xref: /openbmc/linux/fs/btrfs/send.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 #include <linux/compat.h>
30 #include <linux/crc32c.h>
31 
32 #include "send.h"
33 #include "backref.h"
34 #include "locking.h"
35 #include "disk-io.h"
36 #include "btrfs_inode.h"
37 #include "transaction.h"
38 #include "compression.h"
39 
40 /*
41  * A fs_path is a helper to dynamically build path names with unknown size.
42  * It reallocates the internal buffer on demand.
43  * It allows fast adding of path elements on the right side (normal path) and
44  * fast adding to the left side (reversed path). A reversed path can also be
45  * unreversed if needed.
46  */
47 struct fs_path {
48 	union {
49 		struct {
50 			char *start;
51 			char *end;
52 
53 			char *buf;
54 			unsigned short buf_len:15;
55 			unsigned short reversed:1;
56 			char inline_buf[];
57 		};
58 		/*
59 		 * Average path length does not exceed 200 bytes, we'll have
60 		 * better packing in the slab and higher chance to satisfy
61 		 * a allocation later during send.
62 		 */
63 		char pad[256];
64 	};
65 };
66 #define FS_PATH_INLINE_SIZE \
67 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
68 
69 
70 /* reused for each extent */
71 struct clone_root {
72 	struct btrfs_root *root;
73 	u64 ino;
74 	u64 offset;
75 
76 	u64 found_refs;
77 };
78 
79 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
80 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
81 
82 struct send_ctx {
83 	struct file *send_filp;
84 	loff_t send_off;
85 	char *send_buf;
86 	u32 send_size;
87 	u32 send_max_size;
88 	u64 total_send_size;
89 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
90 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
91 
92 	struct btrfs_root *send_root;
93 	struct btrfs_root *parent_root;
94 	struct clone_root *clone_roots;
95 	int clone_roots_cnt;
96 
97 	/* current state of the compare_tree call */
98 	struct btrfs_path *left_path;
99 	struct btrfs_path *right_path;
100 	struct btrfs_key *cmp_key;
101 
102 	/*
103 	 * infos of the currently processed inode. In case of deleted inodes,
104 	 * these are the values from the deleted inode.
105 	 */
106 	u64 cur_ino;
107 	u64 cur_inode_gen;
108 	int cur_inode_new;
109 	int cur_inode_new_gen;
110 	int cur_inode_deleted;
111 	u64 cur_inode_size;
112 	u64 cur_inode_mode;
113 	u64 cur_inode_rdev;
114 	u64 cur_inode_last_extent;
115 	u64 cur_inode_next_write_offset;
116 
117 	u64 send_progress;
118 
119 	struct list_head new_refs;
120 	struct list_head deleted_refs;
121 
122 	struct radix_tree_root name_cache;
123 	struct list_head name_cache_list;
124 	int name_cache_size;
125 
126 	struct file_ra_state ra;
127 
128 	char *read_buf;
129 
130 	/*
131 	 * We process inodes by their increasing order, so if before an
132 	 * incremental send we reverse the parent/child relationship of
133 	 * directories such that a directory with a lower inode number was
134 	 * the parent of a directory with a higher inode number, and the one
135 	 * becoming the new parent got renamed too, we can't rename/move the
136 	 * directory with lower inode number when we finish processing it - we
137 	 * must process the directory with higher inode number first, then
138 	 * rename/move it and then rename/move the directory with lower inode
139 	 * number. Example follows.
140 	 *
141 	 * Tree state when the first send was performed:
142 	 *
143 	 * .
144 	 * |-- a                   (ino 257)
145 	 *     |-- b               (ino 258)
146 	 *         |
147 	 *         |
148 	 *         |-- c           (ino 259)
149 	 *         |   |-- d       (ino 260)
150 	 *         |
151 	 *         |-- c2          (ino 261)
152 	 *
153 	 * Tree state when the second (incremental) send is performed:
154 	 *
155 	 * .
156 	 * |-- a                   (ino 257)
157 	 *     |-- b               (ino 258)
158 	 *         |-- c2          (ino 261)
159 	 *             |-- d2      (ino 260)
160 	 *                 |-- cc  (ino 259)
161 	 *
162 	 * The sequence of steps that lead to the second state was:
163 	 *
164 	 * mv /a/b/c/d /a/b/c2/d2
165 	 * mv /a/b/c /a/b/c2/d2/cc
166 	 *
167 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
168 	 * before we move "d", which has higher inode number.
169 	 *
170 	 * So we just memorize which move/rename operations must be performed
171 	 * later when their respective parent is processed and moved/renamed.
172 	 */
173 
174 	/* Indexed by parent directory inode number. */
175 	struct rb_root pending_dir_moves;
176 
177 	/*
178 	 * Reverse index, indexed by the inode number of a directory that
179 	 * is waiting for the move/rename of its immediate parent before its
180 	 * own move/rename can be performed.
181 	 */
182 	struct rb_root waiting_dir_moves;
183 
184 	/*
185 	 * A directory that is going to be rm'ed might have a child directory
186 	 * which is in the pending directory moves index above. In this case,
187 	 * the directory can only be removed after the move/rename of its child
188 	 * is performed. Example:
189 	 *
190 	 * Parent snapshot:
191 	 *
192 	 * .                        (ino 256)
193 	 * |-- a/                   (ino 257)
194 	 *     |-- b/               (ino 258)
195 	 *         |-- c/           (ino 259)
196 	 *         |   |-- x/       (ino 260)
197 	 *         |
198 	 *         |-- y/           (ino 261)
199 	 *
200 	 * Send snapshot:
201 	 *
202 	 * .                        (ino 256)
203 	 * |-- a/                   (ino 257)
204 	 *     |-- b/               (ino 258)
205 	 *         |-- YY/          (ino 261)
206 	 *              |-- x/      (ino 260)
207 	 *
208 	 * Sequence of steps that lead to the send snapshot:
209 	 * rm -f /a/b/c/foo.txt
210 	 * mv /a/b/y /a/b/YY
211 	 * mv /a/b/c/x /a/b/YY
212 	 * rmdir /a/b/c
213 	 *
214 	 * When the child is processed, its move/rename is delayed until its
215 	 * parent is processed (as explained above), but all other operations
216 	 * like update utimes, chown, chgrp, etc, are performed and the paths
217 	 * that it uses for those operations must use the orphanized name of
218 	 * its parent (the directory we're going to rm later), so we need to
219 	 * memorize that name.
220 	 *
221 	 * Indexed by the inode number of the directory to be deleted.
222 	 */
223 	struct rb_root orphan_dirs;
224 };
225 
226 struct pending_dir_move {
227 	struct rb_node node;
228 	struct list_head list;
229 	u64 parent_ino;
230 	u64 ino;
231 	u64 gen;
232 	struct list_head update_refs;
233 };
234 
235 struct waiting_dir_move {
236 	struct rb_node node;
237 	u64 ino;
238 	/*
239 	 * There might be some directory that could not be removed because it
240 	 * was waiting for this directory inode to be moved first. Therefore
241 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
242 	 */
243 	u64 rmdir_ino;
244 	bool orphanized;
245 };
246 
247 struct orphan_dir_info {
248 	struct rb_node node;
249 	u64 ino;
250 	u64 gen;
251 };
252 
253 struct name_cache_entry {
254 	struct list_head list;
255 	/*
256 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
257 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
258 	 * more then one inum would fall into the same entry, we use radix_list
259 	 * to store the additional entries. radix_list is also used to store
260 	 * entries where two entries have the same inum but different
261 	 * generations.
262 	 */
263 	struct list_head radix_list;
264 	u64 ino;
265 	u64 gen;
266 	u64 parent_ino;
267 	u64 parent_gen;
268 	int ret;
269 	int need_later_update;
270 	int name_len;
271 	char name[];
272 };
273 
274 __cold
275 static void inconsistent_snapshot_error(struct send_ctx *sctx,
276 					enum btrfs_compare_tree_result result,
277 					const char *what)
278 {
279 	const char *result_string;
280 
281 	switch (result) {
282 	case BTRFS_COMPARE_TREE_NEW:
283 		result_string = "new";
284 		break;
285 	case BTRFS_COMPARE_TREE_DELETED:
286 		result_string = "deleted";
287 		break;
288 	case BTRFS_COMPARE_TREE_CHANGED:
289 		result_string = "updated";
290 		break;
291 	case BTRFS_COMPARE_TREE_SAME:
292 		ASSERT(0);
293 		result_string = "unchanged";
294 		break;
295 	default:
296 		ASSERT(0);
297 		result_string = "unexpected";
298 	}
299 
300 	btrfs_err(sctx->send_root->fs_info,
301 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
302 		  result_string, what, sctx->cmp_key->objectid,
303 		  sctx->send_root->root_key.objectid,
304 		  (sctx->parent_root ?
305 		   sctx->parent_root->root_key.objectid : 0));
306 }
307 
308 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
309 
310 static struct waiting_dir_move *
311 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
312 
313 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
314 
315 static int need_send_hole(struct send_ctx *sctx)
316 {
317 	return (sctx->parent_root && !sctx->cur_inode_new &&
318 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
319 		S_ISREG(sctx->cur_inode_mode));
320 }
321 
322 static void fs_path_reset(struct fs_path *p)
323 {
324 	if (p->reversed) {
325 		p->start = p->buf + p->buf_len - 1;
326 		p->end = p->start;
327 		*p->start = 0;
328 	} else {
329 		p->start = p->buf;
330 		p->end = p->start;
331 		*p->start = 0;
332 	}
333 }
334 
335 static struct fs_path *fs_path_alloc(void)
336 {
337 	struct fs_path *p;
338 
339 	p = kmalloc(sizeof(*p), GFP_KERNEL);
340 	if (!p)
341 		return NULL;
342 	p->reversed = 0;
343 	p->buf = p->inline_buf;
344 	p->buf_len = FS_PATH_INLINE_SIZE;
345 	fs_path_reset(p);
346 	return p;
347 }
348 
349 static struct fs_path *fs_path_alloc_reversed(void)
350 {
351 	struct fs_path *p;
352 
353 	p = fs_path_alloc();
354 	if (!p)
355 		return NULL;
356 	p->reversed = 1;
357 	fs_path_reset(p);
358 	return p;
359 }
360 
361 static void fs_path_free(struct fs_path *p)
362 {
363 	if (!p)
364 		return;
365 	if (p->buf != p->inline_buf)
366 		kfree(p->buf);
367 	kfree(p);
368 }
369 
370 static int fs_path_len(struct fs_path *p)
371 {
372 	return p->end - p->start;
373 }
374 
375 static int fs_path_ensure_buf(struct fs_path *p, int len)
376 {
377 	char *tmp_buf;
378 	int path_len;
379 	int old_buf_len;
380 
381 	len++;
382 
383 	if (p->buf_len >= len)
384 		return 0;
385 
386 	if (len > PATH_MAX) {
387 		WARN_ON(1);
388 		return -ENOMEM;
389 	}
390 
391 	path_len = p->end - p->start;
392 	old_buf_len = p->buf_len;
393 
394 	/*
395 	 * First time the inline_buf does not suffice
396 	 */
397 	if (p->buf == p->inline_buf) {
398 		tmp_buf = kmalloc(len, GFP_KERNEL);
399 		if (tmp_buf)
400 			memcpy(tmp_buf, p->buf, old_buf_len);
401 	} else {
402 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
403 	}
404 	if (!tmp_buf)
405 		return -ENOMEM;
406 	p->buf = tmp_buf;
407 	/*
408 	 * The real size of the buffer is bigger, this will let the fast path
409 	 * happen most of the time
410 	 */
411 	p->buf_len = ksize(p->buf);
412 
413 	if (p->reversed) {
414 		tmp_buf = p->buf + old_buf_len - path_len - 1;
415 		p->end = p->buf + p->buf_len - 1;
416 		p->start = p->end - path_len;
417 		memmove(p->start, tmp_buf, path_len + 1);
418 	} else {
419 		p->start = p->buf;
420 		p->end = p->start + path_len;
421 	}
422 	return 0;
423 }
424 
425 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
426 				   char **prepared)
427 {
428 	int ret;
429 	int new_len;
430 
431 	new_len = p->end - p->start + name_len;
432 	if (p->start != p->end)
433 		new_len++;
434 	ret = fs_path_ensure_buf(p, new_len);
435 	if (ret < 0)
436 		goto out;
437 
438 	if (p->reversed) {
439 		if (p->start != p->end)
440 			*--p->start = '/';
441 		p->start -= name_len;
442 		*prepared = p->start;
443 	} else {
444 		if (p->start != p->end)
445 			*p->end++ = '/';
446 		*prepared = p->end;
447 		p->end += name_len;
448 		*p->end = 0;
449 	}
450 
451 out:
452 	return ret;
453 }
454 
455 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
456 {
457 	int ret;
458 	char *prepared;
459 
460 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
461 	if (ret < 0)
462 		goto out;
463 	memcpy(prepared, name, name_len);
464 
465 out:
466 	return ret;
467 }
468 
469 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
470 {
471 	int ret;
472 	char *prepared;
473 
474 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
475 	if (ret < 0)
476 		goto out;
477 	memcpy(prepared, p2->start, p2->end - p2->start);
478 
479 out:
480 	return ret;
481 }
482 
483 static int fs_path_add_from_extent_buffer(struct fs_path *p,
484 					  struct extent_buffer *eb,
485 					  unsigned long off, int len)
486 {
487 	int ret;
488 	char *prepared;
489 
490 	ret = fs_path_prepare_for_add(p, len, &prepared);
491 	if (ret < 0)
492 		goto out;
493 
494 	read_extent_buffer(eb, prepared, off, len);
495 
496 out:
497 	return ret;
498 }
499 
500 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
501 {
502 	int ret;
503 
504 	p->reversed = from->reversed;
505 	fs_path_reset(p);
506 
507 	ret = fs_path_add_path(p, from);
508 
509 	return ret;
510 }
511 
512 
513 static void fs_path_unreverse(struct fs_path *p)
514 {
515 	char *tmp;
516 	int len;
517 
518 	if (!p->reversed)
519 		return;
520 
521 	tmp = p->start;
522 	len = p->end - p->start;
523 	p->start = p->buf;
524 	p->end = p->start + len;
525 	memmove(p->start, tmp, len + 1);
526 	p->reversed = 0;
527 }
528 
529 static struct btrfs_path *alloc_path_for_send(void)
530 {
531 	struct btrfs_path *path;
532 
533 	path = btrfs_alloc_path();
534 	if (!path)
535 		return NULL;
536 	path->search_commit_root = 1;
537 	path->skip_locking = 1;
538 	path->need_commit_sem = 1;
539 	return path;
540 }
541 
542 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
543 {
544 	int ret;
545 	u32 pos = 0;
546 
547 	while (pos < len) {
548 		ret = kernel_write(filp, buf + pos, len - pos, off);
549 		/* TODO handle that correctly */
550 		/*if (ret == -ERESTARTSYS) {
551 			continue;
552 		}*/
553 		if (ret < 0)
554 			return ret;
555 		if (ret == 0) {
556 			return -EIO;
557 		}
558 		pos += ret;
559 	}
560 
561 	return 0;
562 }
563 
564 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
565 {
566 	struct btrfs_tlv_header *hdr;
567 	int total_len = sizeof(*hdr) + len;
568 	int left = sctx->send_max_size - sctx->send_size;
569 
570 	if (unlikely(left < total_len))
571 		return -EOVERFLOW;
572 
573 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
574 	hdr->tlv_type = cpu_to_le16(attr);
575 	hdr->tlv_len = cpu_to_le16(len);
576 	memcpy(hdr + 1, data, len);
577 	sctx->send_size += total_len;
578 
579 	return 0;
580 }
581 
582 #define TLV_PUT_DEFINE_INT(bits) \
583 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
584 			u##bits attr, u##bits value)			\
585 	{								\
586 		__le##bits __tmp = cpu_to_le##bits(value);		\
587 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
588 	}
589 
590 TLV_PUT_DEFINE_INT(64)
591 
592 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
593 			  const char *str, int len)
594 {
595 	if (len == -1)
596 		len = strlen(str);
597 	return tlv_put(sctx, attr, str, len);
598 }
599 
600 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
601 			const u8 *uuid)
602 {
603 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
604 }
605 
606 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
607 				  struct extent_buffer *eb,
608 				  struct btrfs_timespec *ts)
609 {
610 	struct btrfs_timespec bts;
611 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
612 	return tlv_put(sctx, attr, &bts, sizeof(bts));
613 }
614 
615 
616 #define TLV_PUT(sctx, attrtype, data, attrlen) \
617 	do { \
618 		ret = tlv_put(sctx, attrtype, data, attrlen); \
619 		if (ret < 0) \
620 			goto tlv_put_failure; \
621 	} while (0)
622 
623 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
624 	do { \
625 		ret = tlv_put_u##bits(sctx, attrtype, value); \
626 		if (ret < 0) \
627 			goto tlv_put_failure; \
628 	} while (0)
629 
630 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
631 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
632 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
633 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
634 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
635 	do { \
636 		ret = tlv_put_string(sctx, attrtype, str, len); \
637 		if (ret < 0) \
638 			goto tlv_put_failure; \
639 	} while (0)
640 #define TLV_PUT_PATH(sctx, attrtype, p) \
641 	do { \
642 		ret = tlv_put_string(sctx, attrtype, p->start, \
643 			p->end - p->start); \
644 		if (ret < 0) \
645 			goto tlv_put_failure; \
646 	} while(0)
647 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
648 	do { \
649 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
650 		if (ret < 0) \
651 			goto tlv_put_failure; \
652 	} while (0)
653 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
654 	do { \
655 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
656 		if (ret < 0) \
657 			goto tlv_put_failure; \
658 	} while (0)
659 
660 static int send_header(struct send_ctx *sctx)
661 {
662 	struct btrfs_stream_header hdr;
663 
664 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
665 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
666 
667 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
668 					&sctx->send_off);
669 }
670 
671 /*
672  * For each command/item we want to send to userspace, we call this function.
673  */
674 static int begin_cmd(struct send_ctx *sctx, int cmd)
675 {
676 	struct btrfs_cmd_header *hdr;
677 
678 	if (WARN_ON(!sctx->send_buf))
679 		return -EINVAL;
680 
681 	BUG_ON(sctx->send_size);
682 
683 	sctx->send_size += sizeof(*hdr);
684 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
685 	hdr->cmd = cpu_to_le16(cmd);
686 
687 	return 0;
688 }
689 
690 static int send_cmd(struct send_ctx *sctx)
691 {
692 	int ret;
693 	struct btrfs_cmd_header *hdr;
694 	u32 crc;
695 
696 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
697 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
698 	hdr->crc = 0;
699 
700 	crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
701 	hdr->crc = cpu_to_le32(crc);
702 
703 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
704 					&sctx->send_off);
705 
706 	sctx->total_send_size += sctx->send_size;
707 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
708 	sctx->send_size = 0;
709 
710 	return ret;
711 }
712 
713 /*
714  * Sends a move instruction to user space
715  */
716 static int send_rename(struct send_ctx *sctx,
717 		     struct fs_path *from, struct fs_path *to)
718 {
719 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
720 	int ret;
721 
722 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
723 
724 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
725 	if (ret < 0)
726 		goto out;
727 
728 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
729 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
730 
731 	ret = send_cmd(sctx);
732 
733 tlv_put_failure:
734 out:
735 	return ret;
736 }
737 
738 /*
739  * Sends a link instruction to user space
740  */
741 static int send_link(struct send_ctx *sctx,
742 		     struct fs_path *path, struct fs_path *lnk)
743 {
744 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
745 	int ret;
746 
747 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
748 
749 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
750 	if (ret < 0)
751 		goto out;
752 
753 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
754 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
755 
756 	ret = send_cmd(sctx);
757 
758 tlv_put_failure:
759 out:
760 	return ret;
761 }
762 
763 /*
764  * Sends an unlink instruction to user space
765  */
766 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
767 {
768 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
769 	int ret;
770 
771 	btrfs_debug(fs_info, "send_unlink %s", path->start);
772 
773 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
774 	if (ret < 0)
775 		goto out;
776 
777 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
778 
779 	ret = send_cmd(sctx);
780 
781 tlv_put_failure:
782 out:
783 	return ret;
784 }
785 
786 /*
787  * Sends a rmdir instruction to user space
788  */
789 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
790 {
791 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
792 	int ret;
793 
794 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
795 
796 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
797 	if (ret < 0)
798 		goto out;
799 
800 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
801 
802 	ret = send_cmd(sctx);
803 
804 tlv_put_failure:
805 out:
806 	return ret;
807 }
808 
809 /*
810  * Helper function to retrieve some fields from an inode item.
811  */
812 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
813 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
814 			  u64 *gid, u64 *rdev)
815 {
816 	int ret;
817 	struct btrfs_inode_item *ii;
818 	struct btrfs_key key;
819 
820 	key.objectid = ino;
821 	key.type = BTRFS_INODE_ITEM_KEY;
822 	key.offset = 0;
823 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
824 	if (ret) {
825 		if (ret > 0)
826 			ret = -ENOENT;
827 		return ret;
828 	}
829 
830 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
831 			struct btrfs_inode_item);
832 	if (size)
833 		*size = btrfs_inode_size(path->nodes[0], ii);
834 	if (gen)
835 		*gen = btrfs_inode_generation(path->nodes[0], ii);
836 	if (mode)
837 		*mode = btrfs_inode_mode(path->nodes[0], ii);
838 	if (uid)
839 		*uid = btrfs_inode_uid(path->nodes[0], ii);
840 	if (gid)
841 		*gid = btrfs_inode_gid(path->nodes[0], ii);
842 	if (rdev)
843 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
844 
845 	return ret;
846 }
847 
848 static int get_inode_info(struct btrfs_root *root,
849 			  u64 ino, u64 *size, u64 *gen,
850 			  u64 *mode, u64 *uid, u64 *gid,
851 			  u64 *rdev)
852 {
853 	struct btrfs_path *path;
854 	int ret;
855 
856 	path = alloc_path_for_send();
857 	if (!path)
858 		return -ENOMEM;
859 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
860 			       rdev);
861 	btrfs_free_path(path);
862 	return ret;
863 }
864 
865 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
866 				   struct fs_path *p,
867 				   void *ctx);
868 
869 /*
870  * Helper function to iterate the entries in ONE btrfs_inode_ref or
871  * btrfs_inode_extref.
872  * The iterate callback may return a non zero value to stop iteration. This can
873  * be a negative value for error codes or 1 to simply stop it.
874  *
875  * path must point to the INODE_REF or INODE_EXTREF when called.
876  */
877 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
878 			     struct btrfs_key *found_key, int resolve,
879 			     iterate_inode_ref_t iterate, void *ctx)
880 {
881 	struct extent_buffer *eb = path->nodes[0];
882 	struct btrfs_item *item;
883 	struct btrfs_inode_ref *iref;
884 	struct btrfs_inode_extref *extref;
885 	struct btrfs_path *tmp_path;
886 	struct fs_path *p;
887 	u32 cur = 0;
888 	u32 total;
889 	int slot = path->slots[0];
890 	u32 name_len;
891 	char *start;
892 	int ret = 0;
893 	int num = 0;
894 	int index;
895 	u64 dir;
896 	unsigned long name_off;
897 	unsigned long elem_size;
898 	unsigned long ptr;
899 
900 	p = fs_path_alloc_reversed();
901 	if (!p)
902 		return -ENOMEM;
903 
904 	tmp_path = alloc_path_for_send();
905 	if (!tmp_path) {
906 		fs_path_free(p);
907 		return -ENOMEM;
908 	}
909 
910 
911 	if (found_key->type == BTRFS_INODE_REF_KEY) {
912 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
913 						    struct btrfs_inode_ref);
914 		item = btrfs_item_nr(slot);
915 		total = btrfs_item_size(eb, item);
916 		elem_size = sizeof(*iref);
917 	} else {
918 		ptr = btrfs_item_ptr_offset(eb, slot);
919 		total = btrfs_item_size_nr(eb, slot);
920 		elem_size = sizeof(*extref);
921 	}
922 
923 	while (cur < total) {
924 		fs_path_reset(p);
925 
926 		if (found_key->type == BTRFS_INODE_REF_KEY) {
927 			iref = (struct btrfs_inode_ref *)(ptr + cur);
928 			name_len = btrfs_inode_ref_name_len(eb, iref);
929 			name_off = (unsigned long)(iref + 1);
930 			index = btrfs_inode_ref_index(eb, iref);
931 			dir = found_key->offset;
932 		} else {
933 			extref = (struct btrfs_inode_extref *)(ptr + cur);
934 			name_len = btrfs_inode_extref_name_len(eb, extref);
935 			name_off = (unsigned long)&extref->name;
936 			index = btrfs_inode_extref_index(eb, extref);
937 			dir = btrfs_inode_extref_parent(eb, extref);
938 		}
939 
940 		if (resolve) {
941 			start = btrfs_ref_to_path(root, tmp_path, name_len,
942 						  name_off, eb, dir,
943 						  p->buf, p->buf_len);
944 			if (IS_ERR(start)) {
945 				ret = PTR_ERR(start);
946 				goto out;
947 			}
948 			if (start < p->buf) {
949 				/* overflow , try again with larger buffer */
950 				ret = fs_path_ensure_buf(p,
951 						p->buf_len + p->buf - start);
952 				if (ret < 0)
953 					goto out;
954 				start = btrfs_ref_to_path(root, tmp_path,
955 							  name_len, name_off,
956 							  eb, dir,
957 							  p->buf, p->buf_len);
958 				if (IS_ERR(start)) {
959 					ret = PTR_ERR(start);
960 					goto out;
961 				}
962 				BUG_ON(start < p->buf);
963 			}
964 			p->start = start;
965 		} else {
966 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
967 							     name_len);
968 			if (ret < 0)
969 				goto out;
970 		}
971 
972 		cur += elem_size + name_len;
973 		ret = iterate(num, dir, index, p, ctx);
974 		if (ret)
975 			goto out;
976 		num++;
977 	}
978 
979 out:
980 	btrfs_free_path(tmp_path);
981 	fs_path_free(p);
982 	return ret;
983 }
984 
985 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
986 				  const char *name, int name_len,
987 				  const char *data, int data_len,
988 				  u8 type, void *ctx);
989 
990 /*
991  * Helper function to iterate the entries in ONE btrfs_dir_item.
