xref: /openbmc/linux/fs/btrfs/send.c (revision afc98d90)
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 
38 static int g_verbose = 0;
39 
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
41 
42 /*
43  * A fs_path is a helper to dynamically build path names with unknown size.
44  * It reallocates the internal buffer on demand.
45  * It allows fast adding of path elements on the right side (normal path) and
46  * fast adding to the left side (reversed path). A reversed path can also be
47  * unreversed if needed.
48  */
49 struct fs_path {
50 	union {
51 		struct {
52 			char *start;
53 			char *end;
54 			char *prepared;
55 
56 			char *buf;
57 			int buf_len;
58 			unsigned int reversed:1;
59 			unsigned int virtual_mem:1;
60 			char inline_buf[];
61 		};
62 		char pad[PAGE_SIZE];
63 	};
64 };
65 #define FS_PATH_INLINE_SIZE \
66 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
67 
68 
69 /* reused for each extent */
70 struct clone_root {
71 	struct btrfs_root *root;
72 	u64 ino;
73 	u64 offset;
74 
75 	u64 found_refs;
76 };
77 
78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
80 
81 struct send_ctx {
82 	struct file *send_filp;
83 	loff_t send_off;
84 	char *send_buf;
85 	u32 send_size;
86 	u32 send_max_size;
87 	u64 total_send_size;
88 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
89 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
90 
91 	struct btrfs_root *send_root;
92 	struct btrfs_root *parent_root;
93 	struct clone_root *clone_roots;
94 	int clone_roots_cnt;
95 
96 	/* current state of the compare_tree call */
97 	struct btrfs_path *left_path;
98 	struct btrfs_path *right_path;
99 	struct btrfs_key *cmp_key;
100 
101 	/*
102 	 * infos of the currently processed inode. In case of deleted inodes,
103 	 * these are the values from the deleted inode.
104 	 */
105 	u64 cur_ino;
106 	u64 cur_inode_gen;
107 	int cur_inode_new;
108 	int cur_inode_new_gen;
109 	int cur_inode_deleted;
110 	u64 cur_inode_size;
111 	u64 cur_inode_mode;
112 	u64 cur_inode_last_extent;
113 
114 	u64 send_progress;
115 
116 	struct list_head new_refs;
117 	struct list_head deleted_refs;
118 
119 	struct radix_tree_root name_cache;
120 	struct list_head name_cache_list;
121 	int name_cache_size;
122 
123 	char *read_buf;
124 
125 	/*
126 	 * We process inodes by their increasing order, so if before an
127 	 * incremental send we reverse the parent/child relationship of
128 	 * directories such that a directory with a lower inode number was
129 	 * the parent of a directory with a higher inode number, and the one
130 	 * becoming the new parent got renamed too, we can't rename/move the
131 	 * directory with lower inode number when we finish processing it - we
132 	 * must process the directory with higher inode number first, then
133 	 * rename/move it and then rename/move the directory with lower inode
134 	 * number. Example follows.
135 	 *
136 	 * Tree state when the first send was performed:
137 	 *
138 	 * .
139 	 * |-- a                   (ino 257)
140 	 *     |-- b               (ino 258)
141 	 *         |
142 	 *         |
143 	 *         |-- c           (ino 259)
144 	 *         |   |-- d       (ino 260)
145 	 *         |
146 	 *         |-- c2          (ino 261)
147 	 *
148 	 * Tree state when the second (incremental) send is performed:
149 	 *
150 	 * .
151 	 * |-- a                   (ino 257)
152 	 *     |-- b               (ino 258)
153 	 *         |-- c2          (ino 261)
154 	 *             |-- d2      (ino 260)
155 	 *                 |-- cc  (ino 259)
156 	 *
157 	 * The sequence of steps that lead to the second state was:
158 	 *
159 	 * mv /a/b/c/d /a/b/c2/d2
160 	 * mv /a/b/c /a/b/c2/d2/cc
161 	 *
162 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
163 	 * before we move "d", which has higher inode number.
164 	 *
165 	 * So we just memorize which move/rename operations must be performed
166 	 * later when their respective parent is processed and moved/renamed.
167 	 */
168 
169 	/* Indexed by parent directory inode number. */
170 	struct rb_root pending_dir_moves;
171 
172 	/*
173 	 * Reverse index, indexed by the inode number of a directory that
174 	 * is waiting for the move/rename of its immediate parent before its
175 	 * own move/rename can be performed.
176 	 */
177 	struct rb_root waiting_dir_moves;
178 };
179 
180 struct pending_dir_move {
181 	struct rb_node node;
182 	struct list_head list;
183 	u64 parent_ino;
184 	u64 ino;
185 	u64 gen;
186 	struct list_head update_refs;
187 };
188 
189 struct waiting_dir_move {
190 	struct rb_node node;
191 	u64 ino;
192 };
193 
194 struct name_cache_entry {
195 	struct list_head list;
196 	/*
197 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
198 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
199 	 * more then one inum would fall into the same entry, we use radix_list
200 	 * to store the additional entries. radix_list is also used to store
201 	 * entries where two entries have the same inum but different
202 	 * generations.
203 	 */
204 	struct list_head radix_list;
205 	u64 ino;
206 	u64 gen;
207 	u64 parent_ino;
208 	u64 parent_gen;
209 	int ret;
210 	int need_later_update;
211 	int name_len;
212 	char name[];
213 };
214 
215 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
216 
217 static int need_send_hole(struct send_ctx *sctx)
218 {
219 	return (sctx->parent_root && !sctx->cur_inode_new &&
220 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
221 		S_ISREG(sctx->cur_inode_mode));
222 }
223 
224 static void fs_path_reset(struct fs_path *p)
225 {
226 	if (p->reversed) {
227 		p->start = p->buf + p->buf_len - 1;
228 		p->end = p->start;
229 		*p->start = 0;
230 	} else {
231 		p->start = p->buf;
232 		p->end = p->start;
233 		*p->start = 0;
234 	}
235 }
236 
237 static struct fs_path *fs_path_alloc(void)
238 {
239 	struct fs_path *p;
240 
241 	p = kmalloc(sizeof(*p), GFP_NOFS);
242 	if (!p)
243 		return NULL;
244 	p->reversed = 0;
245 	p->virtual_mem = 0;
246 	p->buf = p->inline_buf;
247 	p->buf_len = FS_PATH_INLINE_SIZE;
248 	fs_path_reset(p);
249 	return p;
250 }
251 
252 static struct fs_path *fs_path_alloc_reversed(void)
253 {
254 	struct fs_path *p;
255 
256 	p = fs_path_alloc();
257 	if (!p)
258 		return NULL;
259 	p->reversed = 1;
260 	fs_path_reset(p);
261 	return p;
262 }
263 
264 static void fs_path_free(struct fs_path *p)
265 {
266 	if (!p)
267 		return;
268 	if (p->buf != p->inline_buf) {
269 		if (p->virtual_mem)
270 			vfree(p->buf);
271 		else
272 			kfree(p->buf);
273 	}
274 	kfree(p);
275 }
276 
277 static int fs_path_len(struct fs_path *p)
278 {
279 	return p->end - p->start;
280 }
281 
282 static int fs_path_ensure_buf(struct fs_path *p, int len)
283 {
284 	char *tmp_buf;
285 	int path_len;
286 	int old_buf_len;
287 
288 	len++;
289 
290 	if (p->buf_len >= len)
291 		return 0;
292 
293 	path_len = p->end - p->start;
294 	old_buf_len = p->buf_len;
295 	len = PAGE_ALIGN(len);
296 
297 	if (p->buf == p->inline_buf) {
298 		tmp_buf = kmalloc(len, GFP_NOFS | __GFP_NOWARN);
299 		if (!tmp_buf) {
300 			tmp_buf = vmalloc(len);
301 			if (!tmp_buf)
302 				return -ENOMEM;
303 			p->virtual_mem = 1;
304 		}
305 		memcpy(tmp_buf, p->buf, p->buf_len);
306 		p->buf = tmp_buf;
307 		p->buf_len = len;
308 	} else {
309 		if (p->virtual_mem) {
310 			tmp_buf = vmalloc(len);
311 			if (!tmp_buf)
312 				return -ENOMEM;
313 			memcpy(tmp_buf, p->buf, p->buf_len);
314 			vfree(p->buf);
315 		} else {
316 			tmp_buf = krealloc(p->buf, len, GFP_NOFS);
317 			if (!tmp_buf) {
318 				tmp_buf = vmalloc(len);
319 				if (!tmp_buf)
320 					return -ENOMEM;
321 				memcpy(tmp_buf, p->buf, p->buf_len);
322 				kfree(p->buf);
323 				p->virtual_mem = 1;
324 			}
325 		}
326 		p->buf = tmp_buf;
327 		p->buf_len = len;
328 	}
329 	if (p->reversed) {
330 		tmp_buf = p->buf + old_buf_len - path_len - 1;
331 		p->end = p->buf + p->buf_len - 1;
332 		p->start = p->end - path_len;
333 		memmove(p->start, tmp_buf, path_len + 1);
334 	} else {
335 		p->start = p->buf;
336 		p->end = p->start + path_len;
337 	}
338 	return 0;
339 }
340 
341 static int fs_path_prepare_for_add(struct fs_path *p, int name_len)
342 {
343 	int ret;
344 	int new_len;
345 
346 	new_len = p->end - p->start + name_len;
347 	if (p->start != p->end)
348 		new_len++;
349 	ret = fs_path_ensure_buf(p, new_len);
350 	if (ret < 0)
351 		goto out;
352 
353 	if (p->reversed) {
354 		if (p->start != p->end)
355 			*--p->start = '/';
356 		p->start -= name_len;
357 		p->prepared = p->start;
358 	} else {
359 		if (p->start != p->end)
360 			*p->end++ = '/';
361 		p->prepared = p->end;
362 		p->end += name_len;
363 		*p->end = 0;
364 	}
365 
366 out:
367 	return ret;
368 }
369 
370 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
371 {
372 	int ret;
373 
374 	ret = fs_path_prepare_for_add(p, name_len);
375 	if (ret < 0)
376 		goto out;
377 	memcpy(p->prepared, name, name_len);
378 	p->prepared = NULL;
379 
380 out:
381 	return ret;
382 }
383 
384 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
385 {
386 	int ret;
387 
388 	ret = fs_path_prepare_for_add(p, p2->end - p2->start);
389 	if (ret < 0)
390 		goto out;
391 	memcpy(p->prepared, p2->start, p2->end - p2->start);
392 	p->prepared = NULL;
393 
394 out:
395 	return ret;
396 }
397 
398 static int fs_path_add_from_extent_buffer(struct fs_path *p,
399 					  struct extent_buffer *eb,
400 					  unsigned long off, int len)
401 {
402 	int ret;
403 
404 	ret = fs_path_prepare_for_add(p, len);
405 	if (ret < 0)
406 		goto out;
407 
408 	read_extent_buffer(eb, p->prepared, off, len);
409 	p->prepared = NULL;
410 
411 out:
412 	return ret;
413 }
414 
415 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
416 {
417 	int ret;
418 
419 	p->reversed = from->reversed;
420 	fs_path_reset(p);
421 
422 	ret = fs_path_add_path(p, from);
423 
424 	return ret;
425 }
426 
427 
428 static void fs_path_unreverse(struct fs_path *p)
429 {
430 	char *tmp;
431 	int len;
432 
433 	if (!p->reversed)
434 		return;
435 
436 	tmp = p->start;
437 	len = p->end - p->start;
438 	p->start = p->buf;
439 	p->end = p->start + len;
440 	memmove(p->start, tmp, len + 1);
441 	p->reversed = 0;
442 }
443 
444 static struct btrfs_path *alloc_path_for_send(void)
445 {
446 	struct btrfs_path *path;
447 
448 	path = btrfs_alloc_path();
449 	if (!path)
450 		return NULL;
451 	path->search_commit_root = 1;
452 	path->skip_locking = 1;
453 	return path;
454 }
455 
456 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
457 {
458 	int ret;
459 	mm_segment_t old_fs;
460 	u32 pos = 0;
461 
462 	old_fs = get_fs();
463 	set_fs(KERNEL_DS);
464 
465 	while (pos < len) {
466 		ret = vfs_write(filp, (char *)buf + pos, len - pos, off);
467 		/* TODO handle that correctly */
468 		/*if (ret == -ERESTARTSYS) {
469 			continue;
470 		}*/
471 		if (ret < 0)
472 			goto out;
473 		if (ret == 0) {
474 			ret = -EIO;
475 			goto out;
476 		}
477 		pos += ret;
478 	}
479 
480 	ret = 0;
481 
482 out:
483 	set_fs(old_fs);
484 	return ret;
485 }
486 
487 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
488 {
489 	struct btrfs_tlv_header *hdr;
