processed. 2982 */ 2983 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2984 u64 send_progress) 2985 { 2986 int ret = 0; 2987 int iter_ret = 0; 2988 struct btrfs_root *root = sctx->parent_root; 2989 struct btrfs_path *path; 2990 struct btrfs_key key; 2991 struct btrfs_key found_key; 2992 struct btrfs_key loc; 2993 struct btrfs_dir_item *di; 2994 struct orphan_dir_info *odi = NULL; 2995 2996 /* 2997 * Don't try to rmdir the top/root subvolume dir. 2998 */ 2999 if (dir == BTRFS_FIRST_FREE_OBJECTID) 3000 return 0; 3001 3002 path = alloc_path_for_send(); 3003 if (!path) 3004 return -ENOMEM; 3005 3006 key.objectid = dir; 3007 key.type = BTRFS_DIR_INDEX_KEY; 3008 key.offset = 0; 3009 3010 odi = get_orphan_dir_info(sctx, dir, dir_gen); 3011 if (odi) 3012 key.offset = odi->last_dir_index_offset; 3013 3014 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 3015 struct waiting_dir_move *dm; 3016 3017 if (found_key.objectid != key.objectid || 3018 found_key.type != key.type) 3019 break; 3020 3021 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3022 struct btrfs_dir_item); 3023 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3024 3025 dm = get_waiting_dir_move(sctx, loc.objectid); 3026 if (dm) { 3027 odi = add_orphan_dir_info(sctx, dir, dir_gen); 3028 if (IS_ERR(odi)) { 3029 ret = PTR_ERR(odi); 3030 goto out; 3031 } 3032 odi->gen = dir_gen; 3033 odi->last_dir_index_offset = found_key.offset; 3034 dm->rmdir_ino = dir; 3035 dm->rmdir_gen = dir_gen; 3036 ret = 0; 3037 goto out; 3038 } 3039 3040 if (loc.objectid > send_progress) { 3041 odi = add_orphan_dir_info(sctx, dir, dir_gen); 3042 if (IS_ERR(odi)) { 3043 ret = PTR_ERR(odi); 3044 goto out; 3045 } 3046 odi->gen = dir_gen; 3047 odi->last_dir_index_offset = found_key.offset; 3048 ret = 0; 3049 goto out; 3050 } 3051 } 3052 if (iter_ret < 0) { 3053 ret = iter_ret; 3054 goto out; 3055 } 3056 free_orphan_dir_info(sctx, odi); 3057 3058 ret = 1; 3059 3060 out: 3061 btrfs_free_path(path); 3062 return ret; 3063 } 3064 3065 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3066 { 3067 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3068 3069 return entry != NULL; 3070 } 3071 3072 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3073 { 3074 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3075 struct rb_node *parent = NULL; 3076 struct waiting_dir_move *entry, *dm; 3077 3078 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3079 if (!dm) 3080 return -ENOMEM; 3081 dm->ino = ino; 3082 dm->rmdir_ino = 0; 3083 dm->rmdir_gen = 0; 3084 dm->orphanized = orphanized; 3085 3086 while (*p) { 3087 parent = *p; 3088 entry = rb_entry(parent, struct waiting_dir_move, node); 3089 if (ino < entry->ino) { 3090 p = &(*p)->rb_left; 3091 } else if (ino > entry->ino) { 3092 p = &(*p)->rb_right; 3093 } else { 3094 kfree(dm); 3095 return -EEXIST; 3096 } 3097 } 3098 3099 rb_link_node(&dm->node, parent, p); 3100 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3101 return 0; 3102 } 3103 3104 static struct waiting_dir_move * 3105 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3106 { 3107 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3108 struct waiting_dir_move *entry; 3109 3110 while (n) { 3111 entry = rb_entry(n, struct waiting_dir_move, node); 3112 if (ino < entry->ino) 3113 n = n->rb_left; 3114 else if (ino > entry->ino) 3115 n = n->rb_right; 3116 else 3117 return entry; 3118 } 3119 return NULL; 3120 } 3121 3122 static void free_waiting_dir_move(struct send_ctx *sctx, 3123 struct waiting_dir_move *dm) 3124 { 3125 if (!dm) 3126 return; 3127 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3128 kfree(dm); 3129 } 3130 3131 static int add_pending_dir_move(struct send_ctx *sctx, 3132 u64 ino, 3133 u64 ino_gen, 3134 u64 parent_ino, 3135 struct list_head *new_refs, 3136 struct list_head *deleted_refs, 3137 const bool is_orphan) 3138 { 3139 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3140 struct rb_node *parent = NULL; 3141 struct pending_dir_move *entry = NULL, *pm; 3142 struct recorded_ref *cur; 3143 int exists = 0; 3144 int ret; 3145 3146 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3147 if (!pm) 3148 return -ENOMEM; 3149 pm->parent_ino = parent_ino; 3150 pm->ino = ino; 3151 pm->gen = ino_gen; 3152 INIT_LIST_HEAD(&pm->list); 3153 INIT_LIST_HEAD(&pm->update_refs); 3154 RB_CLEAR_NODE(&pm->node); 3155 3156 while (*p) { 3157 parent = *p; 3158 entry = rb_entry(parent, struct pending_dir_move, node); 3159 if (parent_ino < entry->parent_ino) { 3160 p = &(*p)->rb_left; 3161 } else if (parent_ino > entry->parent_ino) { 3162 p = &(*p)->rb_right; 3163 } else { 3164 exists = 1; 3165 break; 3166 } 3167 } 3168 3169 list_for_each_entry(cur, deleted_refs, list) { 3170 ret = dup_ref(cur, &pm->update_refs); 3171 if (ret < 0) 3172 goto out; 3173 } 3174 list_for_each_entry(cur, new_refs, list) { 3175 ret = dup_ref(cur, &pm->update_refs); 3176 if (ret < 0) 3177 goto out; 3178 } 3179 3180 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3181 if (ret) 3182 goto out; 3183 3184 if (exists) { 3185 list_add_tail(&pm->list, &entry->list); 3186 } else { 3187 rb_link_node(&pm->node, parent, p); 3188 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3189 } 3190 ret = 0; 3191 out: 3192 if (ret) { 3193 __free_recorded_refs(&pm->update_refs); 3194 kfree(pm); 3195 } 3196 return ret; 3197 } 3198 3199 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3200 u64 parent_ino) 3201 { 3202 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3203 struct pending_dir_move *entry; 3204 3205 while (n) { 3206 entry = rb_entry(n, struct pending_dir_move, node); 3207 if (parent_ino < entry->parent_ino) 3208 n = n->rb_left; 3209 else if (parent_ino > entry->parent_ino) 3210 n = n->rb_right; 3211 else 3212 return entry; 3213 } 3214 return NULL; 3215 } 3216 3217 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3218 u64 ino, u64 gen, u64 *ancestor_ino) 3219 { 3220 int ret = 0; 3221 u64 parent_inode = 0; 3222 u64 parent_gen = 0; 3223 u64 start_ino = ino; 3224 3225 *ancestor_ino = 0; 3226 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3227 fs_path_reset(name); 3228 3229 if (is_waiting_for_rm(sctx, ino, gen)) 3230 break; 3231 if (is_waiting_for_move(sctx, ino)) { 3232 if (*ancestor_ino == 0) 3233 *ancestor_ino = ino; 3234 ret = get_first_ref(sctx->parent_root, ino, 3235 &parent_inode, &parent_gen, name); 3236 } else { 3237 ret = __get_cur_name_and_parent(sctx, ino, gen, 3238 &parent_inode, 3239 &parent_gen, name); 3240 if (ret > 0) { 3241 ret = 0; 3242 break; 3243 } 3244 } 3245 if (ret < 0) 3246 break; 3247 if (parent_inode == start_ino) { 3248 ret = 1; 3249 if (*ancestor_ino == 0) 3250 *ancestor_ino = ino; 3251 break; 3252 } 3253 ino = parent_inode; 3254 gen = parent_gen; 3255 } 3256 return ret; 3257 } 3258 3259 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3260 { 3261 struct fs_path *from_path = NULL; 3262 struct fs_path *to_path = NULL; 3263 struct fs_path *name = NULL; 3264 u64 orig_progress = sctx->send_progress; 3265 struct recorded_ref *cur; 3266 u64 parent_ino, parent_gen; 3267 struct waiting_dir_move *dm = NULL; 3268 u64 rmdir_ino = 0; 3269 u64 rmdir_gen; 3270 u64 ancestor; 3271 bool is_orphan; 3272 int ret; 3273 3274 name = fs_path_alloc(); 3275 from_path = fs_path_alloc(); 3276 if (!name || !from_path) { 3277 ret = -ENOMEM; 3278 goto out; 3279 } 3280 3281 dm = get_waiting_dir_move(sctx, pm->ino); 3282 ASSERT(dm); 3283 rmdir_ino = dm->rmdir_ino; 3284 rmdir_gen = dm->rmdir_gen; 3285 is_orphan = dm->orphanized; 3286 free_waiting_dir_move(sctx, dm); 3287 3288 if (is_orphan) { 3289 ret = gen_unique_name(sctx, pm->ino, 3290 pm->gen, from_path); 3291 } else { 3292 ret = get_first_ref(sctx->parent_root, pm->ino, 3293 &parent_ino, &parent_gen, name); 3294 if (ret < 0) 3295 goto out; 3296 ret = get_cur_path(sctx, parent_ino, parent_gen, 3297 from_path); 3298 if (ret < 0) 3299 goto out; 3300 ret = fs_path_add_path(from_path, name); 3301 } 3302 if (ret < 0) 3303 goto out; 3304 3305 sctx->send_progress = sctx->cur_ino + 1; 3306 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3307 if (ret < 0) 3308 goto out; 3309 if (ret) { 3310 LIST_HEAD(deleted_refs); 3311 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3312 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3313 &pm->update_refs, &deleted_refs, 3314 is_orphan); 3315 if (ret < 0) 3316 goto out; 3317 if (rmdir_ino) { 3318 dm = get_waiting_dir_move(sctx, pm->ino); 3319 ASSERT(dm); 3320 dm->rmdir_ino = rmdir_ino; 3321 dm->rmdir_gen = rmdir_gen; 3322 } 3323 goto out; 3324 } 3325 fs_path_reset(name); 3326 to_path = name; 3327 name = NULL; 3328 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3329 if (ret < 0) 3330 goto out; 3331 3332 ret = send_rename(sctx, from_path, to_path); 3333 if (ret < 0) 3334 goto out; 3335 3336 if (rmdir_ino) { 3337 struct orphan_dir_info *odi; 3338 u64 gen; 3339 3340 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); 3341 if (!odi) { 3342 /* already deleted */ 3343 goto finish; 3344 } 3345 gen = odi->gen; 3346 3347 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino); 3348 if (ret < 0) 3349 goto out; 3350 if (!ret) 3351 goto finish; 3352 3353 name = fs_path_alloc(); 3354 if (!name) { 3355 ret = -ENOMEM; 3356 goto out; 3357 } 3358 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3359 if (ret < 0) 3360 goto out; 3361 ret = send_rmdir(sctx, name); 3362 if (ret < 0) 3363 goto out; 3364 } 3365 3366 finish: 3367 ret = send_utimes(sctx, pm->ino, pm->gen); 3368 if (ret < 0) 3369 goto out; 3370 3371 /* 3372 * After rename/move, need to update the utimes of both new parent(s) 3373 * and old parent(s). 3374 */ 3375 list_for_each_entry(cur, &pm->update_refs, list) { 3376 /* 3377 * The parent inode might have been deleted in the send snapshot 3378 */ 3379 ret = get_inode_info(sctx->send_root, cur->dir, NULL); 3380 if (ret == -ENOENT) { 3381 ret = 0; 3382 continue; 3383 } 3384 if (ret < 0) 3385 goto out; 3386 3387 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3388 if (ret < 0) 3389 goto out; 3390 } 3391 3392 out: 3393 fs_path_free(name); 3394 fs_path_free(from_path); 3395 fs_path_free(to_path); 3396 sctx->send_progress = orig_progress; 3397 3398 return ret; 3399 } 3400 3401 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3402 { 3403 if (!list_empty(&m->list)) 3404 list_del(&m->list); 3405 if (!RB_EMPTY_NODE(&m->node)) 3406 rb_erase(&m->node, &sctx->pending_dir_moves); 3407 __free_recorded_refs(&m->update_refs); 3408 kfree(m); 3409 } 3410 3411 static void tail_append_pending_moves(struct send_ctx *sctx, 3412 struct pending_dir_move *moves, 3413 struct list_head *stack) 3414 { 3415 if (list_empty(&moves->list)) { 3416 list_add_tail(&moves->list, stack); 3417 } else { 3418 LIST_HEAD(list); 3419 list_splice_init(&moves->list, &list); 3420 list_add_tail(&moves->list, stack); 3421 list_splice_tail(&list, stack); 3422 } 3423 if (!RB_EMPTY_NODE(&moves->node)) { 3424 rb_erase(&moves->node, &sctx->pending_dir_moves); 3425 RB_CLEAR_NODE(&moves->node); 3426 } 3427 } 3428 3429 static int apply_children_dir_moves(struct send_ctx *sctx) 3430 { 3431 struct pending_dir_move *pm; 3432 struct list_head stack; 3433 u64 parent_ino = sctx->cur_ino; 3434 int ret = 0; 3435 3436 pm = get_pending_dir_moves(sctx, parent_ino); 3437 if (!pm) 3438 return 0; 3439 3440 INIT_LIST_HEAD(&stack); 3441 tail_append_pending_moves(sctx, pm, &stack); 3442 3443 while (!list_empty(&stack)) { 3444 pm = list_first_entry(&stack, struct pending_dir_move, list); 3445 parent_ino = pm->ino; 3446 ret = apply_dir_move(sctx, pm); 3447 free_pending_move(sctx, pm); 3448 if (ret) 3449 goto out; 3450 pm = get_pending_dir_moves(sctx, parent_ino); 3451 if (pm) 3452 tail_append_pending_moves(sctx, pm, &stack); 3453 } 3454 return 0; 3455 3456 out: 3457 while (!list_empty(&stack)) { 3458 pm = list_first_entry(&stack, struct pending_dir_move, list); 3459 free_pending_move(sctx, pm); 3460 } 3461 return ret; 3462 } 3463 3464 /* 3465 * We might need to delay a directory rename even when no ancestor directory 3466 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3467 * renamed. This happens when we rename a directory to the old name (the name 3468 * in the parent root) of some other unrelated directory that got its rename 3469 * delayed due to some ancestor with higher number that got renamed. 3470 * 3471 * Example: 3472 * 3473 * Parent snapshot: 3474 * . (ino 256) 3475 * |---- a/ (ino 257) 3476 * | |---- file (ino 260) 3477 * | 3478 * |---- b/ (ino 258) 3479 * |---- c/ (ino 259) 3480 * 3481 * Send snapshot: 3482 * . (ino 256) 3483 * |---- a/ (ino 258) 3484 * |---- x/ (ino 259) 3485 * |---- y/ (ino 257) 3486 * |----- file (ino 260) 3487 * 3488 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3489 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3490 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3491 * must issue is: 3492 * 3493 * 1 - rename 259 from 'c' to 'x' 3494 * 2 - rename 257 from 'a' to 'x/y' 3495 * 3 - rename 258 from 'b' to 'a' 3496 * 3497 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3498 * be done right away and < 0 on error. 3499 */ 3500 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3501 struct recorded_ref *parent_ref, 3502 const bool is_orphan) 3503 { 3504 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3505 struct btrfs_path *path; 3506 struct btrfs_key key; 3507 struct btrfs_key di_key; 3508 struct btrfs_dir_item *di; 3509 u64 left_gen; 3510 u64 right_gen; 3511 int ret = 0; 3512 struct waiting_dir_move *wdm; 3513 3514 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3515 return 0; 3516 3517 path = alloc_path_for_send(); 3518 if (!path) 3519 return -ENOMEM; 3520 3521 key.objectid = parent_ref->dir; 3522 key.type = BTRFS_DIR_ITEM_KEY; 3523 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3524 3525 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3526 if (ret < 0) { 3527 goto out; 3528 } else if (ret > 0) { 3529 ret = 0; 3530 goto out; 3531 } 3532 3533 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3534 parent_ref->name_len); 3535 if (!di) { 3536 ret = 0; 3537 goto out; 3538 } 3539 /* 3540 * di_key.objectid has the number of the inode that has a dentry in the 3541 * parent directory with the same name that sctx->cur_ino is being 3542 * renamed to. We need to check if that inode is in the send root as 3543 * well and if it is currently marked as an inode with a pending rename, 3544 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3545 * that it happens after that other inode is renamed. 3546 */ 3547 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3548 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3549 ret = 0; 3550 goto out; 3551 } 3552 3553 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen); 3554 if (ret < 0) 3555 goto out; 3556 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen); 3557 if (ret < 0) { 3558 if (ret == -ENOENT) 3559 ret = 0; 3560 goto out; 3561 } 3562 3563 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3564 if (right_gen != left_gen) { 3565 ret = 0; 3566 goto out; 3567 } 3568 3569 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3570 if (wdm && !wdm->orphanized) { 3571 ret = add_pending_dir_move(sctx, 3572 sctx->cur_ino, 3573 sctx->cur_inode_gen, 3574 di_key.objectid, 3575 &sctx->new_refs, 3576 &sctx->deleted_refs, 3577 is_orphan); 3578 if (!ret) 3579 ret = 1; 3580 } 3581 out: 3582 btrfs_free_path(path); 3583 return ret; 3584 } 3585 3586 /* 3587 * Check if inode ino2, or any of its ancestors, is inode ino1. 3588 * Return 1 if true, 0 if false and < 0 on error. 3589 */ 3590 static int check_ino_in_path(struct btrfs_root *root, 3591 const u64 ino1, 3592 const u64 ino1_gen, 3593 const u64 ino2, 3594 const u64 ino2_gen, 3595 struct fs_path *fs_path) 3596 { 3597 u64 ino = ino2; 3598 3599 if (ino1 == ino2) 3600 return ino1_gen == ino2_gen; 3601 3602 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3603 u64 parent; 3604 u64 parent_gen; 3605 int ret; 3606 3607 fs_path_reset(fs_path); 3608 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3609 if (ret < 0) 3610 return ret; 3611 if (parent == ino1) 3612 return parent_gen == ino1_gen; 3613 ino = parent; 3614 } 3615 return 0; 3616 } 3617 3618 /* 3619 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any 3620 * possible path (in case ino2 is not a directory and has multiple hard links). 3621 * Return 1 if true, 0 if false and < 0 on error. 3622 */ 3623 static int is_ancestor(struct btrfs_root *root, 3624 const u64 ino1, 3625 const u64 ino1_gen, 3626 const u64 ino2, 3627 struct fs_path *fs_path) 3628 { 3629 bool free_fs_path = false; 3630 int ret = 0; 3631 int iter_ret = 0; 3632 struct btrfs_path *path = NULL; 3633 struct btrfs_key key; 3634 3635 if (!fs_path) { 3636 fs_path = fs_path_alloc(); 3637 if (!fs_path) 3638 return -ENOMEM; 3639 free_fs_path = true; 3640 } 3641 3642 path = alloc_path_for_send(); 3643 if (!path) { 3644 ret = -ENOMEM; 3645 goto out; 3646 } 3647 3648 key.objectid = ino2; 3649 key.type = BTRFS_INODE_REF_KEY; 3650 key.offset = 0; 3651 3652 btrfs_for_each_slot(root, &key, &key, path, iter_ret) { 3653 struct extent_buffer *leaf = path->nodes[0]; 3654 int slot = path->slots[0]; 3655 u32 cur_offset = 0; 3656 u32 item_size; 3657 3658 if (key.objectid != ino2) 3659 break; 3660 if (key.type != BTRFS_INODE_REF_KEY && 3661 key.type != BTRFS_INODE_EXTREF_KEY) 3662 break; 3663 3664 item_size = btrfs_item_size(leaf, slot); 3665 while (cur_offset < item_size) { 3666 u64 parent; 3667 u64 parent_gen; 3668 3669 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3670 unsigned long ptr; 3671 struct btrfs_inode_extref *extref; 3672 3673 ptr = btrfs_item_ptr_offset(leaf, slot); 3674 extref = (struct btrfs_inode_extref *) 3675 (ptr + cur_offset); 3676 parent = btrfs_inode_extref_parent(leaf, 3677 extref); 3678 cur_offset += sizeof(*extref); 3679 cur_offset += btrfs_inode_extref_name_len(leaf, 3680 extref); 3681 } else { 3682 parent = key.offset; 3683 cur_offset = item_size; 3684 } 3685 3686 ret = get_inode_gen(root, parent, &parent_gen); 3687 if (ret < 0) 3688 goto out; 3689 ret = check_ino_in_path(root, ino1, ino1_gen, 3690 parent, parent_gen, fs_path); 3691 if (ret) 3692 goto out; 3693 } 3694 } 3695 ret = 0; 3696 if (iter_ret < 0) 3697 ret = iter_ret; 3698 3699 out: 3700 btrfs_free_path(path); 3701 if (free_fs_path) 3702 fs_path_free(fs_path); 3703 return ret; 3704 } 3705 3706 static int wait_for_parent_move(struct send_ctx *sctx, 3707 struct recorded_ref *parent_ref, 3708 const bool is_orphan) 3709 { 3710 int ret = 0; 3711 u64 ino = parent_ref->dir; 3712 u64 ino_gen = parent_ref->dir_gen; 3713 u64 parent_ino_before, parent_ino_after; 3714 struct fs_path *path_before = NULL; 3715 struct fs_path *path_after = NULL; 3716 int len1, len2; 3717 3718 path_after = fs_path_alloc(); 3719 path_before = fs_path_alloc(); 3720 if (!path_after || !path_before) { 3721 ret = -ENOMEM; 3722 goto out; 3723 } 3724 3725 /* 3726 * Our current directory inode may not yet be renamed/moved because some 3727 * ancestor (immediate or not) has to be renamed/moved first. So find if 3728 * such ancestor exists and make sure our own rename/move happens after 3729 * that ancestor is processed to avoid path build infinite loops (done 3730 * at get_cur_path()). 