992  * The iterate callback may return a non zero value to stop iteration. This can
993  * be a negative value for error codes or 1 to simply stop it.
994  *
995  * path must point to the dir item when called.
996  */
997 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
998 			    iterate_dir_item_t iterate, void *ctx)
999 {
1000 	int ret = 0;
1001 	struct extent_buffer *eb;
1002 	struct btrfs_item *item;
1003 	struct btrfs_dir_item *di;
1004 	struct btrfs_key di_key;
1005 	char *buf = NULL;
1006 	int buf_len;
1007 	u32 name_len;
1008 	u32 data_len;
1009 	u32 cur;
1010 	u32 len;
1011 	u32 total;
1012 	int slot;
1013 	int num;
1014 	u8 type;
1015 
1016 	/*
1017 	 * Start with a small buffer (1 page). If later we end up needing more
1018 	 * space, which can happen for xattrs on a fs with a leaf size greater
1019 	 * then the page size, attempt to increase the buffer. Typically xattr
1020 	 * values are small.
1021 	 */
1022 	buf_len = PATH_MAX;
1023 	buf = kmalloc(buf_len, GFP_KERNEL);
1024 	if (!buf) {
1025 		ret = -ENOMEM;
1026 		goto out;
1027 	}
1028 
1029 	eb = path->nodes[0];
1030 	slot = path->slots[0];
1031 	item = btrfs_item_nr(slot);
1032 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1033 	cur = 0;
1034 	len = 0;
1035 	total = btrfs_item_size(eb, item);
1036 
1037 	num = 0;
1038 	while (cur < total) {
1039 		name_len = btrfs_dir_name_len(eb, di);
1040 		data_len = btrfs_dir_data_len(eb, di);
1041 		type = btrfs_dir_type(eb, di);
1042 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1043 
1044 		if (type == BTRFS_FT_XATTR) {
1045 			if (name_len > XATTR_NAME_MAX) {
1046 				ret = -ENAMETOOLONG;
1047 				goto out;
1048 			}
1049 			if (name_len + data_len >
1050 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1051 				ret = -E2BIG;
1052 				goto out;
1053 			}
1054 		} else {
1055 			/*
1056 			 * Path too long
1057 			 */
1058 			if (name_len + data_len > PATH_MAX) {
1059 				ret = -ENAMETOOLONG;
1060 				goto out;
1061 			}
1062 		}
1063 
1064 		if (name_len + data_len > buf_len) {
1065 			buf_len = name_len + data_len;
1066 			if (is_vmalloc_addr(buf)) {
1067 				vfree(buf);
1068 				buf = NULL;
1069 			} else {
1070 				char *tmp = krealloc(buf, buf_len,
1071 						GFP_KERNEL | __GFP_NOWARN);
1072 
1073 				if (!tmp)
1074 					kfree(buf);
1075 				buf = tmp;
1076 			}
1077 			if (!buf) {
1078 				buf = kvmalloc(buf_len, GFP_KERNEL);
1079 				if (!buf) {
1080 					ret = -ENOMEM;
1081 					goto out;
1082 				}
1083 			}
1084 		}
1085 
1086 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1087 				name_len + data_len);
1088 
1089 		len = sizeof(*di) + name_len + data_len;
1090 		di = (struct btrfs_dir_item *)((char *)di + len);
1091 		cur += len;
1092 
1093 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1094 				data_len, type, ctx);
1095 		if (ret < 0)
1096 			goto out;
1097 		if (ret) {
1098 			ret = 0;
1099 			goto out;
1100 		}
1101 
1102 		num++;
1103 	}
1104 
1105 out:
1106 	kvfree(buf);
1107 	return ret;
1108 }
1109 
1110 static int __copy_first_ref(int num, u64 dir, int index,
1111 			    struct fs_path *p, void *ctx)
1112 {
1113 	int ret;
1114 	struct fs_path *pt = ctx;
1115 
1116 	ret = fs_path_copy(pt, p);
1117 	if (ret < 0)
1118 		return ret;
1119 
1120 	/* we want the first only */
1121 	return 1;
1122 }
1123 
1124 /*
1125  * Retrieve the first path of an inode. If an inode has more then one
1126  * ref/hardlink, this is ignored.
1127  */
1128 static int get_inode_path(struct btrfs_root *root,
1129 			  u64 ino, struct fs_path *path)
1130 {
1131 	int ret;
1132 	struct btrfs_key key, found_key;
1133 	struct btrfs_path *p;
1134 
1135 	p = alloc_path_for_send();
1136 	if (!p)
1137 		return -ENOMEM;
1138 
1139 	fs_path_reset(path);
1140 
1141 	key.objectid = ino;
1142 	key.type = BTRFS_INODE_REF_KEY;
1143 	key.offset = 0;
1144 
1145 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1146 	if (ret < 0)
1147 		goto out;
1148 	if (ret) {
1149 		ret = 1;
1150 		goto out;
1151 	}
1152 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1153 	if (found_key.objectid != ino ||
1154 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1155 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1156 		ret = -ENOENT;
1157 		goto out;
1158 	}
1159 
1160 	ret = iterate_inode_ref(root, p, &found_key, 1,
1161 				__copy_first_ref, path);
1162 	if (ret < 0)
1163 		goto out;
1164 	ret = 0;
1165 
1166 out:
1167 	btrfs_free_path(p);
1168 	return ret;
1169 }
1170 
1171 struct backref_ctx {
1172 	struct send_ctx *sctx;
1173 
1174 	struct btrfs_path *path;
1175 	/* number of total found references */
1176 	u64 found;
1177 
1178 	/*
1179 	 * used for clones found in send_root. clones found behind cur_objectid
1180 	 * and cur_offset are not considered as allowed clones.
1181 	 */
1182 	u64 cur_objectid;
1183 	u64 cur_offset;
1184 
1185 	/* may be truncated in case it's the last extent in a file */
1186 	u64 extent_len;
1187 
1188 	/* data offset in the file extent item */
1189 	u64 data_offset;
1190 
1191 	/* Just to check for bugs in backref resolving */
1192 	int found_itself;
1193 };
1194 
1195 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1196 {
1197 	u64 root = (u64)(uintptr_t)key;
1198 	struct clone_root *cr = (struct clone_root *)elt;
1199 
1200 	if (root < cr->root->objectid)
1201 		return -1;
1202 	if (root > cr->root->objectid)
1203 		return 1;
1204 	return 0;
1205 }
1206 
1207 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1208 {
1209 	struct clone_root *cr1 = (struct clone_root *)e1;
1210 	struct clone_root *cr2 = (struct clone_root *)e2;
1211 
1212 	if (cr1->root->objectid < cr2->root->objectid)
1213 		return -1;
1214 	if (cr1->root->objectid > cr2->root->objectid)
1215 		return 1;
1216 	return 0;
1217 }
1218 
1219 /*
1220  * Called for every backref that is found for the current extent.
1221  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1222  */
1223 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1224 {
1225 	struct backref_ctx *bctx = ctx_;
1226 	struct clone_root *found;
1227 	int ret;
1228 	u64 i_size;
1229 
1230 	/* First check if the root is in the list of accepted clone sources */
1231 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1232 			bctx->sctx->clone_roots_cnt,
1233 			sizeof(struct clone_root),
1234 			__clone_root_cmp_bsearch);
1235 	if (!found)
1236 		return 0;
1237 
1238 	if (found->root == bctx->sctx->send_root &&
1239 	    ino == bctx->cur_objectid &&
1240 	    offset == bctx->cur_offset) {
1241 		bctx->found_itself = 1;
1242 	}
1243 
1244 	/*
1245 	 * There are inodes that have extents that lie behind its i_size. Don't
1246 	 * accept clones from these extents.
1247 	 */
1248 	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1249 			       NULL, NULL, NULL);
1250 	btrfs_release_path(bctx->path);
1251 	if (ret < 0)
1252 		return ret;
1253 
1254 	if (offset + bctx->data_offset + bctx->extent_len > i_size)
1255 		return 0;
1256 
1257 	/*
1258 	 * Make sure we don't consider clones from send_root that are
1259 	 * behind the current inode/offset.
1260 	 */
1261 	if (found->root == bctx->sctx->send_root) {
1262 		/*
1263 		 * TODO for the moment we don't accept clones from the inode
1264 		 * that is currently send. We may change this when
1265 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1266 		 * file.
1267 		 */
1268 		if (ino >= bctx->cur_objectid)
1269 			return 0;
1270 	}
1271 
1272 	bctx->found++;
1273 	found->found_refs++;
1274 	if (ino < found->ino) {
1275 		found->ino = ino;
1276 		found->offset = offset;
1277 	} else if (found->ino == ino) {
1278 		/*
1279 		 * same extent found more then once in the same file.
1280 		 */
1281 		if (found->offset > offset + bctx->extent_len)
1282 			found->offset = offset;
1283 	}
1284 
1285 	return 0;
1286 }
1287 
1288 /*
1289  * Given an inode, offset and extent item, it finds a good clone for a clone
1290  * instruction. Returns -ENOENT when none could be found. The function makes
1291  * sure that the returned clone is usable at the point where sending is at the
1292  * moment. This means, that no clones are accepted which lie behind the current
1293  * inode+offset.
1294  *
1295  * path must point to the extent item when called.
1296  */
1297 static int find_extent_clone(struct send_ctx *sctx,
1298 			     struct btrfs_path *path,
1299 			     u64 ino, u64 data_offset,
1300 			     u64 ino_size,
1301 			     struct clone_root **found)
1302 {
1303 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1304 	int ret;
1305 	int extent_type;
1306 	u64 logical;
1307 	u64 disk_byte;
1308 	u64 num_bytes;
1309 	u64 extent_item_pos;
1310 	u64 flags = 0;
1311 	struct btrfs_file_extent_item *fi;
1312 	struct extent_buffer *eb = path->nodes[0];
1313 	struct backref_ctx *backref_ctx = NULL;
1314 	struct clone_root *cur_clone_root;
1315 	struct btrfs_key found_key;
1316 	struct btrfs_path *tmp_path;
1317 	int compressed;
1318 	u32 i;
1319 
1320 	tmp_path = alloc_path_for_send();
1321 	if (!tmp_path)
1322 		return -ENOMEM;
1323 
1324 	/* We only use this path under the commit sem */
1325 	tmp_path->need_commit_sem = 0;
1326 
1327 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1328 	if (!backref_ctx) {
1329 		ret = -ENOMEM;
1330 		goto out;
1331 	}
1332 
1333 	backref_ctx->path = tmp_path;
1334 
1335 	if (data_offset >= ino_size) {
1336 		/*
1337 		 * There may be extents that lie behind the file's size.
1338 		 * I at least had this in combination with snapshotting while
1339 		 * writing large files.
1340 		 */
1341 		ret = 0;
1342 		goto out;
1343 	}
1344 
1345 	fi = btrfs_item_ptr(eb, path->slots[0],
1346 			struct btrfs_file_extent_item);
1347 	extent_type = btrfs_file_extent_type(eb, fi);
1348 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1349 		ret = -ENOENT;
1350 		goto out;
1351 	}
1352 	compressed = btrfs_file_extent_compression(eb, fi);
1353 
1354 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1355 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1356 	if (disk_byte == 0) {
1357 		ret = -ENOENT;
1358 		goto out;
1359 	}
1360 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1361 
1362 	down_read(&fs_info->commit_root_sem);
1363 	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1364 				  &found_key, &flags);
1365 	up_read(&fs_info->commit_root_sem);
1366 	btrfs_release_path(tmp_path);
1367 
1368 	if (ret < 0)
1369 		goto out;
1370 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1371 		ret = -EIO;
1372 		goto out;
1373 	}
1374 
1375 	/*
1376 	 * Setup the clone roots.
1377 	 */
1378 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1379 		cur_clone_root = sctx->clone_roots + i;
1380 		cur_clone_root->ino = (u64)-1;
1381 		cur_clone_root->offset = 0;
1382 		cur_clone_root->found_refs = 0;
1383 	}
1384 
1385 	backref_ctx->sctx = sctx;
1386 	backref_ctx->found = 0;
1387 	backref_ctx->cur_objectid = ino;
1388 	backref_ctx->cur_offset = data_offset;
1389 	backref_ctx->found_itself = 0;
1390 	backref_ctx->extent_len = num_bytes;
1391 	/*
1392 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1393 	 * offsets that already take into account the data offset, but not for
1394 	 * compressed extents, since the offset is logical and not relative to
1395 	 * the physical extent locations. We must take this into account to
1396 	 * avoid sending clone offsets that go beyond the source file's size,
1397 	 * which would result in the clone ioctl failing with -EINVAL on the
1398 	 * receiving end.
1399 	 */
1400 	if (compressed == BTRFS_COMPRESS_NONE)
1401 		backref_ctx->data_offset = 0;
1402 	else
1403 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1404 
1405 	/*
1406 	 * The last extent of a file may be too large due to page alignment.
1407 	 * We need to adjust extent_len in this case so that the checks in
1408 	 * __iterate_backrefs work.
1409 	 */
1410 	if (data_offset + num_bytes >= ino_size)
1411 		backref_ctx->extent_len = ino_size - data_offset;
1412 
1413 	/*
1414 	 * Now collect all backrefs.
1415 	 */
1416 	if (compressed == BTRFS_COMPRESS_NONE)
1417 		extent_item_pos = logical - found_key.objectid;
1418 	else
1419 		extent_item_pos = 0;
1420 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1421 				    extent_item_pos, 1, __iterate_backrefs,
1422 				    backref_ctx, false);
1423 
1424 	if (ret < 0)
1425 		goto out;
1426 
1427 	if (!backref_ctx->found_itself) {
1428 		/* found a bug in backref code? */
1429 		ret = -EIO;
1430 		btrfs_err(fs_info,
1431 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1432 			  ino, data_offset, disk_byte, found_key.objectid);
1433 		goto out;
1434 	}
1435 
1436 	btrfs_debug(fs_info,
1437 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1438 		    data_offset, ino, num_bytes, logical);
1439 
1440 	if (!backref_ctx->found)
1441 		btrfs_debug(fs_info, "no clones found");
1442 
1443 	cur_clone_root = NULL;
1444 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1445 		if (sctx->clone_roots[i].found_refs) {
1446 			if (!cur_clone_root)
1447 				cur_clone_root = sctx->clone_roots + i;
1448 			else if (sctx->clone_roots[i].root == sctx->send_root)
1449 				/* prefer clones from send_root over others */
1450 				cur_clone_root = sctx->clone_roots + i;
1451 		}
1452 
1453 	}
1454 
1455 	if (cur_clone_root) {
1456 		*found = cur_clone_root;
1457 		ret = 0;
1458 	} else {
1459 		ret = -ENOENT;
1460 	}
1461 
1462 out:
1463 	btrfs_free_path(tmp_path);
1464 	kfree(backref_ctx);
1465 	return ret;
1466 }
1467 
1468 static int read_symlink(struct btrfs_root *root,
1469 			u64 ino,
1470 			struct fs_path *dest)
1471 {
1472 	int ret;
1473 	struct btrfs_path *path;
1474 	struct btrfs_key key;
1475 	struct btrfs_file_extent_item *ei;
1476 	u8 type;
1477 	u8 compression;
1478 	unsigned long off;
1479 	int len;
1480 
1481 	path = alloc_path_for_send();
1482 	if (!path)
1483 		return -ENOMEM;
1484 
1485 	key.objectid = ino;
1486 	key.type = BTRFS_EXTENT_DATA_KEY;
1487 	key.offset = 0;
1488 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1489 	if (ret < 0)
1490 		goto out;
1491 	if (ret) {
1492 		/*
1493 		 * An empty symlink inode. Can happen in rare error paths when
1494 		 * creating a symlink (transaction committed before the inode
1495 		 * eviction handler removed the symlink inode items and a crash
1496 		 * happened in between or the subvol was snapshoted in between).
1497 		 * Print an informative message to dmesg/syslog so that the user
1498 		 * can delete the symlink.
1499 		 */
1500 		btrfs_err(root->fs_info,
1501 			  "Found empty symlink inode %llu at root %llu",
1502 			  ino, root->root_key.objectid);
1503 		ret = -EIO;
1504 		goto out;
1505 	}
1506 
1507 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1508 			struct btrfs_file_extent_item);
1509 	type = btrfs_file_extent_type(path->nodes[0], ei);
1510 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1511 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1512 	BUG_ON(compression);
1513 
1514 	off = btrfs_file_extent_inline_start(ei);
1515 	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1516 
1517 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1518 
1519 out:
1520 	btrfs_free_path(path);
1521 	return ret;
1522 }
1523 
1524 /*
1525  * Helper function to generate a file name that is unique in the root of
1526  * send_root and parent_root. This is used to generate names for orphan inodes.
1527  */
1528 static int gen_unique_name(struct send_ctx *sctx,
1529 			   u64 ino, u64 gen,
1530 			   struct fs_path *dest)
1531 {
1532 	int ret = 0;
1533 	struct btrfs_path *path;
1534 	struct btrfs_dir_item *di;
1535 	char tmp[64];
1536 	int len;
1537 	u64 idx = 0;
1538 
1539 	path = alloc_path_for_send();
1540 	if (!path)
1541 		return -ENOMEM;
1542 
1543 	while (1) {
1544 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1545 				ino, gen, idx);
1546 		ASSERT(len < sizeof(tmp));
1547 
1548 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1549 				path, BTRFS_FIRST_FREE_OBJECTID,
1550 				tmp, strlen(tmp), 0);
1551 		btrfs_release_path(path);
1552 		if (IS_ERR(di)) {
1553 			ret = PTR_ERR(di);
1554 			goto out;
1555 		}
1556 		if (di) {
1557 			/* not unique, try again */
1558 			idx++;
1559 			continue;
1560 		}
1561 
1562 		if (!sctx->parent_root) {
1563 			/* unique */
1564 			ret = 0;
1565 			break;
1566 		}
1567 
1568 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1569 				path, BTRFS_FIRST_FREE_OBJECTID,
1570 				tmp, strlen(tmp), 0);
1571 		btrfs_release_path(path);
1572 		if (IS_ERR(di)) {
1573 			ret = PTR_ERR(di);
1574 			goto out;
1575 		}
1576 		if (di) {
1577 			/* not unique, try again */
1578 			idx++;
1579 			continue;
1580 		}
1581 		/* unique */
1582 		break;
1583 	}
1584 
1585 	ret = fs_path_add(dest, tmp, strlen(tmp));
1586 
1587 out:
1588 	btrfs_free_path(path);
1589 	return ret;
1590 }
1591 
1592 enum inode_state {
1593 	inode_state_no_change,
1594 	inode_state_will_create,
1595 	inode_state_did_create,
1596 	inode_state_will_delete,
1597 	inode_state_did_delete,
1598 };
1599 
1600 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1601 {
1602 	int ret;
1603 	int left_ret;
1604 	int right_ret;
1605 	u64 left_gen;
1606 	u64 right_gen;
1607 
1608 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1609 			NULL, NULL);
1610 	if (ret < 0 && ret != -ENOENT)
1611 		goto out;
1612 	left_ret = ret;
1613 
1614 	if (!sctx->parent_root) {
1615 		right_ret = -ENOENT;
1616 	} else {
1617 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1618 				NULL, NULL, NULL, NULL);
1619 		if (ret < 0 && ret != -ENOENT)
1620 			goto out;
1621 		right_ret = ret;
1622 	}
1623 
1624 	if (!left_ret && !right_ret) {
1625 		if (left_gen == gen && right_gen == gen) {
1626 			ret = inode_state_no_change;
1627 		} else if (left_gen == gen) {
1628 			if (ino < sctx->send_progress)
1629 				ret = inode_state_did_create;
1630 			else
1631 				ret = inode_state_will_create;
1632 		} else if (right_gen == gen) {
1633 			if (ino < sctx->send_progress)
1634 				ret = inode_state_did_delete;
1635 			else
1636 				ret = inode_state_will_delete;
1637 		} else  {
1638 			ret = -ENOENT;
1639 		}
1640 	} else if (!left_ret) {
1641 		if (left_gen == gen) {
1642 			if (ino < sctx->send_progress)
1643 				ret = inode_state_did_create;
1644 			else
1645 				ret = inode_state_will_create;
1646 		} else {
1647 			ret = -ENOENT;
1648 		}
1649 	} else if (!right_ret) {
1650 		if (right_gen == gen) {
1651 			if (ino < sctx->send_progress)
1652 				ret = inode_state_did_delete;
1653 			else
1654 				ret = inode_state_will_delete;
1655 		} else {
1656 			ret = -ENOENT;
1657 		}
1658 	} else {
1659 		ret = -ENOENT;
1660 	}
1661 
1662 out:
1663 	return ret;
1664 }
1665 
1666 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1667 {
1668 	int ret;
1669 
1670 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1671 		return 1;
1672 
1673 	ret = get_cur_inode_state(sctx, ino, gen);
1674 	if (ret < 0)
1675 		goto out;
1676 
1677 	if (ret == inode_state_no_change ||
1678 	    ret == inode_state_did_create ||
1679 	    ret == inode_state_will_delete)
1680 		ret = 1;
1681 	else
1682 		ret = 0;
1683 
1684 out:
1685 	return ret;
1686 }
1687 
1688 /*
1689  * Helper function to lookup a dir item in a dir.
1690  */
1691 static int lookup_dir_item_inode(struct btrfs_root *root,
1692 				 u64 dir, const char *name, int name_len,
1693 				 u64 *found_inode,
1694 				 u8 *found_type)
1695 {
1696 	int ret = 0;
1697 	struct btrfs_dir_item *di;
1698 	struct btrfs_key key;
1699 	struct btrfs_path *path;
1700 
1701 	path = alloc_path_for_send();
1702 	if (!path)
1703 		return -ENOMEM;
1704 
1705 	di = btrfs_lookup_dir_item(NULL, root, path,
1706 			dir, name, name_len, 0);
1707 	if (!di) {
1708 		ret = -ENOENT;
1709 		goto out;
1710 	}
1711 	if (IS_ERR(di)) {
1712 		ret = PTR_ERR(di);
1713 		goto out;
1714 	}
1715 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1716 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1717 		ret = -ENOENT;
1718 		goto out;
1719 	}
1720 	*found_inode = key.objectid;
1721 	*found_type = btrfs_dir_type(path->nodes[0], di);
1722 
1723 out:
1724 	btrfs_free_path(path);
1725 	return ret;
1726 }
1727 
1728 /*
1729  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1730  * generation of the parent dir and the name of the dir entry.
1731  */
1732 static int get_first_ref(struct btrfs_root *root, u64 ino,
1733 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1734 {
1735 	int ret;
1736 	struct btrfs_key key;
1737 	struct btrfs_key found_key;
1738 	struct btrfs_path *path;
1739 	int len;
1740 	u64 parent_dir;
1741 
1742 	path = alloc_path_for_send();
1743 	if (!path)
1744 		return -ENOMEM;
1745 
1746 	key.objectid = ino;
1747 	key.type = BTRFS_INODE_REF_KEY;
1748 	key.offset = 0;
1749 
1750 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1751 	if (ret < 0)
1752 		goto out;
1753 	if (!ret)
1754 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1755 				path->slots[0]);
1756 	if (ret || found_key.objectid != ino ||
1757 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1758 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1759 		ret = -ENOENT;
1760 		goto out;
1761 	}
1762 
1763 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1764 		struct btrfs_inode_ref *iref;
1765 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1766 				      struct btrfs_inode_ref);
1767 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1768 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1769 						     (unsigned long)(iref + 1),
1770 						     len);
1771 		parent_dir = found_key.offset;
1772 	} else {
1773 		struct btrfs_inode_extref *extref;
1774 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1775 					struct btrfs_inode_extref);
1776 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1777 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1778 					(unsigned long)&extref->name, len);
1779 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1780 	}
1781 	if (ret < 0)
1782 		goto out;
1783 	btrfs_release_path(path);
1784 
1785 	if (dir_gen) {
1786 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1787 				     NULL, NULL, NULL);
1788 		if (ret < 0)
1789 			goto out;
1790 	}
1791 
1792 	*dir = parent_dir;
1793 
1794 out:
1795 	btrfs_free_path(path);
1796 	return ret;
1797 }
1798 
1799 static int is_first_ref(struct btrfs_root *root,
1800 			u64 ino, u64 dir,
1801 			const char *name, int name_len)
1802 {
1803 	int ret;
1804 	struct fs_path *tmp_name;
1805 	u64 tmp_dir;
1806 
1807 	tmp_name = fs_path_alloc();
1808 	if (!tmp_name)
1809 		return -ENOMEM;
1810 
1811 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1812 	if (ret < 0)
1813 		goto out;
1814 
1815 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1816 		ret = 0;
1817 		goto out;
1818 	}
1819 
1820 	ret = !memcmp(tmp_name->start, name, name_len);
1821 
1822 out:
1823 	fs_path_free(tmp_name);
1824 	return ret;
1825 }
1826 
1827 /*
1828  * Used by process_recorded_refs to determine if a new ref would overwrite an
1829  * already existing ref. In case it detects an overwrite, it returns the
1830  * inode/gen in who_ino/who_gen.