490 	int total_len = sizeof(*hdr) + len;
491 	int left = sctx->send_max_size - sctx->send_size;
492 
493 	if (unlikely(left < total_len))
494 		return -EOVERFLOW;
495 
496 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
497 	hdr->tlv_type = cpu_to_le16(attr);
498 	hdr->tlv_len = cpu_to_le16(len);
499 	memcpy(hdr + 1, data, len);
500 	sctx->send_size += total_len;
501 
502 	return 0;
503 }
504 
505 #define TLV_PUT_DEFINE_INT(bits) \
506 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
507 			u##bits attr, u##bits value)			\
508 	{								\
509 		__le##bits __tmp = cpu_to_le##bits(value);		\
510 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
511 	}
512 
513 TLV_PUT_DEFINE_INT(64)
514 
515 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
516 			  const char *str, int len)
517 {
518 	if (len == -1)
519 		len = strlen(str);
520 	return tlv_put(sctx, attr, str, len);
521 }
522 
523 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
524 			const u8 *uuid)
525 {
526 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
527 }
528 
529 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
530 				  struct extent_buffer *eb,
531 				  struct btrfs_timespec *ts)
532 {
533 	struct btrfs_timespec bts;
534 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
535 	return tlv_put(sctx, attr, &bts, sizeof(bts));
536 }
537 
538 
539 #define TLV_PUT(sctx, attrtype, attrlen, data) \
540 	do { \
541 		ret = tlv_put(sctx, attrtype, attrlen, data); \
542 		if (ret < 0) \
543 			goto tlv_put_failure; \
544 	} while (0)
545 
546 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
547 	do { \
548 		ret = tlv_put_u##bits(sctx, attrtype, value); \
549 		if (ret < 0) \
550 			goto tlv_put_failure; \
551 	} while (0)
552 
553 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
554 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
555 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
556 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
557 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
558 	do { \
559 		ret = tlv_put_string(sctx, attrtype, str, len); \
560 		if (ret < 0) \
561 			goto tlv_put_failure; \
562 	} while (0)
563 #define TLV_PUT_PATH(sctx, attrtype, p) \
564 	do { \
565 		ret = tlv_put_string(sctx, attrtype, p->start, \
566 			p->end - p->start); \
567 		if (ret < 0) \
568 			goto tlv_put_failure; \
569 	} while(0)
570 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
571 	do { \
572 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
573 		if (ret < 0) \
574 			goto tlv_put_failure; \
575 	} while (0)
576 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
577 	do { \
578 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
579 		if (ret < 0) \
580 			goto tlv_put_failure; \
581 	} while (0)
582 
583 static int send_header(struct send_ctx *sctx)
584 {
585 	struct btrfs_stream_header hdr;
586 
587 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
588 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
589 
590 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
591 					&sctx->send_off);
592 }
593 
594 /*
595  * For each command/item we want to send to userspace, we call this function.
596  */
597 static int begin_cmd(struct send_ctx *sctx, int cmd)
598 {
599 	struct btrfs_cmd_header *hdr;
600 
601 	if (WARN_ON(!sctx->send_buf))
602 		return -EINVAL;
603 
604 	BUG_ON(sctx->send_size);
605 
606 	sctx->send_size += sizeof(*hdr);
607 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
608 	hdr->cmd = cpu_to_le16(cmd);
609 
610 	return 0;
611 }
612 
613 static int send_cmd(struct send_ctx *sctx)
614 {
615 	int ret;
616 	struct btrfs_cmd_header *hdr;
617 	u32 crc;
618 
619 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
620 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
621 	hdr->crc = 0;
622 
623 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
624 	hdr->crc = cpu_to_le32(crc);
625 
626 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
627 					&sctx->send_off);
628 
629 	sctx->total_send_size += sctx->send_size;
630 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
631 	sctx->send_size = 0;
632 
633 	return ret;
634 }
635 
636 /*
637  * Sends a move instruction to user space
638  */
639 static int send_rename(struct send_ctx *sctx,
640 		     struct fs_path *from, struct fs_path *to)
641 {
642 	int ret;
643 
644 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
645 
646 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
647 	if (ret < 0)
648 		goto out;
649 
650 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
651 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
652 
653 	ret = send_cmd(sctx);
654 
655 tlv_put_failure:
656 out:
657 	return ret;
658 }
659 
660 /*
661  * Sends a link instruction to user space
662  */
663 static int send_link(struct send_ctx *sctx,
664 		     struct fs_path *path, struct fs_path *lnk)
665 {
666 	int ret;
667 
668 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
669 
670 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
671 	if (ret < 0)
672 		goto out;
673 
674 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
675 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
676 
677 	ret = send_cmd(sctx);
678 
679 tlv_put_failure:
680 out:
681 	return ret;
682 }
683 
684 /*
685  * Sends an unlink instruction to user space
686  */
687 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
688 {
689 	int ret;
690 
691 verbose_printk("btrfs: send_unlink %s\n", path->start);
692 
693 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
694 	if (ret < 0)
695 		goto out;
696 
697 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
698 
699 	ret = send_cmd(sctx);
700 
701 tlv_put_failure:
702 out:
703 	return ret;
704 }
705 
706 /*
707  * Sends a rmdir instruction to user space
708  */
709 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
710 {
711 	int ret;
712 
713 verbose_printk("btrfs: send_rmdir %s\n", path->start);
714 
715 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
716 	if (ret < 0)
717 		goto out;
718 
719 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
720 
721 	ret = send_cmd(sctx);
722 
723 tlv_put_failure:
724 out:
725 	return ret;
726 }
727 
728 /*
729  * Helper function to retrieve some fields from an inode item.
730  */
731 static int get_inode_info(struct btrfs_root *root,
732 			  u64 ino, u64 *size, u64 *gen,
733 			  u64 *mode, u64 *uid, u64 *gid,
734 			  u64 *rdev)
735 {
736 	int ret;
737 	struct btrfs_inode_item *ii;
738 	struct btrfs_key key;
739 	struct btrfs_path *path;
740 
741 	path = alloc_path_for_send();
742 	if (!path)
743 		return -ENOMEM;
744 
745 	key.objectid = ino;
746 	key.type = BTRFS_INODE_ITEM_KEY;
747 	key.offset = 0;
748 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
749 	if (ret < 0)
750 		goto out;
751 	if (ret) {
752 		ret = -ENOENT;
753 		goto out;
754 	}
755 
756 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
757 			struct btrfs_inode_item);
758 	if (size)
759 		*size = btrfs_inode_size(path->nodes[0], ii);
760 	if (gen)
761 		*gen = btrfs_inode_generation(path->nodes[0], ii);
762 	if (mode)
763 		*mode = btrfs_inode_mode(path->nodes[0], ii);
764 	if (uid)
765 		*uid = btrfs_inode_uid(path->nodes[0], ii);
766 	if (gid)
767 		*gid = btrfs_inode_gid(path->nodes[0], ii);
768 	if (rdev)
769 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
770 
771 out:
772 	btrfs_free_path(path);
773 	return ret;
774 }
775 
776 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
777 				   struct fs_path *p,
778 				   void *ctx);
779 
780 /*
781  * Helper function to iterate the entries in ONE btrfs_inode_ref or
782  * btrfs_inode_extref.
783  * The iterate callback may return a non zero value to stop iteration. This can
784  * be a negative value for error codes or 1 to simply stop it.
785  *
786  * path must point to the INODE_REF or INODE_EXTREF when called.
787  */
788 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
789 			     struct btrfs_key *found_key, int resolve,
790 			     iterate_inode_ref_t iterate, void *ctx)
791 {
792 	struct extent_buffer *eb = path->nodes[0];
793 	struct btrfs_item *item;
794 	struct btrfs_inode_ref *iref;
795 	struct btrfs_inode_extref *extref;
796 	struct btrfs_path *tmp_path;
797 	struct fs_path *p;
798 	u32 cur = 0;
799 	u32 total;
800 	int slot = path->slots[0];
801 	u32 name_len;
802 	char *start;
803 	int ret = 0;
804 	int num = 0;
805 	int index;
806 	u64 dir;
807 	unsigned long name_off;
808 	unsigned long elem_size;
809 	unsigned long ptr;
810 
811 	p = fs_path_alloc_reversed();
812 	if (!p)
813 		return -ENOMEM;
814 
815 	tmp_path = alloc_path_for_send();
816 	if (!tmp_path) {
817 		fs_path_free(p);
818 		return -ENOMEM;
819 	}
820 
821 
822 	if (found_key->type == BTRFS_INODE_REF_KEY) {
823 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
824 						    struct btrfs_inode_ref);
825 		item = btrfs_item_nr(slot);
826 		total = btrfs_item_size(eb, item);
827 		elem_size = sizeof(*iref);
828 	} else {
829 		ptr = btrfs_item_ptr_offset(eb, slot);
830 		total = btrfs_item_size_nr(eb, slot);
831 		elem_size = sizeof(*extref);
832 	}
833 
834 	while (cur < total) {
835 		fs_path_reset(p);
836 
837 		if (found_key->type == BTRFS_INODE_REF_KEY) {
838 			iref = (struct btrfs_inode_ref *)(ptr + cur);
839 			name_len = btrfs_inode_ref_name_len(eb, iref);
840 			name_off = (unsigned long)(iref + 1);
841 			index = btrfs_inode_ref_index(eb, iref);
842 			dir = found_key->offset;
843 		} else {
844 			extref = (struct btrfs_inode_extref *)(ptr + cur);
845 			name_len = btrfs_inode_extref_name_len(eb, extref);
846 			name_off = (unsigned long)&extref->name;
847 			index = btrfs_inode_extref_index(eb, extref);
848 			dir = btrfs_inode_extref_parent(eb, extref);
849 		}
850 
851 		if (resolve) {
852 			start = btrfs_ref_to_path(root, tmp_path, name_len,
853 						  name_off, eb, dir,
854 						  p->buf, p->buf_len);
855 			if (IS_ERR(start)) {
856 				ret = PTR_ERR(start);
857 				goto out;
858 			}
859 			if (start < p->buf) {
860 				/* overflow , try again with larger buffer */
861 				ret = fs_path_ensure_buf(p,
862 						p->buf_len + p->buf - start);
863 				if (ret < 0)
864 					goto out;
865 				start = btrfs_ref_to_path(root, tmp_path,
866 							  name_len, name_off,
867 							  eb, dir,
868 							  p->buf, p->buf_len);
869 				if (IS_ERR(start)) {
870 					ret = PTR_ERR(start);
871 					goto out;
872 				}
873 				BUG_ON(start < p->buf);
874 			}
875 			p->start = start;
876 		} else {
877 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
878 							     name_len);
879 			if (ret < 0)
880 				goto out;
881 		}
882 
883 		cur += elem_size + name_len;
884 		ret = iterate(num, dir, index, p, ctx);
885 		if (ret)
886 			goto out;
887 		num++;
888 	}
889 
890 out:
891 	btrfs_free_path(tmp_path);
892 	fs_path_free(p);
893 	return ret;
894 }
895 
896 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
897 				  const char *name, int name_len,
898 				  const char *data, int data_len,
899 				  u8 type, void *ctx);
900 
901 /*
902  * Helper function to iterate the entries in ONE btrfs_dir_item.