3731 */ 3732 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3733 u64 parent_ino_after_gen; 3734 3735 if (is_waiting_for_move(sctx, ino)) { 3736 /* 3737 * If the current inode is an ancestor of ino in the 3738 * parent root, we need to delay the rename of the 3739 * current inode, otherwise don't delayed the rename 3740 * because we can end up with a circular dependency 3741 * of renames, resulting in some directories never 3742 * getting the respective rename operations issued in 3743 * the send stream or getting into infinite path build 3744 * loops. 3745 */ 3746 ret = is_ancestor(sctx->parent_root, 3747 sctx->cur_ino, sctx->cur_inode_gen, 3748 ino, path_before); 3749 if (ret) 3750 break; 3751 } 3752 3753 fs_path_reset(path_before); 3754 fs_path_reset(path_after); 3755 3756 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3757 &parent_ino_after_gen, path_after); 3758 if (ret < 0) 3759 goto out; 3760 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3761 NULL, path_before); 3762 if (ret < 0 && ret != -ENOENT) { 3763 goto out; 3764 } else if (ret == -ENOENT) { 3765 ret = 0; 3766 break; 3767 } 3768 3769 len1 = fs_path_len(path_before); 3770 len2 = fs_path_len(path_after); 3771 if (ino > sctx->cur_ino && 3772 (parent_ino_before != parent_ino_after || len1 != len2 || 3773 memcmp(path_before->start, path_after->start, len1))) { 3774 u64 parent_ino_gen; 3775 3776 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen); 3777 if (ret < 0) 3778 goto out; 3779 if (ino_gen == parent_ino_gen) { 3780 ret = 1; 3781 break; 3782 } 3783 } 3784 ino = parent_ino_after; 3785 ino_gen = parent_ino_after_gen; 3786 } 3787 3788 out: 3789 fs_path_free(path_before); 3790 fs_path_free(path_after); 3791 3792 if (ret == 1) { 3793 ret = add_pending_dir_move(sctx, 3794 sctx->cur_ino, 3795 sctx->cur_inode_gen, 3796 ino, 3797 &sctx->new_refs, 3798 &sctx->deleted_refs, 3799 is_orphan); 3800 if (!ret) 3801 ret = 1; 3802 } 3803 3804 return ret; 3805 } 3806 3807 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3808 { 3809 int ret; 3810 struct fs_path *new_path; 3811 3812 /* 3813 * Our reference's name member points to its full_path member string, so 3814 * we use here a new path. 3815 */ 3816 new_path = fs_path_alloc(); 3817 if (!new_path) 3818 return -ENOMEM; 3819 3820 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 3821 if (ret < 0) { 3822 fs_path_free(new_path); 3823 return ret; 3824 } 3825 ret = fs_path_add(new_path, ref->name, ref->name_len); 3826 if (ret < 0) { 3827 fs_path_free(new_path); 3828 return ret; 3829 } 3830 3831 fs_path_free(ref->full_path); 3832 set_ref_path(ref, new_path); 3833 3834 return 0; 3835 } 3836 3837 /* 3838 * When processing the new references for an inode we may orphanize an existing 3839 * directory inode because its old name conflicts with one of the new references 3840 * of the current inode. Later, when processing another new reference of our 3841 * inode, we might need to orphanize another inode, but the path we have in the 3842 * reference reflects the pre-orphanization name of the directory we previously 3843 * orphanized. For example: 3844 * 3845 * parent snapshot looks like: 3846 * 3847 * . (ino 256) 3848 * |----- f1 (ino 257) 3849 * |----- f2 (ino 258) 3850 * |----- d1/ (ino 259) 3851 * |----- d2/ (ino 260) 3852 * 3853 * send snapshot looks like: 3854 * 3855 * . (ino 256) 3856 * |----- d1 (ino 258) 3857 * |----- f2/ (ino 259) 3858 * |----- f2_link/ (ino 260) 3859 * | |----- f1 (ino 257) 3860 * | 3861 * |----- d2 (ino 258) 3862 * 3863 * When processing inode 257 we compute the name for inode 259 as "d1", and we 3864 * cache it in the name cache. Later when we start processing inode 258, when 3865 * collecting all its new references we set a full path of "d1/d2" for its new 3866 * reference with name "d2". When we start processing the new references we 3867 * start by processing the new reference with name "d1", and this results in 3868 * orphanizing inode 259, since its old reference causes a conflict. Then we 3869 * move on the next new reference, with name "d2", and we find out we must 3870 * orphanize inode 260, as its old reference conflicts with ours - but for the 3871 * orphanization we use a source path corresponding to the path we stored in the 3872 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 3873 * receiver fail since the path component "d1/" no longer exists, it was renamed 3874 * to "o259-6-0/" when processing the previous new reference. So in this case we 3875 * must recompute the path in the new reference and use it for the new 3876 * orphanization operation. 3877 */ 3878 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3879 { 3880 char *name; 3881 int ret; 3882 3883 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 3884 if (!name) 3885 return -ENOMEM; 3886 3887 fs_path_reset(ref->full_path); 3888 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 3889 if (ret < 0) 3890 goto out; 3891 3892 ret = fs_path_add(ref->full_path, name, ref->name_len); 3893 if (ret < 0) 3894 goto out; 3895 3896 /* Update the reference's base name pointer. */ 3897 set_ref_path(ref, ref->full_path); 3898 out: 3899 kfree(name); 3900 return ret; 3901 } 3902 3903 /* 3904 * This does all the move/link/unlink/rmdir magic. 3905 */ 3906 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3907 { 3908 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 3909 int ret = 0; 3910 struct recorded_ref *cur; 3911 struct recorded_ref *cur2; 3912 struct list_head check_dirs; 3913 struct fs_path *valid_path = NULL; 3914 u64 ow_inode = 0; 3915 u64 ow_gen; 3916 u64 ow_mode; 3917 int did_overwrite = 0; 3918 int is_orphan = 0; 3919 u64 last_dir_ino_rm = 0; 3920 bool can_rename = true; 3921 bool orphanized_dir = false; 3922 bool orphanized_ancestor = false; 3923 3924 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 3925 3926 /* 3927 * This should never happen as the root dir always has the same ref 3928 * which is always '..' 3929 */ 3930 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3931 INIT_LIST_HEAD(&check_dirs); 3932 3933 valid_path = fs_path_alloc(); 3934 if (!valid_path) { 3935 ret = -ENOMEM; 3936 goto out; 3937 } 3938 3939 /* 3940 * First, check if the first ref of the current inode was overwritten 3941 * before. If yes, we know that the current inode was already orphanized 3942 * and thus use the orphan name. If not, we can use get_cur_path to 3943 * get the path of the first ref as it would like while receiving at 3944 * this point in time. 3945 * New inodes are always orphan at the beginning, so force to use the 3946 * orphan name in this case. 3947 * The first ref is stored in valid_path and will be updated if it 3948 * gets moved around. 3949 */ 3950 if (!sctx->cur_inode_new) { 3951 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3952 sctx->cur_inode_gen); 3953 if (ret < 0) 3954 goto out; 3955 if (ret) 3956 did_overwrite = 1; 3957 } 3958 if (sctx->cur_inode_new || did_overwrite) { 3959 ret = gen_unique_name(sctx, sctx->cur_ino, 3960 sctx->cur_inode_gen, valid_path); 3961 if (ret < 0) 3962 goto out; 3963 is_orphan = 1; 3964 } else { 3965 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3966 valid_path); 3967 if (ret < 0) 3968 goto out; 3969 } 3970 3971 /* 3972 * Before doing any rename and link operations, do a first pass on the 3973 * new references to orphanize any unprocessed inodes that may have a 3974 * reference that conflicts with one of the new references of the current 3975 * inode. This needs to happen first because a new reference may conflict 3976 * with the old reference of a parent directory, so we must make sure 3977 * that the path used for link and rename commands don't use an 3978 * orphanized name when an ancestor was not yet orphanized. 3979 * 3980 * Example: 3981 * 3982 * Parent snapshot: 3983 * 3984 * . (ino 256) 3985 * |----- testdir/ (ino 259) 3986 * | |----- a (ino 257) 3987 * | 3988 * |----- b (ino 258) 3989 * 3990 * Send snapshot: 3991 * 3992 * . (ino 256) 3993 * |----- testdir_2/ (ino 259) 3994 * | |----- a (ino 260) 3995 * | 3996 * |----- testdir (ino 257) 3997 * |----- b (ino 257) 3998 * |----- b2 (ino 258) 3999 * 4000 * Processing the new reference for inode 257 with name "b" may happen 4001 * before processing the new reference with name "testdir". If so, we 4002 * must make sure that by the time we send a link command to create the 4003 * hard link "b", inode 259 was already orphanized, since the generated 4004 * path in "valid_path" already contains the orphanized name for 259. 4005 * We are processing inode 257, so only later when processing 259 we do 4006 * the rename operation to change its temporary (orphanized) name to 4007 * "testdir_2". 4008 */ 4009 list_for_each_entry(cur, &sctx->new_refs, list) { 4010 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4011 if (ret < 0) 4012 goto out; 4013 if (ret == inode_state_will_create) 4014 continue; 4015 4016 /* 4017 * Check if this new ref would overwrite the first ref of another 4018 * unprocessed inode. If yes, orphanize the overwritten inode. 4019 * If we find an overwritten ref that is not the first ref, 4020 * simply unlink it. 4021 */ 4022 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4023 cur->name, cur->name_len, 4024 &ow_inode, &ow_gen, &ow_mode); 4025 if (ret < 0) 4026 goto out; 4027 if (ret) { 4028 ret = is_first_ref(sctx->parent_root, 4029 ow_inode, cur->dir, cur->name, 4030 cur->name_len); 4031 if (ret < 0) 4032 goto out; 4033 if (ret) { 4034 struct name_cache_entry *nce; 4035 struct waiting_dir_move *wdm; 4036 4037 if (orphanized_dir) { 4038 ret = refresh_ref_path(sctx, cur); 4039 if (ret < 0) 4040 goto out; 4041 } 4042 4043 ret = orphanize_inode(sctx, ow_inode, ow_gen, 4044 cur->full_path); 4045 if (ret < 0) 4046 goto out; 4047 if (S_ISDIR(ow_mode)) 4048 orphanized_dir = true; 4049 4050 /* 4051 * If ow_inode has its rename operation delayed 4052 * make sure that its orphanized name is used in 4053 * the source path when performing its rename 4054 * operation. 4055 */ 4056 if (is_waiting_for_move(sctx, ow_inode)) { 4057 wdm = get_waiting_dir_move(sctx, 4058 ow_inode); 4059 ASSERT(wdm); 4060 wdm->orphanized = true; 4061 } 4062 4063 /* 4064 * Make sure we clear our orphanized inode's 4065 * name from the name cache. This is because the 4066 * inode ow_inode might be an ancestor of some 4067 * other inode that will be orphanized as well 4068 * later and has an inode number greater than 4069 * sctx->send_progress. We need to prevent 4070 * future name lookups from using the old name 4071 * and get instead the orphan name. 4072 */ 4073 nce = name_cache_search(sctx, ow_inode, ow_gen); 4074 if (nce) { 4075 name_cache_delete(sctx, nce); 4076 kfree(nce); 4077 } 4078 4079 /* 4080 * ow_inode might currently be an ancestor of 4081 * cur_ino, therefore compute valid_path (the 4082 * current path of cur_ino) again because it 4083 * might contain the pre-orphanization name of 4084 * ow_inode, which is no longer valid. 4085 */ 4086 ret = is_ancestor(sctx->parent_root, 4087 ow_inode, ow_gen, 4088 sctx->cur_ino, NULL); 4089 if (ret > 0) { 4090 orphanized_ancestor = true; 4091 fs_path_reset(valid_path); 4092 ret = get_cur_path(sctx, sctx->cur_ino, 4093 sctx->cur_inode_gen, 4094 valid_path); 4095 } 4096 if (ret < 0) 4097 goto out; 4098 } else { 4099 /* 4100 * If we previously orphanized a directory that 4101 * collided with a new reference that we already 4102 * processed, recompute the current path because 4103 * that directory may be part of the path. 4104 */ 4105 if (orphanized_dir) { 4106 ret = refresh_ref_path(sctx, cur); 4107 if (ret < 0) 4108 goto out; 4109 } 4110 ret = send_unlink(sctx, cur->full_path); 4111 if (ret < 0) 4112 goto out; 4113 } 4114 } 4115 4116 } 4117 4118 list_for_each_entry(cur, &sctx->new_refs, list) { 4119 /* 4120 * We may have refs where the parent directory does not exist 4121 * yet. This happens if the parent directories inum is higher 4122 * than the current inum. To handle this case, we create the 4123 * parent directory out of order. But we need to check if this 4124 * did already happen before due to other refs in the same dir. 4125 */ 4126 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4127 if (ret < 0) 4128 goto out; 4129 if (ret == inode_state_will_create) { 4130 ret = 0; 4131 /* 4132 * First check if any of the current inodes refs did 4133 * already create the dir. 4134 */ 4135 list_for_each_entry(cur2, &sctx->new_refs, list) { 4136 if (cur == cur2) 4137 break; 4138 if (cur2->dir == cur->dir) { 4139 ret = 1; 4140 break; 4141 } 4142 } 4143 4144 /* 4145 * If that did not happen, check if a previous inode 4146 * did already create the dir. 4147 */ 4148 if (!ret) 4149 ret = did_create_dir(sctx, cur->dir); 4150 if (ret < 0) 4151 goto out; 4152 if (!ret) { 4153 ret = send_create_inode(sctx, cur->dir); 4154 if (ret < 0) 4155 goto out; 4156 } 4157 } 4158 4159 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4160 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4161 if (ret < 0) 4162 goto out; 4163 if (ret == 1) { 4164 can_rename = false; 4165 *pending_move = 1; 4166 } 4167 } 4168 4169 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4170 can_rename) { 4171 ret = wait_for_parent_move(sctx, cur, is_orphan); 4172 if (ret < 0) 4173 goto out; 4174 if (ret == 1) { 4175 can_rename = false; 4176 *pending_move = 1; 4177 } 4178 } 4179 4180 /* 4181 * link/move the ref to the new place. If we have an orphan 4182 * inode, move it and update valid_path. If not, link or move 4183 * it depending on the inode mode. 4184 */ 4185 if (is_orphan && can_rename) { 4186 ret = send_rename(sctx, valid_path, cur->full_path); 4187 if (ret < 0) 4188 goto out; 4189 is_orphan = 0; 4190 ret = fs_path_copy(valid_path, cur->full_path); 4191 if (ret < 0) 4192 goto out; 4193 } else if (can_rename) { 4194 if (S_ISDIR(sctx->cur_inode_mode)) { 4195 /* 4196 * Dirs can't be linked, so move it. For moved 4197 * dirs, we always have one new and one deleted 4198 * ref. The deleted ref is ignored later. 4199 */ 4200 ret = send_rename(sctx, valid_path, 4201 cur->full_path); 4202 if (!ret) 4203 ret = fs_path_copy(valid_path, 4204 cur->full_path); 4205 if (ret < 0) 4206 goto out; 4207 } else { 4208 /* 4209 * We might have previously orphanized an inode 4210 * which is an ancestor of our current inode, 4211 * so our reference's full path, which was 4212 * computed before any such orphanizations, must 4213 * be updated. 4214 */ 4215 if (orphanized_dir) { 4216 ret = update_ref_path(sctx, cur); 4217 if (ret < 0) 4218 goto out; 4219 } 4220 ret = send_link(sctx, cur->full_path, 4221 valid_path); 4222 if (ret < 0) 4223 goto out; 4224 } 4225 } 4226 ret = dup_ref(cur, &check_dirs); 4227 if (ret < 0) 4228 goto out; 4229 } 4230 4231 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4232 /* 4233 * Check if we can already rmdir the directory. If not, 4234 * orphanize it. For every dir item inside that gets deleted 4235 * later, we do this check again and rmdir it then if possible. 4236 * See the use of check_dirs for more details. 4237 */ 4238 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4239 sctx->cur_ino); 4240 if (ret < 0) 4241 goto out; 4242 if (ret) { 4243 ret = send_rmdir(sctx, valid_path); 4244 if (ret < 0) 4245 goto out; 4246 } else if (!is_orphan) { 4247 ret = orphanize_inode(sctx, sctx->cur_ino, 4248 sctx->cur_inode_gen, valid_path); 4249 if (ret < 0) 4250 goto out; 4251 is_orphan = 1; 4252 } 4253 4254 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4255 ret = dup_ref(cur, &check_dirs); 4256 if (ret < 0) 4257 goto out; 4258 } 4259 } else if (S_ISDIR(sctx->cur_inode_mode) && 4260 !list_empty(&sctx->deleted_refs)) { 4261 /* 4262 * We have a moved dir. Add the old parent to check_dirs 4263 */ 4264 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4265 list); 4266 ret = dup_ref(cur, &check_dirs); 4267 if (ret < 0) 4268 goto out; 4269 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4270 /* 4271 * We have a non dir inode. Go through all deleted refs and 4272 * unlink them if they were not already overwritten by other 4273 * inodes. 4274 */ 4275 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4276 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4277 sctx->cur_ino, sctx->cur_inode_gen, 4278 cur->name, cur->name_len); 4279 if (ret < 0) 4280 goto out; 4281 if (!ret) { 4282 /* 4283 * If we orphanized any ancestor before, we need 4284 * to recompute the full path for deleted names, 4285 * since any such path was computed before we 4286 * processed any references and orphanized any 4287 * ancestor inode. 4288 */ 4289 if (orphanized_ancestor) { 4290 ret = update_ref_path(sctx, cur); 4291 if (ret < 0) 4292 goto out; 4293 } 4294 ret = send_unlink(sctx, cur->full_path); 4295 if (ret < 0) 4296 goto out; 4297 } 4298 ret = dup_ref(cur, &check_dirs); 4299 if (ret < 0) 4300 goto out; 4301 } 4302 /* 4303 * If the inode is still orphan, unlink the orphan. This may 4304 * happen when a previous inode did overwrite the first ref 4305 * of this inode and no new refs were added for the current 4306 * inode. Unlinking does not mean that the inode is deleted in 4307 * all cases. There may still be links to this inode in other 4308 * places. 4309 */ 4310 if (is_orphan) { 4311 ret = send_unlink(sctx, valid_path); 4312 if (ret < 0) 4313 goto out; 4314 } 4315 } 4316 4317 /* 4318 * We did collect all parent dirs where cur_inode was once located. We 4319 * now go through all these dirs and check if they are pending for 4320 * deletion and if it's finally possible to perform the rmdir now. 4321 * We also update the inode stats of the parent dirs here. 4322 */ 4323 list_for_each_entry(cur, &check_dirs, list) { 4324 /* 4325 * In case we had refs into dirs that were not processed yet, 4326 * we don't need to do the utime and rmdir logic for these dirs. 4327 * The dir will be processed later. 