1831  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1832  * to make sure later references to the overwritten inode are possible.
1833  * Orphanizing is however only required for the first ref of an inode.
1834  * process_recorded_refs does an additional is_first_ref check to see if
1835  * orphanizing is really required.
1836  */
1837 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1838 			      const char *name, int name_len,
1839 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1840 {
1841 	int ret = 0;
1842 	u64 gen;
1843 	u64 other_inode = 0;
1844 	u8 other_type = 0;
1845 
1846 	if (!sctx->parent_root)
1847 		goto out;
1848 
1849 	ret = is_inode_existent(sctx, dir, dir_gen);
1850 	if (ret <= 0)
1851 		goto out;
1852 
1853 	/*
1854 	 * If we have a parent root we need to verify that the parent dir was
1855 	 * not deleted and then re-created, if it was then we have no overwrite
1856 	 * and we can just unlink this entry.
1857 	 */
1858 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1859 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1860 				     NULL, NULL, NULL);
1861 		if (ret < 0 && ret != -ENOENT)
1862 			goto out;
1863 		if (ret) {
1864 			ret = 0;
1865 			goto out;
1866 		}
1867 		if (gen != dir_gen)
1868 			goto out;
1869 	}
1870 
1871 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1872 			&other_inode, &other_type);
1873 	if (ret < 0 && ret != -ENOENT)
1874 		goto out;
1875 	if (ret) {
1876 		ret = 0;
1877 		goto out;
1878 	}
1879 
1880 	/*
1881 	 * Check if the overwritten ref was already processed. If yes, the ref
1882 	 * was already unlinked/moved, so we can safely assume that we will not
1883 	 * overwrite anything at this point in time.
1884 	 */
1885 	if (other_inode > sctx->send_progress ||
1886 	    is_waiting_for_move(sctx, other_inode)) {
1887 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1888 				who_gen, who_mode, NULL, NULL, NULL);
1889 		if (ret < 0)
1890 			goto out;
1891 
1892 		ret = 1;
1893 		*who_ino = other_inode;
1894 	} else {
1895 		ret = 0;
1896 	}
1897 
1898 out:
1899 	return ret;
1900 }
1901 
1902 /*
1903  * Checks if the ref was overwritten by an already processed inode. This is
1904  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1905  * thus the orphan name needs be used.
1906  * process_recorded_refs also uses it to avoid unlinking of refs that were
1907  * overwritten.
1908  */
1909 static int did_overwrite_ref(struct send_ctx *sctx,
1910 			    u64 dir, u64 dir_gen,
1911 			    u64 ino, u64 ino_gen,
1912 			    const char *name, int name_len)
1913 {
1914 	int ret = 0;
1915 	u64 gen;
1916 	u64 ow_inode;
1917 	u8 other_type;
1918 
1919 	if (!sctx->parent_root)
1920 		goto out;
1921 
1922 	ret = is_inode_existent(sctx, dir, dir_gen);
1923 	if (ret <= 0)
1924 		goto out;
1925 
1926 	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1927 		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1928 				     NULL, NULL, NULL);
1929 		if (ret < 0 && ret != -ENOENT)
1930 			goto out;
1931 		if (ret) {
1932 			ret = 0;
1933 			goto out;
1934 		}
1935 		if (gen != dir_gen)
1936 			goto out;
1937 	}
1938 
1939 	/* check if the ref was overwritten by another ref */
1940 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1941 			&ow_inode, &other_type);
1942 	if (ret < 0 && ret != -ENOENT)
1943 		goto out;
1944 	if (ret) {
1945 		/* was never and will never be overwritten */
1946 		ret = 0;
1947 		goto out;
1948 	}
1949 
1950 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1951 			NULL, NULL);
1952 	if (ret < 0)
1953 		goto out;
1954 
1955 	if (ow_inode == ino && gen == ino_gen) {
1956 		ret = 0;
1957 		goto out;
1958 	}
1959 
1960 	/*
1961 	 * We know that it is or will be overwritten. Check this now.
1962 	 * The current inode being processed might have been the one that caused
1963 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1964 	 * the current inode being processed.
1965 	 */
1966 	if ((ow_inode < sctx->send_progress) ||
1967 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1968 	     gen == sctx->cur_inode_gen))
1969 		ret = 1;
1970 	else
1971 		ret = 0;
1972 
1973 out:
1974 	return ret;
1975 }
1976 
1977 /*
1978  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1979  * that got overwritten. This is used by process_recorded_refs to determine
1980  * if it has to use the path as returned by get_cur_path or the orphan name.
1981  */
1982 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1983 {
1984 	int ret = 0;
1985 	struct fs_path *name = NULL;
1986 	u64 dir;
1987 	u64 dir_gen;
1988 
1989 	if (!sctx->parent_root)
1990 		goto out;
1991 
1992 	name = fs_path_alloc();
1993 	if (!name)
1994 		return -ENOMEM;
1995 
1996 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1997 	if (ret < 0)
1998 		goto out;
1999 
2000 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2001 			name->start, fs_path_len(name));
2002 
2003 out:
2004 	fs_path_free(name);
2005 	return ret;
2006 }
2007 
2008 /*
2009  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2010  * so we need to do some special handling in case we have clashes. This function
2011  * takes care of this with the help of name_cache_entry::radix_list.
2012  * In case of error, nce is kfreed.
2013  */
2014 static int name_cache_insert(struct send_ctx *sctx,
2015 			     struct name_cache_entry *nce)
2016 {
2017 	int ret = 0;
2018 	struct list_head *nce_head;
2019 
2020 	nce_head = radix_tree_lookup(&sctx->name_cache,
2021 			(unsigned long)nce->ino);
2022 	if (!nce_head) {
2023 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2024 		if (!nce_head) {
2025 			kfree(nce);
2026 			return -ENOMEM;
2027 		}
2028 		INIT_LIST_HEAD(nce_head);
2029 
2030 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2031 		if (ret < 0) {
2032 			kfree(nce_head);
2033 			kfree(nce);
2034 			return ret;
2035 		}
2036 	}
2037 	list_add_tail(&nce->radix_list, nce_head);
2038 	list_add_tail(&nce->list, &sctx->name_cache_list);
2039 	sctx->name_cache_size++;
2040 
2041 	return ret;
2042 }
2043 
2044 static void name_cache_delete(struct send_ctx *sctx,
2045 			      struct name_cache_entry *nce)
2046 {
2047 	struct list_head *nce_head;
2048 
2049 	nce_head = radix_tree_lookup(&sctx->name_cache,
2050 			(unsigned long)nce->ino);
2051 	if (!nce_head) {
2052 		btrfs_err(sctx->send_root->fs_info,
2053 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2054 			nce->ino, sctx->name_cache_size);
2055 	}
2056 
2057 	list_del(&nce->radix_list);
2058 	list_del(&nce->list);
2059 	sctx->name_cache_size--;
2060 
2061 	/*
2062 	 * We may not get to the final release of nce_head if the lookup fails
2063 	 */
2064 	if (nce_head && list_empty(nce_head)) {
2065 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2066 		kfree(nce_head);
2067 	}
2068 }
2069 
2070 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2071 						    u64 ino, u64 gen)
2072 {
2073 	struct list_head *nce_head;
2074 	struct name_cache_entry *cur;
2075 
2076 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2077 	if (!nce_head)
2078 		return NULL;
2079 
2080 	list_for_each_entry(cur, nce_head, radix_list) {
2081 		if (cur->ino == ino && cur->gen == gen)
2082 			return cur;
2083 	}
2084 	return NULL;
2085 }
2086 
2087 /*
2088  * Removes the entry from the list and adds it back to the end. This marks the
2089  * entry as recently used so that name_cache_clean_unused does not remove it.
2090  */
2091 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2092 {
2093 	list_del(&nce->list);
2094 	list_add_tail(&nce->list, &sctx->name_cache_list);
2095 }
2096 
2097 /*
2098  * Remove some entries from the beginning of name_cache_list.
2099  */
2100 static void name_cache_clean_unused(struct send_ctx *sctx)
2101 {
2102 	struct name_cache_entry *nce;
2103 
2104 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2105 		return;
2106 
2107 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2108 		nce = list_entry(sctx->name_cache_list.next,
2109 				struct name_cache_entry, list);
2110 		name_cache_delete(sctx, nce);
2111 		kfree(nce);
2112 	}
2113 }
2114 
2115 static void name_cache_free(struct send_ctx *sctx)
2116 {
2117 	struct name_cache_entry *nce;
2118 
2119 	while (!list_empty(&sctx->name_cache_list)) {
2120 		nce = list_entry(sctx->name_cache_list.next,
2121 				struct name_cache_entry, list);
2122 		name_cache_delete(sctx, nce);
2123 		kfree(nce);
2124 	}
2125 }
2126 
2127 /*
2128  * Used by get_cur_path for each ref up to the root.
2129  * Returns 0 if it succeeded.
2130  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2131  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2132  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2133  * Returns <0 in case of error.
2134  */
2135 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2136 				     u64 ino, u64 gen,
2137 				     u64 *parent_ino,
2138 				     u64 *parent_gen,
2139 				     struct fs_path *dest)
2140 {
2141 	int ret;
2142 	int nce_ret;
2143 	struct name_cache_entry *nce = NULL;
2144 
2145 	/*
2146 	 * First check if we already did a call to this function with the same
2147 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2148 	 * return the cached result.
2149 	 */
2150 	nce = name_cache_search(sctx, ino, gen);
2151 	if (nce) {
2152 		if (ino < sctx->send_progress && nce->need_later_update) {
2153 			name_cache_delete(sctx, nce);
2154 			kfree(nce);
2155 			nce = NULL;
2156 		} else {
2157 			name_cache_used(sctx, nce);
2158 			*parent_ino = nce->parent_ino;
2159 			*parent_gen = nce->parent_gen;
2160 			ret = fs_path_add(dest, nce->name, nce->name_len);
2161 			if (ret < 0)
2162 				goto out;
2163 			ret = nce->ret;
2164 			goto out;
2165 		}
2166 	}
2167 
2168 	/*
2169 	 * If the inode is not existent yet, add the orphan name and return 1.
2170 	 * This should only happen for the parent dir that we determine in
2171 	 * __record_new_ref
2172 	 */
2173 	ret = is_inode_existent(sctx, ino, gen);
2174 	if (ret < 0)
2175 		goto out;
2176 
2177 	if (!ret) {
2178 		ret = gen_unique_name(sctx, ino, gen, dest);
2179 		if (ret < 0)
2180 			goto out;
2181 		ret = 1;
2182 		goto out_cache;
2183 	}
2184 
2185 	/*
2186 	 * Depending on whether the inode was already processed or not, use
2187 	 * send_root or parent_root for ref lookup.
2188 	 */
2189 	if (ino < sctx->send_progress)
2190 		ret = get_first_ref(sctx->send_root, ino,
2191 				    parent_ino, parent_gen, dest);
2192 	else
2193 		ret = get_first_ref(sctx->parent_root, ino,
2194 				    parent_ino, parent_gen, dest);
2195 	if (ret < 0)
2196 		goto out;
2197 
2198 	/*
2199 	 * Check if the ref was overwritten by an inode's ref that was processed
2200 	 * earlier. If yes, treat as orphan and return 1.
2201 	 */
2202 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2203 			dest->start, dest->end - dest->start);
2204 	if (ret < 0)
2205 		goto out;
2206 	if (ret) {
2207 		fs_path_reset(dest);
2208 		ret = gen_unique_name(sctx, ino, gen, dest);
2209 		if (ret < 0)
2210 			goto out;
2211 		ret = 1;
2212 	}
2213 
2214 out_cache:
2215 	/*
2216 	 * Store the result of the lookup in the name cache.
2217 	 */
2218 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2219 	if (!nce) {
2220 		ret = -ENOMEM;
2221 		goto out;
2222 	}
2223 
2224 	nce->ino = ino;
2225 	nce->gen = gen;
2226 	nce->parent_ino = *parent_ino;
2227 	nce->parent_gen = *parent_gen;
2228 	nce->name_len = fs_path_len(dest);
2229 	nce->ret = ret;
2230 	strcpy(nce->name, dest->start);
2231 
2232 	if (ino < sctx->send_progress)
2233 		nce->need_later_update = 0;
2234 	else
2235 		nce->need_later_update = 1;
2236 
2237 	nce_ret = name_cache_insert(sctx, nce);
2238 	if (nce_ret < 0)
2239 		ret = nce_ret;
2240 	name_cache_clean_unused(sctx);
2241 
2242 out:
2243 	return ret;
2244 }
2245 
2246 /*
2247  * Magic happens here. This function returns the first ref to an inode as it
2248  * would look like while receiving the stream at this point in time.
2249  * We walk the path up to the root. For every inode in between, we check if it
2250  * was already processed/sent. If yes, we continue with the parent as found
2251  * in send_root. If not, we continue with the parent as found in parent_root.
2252  * If we encounter an inode that was deleted at this point in time, we use the
2253  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2254  * that were not created yet and overwritten inodes/refs.
2255  *
2256  * When do we have have orphan inodes:
2257  * 1. When an inode is freshly created and thus no valid refs are available yet
2258  * 2. When a directory lost all it's refs (deleted) but still has dir items
2259  *    inside which were not processed yet (pending for move/delete). If anyone
2260  *    tried to get the path to the dir items, it would get a path inside that
2261  *    orphan directory.
2262  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2263  *    of an unprocessed inode. If in that case the first ref would be
2264  *    overwritten, the overwritten inode gets "orphanized". Later when we
2265  *    process this overwritten inode, it is restored at a new place by moving
2266  *    the orphan inode.
2267  *
2268  * sctx->send_progress tells this function at which point in time receiving
2269  * would be.
2270  */
2271 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2272 			struct fs_path *dest)
2273 {
2274 	int ret = 0;
2275 	struct fs_path *name = NULL;
2276 	u64 parent_inode = 0;
2277 	u64 parent_gen = 0;
2278 	int stop = 0;
2279 
2280 	name = fs_path_alloc();
2281 	if (!name) {
2282 		ret = -ENOMEM;
2283 		goto out;
2284 	}
2285 
2286 	dest->reversed = 1;
2287 	fs_path_reset(dest);
2288 
2289 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2290 		struct waiting_dir_move *wdm;
2291 
2292 		fs_path_reset(name);
2293 
2294 		if (is_waiting_for_rm(sctx, ino)) {
2295 			ret = gen_unique_name(sctx, ino, gen, name);
2296 			if (ret < 0)
2297 				goto out;
2298 			ret = fs_path_add_path(dest, name);
2299 			break;
2300 		}
2301 
2302 		wdm = get_waiting_dir_move(sctx, ino);
2303 		if (wdm && wdm->orphanized) {
2304 			ret = gen_unique_name(sctx, ino, gen, name);
2305 			stop = 1;
2306 		} else if (wdm) {
2307 			ret = get_first_ref(sctx->parent_root, ino,
2308 					    &parent_inode, &parent_gen, name);
2309 		} else {
2310 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2311 							&parent_inode,
2312 							&parent_gen, name);
2313 			if (ret)
2314 				stop = 1;
2315 		}
2316 
2317 		if (ret < 0)
2318 			goto out;
2319 
2320 		ret = fs_path_add_path(dest, name);
2321 		if (ret < 0)
2322 			goto out;
2323 
2324 		ino = parent_inode;
2325 		gen = parent_gen;
2326 	}
2327 
2328 out:
2329 	fs_path_free(name);
2330 	if (!ret)
2331 		fs_path_unreverse(dest);
2332 	return ret;
2333 }
2334 
2335 /*
2336  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2337  */
2338 static int send_subvol_begin(struct send_ctx *sctx)
2339 {
2340 	int ret;
2341 	struct btrfs_root *send_root = sctx->send_root;
2342 	struct btrfs_root *parent_root = sctx->parent_root;
2343 	struct btrfs_path *path;
2344 	struct btrfs_key key;
2345 	struct btrfs_root_ref *ref;
2346 	struct extent_buffer *leaf;
2347 	char *name = NULL;
2348 	int namelen;
2349 
2350 	path = btrfs_alloc_path();
2351 	if (!path)
2352 		return -ENOMEM;
2353 
2354 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2355 	if (!name) {
2356 		btrfs_free_path(path);
2357 		return -ENOMEM;
2358 	}
2359 
2360 	key.objectid = send_root->objectid;
2361 	key.type = BTRFS_ROOT_BACKREF_KEY;
2362 	key.offset = 0;
2363 
2364 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2365 				&key, path, 1, 0);
2366 	if (ret < 0)
2367 		goto out;
2368 	if (ret) {
2369 		ret = -ENOENT;
2370 		goto out;
2371 	}
2372 
2373 	leaf = path->nodes[0];
2374 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2375 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2376 	    key.objectid != send_root->objectid) {
2377 		ret = -ENOENT;
2378 		goto out;
2379 	}
2380 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2381 	namelen = btrfs_root_ref_name_len(leaf, ref);
2382 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2383 	btrfs_release_path(path);
2384 
2385 	if (parent_root) {
2386 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2387 		if (ret < 0)
2388 			goto out;
2389 	} else {
2390 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2391 		if (ret < 0)
2392 			goto out;
2393 	}
2394 
2395 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2396 
2397 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2398 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2399 			    sctx->send_root->root_item.received_uuid);
2400 	else
2401 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2402 			    sctx->send_root->root_item.uuid);
2403 
2404 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2405 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2406 	if (parent_root) {
2407 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2408 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2409 				     parent_root->root_item.received_uuid);
2410 		else
2411 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2412 				     parent_root->root_item.uuid);
2413 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2414 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2415 	}
2416 
2417 	ret = send_cmd(sctx);
2418 
2419 tlv_put_failure:
2420 out:
2421 	btrfs_free_path(path);
2422 	kfree(name);
2423 	return ret;
2424 }
2425 
2426 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2427 {
2428 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2429 	int ret = 0;
2430 	struct fs_path *p;
2431 
2432 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2433 
2434 	p = fs_path_alloc();
2435 	if (!p)
2436 		return -ENOMEM;
2437 
2438 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2439 	if (ret < 0)
2440 		goto out;
2441 
2442 	ret = get_cur_path(sctx, ino, gen, p);
2443 	if (ret < 0)
2444 		goto out;
2445 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2446 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2447 
2448 	ret = send_cmd(sctx);
2449 
2450 tlv_put_failure:
2451 out:
2452 	fs_path_free(p);
2453 	return ret;
2454 }
2455 
2456 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2457 {
2458 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2459 	int ret = 0;
2460 	struct fs_path *p;
2461 
2462 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2463 
2464 	p = fs_path_alloc();
2465 	if (!p)
2466 		return -ENOMEM;
2467 
2468 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2469 	if (ret < 0)
2470 		goto out;
2471 
2472 	ret = get_cur_path(sctx, ino, gen, p);
2473 	if (ret < 0)
2474 		goto out;
2475 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2476 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2477 
2478 	ret = send_cmd(sctx);
2479 
2480 tlv_put_failure:
2481 out:
2482 	fs_path_free(p);
2483 	return ret;
2484 }
2485 
2486 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2487 {
2488 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2489 	int ret = 0;
2490 	struct fs_path *p;
2491 
2492 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2493 		    ino, uid, gid);
2494 
2495 	p = fs_path_alloc();
2496 	if (!p)
2497 		return -ENOMEM;
2498 
2499 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2500 	if (ret < 0)
2501 		goto out;
2502 
2503 	ret = get_cur_path(sctx, ino, gen, p);
2504 	if (ret < 0)
2505 		goto out;
2506 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2507 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2508 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2509 
2510 	ret = send_cmd(sctx);
2511 
2512 tlv_put_failure:
2513 out:
2514 	fs_path_free(p);
2515 	return ret;
2516 }
2517 
2518 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2519 {
2520 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2521 	int ret = 0;
2522 	struct fs_path *p = NULL;
2523 	struct btrfs_inode_item *ii;
2524 	struct btrfs_path *path = NULL;
2525 	struct extent_buffer *eb;
2526 	struct btrfs_key key;
2527 	int slot;
2528 
2529 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2530 
2531 	p = fs_path_alloc();
2532 	if (!p)
2533 		return -ENOMEM;
2534 
2535 	path = alloc_path_for_send();
2536 	if (!path) {
2537 		ret = -ENOMEM;
2538 		goto out;
2539 	}
2540 
2541 	key.objectid = ino;
2542 	key.type = BTRFS_INODE_ITEM_KEY;
2543 	key.offset = 0;
2544 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2545 	if (ret > 0)
2546 		ret = -ENOENT;
2547 	if (ret < 0)
2548 		goto out;
2549 
2550 	eb = path->nodes[0];
2551 	slot = path->slots[0];
2552 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2553 
2554 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2555 	if (ret < 0)
2556 		goto out;
2557 
2558 	ret = get_cur_path(sctx, ino, gen, p);
2559 	if (ret < 0)
2560 		goto out;
2561 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2562 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2563 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2564 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2565 	/* TODO Add otime support when the otime patches get into upstream */
2566 
2567 	ret = send_cmd(sctx);
2568 
2569 tlv_put_failure:
2570 out:
2571 	fs_path_free(p);
2572 	btrfs_free_path(path);
2573 	return ret;
2574 }
2575 
2576 /*
2577  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2578  * a valid path yet because we did not process the refs yet. So, the inode
2579  * is created as orphan.
2580  */
2581 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2582 {
2583 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2584 	int ret = 0;
2585 	struct fs_path *p;
2586 	int cmd;
2587 	u64 gen;
2588 	u64 mode;
2589 	u64 rdev;
2590 
2591 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2592 
2593 	p = fs_path_alloc();
2594 	if (!p)
2595 		return -ENOMEM;
2596 
2597 	if (ino != sctx->cur_ino) {
2598 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2599 				     NULL, NULL, &rdev);
2600 		if (ret < 0)
2601 			goto out;
2602 	} else {
2603 		gen = sctx->cur_inode_gen;
2604 		mode = sctx->cur_inode_mode;
2605 		rdev = sctx->cur_inode_rdev;
2606 	}
2607 
2608 	if (S_ISREG(mode)) {
2609 		cmd = BTRFS_SEND_C_MKFILE;
2610 	} else if (S_ISDIR(mode)) {
2611 		cmd = BTRFS_SEND_C_MKDIR;
2612 	} else if (S_ISLNK(mode)) {
2613 		cmd = BTRFS_SEND_C_SYMLINK;
2614 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2615 		cmd = BTRFS_SEND_C_MKNOD;
2616 	} else if (S_ISFIFO(mode)) {
2617 		cmd = BTRFS_SEND_C_MKFIFO;
2618 	} else if (S_ISSOCK(mode)) {
2619 		cmd = BTRFS_SEND_C_MKSOCK;
2620 	} else {
2621 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2622 				(int)(mode & S_IFMT));
2623 		ret = -EOPNOTSUPP;
2624 		goto out;
2625 	}
2626 
2627 	ret = begin_cmd(sctx, cmd);
2628 	if (ret < 0)
2629 		goto out;
2630 
2631 	ret = gen_unique_name(sctx, ino, gen, p);
2632 	if (ret < 0)
2633 		goto out;
2634 
2635 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2636 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2637 
2638 	if (S_ISLNK(mode)) {
2639 		fs_path_reset(p);
2640 		ret = read_symlink(sctx->send_root, ino, p);
2641 		if (ret < 0)
2642 			goto out;
2643 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2644 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2645 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2646 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2647 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2648 	}
2649 
2650 	ret = send_cmd(sctx);
2651 	if (ret < 0)
2652 		goto out;
2653 
2654 
2655 tlv_put_failure:
2656 out:
2657 	fs_path_free(p);
2658 	return ret;
2659 }
2660 
2661 /*
2662  * We need some special handling for inodes that get processed before the parent
2663  * directory got created. See process_recorded_refs for details.
2664  * This function does the check if we already created the dir out of order.