903  * The iterate callback may return a non zero value to stop iteration. This can
904  * be a negative value for error codes or 1 to simply stop it.
905  *
906  * path must point to the dir item when called.
907  */
908 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
909 			    struct btrfs_key *found_key,
910 			    iterate_dir_item_t iterate, void *ctx)
911 {
912 	int ret = 0;
913 	struct extent_buffer *eb;
914 	struct btrfs_item *item;
915 	struct btrfs_dir_item *di;
916 	struct btrfs_key di_key;
917 	char *buf = NULL;
918 	char *buf2 = NULL;
919 	int buf_len;
920 	int buf_virtual = 0;
921 	u32 name_len;
922 	u32 data_len;
923 	u32 cur;
924 	u32 len;
925 	u32 total;
926 	int slot;
927 	int num;
928 	u8 type;
929 
930 	buf_len = PAGE_SIZE;
931 	buf = kmalloc(buf_len, GFP_NOFS);
932 	if (!buf) {
933 		ret = -ENOMEM;
934 		goto out;
935 	}
936 
937 	eb = path->nodes[0];
938 	slot = path->slots[0];
939 	item = btrfs_item_nr(slot);
940 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
941 	cur = 0;
942 	len = 0;
943 	total = btrfs_item_size(eb, item);
944 
945 	num = 0;
946 	while (cur < total) {
947 		name_len = btrfs_dir_name_len(eb, di);
948 		data_len = btrfs_dir_data_len(eb, di);
949 		type = btrfs_dir_type(eb, di);
950 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
951 
952 		if (name_len + data_len > buf_len) {
953 			buf_len = PAGE_ALIGN(name_len + data_len);
954 			if (buf_virtual) {
955 				buf2 = vmalloc(buf_len);
956 				if (!buf2) {
957 					ret = -ENOMEM;
958 					goto out;
959 				}
960 				vfree(buf);
961 			} else {
962 				buf2 = krealloc(buf, buf_len, GFP_NOFS);
963 				if (!buf2) {
964 					buf2 = vmalloc(buf_len);
965 					if (!buf2) {
966 						ret = -ENOMEM;
967 						goto out;
968 					}
969 					kfree(buf);
970 					buf_virtual = 1;
971 				}
972 			}
973 
974 			buf = buf2;
975 			buf2 = NULL;
976 		}
977 
978 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
979 				name_len + data_len);
980 
981 		len = sizeof(*di) + name_len + data_len;
982 		di = (struct btrfs_dir_item *)((char *)di + len);
983 		cur += len;
984 
985 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
986 				data_len, type, ctx);
987 		if (ret < 0)
988 			goto out;
989 		if (ret) {
990 			ret = 0;
991 			goto out;
992 		}
993 
994 		num++;
995 	}
996 
997 out:
998 	if (buf_virtual)
999 		vfree(buf);
1000 	else
1001 		kfree(buf);
1002 	return ret;
1003 }
1004 
1005 static int __copy_first_ref(int num, u64 dir, int index,
1006 			    struct fs_path *p, void *ctx)
1007 {
1008 	int ret;
1009 	struct fs_path *pt = ctx;
1010 
1011 	ret = fs_path_copy(pt, p);
1012 	if (ret < 0)
1013 		return ret;
1014 
1015 	/* we want the first only */
1016 	return 1;
1017 }
1018 
1019 /*
1020  * Retrieve the first path of an inode. If an inode has more then one
1021  * ref/hardlink, this is ignored.
1022  */
1023 static int get_inode_path(struct btrfs_root *root,
1024 			  u64 ino, struct fs_path *path)
1025 {
1026 	int ret;
1027 	struct btrfs_key key, found_key;
1028 	struct btrfs_path *p;
1029 
1030 	p = alloc_path_for_send();
1031 	if (!p)
1032 		return -ENOMEM;
1033 
1034 	fs_path_reset(path);
1035 
1036 	key.objectid = ino;
1037 	key.type = BTRFS_INODE_REF_KEY;
1038 	key.offset = 0;
1039 
1040 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1041 	if (ret < 0)
1042 		goto out;
1043 	if (ret) {
1044 		ret = 1;
1045 		goto out;
1046 	}
1047 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1048 	if (found_key.objectid != ino ||
1049 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1050 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1051 		ret = -ENOENT;
1052 		goto out;
1053 	}
1054 
1055 	ret = iterate_inode_ref(root, p, &found_key, 1,
1056 				__copy_first_ref, path);
1057 	if (ret < 0)
1058 		goto out;
1059 	ret = 0;
1060 
1061 out:
1062 	btrfs_free_path(p);
1063 	return ret;
1064 }
1065 
1066 struct backref_ctx {
1067 	struct send_ctx *sctx;
1068 
1069 	/* number of total found references */
1070 	u64 found;
1071 
1072 	/*
1073 	 * used for clones found in send_root. clones found behind cur_objectid
1074 	 * and cur_offset are not considered as allowed clones.
1075 	 */
1076 	u64 cur_objectid;
1077 	u64 cur_offset;
1078 
1079 	/* may be truncated in case it's the last extent in a file */
1080 	u64 extent_len;
1081 
1082 	/* Just to check for bugs in backref resolving */
1083 	int found_itself;
1084 };
1085 
1086 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1087 {
1088 	u64 root = (u64)(uintptr_t)key;
1089 	struct clone_root *cr = (struct clone_root *)elt;
1090 
1091 	if (root < cr->root->objectid)
1092 		return -1;
1093 	if (root > cr->root->objectid)
1094 		return 1;
1095 	return 0;
1096 }
1097 
1098 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1099 {
1100 	struct clone_root *cr1 = (struct clone_root *)e1;
1101 	struct clone_root *cr2 = (struct clone_root *)e2;
1102 
1103 	if (cr1->root->objectid < cr2->root->objectid)
1104 		return -1;
1105 	if (cr1->root->objectid > cr2->root->objectid)
1106 		return 1;
1107 	return 0;
1108 }
1109 
1110 /*
1111  * Called for every backref that is found for the current extent.
1112  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1113  */
1114 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1115 {
1116 	struct backref_ctx *bctx = ctx_;
1117 	struct clone_root *found;
1118 	int ret;
1119 	u64 i_size;
1120 
1121 	/* First check if the root is in the list of accepted clone sources */
1122 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1123 			bctx->sctx->clone_roots_cnt,
1124 			sizeof(struct clone_root),
1125 			__clone_root_cmp_bsearch);
1126 	if (!found)
1127 		return 0;
1128 
1129 	if (found->root == bctx->sctx->send_root &&
1130 	    ino == bctx->cur_objectid &&
1131 	    offset == bctx->cur_offset) {
1132 		bctx->found_itself = 1;
1133 	}
1134 
1135 	/*
1136 	 * There are inodes that have extents that lie behind its i_size. Don't
1137 	 * accept clones from these extents.
1138 	 */
1139 	ret = get_inode_info(found->root, ino, &i_size, NULL, NULL, NULL, NULL,
1140 			NULL);
1141 	if (ret < 0)
1142 		return ret;
1143 
1144 	if (offset + bctx->extent_len > i_size)
1145 		return 0;
1146 
1147 	/*
1148 	 * Make sure we don't consider clones from send_root that are
1149 	 * behind the current inode/offset.
1150 	 */
1151 	if (found->root == bctx->sctx->send_root) {
1152 		/*
1153 		 * TODO for the moment we don't accept clones from the inode
1154 		 * that is currently send. We may change this when
1155 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1156 		 * file.
1157 		 */
1158 		if (ino >= bctx->cur_objectid)
1159 			return 0;
1160 #if 0
1161 		if (ino > bctx->cur_objectid)
1162 			return 0;
1163 		if (offset + bctx->extent_len > bctx->cur_offset)
1164 			return 0;
1165 #endif
1166 	}
1167 
1168 	bctx->found++;
1169 	found->found_refs++;
1170 	if (ino < found->ino) {
1171 		found->ino = ino;
1172 		found->offset = offset;
1173 	} else if (found->ino == ino) {
1174 		/*
1175 		 * same extent found more then once in the same file.
1176 		 */
1177 		if (found->offset > offset + bctx->extent_len)
1178 			found->offset = offset;
1179 	}
1180 
1181 	return 0;
1182 }
1183 
1184 /*
1185  * Given an inode, offset and extent item, it finds a good clone for a clone
1186  * instruction. Returns -ENOENT when none could be found. The function makes
1187  * sure that the returned clone is usable at the point where sending is at the
1188  * moment. This means, that no clones are accepted which lie behind the current
1189  * inode+offset.
1190  *
1191  * path must point to the extent item when called.
1192  */
1193 static int find_extent_clone(struct send_ctx *sctx,
1194 			     struct btrfs_path *path,
1195 			     u64 ino, u64 data_offset,
1196 			     u64 ino_size,
1197 			     struct clone_root **found)
1198 {
1199 	int ret;
1200 	int extent_type;
1201 	u64 logical;
1202 	u64 disk_byte;
1203 	u64 num_bytes;
1204 	u64 extent_item_pos;
1205 	u64 flags = 0;
1206 	struct btrfs_file_extent_item *fi;
1207 	struct extent_buffer *eb = path->nodes[0];
1208 	struct backref_ctx *backref_ctx = NULL;
1209 	struct clone_root *cur_clone_root;
1210 	struct btrfs_key found_key;
1211 	struct btrfs_path *tmp_path;
1212 	int compressed;
1213 	u32 i;
1214 
1215 	tmp_path = alloc_path_for_send();
1216 	if (!tmp_path)
1217 		return -ENOMEM;
1218 
1219 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1220 	if (!backref_ctx) {
1221 		ret = -ENOMEM;
1222 		goto out;
1223 	}
1224 
1225 	if (data_offset >= ino_size) {
1226 		/*
1227 		 * There may be extents that lie behind the file's size.