4328 */ 4329 if (cur->dir > sctx->cur_ino) 4330 continue; 4331 4332 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4333 if (ret < 0) 4334 goto out; 4335 4336 if (ret == inode_state_did_create || 4337 ret == inode_state_no_change) { 4338 /* TODO delayed utimes */ 4339 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 4340 if (ret < 0) 4341 goto out; 4342 } else if (ret == inode_state_did_delete && 4343 cur->dir != last_dir_ino_rm) { 4344 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 4345 sctx->cur_ino); 4346 if (ret < 0) 4347 goto out; 4348 if (ret) { 4349 ret = get_cur_path(sctx, cur->dir, 4350 cur->dir_gen, valid_path); 4351 if (ret < 0) 4352 goto out; 4353 ret = send_rmdir(sctx, valid_path); 4354 if (ret < 0) 4355 goto out; 4356 last_dir_ino_rm = cur->dir; 4357 } 4358 } 4359 } 4360 4361 ret = 0; 4362 4363 out: 4364 __free_recorded_refs(&check_dirs); 4365 free_recorded_refs(sctx); 4366 fs_path_free(valid_path); 4367 return ret; 4368 } 4369 4370 static int rbtree_ref_comp(const void *k, const struct rb_node *node) 4371 { 4372 const struct recorded_ref *data = k; 4373 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node); 4374 int result; 4375 4376 if (data->dir > ref->dir) 4377 return 1; 4378 if (data->dir < ref->dir) 4379 return -1; 4380 if (data->dir_gen > ref->dir_gen) 4381 return 1; 4382 if (data->dir_gen < ref->dir_gen) 4383 return -1; 4384 if (data->name_len > ref->name_len) 4385 return 1; 4386 if (data->name_len < ref->name_len) 4387 return -1; 4388 result = strcmp(data->name, ref->name); 4389 if (result > 0) 4390 return 1; 4391 if (result < 0) 4392 return -1; 4393 return 0; 4394 } 4395 4396 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent) 4397 { 4398 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node); 4399 4400 return rbtree_ref_comp(entry, parent) < 0; 4401 } 4402 4403 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs, 4404 struct fs_path *name, u64 dir, u64 dir_gen, 4405 struct send_ctx *sctx) 4406 { 4407 int ret = 0; 4408 struct fs_path *path = NULL; 4409 struct recorded_ref *ref = NULL; 4410 4411 path = fs_path_alloc(); 4412 if (!path) { 4413 ret = -ENOMEM; 4414 goto out; 4415 } 4416 4417 ref = recorded_ref_alloc(); 4418 if (!ref) { 4419 ret = -ENOMEM; 4420 goto out; 4421 } 4422 4423 ret = get_cur_path(sctx, dir, dir_gen, path); 4424 if (ret < 0) 4425 goto out; 4426 ret = fs_path_add_path(path, name); 4427 if (ret < 0) 4428 goto out; 4429 4430 ref->dir = dir; 4431 ref->dir_gen = dir_gen; 4432 set_ref_path(ref, path); 4433 list_add_tail(&ref->list, refs); 4434 rb_add(&ref->node, root, rbtree_ref_less); 4435 ref->root = root; 4436 out: 4437 if (ret) { 4438 if (path && (!ref || !ref->full_path)) 4439 fs_path_free(path); 4440 recorded_ref_free(ref); 4441 } 4442 return ret; 4443 } 4444 4445 static int record_new_ref_if_needed(int num, u64 dir, int index, 4446 struct fs_path *name, void *ctx) 4447 { 4448 int ret = 0; 4449 struct send_ctx *sctx = ctx; 4450 struct rb_node *node = NULL; 4451 struct recorded_ref data; 4452 struct recorded_ref *ref; 4453 u64 dir_gen; 4454 4455 ret = get_inode_gen(sctx->send_root, dir, &dir_gen); 4456 if (ret < 0) 4457 goto out; 4458 4459 data.dir = dir; 4460 data.dir_gen = dir_gen; 4461 set_ref_path(&data, name); 4462 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp); 4463 if (node) { 4464 ref = rb_entry(node, struct recorded_ref, node); 4465 recorded_ref_free(ref); 4466 } else { 4467 ret = record_ref_in_tree(&sctx->rbtree_new_refs, 4468 &sctx->new_refs, name, dir, dir_gen, 4469 sctx); 4470 } 4471 out: 4472 return ret; 4473 } 4474 4475 static int record_deleted_ref_if_needed(int num, u64 dir, int index, 4476 struct fs_path *name, void *ctx) 4477 { 4478 int ret = 0; 4479 struct send_ctx *sctx = ctx; 4480 struct rb_node *node = NULL; 4481 struct recorded_ref data; 4482 struct recorded_ref *ref; 4483 u64 dir_gen; 4484 4485 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen); 4486 if (ret < 0) 4487 goto out; 4488 4489 data.dir = dir; 4490 data.dir_gen = dir_gen; 4491 set_ref_path(&data, name); 4492 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp); 4493 if (node) { 4494 ref = rb_entry(node, struct recorded_ref, node); 4495 recorded_ref_free(ref); 4496 } else { 4497 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs, 4498 &sctx->deleted_refs, name, dir, 4499 dir_gen, sctx); 4500 } 4501 out: 4502 return ret; 4503 } 4504 4505 static int record_new_ref(struct send_ctx *sctx) 4506 { 4507 int ret; 4508 4509 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4510 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4511 if (ret < 0) 4512 goto out; 4513 ret = 0; 4514 4515 out: 4516 return ret; 4517 } 4518 4519 static int record_deleted_ref(struct send_ctx *sctx) 4520 { 4521 int ret; 4522 4523 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4524 sctx->cmp_key, 0, record_deleted_ref_if_needed, 4525 sctx); 4526 if (ret < 0) 4527 goto out; 4528 ret = 0; 4529 4530 out: 4531 return ret; 4532 } 4533 4534 static int record_changed_ref(struct send_ctx *sctx) 4535 { 4536 int ret = 0; 4537 4538 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4539 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4540 if (ret < 0) 4541 goto out; 4542 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4543 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx); 4544 if (ret < 0) 4545 goto out; 4546 ret = 0; 4547 4548 out: 4549 return ret; 4550 } 4551 4552 /* 4553 * Record and process all refs at once. Needed when an inode changes the 4554 * generation number, which means that it was deleted and recreated. 4555 */ 4556 static int process_all_refs(struct send_ctx *sctx, 4557 enum btrfs_compare_tree_result cmd) 4558 { 4559 int ret = 0; 4560 int iter_ret = 0; 4561 struct btrfs_root *root; 4562 struct btrfs_path *path; 4563 struct btrfs_key key; 4564 struct btrfs_key found_key; 4565 iterate_inode_ref_t cb; 4566 int pending_move = 0; 4567 4568 path = alloc_path_for_send(); 4569 if (!path) 4570 return -ENOMEM; 4571 4572 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4573 root = sctx->send_root; 4574 cb = record_new_ref_if_needed; 4575 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4576 root = sctx->parent_root; 4577 cb = record_deleted_ref_if_needed; 4578 } else { 4579 btrfs_err(sctx->send_root->fs_info, 4580 "Wrong command %d in process_all_refs", cmd); 4581 ret = -EINVAL; 4582 goto out; 4583 } 4584 4585 key.objectid = sctx->cmp_key->objectid; 4586 key.type = BTRFS_INODE_REF_KEY; 4587 key.offset = 0; 4588 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 4589 if (found_key.objectid != key.objectid || 4590 (found_key.type != BTRFS_INODE_REF_KEY && 4591 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4592 break; 4593 4594 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4595 if (ret < 0) 4596 goto out; 4597 } 4598 /* Catch error found during iteration */ 4599 if (iter_ret < 0) { 4600 ret = iter_ret; 4601 goto out; 4602 } 4603 btrfs_release_path(path); 4604 4605 /* 4606 * We don't actually care about pending_move as we are simply 4607 * re-creating this inode and will be rename'ing it into place once we 4608 * rename the parent directory. 4609 */ 4610 ret = process_recorded_refs(sctx, &pending_move); 4611 out: 4612 btrfs_free_path(path); 4613 return ret; 4614 } 4615 4616 static int send_set_xattr(struct send_ctx *sctx, 4617 struct fs_path *path, 4618 const char *name, int name_len, 4619 const char *data, int data_len) 4620 { 4621 int ret = 0; 4622 4623 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4624 if (ret < 0) 4625 goto out; 4626 4627 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4628 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4629 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4630 4631 ret = send_cmd(sctx); 4632 4633 tlv_put_failure: 4634 out: 4635 return ret; 4636 } 4637 4638 static int send_remove_xattr(struct send_ctx *sctx, 4639 struct fs_path *path, 4640 const char *name, int name_len) 4641 { 4642 int ret = 0; 4643 4644 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4645 if (ret < 0) 4646 goto out; 4647 4648 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4649 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4650 4651 ret = send_cmd(sctx); 4652 4653 tlv_put_failure: 4654 out: 4655 return ret; 4656 } 4657 4658 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4659 const char *name, int name_len, const char *data, 4660 int data_len, void *ctx) 4661 { 4662 int ret; 4663 struct send_ctx *sctx = ctx; 4664 struct fs_path *p; 4665 struct posix_acl_xattr_header dummy_acl; 4666 4667 /* Capabilities are emitted by finish_inode_if_needed */ 4668 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4669 return 0; 4670 4671 p = fs_path_alloc(); 4672 if (!p) 4673 return -ENOMEM; 4674 4675 /* 4676 * This hack is needed because empty acls are stored as zero byte 4677 * data in xattrs. Problem with that is, that receiving these zero byte 4678 * acls will fail later. To fix this, we send a dummy acl list that 4679 * only contains the version number and no entries. 4680 */ 4681 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4682 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4683 if (data_len == 0) { 4684 dummy_acl.a_version = 4685 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4686 data = (char *)&dummy_acl; 4687 data_len = sizeof(dummy_acl); 4688 } 4689 } 4690 4691 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4692 if (ret < 0) 4693 goto out; 4694 4695 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4696 4697 out: 4698 fs_path_free(p); 4699 return ret; 4700 } 4701 4702 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4703 const char *name, int name_len, 4704 const char *data, int data_len, void *ctx) 4705 { 4706 int ret; 4707 struct send_ctx *sctx = ctx; 4708 struct fs_path *p; 4709 4710 p = fs_path_alloc(); 4711 if (!p) 4712 return -ENOMEM; 4713 4714 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4715 if (ret < 0) 4716 goto out; 4717 4718 ret = send_remove_xattr(sctx, p, name, name_len); 4719 4720 out: 4721 fs_path_free(p); 4722 return ret; 4723 } 4724 4725 static int process_new_xattr(struct send_ctx *sctx) 4726 { 4727 int ret = 0; 4728 4729 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4730 __process_new_xattr, sctx); 4731 4732 return ret; 4733 } 4734 4735 static int process_deleted_xattr(struct send_ctx *sctx) 4736 { 4737 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4738 __process_deleted_xattr, sctx); 4739 } 4740 4741 struct find_xattr_ctx { 4742 const char *name; 4743 int name_len; 4744 int found_idx; 4745 char *found_data; 4746 int found_data_len; 4747 }; 4748 4749 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name, 4750 int name_len, const char *data, int data_len, void *vctx) 4751 { 4752 struct find_xattr_ctx *ctx = vctx; 4753 4754 if (name_len == ctx->name_len && 4755 strncmp(name, ctx->name, name_len) == 0) { 4756 ctx->found_idx = num; 4757 ctx->found_data_len = data_len; 4758 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4759 if (!ctx->found_data) 4760 return -ENOMEM; 4761 return 1; 4762 } 4763 return 0; 4764 } 4765 4766 static int find_xattr(struct btrfs_root *root, 4767 struct btrfs_path *path, 4768 struct btrfs_key *key, 4769 const char *name, int name_len, 4770 char **data, int *data_len) 4771 { 4772 int ret; 4773 struct find_xattr_ctx ctx; 4774 4775 ctx.name = name; 4776 ctx.name_len = name_len; 4777 ctx.found_idx = -1; 4778 ctx.found_data = NULL; 4779 ctx.found_data_len = 0; 4780 4781 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 4782 if (ret < 0) 4783 return ret; 4784 4785 if (ctx.found_idx == -1) 4786 return -ENOENT; 4787 if (data) { 4788 *data = ctx.found_data; 4789 *data_len = ctx.found_data_len; 4790 } else { 4791 kfree(ctx.found_data); 4792 } 4793 return ctx.found_idx; 4794 } 4795 4796 4797 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4798 const char *name, int name_len, 4799 const char *data, int data_len, 4800 void *ctx) 4801 { 4802 int ret; 4803 struct send_ctx *sctx = ctx; 4804 char *found_data = NULL; 4805 int found_data_len = 0; 4806 4807 ret = find_xattr(sctx->parent_root, sctx->right_path, 4808 sctx->cmp_key, name, name_len, &found_data, 4809 &found_data_len); 4810 if (ret == -ENOENT) { 4811 ret = __process_new_xattr(num, di_key, name, name_len, data, 4812 data_len, ctx); 4813 } else if (ret >= 0) { 4814 if (data_len != found_data_len || 4815 memcmp(data, found_data, data_len)) { 4816 ret = __process_new_xattr(num, di_key, name, name_len, 4817 data, data_len, ctx); 4818 } else { 4819 ret = 0; 4820 } 4821 } 4822 4823 kfree(found_data); 4824 return ret; 4825 } 4826 4827 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4828 const char *name, int name_len, 4829 const char *data, int data_len, 4830 void *ctx) 4831 { 4832 int ret; 4833 struct send_ctx *sctx = ctx; 4834 4835 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4836 name, name_len, NULL, NULL); 4837 if (ret == -ENOENT) 4838 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4839 data_len, ctx); 4840 else if (ret >= 0) 4841 ret = 0; 4842 4843 return ret; 4844 } 4845 4846 static int process_changed_xattr(struct send_ctx *sctx) 4847 { 4848 int ret = 0; 4849 4850 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4851 __process_changed_new_xattr, sctx); 4852 if (ret < 0) 4853 goto out; 4854 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4855 __process_changed_deleted_xattr, sctx); 4856 4857 out: 4858 return ret; 4859 } 4860 4861 static int process_all_new_xattrs(struct send_ctx *sctx) 4862 { 4863 int ret = 0; 4864 int iter_ret = 0; 4865 struct btrfs_root *root; 4866 struct btrfs_path *path; 4867 struct btrfs_key key; 4868 struct btrfs_key found_key; 4869 4870 path = alloc_path_for_send(); 4871 if (!path) 4872 return -ENOMEM; 4873 4874 root = sctx->send_root; 4875 4876 key.objectid = sctx->cmp_key->objectid; 4877 key.type = BTRFS_XATTR_ITEM_KEY; 4878 key.offset = 0; 4879 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 4880 if (found_key.objectid != key.objectid || 4881 found_key.type != key.type) { 4882 ret = 0; 4883 break; 4884 } 4885 4886 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 4887 if (ret < 0) 4888 break; 4889 } 4890 /* Catch error found during iteration */ 4891 if (iter_ret < 0) 4892 ret = iter_ret; 4893 4894 btrfs_free_path(path); 4895 return ret; 4896 } 4897 4898 static int send_verity(struct send_ctx *sctx, struct fs_path *path, 4899 struct fsverity_descriptor *desc) 4900 { 4901 int ret; 4902 4903 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY); 4904 if (ret < 0) 4905 goto out; 4906 4907 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4908 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM, 4909 le8_to_cpu(desc->hash_algorithm)); 4910 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE, 4911 1U << le8_to_cpu(desc->log_blocksize)); 4912 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt, 4913 le8_to_cpu(desc->salt_size)); 4914 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature, 4915 le32_to_cpu(desc->sig_size)); 4916 4917 ret = send_cmd(sctx); 4918 4919 tlv_put_failure: 4920 out: 4921 return ret; 4922 } 4923 4924 static int process_verity(struct send_ctx *sctx) 4925 { 4926 int ret = 0; 4927 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4928 struct inode *inode; 4929 struct fs_path *p; 4930 4931 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, sctx->send_root); 4932 if (IS_ERR(inode)) 4933 return PTR_ERR(inode); 4934 4935 ret = btrfs_get_verity_descriptor(inode, NULL, 0); 4936 if (ret < 0) 4937 goto iput; 4938 4939 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) { 4940 ret = -EMSGSIZE; 4941 goto iput; 4942 } 4943 if (!sctx->verity_descriptor) { 4944 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE, 4945 GFP_KERNEL); 4946 if (!sctx->verity_descriptor) { 4947 ret = -ENOMEM; 4948 goto iput; 4949 } 4950 } 4951 4952 ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret); 4953 if (ret < 0) 4954 goto iput; 4955 4956 p = fs_path_alloc(); 4957 if (!p) { 4958 ret = -ENOMEM; 4959 goto iput; 4960 } 4961 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4962 if (ret < 0) 4963 goto free_path; 4964 4965 ret = send_verity(sctx, p, sctx->verity_descriptor); 4966 if (ret < 0) 4967 goto free_path; 4968 4969 free_path: 4970 fs_path_free(p); 4971 iput: 4972 iput(inode); 4973 return ret; 4974 } 4975 4976 static inline u64 max_send_read_size(const struct send_ctx *sctx) 4977 { 4978 return sctx->send_max_size - SZ_16K; 4979 } 4980 4981 static int put_data_header(struct send_ctx *sctx, u32 len) 4982 { 4983 if (WARN_ON_ONCE(sctx->put_data)) 4984 return -EINVAL; 4985 sctx->put_data = true; 4986 if (sctx->proto >= 2) { 4987 /* 4988 * Since v2, the data attribute header doesn't include a length, 4989 * it is implicitly to the end of the command. 4990 */ 4991 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len) 4992 return -EOVERFLOW; 4993 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size); 4994 sctx->send_size += sizeof(__le16); 4995 } else { 4996 struct btrfs_tlv_header *hdr; 4997 4998 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) 4999 return -EOVERFLOW; 5000 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 5001 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 5002 put_unaligned_le16(len, &hdr->tlv_len); 5003 sctx->send_size += sizeof(*hdr); 5004 } 5005 return 0; 5006 } 5007 5008 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 5009 { 5010 struct btrfs_root *root = sctx->send_root; 5011 struct btrfs_fs_info *fs_info = root->fs_info; 5012 struct page *page; 5013 pgoff_t index = offset >> PAGE_SHIFT; 5014 pgoff_t last_index; 5015 unsigned pg_offset = offset_in_page(offset); 5016 int ret; 5017 5018 ret = put_data_header(sctx, len); 5019 if (ret) 5020 return ret; 5021 5022 last_index = (offset + len - 1) >> PAGE_SHIFT; 5023 5024 while (index <= last_index) { 5025 unsigned cur_len = min_t(unsigned, len, 5026 PAGE_SIZE - pg_offset); 5027 5028 page = find_lock_page(sctx->cur_inode->i_mapping, index); 5029 if (!page) { 5030 page_cache_sync_readahead(sctx->cur_inode->i_mapping, 5031 &sctx->ra, NULL, index, 5032 last_index + 1 - index); 5033 5034 page = find_or_create_page(sctx->cur_inode->i_mapping, 5035 index, GFP_KERNEL); 5036 if (!page) { 5037 ret = -ENOMEM; 5038 break; 5039 } 5040 } 5041 5042 if (PageReadahead(page)) 5043 page_cache_async_readahead(sctx->cur_inode->i_mapping, 5044 &sctx->ra, NULL, page_folio(page), 5045 index, last_index + 1 - index); 5046 5047 if (!PageUptodate(page)) { 5048 btrfs_read_folio(NULL, page_folio(page)); 5049 lock_page(page); 5050 if (!PageUptodate(page)) { 5051 unlock_page(page); 5052 btrfs_err(fs_info, 5053 "send: IO error at offset %llu for inode %llu root %llu", 5054 page_offset(page), sctx->cur_ino, 5055 sctx->send_root->root_key.objectid); 5056 put_page(page); 5057 ret = -EIO; 5058 break; 5059 } 5060 } 5061 5062 memcpy_from_page(sctx->send_buf + sctx->send_size, page, 5063 pg_offset, cur_len); 5064 unlock_page(page); 5065 put_page(page); 5066 index++; 5067 pg_offset = 0; 5068 len -= cur_len; 5069 sctx->send_size += cur_len; 5070 } 5071 5072 return ret; 5073 } 5074 5075 /* 5076 * Read some bytes from the current inode/file and send a write command to 5077 * user space. 