2665  */
2666 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2667 {
2668 	int ret = 0;
2669 	struct btrfs_path *path = NULL;
2670 	struct btrfs_key key;
2671 	struct btrfs_key found_key;
2672 	struct btrfs_key di_key;
2673 	struct extent_buffer *eb;
2674 	struct btrfs_dir_item *di;
2675 	int slot;
2676 
2677 	path = alloc_path_for_send();
2678 	if (!path) {
2679 		ret = -ENOMEM;
2680 		goto out;
2681 	}
2682 
2683 	key.objectid = dir;
2684 	key.type = BTRFS_DIR_INDEX_KEY;
2685 	key.offset = 0;
2686 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2687 	if (ret < 0)
2688 		goto out;
2689 
2690 	while (1) {
2691 		eb = path->nodes[0];
2692 		slot = path->slots[0];
2693 		if (slot >= btrfs_header_nritems(eb)) {
2694 			ret = btrfs_next_leaf(sctx->send_root, path);
2695 			if (ret < 0) {
2696 				goto out;
2697 			} else if (ret > 0) {
2698 				ret = 0;
2699 				break;
2700 			}
2701 			continue;
2702 		}
2703 
2704 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2705 		if (found_key.objectid != key.objectid ||
2706 		    found_key.type != key.type) {
2707 			ret = 0;
2708 			goto out;
2709 		}
2710 
2711 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2712 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2713 
2714 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2715 		    di_key.objectid < sctx->send_progress) {
2716 			ret = 1;
2717 			goto out;
2718 		}
2719 
2720 		path->slots[0]++;
2721 	}
2722 
2723 out:
2724 	btrfs_free_path(path);
2725 	return ret;
2726 }
2727 
2728 /*
2729  * Only creates the inode if it is:
2730  * 1. Not a directory
2731  * 2. Or a directory which was not created already due to out of order
2732  *    directories. See did_create_dir and process_recorded_refs for details.
2733  */
2734 static int send_create_inode_if_needed(struct send_ctx *sctx)
2735 {
2736 	int ret;
2737 
2738 	if (S_ISDIR(sctx->cur_inode_mode)) {
2739 		ret = did_create_dir(sctx, sctx->cur_ino);
2740 		if (ret < 0)
2741 			goto out;
2742 		if (ret) {
2743 			ret = 0;
2744 			goto out;
2745 		}
2746 	}
2747 
2748 	ret = send_create_inode(sctx, sctx->cur_ino);
2749 	if (ret < 0)
2750 		goto out;
2751 
2752 out:
2753 	return ret;
2754 }
2755 
2756 struct recorded_ref {
2757 	struct list_head list;
2758 	char *name;
2759 	struct fs_path *full_path;
2760 	u64 dir;
2761 	u64 dir_gen;
2762 	int name_len;
2763 };
2764 
2765 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2766 {
2767 	ref->full_path = path;
2768 	ref->name = (char *)kbasename(ref->full_path->start);
2769 	ref->name_len = ref->full_path->end - ref->name;
2770 }
2771 
2772 /*
2773  * We need to process new refs before deleted refs, but compare_tree gives us
2774  * everything mixed. So we first record all refs and later process them.
2775  * This function is a helper to record one ref.
2776  */
2777 static int __record_ref(struct list_head *head, u64 dir,
2778 		      u64 dir_gen, struct fs_path *path)
2779 {
2780 	struct recorded_ref *ref;
2781 
2782 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2783 	if (!ref)
2784 		return -ENOMEM;
2785 
2786 	ref->dir = dir;
2787 	ref->dir_gen = dir_gen;
2788 	set_ref_path(ref, path);
2789 	list_add_tail(&ref->list, head);
2790 	return 0;
2791 }
2792 
2793 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2794 {
2795 	struct recorded_ref *new;
2796 
2797 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2798 	if (!new)
2799 		return -ENOMEM;
2800 
2801 	new->dir = ref->dir;
2802 	new->dir_gen = ref->dir_gen;
2803 	new->full_path = NULL;
2804 	INIT_LIST_HEAD(&new->list);
2805 	list_add_tail(&new->list, list);
2806 	return 0;
2807 }
2808 
2809 static void __free_recorded_refs(struct list_head *head)
2810 {
2811 	struct recorded_ref *cur;
2812 
2813 	while (!list_empty(head)) {
2814 		cur = list_entry(head->next, struct recorded_ref, list);
2815 		fs_path_free(cur->full_path);
2816 		list_del(&cur->list);
2817 		kfree(cur);
2818 	}
2819 }
2820 
2821 static void free_recorded_refs(struct send_ctx *sctx)
2822 {
2823 	__free_recorded_refs(&sctx->new_refs);
2824 	__free_recorded_refs(&sctx->deleted_refs);
2825 }
2826 
2827 /*
2828  * Renames/moves a file/dir to its orphan name. Used when the first
2829  * ref of an unprocessed inode gets overwritten and for all non empty
2830  * directories.
2831  */
2832 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2833 			  struct fs_path *path)
2834 {
2835 	int ret;
2836 	struct fs_path *orphan;
2837 
2838 	orphan = fs_path_alloc();
2839 	if (!orphan)
2840 		return -ENOMEM;
2841 
2842 	ret = gen_unique_name(sctx, ino, gen, orphan);
2843 	if (ret < 0)
2844 		goto out;
2845 
2846 	ret = send_rename(sctx, path, orphan);
2847 
2848 out:
2849 	fs_path_free(orphan);
2850 	return ret;
2851 }
2852 
2853 static struct orphan_dir_info *
2854 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2855 {
2856 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2857 	struct rb_node *parent = NULL;
2858 	struct orphan_dir_info *entry, *odi;
2859 
2860 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2861 	if (!odi)
2862 		return ERR_PTR(-ENOMEM);
2863 	odi->ino = dir_ino;
2864 	odi->gen = 0;
2865 
2866 	while (*p) {
2867 		parent = *p;
2868 		entry = rb_entry(parent, struct orphan_dir_info, node);
2869 		if (dir_ino < entry->ino) {
2870 			p = &(*p)->rb_left;
2871 		} else if (dir_ino > entry->ino) {
2872 			p = &(*p)->rb_right;
2873 		} else {
2874 			kfree(odi);
2875 			return entry;
2876 		}
2877 	}
2878 
2879 	rb_link_node(&odi->node, parent, p);
2880 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2881 	return odi;
2882 }
2883 
2884 static struct orphan_dir_info *
2885 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2886 {
2887 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2888 	struct orphan_dir_info *entry;
2889 
2890 	while (n) {
2891 		entry = rb_entry(n, struct orphan_dir_info, node);
2892 		if (dir_ino < entry->ino)
2893 			n = n->rb_left;
2894 		else if (dir_ino > entry->ino)
2895 			n = n->rb_right;
2896 		else
2897 			return entry;
2898 	}
2899 	return NULL;
2900 }
2901 
2902 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2903 {
2904 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2905 
2906 	return odi != NULL;
2907 }
2908 
2909 static void free_orphan_dir_info(struct send_ctx *sctx,
2910 				 struct orphan_dir_info *odi)
2911 {
2912 	if (!odi)
2913 		return;
2914 	rb_erase(&odi->node, &sctx->orphan_dirs);
2915 	kfree(odi);
2916 }
2917 
2918 /*
2919  * Returns 1 if a directory can be removed at this point in time.
2920  * We check this by iterating all dir items and checking if the inode behind
2921  * the dir item was already processed.
2922  */
2923 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2924 		     u64 send_progress)
2925 {
2926 	int ret = 0;
2927 	struct btrfs_root *root = sctx->parent_root;
2928 	struct btrfs_path *path;
2929 	struct btrfs_key key;
2930 	struct btrfs_key found_key;
2931 	struct btrfs_key loc;
2932 	struct btrfs_dir_item *di;
2933 
2934 	/*
2935 	 * Don't try to rmdir the top/root subvolume dir.
2936 	 */
2937 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2938 		return 0;
2939 
2940 	path = alloc_path_for_send();
2941 	if (!path)
2942 		return -ENOMEM;
2943 
2944 	key.objectid = dir;
2945 	key.type = BTRFS_DIR_INDEX_KEY;
2946 	key.offset = 0;
2947 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2948 	if (ret < 0)
2949 		goto out;
2950 
2951 	while (1) {
2952 		struct waiting_dir_move *dm;
2953 
2954 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2955 			ret = btrfs_next_leaf(root, path);
2956 			if (ret < 0)
2957 				goto out;
2958 			else if (ret > 0)
2959 				break;
2960 			continue;
2961 		}
2962 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2963 				      path->slots[0]);
2964 		if (found_key.objectid != key.objectid ||
2965 		    found_key.type != key.type)
2966 			break;
2967 
2968 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2969 				struct btrfs_dir_item);
2970 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2971 
2972 		dm = get_waiting_dir_move(sctx, loc.objectid);
2973 		if (dm) {
2974 			struct orphan_dir_info *odi;
2975 
2976 			odi = add_orphan_dir_info(sctx, dir);
2977 			if (IS_ERR(odi)) {
2978 				ret = PTR_ERR(odi);
2979 				goto out;
2980 			}
2981 			odi->gen = dir_gen;
2982 			dm->rmdir_ino = dir;
2983 			ret = 0;
2984 			goto out;
2985 		}
2986 
2987 		if (loc.objectid > send_progress) {
2988 			struct orphan_dir_info *odi;
2989 
2990 			odi = get_orphan_dir_info(sctx, dir);
2991 			free_orphan_dir_info(sctx, odi);
2992 			ret = 0;
2993 			goto out;
2994 		}
2995 
2996 		path->slots[0]++;
2997 	}
2998 
2999 	ret = 1;
3000 
3001 out:
3002 	btrfs_free_path(path);
3003 	return ret;
3004 }
3005 
3006 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3007 {
3008 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3009 
3010 	return entry != NULL;
3011 }
3012 
3013 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3014 {
3015 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3016 	struct rb_node *parent = NULL;
3017 	struct waiting_dir_move *entry, *dm;
3018 
3019 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3020 	if (!dm)
3021 		return -ENOMEM;
3022 	dm->ino = ino;
3023 	dm->rmdir_ino = 0;
3024 	dm->orphanized = orphanized;
3025 
3026 	while (*p) {
3027 		parent = *p;
3028 		entry = rb_entry(parent, struct waiting_dir_move, node);
3029 		if (ino < entry->ino) {
3030 			p = &(*p)->rb_left;
3031 		} else if (ino > entry->ino) {
3032 			p = &(*p)->rb_right;
3033 		} else {
3034 			kfree(dm);
3035 			return -EEXIST;
3036 		}
3037 	}
3038 
3039 	rb_link_node(&dm->node, parent, p);
3040 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3041 	return 0;
3042 }
3043 
3044 static struct waiting_dir_move *
3045 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3046 {
3047 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3048 	struct waiting_dir_move *entry;
3049 
3050 	while (n) {
3051 		entry = rb_entry(n, struct waiting_dir_move, node);
3052 		if (ino < entry->ino)
3053 			n = n->rb_left;
3054 		else if (ino > entry->ino)
3055 			n = n->rb_right;
3056 		else
3057 			return entry;
3058 	}
3059 	return NULL;
3060 }
3061 
3062 static void free_waiting_dir_move(struct send_ctx *sctx,
3063 				  struct waiting_dir_move *dm)
3064 {
3065 	if (!dm)
3066 		return;
3067 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3068 	kfree(dm);
3069 }
3070 
3071 static int add_pending_dir_move(struct send_ctx *sctx,
3072 				u64 ino,
3073 				u64 ino_gen,
3074 				u64 parent_ino,
3075 				struct list_head *new_refs,
3076 				struct list_head *deleted_refs,
3077 				const bool is_orphan)
3078 {
3079 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3080 	struct rb_node *parent = NULL;
3081 	struct pending_dir_move *entry = NULL, *pm;
3082 	struct recorded_ref *cur;
3083 	int exists = 0;
3084 	int ret;
3085 
3086 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3087 	if (!pm)
3088 		return -ENOMEM;
3089 	pm->parent_ino = parent_ino;
3090 	pm->ino = ino;
3091 	pm->gen = ino_gen;
3092 	INIT_LIST_HEAD(&pm->list);
3093 	INIT_LIST_HEAD(&pm->update_refs);
3094 	RB_CLEAR_NODE(&pm->node);
3095 
3096 	while (*p) {
3097 		parent = *p;
3098 		entry = rb_entry(parent, struct pending_dir_move, node);
3099 		if (parent_ino < entry->parent_ino) {
3100 			p = &(*p)->rb_left;
3101 		} else if (parent_ino > entry->parent_ino) {
3102 			p = &(*p)->rb_right;
3103 		} else {
3104 			exists = 1;
3105 			break;
3106 		}
3107 	}
3108 
3109 	list_for_each_entry(cur, deleted_refs, list) {
3110 		ret = dup_ref(cur, &pm->update_refs);
3111 		if (ret < 0)
3112 			goto out;
3113 	}
3114 	list_for_each_entry(cur, new_refs, list) {
3115 		ret = dup_ref(cur, &pm->update_refs);
3116 		if (ret < 0)
3117 			goto out;
3118 	}
3119 
3120 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3121 	if (ret)
3122 		goto out;
3123 
3124 	if (exists) {
3125 		list_add_tail(&pm->list, &entry->list);
3126 	} else {
3127 		rb_link_node(&pm->node, parent, p);
3128 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3129 	}
3130 	ret = 0;
3131 out:
3132 	if (ret) {
3133 		__free_recorded_refs(&pm->update_refs);
3134 		kfree(pm);
3135 	}
3136 	return ret;
3137 }
3138 
3139 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3140 						      u64 parent_ino)
3141 {
3142 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3143 	struct pending_dir_move *entry;
3144 
3145 	while (n) {
3146 		entry = rb_entry(n, struct pending_dir_move, node);
3147 		if (parent_ino < entry->parent_ino)
3148 			n = n->rb_left;
3149 		else if (parent_ino > entry->parent_ino)
3150 			n = n->rb_right;
3151 		else
3152 			return entry;
3153 	}
3154 	return NULL;
3155 }
3156 
3157 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3158 		     u64 ino, u64 gen, u64 *ancestor_ino)
3159 {
3160 	int ret = 0;
3161 	u64 parent_inode = 0;
3162 	u64 parent_gen = 0;
3163 	u64 start_ino = ino;
3164 
3165 	*ancestor_ino = 0;
3166 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3167 		fs_path_reset(name);
3168 
3169 		if (is_waiting_for_rm(sctx, ino))
3170 			break;
3171 		if (is_waiting_for_move(sctx, ino)) {
3172 			if (*ancestor_ino == 0)
3173 				*ancestor_ino = ino;
3174 			ret = get_first_ref(sctx->parent_root, ino,
3175 					    &parent_inode, &parent_gen, name);
3176 		} else {
3177 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3178 							&parent_inode,
3179 							&parent_gen, name);
3180 			if (ret > 0) {
3181 				ret = 0;
3182 				break;
3183 			}
3184 		}
3185 		if (ret < 0)
3186 			break;
3187 		if (parent_inode == start_ino) {
3188 			ret = 1;
3189 			if (*ancestor_ino == 0)
3190 				*ancestor_ino = ino;
3191 			break;
3192 		}
3193 		ino = parent_inode;
3194 		gen = parent_gen;
3195 	}
3196 	return ret;
3197 }
3198 
3199 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3200 {
3201 	struct fs_path *from_path = NULL;
3202 	struct fs_path *to_path = NULL;
3203 	struct fs_path *name = NULL;
3204 	u64 orig_progress = sctx->send_progress;
3205 	struct recorded_ref *cur;
3206 	u64 parent_ino, parent_gen;
3207 	struct waiting_dir_move *dm = NULL;
3208 	u64 rmdir_ino = 0;
3209 	u64 ancestor;
3210 	bool is_orphan;
3211 	int ret;
3212 
3213 	name = fs_path_alloc();
3214 	from_path = fs_path_alloc();
3215 	if (!name || !from_path) {
3216 		ret = -ENOMEM;
3217 		goto out;
3218 	}
3219 
3220 	dm = get_waiting_dir_move(sctx, pm->ino);
3221 	ASSERT(dm);
3222 	rmdir_ino = dm->rmdir_ino;
3223 	is_orphan = dm->orphanized;
3224 	free_waiting_dir_move(sctx, dm);
3225 
3226 	if (is_orphan) {
3227 		ret = gen_unique_name(sctx, pm->ino,
3228 				      pm->gen, from_path);
3229 	} else {
3230 		ret = get_first_ref(sctx->parent_root, pm->ino,
3231 				    &parent_ino, &parent_gen, name);
3232 		if (ret < 0)
3233 			goto out;
3234 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3235 				   from_path);
3236 		if (ret < 0)
3237 			goto out;
3238 		ret = fs_path_add_path(from_path, name);
3239 	}
3240 	if (ret < 0)
3241 		goto out;
3242 
3243 	sctx->send_progress = sctx->cur_ino + 1;
3244 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3245 	if (ret < 0)
3246 		goto out;
3247 	if (ret) {
3248 		LIST_HEAD(deleted_refs);
3249 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3250 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3251 					   &pm->update_refs, &deleted_refs,
3252 					   is_orphan);
3253 		if (ret < 0)
3254 			goto out;
3255 		if (rmdir_ino) {
3256 			dm = get_waiting_dir_move(sctx, pm->ino);
3257 			ASSERT(dm);
3258 			dm->rmdir_ino = rmdir_ino;
3259 		}
3260 		goto out;
3261 	}
3262 	fs_path_reset(name);
3263 	to_path = name;
3264 	name = NULL;
3265 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3266 	if (ret < 0)
3267 		goto out;
3268 
3269 	ret = send_rename(sctx, from_path, to_path);
3270 	if (ret < 0)
3271 		goto out;
3272 
3273 	if (rmdir_ino) {
3274 		struct orphan_dir_info *odi;
3275 
3276 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3277 		if (!odi) {
3278 			/* already deleted */
3279 			goto finish;
3280 		}
3281 		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
3282 		if (ret < 0)
3283 			goto out;
3284 		if (!ret)
3285 			goto finish;
3286 
3287 		name = fs_path_alloc();
3288 		if (!name) {
3289 			ret = -ENOMEM;
3290 			goto out;
3291 		}
3292 		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3293 		if (ret < 0)
3294 			goto out;
3295 		ret = send_rmdir(sctx, name);
3296 		if (ret < 0)
3297 			goto out;
3298 		free_orphan_dir_info(sctx, odi);
3299 	}
3300 
3301 finish:
3302 	ret = send_utimes(sctx, pm->ino, pm->gen);
3303 	if (ret < 0)
3304 		goto out;
3305 
3306 	/*
3307 	 * After rename/move, need to update the utimes of both new parent(s)
3308 	 * and old parent(s).
3309 	 */
3310 	list_for_each_entry(cur, &pm->update_refs, list) {
3311 		/*
3312 		 * The parent inode might have been deleted in the send snapshot
3313 		 */
3314 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3315 				     NULL, NULL, NULL, NULL, NULL);
3316 		if (ret == -ENOENT) {
3317 			ret = 0;
3318 			continue;
3319 		}
3320 		if (ret < 0)
3321 			goto out;
3322 
3323 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3324 		if (ret < 0)
3325 			goto out;
3326 	}
3327 
3328 out:
3329 	fs_path_free(name);
3330 	fs_path_free(from_path);
3331 	fs_path_free(to_path);
3332 	sctx->send_progress = orig_progress;
3333 
3334 	return ret;
3335 }
3336 
3337 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3338 {
3339 	if (!list_empty(&m->list))
3340 		list_del(&m->list);
3341 	if (!RB_EMPTY_NODE(&m->node))
3342 		rb_erase(&m->node, &sctx->pending_dir_moves);
3343 	__free_recorded_refs(&m->update_refs);
3344 	kfree(m);
3345 }
3346 
3347 static void tail_append_pending_moves(struct pending_dir_move *moves,
3348 				      struct list_head *stack)
3349 {
3350 	if (list_empty(&moves->list)) {
3351 		list_add_tail(&moves->list, stack);
3352 	} else {
3353 		LIST_HEAD(list);
3354 		list_splice_init(&moves->list, &list);
3355 		list_add_tail(&moves->list, stack);
3356 		list_splice_tail(&list, stack);
3357 	}
3358 }
3359 
3360 static int apply_children_dir_moves(struct send_ctx *sctx)
3361 {
3362 	struct pending_dir_move *pm;
3363 	struct list_head stack;
3364 	u64 parent_ino = sctx->cur_ino;
3365 	int ret = 0;
3366 
3367 	pm = get_pending_dir_moves(sctx, parent_ino);
3368 	if (!pm)
3369 		return 0;
3370 
3371 	INIT_LIST_HEAD(&stack);
3372 	tail_append_pending_moves(pm, &stack);
3373 
3374 	while (!list_empty(&stack)) {
3375 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3376 		parent_ino = pm->ino;
3377 		ret = apply_dir_move(sctx, pm);
3378 		free_pending_move(sctx, pm);
3379 		if (ret)
3380 			goto out;
3381 		pm = get_pending_dir_moves(sctx, parent_ino);
3382 		if (pm)
3383 			tail_append_pending_moves(pm, &stack);
3384 	}
3385 	return 0;
3386 
3387 out:
3388 	while (!list_empty(&stack)) {
3389 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3390 		free_pending_move(sctx, pm);
3391 	}
3392 	return ret;
3393 }
3394 
3395 /*
3396  * We might need to delay a directory rename even when no ancestor directory
3397  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3398  * renamed. This happens when we rename a directory to the old name (the name
3399  * in the parent root) of some other unrelated directory that got its rename
3400  * delayed due to some ancestor with higher number that got renamed.
3401  *
3402  * Example:
3403  *
3404  * Parent snapshot:
3405  * .                                       (ino 256)
3406  * |---- a/                                (ino 257)
3407  * |     |---- file                        (ino 260)
3408  * |
3409  * |---- b/                                (ino 258)
3410  * |---- c/                                (ino 259)
3411  *
3412  * Send snapshot:
3413  * .                                       (ino 256)
3414  * |---- a/                                (ino 258)
3415  * |---- x/                                (ino 259)
3416  *       |---- y/                          (ino 257)
3417  *             |----- file                 (ino 260)
3418  *
3419  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3420  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3421  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3422  * must issue is:
3423  *
3424  * 1 - rename 259 from 'c' to 'x'
3425  * 2 - rename 257 from 'a' to 'x/y'
3426  * 3 - rename 258 from 'b' to 'a'
3427  *
3428  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3429  * be done right away and < 0 on error.
3430  */
3431 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3432 				  struct recorded_ref *parent_ref,
3433 				  const bool is_orphan)
3434 {
3435 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3436 	struct btrfs_path *path;
3437 	struct btrfs_key key;
3438 	struct btrfs_key di_key;
3439 	struct btrfs_dir_item *di;
3440 	u64 left_gen;
3441 	u64 right_gen;
3442 	int ret = 0;
3443 	struct waiting_dir_move *wdm;
3444 
3445 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3446 		return 0;
3447 
3448 	path = alloc_path_for_send();
3449 	if (!path)
3450 		return -ENOMEM;
3451 
3452 	key.objectid = parent_ref->dir;
3453 	key.type = BTRFS_DIR_ITEM_KEY;
3454 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3455 
3456 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3457 	if (ret < 0) {
3458 		goto out;
3459 	} else if (ret > 0) {
3460 		ret = 0;
3461 		goto out;
3462 	}
3463 
3464 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3465 				       parent_ref->name_len);
3466 	if (!di) {
3467 		ret = 0;
3468 		goto out;
3469 	}
3470 	/*
3471 	 * di_key.objectid has the number of the inode that has a dentry in the
3472 	 * parent directory with the same name that sctx->cur_ino is being
3473 	 * renamed to. We need to check if that inode is in the send root as
3474 	 * well and if it is currently marked as an inode with a pending rename,
3475 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3476 	 * that it happens after that other inode is renamed.
3477 	 */
3478 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3479 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3480 		ret = 0;
3481 		goto out;
3482 	}
3483 
3484 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3485 			     &left_gen, NULL, NULL, NULL, NULL);
3486 	if (ret < 0)
3487 		goto out;
3488 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3489 			     &right_gen, NULL, NULL, NULL, NULL);
3490 	if (ret < 0) {
3491 		if (ret == -ENOENT)
3492 			ret = 0;
3493 		goto out;
3494 	}
3495 
3496 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3497 	if (right_gen != left_gen) {
3498 		ret = 0;
3499 		goto out;
3500 	}
3501 
3502 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3503 	if (wdm && !wdm->orphanized) {
3504 		ret = add_pending_dir_move(sctx,
3505 					   sctx->cur_ino,
3506 					   sctx->cur_inode_gen,
3507 					   di_key.objectid,
3508 					   &sctx->new_refs,
3509 					   &sctx->deleted_refs,
3510 					   is_orphan);
3511 		if (!ret)
3512 			ret = 1;
3513 	}
3514 out:
3515 	btrfs_free_path(path);
3516 	return ret;
3517 }
3518 
3519 /*
3520  * Check if inode ino2, or any of its ancestors, is inode ino1.
3521  * Return 1 if true, 0 if false and < 0 on error.
3522  */
3523 static int check_ino_in_path(struct btrfs_root *root,
3524 			     const u64 ino1,
3525 			     const u64 ino1_gen,
3526 			     const u64 ino2,
3527 			     const u64 ino2_gen,
3528 			     struct fs_path *fs_path)
3529 {
3530 	u64 ino = ino2;
3531 
3532 	if (ino1 == ino2)
3533 		return ino1_gen == ino2_gen;
3534 
3535 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3536 		u64 parent;
3537 		u64 parent_gen;
3538 		int ret;
3539 
3540 		fs_path_reset(fs_path);
3541 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3542 		if (ret < 0)
3543 			return ret;
3544 		if (parent == ino1)
3545 			return parent_gen == ino1_gen;
3546 		ino = parent;
3547 	}
3548 	return 0;
3549 }
3550 
3551 /*
3552  * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3553  * possible path (in case ino2 is not a directory and has multiple hard links).