1228 		 * I at least had this in combination with snapshotting while
1229 		 * writing large files.
1230 		 */
1231 		ret = 0;
1232 		goto out;
1233 	}
1234 
1235 	fi = btrfs_item_ptr(eb, path->slots[0],
1236 			struct btrfs_file_extent_item);
1237 	extent_type = btrfs_file_extent_type(eb, fi);
1238 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1239 		ret = -ENOENT;
1240 		goto out;
1241 	}
1242 	compressed = btrfs_file_extent_compression(eb, fi);
1243 
1244 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1245 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1246 	if (disk_byte == 0) {
1247 		ret = -ENOENT;
1248 		goto out;
1249 	}
1250 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1251 
1252 	ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1253 				  &found_key, &flags);
1254 	btrfs_release_path(tmp_path);
1255 
1256 	if (ret < 0)
1257 		goto out;
1258 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1259 		ret = -EIO;
1260 		goto out;
1261 	}
1262 
1263 	/*
1264 	 * Setup the clone roots.
1265 	 */
1266 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1267 		cur_clone_root = sctx->clone_roots + i;
1268 		cur_clone_root->ino = (u64)-1;
1269 		cur_clone_root->offset = 0;
1270 		cur_clone_root->found_refs = 0;
1271 	}
1272 
1273 	backref_ctx->sctx = sctx;
1274 	backref_ctx->found = 0;
1275 	backref_ctx->cur_objectid = ino;
1276 	backref_ctx->cur_offset = data_offset;
1277 	backref_ctx->found_itself = 0;
1278 	backref_ctx->extent_len = num_bytes;
1279 
1280 	/*
1281 	 * The last extent of a file may be too large due to page alignment.
1282 	 * We need to adjust extent_len in this case so that the checks in
1283 	 * __iterate_backrefs work.
1284 	 */
1285 	if (data_offset + num_bytes >= ino_size)
1286 		backref_ctx->extent_len = ino_size - data_offset;
1287 
1288 	/*
1289 	 * Now collect all backrefs.
1290 	 */
1291 	if (compressed == BTRFS_COMPRESS_NONE)
1292 		extent_item_pos = logical - found_key.objectid;
1293 	else
1294 		extent_item_pos = 0;
1295 
1296 	extent_item_pos = logical - found_key.objectid;
1297 	ret = iterate_extent_inodes(sctx->send_root->fs_info,
1298 					found_key.objectid, extent_item_pos, 1,
1299 					__iterate_backrefs, backref_ctx);
1300 
1301 	if (ret < 0)
1302 		goto out;
1303 
1304 	if (!backref_ctx->found_itself) {
1305 		/* found a bug in backref code? */
1306 		ret = -EIO;
1307 		btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1308 				"send_root. inode=%llu, offset=%llu, "
1309 				"disk_byte=%llu found extent=%llu\n",
1310 				ino, data_offset, disk_byte, found_key.objectid);
1311 		goto out;
1312 	}
1313 
1314 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1315 		"ino=%llu, "
1316 		"num_bytes=%llu, logical=%llu\n",
1317 		data_offset, ino, num_bytes, logical);
1318 
1319 	if (!backref_ctx->found)
1320 		verbose_printk("btrfs:    no clones found\n");
1321 
1322 	cur_clone_root = NULL;
1323 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1324 		if (sctx->clone_roots[i].found_refs) {
1325 			if (!cur_clone_root)
1326 				cur_clone_root = sctx->clone_roots + i;
1327 			else if (sctx->clone_roots[i].root == sctx->send_root)
1328 				/* prefer clones from send_root over others */
1329 				cur_clone_root = sctx->clone_roots + i;
1330 		}
1331 
1332 	}
1333 
1334 	if (cur_clone_root) {
1335 		if (compressed != BTRFS_COMPRESS_NONE) {
1336 			/*
1337 			 * Offsets given by iterate_extent_inodes() are relative
1338 			 * to the start of the extent, we need to add logical
1339 			 * offset from the file extent item.
1340 			 * (See why at backref.c:check_extent_in_eb())
1341 			 */
1342 			cur_clone_root->offset += btrfs_file_extent_offset(eb,
1343 									   fi);
1344 		}
1345 		*found = cur_clone_root;
1346 		ret = 0;
1347 	} else {
1348 		ret = -ENOENT;
1349 	}
1350 
1351 out:
1352 	btrfs_free_path(tmp_path);
1353 	kfree(backref_ctx);
1354 	return ret;
1355 }
1356 
1357 static int read_symlink(struct btrfs_root *root,
1358 			u64 ino,
1359 			struct fs_path *dest)
1360 {
1361 	int ret;
1362 	struct btrfs_path *path;
1363 	struct btrfs_key key;
1364 	struct btrfs_file_extent_item *ei;
1365 	u8 type;
1366 	u8 compression;
1367 	unsigned long off;
1368 	int len;
1369 
1370 	path = alloc_path_for_send();
1371 	if (!path)
1372 		return -ENOMEM;
1373 
1374 	key.objectid = ino;
1375 	key.type = BTRFS_EXTENT_DATA_KEY;
1376 	key.offset = 0;
1377 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1378 	if (ret < 0)
1379 		goto out;
1380 	BUG_ON(ret);
1381 
1382 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1383 			struct btrfs_file_extent_item);
1384 	type = btrfs_file_extent_type(path->nodes[0], ei);
1385 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1386 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1387 	BUG_ON(compression);
1388 
1389 	off = btrfs_file_extent_inline_start(ei);
1390 	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1391 
1392 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1393 
1394 out:
1395 	btrfs_free_path(path);
1396 	return ret;
1397 }
1398 
1399 /*
1400  * Helper function to generate a file name that is unique in the root of
1401  * send_root and parent_root. This is used to generate names for orphan inodes.
1402  */
1403 static int gen_unique_name(struct send_ctx *sctx,
1404 			   u64 ino, u64 gen,
1405 			   struct fs_path *dest)
1406 {
1407 	int ret = 0;
1408 	struct btrfs_path *path;
1409 	struct btrfs_dir_item *di;
1410 	char tmp[64];
1411 	int len;
1412 	u64 idx = 0;
1413 
1414 	path = alloc_path_for_send();
1415 	if (!path)
1416 		return -ENOMEM;
1417 
1418 	while (1) {
1419 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1420 				ino, gen, idx);
1421 		if (len >= sizeof(tmp)) {
1422 			/* should really not happen */
1423 			ret = -EOVERFLOW;
1424 			goto out;
1425 		}
1426 
1427 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1428 				path, BTRFS_FIRST_FREE_OBJECTID,
1429 				tmp, strlen(tmp), 0);
1430 		btrfs_release_path(path);
1431 		if (IS_ERR(di)) {
1432 			ret = PTR_ERR(di);
1433 			goto out;
1434 		}
1435 		if (di) {
1436 			/* not unique, try again */
1437 			idx++;
1438 			continue;
1439 		}
1440 
1441 		if (!sctx->parent_root) {
1442 			/* unique */
1443 			ret = 0;
1444 			break;
1445 		}
1446 
1447 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1448 				path, BTRFS_FIRST_FREE_OBJECTID,
1449 				tmp, strlen(tmp), 0);
1450 		btrfs_release_path(path);
1451 		if (IS_ERR(di)) {
1452 			ret = PTR_ERR(di);
1453 			goto out;
1454 		}
1455 		if (di) {
1456 			/* not unique, try again */
1457 			idx++;
1458 			continue;
1459 		}
1460 		/* unique */
1461 		break;
1462 	}
1463 
1464 	ret = fs_path_add(dest, tmp, strlen(tmp));
1465 
1466 out:
1467 	btrfs_free_path(path);
1468 	return ret;
1469 }
1470 
1471 enum inode_state {
1472 	inode_state_no_change,
1473 	inode_state_will_create,
1474 	inode_state_did_create,
1475 	inode_state_will_delete,
1476 	inode_state_did_delete,
1477 };
1478 
1479 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1480 {
1481 	int ret;
1482 	int left_ret;
1483 	int right_ret;
1484 	u64 left_gen;
1485 	u64 right_gen;
1486 
1487 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1488 			NULL, NULL);
1489 	if (ret < 0 && ret != -ENOENT)
1490 		goto out;
1491 	left_ret = ret;
1492 
1493 	if (!sctx->parent_root) {
1494 		right_ret = -ENOENT;
1495 	} else {
1496 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1497 				NULL, NULL, NULL, NULL);
1498 		if (ret < 0 && ret != -ENOENT)
1499 			goto out;
1500 		right_ret = ret;
1501 	}
1502 
1503 	if (!left_ret && !right_ret) {
1504 		if (left_gen == gen && right_gen == gen) {
1505 			ret = inode_state_no_change;
1506 		} else if (left_gen == gen) {
1507 			if (ino < sctx->send_progress)
1508 				ret = inode_state_did_create;
1509 			else
1510 				ret = inode_state_will_create;
1511 		} else if (right_gen == gen) {
1512 			if (ino < sctx->send_progress)
1513 				ret = inode_state_did_delete;
1514 			else
1515 				ret = inode_state_will_delete;
1516 		} else  {
1517 			ret = -ENOENT;
1518 		}
1519 	} else if (!left_ret) {
1520 		if (left_gen == gen) {
1521 			if (ino < sctx->send_progress)
1522 				ret = inode_state_did_create;
1523 			else
1524 				ret = inode_state_will_create;
1525 		} else {
1526 			ret = -ENOENT;
1527 		}
1528 	} else if (!right_ret) {
1529 		if (right_gen == gen) {
1530 			if (ino < sctx->send_progress)
1531 				ret = inode_state_did_delete;
1532 			else
1533 				ret = inode_state_will_delete;
1534 		} else {
1535 			ret = -ENOENT;
1536 		}
1537 	} else {
1538 		ret = -ENOENT;
1539 	}
1540 
1541 out:
1542 	return ret;
1543 }
1544 
1545 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1546 {
1547 	int ret;
1548 
1549 	ret = get_cur_inode_state(sctx, ino, gen);
1550 	if (ret < 0)
1551 		goto out;
1552 
1553 	if (ret == inode_state_no_change ||
1554 	    ret == inode_state_did_create ||
1555 	    ret == inode_state_will_delete)
1556 		ret = 1;
1557 	else
1558 		ret = 0;
1559 
1560 out:
1561 	return ret;
1562 }
1563 
1564 /*
1565  * Helper function to lookup a dir item in a dir.