5078 */ 5079 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 5080 { 5081 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5082 int ret = 0; 5083 struct fs_path *p; 5084 5085 p = fs_path_alloc(); 5086 if (!p) 5087 return -ENOMEM; 5088 5089 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 5090 5091 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5092 if (ret < 0) 5093 goto out; 5094 5095 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5096 if (ret < 0) 5097 goto out; 5098 5099 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5100 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5101 ret = put_file_data(sctx, offset, len); 5102 if (ret < 0) 5103 goto out; 5104 5105 ret = send_cmd(sctx); 5106 5107 tlv_put_failure: 5108 out: 5109 fs_path_free(p); 5110 return ret; 5111 } 5112 5113 /* 5114 * Send a clone command to user space. 5115 */ 5116 static int send_clone(struct send_ctx *sctx, 5117 u64 offset, u32 len, 5118 struct clone_root *clone_root) 5119 { 5120 int ret = 0; 5121 struct fs_path *p; 5122 u64 gen; 5123 5124 btrfs_debug(sctx->send_root->fs_info, 5125 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 5126 offset, len, clone_root->root->root_key.objectid, 5127 clone_root->ino, clone_root->offset); 5128 5129 p = fs_path_alloc(); 5130 if (!p) 5131 return -ENOMEM; 5132 5133 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5134 if (ret < 0) 5135 goto out; 5136 5137 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5138 if (ret < 0) 5139 goto out; 5140 5141 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5142 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5143 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5144 5145 if (clone_root->root == sctx->send_root) { 5146 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen); 5147 if (ret < 0) 5148 goto out; 5149 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5150 } else { 5151 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5152 } 5153 if (ret < 0) 5154 goto out; 5155 5156 /* 5157 * If the parent we're using has a received_uuid set then use that as 5158 * our clone source as that is what we will look for when doing a 5159 * receive. 5160 * 5161 * This covers the case that we create a snapshot off of a received 5162 * subvolume and then use that as the parent and try to receive on a 5163 * different host. 5164 */ 5165 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5166 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5167 clone_root->root->root_item.received_uuid); 5168 else 5169 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5170 clone_root->root->root_item.uuid); 5171 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5172 btrfs_root_ctransid(&clone_root->root->root_item)); 5173 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5174 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5175 clone_root->offset); 5176 5177 ret = send_cmd(sctx); 5178 5179 tlv_put_failure: 5180 out: 5181 fs_path_free(p); 5182 return ret; 5183 } 5184 5185 /* 5186 * Send an update extent command to user space. 5187 */ 5188 static int send_update_extent(struct send_ctx *sctx, 5189 u64 offset, u32 len) 5190 { 5191 int ret = 0; 5192 struct fs_path *p; 5193 5194 p = fs_path_alloc(); 5195 if (!p) 5196 return -ENOMEM; 5197 5198 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5199 if (ret < 0) 5200 goto out; 5201 5202 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5203 if (ret < 0) 5204 goto out; 5205 5206 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5207 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5208 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5209 5210 ret = send_cmd(sctx); 5211 5212 tlv_put_failure: 5213 out: 5214 fs_path_free(p); 5215 return ret; 5216 } 5217 5218 static int send_hole(struct send_ctx *sctx, u64 end) 5219 { 5220 struct fs_path *p = NULL; 5221 u64 read_size = max_send_read_size(sctx); 5222 u64 offset = sctx->cur_inode_last_extent; 5223 int ret = 0; 5224 5225 /* 5226 * A hole that starts at EOF or beyond it. Since we do not yet support 5227 * fallocate (for extent preallocation and hole punching), sending a 5228 * write of zeroes starting at EOF or beyond would later require issuing 5229 * a truncate operation which would undo the write and achieve nothing. 5230 */ 5231 if (offset >= sctx->cur_inode_size) 5232 return 0; 5233 5234 /* 5235 * Don't go beyond the inode's i_size due to prealloc extents that start 5236 * after the i_size. 5237 */ 5238 end = min_t(u64, end, sctx->cur_inode_size); 5239 5240 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5241 return send_update_extent(sctx, offset, end - offset); 5242 5243 p = fs_path_alloc(); 5244 if (!p) 5245 return -ENOMEM; 5246 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5247 if (ret < 0) 5248 goto tlv_put_failure; 5249 while (offset < end) { 5250 u64 len = min(end - offset, read_size); 5251 5252 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5253 if (ret < 0) 5254 break; 5255 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5256 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5257 ret = put_data_header(sctx, len); 5258 if (ret < 0) 5259 break; 5260 memset(sctx->send_buf + sctx->send_size, 0, len); 5261 sctx->send_size += len; 5262 ret = send_cmd(sctx); 5263 if (ret < 0) 5264 break; 5265 offset += len; 5266 } 5267 sctx->cur_inode_next_write_offset = offset; 5268 tlv_put_failure: 5269 fs_path_free(p); 5270 return ret; 5271 } 5272 5273 static int send_encoded_inline_extent(struct send_ctx *sctx, 5274 struct btrfs_path *path, u64 offset, 5275 u64 len) 5276 { 5277 struct btrfs_root *root = sctx->send_root; 5278 struct btrfs_fs_info *fs_info = root->fs_info; 5279 struct inode *inode; 5280 struct fs_path *fspath; 5281 struct extent_buffer *leaf = path->nodes[0]; 5282 struct btrfs_key key; 5283 struct btrfs_file_extent_item *ei; 5284 u64 ram_bytes; 5285 size_t inline_size; 5286 int ret; 5287 5288 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root); 5289 if (IS_ERR(inode)) 5290 return PTR_ERR(inode); 5291 5292 fspath = fs_path_alloc(); 5293 if (!fspath) { 5294 ret = -ENOMEM; 5295 goto out; 5296 } 5297 5298 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5299 if (ret < 0) 5300 goto out; 5301 5302 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5303 if (ret < 0) 5304 goto out; 5305 5306 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5307 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5308 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei); 5309 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 5310 5311 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5312 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5313 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5314 min(key.offset + ram_bytes - offset, len)); 5315 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes); 5316 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset); 5317 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5318 btrfs_file_extent_compression(leaf, ei)); 5319 if (ret < 0) 5320 goto out; 5321 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5322 5323 ret = put_data_header(sctx, inline_size); 5324 if (ret < 0) 5325 goto out; 5326 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size, 5327 btrfs_file_extent_inline_start(ei), inline_size); 5328 sctx->send_size += inline_size; 5329 5330 ret = send_cmd(sctx); 5331 5332 tlv_put_failure: 5333 out: 5334 fs_path_free(fspath); 5335 iput(inode); 5336 return ret; 5337 } 5338 5339 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path, 5340 u64 offset, u64 len) 5341 { 5342 struct btrfs_root *root = sctx->send_root; 5343 struct btrfs_fs_info *fs_info = root->fs_info; 5344 struct inode *inode; 5345 struct fs_path *fspath; 5346 struct extent_buffer *leaf = path->nodes[0]; 5347 struct btrfs_key key; 5348 struct btrfs_file_extent_item *ei; 5349 u64 disk_bytenr, disk_num_bytes; 5350 u32 data_offset; 5351 struct btrfs_cmd_header *hdr; 5352 u32 crc; 5353 int ret; 5354 5355 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root); 5356 if (IS_ERR(inode)) 5357 return PTR_ERR(inode); 5358 5359 fspath = fs_path_alloc(); 5360 if (!fspath) { 5361 ret = -ENOMEM; 5362 goto out; 5363 } 5364 5365 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5366 if (ret < 0) 5367 goto out; 5368 5369 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5370 if (ret < 0) 5371 goto out; 5372 5373 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5374 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5375 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 5376 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei); 5377 5378 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5379 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5380 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5381 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset, 5382 len)); 5383 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, 5384 btrfs_file_extent_ram_bytes(leaf, ei)); 5385 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, 5386 offset - key.offset + btrfs_file_extent_offset(leaf, ei)); 5387 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5388 btrfs_file_extent_compression(leaf, ei)); 5389 if (ret < 0) 5390 goto out; 5391 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5392 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0); 5393 5394 ret = put_data_header(sctx, disk_num_bytes); 5395 if (ret < 0) 5396 goto out; 5397 5398 /* 5399 * We want to do I/O directly into the send buffer, so get the next page 5400 * boundary in the send buffer. This means that there may be a gap 5401 * between the beginning of the command and the file data. 5402 */ 5403 data_offset = ALIGN(sctx->send_size, PAGE_SIZE); 5404 if (data_offset > sctx->send_max_size || 5405 sctx->send_max_size - data_offset < disk_num_bytes) { 5406 ret = -EOVERFLOW; 5407 goto out; 5408 } 5409 5410 /* 5411 * Note that send_buf is a mapping of send_buf_pages, so this is really 5412 * reading into send_buf. 5413 */ 5414 ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset, 5415 disk_bytenr, disk_num_bytes, 5416 sctx->send_buf_pages + 5417 (data_offset >> PAGE_SHIFT)); 5418 if (ret) 5419 goto out; 5420 5421 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 5422 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr)); 5423 hdr->crc = 0; 5424 crc = btrfs_crc32c(0, sctx->send_buf, sctx->send_size); 5425 crc = btrfs_crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes); 5426 hdr->crc = cpu_to_le32(crc); 5427 5428 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 5429 &sctx->send_off); 5430 if (!ret) { 5431 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset, 5432 disk_num_bytes, &sctx->send_off); 5433 } 5434 sctx->send_size = 0; 5435 sctx->put_data = false; 5436 5437 tlv_put_failure: 5438 out: 5439 fs_path_free(fspath); 5440 iput(inode); 5441 return ret; 5442 } 5443 5444 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path, 5445 const u64 offset, const u64 len) 5446 { 5447 const u64 end = offset + len; 5448 struct extent_buffer *leaf = path->nodes[0]; 5449 struct btrfs_file_extent_item *ei; 5450 u64 read_size = max_send_read_size(sctx); 5451 u64 sent = 0; 5452 5453 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5454 return send_update_extent(sctx, offset, len); 5455 5456 ei = btrfs_item_ptr(leaf, path->slots[0], 5457 struct btrfs_file_extent_item); 5458 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) && 5459 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 5460 bool is_inline = (btrfs_file_extent_type(leaf, ei) == 5461 BTRFS_FILE_EXTENT_INLINE); 5462 5463 /* 5464 * Send the compressed extent unless the compressed data is 5465 * larger than the decompressed data. This can happen if we're 5466 * not sending the entire extent, either because it has been 5467 * partially overwritten/truncated or because this is a part of 5468 * the extent that we couldn't clone in clone_range(). 5469 */ 5470 if (is_inline && 5471 btrfs_file_extent_inline_item_len(leaf, 5472 path->slots[0]) <= len) { 5473 return send_encoded_inline_extent(sctx, path, offset, 5474 len); 5475 } else if (!is_inline && 5476 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) { 5477 return send_encoded_extent(sctx, path, offset, len); 5478 } 5479 } 5480 5481 if (sctx->cur_inode == NULL) { 5482 struct btrfs_root *root = sctx->send_root; 5483 5484 sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root); 5485 if (IS_ERR(sctx->cur_inode)) { 5486 int err = PTR_ERR(sctx->cur_inode); 5487 5488 sctx->cur_inode = NULL; 5489 return err; 5490 } 5491 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 5492 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping); 5493 5494 /* 5495 * It's very likely there are no pages from this inode in the page 5496 * cache, so after reading extents and sending their data, we clean 5497 * the page cache to avoid trashing the page cache (adding pressure 5498 * to the page cache and forcing eviction of other data more useful 5499 * for applications). 5500 * 5501 * We decide if we should clean the page cache simply by checking 5502 * if the inode's mapping nrpages is 0 when we first open it, and 5503 * not by using something like filemap_range_has_page() before 5504 * reading an extent because when we ask the readahead code to 5505 * read a given file range, it may (and almost always does) read 5506 * pages from beyond that range (see the documentation for 5507 * page_cache_sync_readahead()), so it would not be reliable, 5508 * because after reading the first extent future calls to 5509 * filemap_range_has_page() would return true because the readahead 5510 * on the previous extent resulted in reading pages of the current 5511 * extent as well. 5512 */ 5513 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0); 5514 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE); 5515 } 5516 5517 while (sent < len) { 5518 u64 size = min(len - sent, read_size); 5519 int ret; 5520 5521 ret = send_write(sctx, offset + sent, size); 5522 if (ret < 0) 5523 return ret; 5524 sent += size; 5525 } 5526 5527 if (sctx->clean_page_cache && IS_ALIGNED(end, PAGE_SIZE)) { 5528 /* 5529 * Always operate only on ranges that are a multiple of the page 5530 * size. This is not only to prevent zeroing parts of a page in 5531 * the case of subpage sector size, but also to guarantee we evict 5532 * pages, as passing a range that is smaller than page size does 5533 * not evict the respective page (only zeroes part of its content). 5534 * 5535 * Always start from the end offset of the last range cleared. 5536 * This is because the readahead code may (and very often does) 5537 * reads pages beyond the range we request for readahead. So if 5538 * we have an extent layout like this: 5539 * 5540 * [ extent A ] [ extent B ] [ extent C ] 5541 * 5542 * When we ask page_cache_sync_readahead() to read extent A, it 5543 * may also trigger reads for pages of extent B. If we are doing 5544 * an incremental send and extent B has not changed between the 5545 * parent and send snapshots, some or all of its pages may end 5546 * up being read and placed in the page cache. So when truncating 5547 * the page cache we always start from the end offset of the 5548 * previously processed extent up to the end of the current 5549 * extent. 5550 */ 5551 truncate_inode_pages_range(&sctx->cur_inode->i_data, 5552 sctx->page_cache_clear_start, 5553 end - 1); 5554 sctx->page_cache_clear_start = end; 5555 } 5556 5557 return 0; 5558 } 5559 5560 /* 5561 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5562 * found, call send_set_xattr function to emit it. 5563 * 5564 * Return 0 if there isn't a capability, or when the capability was emitted 5565 * successfully, or < 0 if an error occurred. 5566 */ 5567 static int send_capabilities(struct send_ctx *sctx) 5568 { 5569 struct fs_path *fspath = NULL; 5570 struct btrfs_path *path; 5571 struct btrfs_dir_item *di; 5572 struct extent_buffer *leaf; 5573 unsigned long data_ptr; 5574 char *buf = NULL; 5575 int buf_len; 5576 int ret = 0; 5577 5578 path = alloc_path_for_send(); 5579 if (!path) 5580 return -ENOMEM; 5581 5582 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5583 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5584 if (!di) { 5585 /* There is no xattr for this inode */ 5586 goto out; 5587 } else if (IS_ERR(di)) { 5588 ret = PTR_ERR(di); 5589 goto out; 5590 } 5591 5592 leaf = path->nodes[0]; 5593 buf_len = btrfs_dir_data_len(leaf, di); 5594 5595 fspath = fs_path_alloc(); 5596 buf = kmalloc(buf_len, GFP_KERNEL); 5597 if (!fspath || !buf) { 5598 ret = -ENOMEM; 5599 goto out; 5600 } 5601 5602 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5603 if (ret < 0) 5604 goto out; 5605 5606 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5607 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5608 5609 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS, 5610 strlen(XATTR_NAME_CAPS), buf, buf_len); 5611 out: 5612 kfree(buf); 5613 fs_path_free(fspath); 5614 btrfs_free_path(path); 5615 return ret; 5616 } 5617 5618 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path, 5619 struct clone_root *clone_root, const u64 disk_byte, 5620 u64 data_offset, u64 offset, u64 len) 5621 { 5622 struct btrfs_path *path; 5623 struct btrfs_key key; 5624 int ret; 5625 struct btrfs_inode_info info; 5626 u64 clone_src_i_size = 0; 5627 5628 /* 5629 * Prevent cloning from a zero offset with a length matching the sector 5630 * size because in some scenarios this will make the receiver fail. 5631 * 5632 * For example, if in the source filesystem the extent at offset 0 5633 * has a length of sectorsize and it was written using direct IO, then 5634 * it can never be an inline extent (even if compression is enabled). 5635 * Then this extent can be cloned in the original filesystem to a non 5636 * zero file offset, but it may not be possible to clone in the 5637 * destination filesystem because it can be inlined due to compression 5638 * on the destination filesystem (as the receiver's write operations are 5639 * always done using buffered IO). The same happens when the original 5640 * filesystem does not have compression enabled but the destination 5641 * filesystem has. 5642 */ 5643 if (clone_root->offset == 0 && 5644 len == sctx->send_root->fs_info->sectorsize) 5645 return send_extent_data(sctx, dst_path, offset, len); 5646 5647 path = alloc_path_for_send(); 5648 if (!path) 5649 return -ENOMEM; 5650 5651 /* 5652 * There are inodes that have extents that lie behind its i_size. Don't 5653 * accept clones from these extents. 