3554  * Return 1 if true, 0 if false and < 0 on error.
3555  */
3556 static int is_ancestor(struct btrfs_root *root,
3557 		       const u64 ino1,
3558 		       const u64 ino1_gen,
3559 		       const u64 ino2,
3560 		       struct fs_path *fs_path)
3561 {
3562 	bool free_fs_path = false;
3563 	int ret = 0;
3564 	struct btrfs_path *path = NULL;
3565 	struct btrfs_key key;
3566 
3567 	if (!fs_path) {
3568 		fs_path = fs_path_alloc();
3569 		if (!fs_path)
3570 			return -ENOMEM;
3571 		free_fs_path = true;
3572 	}
3573 
3574 	path = alloc_path_for_send();
3575 	if (!path) {
3576 		ret = -ENOMEM;
3577 		goto out;
3578 	}
3579 
3580 	key.objectid = ino2;
3581 	key.type = BTRFS_INODE_REF_KEY;
3582 	key.offset = 0;
3583 
3584 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3585 	if (ret < 0)
3586 		goto out;
3587 
3588 	while (true) {
3589 		struct extent_buffer *leaf = path->nodes[0];
3590 		int slot = path->slots[0];
3591 		u32 cur_offset = 0;
3592 		u32 item_size;
3593 
3594 		if (slot >= btrfs_header_nritems(leaf)) {
3595 			ret = btrfs_next_leaf(root, path);
3596 			if (ret < 0)
3597 				goto out;
3598 			if (ret > 0)
3599 				break;
3600 			continue;
3601 		}
3602 
3603 		btrfs_item_key_to_cpu(leaf, &key, slot);
3604 		if (key.objectid != ino2)
3605 			break;
3606 		if (key.type != BTRFS_INODE_REF_KEY &&
3607 		    key.type != BTRFS_INODE_EXTREF_KEY)
3608 			break;
3609 
3610 		item_size = btrfs_item_size_nr(leaf, slot);
3611 		while (cur_offset < item_size) {
3612 			u64 parent;
3613 			u64 parent_gen;
3614 
3615 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3616 				unsigned long ptr;
3617 				struct btrfs_inode_extref *extref;
3618 
3619 				ptr = btrfs_item_ptr_offset(leaf, slot);
3620 				extref = (struct btrfs_inode_extref *)
3621 					(ptr + cur_offset);
3622 				parent = btrfs_inode_extref_parent(leaf,
3623 								   extref);
3624 				cur_offset += sizeof(*extref);
3625 				cur_offset += btrfs_inode_extref_name_len(leaf,
3626 								  extref);
3627 			} else {
3628 				parent = key.offset;
3629 				cur_offset = item_size;
3630 			}
3631 
3632 			ret = get_inode_info(root, parent, NULL, &parent_gen,
3633 					     NULL, NULL, NULL, NULL);
3634 			if (ret < 0)
3635 				goto out;
3636 			ret = check_ino_in_path(root, ino1, ino1_gen,
3637 						parent, parent_gen, fs_path);
3638 			if (ret)
3639 				goto out;
3640 		}
3641 		path->slots[0]++;
3642 	}
3643 	ret = 0;
3644  out:
3645 	btrfs_free_path(path);
3646 	if (free_fs_path)
3647 		fs_path_free(fs_path);
3648 	return ret;
3649 }
3650 
3651 static int wait_for_parent_move(struct send_ctx *sctx,
3652 				struct recorded_ref *parent_ref,
3653 				const bool is_orphan)
3654 {
3655 	int ret = 0;
3656 	u64 ino = parent_ref->dir;
3657 	u64 ino_gen = parent_ref->dir_gen;
3658 	u64 parent_ino_before, parent_ino_after;
3659 	struct fs_path *path_before = NULL;
3660 	struct fs_path *path_after = NULL;
3661 	int len1, len2;
3662 
3663 	path_after = fs_path_alloc();
3664 	path_before = fs_path_alloc();
3665 	if (!path_after || !path_before) {
3666 		ret = -ENOMEM;
3667 		goto out;
3668 	}
3669 
3670 	/*
3671 	 * Our current directory inode may not yet be renamed/moved because some
3672 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3673 	 * such ancestor exists and make sure our own rename/move happens after
3674 	 * that ancestor is processed to avoid path build infinite loops (done
3675 	 * at get_cur_path()).
3676 	 */
3677 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3678 		u64 parent_ino_after_gen;
3679 
3680 		if (is_waiting_for_move(sctx, ino)) {
3681 			/*
3682 			 * If the current inode is an ancestor of ino in the
3683 			 * parent root, we need to delay the rename of the
3684 			 * current inode, otherwise don't delayed the rename
3685 			 * because we can end up with a circular dependency
3686 			 * of renames, resulting in some directories never
3687 			 * getting the respective rename operations issued in
3688 			 * the send stream or getting into infinite path build
3689 			 * loops.
3690 			 */
3691 			ret = is_ancestor(sctx->parent_root,
3692 					  sctx->cur_ino, sctx->cur_inode_gen,
3693 					  ino, path_before);
3694 			if (ret)
3695 				break;
3696 		}
3697 
3698 		fs_path_reset(path_before);
3699 		fs_path_reset(path_after);
3700 
3701 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3702 				    &parent_ino_after_gen, path_after);
3703 		if (ret < 0)
3704 			goto out;
3705 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3706 				    NULL, path_before);
3707 		if (ret < 0 && ret != -ENOENT) {
3708 			goto out;
3709 		} else if (ret == -ENOENT) {
3710 			ret = 0;
3711 			break;
3712 		}
3713 
3714 		len1 = fs_path_len(path_before);
3715 		len2 = fs_path_len(path_after);
3716 		if (ino > sctx->cur_ino &&
3717 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3718 		     memcmp(path_before->start, path_after->start, len1))) {
3719 			u64 parent_ino_gen;
3720 
3721 			ret = get_inode_info(sctx->parent_root, ino, NULL,
3722 					     &parent_ino_gen, NULL, NULL, NULL,
3723 					     NULL);
3724 			if (ret < 0)
3725 				goto out;
3726 			if (ino_gen == parent_ino_gen) {
3727 				ret = 1;
3728 				break;
3729 			}
3730 		}
3731 		ino = parent_ino_after;
3732 		ino_gen = parent_ino_after_gen;
3733 	}
3734 
3735 out:
3736 	fs_path_free(path_before);
3737 	fs_path_free(path_after);
3738 
3739 	if (ret == 1) {
3740 		ret = add_pending_dir_move(sctx,
3741 					   sctx->cur_ino,
3742 					   sctx->cur_inode_gen,
3743 					   ino,
3744 					   &sctx->new_refs,
3745 					   &sctx->deleted_refs,
3746 					   is_orphan);
3747 		if (!ret)
3748 			ret = 1;
3749 	}
3750 
3751 	return ret;
3752 }
3753 
3754 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3755 {
3756 	int ret;
3757 	struct fs_path *new_path;
3758 
3759 	/*
3760 	 * Our reference's name member points to its full_path member string, so
3761 	 * we use here a new path.
3762 	 */
3763 	new_path = fs_path_alloc();
3764 	if (!new_path)
3765 		return -ENOMEM;
3766 
3767 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3768 	if (ret < 0) {
3769 		fs_path_free(new_path);
3770 		return ret;
3771 	}
3772 	ret = fs_path_add(new_path, ref->name, ref->name_len);
3773 	if (ret < 0) {
3774 		fs_path_free(new_path);
3775 		return ret;
3776 	}
3777 
3778 	fs_path_free(ref->full_path);
3779 	set_ref_path(ref, new_path);
3780 
3781 	return 0;
3782 }
3783 
3784 /*
3785  * This does all the move/link/unlink/rmdir magic.
3786  */
3787 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3788 {
3789 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3790 	int ret = 0;
3791 	struct recorded_ref *cur;
3792 	struct recorded_ref *cur2;
3793 	struct list_head check_dirs;
3794 	struct fs_path *valid_path = NULL;
3795 	u64 ow_inode = 0;
3796 	u64 ow_gen;
3797 	u64 ow_mode;
3798 	int did_overwrite = 0;
3799 	int is_orphan = 0;
3800 	u64 last_dir_ino_rm = 0;
3801 	bool can_rename = true;
3802 	bool orphanized_dir = false;
3803 	bool orphanized_ancestor = false;
3804 
3805 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3806 
3807 	/*
3808 	 * This should never happen as the root dir always has the same ref
3809 	 * which is always '..'
3810 	 */
3811 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3812 	INIT_LIST_HEAD(&check_dirs);
3813 
3814 	valid_path = fs_path_alloc();
3815 	if (!valid_path) {
3816 		ret = -ENOMEM;
3817 		goto out;
3818 	}
3819 
3820 	/*
3821 	 * First, check if the first ref of the current inode was overwritten
3822 	 * before. If yes, we know that the current inode was already orphanized
3823 	 * and thus use the orphan name. If not, we can use get_cur_path to
3824 	 * get the path of the first ref as it would like while receiving at
3825 	 * this point in time.
3826 	 * New inodes are always orphan at the beginning, so force to use the
3827 	 * orphan name in this case.
3828 	 * The first ref is stored in valid_path and will be updated if it
3829 	 * gets moved around.
3830 	 */
3831 	if (!sctx->cur_inode_new) {
3832 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3833 				sctx->cur_inode_gen);
3834 		if (ret < 0)
3835 			goto out;
3836 		if (ret)
3837 			did_overwrite = 1;
3838 	}
3839 	if (sctx->cur_inode_new || did_overwrite) {
3840 		ret = gen_unique_name(sctx, sctx->cur_ino,
3841 				sctx->cur_inode_gen, valid_path);
3842 		if (ret < 0)
3843 			goto out;
3844 		is_orphan = 1;
3845 	} else {
3846 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3847 				valid_path);
3848 		if (ret < 0)
3849 			goto out;
3850 	}
3851 
3852 	list_for_each_entry(cur, &sctx->new_refs, list) {
3853 		/*
3854 		 * We may have refs where the parent directory does not exist
3855 		 * yet. This happens if the parent directories inum is higher
3856 		 * the the current inum. To handle this case, we create the
3857 		 * parent directory out of order. But we need to check if this
3858 		 * did already happen before due to other refs in the same dir.
3859 		 */
3860 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3861 		if (ret < 0)
3862 			goto out;
3863 		if (ret == inode_state_will_create) {
3864 			ret = 0;
3865 			/*
3866 			 * First check if any of the current inodes refs did
3867 			 * already create the dir.
3868 			 */
3869 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3870 				if (cur == cur2)
3871 					break;
3872 				if (cur2->dir == cur->dir) {
3873 					ret = 1;
3874 					break;
3875 				}
3876 			}
3877 
3878 			/*
3879 			 * If that did not happen, check if a previous inode
3880 			 * did already create the dir.
3881 			 */
3882 			if (!ret)
3883 				ret = did_create_dir(sctx, cur->dir);
3884 			if (ret < 0)
3885 				goto out;
3886 			if (!ret) {
3887 				ret = send_create_inode(sctx, cur->dir);
3888 				if (ret < 0)
3889 					goto out;
3890 			}
3891 		}
3892 
3893 		/*
3894 		 * Check if this new ref would overwrite the first ref of
3895 		 * another unprocessed inode. If yes, orphanize the
3896 		 * overwritten inode. If we find an overwritten ref that is
3897 		 * not the first ref, simply unlink it.
3898 		 */
3899 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3900 				cur->name, cur->name_len,
3901 				&ow_inode, &ow_gen, &ow_mode);
3902 		if (ret < 0)
3903 			goto out;
3904 		if (ret) {
3905 			ret = is_first_ref(sctx->parent_root,
3906 					   ow_inode, cur->dir, cur->name,
3907 					   cur->name_len);
3908 			if (ret < 0)
3909 				goto out;
3910 			if (ret) {
3911 				struct name_cache_entry *nce;
3912 				struct waiting_dir_move *wdm;
3913 
3914 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3915 						cur->full_path);
3916 				if (ret < 0)
3917 					goto out;
3918 				if (S_ISDIR(ow_mode))
3919 					orphanized_dir = true;
3920 
3921 				/*
3922 				 * If ow_inode has its rename operation delayed
3923 				 * make sure that its orphanized name is used in
3924 				 * the source path when performing its rename
3925 				 * operation.
3926 				 */
3927 				if (is_waiting_for_move(sctx, ow_inode)) {
3928 					wdm = get_waiting_dir_move(sctx,
3929 								   ow_inode);
3930 					ASSERT(wdm);
3931 					wdm->orphanized = true;
3932 				}
3933 
3934 				/*
3935 				 * Make sure we clear our orphanized inode's
3936 				 * name from the name cache. This is because the
3937 				 * inode ow_inode might be an ancestor of some
3938 				 * other inode that will be orphanized as well
3939 				 * later and has an inode number greater than
3940 				 * sctx->send_progress. We need to prevent
3941 				 * future name lookups from using the old name
3942 				 * and get instead the orphan name.
3943 				 */
3944 				nce = name_cache_search(sctx, ow_inode, ow_gen);
3945 				if (nce) {
3946 					name_cache_delete(sctx, nce);
3947 					kfree(nce);
3948 				}
3949 
3950 				/*
3951 				 * ow_inode might currently be an ancestor of
3952 				 * cur_ino, therefore compute valid_path (the
3953 				 * current path of cur_ino) again because it
3954 				 * might contain the pre-orphanization name of
3955 				 * ow_inode, which is no longer valid.
3956 				 */
3957 				ret = is_ancestor(sctx->parent_root,
3958 						  ow_inode, ow_gen,
3959 						  sctx->cur_ino, NULL);
3960 				if (ret > 0) {
3961 					orphanized_ancestor = true;
3962 					fs_path_reset(valid_path);
3963 					ret = get_cur_path(sctx, sctx->cur_ino,
3964 							   sctx->cur_inode_gen,
3965 							   valid_path);
3966 				}
3967 				if (ret < 0)
3968 					goto out;
3969 			} else {
3970 				ret = send_unlink(sctx, cur->full_path);
3971 				if (ret < 0)
3972 					goto out;
3973 			}
3974 		}
3975 
3976 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3977 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3978 			if (ret < 0)
3979 				goto out;
3980 			if (ret == 1) {
3981 				can_rename = false;
3982 				*pending_move = 1;
3983 			}
3984 		}
3985 
3986 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3987 		    can_rename) {
3988 			ret = wait_for_parent_move(sctx, cur, is_orphan);
3989 			if (ret < 0)
3990 				goto out;
3991 			if (ret == 1) {
3992 				can_rename = false;
3993 				*pending_move = 1;
3994 			}
3995 		}
3996 
3997 		/*
3998 		 * link/move the ref to the new place. If we have an orphan
3999 		 * inode, move it and update valid_path. If not, link or move
4000 		 * it depending on the inode mode.
4001 		 */
4002 		if (is_orphan && can_rename) {
4003 			ret = send_rename(sctx, valid_path, cur->full_path);
4004 			if (ret < 0)
4005 				goto out;
4006 			is_orphan = 0;
4007 			ret = fs_path_copy(valid_path, cur->full_path);
4008 			if (ret < 0)
4009 				goto out;
4010 		} else if (can_rename) {
4011 			if (S_ISDIR(sctx->cur_inode_mode)) {
4012 				/*
4013 				 * Dirs can't be linked, so move it. For moved
4014 				 * dirs, we always have one new and one deleted
4015 				 * ref. The deleted ref is ignored later.
4016 				 */
4017 				ret = send_rename(sctx, valid_path,
4018 						  cur->full_path);
4019 				if (!ret)
4020 					ret = fs_path_copy(valid_path,
4021 							   cur->full_path);
4022 				if (ret < 0)
4023 					goto out;
4024 			} else {
4025 				/*
4026 				 * We might have previously orphanized an inode
4027 				 * which is an ancestor of our current inode,
4028 				 * so our reference's full path, which was
4029 				 * computed before any such orphanizations, must
4030 				 * be updated.
4031 				 */
4032 				if (orphanized_dir) {
4033 					ret = update_ref_path(sctx, cur);
4034 					if (ret < 0)
4035 						goto out;
4036 				}
4037 				ret = send_link(sctx, cur->full_path,
4038 						valid_path);
4039 				if (ret < 0)
4040 					goto out;
4041 			}
4042 		}
4043 		ret = dup_ref(cur, &check_dirs);
4044 		if (ret < 0)
4045 			goto out;
4046 	}
4047 
4048 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4049 		/*
4050 		 * Check if we can already rmdir the directory. If not,
4051 		 * orphanize it. For every dir item inside that gets deleted
4052 		 * later, we do this check again and rmdir it then if possible.
4053 		 * See the use of check_dirs for more details.
4054 		 */
4055 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4056 				sctx->cur_ino);
4057 		if (ret < 0)
4058 			goto out;
4059 		if (ret) {
4060 			ret = send_rmdir(sctx, valid_path);
4061 			if (ret < 0)
4062 				goto out;
4063 		} else if (!is_orphan) {
4064 			ret = orphanize_inode(sctx, sctx->cur_ino,
4065 					sctx->cur_inode_gen, valid_path);
4066 			if (ret < 0)
4067 				goto out;
4068 			is_orphan = 1;
4069 		}
4070 
4071 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4072 			ret = dup_ref(cur, &check_dirs);
4073 			if (ret < 0)
4074 				goto out;
4075 		}
4076 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4077 		   !list_empty(&sctx->deleted_refs)) {
4078 		/*
4079 		 * We have a moved dir. Add the old parent to check_dirs
4080 		 */
4081 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4082 				list);
4083 		ret = dup_ref(cur, &check_dirs);
4084 		if (ret < 0)
4085 			goto out;
4086 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4087 		/*
4088 		 * We have a non dir inode. Go through all deleted refs and
4089 		 * unlink them if they were not already overwritten by other
4090 		 * inodes.
4091 		 */
4092 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4093 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4094 					sctx->cur_ino, sctx->cur_inode_gen,
4095 					cur->name, cur->name_len);
4096 			if (ret < 0)
4097 				goto out;
4098 			if (!ret) {
4099 				/*
4100 				 * If we orphanized any ancestor before, we need
4101 				 * to recompute the full path for deleted names,
4102 				 * since any such path was computed before we
4103 				 * processed any references and orphanized any
4104 				 * ancestor inode.
4105 				 */
4106 				if (orphanized_ancestor) {
4107 					ret = update_ref_path(sctx, cur);
4108 					if (ret < 0)
4109 						goto out;
4110 				}
4111 				ret = send_unlink(sctx, cur->full_path);
4112 				if (ret < 0)
4113 					goto out;
4114 			}
4115 			ret = dup_ref(cur, &check_dirs);
4116 			if (ret < 0)
4117 				goto out;
4118 		}
4119 		/*
4120 		 * If the inode is still orphan, unlink the orphan. This may
4121 		 * happen when a previous inode did overwrite the first ref
4122 		 * of this inode and no new refs were added for the current
4123 		 * inode. Unlinking does not mean that the inode is deleted in
4124 		 * all cases. There may still be links to this inode in other
4125 		 * places.
4126 		 */
4127 		if (is_orphan) {
4128 			ret = send_unlink(sctx, valid_path);
4129 			if (ret < 0)
4130 				goto out;
4131 		}
4132 	}
4133 
4134 	/*
4135 	 * We did collect all parent dirs where cur_inode was once located. We
4136 	 * now go through all these dirs and check if they are pending for
4137 	 * deletion and if it's finally possible to perform the rmdir now.
4138 	 * We also update the inode stats of the parent dirs here.
4139 	 */
4140 	list_for_each_entry(cur, &check_dirs, list) {
4141 		/*
4142 		 * In case we had refs into dirs that were not processed yet,
4143 		 * we don't need to do the utime and rmdir logic for these dirs.
4144 		 * The dir will be processed later.
4145 		 */
4146 		if (cur->dir > sctx->cur_ino)
4147 			continue;
4148 
4149 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4150 		if (ret < 0)
4151 			goto out;
4152 
4153 		if (ret == inode_state_did_create ||
4154 		    ret == inode_state_no_change) {
4155 			/* TODO delayed utimes */
4156 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4157 			if (ret < 0)
4158 				goto out;
4159 		} else if (ret == inode_state_did_delete &&
4160 			   cur->dir != last_dir_ino_rm) {
4161 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4162 					sctx->cur_ino);
4163 			if (ret < 0)
4164 				goto out;
4165 			if (ret) {
4166 				ret = get_cur_path(sctx, cur->dir,
4167 						   cur->dir_gen, valid_path);
4168 				if (ret < 0)
4169 					goto out;
4170 				ret = send_rmdir(sctx, valid_path);
4171 				if (ret < 0)
4172 					goto out;
4173 				last_dir_ino_rm = cur->dir;
4174 			}
4175 		}
4176 	}
4177 
4178 	ret = 0;
4179 
4180 out:
4181 	__free_recorded_refs(&check_dirs);
4182 	free_recorded_refs(sctx);
4183 	fs_path_free(valid_path);
4184 	return ret;
4185 }
4186 
4187 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4188 		      void *ctx, struct list_head *refs)
4189 {
4190 	int ret = 0;
4191 	struct send_ctx *sctx = ctx;
4192 	struct fs_path *p;
4193 	u64 gen;
4194 
4195 	p = fs_path_alloc();
4196 	if (!p)
4197 		return -ENOMEM;
4198 
4199 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4200 			NULL, NULL);
4201 	if (ret < 0)
4202 		goto out;
4203 
4204 	ret = get_cur_path(sctx, dir, gen, p);
4205 	if (ret < 0)
4206 		goto out;
4207 	ret = fs_path_add_path(p, name);
4208 	if (ret < 0)
4209 		goto out;
4210 
4211 	ret = __record_ref(refs, dir, gen, p);
4212 
4213 out:
4214 	if (ret)
4215 		fs_path_free(p);
4216 	return ret;
4217 }
4218 
4219 static int __record_new_ref(int num, u64 dir, int index,
4220 			    struct fs_path *name,
4221 			    void *ctx)
4222 {
4223 	struct send_ctx *sctx = ctx;
4224 	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4225 }
4226 
4227 
4228 static int __record_deleted_ref(int num, u64 dir, int index,
4229 				struct fs_path *name,
4230 				void *ctx)
4231 {
4232 	struct send_ctx *sctx = ctx;
4233 	return record_ref(sctx->parent_root, dir, name, ctx,
4234 			  &sctx->deleted_refs);
4235 }
4236 
4237 static int record_new_ref(struct send_ctx *sctx)
4238 {
4239 	int ret;
4240 
4241 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4242 				sctx->cmp_key, 0, __record_new_ref, sctx);
4243 	if (ret < 0)
4244 		goto out;
4245 	ret = 0;
4246 
4247 out:
4248 	return ret;
4249 }
4250 
4251 static int record_deleted_ref(struct send_ctx *sctx)
4252 {
4253 	int ret;
4254 
4255 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4256 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4257 	if (ret < 0)
4258 		goto out;
4259 	ret = 0;
4260 
4261 out:
4262 	return ret;
4263 }
4264 
4265 struct find_ref_ctx {
4266 	u64 dir;
4267 	u64 dir_gen;
4268 	struct btrfs_root *root;
4269 	struct fs_path *name;
4270 	int found_idx;
4271 };
4272 
4273 static int __find_iref(int num, u64 dir, int index,
4274 		       struct fs_path *name,
4275 		       void *ctx_)
4276 {
4277 	struct find_ref_ctx *ctx = ctx_;
4278 	u64 dir_gen;
4279 	int ret;
4280 
4281 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4282 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4283 		/*
4284 		 * To avoid doing extra lookups we'll only do this if everything
4285 		 * else matches.
4286 		 */
4287 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4288 				     NULL, NULL, NULL);
4289 		if (ret)
4290 			return ret;
4291 		if (dir_gen != ctx->dir_gen)
4292 			return 0;
4293 		ctx->found_idx = num;
4294 		return 1;
4295 	}
4296 	return 0;
4297 }
4298 
4299 static int find_iref(struct btrfs_root *root,
4300 		     struct btrfs_path *path,
4301 		     struct btrfs_key *key,
4302 		     u64 dir, u64 dir_gen, struct fs_path *name)
4303 {
4304 	int ret;
4305 	struct find_ref_ctx ctx;
4306 
4307 	ctx.dir = dir;
4308 	ctx.name = name;
4309 	ctx.dir_gen = dir_gen;
4310 	ctx.found_idx = -1;
4311 	ctx.root = root;
4312 
4313 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4314 	if (ret < 0)
4315 		return ret;
4316 
4317 	if (ctx.found_idx == -1)
4318 		return -ENOENT;
4319 
4320 	return ctx.found_idx;
4321 }
4322 
4323 static int __record_changed_new_ref(int num, u64 dir, int index,
4324 				    struct fs_path *name,
4325 				    void *ctx)
4326 {
4327 	u64 dir_gen;
4328 	int ret;
4329 	struct send_ctx *sctx = ctx;
4330 
4331 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4332 			     NULL, NULL, NULL);
4333 	if (ret)
4334 		return ret;
4335 
4336 	ret = find_iref(sctx->parent_root, sctx->right_path,
4337 			sctx->cmp_key, dir, dir_gen, name);
4338 	if (ret == -ENOENT)
4339 		ret = __record_new_ref(num, dir, index, name, sctx);
4340 	else if (ret > 0)
4341 		ret = 0;
4342 
4343 	return ret;
4344 }
4345 
4346 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4347 					struct fs_path *name,
4348 					void *ctx)
4349 {
4350 	u64 dir_gen;
4351 	int ret;
4352 	struct send_ctx *sctx = ctx;
4353 
4354 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4355 			     NULL, NULL, NULL);
4356 	if (ret)
4357 		return ret;
4358 
4359 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4360 			dir, dir_gen, name);
4361 	if (ret == -ENOENT)
4362 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4363 	else if (ret > 0)
4364 		ret = 0;
4365 
4366 	return ret;
4367 }
4368 
4369 static int record_changed_ref(struct send_ctx *sctx)
4370 {
4371 	int ret = 0;
4372 
4373 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4374 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4375 	if (ret < 0)
4376 		goto out;
4377 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4378 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4379 	if (ret < 0)
4380 		goto out;
4381 	ret = 0;
4382 
4383 out:
4384 	return ret;
4385 }
4386 
4387 /*
4388  * Record and process all refs at once. Needed when an inode changes the
4389  * generation number, which means that it was deleted and recreated.