1566  */
1567 static int lookup_dir_item_inode(struct btrfs_root *root,
1568 				 u64 dir, const char *name, int name_len,
1569 				 u64 *found_inode,
1570 				 u8 *found_type)
1571 {
1572 	int ret = 0;
1573 	struct btrfs_dir_item *di;
1574 	struct btrfs_key key;
1575 	struct btrfs_path *path;
1576 
1577 	path = alloc_path_for_send();
1578 	if (!path)
1579 		return -ENOMEM;
1580 
1581 	di = btrfs_lookup_dir_item(NULL, root, path,
1582 			dir, name, name_len, 0);
1583 	if (!di) {
1584 		ret = -ENOENT;
1585 		goto out;
1586 	}
1587 	if (IS_ERR(di)) {
1588 		ret = PTR_ERR(di);
1589 		goto out;
1590 	}
1591 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1592 	*found_inode = key.objectid;
1593 	*found_type = btrfs_dir_type(path->nodes[0], di);
1594 
1595 out:
1596 	btrfs_free_path(path);
1597 	return ret;
1598 }
1599 
1600 /*
1601  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1602  * generation of the parent dir and the name of the dir entry.
1603  */
1604 static int get_first_ref(struct btrfs_root *root, u64 ino,
1605 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1606 {
1607 	int ret;
1608 	struct btrfs_key key;
1609 	struct btrfs_key found_key;
1610 	struct btrfs_path *path;
1611 	int len;
1612 	u64 parent_dir;
1613 
1614 	path = alloc_path_for_send();
1615 	if (!path)
1616 		return -ENOMEM;
1617 
1618 	key.objectid = ino;
1619 	key.type = BTRFS_INODE_REF_KEY;
1620 	key.offset = 0;
1621 
1622 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1623 	if (ret < 0)
1624 		goto out;
1625 	if (!ret)
1626 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1627 				path->slots[0]);
1628 	if (ret || found_key.objectid != ino ||
1629 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1630 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1631 		ret = -ENOENT;
1632 		goto out;
1633 	}
1634 
1635 	if (key.type == BTRFS_INODE_REF_KEY) {
1636 		struct btrfs_inode_ref *iref;
1637 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1638 				      struct btrfs_inode_ref);
1639 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1640 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1641 						     (unsigned long)(iref + 1),
1642 						     len);
1643 		parent_dir = found_key.offset;
1644 	} else {
1645 		struct btrfs_inode_extref *extref;
1646 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1647 					struct btrfs_inode_extref);
1648 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1649 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1650 					(unsigned long)&extref->name, len);
1651 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1652 	}
1653 	if (ret < 0)
1654 		goto out;
1655 	btrfs_release_path(path);
1656 
1657 	ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, NULL,
1658 			NULL, NULL);
1659 	if (ret < 0)
1660 		goto out;
1661 
1662 	*dir = parent_dir;
1663 
1664 out:
1665 	btrfs_free_path(path);
1666 	return ret;
1667 }
1668 
1669 static int is_first_ref(struct btrfs_root *root,
1670 			u64 ino, u64 dir,
1671 			const char *name, int name_len)
1672 {
1673 	int ret;
1674 	struct fs_path *tmp_name;
1675 	u64 tmp_dir;
1676 	u64 tmp_dir_gen;
1677 
1678 	tmp_name = fs_path_alloc();
1679 	if (!tmp_name)
1680 		return -ENOMEM;
1681 
1682 	ret = get_first_ref(root, ino, &tmp_dir, &tmp_dir_gen, tmp_name);
1683 	if (ret < 0)
1684 		goto out;
1685 
1686 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1687 		ret = 0;
1688 		goto out;
1689 	}
1690 
1691 	ret = !memcmp(tmp_name->start, name, name_len);
1692 
1693 out:
1694 	fs_path_free(tmp_name);
1695 	return ret;
1696 }
1697 
1698 /*
1699  * Used by process_recorded_refs to determine if a new ref would overwrite an
1700  * already existing ref. In case it detects an overwrite, it returns the
1701  * inode/gen in who_ino/who_gen.
1702  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1703  * to make sure later references to the overwritten inode are possible.
1704  * Orphanizing is however only required for the first ref of an inode.
1705  * process_recorded_refs does an additional is_first_ref check to see if
1706  * orphanizing is really required.
1707  */
1708 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1709 			      const char *name, int name_len,
1710 			      u64 *who_ino, u64 *who_gen)
1711 {
1712 	int ret = 0;
1713 	u64 gen;
1714 	u64 other_inode = 0;
1715 	u8 other_type = 0;
1716 
1717 	if (!sctx->parent_root)
1718 		goto out;
1719 
1720 	ret = is_inode_existent(sctx, dir, dir_gen);
1721 	if (ret <= 0)
1722 		goto out;
1723 
1724 	/*
1725 	 * If we have a parent root we need to verify that the parent dir was
1726 	 * not delted and then re-created, if it was then we have no overwrite
1727 	 * and we can just unlink this entry.
1728 	 */
1729 	if (sctx->parent_root) {
1730 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1731 				     NULL, NULL, NULL);
1732 		if (ret < 0 && ret != -ENOENT)
1733 			goto out;
1734 		if (ret) {
1735 			ret = 0;
1736 			goto out;
1737 		}
1738 		if (gen != dir_gen)
1739 			goto out;
1740 	}
1741 
1742 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1743 			&other_inode, &other_type);
1744 	if (ret < 0 && ret != -ENOENT)
1745 		goto out;
1746 	if (ret) {
1747 		ret = 0;
1748 		goto out;
1749 	}
1750 
1751 	/*
1752 	 * Check if the overwritten ref was already processed. If yes, the ref
1753 	 * was already unlinked/moved, so we can safely assume that we will not
1754 	 * overwrite anything at this point in time.
1755 	 */
1756 	if (other_inode > sctx->send_progress) {
1757 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1758 				who_gen, NULL, NULL, NULL, NULL);
1759 		if (ret < 0)
1760 			goto out;
1761 
1762 		ret = 1;
1763 		*who_ino = other_inode;
1764 	} else {
1765 		ret = 0;
1766 	}
1767 
1768 out:
1769 	return ret;
1770 }
1771 
1772 /*
1773  * Checks if the ref was overwritten by an already processed inode. This is
1774  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1775  * thus the orphan name needs be used.
1776  * process_recorded_refs also uses it to avoid unlinking of refs that were
1777  * overwritten.
1778  */
1779 static int did_overwrite_ref(struct send_ctx *sctx,
1780 			    u64 dir, u64 dir_gen,
1781 			    u64 ino, u64 ino_gen,
1782 			    const char *name, int name_len)
1783 {
1784 	int ret = 0;
1785 	u64 gen;
1786 	u64 ow_inode;
1787 	u8 other_type;
1788 
1789 	if (!sctx->parent_root)
1790 		goto out;
1791 
1792 	ret = is_inode_existent(sctx, dir, dir_gen);
1793 	if (ret <= 0)
1794 		goto out;
1795 
1796 	/* check if the ref was overwritten by another ref */
1797 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1798 			&ow_inode, &other_type);
1799 	if (ret < 0 && ret != -ENOENT)
1800 		goto out;
1801 	if (ret) {
1802 		/* was never and will never be overwritten */
1803 		ret = 0;
1804 		goto out;
1805 	}
1806 
1807 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1808 			NULL, NULL);
1809 	if (ret < 0)
1810 		goto out;
1811 
1812 	if (ow_inode == ino && gen == ino_gen) {
1813 		ret = 0;
1814 		goto out;
1815 	}
1816 
1817 	/* we know that it is or will be overwritten. check this now */
1818 	if (ow_inode < sctx->send_progress)
1819 		ret = 1;
1820 	else
1821 		ret = 0;
1822 
1823 out:
1824 	return ret;
1825 }
1826 
1827 /*
1828  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1829  * that got overwritten. This is used by process_recorded_refs to determine
1830  * if it has to use the path as returned by get_cur_path or the orphan name.
1831  */
1832 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1833 {
1834 	int ret = 0;
1835 	struct fs_path *name = NULL;
1836 	u64 dir;
1837 	u64 dir_gen;
1838 
1839 	if (!sctx->parent_root)
1840 		goto out;
1841 
1842 	name = fs_path_alloc();
1843 	if (!name)
1844 		return -ENOMEM;
1845 
1846 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1847 	if (ret < 0)
1848 		goto out;
1849 
1850 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1851 			name->start, fs_path_len(name));
1852 
1853 out:
1854 	fs_path_free(name);
1855 	return ret;
1856 }
1857 
1858 /*
1859  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1860  * so we need to do some special handling in case we have clashes. This function
1861  * takes care of this with the help of name_cache_entry::radix_list.
1862  * In case of error, nce is kfreed.
1863  */
1864 static int name_cache_insert(struct send_ctx *sctx,
1865 			     struct name_cache_entry *nce)
1866 {
1867 	int ret = 0;
1868 	struct list_head *nce_head;
1869 
1870 	nce_head = radix_tree_lookup(&sctx->name_cache,
1871 			(unsigned long)nce->ino);
1872 	if (!nce_head) {
1873 		nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1874 		if (!nce_head) {
1875 			kfree(nce);
1876 			return -ENOMEM;
1877 		}
1878 		INIT_LIST_HEAD(nce_head);
1879 
1880 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1881 		if (ret < 0) {
1882 			kfree(nce_head);
1883 			kfree(nce);
1884 			return ret;
1885 		}
1886 	}
1887 	list_add_tail(&nce->radix_list, nce_head);
1888 	list_add_tail(&nce->list, &sctx->name_cache_list);
1889 	sctx->name_cache_size++;
1890 
1891 	return ret;
1892 }
1893 
1894 static void name_cache_delete(struct send_ctx *sctx,
1895 			      struct name_cache_entry *nce)
1896 {
1897 	struct list_head *nce_head;
1898 
1899 	nce_head = radix_tree_lookup(&sctx->name_cache,
1900 			(unsigned long)nce->ino);
1901 	BUG_ON(!nce_head);
1902 
1903 	list_del(&nce->radix_list);
1904 	list_del(&nce->list);
1905 	sctx->name_cache_size--;
1906 
1907 	if (list_empty(nce_head)) {
1908 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
1909 		kfree(nce_head);
1910 	}
1911 }
1912 
1913 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
1914 						    u64 ino, u64 gen)
1915 {
1916 	struct list_head *nce_head;
1917 	struct name_cache_entry *cur;
1918 
1919 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
1920 	if (!nce_head)
1921 		return NULL;
1922 
1923 	list_for_each_entry(cur, nce_head, radix_list) {
1924 		if (cur->ino == ino && cur->gen == gen)
1925 			return cur;
1926 	}
1927 	return NULL;
1928 }
1929 
1930 /*
1931  * Removes the entry from the list and adds it back to the end. This marks the
1932  * entry as recently used so that name_cache_clean_unused does not remove it.
1933  */
1934 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
1935 {
1936 	list_del(&nce->list);
1937 	list_add_tail(&nce->list, &sctx->name_cache_list);
1938 }
1939 
1940 /*
1941  * Remove some entries from the beginning of name_cache_list.