5654 */ 5655 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 5656 btrfs_release_path(path); 5657 if (ret < 0) 5658 goto out; 5659 clone_src_i_size = info.size; 5660 5661 /* 5662 * We can't send a clone operation for the entire range if we find 5663 * extent items in the respective range in the source file that 5664 * refer to different extents or if we find holes. 5665 * So check for that and do a mix of clone and regular write/copy 5666 * operations if needed. 5667 * 5668 * Example: 5669 * 5670 * mkfs.btrfs -f /dev/sda 5671 * mount /dev/sda /mnt 5672 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5673 * cp --reflink=always /mnt/foo /mnt/bar 5674 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5675 * btrfs subvolume snapshot -r /mnt /mnt/snap 5676 * 5677 * If when we send the snapshot and we are processing file bar (which 5678 * has a higher inode number than foo) we blindly send a clone operation 5679 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5680 * a file bar that matches the content of file foo - iow, doesn't match 5681 * the content from bar in the original filesystem. 5682 */ 5683 key.objectid = clone_root->ino; 5684 key.type = BTRFS_EXTENT_DATA_KEY; 5685 key.offset = clone_root->offset; 5686 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5687 if (ret < 0) 5688 goto out; 5689 if (ret > 0 && path->slots[0] > 0) { 5690 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5691 if (key.objectid == clone_root->ino && 5692 key.type == BTRFS_EXTENT_DATA_KEY) 5693 path->slots[0]--; 5694 } 5695 5696 while (true) { 5697 struct extent_buffer *leaf = path->nodes[0]; 5698 int slot = path->slots[0]; 5699 struct btrfs_file_extent_item *ei; 5700 u8 type; 5701 u64 ext_len; 5702 u64 clone_len; 5703 u64 clone_data_offset; 5704 5705 if (slot >= btrfs_header_nritems(leaf)) { 5706 ret = btrfs_next_leaf(clone_root->root, path); 5707 if (ret < 0) 5708 goto out; 5709 else if (ret > 0) 5710 break; 5711 continue; 5712 } 5713 5714 btrfs_item_key_to_cpu(leaf, &key, slot); 5715 5716 /* 5717 * We might have an implicit trailing hole (NO_HOLES feature 5718 * enabled). We deal with it after leaving this loop. 5719 */ 5720 if (key.objectid != clone_root->ino || 5721 key.type != BTRFS_EXTENT_DATA_KEY) 5722 break; 5723 5724 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5725 type = btrfs_file_extent_type(leaf, ei); 5726 if (type == BTRFS_FILE_EXTENT_INLINE) { 5727 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5728 ext_len = PAGE_ALIGN(ext_len); 5729 } else { 5730 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5731 } 5732 5733 if (key.offset + ext_len <= clone_root->offset) 5734 goto next; 5735 5736 if (key.offset > clone_root->offset) { 5737 /* Implicit hole, NO_HOLES feature enabled. */ 5738 u64 hole_len = key.offset - clone_root->offset; 5739 5740 if (hole_len > len) 5741 hole_len = len; 5742 ret = send_extent_data(sctx, dst_path, offset, 5743 hole_len); 5744 if (ret < 0) 5745 goto out; 5746 5747 len -= hole_len; 5748 if (len == 0) 5749 break; 5750 offset += hole_len; 5751 clone_root->offset += hole_len; 5752 data_offset += hole_len; 5753 } 5754 5755 if (key.offset >= clone_root->offset + len) 5756 break; 5757 5758 if (key.offset >= clone_src_i_size) 5759 break; 5760 5761 if (key.offset + ext_len > clone_src_i_size) 5762 ext_len = clone_src_i_size - key.offset; 5763 5764 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 5765 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 5766 clone_root->offset = key.offset; 5767 if (clone_data_offset < data_offset && 5768 clone_data_offset + ext_len > data_offset) { 5769 u64 extent_offset; 5770 5771 extent_offset = data_offset - clone_data_offset; 5772 ext_len -= extent_offset; 5773 clone_data_offset += extent_offset; 5774 clone_root->offset += extent_offset; 5775 } 5776 } 5777 5778 clone_len = min_t(u64, ext_len, len); 5779 5780 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5781 clone_data_offset == data_offset) { 5782 const u64 src_end = clone_root->offset + clone_len; 5783 const u64 sectorsize = SZ_64K; 5784 5785 /* 5786 * We can't clone the last block, when its size is not 5787 * sector size aligned, into the middle of a file. If we 5788 * do so, the receiver will get a failure (-EINVAL) when 5789 * trying to clone or will silently corrupt the data in 5790 * the destination file if it's on a kernel without the 5791 * fix introduced by commit ac765f83f1397646 5792 * ("Btrfs: fix data corruption due to cloning of eof 5793 * block). 5794 * 5795 * So issue a clone of the aligned down range plus a 5796 * regular write for the eof block, if we hit that case. 5797 * 5798 * Also, we use the maximum possible sector size, 64K, 5799 * because we don't know what's the sector size of the 5800 * filesystem that receives the stream, so we have to 5801 * assume the largest possible sector size. 5802 */ 5803 if (src_end == clone_src_i_size && 5804 !IS_ALIGNED(src_end, sectorsize) && 5805 offset + clone_len < sctx->cur_inode_size) { 5806 u64 slen; 5807 5808 slen = ALIGN_DOWN(src_end - clone_root->offset, 5809 sectorsize); 5810 if (slen > 0) { 5811 ret = send_clone(sctx, offset, slen, 5812 clone_root); 5813 if (ret < 0) 5814 goto out; 5815 } 5816 ret = send_extent_data(sctx, dst_path, 5817 offset + slen, 5818 clone_len - slen); 5819 } else { 5820 ret = send_clone(sctx, offset, clone_len, 5821 clone_root); 5822 } 5823 } else { 5824 ret = send_extent_data(sctx, dst_path, offset, 5825 clone_len); 5826 } 5827 5828 if (ret < 0) 5829 goto out; 5830 5831 len -= clone_len; 5832 if (len == 0) 5833 break; 5834 offset += clone_len; 5835 clone_root->offset += clone_len; 5836 5837 /* 5838 * If we are cloning from the file we are currently processing, 5839 * and using the send root as the clone root, we must stop once 5840 * the current clone offset reaches the current eof of the file 5841 * at the receiver, otherwise we would issue an invalid clone 5842 * operation (source range going beyond eof) and cause the 5843 * receiver to fail. So if we reach the current eof, bail out 5844 * and fallback to a regular write. 5845 */ 5846 if (clone_root->root == sctx->send_root && 5847 clone_root->ino == sctx->cur_ino && 5848 clone_root->offset >= sctx->cur_inode_next_write_offset) 5849 break; 5850 5851 data_offset += clone_len; 5852 next: 5853 path->slots[0]++; 5854 } 5855 5856 if (len > 0) 5857 ret = send_extent_data(sctx, dst_path, offset, len); 5858 else 5859 ret = 0; 5860 out: 5861 btrfs_free_path(path); 5862 return ret; 5863 } 5864 5865 static int send_write_or_clone(struct send_ctx *sctx, 5866 struct btrfs_path *path, 5867 struct btrfs_key *key, 5868 struct clone_root *clone_root) 5869 { 5870 int ret = 0; 5871 u64 offset = key->offset; 5872 u64 end; 5873 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 5874 5875 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 5876 if (offset >= end) 5877 return 0; 5878 5879 if (clone_root && IS_ALIGNED(end, bs)) { 5880 struct btrfs_file_extent_item *ei; 5881 u64 disk_byte; 5882 u64 data_offset; 5883 5884 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5885 struct btrfs_file_extent_item); 5886 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 5887 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 5888 ret = clone_range(sctx, path, clone_root, disk_byte, 5889 data_offset, offset, end - offset); 5890 } else { 5891 ret = send_extent_data(sctx, path, offset, end - offset); 5892 } 5893 sctx->cur_inode_next_write_offset = end; 5894 return ret; 5895 } 5896 5897 static int is_extent_unchanged(struct send_ctx *sctx, 5898 struct btrfs_path *left_path, 5899 struct btrfs_key *ekey) 5900 { 5901 int ret = 0; 5902 struct btrfs_key key; 5903 struct btrfs_path *path = NULL; 5904 struct extent_buffer *eb; 5905 int slot; 5906 struct btrfs_key found_key; 5907 struct btrfs_file_extent_item *ei; 5908 u64 left_disknr; 5909 u64 right_disknr; 5910 u64 left_offset; 5911 u64 right_offset; 5912 u64 left_offset_fixed; 5913 u64 left_len; 5914 u64 right_len; 5915 u64 left_gen; 5916 u64 right_gen; 5917 u8 left_type; 5918 u8 right_type; 5919 5920 path = alloc_path_for_send(); 5921 if (!path) 5922 return -ENOMEM; 5923 5924 eb = left_path->nodes[0]; 5925 slot = left_path->slots[0]; 5926 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5927 left_type = btrfs_file_extent_type(eb, ei); 5928 5929 if (left_type != BTRFS_FILE_EXTENT_REG) { 5930 ret = 0; 5931 goto out; 5932 } 5933 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5934 left_len = btrfs_file_extent_num_bytes(eb, ei); 5935 left_offset = btrfs_file_extent_offset(eb, ei); 5936 left_gen = btrfs_file_extent_generation(eb, ei); 5937 5938 /* 5939 * Following comments will refer to these graphics. L is the left 5940 * extents which we are checking at the moment. 1-8 are the right 5941 * extents that we iterate. 5942 * 5943 * |-----L-----| 5944 * |-1-|-2a-|-3-|-4-|-5-|-6-| 5945 * 5946 * |-----L-----| 5947 * |--1--|-2b-|...(same as above) 5948 * 5949 * Alternative situation. Happens on files where extents got split. 5950 * |-----L-----| 5951 * |-----------7-----------|-6-| 5952 * 5953 * Alternative situation. Happens on files which got larger. 5954 * |-----L-----| 5955 * |-8-| 5956 * Nothing follows after 8. 5957 */ 5958 5959 key.objectid = ekey->objectid; 5960 key.type = BTRFS_EXTENT_DATA_KEY; 5961 key.offset = ekey->offset; 5962 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 5963 if (ret < 0) 5964 goto out; 5965 if (ret) { 5966 ret = 0; 5967 goto out; 5968 } 5969 5970 /* 5971 * Handle special case where the right side has no extents at all. 5972 */ 5973 eb = path->nodes[0]; 5974 slot = path->slots[0]; 5975 btrfs_item_key_to_cpu(eb, &found_key, slot); 5976 if (found_key.objectid != key.objectid || 5977 found_key.type != key.type) { 5978 /* If we're a hole then just pretend nothing changed */ 5979 ret = (left_disknr) ? 0 : 1; 5980 goto out; 5981 } 5982 5983 /* 5984 * We're now on 2a, 2b or 7. 5985 */ 5986 key = found_key; 5987 while (key.offset < ekey->offset + left_len) { 5988 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5989 right_type = btrfs_file_extent_type(eb, ei); 5990 if (right_type != BTRFS_FILE_EXTENT_REG && 5991 right_type != BTRFS_FILE_EXTENT_INLINE) { 5992 ret = 0; 5993 goto out; 5994 } 5995 5996 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5997 right_len = btrfs_file_extent_ram_bytes(eb, ei); 5998 right_len = PAGE_ALIGN(right_len); 5999 } else { 6000 right_len = btrfs_file_extent_num_bytes(eb, ei); 6001 } 6002 6003 /* 6004 * Are we at extent 8? If yes, we know the extent is changed. 6005 * This may only happen on the first iteration. 6006 */ 6007 if (found_key.offset + right_len <= ekey->offset) { 6008 /* If we're a hole just pretend nothing changed */ 6009 ret = (left_disknr) ? 0 : 1; 6010 goto out; 6011 } 6012 6013 /* 6014 * We just wanted to see if when we have an inline extent, what 6015 * follows it is a regular extent (wanted to check the above 6016 * condition for inline extents too). This should normally not 6017 * happen but it's possible for example when we have an inline 6018 * compressed extent representing data with a size matching 6019 * the page size (currently the same as sector size). 6020 */ 6021 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6022 ret = 0; 6023 goto out; 6024 } 6025 6026 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6027 right_offset = btrfs_file_extent_offset(eb, ei); 6028 right_gen = btrfs_file_extent_generation(eb, ei); 6029 6030 left_offset_fixed = left_offset; 6031 if (key.offset < ekey->offset) { 6032 /* Fix the right offset for 2a and 7. */ 6033 right_offset += ekey->offset - key.offset; 6034 } else { 6035 /* Fix the left offset for all behind 2a and 2b */ 6036 left_offset_fixed += key.offset - ekey->offset; 6037 } 6038 6039 /* 6040 * Check if we have the same extent. 6041 */ 6042 if (left_disknr != right_disknr || 6043 left_offset_fixed != right_offset || 6044 left_gen != right_gen) { 6045 ret = 0; 6046 goto out; 6047 } 6048 6049 /* 6050 * Go to the next extent. 6051 */ 6052 ret = btrfs_next_item(sctx->parent_root, path); 6053 if (ret < 0) 6054 goto out; 6055 if (!ret) { 6056 eb = path->nodes[0]; 6057 slot = path->slots[0]; 6058 btrfs_item_key_to_cpu(eb, &found_key, slot); 6059 } 6060 if (ret || found_key.objectid != key.objectid || 6061 found_key.type != key.type) { 6062 key.offset += right_len; 6063 break; 6064 } 6065 if (found_key.offset != key.offset + right_len) { 6066 ret = 0; 6067 goto out; 6068 } 6069 key = found_key; 6070 } 6071 6072 /* 6073 * We're now behind the left extent (treat as unchanged) or at the end 6074 * of the right side (treat as changed). 6075 */ 6076 if (key.offset >= ekey->offset + left_len) 6077 ret = 1; 6078 else 6079 ret = 0; 6080 6081 6082 out: 6083 btrfs_free_path(path); 6084 return ret; 6085 } 6086 6087 static int get_last_extent(struct send_ctx *sctx, u64 offset) 6088 { 6089 struct btrfs_path *path; 6090 struct btrfs_root *root = sctx->send_root; 6091 struct btrfs_key key; 6092 int ret; 6093 6094 path = alloc_path_for_send(); 6095 if (!path) 6096 return -ENOMEM; 6097 6098 sctx->cur_inode_last_extent = 0; 6099 6100 key.objectid = sctx->cur_ino; 6101 key.type = BTRFS_EXTENT_DATA_KEY; 6102 key.offset = offset; 6103 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 6104 if (ret < 0) 6105 goto out; 6106 ret = 0; 6107 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 6108 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 6109 goto out; 6110 6111 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6112 out: 6113 btrfs_free_path(path); 6114 return ret; 6115 } 6116 6117 static int range_is_hole_in_parent(struct send_ctx *sctx, 6118 const u64 start, 6119 const u64 end) 6120 { 6121 struct btrfs_path *path; 6122 struct btrfs_key key; 6123 struct btrfs_root *root = sctx->parent_root; 6124 u64 search_start = start; 6125 int ret; 6126 6127 path = alloc_path_for_send(); 6128 if (!path) 6129 return -ENOMEM; 6130 6131 key.objectid = sctx->cur_ino; 6132 key.type = BTRFS_EXTENT_DATA_KEY; 6133 key.offset = search_start; 6134 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6135 if (ret < 0) 6136 goto out; 6137 if (ret > 0 && path->slots[0] > 0) 6138 path->slots[0]--; 6139 6140 while (search_start < end) { 6141 struct extent_buffer *leaf = path->nodes[0]; 6142 int slot = path->slots[0]; 6143 struct btrfs_file_extent_item *fi; 6144 u64 extent_end; 6145 6146 if (slot >= btrfs_header_nritems(leaf)) { 6147 ret = btrfs_next_leaf(root, path); 6148 if (ret < 0) 6149 goto out; 6150 else if (ret > 0) 6151 break; 6152 continue; 6153 } 6154 6155 btrfs_item_key_to_cpu(leaf, &key, slot); 6156 if (key.objectid < sctx->cur_ino || 6157 key.type < BTRFS_EXTENT_DATA_KEY) 6158 goto next; 6159 if (key.objectid > sctx->cur_ino || 6160 key.type > BTRFS_EXTENT_DATA_KEY || 6161 key.offset >= end) 6162 break; 6163 6164 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6165 extent_end = btrfs_file_extent_end(path); 6166 if (extent_end <= start) 6167 goto next; 6168 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 6169 search_start = extent_end; 6170 goto next; 6171 } 6172 ret = 0; 6173 goto out; 6174 next: 6175 path->slots[0]++; 6176 } 6177 ret = 1; 6178 out: 6179 btrfs_free_path(path); 6180 return ret; 6181 } 6182 6183 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 6184 struct btrfs_key *key) 6185 { 6186 int ret = 0; 6187 6188 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 6189 return 0; 6190 6191 if (sctx->cur_inode_last_extent == (u64)-1) { 6192 ret = get_last_extent(sctx, key->offset - 1); 6193 if (ret) 6194 return ret; 6195 } 6196 6197 if (path->slots[0] == 0 && 6198 sctx->cur_inode_last_extent < key->offset) { 6199 /* 6200 * We might have skipped entire leafs that contained only 6201 * file extent items for our current inode. These leafs have 6202 * a generation number smaller (older) than the one in the 6203 * current leaf and the leaf our last extent came from, and 6204 * are located between these 2 leafs. 6205 */ 6206 ret = get_last_extent(sctx, key->offset - 1); 6207 if (ret) 6208 return ret; 6209 } 6210 6211 if (sctx->cur_inode_last_extent < key->offset) { 6212 ret = range_is_hole_in_parent(sctx, 6213 sctx->cur_inode_last_extent, 6214 key->offset); 6215 if (ret < 0) 6216 return ret; 6217 else if (ret == 0) 6218 ret = send_hole(sctx, key->offset); 6219 else 6220 ret = 0; 6221 } 6222 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6223 return ret; 6224 } 6225 6226 static int process_extent(struct send_ctx *sctx, 6227 struct btrfs_path *path, 6228 struct btrfs_key *key) 6229 { 6230 struct clone_root *found_clone = NULL; 6231 int ret = 0; 6232 6233 if (S_ISLNK(sctx->cur_inode_mode)) 6234 return 0; 6235 6236 if (sctx->parent_root && !sctx->cur_inode_new) { 6237 ret = is_extent_unchanged(sctx, path, key); 6238 if (ret < 0) 6239 goto out; 6240 if (ret) { 6241 ret = 0; 6242 goto out_hole; 6243 } 6244 } else { 6245 struct btrfs_file_extent_item *ei; 6246 u8 type; 6247 6248 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6249 struct btrfs_file_extent_item); 6250 type = btrfs_file_extent_type(path->nodes[0], ei); 6251 if (type == BTRFS_FILE_EXTENT_PREALLOC || 6252 type == BTRFS_FILE_EXTENT_REG) { 6253 /* 6254 * The send spec does not have a prealloc command yet, 6255 * so just leave a hole for prealloc'ed extents until 6256 * we have enough commands queued up to justify rev'ing 6257 * the send spec. 6258 */ 6259 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 6260 ret = 0; 6261 goto out; 6262 } 6263 6264 /* Have a hole, just skip it. */ 6265 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 6266 ret = 0; 6267 goto out; 6268 } 6269 } 6270 } 6271 6272 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 6273 sctx->cur_inode_size, &found_clone); 6274 if (ret != -ENOENT && ret < 0) 6275 goto out; 6276 6277 ret = send_write_or_clone(sctx, path, key, found_clone); 6278 if (ret) 6279 goto out; 6280 out_hole: 6281 ret = maybe_send_hole(sctx, path, key); 6282 out: 6283 return ret; 6284 } 6285 6286 static int process_all_extents(struct send_ctx *sctx) 6287 { 6288 int ret = 0; 6289 int iter_ret = 0; 6290 struct btrfs_root *root; 6291 struct btrfs_path *path; 6292 struct btrfs_key key; 6293 struct btrfs_key found_key; 6294 6295 root = sctx->send_root; 6296 path = alloc_path_for_send(); 6297 if (!path) 6298 return -ENOMEM; 6299 6300 key.objectid = sctx->cmp_key->objectid; 6301 key.type = BTRFS_EXTENT_DATA_KEY; 6302 key.offset = 0; 6303 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 6304 if (found_key.objectid != key.objectid || 6305 found_key.type != key.type) { 6306 ret = 0; 6307 break; 6308 } 6309 6310 ret = process_extent(sctx, path, &found_key); 6311 if (ret < 0) 6312 break; 6313 } 6314 /* Catch error found during iteration */ 6315 if (iter_ret < 0) 6316 ret = iter_ret; 6317 6318 btrfs_free_path(path); 6319 return ret; 6320 } 6321 6322 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 6323 int *pending_move, 6324 int *refs_processed) 6325 { 6326 int ret = 0; 6327 6328 if (sctx->cur_ino == 0) 6329 goto out; 6330 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 6331 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 6332 goto out; 6333 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 6334 goto out; 6335 6336 ret = process_recorded_refs(sctx, pending_move); 6337 if (ret < 0) 6338 goto out; 6339 6340 *refs_processed = 1; 6341 out: 6342 return ret; 6343 } 6344 6345 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 6346 { 6347 int ret = 0; 6348 struct btrfs_inode_info info; 6349 u64 left_mode; 6350 u64 left_uid; 6351 u64 left_gid; 6352 u64 left_fileattr; 6353 u64 right_mode; 6354 u64 right_uid; 6355 u64 right_gid; 6356 u64 right_fileattr; 6357 int need_chmod = 0; 6358 int need_chown = 0; 6359 bool need_fileattr = false; 6360 int need_truncate = 1; 6361 int pending_move = 0; 6362 int refs_processed = 0; 6363 6364 if (sctx->ignore_cur_inode) 6365 return 0; 6366 6367 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 6368 &refs_processed); 6369 if (ret < 0) 6370 goto out; 6371 6372 /* 6373 * We have processed the refs and thus need to advance send_progress. 