4390  */
4391 static int process_all_refs(struct send_ctx *sctx,
4392 			    enum btrfs_compare_tree_result cmd)
4393 {
4394 	int ret;
4395 	struct btrfs_root *root;
4396 	struct btrfs_path *path;
4397 	struct btrfs_key key;
4398 	struct btrfs_key found_key;
4399 	struct extent_buffer *eb;
4400 	int slot;
4401 	iterate_inode_ref_t cb;
4402 	int pending_move = 0;
4403 
4404 	path = alloc_path_for_send();
4405 	if (!path)
4406 		return -ENOMEM;
4407 
4408 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4409 		root = sctx->send_root;
4410 		cb = __record_new_ref;
4411 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4412 		root = sctx->parent_root;
4413 		cb = __record_deleted_ref;
4414 	} else {
4415 		btrfs_err(sctx->send_root->fs_info,
4416 				"Wrong command %d in process_all_refs", cmd);
4417 		ret = -EINVAL;
4418 		goto out;
4419 	}
4420 
4421 	key.objectid = sctx->cmp_key->objectid;
4422 	key.type = BTRFS_INODE_REF_KEY;
4423 	key.offset = 0;
4424 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4425 	if (ret < 0)
4426 		goto out;
4427 
4428 	while (1) {
4429 		eb = path->nodes[0];
4430 		slot = path->slots[0];
4431 		if (slot >= btrfs_header_nritems(eb)) {
4432 			ret = btrfs_next_leaf(root, path);
4433 			if (ret < 0)
4434 				goto out;
4435 			else if (ret > 0)
4436 				break;
4437 			continue;
4438 		}
4439 
4440 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4441 
4442 		if (found_key.objectid != key.objectid ||
4443 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4444 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4445 			break;
4446 
4447 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4448 		if (ret < 0)
4449 			goto out;
4450 
4451 		path->slots[0]++;
4452 	}
4453 	btrfs_release_path(path);
4454 
4455 	/*
4456 	 * We don't actually care about pending_move as we are simply
4457 	 * re-creating this inode and will be rename'ing it into place once we
4458 	 * rename the parent directory.
4459 	 */
4460 	ret = process_recorded_refs(sctx, &pending_move);
4461 out:
4462 	btrfs_free_path(path);
4463 	return ret;
4464 }
4465 
4466 static int send_set_xattr(struct send_ctx *sctx,
4467 			  struct fs_path *path,
4468 			  const char *name, int name_len,
4469 			  const char *data, int data_len)
4470 {
4471 	int ret = 0;
4472 
4473 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4474 	if (ret < 0)
4475 		goto out;
4476 
4477 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4478 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4479 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4480 
4481 	ret = send_cmd(sctx);
4482 
4483 tlv_put_failure:
4484 out:
4485 	return ret;
4486 }
4487 
4488 static int send_remove_xattr(struct send_ctx *sctx,
4489 			  struct fs_path *path,
4490 			  const char *name, int name_len)
4491 {
4492 	int ret = 0;
4493 
4494 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4495 	if (ret < 0)
4496 		goto out;
4497 
4498 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4499 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4500 
4501 	ret = send_cmd(sctx);
4502 
4503 tlv_put_failure:
4504 out:
4505 	return ret;
4506 }
4507 
4508 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4509 			       const char *name, int name_len,
4510 			       const char *data, int data_len,
4511 			       u8 type, void *ctx)
4512 {
4513 	int ret;
4514 	struct send_ctx *sctx = ctx;
4515 	struct fs_path *p;
4516 	struct posix_acl_xattr_header dummy_acl;
4517 
4518 	p = fs_path_alloc();
4519 	if (!p)
4520 		return -ENOMEM;
4521 
4522 	/*
4523 	 * This hack is needed because empty acls are stored as zero byte
4524 	 * data in xattrs. Problem with that is, that receiving these zero byte
4525 	 * acls will fail later. To fix this, we send a dummy acl list that
4526 	 * only contains the version number and no entries.
4527 	 */
4528 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4529 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4530 		if (data_len == 0) {
4531 			dummy_acl.a_version =
4532 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4533 			data = (char *)&dummy_acl;
4534 			data_len = sizeof(dummy_acl);
4535 		}
4536 	}
4537 
4538 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4539 	if (ret < 0)
4540 		goto out;
4541 
4542 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4543 
4544 out:
4545 	fs_path_free(p);
4546 	return ret;
4547 }
4548 
4549 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4550 				   const char *name, int name_len,
4551 				   const char *data, int data_len,
4552 				   u8 type, void *ctx)
4553 {
4554 	int ret;
4555 	struct send_ctx *sctx = ctx;
4556 	struct fs_path *p;
4557 
4558 	p = fs_path_alloc();
4559 	if (!p)
4560 		return -ENOMEM;
4561 
4562 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4563 	if (ret < 0)
4564 		goto out;
4565 
4566 	ret = send_remove_xattr(sctx, p, name, name_len);
4567 
4568 out:
4569 	fs_path_free(p);
4570 	return ret;
4571 }
4572 
4573 static int process_new_xattr(struct send_ctx *sctx)
4574 {
4575 	int ret = 0;
4576 
4577 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4578 			       __process_new_xattr, sctx);
4579 
4580 	return ret;
4581 }
4582 
4583 static int process_deleted_xattr(struct send_ctx *sctx)
4584 {
4585 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4586 				__process_deleted_xattr, sctx);
4587 }
4588 
4589 struct find_xattr_ctx {
4590 	const char *name;
4591 	int name_len;
4592 	int found_idx;
4593 	char *found_data;
4594 	int found_data_len;
4595 };
4596 
4597 static int __find_xattr(int num, struct btrfs_key *di_key,
4598 			const char *name, int name_len,
4599 			const char *data, int data_len,
4600 			u8 type, void *vctx)
4601 {
4602 	struct find_xattr_ctx *ctx = vctx;
4603 
4604 	if (name_len == ctx->name_len &&
4605 	    strncmp(name, ctx->name, name_len) == 0) {
4606 		ctx->found_idx = num;
4607 		ctx->found_data_len = data_len;
4608 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4609 		if (!ctx->found_data)
4610 			return -ENOMEM;
4611 		return 1;
4612 	}
4613 	return 0;
4614 }
4615 
4616 static int find_xattr(struct btrfs_root *root,
4617 		      struct btrfs_path *path,
4618 		      struct btrfs_key *key,
4619 		      const char *name, int name_len,
4620 		      char **data, int *data_len)
4621 {
4622 	int ret;
4623 	struct find_xattr_ctx ctx;
4624 
4625 	ctx.name = name;
4626 	ctx.name_len = name_len;
4627 	ctx.found_idx = -1;
4628 	ctx.found_data = NULL;
4629 	ctx.found_data_len = 0;
4630 
4631 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4632 	if (ret < 0)
4633 		return ret;
4634 
4635 	if (ctx.found_idx == -1)
4636 		return -ENOENT;
4637 	if (data) {
4638 		*data = ctx.found_data;
4639 		*data_len = ctx.found_data_len;
4640 	} else {
4641 		kfree(ctx.found_data);
4642 	}
4643 	return ctx.found_idx;
4644 }
4645 
4646 
4647 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4648 				       const char *name, int name_len,
4649 				       const char *data, int data_len,
4650 				       u8 type, void *ctx)
4651 {
4652 	int ret;
4653 	struct send_ctx *sctx = ctx;
4654 	char *found_data = NULL;
4655 	int found_data_len  = 0;
4656 
4657 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4658 			 sctx->cmp_key, name, name_len, &found_data,
4659 			 &found_data_len);
4660 	if (ret == -ENOENT) {
4661 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4662 				data_len, type, ctx);
4663 	} else if (ret >= 0) {
4664 		if (data_len != found_data_len ||
4665 		    memcmp(data, found_data, data_len)) {
4666 			ret = __process_new_xattr(num, di_key, name, name_len,
4667 					data, data_len, type, ctx);
4668 		} else {
4669 			ret = 0;
4670 		}
4671 	}
4672 
4673 	kfree(found_data);
4674 	return ret;
4675 }
4676 
4677 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4678 					   const char *name, int name_len,
4679 					   const char *data, int data_len,
4680 					   u8 type, void *ctx)
4681 {
4682 	int ret;
4683 	struct send_ctx *sctx = ctx;
4684 
4685 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4686 			 name, name_len, NULL, NULL);
4687 	if (ret == -ENOENT)
4688 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4689 				data_len, type, ctx);
4690 	else if (ret >= 0)
4691 		ret = 0;
4692 
4693 	return ret;
4694 }
4695 
4696 static int process_changed_xattr(struct send_ctx *sctx)
4697 {
4698 	int ret = 0;
4699 
4700 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4701 			__process_changed_new_xattr, sctx);
4702 	if (ret < 0)
4703 		goto out;
4704 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4705 			__process_changed_deleted_xattr, sctx);
4706 
4707 out:
4708 	return ret;
4709 }
4710 
4711 static int process_all_new_xattrs(struct send_ctx *sctx)
4712 {
4713 	int ret;
4714 	struct btrfs_root *root;
4715 	struct btrfs_path *path;
4716 	struct btrfs_key key;
4717 	struct btrfs_key found_key;
4718 	struct extent_buffer *eb;
4719 	int slot;
4720 
4721 	path = alloc_path_for_send();
4722 	if (!path)
4723 		return -ENOMEM;
4724 
4725 	root = sctx->send_root;
4726 
4727 	key.objectid = sctx->cmp_key->objectid;
4728 	key.type = BTRFS_XATTR_ITEM_KEY;
4729 	key.offset = 0;
4730 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4731 	if (ret < 0)
4732 		goto out;
4733 
4734 	while (1) {
4735 		eb = path->nodes[0];
4736 		slot = path->slots[0];
4737 		if (slot >= btrfs_header_nritems(eb)) {
4738 			ret = btrfs_next_leaf(root, path);
4739 			if (ret < 0) {
4740 				goto out;
4741 			} else if (ret > 0) {
4742 				ret = 0;
4743 				break;
4744 			}
4745 			continue;
4746 		}
4747 
4748 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4749 		if (found_key.objectid != key.objectid ||
4750 		    found_key.type != key.type) {
4751 			ret = 0;
4752 			goto out;
4753 		}
4754 
4755 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4756 		if (ret < 0)
4757 			goto out;
4758 
4759 		path->slots[0]++;
4760 	}
4761 
4762 out:
4763 	btrfs_free_path(path);
4764 	return ret;
4765 }
4766 
4767 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4768 {
4769 	struct btrfs_root *root = sctx->send_root;
4770 	struct btrfs_fs_info *fs_info = root->fs_info;
4771 	struct inode *inode;
4772 	struct page *page;
4773 	char *addr;
4774 	struct btrfs_key key;
4775 	pgoff_t index = offset >> PAGE_SHIFT;
4776 	pgoff_t last_index;
4777 	unsigned pg_offset = offset & ~PAGE_MASK;
4778 	ssize_t ret = 0;
4779 
4780 	key.objectid = sctx->cur_ino;
4781 	key.type = BTRFS_INODE_ITEM_KEY;
4782 	key.offset = 0;
4783 
4784 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4785 	if (IS_ERR(inode))
4786 		return PTR_ERR(inode);
4787 
4788 	if (offset + len > i_size_read(inode)) {
4789 		if (offset > i_size_read(inode))
4790 			len = 0;
4791 		else
4792 			len = offset - i_size_read(inode);
4793 	}
4794 	if (len == 0)
4795 		goto out;
4796 
4797 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4798 
4799 	/* initial readahead */
4800 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4801 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4802 
4803 	while (index <= last_index) {
4804 		unsigned cur_len = min_t(unsigned, len,
4805 					 PAGE_SIZE - pg_offset);
4806 
4807 		page = find_lock_page(inode->i_mapping, index);
4808 		if (!page) {
4809 			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4810 				NULL, index, last_index + 1 - index);
4811 
4812 			page = find_or_create_page(inode->i_mapping, index,
4813 					GFP_KERNEL);
4814 			if (!page) {
4815 				ret = -ENOMEM;
4816 				break;
4817 			}
4818 		}
4819 
4820 		if (PageReadahead(page)) {
4821 			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4822 				NULL, page, index, last_index + 1 - index);
4823 		}
4824 
4825 		if (!PageUptodate(page)) {
4826 			btrfs_readpage(NULL, page);
4827 			lock_page(page);
4828 			if (!PageUptodate(page)) {
4829 				unlock_page(page);
4830 				put_page(page);
4831 				ret = -EIO;
4832 				break;
4833 			}
4834 		}
4835 
4836 		addr = kmap(page);
4837 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4838 		kunmap(page);
4839 		unlock_page(page);
4840 		put_page(page);
4841 		index++;
4842 		pg_offset = 0;
4843 		len -= cur_len;
4844 		ret += cur_len;
4845 	}
4846 out:
4847 	iput(inode);
4848 	return ret;
4849 }
4850 
4851 /*
4852  * Read some bytes from the current inode/file and send a write command to
4853  * user space.
4854  */
4855 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4856 {
4857 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4858 	int ret = 0;
4859 	struct fs_path *p;
4860 	ssize_t num_read = 0;
4861 
4862 	p = fs_path_alloc();
4863 	if (!p)
4864 		return -ENOMEM;
4865 
4866 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4867 
4868 	num_read = fill_read_buf(sctx, offset, len);
4869 	if (num_read <= 0) {
4870 		if (num_read < 0)
4871 			ret = num_read;
4872 		goto out;
4873 	}
4874 
4875 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4876 	if (ret < 0)
4877 		goto out;
4878 
4879 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4880 	if (ret < 0)
4881 		goto out;
4882 
4883 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4884 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4885 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4886 
4887 	ret = send_cmd(sctx);
4888 
4889 tlv_put_failure:
4890 out:
4891 	fs_path_free(p);
4892 	if (ret < 0)
4893 		return ret;
4894 	return num_read;
4895 }
4896 
4897 /*
4898  * Send a clone command to user space.
4899  */
4900 static int send_clone(struct send_ctx *sctx,
4901 		      u64 offset, u32 len,
4902 		      struct clone_root *clone_root)
4903 {
4904 	int ret = 0;
4905 	struct fs_path *p;
4906 	u64 gen;
4907 
4908 	btrfs_debug(sctx->send_root->fs_info,
4909 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4910 		    offset, len, clone_root->root->objectid, clone_root->ino,
4911 		    clone_root->offset);
4912 
4913 	p = fs_path_alloc();
4914 	if (!p)
4915 		return -ENOMEM;
4916 
4917 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4918 	if (ret < 0)
4919 		goto out;
4920 
4921 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4922 	if (ret < 0)
4923 		goto out;
4924 
4925 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4926 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4927 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4928 
4929 	if (clone_root->root == sctx->send_root) {
4930 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4931 				&gen, NULL, NULL, NULL, NULL);
4932 		if (ret < 0)
4933 			goto out;
4934 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4935 	} else {
4936 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4937 	}
4938 	if (ret < 0)
4939 		goto out;
4940 
4941 	/*
4942 	 * If the parent we're using has a received_uuid set then use that as
4943 	 * our clone source as that is what we will look for when doing a
4944 	 * receive.
4945 	 *
4946 	 * This covers the case that we create a snapshot off of a received
4947 	 * subvolume and then use that as the parent and try to receive on a
4948 	 * different host.
4949 	 */
4950 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4951 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4952 			     clone_root->root->root_item.received_uuid);
4953 	else
4954 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4955 			     clone_root->root->root_item.uuid);
4956 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4957 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4958 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4959 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4960 			clone_root->offset);
4961 
4962 	ret = send_cmd(sctx);
4963 
4964 tlv_put_failure:
4965 out:
4966 	fs_path_free(p);
4967 	return ret;
4968 }
4969 
4970 /*
4971  * Send an update extent command to user space.
4972  */
4973 static int send_update_extent(struct send_ctx *sctx,
4974 			      u64 offset, u32 len)
4975 {
4976 	int ret = 0;
4977 	struct fs_path *p;
4978 
4979 	p = fs_path_alloc();
4980 	if (!p)
4981 		return -ENOMEM;
4982 
4983 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4984 	if (ret < 0)
4985 		goto out;
4986 
4987 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4988 	if (ret < 0)
4989 		goto out;
4990 
4991 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4992 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4993 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4994 
4995 	ret = send_cmd(sctx);
4996 
4997 tlv_put_failure:
4998 out:
4999 	fs_path_free(p);
5000 	return ret;
5001 }
5002 
5003 static int send_hole(struct send_ctx *sctx, u64 end)
5004 {
5005 	struct fs_path *p = NULL;
5006 	u64 offset = sctx->cur_inode_last_extent;
5007 	u64 len;
5008 	int ret = 0;
5009 
5010 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5011 		return send_update_extent(sctx, offset, end - offset);
5012 
5013 	p = fs_path_alloc();
5014 	if (!p)
5015 		return -ENOMEM;
5016 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5017 	if (ret < 0)
5018 		goto tlv_put_failure;
5019 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5020 	while (offset < end) {
5021 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5022 
5023 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5024 		if (ret < 0)
5025 			break;
5026 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5027 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5028 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5029 		ret = send_cmd(sctx);
5030 		if (ret < 0)
5031 			break;
5032 		offset += len;
5033 	}
5034 	sctx->cur_inode_next_write_offset = offset;
5035 tlv_put_failure:
5036 	fs_path_free(p);
5037 	return ret;
5038 }
5039 
5040 static int send_extent_data(struct send_ctx *sctx,
5041 			    const u64 offset,
5042 			    const u64 len)
5043 {
5044 	u64 sent = 0;
5045 
5046 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5047 		return send_update_extent(sctx, offset, len);
5048 
5049 	while (sent < len) {
5050 		u64 size = len - sent;
5051 		int ret;
5052 
5053 		if (size > BTRFS_SEND_READ_SIZE)
5054 			size = BTRFS_SEND_READ_SIZE;
5055 		ret = send_write(sctx, offset + sent, size);
5056 		if (ret < 0)
5057 			return ret;
5058 		if (!ret)
5059 			break;
5060 		sent += ret;
5061 	}
5062 	return 0;
5063 }
5064 
5065 static int clone_range(struct send_ctx *sctx,
5066 		       struct clone_root *clone_root,
5067 		       const u64 disk_byte,
5068 		       u64 data_offset,
5069 		       u64 offset,
5070 		       u64 len)
5071 {
5072 	struct btrfs_path *path;
5073 	struct btrfs_key key;
5074 	int ret;
5075 
5076 	/*
5077 	 * Prevent cloning from a zero offset with a length matching the sector
5078 	 * size because in some scenarios this will make the receiver fail.
5079 	 *
5080 	 * For example, if in the source filesystem the extent at offset 0
5081 	 * has a length of sectorsize and it was written using direct IO, then
5082 	 * it can never be an inline extent (even if compression is enabled).
5083 	 * Then this extent can be cloned in the original filesystem to a non
5084 	 * zero file offset, but it may not be possible to clone in the
5085 	 * destination filesystem because it can be inlined due to compression
5086 	 * on the destination filesystem (as the receiver's write operations are
5087 	 * always done using buffered IO). The same happens when the original
5088 	 * filesystem does not have compression enabled but the destination
5089 	 * filesystem has.
5090 	 */
5091 	if (clone_root->offset == 0 &&
5092 	    len == sctx->send_root->fs_info->sectorsize)
5093 		return send_extent_data(sctx, offset, len);
5094 
5095 	path = alloc_path_for_send();
5096 	if (!path)
5097 		return -ENOMEM;
5098 
5099 	/*
5100 	 * We can't send a clone operation for the entire range if we find
5101 	 * extent items in the respective range in the source file that
5102 	 * refer to different extents or if we find holes.
5103 	 * So check for that and do a mix of clone and regular write/copy
5104 	 * operations if needed.
5105 	 *
5106 	 * Example:
5107 	 *
5108 	 * mkfs.btrfs -f /dev/sda
5109 	 * mount /dev/sda /mnt
5110 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5111 	 * cp --reflink=always /mnt/foo /mnt/bar
5112 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5113 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5114 	 *
5115 	 * If when we send the snapshot and we are processing file bar (which
5116 	 * has a higher inode number than foo) we blindly send a clone operation
5117 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5118 	 * a file bar that matches the content of file foo - iow, doesn't match
5119 	 * the content from bar in the original filesystem.
5120 	 */
5121 	key.objectid = clone_root->ino;
5122 	key.type = BTRFS_EXTENT_DATA_KEY;
5123 	key.offset = clone_root->offset;
5124 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5125 	if (ret < 0)
5126 		goto out;
5127 	if (ret > 0 && path->slots[0] > 0) {
5128 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5129 		if (key.objectid == clone_root->ino &&
5130 		    key.type == BTRFS_EXTENT_DATA_KEY)
5131 			path->slots[0]--;
5132 	}
5133 
5134 	while (true) {
5135 		struct extent_buffer *leaf = path->nodes[0];
5136 		int slot = path->slots[0];
5137 		struct btrfs_file_extent_item *ei;
5138 		u8 type;
5139 		u64 ext_len;
5140 		u64 clone_len;
5141 
5142 		if (slot >= btrfs_header_nritems(leaf)) {
5143 			ret = btrfs_next_leaf(clone_root->root, path);
5144 			if (ret < 0)
5145 				goto out;
5146 			else if (ret > 0)
5147 				break;
5148 			continue;
5149 		}
5150 
5151 		btrfs_item_key_to_cpu(leaf, &key, slot);
5152 
5153 		/*
5154 		 * We might have an implicit trailing hole (NO_HOLES feature
5155 		 * enabled). We deal with it after leaving this loop.