1942  */
1943 static void name_cache_clean_unused(struct send_ctx *sctx)
1944 {
1945 	struct name_cache_entry *nce;
1946 
1947 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
1948 		return;
1949 
1950 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
1951 		nce = list_entry(sctx->name_cache_list.next,
1952 				struct name_cache_entry, list);
1953 		name_cache_delete(sctx, nce);
1954 		kfree(nce);
1955 	}
1956 }
1957 
1958 static void name_cache_free(struct send_ctx *sctx)
1959 {
1960 	struct name_cache_entry *nce;
1961 
1962 	while (!list_empty(&sctx->name_cache_list)) {
1963 		nce = list_entry(sctx->name_cache_list.next,
1964 				struct name_cache_entry, list);
1965 		name_cache_delete(sctx, nce);
1966 		kfree(nce);
1967 	}
1968 }
1969 
1970 /*
1971  * Used by get_cur_path for each ref up to the root.
1972  * Returns 0 if it succeeded.
1973  * Returns 1 if the inode is not existent or got overwritten. In that case, the
1974  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
1975  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
1976  * Returns <0 in case of error.
1977  */
1978 static int __get_cur_name_and_parent(struct send_ctx *sctx,
1979 				     u64 ino, u64 gen,
1980 				     int skip_name_cache,
1981 				     u64 *parent_ino,
1982 				     u64 *parent_gen,
1983 				     struct fs_path *dest)
1984 {
1985 	int ret;
1986 	int nce_ret;
1987 	struct btrfs_path *path = NULL;
1988 	struct name_cache_entry *nce = NULL;
1989 
1990 	if (skip_name_cache)
1991 		goto get_ref;
1992 	/*
1993 	 * First check if we already did a call to this function with the same
1994 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
1995 	 * return the cached result.
1996 	 */
1997 	nce = name_cache_search(sctx, ino, gen);
1998 	if (nce) {
1999 		if (ino < sctx->send_progress && nce->need_later_update) {
2000 			name_cache_delete(sctx, nce);
2001 			kfree(nce);
2002 			nce = NULL;
2003 		} else {
2004 			name_cache_used(sctx, nce);
2005 			*parent_ino = nce->parent_ino;
2006 			*parent_gen = nce->parent_gen;
2007 			ret = fs_path_add(dest, nce->name, nce->name_len);
2008 			if (ret < 0)
2009 				goto out;
2010 			ret = nce->ret;
2011 			goto out;
2012 		}
2013 	}
2014 
2015 	path = alloc_path_for_send();
2016 	if (!path)
2017 		return -ENOMEM;
2018 
2019 	/*
2020 	 * If the inode is not existent yet, add the orphan name and return 1.
2021 	 * This should only happen for the parent dir that we determine in
2022 	 * __record_new_ref
2023 	 */
2024 	ret = is_inode_existent(sctx, ino, gen);
2025 	if (ret < 0)
2026 		goto out;
2027 
2028 	if (!ret) {
2029 		ret = gen_unique_name(sctx, ino, gen, dest);
2030 		if (ret < 0)
2031 			goto out;
2032 		ret = 1;
2033 		goto out_cache;
2034 	}
2035 
2036 get_ref:
2037 	/*
2038 	 * Depending on whether the inode was already processed or not, use
2039 	 * send_root or parent_root for ref lookup.
2040 	 */
2041 	if (ino < sctx->send_progress && !skip_name_cache)
2042 		ret = get_first_ref(sctx->send_root, ino,
2043 				    parent_ino, parent_gen, dest);
2044 	else
2045 		ret = get_first_ref(sctx->parent_root, ino,
2046 				    parent_ino, parent_gen, dest);
2047 	if (ret < 0)
2048 		goto out;
2049 
2050 	/*
2051 	 * Check if the ref was overwritten by an inode's ref that was processed
2052 	 * earlier. If yes, treat as orphan and return 1.
2053 	 */
2054 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2055 			dest->start, dest->end - dest->start);
2056 	if (ret < 0)
2057 		goto out;
2058 	if (ret) {
2059 		fs_path_reset(dest);
2060 		ret = gen_unique_name(sctx, ino, gen, dest);
2061 		if (ret < 0)
2062 			goto out;
2063 		ret = 1;
2064 	}
2065 	if (skip_name_cache)
2066 		goto out;
2067 
2068 out_cache:
2069 	/*
2070 	 * Store the result of the lookup in the name cache.
2071 	 */
2072 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2073 	if (!nce) {
2074 		ret = -ENOMEM;
2075 		goto out;
2076 	}
2077 
2078 	nce->ino = ino;
2079 	nce->gen = gen;
2080 	nce->parent_ino = *parent_ino;
2081 	nce->parent_gen = *parent_gen;
2082 	nce->name_len = fs_path_len(dest);
2083 	nce->ret = ret;
2084 	strcpy(nce->name, dest->start);
2085 
2086 	if (ino < sctx->send_progress)
2087 		nce->need_later_update = 0;
2088 	else
2089 		nce->need_later_update = 1;
2090 
2091 	nce_ret = name_cache_insert(sctx, nce);
2092 	if (nce_ret < 0)
2093 		ret = nce_ret;
2094 	name_cache_clean_unused(sctx);
2095 
2096 out:
2097 	btrfs_free_path(path);
2098 	return ret;
2099 }
2100 
2101 /*
2102  * Magic happens here. This function returns the first ref to an inode as it
2103  * would look like while receiving the stream at this point in time.
2104  * We walk the path up to the root. For every inode in between, we check if it
2105  * was already processed/sent. If yes, we continue with the parent as found
2106  * in send_root. If not, we continue with the parent as found in parent_root.
2107  * If we encounter an inode that was deleted at this point in time, we use the
2108  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2109  * that were not created yet and overwritten inodes/refs.
2110  *
2111  * When do we have have orphan inodes:
2112  * 1. When an inode is freshly created and thus no valid refs are available yet
2113  * 2. When a directory lost all it's refs (deleted) but still has dir items
2114  *    inside which were not processed yet (pending for move/delete). If anyone
2115  *    tried to get the path to the dir items, it would get a path inside that
2116  *    orphan directory.
2117  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2118  *    of an unprocessed inode. If in that case the first ref would be
2119  *    overwritten, the overwritten inode gets "orphanized". Later when we
2120  *    process this overwritten inode, it is restored at a new place by moving
2121  *    the orphan inode.
2122  *
2123  * sctx->send_progress tells this function at which point in time receiving
2124  * would be.
2125  */
2126 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2127 			struct fs_path *dest)
2128 {
2129 	int ret = 0;
2130 	struct fs_path *name = NULL;
2131 	u64 parent_inode = 0;
2132 	u64 parent_gen = 0;
2133 	int stop = 0;
2134 	u64 start_ino = ino;
2135 	u64 start_gen = gen;
2136 	int skip_name_cache = 0;
2137 
2138 	name = fs_path_alloc();
2139 	if (!name) {
2140 		ret = -ENOMEM;
2141 		goto out;
2142 	}
2143 
2144 	if (is_waiting_for_move(sctx, ino))
2145 		skip_name_cache = 1;
2146 
2147 again:
2148 	dest->reversed = 1;
2149 	fs_path_reset(dest);
2150 
2151 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2152 		fs_path_reset(name);
2153 
2154 		ret = __get_cur_name_and_parent(sctx, ino, gen, skip_name_cache,
2155 				&parent_inode, &parent_gen, name);
2156 		if (ret < 0)
2157 			goto out;
2158 		if (ret)
2159 			stop = 1;
2160 
2161 		if (!skip_name_cache &&
2162 		    is_waiting_for_move(sctx, parent_inode)) {
2163 			ino = start_ino;
2164 			gen = start_gen;
2165 			stop = 0;
2166 			skip_name_cache = 1;
2167 			goto again;
2168 		}
2169 
2170 		ret = fs_path_add_path(dest, name);
2171 		if (ret < 0)
2172 			goto out;
2173 
2174 		ino = parent_inode;
2175 		gen = parent_gen;
2176 	}
2177 
2178 out:
2179 	fs_path_free(name);
2180 	if (!ret)
2181 		fs_path_unreverse(dest);
2182 	return ret;
2183 }
2184 
2185 /*
2186  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2187  */
2188 static int send_subvol_begin(struct send_ctx *sctx)
2189 {
2190 	int ret;
2191 	struct btrfs_root *send_root = sctx->send_root;
2192 	struct btrfs_root *parent_root = sctx->parent_root;
2193 	struct btrfs_path *path;
2194 	struct btrfs_key key;
2195 	struct btrfs_root_ref *ref;
2196 	struct extent_buffer *leaf;
2197 	char *name = NULL;
2198 	int namelen;
2199 
2200 	path = btrfs_alloc_path();
2201 	if (!path)
2202 		return -ENOMEM;
2203 
2204 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2205 	if (!name) {
2206 		btrfs_free_path(path);
2207 		return -ENOMEM;
2208 	}
2209 
2210 	key.objectid = send_root->objectid;
2211 	key.type = BTRFS_ROOT_BACKREF_KEY;
2212 	key.offset = 0;
2213 
2214 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2215 				&key, path, 1, 0);
2216 	if (ret < 0)
2217 		goto out;
2218 	if (ret) {
2219 		ret = -ENOENT;
2220 		goto out;
2221 	}
2222 
2223 	leaf = path->nodes[0];
2224 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2225 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2226 	    key.objectid != send_root->objectid) {
2227 		ret = -ENOENT;
2228 		goto out;
2229 	}
2230 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2231 	namelen = btrfs_root_ref_name_len(leaf, ref);
2232 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2233 	btrfs_release_path(path);
2234 
2235 	if (parent_root) {
2236 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2237 		if (ret < 0)
2238 			goto out;
2239 	} else {
2240 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2241 		if (ret < 0)
2242 			goto out;
2243 	}
2244 
2245 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2246 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2247 			sctx->send_root->root_item.uuid);
2248 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2249 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2250 	if (parent_root) {
2251 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2252 				sctx->parent_root->root_item.uuid);
2253 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2254 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2255 	}
2256 
2257 	ret = send_cmd(sctx);
2258 
2259 tlv_put_failure:
2260 out:
2261 	btrfs_free_path(path);
2262 	kfree(name);
2263 	return ret;
2264 }
2265 
2266 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2267 {
2268 	int ret = 0;
2269 	struct fs_path *p;
2270 
2271 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2272 
2273 	p = fs_path_alloc();
2274 	if (!p)
2275 		return -ENOMEM;
2276 
2277 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2278 	if (ret < 0)
2279 		goto out;
2280 
2281 	ret = get_cur_path(sctx, ino, gen, p);
2282 	if (ret < 0)
2283 		goto out;
2284 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2285 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2286 
2287 	ret = send_cmd(sctx);
2288 
2289 tlv_put_failure:
2290 out:
2291 	fs_path_free(p);
2292 	return ret;
2293 }
2294 
2295 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2296 {
2297 	int ret = 0;
2298 	struct fs_path *p;
2299 
2300 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2301 
2302 	p = fs_path_alloc();
2303 	if (!p)
2304 		return -ENOMEM;
2305 
2306 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2307 	if (ret < 0)
2308 		goto out;
2309 
2310 	ret = get_cur_path(sctx, ino, gen, p);
2311 	if (ret < 0)
2312 		goto out;
2313 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2314 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2315 
2316 	ret = send_cmd(sctx);
2317 
2318 tlv_put_failure:
2319 out:
2320 	fs_path_free(p);
2321 	return ret;
2322 }
2323 
2324 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2325 {
2326 	int ret = 0;
2327 	struct fs_path *p;
2328 
2329 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2330 
2331 	p = fs_path_alloc();
2332 	if (!p)
2333 		return -ENOMEM;
2334 
2335 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2336 	if (ret < 0)
2337 		goto out;
2338 
2339 	ret = get_cur_path(sctx, ino, gen, p);
2340 	if (ret < 0)
2341 		goto out;
2342 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2343 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2344 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2345 
2346 	ret = send_cmd(sctx);
2347 
2348 tlv_put_failure:
2349 out:
2350 	fs_path_free(p);
2351 	return ret;
2352 }
2353 
2354 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2355 {
2356 	int ret = 0;
2357 	struct fs_path *p = NULL;
2358 	struct btrfs_inode_item *ii;
2359 	struct btrfs_path *path = NULL;
2360 	struct extent_buffer *eb;
2361 	struct btrfs_key key;
2362 	int slot;
2363 
2364 verbose_printk("btrfs: send_utimes %llu\n", ino);
2365 
2366 	p = fs_path_alloc();
2367 	if (!p)
2368 		return -ENOMEM;
2369 
2370 	path = alloc_path_for_send();
2371 	if (!path) {
2372 		ret = -ENOMEM;
2373 		goto out;
2374 	}
2375 
2376 	key.objectid = ino;
2377 	key.type = BTRFS_INODE_ITEM_KEY;
2378 	key.offset = 0;
2379 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2380 	if (ret < 0)
2381 		goto out;
2382 
2383 	eb = path->nodes[0];
2384 	slot = path->slots[0];
2385 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2386 
2387 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2388 	if (ret < 0)
2389 		goto out;
2390 
2391 	ret = get_cur_path(sctx, ino, gen, p);
2392 	if (ret < 0)
2393 		goto out;
2394 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2395 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb,
2396 			btrfs_inode_atime(ii));
2397 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb,
2398 			btrfs_inode_mtime(ii));
2399 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb,
2400 			btrfs_inode_ctime(ii));
2401 	/* TODO Add otime support when the otime patches get into upstream */
2402 
2403 	ret = send_cmd(sctx);
2404 
2405 tlv_put_failure:
2406 out:
2407 	fs_path_free(p);
2408 	btrfs_free_path(path);
2409 	return ret;
2410 }
2411 
2412 /*
2413  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2414  * a valid path yet because we did not process the refs yet. So, the inode
2415  * is created as orphan.