6374 * Now, calls to get_cur_xxx will take the updated refs of the current 6375 * inode into account. 6376 * 6377 * On the other hand, if our current inode is a directory and couldn't 6378 * be moved/renamed because its parent was renamed/moved too and it has 6379 * a higher inode number, we can only move/rename our current inode 6380 * after we moved/renamed its parent. Therefore in this case operate on 6381 * the old path (pre move/rename) of our current inode, and the 6382 * move/rename will be performed later. 6383 */ 6384 if (refs_processed && !pending_move) 6385 sctx->send_progress = sctx->cur_ino + 1; 6386 6387 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 6388 goto out; 6389 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 6390 goto out; 6391 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info); 6392 if (ret < 0) 6393 goto out; 6394 left_mode = info.mode; 6395 left_uid = info.uid; 6396 left_gid = info.gid; 6397 left_fileattr = info.fileattr; 6398 6399 if (!sctx->parent_root || sctx->cur_inode_new) { 6400 need_chown = 1; 6401 if (!S_ISLNK(sctx->cur_inode_mode)) 6402 need_chmod = 1; 6403 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 6404 need_truncate = 0; 6405 } else { 6406 u64 old_size; 6407 6408 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info); 6409 if (ret < 0) 6410 goto out; 6411 old_size = info.size; 6412 right_mode = info.mode; 6413 right_uid = info.uid; 6414 right_gid = info.gid; 6415 right_fileattr = info.fileattr; 6416 6417 if (left_uid != right_uid || left_gid != right_gid) 6418 need_chown = 1; 6419 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 6420 need_chmod = 1; 6421 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr) 6422 need_fileattr = true; 6423 if ((old_size == sctx->cur_inode_size) || 6424 (sctx->cur_inode_size > old_size && 6425 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 6426 need_truncate = 0; 6427 } 6428 6429 if (S_ISREG(sctx->cur_inode_mode)) { 6430 if (need_send_hole(sctx)) { 6431 if (sctx->cur_inode_last_extent == (u64)-1 || 6432 sctx->cur_inode_last_extent < 6433 sctx->cur_inode_size) { 6434 ret = get_last_extent(sctx, (u64)-1); 6435 if (ret) 6436 goto out; 6437 } 6438 if (sctx->cur_inode_last_extent < 6439 sctx->cur_inode_size) { 6440 ret = send_hole(sctx, sctx->cur_inode_size); 6441 if (ret) 6442 goto out; 6443 } 6444 } 6445 if (need_truncate) { 6446 ret = send_truncate(sctx, sctx->cur_ino, 6447 sctx->cur_inode_gen, 6448 sctx->cur_inode_size); 6449 if (ret < 0) 6450 goto out; 6451 } 6452 } 6453 6454 if (need_chown) { 6455 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6456 left_uid, left_gid); 6457 if (ret < 0) 6458 goto out; 6459 } 6460 if (need_chmod) { 6461 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6462 left_mode); 6463 if (ret < 0) 6464 goto out; 6465 } 6466 if (need_fileattr) { 6467 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6468 left_fileattr); 6469 if (ret < 0) 6470 goto out; 6471 } 6472 if (sctx->cur_inode_needs_verity) { 6473 ret = process_verity(sctx); 6474 if (ret < 0) 6475 goto out; 6476 } 6477 6478 ret = send_capabilities(sctx); 6479 if (ret < 0) 6480 goto out; 6481 6482 /* 6483 * If other directory inodes depended on our current directory 6484 * inode's move/rename, now do their move/rename operations. 6485 */ 6486 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6487 ret = apply_children_dir_moves(sctx); 6488 if (ret) 6489 goto out; 6490 /* 6491 * Need to send that every time, no matter if it actually 6492 * changed between the two trees as we have done changes to 6493 * the inode before. If our inode is a directory and it's 6494 * waiting to be moved/renamed, we will send its utimes when 6495 * it's moved/renamed, therefore we don't need to do it here. 6496 */ 6497 sctx->send_progress = sctx->cur_ino + 1; 6498 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6499 if (ret < 0) 6500 goto out; 6501 } 6502 6503 out: 6504 return ret; 6505 } 6506 6507 static void close_current_inode(struct send_ctx *sctx) 6508 { 6509 u64 i_size; 6510 6511 if (sctx->cur_inode == NULL) 6512 return; 6513 6514 i_size = i_size_read(sctx->cur_inode); 6515 6516 /* 6517 * If we are doing an incremental send, we may have extents between the 6518 * last processed extent and the i_size that have not been processed 6519 * because they haven't changed but we may have read some of their pages 6520 * through readahead, see the comments at send_extent_data(). 6521 */ 6522 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size) 6523 truncate_inode_pages_range(&sctx->cur_inode->i_data, 6524 sctx->page_cache_clear_start, 6525 round_up(i_size, PAGE_SIZE) - 1); 6526 6527 iput(sctx->cur_inode); 6528 sctx->cur_inode = NULL; 6529 } 6530 6531 static int changed_inode(struct send_ctx *sctx, 6532 enum btrfs_compare_tree_result result) 6533 { 6534 int ret = 0; 6535 struct btrfs_key *key = sctx->cmp_key; 6536 struct btrfs_inode_item *left_ii = NULL; 6537 struct btrfs_inode_item *right_ii = NULL; 6538 u64 left_gen = 0; 6539 u64 right_gen = 0; 6540 6541 close_current_inode(sctx); 6542 6543 sctx->cur_ino = key->objectid; 6544 sctx->cur_inode_new_gen = false; 6545 sctx->cur_inode_last_extent = (u64)-1; 6546 sctx->cur_inode_next_write_offset = 0; 6547 sctx->ignore_cur_inode = false; 6548 6549 /* 6550 * Set send_progress to current inode. This will tell all get_cur_xxx 6551 * functions that the current inode's refs are not updated yet. Later, 6552 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6553 */ 6554 sctx->send_progress = sctx->cur_ino; 6555 6556 if (result == BTRFS_COMPARE_TREE_NEW || 6557 result == BTRFS_COMPARE_TREE_CHANGED) { 6558 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6559 sctx->left_path->slots[0], 6560 struct btrfs_inode_item); 6561 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6562 left_ii); 6563 } else { 6564 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6565 sctx->right_path->slots[0], 6566 struct btrfs_inode_item); 6567 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6568 right_ii); 6569 } 6570 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6571 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6572 sctx->right_path->slots[0], 6573 struct btrfs_inode_item); 6574 6575 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6576 right_ii); 6577 6578 /* 6579 * The cur_ino = root dir case is special here. We can't treat 6580 * the inode as deleted+reused because it would generate a 6581 * stream that tries to delete/mkdir the root dir. 6582 */ 6583 if (left_gen != right_gen && 6584 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6585 sctx->cur_inode_new_gen = true; 6586 } 6587 6588 /* 6589 * Normally we do not find inodes with a link count of zero (orphans) 6590 * because the most common case is to create a snapshot and use it 6591 * for a send operation. However other less common use cases involve 6592 * using a subvolume and send it after turning it to RO mode just 6593 * after deleting all hard links of a file while holding an open 6594 * file descriptor against it or turning a RO snapshot into RW mode, 6595 * keep an open file descriptor against a file, delete it and then 6596 * turn the snapshot back to RO mode before using it for a send 6597 * operation. The former is what the receiver operation does. 6598 * Therefore, if we want to send these snapshots soon after they're 6599 * received, we need to handle orphan inodes as well. Moreover, orphans 6600 * can appear not only in the send snapshot but also in the parent 6601 * snapshot. Here are several cases: 6602 * 6603 * Case 1: BTRFS_COMPARE_TREE_NEW 6604 * | send snapshot | action 6605 * -------------------------------- 6606 * nlink | 0 | ignore 6607 * 6608 * Case 2: BTRFS_COMPARE_TREE_DELETED 6609 * | parent snapshot | action 6610 * ---------------------------------- 6611 * nlink | 0 | as usual 6612 * Note: No unlinks will be sent because there're no paths for it. 6613 * 6614 * Case 3: BTRFS_COMPARE_TREE_CHANGED 6615 * | | parent snapshot | send snapshot | action 6616 * ----------------------------------------------------------------------- 6617 * subcase 1 | nlink | 0 | 0 | ignore 6618 * subcase 2 | nlink | >0 | 0 | new_gen(deletion) 6619 * subcase 3 | nlink | 0 | >0 | new_gen(creation) 6620 * 6621 */ 6622 if (result == BTRFS_COMPARE_TREE_NEW) { 6623 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) { 6624 sctx->ignore_cur_inode = true; 6625 goto out; 6626 } 6627 sctx->cur_inode_gen = left_gen; 6628 sctx->cur_inode_new = true; 6629 sctx->cur_inode_deleted = false; 6630 sctx->cur_inode_size = btrfs_inode_size( 6631 sctx->left_path->nodes[0], left_ii); 6632 sctx->cur_inode_mode = btrfs_inode_mode( 6633 sctx->left_path->nodes[0], left_ii); 6634 sctx->cur_inode_rdev = btrfs_inode_rdev( 6635 sctx->left_path->nodes[0], left_ii); 6636 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6637 ret = send_create_inode_if_needed(sctx); 6638 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6639 sctx->cur_inode_gen = right_gen; 6640 sctx->cur_inode_new = false; 6641 sctx->cur_inode_deleted = true; 6642 sctx->cur_inode_size = btrfs_inode_size( 6643 sctx->right_path->nodes[0], right_ii); 6644 sctx->cur_inode_mode = btrfs_inode_mode( 6645 sctx->right_path->nodes[0], right_ii); 6646 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6647 u32 new_nlinks, old_nlinks; 6648 6649 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6650 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii); 6651 if (new_nlinks == 0 && old_nlinks == 0) { 6652 sctx->ignore_cur_inode = true; 6653 goto out; 6654 } else if (new_nlinks == 0 || old_nlinks == 0) { 6655 sctx->cur_inode_new_gen = 1; 6656 } 6657 /* 6658 * We need to do some special handling in case the inode was 6659 * reported as changed with a changed generation number. This 6660 * means that the original inode was deleted and new inode 6661 * reused the same inum. So we have to treat the old inode as 6662 * deleted and the new one as new. 6663 */ 6664 if (sctx->cur_inode_new_gen) { 6665 /* 6666 * First, process the inode as if it was deleted. 6667 */ 6668 sctx->cur_inode_gen = right_gen; 6669 sctx->cur_inode_new = false; 6670 sctx->cur_inode_deleted = true; 6671 sctx->cur_inode_size = btrfs_inode_size( 6672 sctx->right_path->nodes[0], right_ii); 6673 sctx->cur_inode_mode = btrfs_inode_mode( 6674 sctx->right_path->nodes[0], right_ii); 6675 ret = process_all_refs(sctx, 6676 BTRFS_COMPARE_TREE_DELETED); 6677 if (ret < 0) 6678 goto out; 6679 6680 /* 6681 * Now process the inode as if it was new. 6682 */ 6683 if (new_nlinks > 0) { 6684 sctx->cur_inode_gen = left_gen; 6685 sctx->cur_inode_new = true; 6686 sctx->cur_inode_deleted = false; 6687 sctx->cur_inode_size = btrfs_inode_size( 6688 sctx->left_path->nodes[0], 6689 left_ii); 6690 sctx->cur_inode_mode = btrfs_inode_mode( 6691 sctx->left_path->nodes[0], 6692 left_ii); 6693 sctx->cur_inode_rdev = btrfs_inode_rdev( 6694 sctx->left_path->nodes[0], 6695 left_ii); 6696 ret = send_create_inode_if_needed(sctx); 6697 if (ret < 0) 6698 goto out; 6699 6700 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 6701 if (ret < 0) 6702 goto out; 6703 /* 6704 * Advance send_progress now as we did not get 6705 * into process_recorded_refs_if_needed in the 6706 * new_gen case. 6707 */ 6708 sctx->send_progress = sctx->cur_ino + 1; 6709 6710 /* 6711 * Now process all extents and xattrs of the 6712 * inode as if they were all new. 6713 */ 6714 ret = process_all_extents(sctx); 6715 if (ret < 0) 6716 goto out; 6717 ret = process_all_new_xattrs(sctx); 6718 if (ret < 0) 6719 goto out; 6720 } 6721 } else { 6722 sctx->cur_inode_gen = left_gen; 6723 sctx->cur_inode_new = false; 6724 sctx->cur_inode_new_gen = false; 6725 sctx->cur_inode_deleted = false; 6726 sctx->cur_inode_size = btrfs_inode_size( 6727 sctx->left_path->nodes[0], left_ii); 6728 sctx->cur_inode_mode = btrfs_inode_mode( 6729 sctx->left_path->nodes[0], left_ii); 6730 } 6731 } 6732 6733 out: 6734 return ret; 6735 } 6736 6737 /* 6738 * We have to process new refs before deleted refs, but compare_trees gives us 6739 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 6740 * first and later process them in process_recorded_refs. 6741 * For the cur_inode_new_gen case, we skip recording completely because 6742 * changed_inode did already initiate processing of refs. The reason for this is 6743 * that in this case, compare_tree actually compares the refs of 2 different 6744 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 6745 * refs of the right tree as deleted and all refs of the left tree as new. 6746 */ 6747 static int changed_ref(struct send_ctx *sctx, 6748 enum btrfs_compare_tree_result result) 6749 { 6750 int ret = 0; 6751 6752 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6753 inconsistent_snapshot_error(sctx, result, "reference"); 6754 return -EIO; 6755 } 6756 6757 if (!sctx->cur_inode_new_gen && 6758 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 6759 if (result == BTRFS_COMPARE_TREE_NEW) 6760 ret = record_new_ref(sctx); 6761 else if (result == BTRFS_COMPARE_TREE_DELETED) 6762 ret = record_deleted_ref(sctx); 6763 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6764 ret = record_changed_ref(sctx); 6765 } 6766 6767 return ret; 6768 } 6769 6770 /* 6771 * Process new/deleted/changed xattrs. We skip processing in the 6772 * cur_inode_new_gen case because changed_inode did already initiate processing 6773 * of xattrs. The reason is the same as in changed_ref 6774 */ 6775 static int changed_xattr(struct send_ctx *sctx, 6776 enum btrfs_compare_tree_result result) 6777 { 6778 int ret = 0; 6779 6780 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6781 inconsistent_snapshot_error(sctx, result, "xattr"); 6782 return -EIO; 6783 } 6784 6785 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6786 if (result == BTRFS_COMPARE_TREE_NEW) 6787 ret = process_new_xattr(sctx); 6788 else if (result == BTRFS_COMPARE_TREE_DELETED) 6789 ret = process_deleted_xattr(sctx); 6790 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6791 ret = process_changed_xattr(sctx); 6792 } 6793 6794 return ret; 6795 } 6796 6797 /* 6798 * Process new/deleted/changed extents. We skip processing in the 6799 * cur_inode_new_gen case because changed_inode did already initiate processing 6800 * of extents. The reason is the same as in changed_ref 6801 */ 6802 static int changed_extent(struct send_ctx *sctx, 6803 enum btrfs_compare_tree_result result) 6804 { 6805 int ret = 0; 6806 6807 /* 6808 * We have found an extent item that changed without the inode item 6809 * having changed. This can happen either after relocation (where the 6810 * disk_bytenr of an extent item is replaced at 6811 * relocation.c:replace_file_extents()) or after deduplication into a 6812 * file in both the parent and send snapshots (where an extent item can 6813 * get modified or replaced with a new one). Note that deduplication 6814 * updates the inode item, but it only changes the iversion (sequence 6815 * field in the inode item) of the inode, so if a file is deduplicated 6816 * the same amount of times in both the parent and send snapshots, its 6817 * iversion becomes the same in both snapshots, whence the inode item is 6818 * the same on both snapshots. 6819 */ 6820 if (sctx->cur_ino != sctx->cmp_key->objectid) 6821 return 0; 6822 6823 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6824 if (result != BTRFS_COMPARE_TREE_DELETED) 6825 ret = process_extent(sctx, sctx->left_path, 6826 sctx->cmp_key); 6827 } 6828 6829 return ret; 6830 } 6831 6832 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result) 6833 { 6834 int ret = 0; 6835 6836 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6837 if (result == BTRFS_COMPARE_TREE_NEW) 6838 sctx->cur_inode_needs_verity = true; 6839 } 6840 return ret; 6841 } 6842 6843 static int dir_changed(struct send_ctx *sctx, u64 dir) 6844 { 6845 u64 orig_gen, new_gen; 6846 int ret; 6847 6848 ret = get_inode_gen(sctx->send_root, dir, &new_gen); 6849 if (ret) 6850 return ret; 6851 6852 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen); 6853 if (ret) 6854 return ret; 6855 6856 return (orig_gen != new_gen) ? 1 : 0; 6857 } 6858 6859 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 6860 struct btrfs_key *key) 6861 { 6862 struct btrfs_inode_extref *extref; 6863 struct extent_buffer *leaf; 6864 u64 dirid = 0, last_dirid = 0; 6865 unsigned long ptr; 6866 u32 item_size; 6867 u32 cur_offset = 0; 6868 int ref_name_len; 6869 int ret = 0; 6870 6871 /* Easy case, just check this one dirid */ 6872 if (key->type == BTRFS_INODE_REF_KEY) { 6873 dirid = key->offset; 6874 6875 ret = dir_changed(sctx, dirid); 6876 goto out; 6877 } 6878 6879 leaf = path->nodes[0]; 6880 item_size = btrfs_item_size(leaf, path->slots[0]); 6881 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 6882 while (cur_offset < item_size) { 6883 extref = (struct btrfs_inode_extref *)(ptr + 6884 cur_offset); 6885 dirid = btrfs_inode_extref_parent(leaf, extref); 6886 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 6887 cur_offset += ref_name_len + sizeof(*extref); 6888 if (dirid == last_dirid) 6889 continue; 6890 ret = dir_changed(sctx, dirid); 6891 if (ret) 6892 break; 6893 last_dirid = dirid; 6894 } 6895 out: 6896 return ret; 6897 } 6898 6899 /* 6900 * Updates compare related fields in sctx and simply forwards to the actual 6901 * changed_xxx functions. 