5156 		 */
5157 		if (key.objectid != clone_root->ino ||
5158 		    key.type != BTRFS_EXTENT_DATA_KEY)
5159 			break;
5160 
5161 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5162 		type = btrfs_file_extent_type(leaf, ei);
5163 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5164 			ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
5165 			ext_len = PAGE_ALIGN(ext_len);
5166 		} else {
5167 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5168 		}
5169 
5170 		if (key.offset + ext_len <= clone_root->offset)
5171 			goto next;
5172 
5173 		if (key.offset > clone_root->offset) {
5174 			/* Implicit hole, NO_HOLES feature enabled. */
5175 			u64 hole_len = key.offset - clone_root->offset;
5176 
5177 			if (hole_len > len)
5178 				hole_len = len;
5179 			ret = send_extent_data(sctx, offset, hole_len);
5180 			if (ret < 0)
5181 				goto out;
5182 
5183 			len -= hole_len;
5184 			if (len == 0)
5185 				break;
5186 			offset += hole_len;
5187 			clone_root->offset += hole_len;
5188 			data_offset += hole_len;
5189 		}
5190 
5191 		if (key.offset >= clone_root->offset + len)
5192 			break;
5193 
5194 		clone_len = min_t(u64, ext_len, len);
5195 
5196 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5197 		    btrfs_file_extent_offset(leaf, ei) == data_offset)
5198 			ret = send_clone(sctx, offset, clone_len, clone_root);
5199 		else
5200 			ret = send_extent_data(sctx, offset, clone_len);
5201 
5202 		if (ret < 0)
5203 			goto out;
5204 
5205 		len -= clone_len;
5206 		if (len == 0)
5207 			break;
5208 		offset += clone_len;
5209 		clone_root->offset += clone_len;
5210 		data_offset += clone_len;
5211 next:
5212 		path->slots[0]++;
5213 	}
5214 
5215 	if (len > 0)
5216 		ret = send_extent_data(sctx, offset, len);
5217 	else
5218 		ret = 0;
5219 out:
5220 	btrfs_free_path(path);
5221 	return ret;
5222 }
5223 
5224 static int send_write_or_clone(struct send_ctx *sctx,
5225 			       struct btrfs_path *path,
5226 			       struct btrfs_key *key,
5227 			       struct clone_root *clone_root)
5228 {
5229 	int ret = 0;
5230 	struct btrfs_file_extent_item *ei;
5231 	u64 offset = key->offset;
5232 	u64 len;
5233 	u8 type;
5234 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5235 
5236 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5237 			struct btrfs_file_extent_item);
5238 	type = btrfs_file_extent_type(path->nodes[0], ei);
5239 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5240 		len = btrfs_file_extent_inline_len(path->nodes[0],
5241 						   path->slots[0], ei);
5242 		/*
5243 		 * it is possible the inline item won't cover the whole page,
5244 		 * but there may be items after this page.  Make
5245 		 * sure to send the whole thing
5246 		 */
5247 		len = PAGE_ALIGN(len);
5248 	} else {
5249 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5250 	}
5251 
5252 	if (offset + len > sctx->cur_inode_size)
5253 		len = sctx->cur_inode_size - offset;
5254 	if (len == 0) {
5255 		ret = 0;
5256 		goto out;
5257 	}
5258 
5259 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
5260 		u64 disk_byte;
5261 		u64 data_offset;
5262 
5263 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5264 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5265 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5266 				  offset, len);
5267 	} else {
5268 		ret = send_extent_data(sctx, offset, len);
5269 	}
5270 	sctx->cur_inode_next_write_offset = offset + len;
5271 out:
5272 	return ret;
5273 }
5274 
5275 static int is_extent_unchanged(struct send_ctx *sctx,
5276 			       struct btrfs_path *left_path,
5277 			       struct btrfs_key *ekey)
5278 {
5279 	int ret = 0;
5280 	struct btrfs_key key;
5281 	struct btrfs_path *path = NULL;
5282 	struct extent_buffer *eb;
5283 	int slot;
5284 	struct btrfs_key found_key;
5285 	struct btrfs_file_extent_item *ei;
5286 	u64 left_disknr;
5287 	u64 right_disknr;
5288 	u64 left_offset;
5289 	u64 right_offset;
5290 	u64 left_offset_fixed;
5291 	u64 left_len;
5292 	u64 right_len;
5293 	u64 left_gen;
5294 	u64 right_gen;
5295 	u8 left_type;
5296 	u8 right_type;
5297 
5298 	path = alloc_path_for_send();
5299 	if (!path)
5300 		return -ENOMEM;
5301 
5302 	eb = left_path->nodes[0];
5303 	slot = left_path->slots[0];
5304 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5305 	left_type = btrfs_file_extent_type(eb, ei);
5306 
5307 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5308 		ret = 0;
5309 		goto out;
5310 	}
5311 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5312 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5313 	left_offset = btrfs_file_extent_offset(eb, ei);
5314 	left_gen = btrfs_file_extent_generation(eb, ei);
5315 
5316 	/*
5317 	 * Following comments will refer to these graphics. L is the left
5318 	 * extents which we are checking at the moment. 1-8 are the right
5319 	 * extents that we iterate.
5320 	 *
5321 	 *       |-----L-----|
5322 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5323 	 *
5324 	 *       |-----L-----|
5325 	 * |--1--|-2b-|...(same as above)
5326 	 *
5327 	 * Alternative situation. Happens on files where extents got split.
5328 	 *       |-----L-----|
5329 	 * |-----------7-----------|-6-|
5330 	 *
5331 	 * Alternative situation. Happens on files which got larger.
5332 	 *       |-----L-----|
5333 	 * |-8-|
5334 	 * Nothing follows after 8.
5335 	 */
5336 
5337 	key.objectid = ekey->objectid;
5338 	key.type = BTRFS_EXTENT_DATA_KEY;
5339 	key.offset = ekey->offset;
5340 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5341 	if (ret < 0)
5342 		goto out;
5343 	if (ret) {
5344 		ret = 0;
5345 		goto out;
5346 	}
5347 
5348 	/*
5349 	 * Handle special case where the right side has no extents at all.
5350 	 */
5351 	eb = path->nodes[0];
5352 	slot = path->slots[0];
5353 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5354 	if (found_key.objectid != key.objectid ||
5355 	    found_key.type != key.type) {
5356 		/* If we're a hole then just pretend nothing changed */
5357 		ret = (left_disknr) ? 0 : 1;
5358 		goto out;
5359 	}
5360 
5361 	/*
5362 	 * We're now on 2a, 2b or 7.
5363 	 */
5364 	key = found_key;
5365 	while (key.offset < ekey->offset + left_len) {
5366 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5367 		right_type = btrfs_file_extent_type(eb, ei);
5368 		if (right_type != BTRFS_FILE_EXTENT_REG &&
5369 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5370 			ret = 0;
5371 			goto out;
5372 		}
5373 
5374 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5375 			right_len = btrfs_file_extent_inline_len(eb, slot, ei);
5376 			right_len = PAGE_ALIGN(right_len);
5377 		} else {
5378 			right_len = btrfs_file_extent_num_bytes(eb, ei);
5379 		}
5380 
5381 		/*
5382 		 * Are we at extent 8? If yes, we know the extent is changed.
5383 		 * This may only happen on the first iteration.
5384 		 */
5385 		if (found_key.offset + right_len <= ekey->offset) {
5386 			/* If we're a hole just pretend nothing changed */
5387 			ret = (left_disknr) ? 0 : 1;
5388 			goto out;
5389 		}
5390 
5391 		/*
5392 		 * We just wanted to see if when we have an inline extent, what
5393 		 * follows it is a regular extent (wanted to check the above
5394 		 * condition for inline extents too). This should normally not
5395 		 * happen but it's possible for example when we have an inline
5396 		 * compressed extent representing data with a size matching
5397 		 * the page size (currently the same as sector size).
5398 		 */
5399 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5400 			ret = 0;
5401 			goto out;
5402 		}
5403 
5404 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5405 		right_offset = btrfs_file_extent_offset(eb, ei);
5406 		right_gen = btrfs_file_extent_generation(eb, ei);
5407 
5408 		left_offset_fixed = left_offset;
5409 		if (key.offset < ekey->offset) {
5410 			/* Fix the right offset for 2a and 7. */
5411 			right_offset += ekey->offset - key.offset;
5412 		} else {
5413 			/* Fix the left offset for all behind 2a and 2b */
5414 			left_offset_fixed += key.offset - ekey->offset;
5415 		}
5416 
5417 		/*
5418 		 * Check if we have the same extent.
5419 		 */
5420 		if (left_disknr != right_disknr ||
5421 		    left_offset_fixed != right_offset ||
5422 		    left_gen != right_gen) {
5423 			ret = 0;
5424 			goto out;
5425 		}
5426 
5427 		/*
5428 		 * Go to the next extent.
5429 		 */
5430 		ret = btrfs_next_item(sctx->parent_root, path);
5431 		if (ret < 0)
5432 			goto out;
5433 		if (!ret) {
5434 			eb = path->nodes[0];
5435 			slot = path->slots[0];
5436 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5437 		}
5438 		if (ret || found_key.objectid != key.objectid ||
5439 		    found_key.type != key.type) {
5440 			key.offset += right_len;
5441 			break;
5442 		}
5443 		if (found_key.offset != key.offset + right_len) {
5444 			ret = 0;
5445 			goto out;
5446 		}
5447 		key = found_key;
5448 	}
5449 
5450 	/*
5451 	 * We're now behind the left extent (treat as unchanged) or at the end
5452 	 * of the right side (treat as changed).
5453 	 */
5454 	if (key.offset >= ekey->offset + left_len)
5455 		ret = 1;
5456 	else
5457 		ret = 0;
5458 
5459 
5460 out:
5461 	btrfs_free_path(path);
5462 	return ret;
5463 }
5464 
5465 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5466 {
5467 	struct btrfs_path *path;
5468 	struct btrfs_root *root = sctx->send_root;
5469 	struct btrfs_file_extent_item *fi;
5470 	struct btrfs_key key;
5471 	u64 extent_end;
5472 	u8 type;
5473 	int ret;
5474 
5475 	path = alloc_path_for_send();
5476 	if (!path)
5477 		return -ENOMEM;
5478 
5479 	sctx->cur_inode_last_extent = 0;
5480 
5481 	key.objectid = sctx->cur_ino;
5482 	key.type = BTRFS_EXTENT_DATA_KEY;
5483 	key.offset = offset;
5484 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5485 	if (ret < 0)
5486 		goto out;
5487 	ret = 0;
5488 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5489 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5490 		goto out;
5491 
5492 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5493 			    struct btrfs_file_extent_item);
5494 	type = btrfs_file_extent_type(path->nodes[0], fi);
5495 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5496 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5497 							path->slots[0], fi);
5498 		extent_end = ALIGN(key.offset + size,
5499 				   sctx->send_root->fs_info->sectorsize);
5500 	} else {
5501 		extent_end = key.offset +
5502 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5503 	}
5504 	sctx->cur_inode_last_extent = extent_end;
5505 out:
5506 	btrfs_free_path(path);
5507 	return ret;
5508 }
5509 
5510 static int range_is_hole_in_parent(struct send_ctx *sctx,
5511 				   const u64 start,
5512 				   const u64 end)
5513 {
5514 	struct btrfs_path *path;
5515 	struct btrfs_key key;
5516 	struct btrfs_root *root = sctx->parent_root;
5517 	u64 search_start = start;
5518 	int ret;
5519 
5520 	path = alloc_path_for_send();
5521 	if (!path)
5522 		return -ENOMEM;
5523 
5524 	key.objectid = sctx->cur_ino;
5525 	key.type = BTRFS_EXTENT_DATA_KEY;
5526 	key.offset = search_start;
5527 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5528 	if (ret < 0)
5529 		goto out;
5530 	if (ret > 0 && path->slots[0] > 0)
5531 		path->slots[0]--;
5532 
5533 	while (search_start < end) {
5534 		struct extent_buffer *leaf = path->nodes[0];
5535 		int slot = path->slots[0];
5536 		struct btrfs_file_extent_item *fi;
5537 		u64 extent_end;
5538 
5539 		if (slot >= btrfs_header_nritems(leaf)) {
5540 			ret = btrfs_next_leaf(root, path);
5541 			if (ret < 0)
5542 				goto out;
5543 			else if (ret > 0)
5544 				break;
5545 			continue;
5546 		}
5547 
5548 		btrfs_item_key_to_cpu(leaf, &key, slot);
5549 		if (key.objectid < sctx->cur_ino ||
5550 		    key.type < BTRFS_EXTENT_DATA_KEY)
5551 			goto next;
5552 		if (key.objectid > sctx->cur_ino ||
5553 		    key.type > BTRFS_EXTENT_DATA_KEY ||
5554 		    key.offset >= end)
5555 			break;
5556 
5557 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5558 		if (btrfs_file_extent_type(leaf, fi) ==
5559 		    BTRFS_FILE_EXTENT_INLINE) {
5560 			u64 size = btrfs_file_extent_inline_len(leaf, slot, fi);
5561 
5562 			extent_end = ALIGN(key.offset + size,
5563 					   root->fs_info->sectorsize);
5564 		} else {
5565 			extent_end = key.offset +
5566 				btrfs_file_extent_num_bytes(leaf, fi);
5567 		}
5568 		if (extent_end <= start)
5569 			goto next;
5570 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5571 			search_start = extent_end;
5572 			goto next;
5573 		}
5574 		ret = 0;
5575 		goto out;
5576 next:
5577 		path->slots[0]++;
5578 	}
5579 	ret = 1;
5580 out:
5581 	btrfs_free_path(path);
5582 	return ret;
5583 }
5584 
5585 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5586 			   struct btrfs_key *key)
5587 {
5588 	struct btrfs_file_extent_item *fi;
5589 	u64 extent_end;
5590 	u8 type;
5591 	int ret = 0;
5592 
5593 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5594 		return 0;
5595 
5596 	if (sctx->cur_inode_last_extent == (u64)-1) {
5597 		ret = get_last_extent(sctx, key->offset - 1);
5598 		if (ret)
5599 			return ret;
5600 	}
5601 
5602 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5603 			    struct btrfs_file_extent_item);
5604 	type = btrfs_file_extent_type(path->nodes[0], fi);
5605 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5606 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5607 							path->slots[0], fi);
5608 		extent_end = ALIGN(key->offset + size,
5609 				   sctx->send_root->fs_info->sectorsize);
5610 	} else {
5611 		extent_end = key->offset +
5612 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5613 	}
5614 
5615 	if (path->slots[0] == 0 &&
5616 	    sctx->cur_inode_last_extent < key->offset) {
5617 		/*
5618 		 * We might have skipped entire leafs that contained only
5619 		 * file extent items for our current inode. These leafs have
5620 		 * a generation number smaller (older) than the one in the
5621 		 * current leaf and the leaf our last extent came from, and
5622 		 * are located between these 2 leafs.
5623 		 */
5624 		ret = get_last_extent(sctx, key->offset - 1);
5625 		if (ret)
5626 			return ret;
5627 	}
5628 
5629 	if (sctx->cur_inode_last_extent < key->offset) {
5630 		ret = range_is_hole_in_parent(sctx,
5631 					      sctx->cur_inode_last_extent,
5632 					      key->offset);
5633 		if (ret < 0)
5634 			return ret;
5635 		else if (ret == 0)
5636 			ret = send_hole(sctx, key->offset);
5637 		else
5638 			ret = 0;
5639 	}
5640 	sctx->cur_inode_last_extent = extent_end;
5641 	return ret;
5642 }
5643 
5644 static int process_extent(struct send_ctx *sctx,
5645 			  struct btrfs_path *path,
5646 			  struct btrfs_key *key)
5647 {
5648 	struct clone_root *found_clone = NULL;
5649 	int ret = 0;
5650 
5651 	if (S_ISLNK(sctx->cur_inode_mode))
5652 		return 0;
5653 
5654 	if (sctx->parent_root && !sctx->cur_inode_new) {
5655 		ret = is_extent_unchanged(sctx, path, key);
5656 		if (ret < 0)
5657 			goto out;
5658 		if (ret) {
5659 			ret = 0;
5660 			goto out_hole;
5661 		}
5662 	} else {
5663 		struct btrfs_file_extent_item *ei;
5664 		u8 type;
5665 
5666 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5667 				    struct btrfs_file_extent_item);
5668 		type = btrfs_file_extent_type(path->nodes[0], ei);
5669 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5670 		    type == BTRFS_FILE_EXTENT_REG) {
5671 			/*
5672 			 * The send spec does not have a prealloc command yet,
5673 			 * so just leave a hole for prealloc'ed extents until
5674 			 * we have enough commands queued up to justify rev'ing
5675 			 * the send spec.
5676 			 */
5677 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5678 				ret = 0;
5679 				goto out;
5680 			}
5681 
5682 			/* Have a hole, just skip it. */
5683 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5684 				ret = 0;
5685 				goto out;
5686 			}
5687 		}
5688 	}
5689 
5690 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5691 			sctx->cur_inode_size, &found_clone);
5692 	if (ret != -ENOENT && ret < 0)
5693 		goto out;
5694 
5695 	ret = send_write_or_clone(sctx, path, key, found_clone);
5696 	if (ret)
5697 		goto out;
5698 out_hole:
5699 	ret = maybe_send_hole(sctx, path, key);
5700 out:
5701 	return ret;
5702 }
5703 
5704 static int process_all_extents(struct send_ctx *sctx)
5705 {
5706 	int ret;
5707 	struct btrfs_root *root;
5708 	struct btrfs_path *path;
5709 	struct btrfs_key key;
5710 	struct btrfs_key found_key;
5711 	struct extent_buffer *eb;
5712 	int slot;
5713 
5714 	root = sctx->send_root;
5715 	path = alloc_path_for_send();
5716 	if (!path)
5717 		return -ENOMEM;
5718 
5719 	key.objectid = sctx->cmp_key->objectid;
5720 	key.type = BTRFS_EXTENT_DATA_KEY;
5721 	key.offset = 0;
5722 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5723 	if (ret < 0)
5724 		goto out;
5725 
5726 	while (1) {
5727 		eb = path->nodes[0];
5728 		slot = path->slots[0];
5729 
5730 		if (slot >= btrfs_header_nritems(eb)) {
5731 			ret = btrfs_next_leaf(root, path);
5732 			if (ret < 0) {
5733 				goto out;
5734 			} else if (ret > 0) {
5735 				ret = 0;
5736 				break;
5737 			}
5738 			continue;
5739 		}
5740 
5741 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5742 
5743 		if (found_key.objectid != key.objectid ||
5744 		    found_key.type != key.type) {
5745 			ret = 0;
5746 			goto out;
5747 		}
5748 
5749 		ret = process_extent(sctx, path, &found_key);
5750 		if (ret < 0)
5751 			goto out;
5752 
5753 		path->slots[0]++;
5754 	}
5755 
5756 out:
5757 	btrfs_free_path(path);
5758 	return ret;
5759 }
5760 
5761 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5762 					   int *pending_move,
5763 					   int *refs_processed)
5764 {
5765 	int ret = 0;
5766 
5767 	if (sctx->cur_ino == 0)
5768 		goto out;
5769 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5770 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5771 		goto out;
5772 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5773 		goto out;
5774 
5775 	ret = process_recorded_refs(sctx, pending_move);
5776 	if (ret < 0)
5777 		goto out;
5778 
5779 	*refs_processed = 1;
5780 out:
5781 	return ret;
5782 }
5783 
5784 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5785 {
5786 	int ret = 0;
5787 	u64 left_mode;
5788 	u64 left_uid;
5789 	u64 left_gid;
5790 	u64 right_mode;
5791 	u64 right_uid;
5792 	u64 right_gid;
5793 	int need_chmod = 0;
5794 	int need_chown = 0;
5795 	int need_truncate = 1;
5796 	int pending_move = 0;
5797 	int refs_processed = 0;
5798 
5799 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5800 					      &refs_processed);
5801 	if (ret < 0)
5802 		goto out;
5803 
5804 	/*
5805 	 * We have processed the refs and thus need to advance send_progress.
5806 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5807 	 * inode into account.
5808 	 *
5809 	 * On the other hand, if our current inode is a directory and couldn't
5810 	 * be moved/renamed because its parent was renamed/moved too and it has
5811 	 * a higher inode number, we can only move/rename our current inode
5812 	 * after we moved/renamed its parent. Therefore in this case operate on
5813 	 * the old path (pre move/rename) of our current inode, and the
5814 	 * move/rename will be performed later.
5815 	 */
5816 	if (refs_processed && !pending_move)
5817 		sctx->send_progress = sctx->cur_ino + 1;
5818 
5819 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5820 		goto out;
5821 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5822 		goto out;
5823 
5824 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5825 			&left_mode, &left_uid, &left_gid, NULL);
5826 	if (ret < 0)
5827 		goto out;
5828 
5829 	if (!sctx->parent_root || sctx->cur_inode_new) {
5830 		need_chown = 1;
5831 		if (!S_ISLNK(sctx->cur_inode_mode))
5832 			need_chmod = 1;
5833 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
5834 			need_truncate = 0;
5835 	} else {
5836 		u64 old_size;
5837 
5838 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5839 				&old_size, NULL, &right_mode, &right_uid,
5840 				&right_gid, NULL);
5841 		if (ret < 0)
5842 			goto out;
5843 
5844 		if (left_uid != right_uid || left_gid != right_gid)
5845 			need_chown = 1;
5846 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5847 			need_chmod = 1;
5848 		if ((old_size == sctx->cur_inode_size) ||
5849 		    (sctx->cur_inode_size > old_size &&
5850 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
5851 			need_truncate = 0;
5852 	}
5853 
5854 	if (S_ISREG(sctx->cur_inode_mode)) {
5855 		if (need_send_hole(sctx)) {
5856 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5857 			    sctx->cur_inode_last_extent <
5858 			    sctx->cur_inode_size) {
5859 				ret = get_last_extent(sctx, (u64)-1);
5860 				if (ret)
5861 					goto out;
5862 			}
5863 			if (sctx->cur_inode_last_extent <
5864 			    sctx->cur_inode_size) {
5865 				ret = send_hole(sctx, sctx->cur_inode_size);
5866 				if (ret)
5867 					goto out;
5868 			}
5869 		}
5870 		if (need_truncate) {
5871 			ret = send_truncate(sctx, sctx->cur_ino,
5872 					    sctx->cur_inode_gen,
5873 					    sctx->cur_inode_size);
5874 			if (ret < 0)
5875 				goto out;
5876 		}
5877 	}
5878 
5879 	if (need_chown) {
5880 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5881 				left_uid, left_gid);
5882 		if (ret < 0)
5883 			goto out;
5884 	}
5885 	if (need_chmod) {
5886 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5887 				left_mode);
5888 		if (ret < 0)
5889 			goto out;
5890 	}
5891 
5892 	/*
5893 	 * If other directory inodes depended on our current directory
5894 	 * inode's move/rename, now do their move/rename operations.
5895 	 */
5896 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5897 		ret = apply_children_dir_moves(sctx);
5898 		if (ret)
5899 			goto out;
5900 		/*
5901 		 * Need to send that every time, no matter if it actually
5902 		 * changed between the two trees as we have done changes to
5903 		 * the inode before. If our inode is a directory and it's
5904 		 * waiting to be moved/renamed, we will send its utimes when
5905 		 * it's moved/renamed, therefore we don't need to do it here.
5906 		 */
5907 		sctx->send_progress = sctx->cur_ino + 1;
5908 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5909 		if (ret < 0)
5910 			goto out;
5911 	}
5912 
5913 out:
5914 	return ret;
5915 }
5916 
5917 static int changed_inode(struct send_ctx *sctx,
5918 			 enum btrfs_compare_tree_result result)
5919 {
5920 	int ret = 0;
5921 	struct btrfs_key *key = sctx->cmp_key;
5922 	struct btrfs_inode_item *left_ii = NULL;
5923 	struct btrfs_inode_item *right_ii = NULL;
5924 	u64 left_gen = 0;
5925 	u64 right_gen = 0;
5926 
5927 	sctx->cur_ino = key->objectid;
5928 	sctx->cur_inode_new_gen = 0;
5929 	sctx->cur_inode_last_extent = (u64)-1;
5930 	sctx->cur_inode_next_write_offset = 0;
5931 
5932 	/*
5933 	 * Set send_progress to current inode. This will tell all get_cur_xxx
5934 	 * functions that the current inode's refs are not updated yet. Later,
5935 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5936 	 */
5937 	sctx->send_progress = sctx->cur_ino;
5938 
5939 	if (result == BTRFS_COMPARE_TREE_NEW ||
5940 	    result == BTRFS_COMPARE_TREE_CHANGED) {
5941 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5942 				sctx->left_path->slots[0],
5943 				struct btrfs_inode_item);
5944 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5945 				left_ii);
5946 	} else {
5947 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5948 				sctx->right_path->slots[0],
5949 				struct btrfs_inode_item);
5950 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5951 				right_ii);
5952 	}
5953 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
5954 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5955 				sctx->right_path->slots[0],
5956 				struct btrfs_inode_item);
5957 
5958 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5959 				right_ii);
5960 
5961 		/*
5962 		 * The cur_ino = root dir case is special here. We can't treat
5963 		 * the inode as deleted+reused because it would generate a
5964 		 * stream that tries to delete/mkdir the root dir.
5965 		 */
5966 		if (left_gen != right_gen &&
5967 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5968 			sctx->cur_inode_new_gen = 1;
5969 	}
5970 
5971 	if (result == BTRFS_COMPARE_TREE_NEW) {
5972 		sctx->cur_inode_gen = left_gen;
5973 		sctx->cur_inode_new = 1;
5974 		sctx->cur_inode_deleted = 0;
5975 		sctx->cur_inode_size = btrfs_inode_size(
5976 				sctx->left_path->nodes[0], left_ii);
5977 		sctx->cur_inode_mode = btrfs_inode_mode(
5978 				sctx->left_path->nodes[0], left_ii);
5979 		sctx->cur_inode_rdev = btrfs_inode_rdev(
5980 				sctx->left_path->nodes[0], left_ii);
5981 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5982 			ret = send_create_inode_if_needed(sctx);
5983 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
5984 		sctx->cur_inode_gen = right_gen;
5985 		sctx->cur_inode_new = 0;
5986 		sctx->cur_inode_deleted = 1;
5987 		sctx->cur_inode_size = btrfs_inode_size(
5988 				sctx->right_path->nodes[0], right_ii);
5989 		sctx->cur_inode_mode = btrfs_inode_mode(
5990 				sctx->right_path->nodes[0], right_ii);
5991 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5992 		/*
5993 		 * We need to do some special handling in case the inode was
5994 		 * reported as changed with a changed generation number. This
5995 		 * means that the original inode was deleted and new inode
5996 		 * reused the same inum. So we have to treat the old inode as
5997 		 * deleted and the new one as new.
5998 		 */
5999 		if (sctx->cur_inode_new_gen) {
6000 			/*
6001 			 * First, process the inode as if it was deleted.
6002 			 */
6003 			sctx->cur_inode_gen = right_gen;
6004 			sctx->cur_inode_new = 0;
6005 			sctx->cur_inode_deleted = 1;
6006 			sctx->cur_inode_size = btrfs_inode_size(
6007 					sctx->right_path->nodes[0], right_ii);
6008 			sctx->cur_inode_mode = btrfs_inode_mode(
6009 					sctx->right_path->nodes[0], right_ii);
6010 			ret = process_all_refs(sctx,
6011 					BTRFS_COMPARE_TREE_DELETED);
6012 			if (ret < 0)
6013 				goto out;
6014 
6015 			/*
6016 			 * Now process the inode as if it was new.