2416  */
2417 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2418 {
2419 	int ret = 0;
2420 	struct fs_path *p;
2421 	int cmd;
2422 	u64 gen;
2423 	u64 mode;
2424 	u64 rdev;
2425 
2426 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2427 
2428 	p = fs_path_alloc();
2429 	if (!p)
2430 		return -ENOMEM;
2431 
2432 	ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, NULL,
2433 			NULL, &rdev);
2434 	if (ret < 0)
2435 		goto out;
2436 
2437 	if (S_ISREG(mode)) {
2438 		cmd = BTRFS_SEND_C_MKFILE;
2439 	} else if (S_ISDIR(mode)) {
2440 		cmd = BTRFS_SEND_C_MKDIR;
2441 	} else if (S_ISLNK(mode)) {
2442 		cmd = BTRFS_SEND_C_SYMLINK;
2443 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2444 		cmd = BTRFS_SEND_C_MKNOD;
2445 	} else if (S_ISFIFO(mode)) {
2446 		cmd = BTRFS_SEND_C_MKFIFO;
2447 	} else if (S_ISSOCK(mode)) {
2448 		cmd = BTRFS_SEND_C_MKSOCK;
2449 	} else {
2450 		printk(KERN_WARNING "btrfs: unexpected inode type %o",
2451 				(int)(mode & S_IFMT));
2452 		ret = -ENOTSUPP;
2453 		goto out;
2454 	}
2455 
2456 	ret = begin_cmd(sctx, cmd);
2457 	if (ret < 0)
2458 		goto out;
2459 
2460 	ret = gen_unique_name(sctx, ino, gen, p);
2461 	if (ret < 0)
2462 		goto out;
2463 
2464 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2465 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2466 
2467 	if (S_ISLNK(mode)) {
2468 		fs_path_reset(p);
2469 		ret = read_symlink(sctx->send_root, ino, p);
2470 		if (ret < 0)
2471 			goto out;
2472 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2473 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2474 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2475 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2476 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2477 	}
2478 
2479 	ret = send_cmd(sctx);
2480 	if (ret < 0)
2481 		goto out;
2482 
2483 
2484 tlv_put_failure:
2485 out:
2486 	fs_path_free(p);
2487 	return ret;
2488 }
2489 
2490 /*
2491  * We need some special handling for inodes that get processed before the parent
2492  * directory got created. See process_recorded_refs for details.
2493  * This function does the check if we already created the dir out of order.
2494  */
2495 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2496 {
2497 	int ret = 0;
2498 	struct btrfs_path *path = NULL;
2499 	struct btrfs_key key;
2500 	struct btrfs_key found_key;
2501 	struct btrfs_key di_key;
2502 	struct extent_buffer *eb;
2503 	struct btrfs_dir_item *di;
2504 	int slot;
2505 
2506 	path = alloc_path_for_send();
2507 	if (!path) {
2508 		ret = -ENOMEM;
2509 		goto out;
2510 	}
2511 
2512 	key.objectid = dir;
2513 	key.type = BTRFS_DIR_INDEX_KEY;
2514 	key.offset = 0;
2515 	while (1) {
2516 		ret = btrfs_search_slot_for_read(sctx->send_root, &key, path,
2517 				1, 0);
2518 		if (ret < 0)
2519 			goto out;
2520 		if (!ret) {
2521 			eb = path->nodes[0];
2522 			slot = path->slots[0];
2523 			btrfs_item_key_to_cpu(eb, &found_key, slot);
2524 		}
2525 		if (ret || found_key.objectid != key.objectid ||
2526 		    found_key.type != key.type) {
2527 			ret = 0;
2528 			goto out;
2529 		}
2530 
2531 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2532 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2533 
2534 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2535 		    di_key.objectid < sctx->send_progress) {
2536 			ret = 1;
2537 			goto out;
2538 		}
2539 
2540 		key.offset = found_key.offset + 1;
2541 		btrfs_release_path(path);
2542 	}
2543 
2544 out:
2545 	btrfs_free_path(path);
2546 	return ret;
2547 }
2548 
2549 /*
2550  * Only creates the inode if it is:
2551  * 1. Not a directory
2552  * 2. Or a directory which was not created already due to out of order
2553  *    directories. See did_create_dir and process_recorded_refs for details.
2554  */
2555 static int send_create_inode_if_needed(struct send_ctx *sctx)
2556 {
2557 	int ret;
2558 
2559 	if (S_ISDIR(sctx->cur_inode_mode)) {
2560 		ret = did_create_dir(sctx, sctx->cur_ino);
2561 		if (ret < 0)
2562 			goto out;
2563 		if (ret) {
2564 			ret = 0;
2565 			goto out;
2566 		}
2567 	}
2568 
2569 	ret = send_create_inode(sctx, sctx->cur_ino);
2570 	if (ret < 0)
2571 		goto out;
2572 
2573 out:
2574 	return ret;
2575 }
2576 
2577 struct recorded_ref {
2578 	struct list_head list;
2579 	char *dir_path;
2580 	char *name;
2581 	struct fs_path *full_path;
2582 	u64 dir;
2583 	u64 dir_gen;
2584 	int dir_path_len;
2585 	int name_len;
2586 };
2587 
2588 /*
2589  * We need to process new refs before deleted refs, but compare_tree gives us
2590  * everything mixed. So we first record all refs and later process them.
2591  * This function is a helper to record one ref.
2592  */
2593 static int record_ref(struct list_head *head, u64 dir,
2594 		      u64 dir_gen, struct fs_path *path)
2595 {
2596 	struct recorded_ref *ref;
2597 
2598 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
2599 	if (!ref)
2600 		return -ENOMEM;
2601 
2602 	ref->dir = dir;
2603 	ref->dir_gen = dir_gen;
2604 	ref->full_path = path;
2605 
2606 	ref->name = (char *)kbasename(ref->full_path->start);
2607 	ref->name_len = ref->full_path->end - ref->name;
2608 	ref->dir_path = ref->full_path->start;
2609 	if (ref->name == ref->full_path->start)
2610 		ref->dir_path_len = 0;
2611 	else
2612 		ref->dir_path_len = ref->full_path->end -
2613 				ref->full_path->start - 1 - ref->name_len;
2614 
2615 	list_add_tail(&ref->list, head);
2616 	return 0;
2617 }
2618 
2619 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2620 {
2621 	struct recorded_ref *new;
2622 
2623 	new = kmalloc(sizeof(*ref), GFP_NOFS);
2624 	if (!new)
2625 		return -ENOMEM;
2626 
2627 	new->dir = ref->dir;
2628 	new->dir_gen = ref->dir_gen;
2629 	new->full_path = NULL;
2630 	INIT_LIST_HEAD(&new->list);
2631 	list_add_tail(&new->list, list);
2632 	return 0;
2633 }
2634 
2635 static void __free_recorded_refs(struct list_head *head)
2636 {
2637 	struct recorded_ref *cur;
2638 
2639 	while (!list_empty(head)) {
2640 		cur = list_entry(head->next, struct recorded_ref, list);
2641 		fs_path_free(cur->full_path);
2642 		list_del(&cur->list);
2643 		kfree(cur);
2644 	}
2645 }
2646 
2647 static void free_recorded_refs(struct send_ctx *sctx)
2648 {
2649 	__free_recorded_refs(&sctx->new_refs);
2650 	__free_recorded_refs(&sctx->deleted_refs);
2651 }
2652 
2653 /*
2654  * Renames/moves a file/dir to its orphan name. Used when the first
2655  * ref of an unprocessed inode gets overwritten and for all non empty
2656  * directories.
2657  */
2658 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2659 			  struct fs_path *path)
2660 {
2661 	int ret;
2662 	struct fs_path *orphan;
2663 
2664 	orphan = fs_path_alloc();
2665 	if (!orphan)
2666 		return -ENOMEM;
2667 
2668 	ret = gen_unique_name(sctx, ino, gen, orphan);
2669 	if (ret < 0)
2670 		goto out;
2671 
2672 	ret = send_rename(sctx, path, orphan);
2673 
2674 out:
2675 	fs_path_free(orphan);
2676 	return ret;
2677 }
2678 
2679 /*
2680  * Returns 1 if a directory can be removed at this point in time.
2681  * We check this by iterating all dir items and checking if the inode behind
2682  * the dir item was already processed.
2683  */
2684 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 send_progress)
2685 {
2686 	int ret = 0;
2687 	struct btrfs_root *root = sctx->parent_root;
2688 	struct btrfs_path *path;
2689 	struct btrfs_key key;
2690 	struct btrfs_key found_key;
2691 	struct btrfs_key loc;
2692 	struct btrfs_dir_item *di;
2693 
2694 	/*
2695 	 * Don't try to rmdir the top/root subvolume dir.