6902 */ 6903 static int changed_cb(struct btrfs_path *left_path, 6904 struct btrfs_path *right_path, 6905 struct btrfs_key *key, 6906 enum btrfs_compare_tree_result result, 6907 struct send_ctx *sctx) 6908 { 6909 int ret = 0; 6910 6911 /* 6912 * We can not hold the commit root semaphore here. This is because in 6913 * the case of sending and receiving to the same filesystem, using a 6914 * pipe, could result in a deadlock: 6915 * 6916 * 1) The task running send blocks on the pipe because it's full; 6917 * 6918 * 2) The task running receive, which is the only consumer of the pipe, 6919 * is waiting for a transaction commit (for example due to a space 6920 * reservation when doing a write or triggering a transaction commit 6921 * when creating a subvolume); 6922 * 6923 * 3) The transaction is waiting to write lock the commit root semaphore, 6924 * but can not acquire it since it's being held at 1). 6925 * 6926 * Down this call chain we write to the pipe through kernel_write(). 6927 * The same type of problem can also happen when sending to a file that 6928 * is stored in the same filesystem - when reserving space for a write 6929 * into the file, we can trigger a transaction commit. 6930 * 6931 * Our caller has supplied us with clones of leaves from the send and 6932 * parent roots, so we're safe here from a concurrent relocation and 6933 * further reallocation of metadata extents while we are here. Below we 6934 * also assert that the leaves are clones. 6935 */ 6936 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem); 6937 6938 /* 6939 * We always have a send root, so left_path is never NULL. We will not 6940 * have a leaf when we have reached the end of the send root but have 6941 * not yet reached the end of the parent root. 6942 */ 6943 if (left_path->nodes[0]) 6944 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 6945 &left_path->nodes[0]->bflags)); 6946 /* 6947 * When doing a full send we don't have a parent root, so right_path is 6948 * NULL. When doing an incremental send, we may have reached the end of 6949 * the parent root already, so we don't have a leaf at right_path. 6950 */ 6951 if (right_path && right_path->nodes[0]) 6952 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 6953 &right_path->nodes[0]->bflags)); 6954 6955 if (result == BTRFS_COMPARE_TREE_SAME) { 6956 if (key->type == BTRFS_INODE_REF_KEY || 6957 key->type == BTRFS_INODE_EXTREF_KEY) { 6958 ret = compare_refs(sctx, left_path, key); 6959 if (!ret) 6960 return 0; 6961 if (ret < 0) 6962 return ret; 6963 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 6964 return maybe_send_hole(sctx, left_path, key); 6965 } else { 6966 return 0; 6967 } 6968 result = BTRFS_COMPARE_TREE_CHANGED; 6969 ret = 0; 6970 } 6971 6972 sctx->left_path = left_path; 6973 sctx->right_path = right_path; 6974 sctx->cmp_key = key; 6975 6976 ret = finish_inode_if_needed(sctx, 0); 6977 if (ret < 0) 6978 goto out; 6979 6980 /* Ignore non-FS objects */ 6981 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 6982 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 6983 goto out; 6984 6985 if (key->type == BTRFS_INODE_ITEM_KEY) { 6986 ret = changed_inode(sctx, result); 6987 } else if (!sctx->ignore_cur_inode) { 6988 if (key->type == BTRFS_INODE_REF_KEY || 6989 key->type == BTRFS_INODE_EXTREF_KEY) 6990 ret = changed_ref(sctx, result); 6991 else if (key->type == BTRFS_XATTR_ITEM_KEY) 6992 ret = changed_xattr(sctx, result); 6993 else if (key->type == BTRFS_EXTENT_DATA_KEY) 6994 ret = changed_extent(sctx, result); 6995 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY && 6996 key->offset == 0) 6997 ret = changed_verity(sctx, result); 6998 } 6999 7000 out: 7001 return ret; 7002 } 7003 7004 static int search_key_again(const struct send_ctx *sctx, 7005 struct btrfs_root *root, 7006 struct btrfs_path *path, 7007 const struct btrfs_key *key) 7008 { 7009 int ret; 7010 7011 if (!path->need_commit_sem) 7012 lockdep_assert_held_read(&root->fs_info->commit_root_sem); 7013 7014 /* 7015 * Roots used for send operations are readonly and no one can add, 7016 * update or remove keys from them, so we should be able to find our 7017 * key again. The only exception is deduplication, which can operate on 7018 * readonly roots and add, update or remove keys to/from them - but at 7019 * the moment we don't allow it to run in parallel with send. 7020 */ 7021 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7022 ASSERT(ret <= 0); 7023 if (ret > 0) { 7024 btrfs_print_tree(path->nodes[path->lowest_level], false); 7025 btrfs_err(root->fs_info, 7026 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d", 7027 key->objectid, key->type, key->offset, 7028 (root == sctx->parent_root ? "parent" : "send"), 7029 root->root_key.objectid, path->lowest_level, 7030 path->slots[path->lowest_level]); 7031 return -EUCLEAN; 7032 } 7033 7034 return ret; 7035 } 7036 7037 static int full_send_tree(struct send_ctx *sctx) 7038 { 7039 int ret; 7040 struct btrfs_root *send_root = sctx->send_root; 7041 struct btrfs_key key; 7042 struct btrfs_fs_info *fs_info = send_root->fs_info; 7043 struct btrfs_path *path; 7044 7045 path = alloc_path_for_send(); 7046 if (!path) 7047 return -ENOMEM; 7048 path->reada = READA_FORWARD_ALWAYS; 7049 7050 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 7051 key.type = BTRFS_INODE_ITEM_KEY; 7052 key.offset = 0; 7053 7054 down_read(&fs_info->commit_root_sem); 7055 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7056 up_read(&fs_info->commit_root_sem); 7057 7058 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 7059 if (ret < 0) 7060 goto out; 7061 if (ret) 7062 goto out_finish; 7063 7064 while (1) { 7065 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 7066 7067 ret = changed_cb(path, NULL, &key, 7068 BTRFS_COMPARE_TREE_NEW, sctx); 7069 if (ret < 0) 7070 goto out; 7071 7072 down_read(&fs_info->commit_root_sem); 7073 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7074 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7075 up_read(&fs_info->commit_root_sem); 7076 /* 7077 * A transaction used for relocating a block group was 7078 * committed or is about to finish its commit. Release 7079 * our path (leaf) and restart the search, so that we 7080 * avoid operating on any file extent items that are 7081 * stale, with a disk_bytenr that reflects a pre 7082 * relocation value. This way we avoid as much as 7083 * possible to fallback to regular writes when checking 7084 * if we can clone file ranges. 7085 */ 7086 btrfs_release_path(path); 7087 ret = search_key_again(sctx, send_root, path, &key); 7088 if (ret < 0) 7089 goto out; 7090 } else { 7091 up_read(&fs_info->commit_root_sem); 7092 } 7093 7094 ret = btrfs_next_item(send_root, path); 7095 if (ret < 0) 7096 goto out; 7097 if (ret) { 7098 ret = 0; 7099 break; 7100 } 7101 } 7102 7103 out_finish: 7104 ret = finish_inode_if_needed(sctx, 1); 7105 7106 out: 7107 btrfs_free_path(path); 7108 return ret; 7109 } 7110 7111 static int replace_node_with_clone(struct btrfs_path *path, int level) 7112 { 7113 struct extent_buffer *clone; 7114 7115 clone = btrfs_clone_extent_buffer(path->nodes[level]); 7116 if (!clone) 7117 return -ENOMEM; 7118 7119 free_extent_buffer(path->nodes[level]); 7120 path->nodes[level] = clone; 7121 7122 return 0; 7123 } 7124 7125 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen) 7126 { 7127 struct extent_buffer *eb; 7128 struct extent_buffer *parent = path->nodes[*level]; 7129 int slot = path->slots[*level]; 7130 const int nritems = btrfs_header_nritems(parent); 7131 u64 reada_max; 7132 u64 reada_done = 0; 7133 7134 lockdep_assert_held_read(&parent->fs_info->commit_root_sem); 7135 7136 BUG_ON(*level == 0); 7137 eb = btrfs_read_node_slot(parent, slot); 7138 if (IS_ERR(eb)) 7139 return PTR_ERR(eb); 7140 7141 /* 7142 * Trigger readahead for the next leaves we will process, so that it is 7143 * very likely that when we need them they are already in memory and we 7144 * will not block on disk IO. For nodes we only do readahead for one, 7145 * since the time window between processing nodes is typically larger. 7146 */ 7147 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize); 7148 7149 for (slot++; slot < nritems && reada_done < reada_max; slot++) { 7150 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) { 7151 btrfs_readahead_node_child(parent, slot); 7152 reada_done += eb->fs_info->nodesize; 7153 } 7154 } 7155 7156 path->nodes[*level - 1] = eb; 7157 path->slots[*level - 1] = 0; 7158 (*level)--; 7159 7160 if (*level == 0) 7161 return replace_node_with_clone(path, 0); 7162 7163 return 0; 7164 } 7165 7166 static int tree_move_next_or_upnext(struct btrfs_path *path, 7167 int *level, int root_level) 7168 { 7169 int ret = 0; 7170 int nritems; 7171 nritems = btrfs_header_nritems(path->nodes[*level]); 7172 7173 path->slots[*level]++; 7174 7175 while (path->slots[*level] >= nritems) { 7176 if (*level == root_level) { 7177 path->slots[*level] = nritems - 1; 7178 return -1; 7179 } 7180 7181 /* move upnext */ 7182 path->slots[*level] = 0; 7183 free_extent_buffer(path->nodes[*level]); 7184 path->nodes[*level] = NULL; 7185 (*level)++; 7186 path->slots[*level]++; 7187 7188 nritems = btrfs_header_nritems(path->nodes[*level]); 7189 ret = 1; 7190 } 7191 return ret; 7192 } 7193 7194 /* 7195 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 7196 * or down. 7197 */ 7198 static int tree_advance(struct btrfs_path *path, 7199 int *level, int root_level, 7200 int allow_down, 7201 struct btrfs_key *key, 7202 u64 reada_min_gen) 7203 { 7204 int ret; 7205 7206 if (*level == 0 || !allow_down) { 7207 ret = tree_move_next_or_upnext(path, level, root_level); 7208 } else { 7209 ret = tree_move_down(path, level, reada_min_gen); 7210 } 7211 7212 /* 7213 * Even if we have reached the end of a tree, ret is -1, update the key 7214 * anyway, so that in case we need to restart due to a block group 7215 * relocation, we can assert that the last key of the root node still 7216 * exists in the tree. 7217 */ 7218 if (*level == 0) 7219 btrfs_item_key_to_cpu(path->nodes[*level], key, 7220 path->slots[*level]); 7221 else 7222 btrfs_node_key_to_cpu(path->nodes[*level], key, 7223 path->slots[*level]); 7224 7225 return ret; 7226 } 7227 7228 static int tree_compare_item(struct btrfs_path *left_path, 7229 struct btrfs_path *right_path, 7230 char *tmp_buf) 7231 { 7232 int cmp; 7233 int len1, len2; 7234 unsigned long off1, off2; 7235 7236 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]); 7237 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]); 7238 if (len1 != len2) 7239 return 1; 7240 7241 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 7242 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 7243 right_path->slots[0]); 7244 7245 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 7246 7247 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 7248 if (cmp) 7249 return 1; 7250 return 0; 7251 } 7252 7253 /* 7254 * A transaction used for relocating a block group was committed or is about to 7255 * finish its commit. Release our paths and restart the search, so that we are 7256 * not using stale extent buffers: 7257 * 7258 * 1) For levels > 0, we are only holding references of extent buffers, without 7259 * any locks on them, which does not prevent them from having been relocated 7260 * and reallocated after the last time we released the commit root semaphore. 7261 * The exception are the root nodes, for which we always have a clone, see 7262 * the comment at btrfs_compare_trees(); 7263 * 7264 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so 7265 * we are safe from the concurrent relocation and reallocation. However they 7266 * can have file extent items with a pre relocation disk_bytenr value, so we 7267 * restart the start from the current commit roots and clone the new leaves so 7268 * that we get the post relocation disk_bytenr values. Not doing so, could 7269 * make us clone the wrong data in case there are new extents using the old 7270 * disk_bytenr that happen to be shared. 7271 */ 7272 static int restart_after_relocation(struct btrfs_path *left_path, 7273 struct btrfs_path *right_path, 7274 const struct btrfs_key *left_key, 7275 const struct btrfs_key *right_key, 7276 int left_level, 7277 int right_level, 7278 const struct send_ctx *sctx) 7279 { 7280 int root_level; 7281 int ret; 7282 7283 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem); 7284 7285 btrfs_release_path(left_path); 7286 btrfs_release_path(right_path); 7287 7288 /* 7289 * Since keys can not be added or removed to/from our roots because they 7290 * are readonly and we do not allow deduplication to run in parallel 7291 * (which can add, remove or change keys), the layout of the trees should 7292 * not change. 7293 */ 7294 left_path->lowest_level = left_level; 7295 ret = search_key_again(sctx, sctx->send_root, left_path, left_key); 7296 if (ret < 0) 7297 return ret; 7298 7299 right_path->lowest_level = right_level; 7300 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key); 7301 if (ret < 0) 7302 return ret; 7303 7304 /* 7305 * If the lowest level nodes are leaves, clone them so that they can be 7306 * safely used by changed_cb() while not under the protection of the 7307 * commit root semaphore, even if relocation and reallocation happens in 7308 * parallel. 7309 */ 7310 if (left_level == 0) { 7311 ret = replace_node_with_clone(left_path, 0); 7312 if (ret < 0) 7313 return ret; 7314 } 7315 7316 if (right_level == 0) { 7317 ret = replace_node_with_clone(right_path, 0); 7318 if (ret < 0) 7319 return ret; 7320 } 7321 7322 /* 7323 * Now clone the root nodes (unless they happen to be the leaves we have 7324 * already cloned). This is to protect against concurrent snapshotting of 7325 * the send and parent roots (see the comment at btrfs_compare_trees()). 7326 */ 7327 root_level = btrfs_header_level(sctx->send_root->commit_root); 7328 if (root_level > 0) { 7329 ret = replace_node_with_clone(left_path, root_level); 7330 if (ret < 0) 7331 return ret; 7332 } 7333 7334 root_level = btrfs_header_level(sctx->parent_root->commit_root); 7335 if (root_level > 0) { 7336 ret = replace_node_with_clone(right_path, root_level); 7337 if (ret < 0) 7338 return ret; 7339 } 7340 7341 return 0; 7342 } 7343 7344 /* 7345 * This function compares two trees and calls the provided callback for 7346 * every changed/new/deleted item it finds. 7347 * If shared tree blocks are encountered, whole subtrees are skipped, making 7348 * the compare pretty fast on snapshotted subvolumes. 7349 * 7350 * This currently works on commit roots only. As commit roots are read only, 7351 * we don't do any locking. The commit roots are protected with transactions. 7352 * Transactions are ended and rejoined when a commit is tried in between. 7353 * 7354 * This function checks for modifications done to the trees while comparing. 7355 * If it detects a change, it aborts immediately. 7356 */ 7357 static int btrfs_compare_trees(struct btrfs_root *left_root, 7358 struct btrfs_root *right_root, struct send_ctx *sctx) 7359 { 7360 struct btrfs_fs_info *fs_info = left_root->fs_info; 7361 int ret; 7362 int cmp; 7363 struct btrfs_path *left_path = NULL; 7364 struct btrfs_path *right_path = NULL; 7365 struct btrfs_key left_key; 7366 struct btrfs_key right_key; 7367 char *tmp_buf = NULL; 7368 int left_root_level; 7369 int right_root_level; 7370 int left_level; 7371 int right_level; 7372 int left_end_reached = 0; 7373 int right_end_reached = 0; 7374 int advance_left = 0; 7375 int advance_right = 0; 7376 u64 left_blockptr; 7377 u64 right_blockptr; 7378 u64 left_gen; 7379 u64 right_gen; 7380 u64 reada_min_gen; 7381 7382 left_path = btrfs_alloc_path(); 7383 if (!left_path) { 7384 ret = -ENOMEM; 7385 goto out; 7386 } 7387 right_path = btrfs_alloc_path(); 7388 if (!right_path) { 7389 ret = -ENOMEM; 7390 goto out; 7391 } 7392 7393 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 7394 if (!tmp_buf) { 7395 ret = -ENOMEM; 7396 goto out; 7397 } 7398 7399 left_path->search_commit_root = 1; 7400 left_path->skip_locking = 1; 7401 right_path->search_commit_root = 1; 7402 right_path->skip_locking = 1; 7403 7404 /* 7405 * Strategy: Go to the first items of both trees. Then do 7406 * 7407 * If both trees are at level 0 7408 * Compare keys of current items 7409 * If left < right treat left item as new, advance left tree 7410 * and repeat 7411 * If left > right treat right item as deleted, advance right tree 7412 * and repeat 7413 * If left == right do deep compare of items, treat as changed if 7414 * needed, advance both trees and repeat 7415 * If both trees are at the same level but not at level 0 7416 * Compare keys of current nodes/leafs 7417 * If left < right advance left tree and repeat 7418 * If left > right advance right tree and repeat 7419 * If left == right compare blockptrs of the next nodes/leafs 7420 * If they match advance both trees but stay at the same level 7421 * and repeat 7422 * If they don't match advance both trees while allowing to go 7423 * deeper and repeat 7424 * If tree levels are different 7425 * Advance the tree that needs it and repeat 7426 * 7427 * Advancing a tree means: 7428 * If we are at level 0, try to go to the next slot. If that's not 7429 * possible, go one level up and repeat. Stop when we found a level 7430 * where we could go to the next slot. We may at this point be on a 7431 * node or a leaf. 7432 * 7433 * If we are not at level 0 and not on shared tree blocks, go one 7434 * level deeper. 7435 * 7436 * If we are not at level 0 and on shared tree blocks, go one slot to 7437 * the right if possible or go up and right. 7438 */ 7439 7440 down_read(&fs_info->commit_root_sem); 7441 left_level = btrfs_header_level(left_root->commit_root); 7442 left_root_level = left_level; 7443 /* 7444 * We clone the root node of the send and parent roots to prevent races 7445 * with snapshot creation of these roots. Snapshot creation COWs the 7446 * root node of a tree, so after the transaction is committed the old 7447 * extent can be reallocated while this send operation is still ongoing. 