6017 			 */
6018 			sctx->cur_inode_gen = left_gen;
6019 			sctx->cur_inode_new = 1;
6020 			sctx->cur_inode_deleted = 0;
6021 			sctx->cur_inode_size = btrfs_inode_size(
6022 					sctx->left_path->nodes[0], left_ii);
6023 			sctx->cur_inode_mode = btrfs_inode_mode(
6024 					sctx->left_path->nodes[0], left_ii);
6025 			sctx->cur_inode_rdev = btrfs_inode_rdev(
6026 					sctx->left_path->nodes[0], left_ii);
6027 			ret = send_create_inode_if_needed(sctx);
6028 			if (ret < 0)
6029 				goto out;
6030 
6031 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6032 			if (ret < 0)
6033 				goto out;
6034 			/*
6035 			 * Advance send_progress now as we did not get into
6036 			 * process_recorded_refs_if_needed in the new_gen case.
6037 			 */
6038 			sctx->send_progress = sctx->cur_ino + 1;
6039 
6040 			/*
6041 			 * Now process all extents and xattrs of the inode as if
6042 			 * they were all new.
6043 			 */
6044 			ret = process_all_extents(sctx);
6045 			if (ret < 0)
6046 				goto out;
6047 			ret = process_all_new_xattrs(sctx);
6048 			if (ret < 0)
6049 				goto out;
6050 		} else {
6051 			sctx->cur_inode_gen = left_gen;
6052 			sctx->cur_inode_new = 0;
6053 			sctx->cur_inode_new_gen = 0;
6054 			sctx->cur_inode_deleted = 0;
6055 			sctx->cur_inode_size = btrfs_inode_size(
6056 					sctx->left_path->nodes[0], left_ii);
6057 			sctx->cur_inode_mode = btrfs_inode_mode(
6058 					sctx->left_path->nodes[0], left_ii);
6059 		}
6060 	}
6061 
6062 out:
6063 	return ret;
6064 }
6065 
6066 /*
6067  * We have to process new refs before deleted refs, but compare_trees gives us
6068  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6069  * first and later process them in process_recorded_refs.
6070  * For the cur_inode_new_gen case, we skip recording completely because
6071  * changed_inode did already initiate processing of refs. The reason for this is
6072  * that in this case, compare_tree actually compares the refs of 2 different
6073  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6074  * refs of the right tree as deleted and all refs of the left tree as new.
6075  */
6076 static int changed_ref(struct send_ctx *sctx,
6077 		       enum btrfs_compare_tree_result result)
6078 {
6079 	int ret = 0;
6080 
6081 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6082 		inconsistent_snapshot_error(sctx, result, "reference");
6083 		return -EIO;
6084 	}
6085 
6086 	if (!sctx->cur_inode_new_gen &&
6087 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6088 		if (result == BTRFS_COMPARE_TREE_NEW)
6089 			ret = record_new_ref(sctx);
6090 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6091 			ret = record_deleted_ref(sctx);
6092 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6093 			ret = record_changed_ref(sctx);
6094 	}
6095 
6096 	return ret;
6097 }
6098 
6099 /*
6100  * Process new/deleted/changed xattrs. We skip processing in the
6101  * cur_inode_new_gen case because changed_inode did already initiate processing
6102  * of xattrs. The reason is the same as in changed_ref
6103  */
6104 static int changed_xattr(struct send_ctx *sctx,
6105 			 enum btrfs_compare_tree_result result)
6106 {
6107 	int ret = 0;
6108 
6109 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6110 		inconsistent_snapshot_error(sctx, result, "xattr");
6111 		return -EIO;
6112 	}
6113 
6114 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6115 		if (result == BTRFS_COMPARE_TREE_NEW)
6116 			ret = process_new_xattr(sctx);
6117 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6118 			ret = process_deleted_xattr(sctx);
6119 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6120 			ret = process_changed_xattr(sctx);
6121 	}
6122 
6123 	return ret;
6124 }
6125 
6126 /*
6127  * Process new/deleted/changed extents. We skip processing in the
6128  * cur_inode_new_gen case because changed_inode did already initiate processing
6129  * of extents. The reason is the same as in changed_ref
6130  */
6131 static int changed_extent(struct send_ctx *sctx,
6132 			  enum btrfs_compare_tree_result result)
6133 {
6134 	int ret = 0;
6135 
6136 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6137 
6138 		if (result == BTRFS_COMPARE_TREE_CHANGED) {
6139 			struct extent_buffer *leaf_l;
6140 			struct extent_buffer *leaf_r;
6141 			struct btrfs_file_extent_item *ei_l;
6142 			struct btrfs_file_extent_item *ei_r;
6143 
6144 			leaf_l = sctx->left_path->nodes[0];
6145 			leaf_r = sctx->right_path->nodes[0];
6146 			ei_l = btrfs_item_ptr(leaf_l,
6147 					      sctx->left_path->slots[0],
6148 					      struct btrfs_file_extent_item);
6149 			ei_r = btrfs_item_ptr(leaf_r,
6150 					      sctx->right_path->slots[0],
6151 					      struct btrfs_file_extent_item);
6152 
6153 			/*
6154 			 * We may have found an extent item that has changed
6155 			 * only its disk_bytenr field and the corresponding
6156 			 * inode item was not updated. This case happens due to
6157 			 * very specific timings during relocation when a leaf
6158 			 * that contains file extent items is COWed while
6159 			 * relocation is ongoing and its in the stage where it
6160 			 * updates data pointers. So when this happens we can
6161 			 * safely ignore it since we know it's the same extent,
6162 			 * but just at different logical and physical locations
6163 			 * (when an extent is fully replaced with a new one, we
6164 			 * know the generation number must have changed too,
6165 			 * since snapshot creation implies committing the current
6166 			 * transaction, and the inode item must have been updated
6167 			 * as well).
6168 			 * This replacement of the disk_bytenr happens at
6169 			 * relocation.c:replace_file_extents() through
6170 			 * relocation.c:btrfs_reloc_cow_block().
6171 			 */
6172 			if (btrfs_file_extent_generation(leaf_l, ei_l) ==
6173 			    btrfs_file_extent_generation(leaf_r, ei_r) &&
6174 			    btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
6175 			    btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
6176 			    btrfs_file_extent_compression(leaf_l, ei_l) ==
6177 			    btrfs_file_extent_compression(leaf_r, ei_r) &&
6178 			    btrfs_file_extent_encryption(leaf_l, ei_l) ==
6179 			    btrfs_file_extent_encryption(leaf_r, ei_r) &&
6180 			    btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
6181 			    btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
6182 			    btrfs_file_extent_type(leaf_l, ei_l) ==
6183 			    btrfs_file_extent_type(leaf_r, ei_r) &&
6184 			    btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
6185 			    btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
6186 			    btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
6187 			    btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
6188 			    btrfs_file_extent_offset(leaf_l, ei_l) ==
6189 			    btrfs_file_extent_offset(leaf_r, ei_r) &&
6190 			    btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
6191 			    btrfs_file_extent_num_bytes(leaf_r, ei_r))
6192 				return 0;
6193 		}
6194 
6195 		inconsistent_snapshot_error(sctx, result, "extent");
6196 		return -EIO;
6197 	}
6198 
6199 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6200 		if (result != BTRFS_COMPARE_TREE_DELETED)
6201 			ret = process_extent(sctx, sctx->left_path,
6202 					sctx->cmp_key);
6203 	}
6204 
6205 	return ret;
6206 }
6207 
6208 static int dir_changed(struct send_ctx *sctx, u64 dir)
6209 {
6210 	u64 orig_gen, new_gen;
6211 	int ret;
6212 
6213 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6214 			     NULL, NULL);
6215 	if (ret)
6216 		return ret;
6217 
6218 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6219 			     NULL, NULL, NULL);
6220 	if (ret)
6221 		return ret;
6222 
6223 	return (orig_gen != new_gen) ? 1 : 0;
6224 }
6225 
6226 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6227 			struct btrfs_key *key)
6228 {
6229 	struct btrfs_inode_extref *extref;
6230 	struct extent_buffer *leaf;
6231 	u64 dirid = 0, last_dirid = 0;
6232 	unsigned long ptr;
6233 	u32 item_size;
6234 	u32 cur_offset = 0;
6235 	int ref_name_len;
6236 	int ret = 0;
6237 
6238 	/* Easy case, just check this one dirid */
6239 	if (key->type == BTRFS_INODE_REF_KEY) {
6240 		dirid = key->offset;
6241 
6242 		ret = dir_changed(sctx, dirid);
6243 		goto out;
6244 	}
6245 
6246 	leaf = path->nodes[0];
6247 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6248 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6249 	while (cur_offset < item_size) {
6250 		extref = (struct btrfs_inode_extref *)(ptr +
6251 						       cur_offset);
6252 		dirid = btrfs_inode_extref_parent(leaf, extref);
6253 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6254 		cur_offset += ref_name_len + sizeof(*extref);
6255 		if (dirid == last_dirid)
6256 			continue;
6257 		ret = dir_changed(sctx, dirid);
6258 		if (ret)
6259 			break;
6260 		last_dirid = dirid;
6261 	}
6262 out:
6263 	return ret;
6264 }
6265 
6266 /*
6267  * Updates compare related fields in sctx and simply forwards to the actual
6268  * changed_xxx functions.
6269  */
6270 static int changed_cb(struct btrfs_path *left_path,
6271 		      struct btrfs_path *right_path,
6272 		      struct btrfs_key *key,
6273 		      enum btrfs_compare_tree_result result,
6274 		      void *ctx)
6275 {
6276 	int ret = 0;
6277 	struct send_ctx *sctx = ctx;
6278 
6279 	if (result == BTRFS_COMPARE_TREE_SAME) {
6280 		if (key->type == BTRFS_INODE_REF_KEY ||
6281 		    key->type == BTRFS_INODE_EXTREF_KEY) {
6282 			ret = compare_refs(sctx, left_path, key);
6283 			if (!ret)
6284 				return 0;
6285 			if (ret < 0)
6286 				return ret;
6287 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6288 			return maybe_send_hole(sctx, left_path, key);
6289 		} else {
6290 			return 0;
6291 		}
6292 		result = BTRFS_COMPARE_TREE_CHANGED;
6293 		ret = 0;
6294 	}
6295 
6296 	sctx->left_path = left_path;
6297 	sctx->right_path = right_path;
6298 	sctx->cmp_key = key;
6299 
6300 	ret = finish_inode_if_needed(sctx, 0);
6301 	if (ret < 0)
6302 		goto out;
6303 
6304 	/* Ignore non-FS objects */
6305 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6306 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6307 		goto out;
6308 
6309 	if (key->type == BTRFS_INODE_ITEM_KEY)
6310 		ret = changed_inode(sctx, result);
6311 	else if (key->type == BTRFS_INODE_REF_KEY ||
6312 		 key->type == BTRFS_INODE_EXTREF_KEY)
6313 		ret = changed_ref(sctx, result);
6314 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
6315 		ret = changed_xattr(sctx, result);
6316 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
6317 		ret = changed_extent(sctx, result);
6318 
6319 out:
6320 	return ret;
6321 }
6322 
6323 static int full_send_tree(struct send_ctx *sctx)
6324 {
6325 	int ret;
6326 	struct btrfs_root *send_root = sctx->send_root;
6327 	struct btrfs_key key;
6328 	struct btrfs_key found_key;
6329 	struct btrfs_path *path;
6330 	struct extent_buffer *eb;
6331 	int slot;
6332 
6333 	path = alloc_path_for_send();
6334 	if (!path)
6335 		return -ENOMEM;
6336 
6337 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6338 	key.type = BTRFS_INODE_ITEM_KEY;
6339 	key.offset = 0;
6340 
6341 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6342 	if (ret < 0)
6343 		goto out;
6344 	if (ret)
6345 		goto out_finish;
6346 
6347 	while (1) {
6348 		eb = path->nodes[0];
6349 		slot = path->slots[0];
6350 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6351 
6352 		ret = changed_cb(path, NULL, &found_key,
6353 				 BTRFS_COMPARE_TREE_NEW, sctx);
6354 		if (ret < 0)
6355 			goto out;
6356 
6357 		key.objectid = found_key.objectid;
6358 		key.type = found_key.type;
6359 		key.offset = found_key.offset + 1;
6360 
6361 		ret = btrfs_next_item(send_root, path);
6362 		if (ret < 0)
6363 			goto out;
6364 		if (ret) {
6365 			ret  = 0;
6366 			break;
6367 		}
6368 	}
6369 
6370 out_finish:
6371 	ret = finish_inode_if_needed(sctx, 1);
6372 
6373 out:
6374 	btrfs_free_path(path);
6375 	return ret;
6376 }
6377 
6378 static int send_subvol(struct send_ctx *sctx)
6379 {
6380 	int ret;
6381 
6382 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6383 		ret = send_header(sctx);
6384 		if (ret < 0)
6385 			goto out;
6386 	}
6387 
6388 	ret = send_subvol_begin(sctx);
6389 	if (ret < 0)
6390 		goto out;
6391 
6392 	if (sctx->parent_root) {
6393 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6394 				changed_cb, sctx);
6395 		if (ret < 0)
6396 			goto out;
6397 		ret = finish_inode_if_needed(sctx, 1);
6398 		if (ret < 0)
6399 			goto out;
6400 	} else {
6401 		ret = full_send_tree(sctx);
6402 		if (ret < 0)
6403 			goto out;
6404 	}
6405 
6406 out:
6407 	free_recorded_refs(sctx);
6408 	return ret;
6409 }
6410 
6411 /*
6412  * If orphan cleanup did remove any orphans from a root, it means the tree
6413  * was modified and therefore the commit root is not the same as the current
6414  * root anymore. This is a problem, because send uses the commit root and
6415  * therefore can see inode items that don't exist in the current root anymore,
6416  * and for example make calls to btrfs_iget, which will do tree lookups based
6417  * on the current root and not on the commit root. Those lookups will fail,
6418  * returning a -ESTALE error, and making send fail with that error. So make
6419  * sure a send does not see any orphans we have just removed, and that it will
6420  * see the same inodes regardless of whether a transaction commit happened
6421  * before it started (meaning that the commit root will be the same as the
6422  * current root) or not.
6423  */
6424 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6425 {
6426 	int i;
6427 	struct btrfs_trans_handle *trans = NULL;
6428 
6429 again:
6430 	if (sctx->parent_root &&
6431 	    sctx->parent_root->node != sctx->parent_root->commit_root)
6432 		goto commit_trans;
6433 
6434 	for (i = 0; i < sctx->clone_roots_cnt; i++)
6435 		if (sctx->clone_roots[i].root->node !=
6436 		    sctx->clone_roots[i].root->commit_root)
6437 			goto commit_trans;
6438 
6439 	if (trans)
6440 		return btrfs_end_transaction(trans);
6441 
6442 	return 0;
6443 
6444 commit_trans:
6445 	/* Use any root, all fs roots will get their commit roots updated. */
6446 	if (!trans) {
6447 		trans = btrfs_join_transaction(sctx->send_root);
6448 		if (IS_ERR(trans))
6449 			return PTR_ERR(trans);
6450 		goto again;
6451 	}
6452 
6453 	return btrfs_commit_transaction(trans);
6454 }
6455 
6456 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6457 {
6458 	spin_lock(&root->root_item_lock);
6459 	root->send_in_progress--;
6460 	/*
6461 	 * Not much left to do, we don't know why it's unbalanced and
6462 	 * can't blindly reset it to 0.
6463 	 */
6464 	if (root->send_in_progress < 0)
6465 		btrfs_err(root->fs_info,
6466 			  "send_in_progres unbalanced %d root %llu",
6467 			  root->send_in_progress, root->root_key.objectid);
6468 	spin_unlock(&root->root_item_lock);
6469 }
6470 
6471 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
6472 {
6473 	int ret = 0;
6474 	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6475 	struct btrfs_fs_info *fs_info = send_root->fs_info;
6476 	struct btrfs_root *clone_root;
6477 	struct btrfs_key key;
6478 	struct send_ctx *sctx = NULL;
6479 	u32 i;
6480 	u64 *clone_sources_tmp = NULL;
6481 	int clone_sources_to_rollback = 0;
6482 	unsigned alloc_size;
6483 	int sort_clone_roots = 0;
6484 	int index;
6485 
6486 	if (!capable(CAP_SYS_ADMIN))
6487 		return -EPERM;
6488 
6489 	/*
6490 	 * The subvolume must remain read-only during send, protect against
6491 	 * making it RW. This also protects against deletion.
6492 	 */
6493 	spin_lock(&send_root->root_item_lock);
6494 	send_root->send_in_progress++;
6495 	spin_unlock(&send_root->root_item_lock);
6496 
6497 	/*
6498 	 * This is done when we lookup the root, it should already be complete
6499 	 * by the time we get here.
6500 	 */
6501 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6502 
6503 	/*
6504 	 * Userspace tools do the checks and warn the user if it's
6505 	 * not RO.
6506 	 */
6507 	if (!btrfs_root_readonly(send_root)) {
6508 		ret = -EPERM;
6509 		goto out;
6510 	}
6511 
6512 	/*
6513 	 * Check that we don't overflow at later allocations, we request
6514 	 * clone_sources_count + 1 items, and compare to unsigned long inside
6515 	 * access_ok.
6516 	 */
6517 	if (arg->clone_sources_count >
6518 	    ULONG_MAX / sizeof(struct clone_root) - 1) {
6519 		ret = -EINVAL;
6520 		goto out;
6521 	}
6522 
6523 	if (!access_ok(VERIFY_READ, arg->clone_sources,
6524 			sizeof(*arg->clone_sources) *
6525 			arg->clone_sources_count)) {
6526 		ret = -EFAULT;
6527 		goto out;
6528 	}
6529 
6530 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6531 		ret = -EINVAL;
6532 		goto out;
6533 	}
6534 
6535 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6536 	if (!sctx) {
6537 		ret = -ENOMEM;
6538 		goto out;
6539 	}
6540 
6541 	INIT_LIST_HEAD(&sctx->new_refs);
6542 	INIT_LIST_HEAD(&sctx->deleted_refs);
6543 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6544 	INIT_LIST_HEAD(&sctx->name_cache_list);
6545 
6546 	sctx->flags = arg->flags;
6547 
6548 	sctx->send_filp = fget(arg->send_fd);
6549 	if (!sctx->send_filp) {
6550 		ret = -EBADF;
6551 		goto out;
6552 	}
6553 
6554 	sctx->send_root = send_root;
6555 	/*
6556 	 * Unlikely but possible, if the subvolume is marked for deletion but
6557 	 * is slow to remove the directory entry, send can still be started
6558 	 */
6559 	if (btrfs_root_dead(sctx->send_root)) {
6560 		ret = -EPERM;
6561 		goto out;
6562 	}
6563 
6564 	sctx->clone_roots_cnt = arg->clone_sources_count;
6565 
6566 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6567 	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
6568 	if (!sctx->send_buf) {
6569 		ret = -ENOMEM;
6570 		goto out;
6571 	}
6572 
6573 	sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
6574 	if (!sctx->read_buf) {
6575 		ret = -ENOMEM;
6576 		goto out;
6577 	}
6578 
6579 	sctx->pending_dir_moves = RB_ROOT;
6580 	sctx->waiting_dir_moves = RB_ROOT;
6581 	sctx->orphan_dirs = RB_ROOT;
6582 
6583 	alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6584 
6585 	sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
6586 	if (!sctx->clone_roots) {
6587 		ret = -ENOMEM;
6588 		goto out;
6589 	}
6590 
6591 	alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6592 
6593 	if (arg->clone_sources_count) {
6594 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
6595 		if (!clone_sources_tmp) {
6596 			ret = -ENOMEM;
6597 			goto out;
6598 		}
6599 
6600 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6601 				alloc_size);
6602 		if (ret) {
6603 			ret = -EFAULT;
6604 			goto out;
6605 		}
6606 
6607 		for (i = 0; i < arg->clone_sources_count; i++) {
6608 			key.objectid = clone_sources_tmp[i];
6609 			key.type = BTRFS_ROOT_ITEM_KEY;
6610 			key.offset = (u64)-1;
6611 
6612 			index = srcu_read_lock(&fs_info->subvol_srcu);
6613 
6614 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6615 			if (IS_ERR(clone_root)) {
6616 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6617 				ret = PTR_ERR(clone_root);
6618 				goto out;
6619 			}
6620 			spin_lock(&clone_root->root_item_lock);
6621 			if (!btrfs_root_readonly(clone_root) ||
6622 			    btrfs_root_dead(clone_root)) {
6623 				spin_unlock(&clone_root->root_item_lock);
6624 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6625 				ret = -EPERM;
6626 				goto out;
6627 			}
6628 			clone_root->send_in_progress++;
6629 			spin_unlock(&clone_root->root_item_lock);
6630 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6631 
6632 			sctx->clone_roots[i].root = clone_root;
6633 			clone_sources_to_rollback = i + 1;
6634 		}
6635 		kvfree(clone_sources_tmp);
6636 		clone_sources_tmp = NULL;
6637 	}
6638 
6639 	if (arg->parent_root) {
6640 		key.objectid = arg->parent_root;
6641 		key.type = BTRFS_ROOT_ITEM_KEY;
6642 		key.offset = (u64)-1;
6643 
6644 		index = srcu_read_lock(&fs_info->subvol_srcu);
6645 
6646 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6647 		if (IS_ERR(sctx->parent_root)) {
6648 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6649 			ret = PTR_ERR(sctx->parent_root);
6650 			goto out;
6651 		}
6652 
6653 		spin_lock(&sctx->parent_root->root_item_lock);
6654 		sctx->parent_root->send_in_progress++;
6655 		if (!btrfs_root_readonly(sctx->parent_root) ||
6656 				btrfs_root_dead(sctx->parent_root)) {
6657 			spin_unlock(&sctx->parent_root->root_item_lock);
6658 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6659 			ret = -EPERM;
6660 			goto out;
6661 		}
6662 		spin_unlock(&sctx->parent_root->root_item_lock);
6663 
6664 		srcu_read_unlock(&fs_info->subvol_srcu, index);
6665 	}
6666 
6667 	/*
6668 	 * Clones from send_root are allowed, but only if the clone source
6669 	 * is behind the current send position. This is checked while searching
6670 	 * for possible clone sources.
6671 	 */
6672 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6673 
6674 	/* We do a bsearch later */
6675 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
6676 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6677 			NULL);
6678 	sort_clone_roots = 1;
6679 
6680 	ret = ensure_commit_roots_uptodate(sctx);
6681 	if (ret)
6682 		goto out;
6683 
6684 	current->journal_info = BTRFS_SEND_TRANS_STUB;
6685 	ret = send_subvol(sctx);
6686 	current->journal_info = NULL;
6687 	if (ret < 0)
6688 		goto out;
6689 
6690 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6691 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6692 		if (ret < 0)
6693 			goto out;
6694 		ret = send_cmd(sctx);
6695 		if (ret < 0)
6696 			goto out;
6697 	}
6698 
6699 out:
6700 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6701 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6702 		struct rb_node *n;
6703 		struct pending_dir_move *pm;
6704 
6705 		n = rb_first(&sctx->pending_dir_moves);
6706 		pm = rb_entry(n, struct pending_dir_move, node);
6707 		while (!list_empty(&pm->list)) {
6708 			struct pending_dir_move *pm2;
6709 
6710 			pm2 = list_first_entry(&pm->list,
6711 					       struct pending_dir_move, list);
6712 			free_pending_move(sctx, pm2);
6713 		}
6714 		free_pending_move(sctx, pm);
6715 	}
6716 
6717 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6718 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6719 		struct rb_node *n;
6720 		struct waiting_dir_move *dm;
6721 
6722 		n = rb_first(&sctx->waiting_dir_moves);
6723 		dm = rb_entry(n, struct waiting_dir_move, node);
6724 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
6725 		kfree(dm);
6726 	}
6727 
6728 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6729 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6730 		struct rb_node *n;
6731 		struct orphan_dir_info *odi;
6732 
6733 		n = rb_first(&sctx->orphan_dirs);
6734 		odi = rb_entry(n, struct orphan_dir_info, node);
6735 		free_orphan_dir_info(sctx, odi);
6736 	}
6737 
6738 	if (sort_clone_roots) {
6739 		for (i = 0; i < sctx->clone_roots_cnt; i++)
6740 			btrfs_root_dec_send_in_progress(
6741 					sctx->clone_roots[i].root);
6742 	} else {
6743 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6744 			btrfs_root_dec_send_in_progress(
6745 					sctx->clone_roots[i].root);
6746 
6747 		btrfs_root_dec_send_in_progress(send_root);
6748 	}
6749 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6750 		btrfs_root_dec_send_in_progress(sctx->parent_root);
6751 
6752 	kvfree(clone_sources_tmp);
6753 
6754 	if (sctx) {
6755 		if (sctx->send_filp)
6756 			fput(sctx->send_filp);
6757 
6758 		kvfree(sctx->clone_roots);
6759 		kvfree(sctx->send_buf);
6760 		kvfree(sctx->read_buf);
6761 
6762 		name_cache_free(sctx);
6763 
6764 		kfree(sctx);
6765 	}
6766 
6767 	return ret;
6768 }
6769