7448 * So we clone them, under the commit root semaphore, to be race free. 7449 */ 7450 left_path->nodes[left_level] = 7451 btrfs_clone_extent_buffer(left_root->commit_root); 7452 if (!left_path->nodes[left_level]) { 7453 ret = -ENOMEM; 7454 goto out_unlock; 7455 } 7456 7457 right_level = btrfs_header_level(right_root->commit_root); 7458 right_root_level = right_level; 7459 right_path->nodes[right_level] = 7460 btrfs_clone_extent_buffer(right_root->commit_root); 7461 if (!right_path->nodes[right_level]) { 7462 ret = -ENOMEM; 7463 goto out_unlock; 7464 } 7465 /* 7466 * Our right root is the parent root, while the left root is the "send" 7467 * root. We know that all new nodes/leaves in the left root must have 7468 * a generation greater than the right root's generation, so we trigger 7469 * readahead for those nodes and leaves of the left root, as we know we 7470 * will need to read them at some point. 7471 */ 7472 reada_min_gen = btrfs_header_generation(right_root->commit_root); 7473 7474 if (left_level == 0) 7475 btrfs_item_key_to_cpu(left_path->nodes[left_level], 7476 &left_key, left_path->slots[left_level]); 7477 else 7478 btrfs_node_key_to_cpu(left_path->nodes[left_level], 7479 &left_key, left_path->slots[left_level]); 7480 if (right_level == 0) 7481 btrfs_item_key_to_cpu(right_path->nodes[right_level], 7482 &right_key, right_path->slots[right_level]); 7483 else 7484 btrfs_node_key_to_cpu(right_path->nodes[right_level], 7485 &right_key, right_path->slots[right_level]); 7486 7487 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7488 7489 while (1) { 7490 if (need_resched() || 7491 rwsem_is_contended(&fs_info->commit_root_sem)) { 7492 up_read(&fs_info->commit_root_sem); 7493 cond_resched(); 7494 down_read(&fs_info->commit_root_sem); 7495 } 7496 7497 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7498 ret = restart_after_relocation(left_path, right_path, 7499 &left_key, &right_key, 7500 left_level, right_level, 7501 sctx); 7502 if (ret < 0) 7503 goto out_unlock; 7504 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7505 } 7506 7507 if (advance_left && !left_end_reached) { 7508 ret = tree_advance(left_path, &left_level, 7509 left_root_level, 7510 advance_left != ADVANCE_ONLY_NEXT, 7511 &left_key, reada_min_gen); 7512 if (ret == -1) 7513 left_end_reached = ADVANCE; 7514 else if (ret < 0) 7515 goto out_unlock; 7516 advance_left = 0; 7517 } 7518 if (advance_right && !right_end_reached) { 7519 ret = tree_advance(right_path, &right_level, 7520 right_root_level, 7521 advance_right != ADVANCE_ONLY_NEXT, 7522 &right_key, reada_min_gen); 7523 if (ret == -1) 7524 right_end_reached = ADVANCE; 7525 else if (ret < 0) 7526 goto out_unlock; 7527 advance_right = 0; 7528 } 7529 7530 if (left_end_reached && right_end_reached) { 7531 ret = 0; 7532 goto out_unlock; 7533 } else if (left_end_reached) { 7534 if (right_level == 0) { 7535 up_read(&fs_info->commit_root_sem); 7536 ret = changed_cb(left_path, right_path, 7537 &right_key, 7538 BTRFS_COMPARE_TREE_DELETED, 7539 sctx); 7540 if (ret < 0) 7541 goto out; 7542 down_read(&fs_info->commit_root_sem); 7543 } 7544 advance_right = ADVANCE; 7545 continue; 7546 } else if (right_end_reached) { 7547 if (left_level == 0) { 7548 up_read(&fs_info->commit_root_sem); 7549 ret = changed_cb(left_path, right_path, 7550 &left_key, 7551 BTRFS_COMPARE_TREE_NEW, 7552 sctx); 7553 if (ret < 0) 7554 goto out; 7555 down_read(&fs_info->commit_root_sem); 7556 } 7557 advance_left = ADVANCE; 7558 continue; 7559 } 7560 7561 if (left_level == 0 && right_level == 0) { 7562 up_read(&fs_info->commit_root_sem); 7563 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7564 if (cmp < 0) { 7565 ret = changed_cb(left_path, right_path, 7566 &left_key, 7567 BTRFS_COMPARE_TREE_NEW, 7568 sctx); 7569 advance_left = ADVANCE; 7570 } else if (cmp > 0) { 7571 ret = changed_cb(left_path, right_path, 7572 &right_key, 7573 BTRFS_COMPARE_TREE_DELETED, 7574 sctx); 7575 advance_right = ADVANCE; 7576 } else { 7577 enum btrfs_compare_tree_result result; 7578 7579 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 7580 ret = tree_compare_item(left_path, right_path, 7581 tmp_buf); 7582 if (ret) 7583 result = BTRFS_COMPARE_TREE_CHANGED; 7584 else 7585 result = BTRFS_COMPARE_TREE_SAME; 7586 ret = changed_cb(left_path, right_path, 7587 &left_key, result, sctx); 7588 advance_left = ADVANCE; 7589 advance_right = ADVANCE; 7590 } 7591 7592 if (ret < 0) 7593 goto out; 7594 down_read(&fs_info->commit_root_sem); 7595 } else if (left_level == right_level) { 7596 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7597 if (cmp < 0) { 7598 advance_left = ADVANCE; 7599 } else if (cmp > 0) { 7600 advance_right = ADVANCE; 7601 } else { 7602 left_blockptr = btrfs_node_blockptr( 7603 left_path->nodes[left_level], 7604 left_path->slots[left_level]); 7605 right_blockptr = btrfs_node_blockptr( 7606 right_path->nodes[right_level], 7607 right_path->slots[right_level]); 7608 left_gen = btrfs_node_ptr_generation( 7609 left_path->nodes[left_level], 7610 left_path->slots[left_level]); 7611 right_gen = btrfs_node_ptr_generation( 7612 right_path->nodes[right_level], 7613 right_path->slots[right_level]); 7614 if (left_blockptr == right_blockptr && 7615 left_gen == right_gen) { 7616 /* 7617 * As we're on a shared block, don't 7618 * allow to go deeper. 7619 */ 7620 advance_left = ADVANCE_ONLY_NEXT; 7621 advance_right = ADVANCE_ONLY_NEXT; 7622 } else { 7623 advance_left = ADVANCE; 7624 advance_right = ADVANCE; 7625 } 7626 } 7627 } else if (left_level < right_level) { 7628 advance_right = ADVANCE; 7629 } else { 7630 advance_left = ADVANCE; 7631 } 7632 } 7633 7634 out_unlock: 7635 up_read(&fs_info->commit_root_sem); 7636 out: 7637 btrfs_free_path(left_path); 7638 btrfs_free_path(right_path); 7639 kvfree(tmp_buf); 7640 return ret; 7641 } 7642 7643 static int send_subvol(struct send_ctx *sctx) 7644 { 7645 int ret; 7646 7647 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 7648 ret = send_header(sctx); 7649 if (ret < 0) 7650 goto out; 7651 } 7652 7653 ret = send_subvol_begin(sctx); 7654 if (ret < 0) 7655 goto out; 7656 7657 if (sctx->parent_root) { 7658 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); 7659 if (ret < 0) 7660 goto out; 7661 ret = finish_inode_if_needed(sctx, 1); 7662 if (ret < 0) 7663 goto out; 7664 } else { 7665 ret = full_send_tree(sctx); 7666 if (ret < 0) 7667 goto out; 7668 } 7669 7670 out: 7671 free_recorded_refs(sctx); 7672 return ret; 7673 } 7674 7675 /* 7676 * If orphan cleanup did remove any orphans from a root, it means the tree 7677 * was modified and therefore the commit root is not the same as the current 7678 * root anymore. This is a problem, because send uses the commit root and 7679 * therefore can see inode items that don't exist in the current root anymore, 7680 * and for example make calls to btrfs_iget, which will do tree lookups based 7681 * on the current root and not on the commit root. Those lookups will fail, 7682 * returning a -ESTALE error, and making send fail with that error. So make 7683 * sure a send does not see any orphans we have just removed, and that it will 7684 * see the same inodes regardless of whether a transaction commit happened 7685 * before it started (meaning that the commit root will be the same as the 7686 * current root) or not. 7687 */ 7688 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 7689 { 7690 int i; 7691 struct btrfs_trans_handle *trans = NULL; 7692 7693 again: 7694 if (sctx->parent_root && 7695 sctx->parent_root->node != sctx->parent_root->commit_root) 7696 goto commit_trans; 7697 7698 for (i = 0; i < sctx->clone_roots_cnt; i++) 7699 if (sctx->clone_roots[i].root->node != 7700 sctx->clone_roots[i].root->commit_root) 7701 goto commit_trans; 7702 7703 if (trans) 7704 return btrfs_end_transaction(trans); 7705 7706 return 0; 7707 7708 commit_trans: 7709 /* Use any root, all fs roots will get their commit roots updated. */ 7710 if (!trans) { 7711 trans = btrfs_join_transaction(sctx->send_root); 7712 if (IS_ERR(trans)) 7713 return PTR_ERR(trans); 7714 goto again; 7715 } 7716 7717 return btrfs_commit_transaction(trans); 7718 } 7719 7720 /* 7721 * Make sure any existing dellaloc is flushed for any root used by a send 7722 * operation so that we do not miss any data and we do not race with writeback 7723 * finishing and changing a tree while send is using the tree. This could 7724 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 7725 * a send operation then uses the subvolume. 7726 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 7727 */ 7728 static int flush_delalloc_roots(struct send_ctx *sctx) 7729 { 7730 struct btrfs_root *root = sctx->parent_root; 7731 int ret; 7732 int i; 7733 7734 if (root) { 7735 ret = btrfs_start_delalloc_snapshot(root, false); 7736 if (ret) 7737 return ret; 7738 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 7739 } 7740 7741 for (i = 0; i < sctx->clone_roots_cnt; i++) { 7742 root = sctx->clone_roots[i].root; 7743 ret = btrfs_start_delalloc_snapshot(root, false); 7744 if (ret) 7745 return ret; 7746 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 7747 } 7748 7749 return 0; 7750 } 7751 7752 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 7753 { 7754 spin_lock(&root->root_item_lock); 7755 root->send_in_progress--; 7756 /* 7757 * Not much left to do, we don't know why it's unbalanced and 7758 * can't blindly reset it to 0. 7759 */ 7760 if (root->send_in_progress < 0) 7761 btrfs_err(root->fs_info, 7762 "send_in_progress unbalanced %d root %llu", 7763 root->send_in_progress, root->root_key.objectid); 7764 spin_unlock(&root->root_item_lock); 7765 } 7766 7767 static void dedupe_in_progress_warn(const struct btrfs_root *root) 7768 { 7769 btrfs_warn_rl(root->fs_info, 7770 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 7771 root->root_key.objectid, root->dedupe_in_progress); 7772 } 7773 7774 long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg) 7775 { 7776 int ret = 0; 7777 struct btrfs_root *send_root = BTRFS_I(inode)->root; 7778 struct btrfs_fs_info *fs_info = send_root->fs_info; 7779 struct btrfs_root *clone_root; 7780 struct send_ctx *sctx = NULL; 7781 u32 i; 7782 u64 *clone_sources_tmp = NULL; 7783 int clone_sources_to_rollback = 0; 7784 size_t alloc_size; 7785 int sort_clone_roots = 0; 7786 7787 if (!capable(CAP_SYS_ADMIN)) 7788 return -EPERM; 7789 7790 /* 7791 * The subvolume must remain read-only during send, protect against 7792 * making it RW. This also protects against deletion. 7793 */ 7794 spin_lock(&send_root->root_item_lock); 7795 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) { 7796 dedupe_in_progress_warn(send_root); 7797 spin_unlock(&send_root->root_item_lock); 7798 return -EAGAIN; 7799 } 7800 send_root->send_in_progress++; 7801 spin_unlock(&send_root->root_item_lock); 7802 7803 /* 7804 * Userspace tools do the checks and warn the user if it's 7805 * not RO. 7806 */ 7807 if (!btrfs_root_readonly(send_root)) { 7808 ret = -EPERM; 7809 goto out; 7810 } 7811 7812 /* 7813 * Check that we don't overflow at later allocations, we request 7814 * clone_sources_count + 1 items, and compare to unsigned long inside 7815 * access_ok. 7816 */ 7817 if (arg->clone_sources_count > 7818 ULONG_MAX / sizeof(struct clone_root) - 1) { 7819 ret = -EINVAL; 7820 goto out; 7821 } 7822 7823 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 7824 ret = -EINVAL; 7825 goto out; 7826 } 7827 7828 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 7829 if (!sctx) { 7830 ret = -ENOMEM; 7831 goto out; 7832 } 7833 7834 INIT_LIST_HEAD(&sctx->new_refs); 7835 INIT_LIST_HEAD(&sctx->deleted_refs); 7836 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL); 7837 INIT_LIST_HEAD(&sctx->name_cache_list); 7838 7839 sctx->flags = arg->flags; 7840 7841 if (arg->flags & BTRFS_SEND_FLAG_VERSION) { 7842 if (arg->version > BTRFS_SEND_STREAM_VERSION) { 7843 ret = -EPROTO; 7844 goto out; 7845 } 7846 /* Zero means "use the highest version" */ 7847 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION; 7848 } else { 7849 sctx->proto = 1; 7850 } 7851 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) { 7852 ret = -EINVAL; 7853 goto out; 7854 } 7855 7856 sctx->send_filp = fget(arg->send_fd); 7857 if (!sctx->send_filp) { 7858 ret = -EBADF; 7859 goto out; 7860 } 7861 7862 sctx->send_root = send_root; 7863 /* 7864 * Unlikely but possible, if the subvolume is marked for deletion but 7865 * is slow to remove the directory entry, send can still be started 7866 */ 7867 if (btrfs_root_dead(sctx->send_root)) { 7868 ret = -EPERM; 7869 goto out; 7870 } 7871 7872 sctx->clone_roots_cnt = arg->clone_sources_count; 7873 7874 if (sctx->proto >= 2) { 7875 u32 send_buf_num_pages; 7876 7877 sctx->send_max_size = ALIGN(SZ_16K + BTRFS_MAX_COMPRESSED, PAGE_SIZE); 7878 sctx->send_buf = vmalloc(sctx->send_max_size); 7879 if (!sctx->send_buf) { 7880 ret = -ENOMEM; 7881 goto out; 7882 } 7883 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT; 7884 sctx->send_buf_pages = kcalloc(send_buf_num_pages, 7885 sizeof(*sctx->send_buf_pages), 7886 GFP_KERNEL); 7887 if (!sctx->send_buf_pages) { 7888 ret = -ENOMEM; 7889 goto out; 7890 } 7891 for (i = 0; i < send_buf_num_pages; i++) { 7892 sctx->send_buf_pages[i] = 7893 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT)); 7894 } 7895 } else { 7896 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1; 7897 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 7898 } 7899 if (!sctx->send_buf) { 7900 ret = -ENOMEM; 7901 goto out; 7902 } 7903 7904 sctx->pending_dir_moves = RB_ROOT; 7905 sctx->waiting_dir_moves = RB_ROOT; 7906 sctx->orphan_dirs = RB_ROOT; 7907 sctx->rbtree_new_refs = RB_ROOT; 7908 sctx->rbtree_deleted_refs = RB_ROOT; 7909 7910 sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots), 7911 arg->clone_sources_count + 1, 7912 GFP_KERNEL); 7913 if (!sctx->clone_roots) { 7914 ret = -ENOMEM; 7915 goto out; 7916 } 7917 7918 alloc_size = array_size(sizeof(*arg->clone_sources), 7919 arg->clone_sources_count); 7920 7921 if (arg->clone_sources_count) { 7922 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 7923 if (!clone_sources_tmp) { 7924 ret = -ENOMEM; 7925 goto out; 7926 } 7927 7928 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 7929 alloc_size); 7930 if (ret) { 7931 ret = -EFAULT; 7932 goto out; 7933 } 7934 7935 for (i = 0; i < arg->clone_sources_count; i++) { 7936 clone_root = btrfs_get_fs_root(fs_info, 7937 clone_sources_tmp[i], true); 7938 if (IS_ERR(clone_root)) { 7939 ret = PTR_ERR(clone_root); 7940 goto out; 7941 } 7942 spin_lock(&clone_root->root_item_lock); 7943 if (!btrfs_root_readonly(clone_root) || 7944 btrfs_root_dead(clone_root)) { 7945 spin_unlock(&clone_root->root_item_lock); 7946 btrfs_put_root(clone_root); 7947 ret = -EPERM; 7948 goto out; 7949 } 7950 if (clone_root->dedupe_in_progress) { 7951 dedupe_in_progress_warn(clone_root); 7952 spin_unlock(&clone_root->root_item_lock); 7953 btrfs_put_root(clone_root); 7954 ret = -EAGAIN; 7955 goto out; 7956 } 7957 clone_root->send_in_progress++; 7958 spin_unlock(&clone_root->root_item_lock); 7959 7960 sctx->clone_roots[i].root = clone_root; 7961 clone_sources_to_rollback = i + 1; 7962 } 7963 kvfree(clone_sources_tmp); 7964 clone_sources_tmp = NULL; 7965 } 7966 7967 if (arg->parent_root) { 7968 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, 7969 true); 7970 if (IS_ERR(sctx->parent_root)) { 7971 ret = PTR_ERR(sctx->parent_root); 7972 goto out; 7973 } 7974 7975 spin_lock(&sctx->parent_root->root_item_lock); 7976 sctx->parent_root->send_in_progress++; 7977 if (!btrfs_root_readonly(sctx->parent_root) || 7978 btrfs_root_dead(sctx->parent_root)) { 7979 spin_unlock(&sctx->parent_root->root_item_lock); 7980 ret = -EPERM; 7981 goto out; 7982 } 7983 if (sctx->parent_root->dedupe_in_progress) { 7984 dedupe_in_progress_warn(sctx->parent_root); 7985 spin_unlock(&sctx->parent_root->root_item_lock); 7986 ret = -EAGAIN; 7987 goto out; 7988 } 7989 spin_unlock(&sctx->parent_root->root_item_lock); 7990 } 7991 7992 /* 7993 * Clones from send_root are allowed, but only if the clone source 7994 * is behind the current send position. This is checked while searching 7995 * for possible clone sources. 7996 */ 7997 sctx->clone_roots[sctx->clone_roots_cnt++].root = 7998 btrfs_grab_root(sctx->send_root); 7999 8000 /* We do a bsearch later */ 8001 sort(sctx->clone_roots, sctx->clone_roots_cnt, 8002 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 8003 NULL); 8004 sort_clone_roots = 1; 8005 8006 ret = flush_delalloc_roots(sctx); 8007 if (ret) 8008 goto out; 8009 8010 ret = ensure_commit_roots_uptodate(sctx); 8011 if (ret) 8012 goto out; 8013 8014 ret = send_subvol(sctx); 8015 if (ret < 0) 8016 goto out; 8017 8018 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 8019 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 8020 if (ret < 0) 8021 goto out; 8022 ret = send_cmd(sctx); 8023 if (ret < 0) 8024 goto out; 8025 } 8026 8027 out: 8028 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 8029 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 8030 struct rb_node *n; 8031 struct pending_dir_move *pm; 8032 8033 n = rb_first(&sctx->pending_dir_moves); 8034 pm = rb_entry(n, struct pending_dir_move, node); 8035 while (!list_empty(&pm->list)) { 8036 struct pending_dir_move *pm2; 8037 8038 pm2 = list_first_entry(&pm->list, 8039 struct pending_dir_move, list); 8040 free_pending_move(sctx, pm2); 8041 } 8042 free_pending_move(sctx, pm); 8043 } 8044 8045 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 8046 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 8047 struct rb_node *n; 8048 struct waiting_dir_move *dm; 8049 8050 n = rb_first(&sctx->waiting_dir_moves); 8051 dm = rb_entry(n, struct waiting_dir_move, node); 8052 rb_erase(&dm->node, &sctx->waiting_dir_moves); 8053 kfree(dm); 8054 } 8055 8056 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 8057 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 8058 struct rb_node *n; 8059 struct orphan_dir_info *odi; 8060 8061 n = rb_first(&sctx->orphan_dirs); 8062 odi = rb_entry(n, struct orphan_dir_info, node); 8063 free_orphan_dir_info(sctx, odi); 8064 } 8065 8066 if (sort_clone_roots) { 8067 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8068 btrfs_root_dec_send_in_progress( 8069 sctx->clone_roots[i].root); 8070 btrfs_put_root(sctx->clone_roots[i].root); 8071 } 8072 } else { 8073 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 8074 btrfs_root_dec_send_in_progress( 8075 sctx->clone_roots[i].root); 8076 btrfs_put_root(sctx->clone_roots[i].root); 8077 } 8078 8079 btrfs_root_dec_send_in_progress(send_root); 8080 } 8081 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 8082 btrfs_root_dec_send_in_progress(sctx->parent_root); 8083 btrfs_put_root(sctx->parent_root); 8084 } 8085 8086 kvfree(clone_sources_tmp); 8087 8088 if (sctx) { 8089 if (sctx->send_filp) 8090 fput(sctx->send_filp); 8091 8092 kvfree(sctx->clone_roots); 8093 kfree(sctx->send_buf_pages); 8094 kvfree(sctx->send_buf); 8095 kvfree(sctx->verity_descriptor); 8096 8097 name_cache_free(sctx); 8098 8099 close_current_inode(sctx); 8100 8101 kfree(sctx); 8102 } 8103 8104 return ret; 8105 } 8106