2696 	 */
2697 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2698 		return 0;
2699 
2700 	path = alloc_path_for_send();
2701 	if (!path)
2702 		return -ENOMEM;
2703 
2704 	key.objectid = dir;
2705 	key.type = BTRFS_DIR_INDEX_KEY;
2706 	key.offset = 0;
2707 
2708 	while (1) {
2709 		ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2710 		if (ret < 0)
2711 			goto out;
2712 		if (!ret) {
2713 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2714 					path->slots[0]);
2715 		}
2716 		if (ret || found_key.objectid != key.objectid ||
2717 		    found_key.type != key.type) {
2718 			break;
2719 		}
2720 
2721 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2722 				struct btrfs_dir_item);
2723 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2724 
2725 		if (loc.objectid > send_progress) {
2726 			ret = 0;
2727 			goto out;
2728 		}
2729 
2730 		btrfs_release_path(path);
2731 		key.offset = found_key.offset + 1;
2732 	}
2733 
2734 	ret = 1;
2735 
2736 out:
2737 	btrfs_free_path(path);
2738 	return ret;
2739 }
2740 
2741 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2742 {
2743 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2744 	struct waiting_dir_move *entry;
2745 
2746 	while (n) {
2747 		entry = rb_entry(n, struct waiting_dir_move, node);
2748 		if (ino < entry->ino)
2749 			n = n->rb_left;
2750 		else if (ino > entry->ino)
2751 			n = n->rb_right;
2752 		else
2753 			return 1;
2754 	}
2755 	return 0;
2756 }
2757 
2758 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2759 {
2760 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2761 	struct rb_node *parent = NULL;
2762 	struct waiting_dir_move *entry, *dm;
2763 
2764 	dm = kmalloc(sizeof(*dm), GFP_NOFS);
2765 	if (!dm)
2766 		return -ENOMEM;
2767 	dm->ino = ino;
2768 
2769 	while (*p) {
2770 		parent = *p;
2771 		entry = rb_entry(parent, struct waiting_dir_move, node);
2772 		if (ino < entry->ino) {
2773 			p = &(*p)->rb_left;
2774 		} else if (ino > entry->ino) {
2775 			p = &(*p)->rb_right;
2776 		} else {
2777 			kfree(dm);
2778 			return -EEXIST;
2779 		}
2780 	}
2781 
2782 	rb_link_node(&dm->node, parent, p);
2783 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2784 	return 0;
2785 }
2786 
2787 static int del_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2788 {
2789 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2790 	struct waiting_dir_move *entry;
2791 
2792 	while (n) {
2793 		entry = rb_entry(n, struct waiting_dir_move, node);
2794 		if (ino < entry->ino) {
2795 			n = n->rb_left;
2796 		} else if (ino > entry->ino) {
2797 			n = n->rb_right;
2798 		} else {
2799 			rb_erase(&entry->node, &sctx->waiting_dir_moves);
2800 			kfree(entry);
2801 			return 0;
2802 		}
2803 	}
2804 	return -ENOENT;
2805 }
2806 
2807 static int add_pending_dir_move(struct send_ctx *sctx, u64 parent_ino)
2808 {
2809 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
2810 	struct rb_node *parent = NULL;
2811 	struct pending_dir_move *entry, *pm;
2812 	struct recorded_ref *cur;
2813 	int exists = 0;
2814 	int ret;
2815 
2816 	pm = kmalloc(sizeof(*pm), GFP_NOFS);
2817 	if (!pm)
2818 		return -ENOMEM;
2819 	pm->parent_ino = parent_ino;
2820 	pm->ino = sctx->cur_ino;
2821 	pm->gen = sctx->cur_inode_gen;
2822 	INIT_LIST_HEAD(&pm->list);
2823 	INIT_LIST_HEAD(&pm->update_refs);
2824 	RB_CLEAR_NODE(&pm->node);
2825 
2826 	while (*p) {
2827 		parent = *p;
2828 		entry = rb_entry(parent, struct pending_dir_move, node);
2829 		if (parent_ino < entry->parent_ino) {
2830 			p = &(*p)->rb_left;
2831 		} else if (parent_ino > entry->parent_ino) {
2832 			p = &(*p)->rb_right;
2833 		} else {
2834 			exists = 1;
2835 			break;
2836 		}
2837 	}
2838 
2839 	list_for_each_entry(cur, &sctx->deleted_refs, list) {
2840 		ret = dup_ref(cur, &pm->update_refs);
2841 		if (ret < 0)
2842 			goto out;
2843 	}
2844 	list_for_each_entry(cur, &sctx->new_refs, list) {
2845 		ret = dup_ref(cur, &pm->update_refs);
2846 		if (ret < 0)
2847 			goto out;
2848 	}
2849 
2850 	ret = add_waiting_dir_move(sctx, pm->ino);
2851 	if (ret)
2852 		goto out;
2853 
2854 	if (exists) {
2855 		list_add_tail(&pm->list, &entry->list);
2856 	} else {
2857 		rb_link_node(&pm->node, parent, p);
2858 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
2859 	}
2860 	ret = 0;
2861 out:
2862 	if (ret) {
2863 		__free_recorded_refs(&pm->update_refs);
2864 		kfree(pm);
2865 	}
2866 	return ret;
2867 }
2868 
2869 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
2870 						      u64 parent_ino)
2871 {
2872 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
2873 	struct pending_dir_move *entry;
2874 
2875 	while (n) {
2876 		entry = rb_entry(n, struct pending_dir_move, node);
2877 		if (parent_ino < entry->parent_ino)
2878 			n = n->rb_left;
2879 		else if (parent_ino > entry->parent_ino)
2880 			n = n->rb_right;
2881 		else
2882 			return entry;
2883 	}
2884 	return NULL;
2885 }
2886 
2887 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
2888 {
2889 	struct fs_path *from_path = NULL;
2890 	struct fs_path *to_path = NULL;
2891 	u64 orig_progress = sctx->send_progress;
2892 	struct recorded_ref *cur;
2893 	int ret;
2894 
2895 	from_path = fs_path_alloc();
2896 	if (!from_path)
2897 		return -ENOMEM;
2898 
2899 	sctx->send_progress = pm->ino;
2900 	ret = get_cur_path(sctx, pm->ino, pm->gen, from_path);
2901 	if (ret < 0)
2902 		goto out;
2903 
2904 	to_path = fs_path_alloc();
2905 	if (!to_path) {
2906 		ret = -ENOMEM;
2907 		goto out;
2908 	}
2909 
2910 	sctx->send_progress = sctx->cur_ino + 1;
2911 	ret = del_waiting_dir_move(sctx, pm->ino);
2912 	ASSERT(ret == 0);
2913 
2914 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
2915 	if (ret < 0)
2916 		goto out;
2917 
2918 	ret = send_rename(sctx, from_path, to_path);
2919 	if (ret < 0)
2920 		goto out;
2921 
2922 	ret = send_utimes(sctx, pm->ino, pm->gen);
2923 	if (ret < 0)
2924 		goto out;
2925 
2926 	/*
2927 	 * After rename/move, need to update the utimes of both new parent(s)
2928 	 * and old parent(s).
2929 	 */
2930 	list_for_each_entry(cur, &pm->update_refs, list) {
2931 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
2932 		if (ret < 0)
2933 			goto out;
2934 	}
2935 
2936 out:
2937 	fs_path_free(from_path);
2938 	fs_path_free(to_path);
2939 	sctx->send_progress = orig_progress;
2940 
2941 	return ret;
2942 }
2943 
2944 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
2945 {
2946 	if (!list_empty(&m->list))
2947 		list_del(&m->list);
2948 	if (!RB_EMPTY_NODE(&m->node))
2949 		rb_erase(&m->node, &sctx->pending_dir_moves);
2950 	__free_recorded_refs(&m->update_refs);
2951 	kfree(m);
2952 }
2953 
2954 static void tail_append_pending_moves(struct pending_dir_move *moves,
2955 				      struct list_head *stack)
2956 {
2957 	if (list_empty(&moves->list)) {
2958 		list_add_tail(&moves->list, stack);
2959 	} else {
2960 		LIST_HEAD(list);
2961 		list_splice_init(&moves->list, &list);
2962 		list_add_tail(&moves->list, stack);
2963 		list_splice_tail(&list, stack);
2964 	}
2965 }
2966 
2967 static int apply_children_dir_moves(struct send_ctx *sctx)
2968 {
2969 	struct pending_dir_move *pm;
2970 	struct list_head stack;
2971 	u64 parent_ino = sctx->cur_ino;
2972 	int ret = 0;
2973 
2974 	pm = get_pending_dir_moves(sctx, parent_ino);
2975 	if (!pm)
2976 		return 0;
2977 
2978 	INIT_LIST_HEAD(&stack);
2979 	tail_append_pending_moves(pm, &stack);
2980 
2981 	while (!list_empty(&stack)) {
2982 		pm = list_first_entry(&stack, struct pending_dir_move, list);
2983 		parent_ino = pm->ino;
2984 		ret = apply_dir_move(sctx, pm);
2985 		free_pending_move(sctx, pm);
2986 		if (ret)
2987 			goto out;
2988 		pm = get_pending_dir_moves(sctx, parent_ino);
2989 		if (pm)
2990 			tail_append_pending_moves(pm, &stack);
2991 	}
2992 	return 0;
2993 
2994 out:
2995 	while (!list_empty(&stack)) {
2996 		pm = list_first_entry(&stack, struct pending_dir_move, list);
2997 		free_pending_move(sctx, pm);
2998 	}
2999 	return ret;
3000 }
3001 
3002 static int wait_for_parent_move(struct send_ctx *sctx,
3003 				struct recorded_ref *parent_ref)
3004 {
3005 	int ret;
3006 	u64 ino = parent_ref->dir;
3007 	u64 parent_ino_before, parent_ino_after;
3008 	u64 new_gen, old_gen;
3009 	struct fs_path *path_before = NULL;
3010 	struct fs_path *path_after = NULL;
3011 	int len1, len2;
3012 
3013 	if (parent_ref->dir <= sctx->cur_ino)
3014 		return 0;
3015 
3016 	if (is_waiting_for_move(sctx, ino))
3017 		return 1;
3018 
3019 	ret = get_inode_info(sctx->parent_root, ino, NULL, &old_gen,
3020 			     NULL, NULL, NULL, NULL);
3021 	if (ret == -ENOENT)
3022 		return 0;
3023 	else if (ret < 0)
3024 		return ret;
3025 
3026 	ret = get_inode_info(sctx->send_root, ino, NULL, &new_gen,
3027 			     NULL, NULL, NULL, NULL);
3028 	if (ret < 0)
3029 		return ret;
3030 
3031 	if (new_gen != old_gen)
3032 		return 0;
3033 
3034 	path_before = fs_path_alloc();
3035 	if (!path_before)
3036 		return -ENOMEM;
3037 
3038 	ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3039 			    NULL, path_before);
3040 	if (ret == -ENOENT) {
3041 		ret = 0;
3042 		goto out;
3043 	} else if (ret < 0) {
3044 		goto out;
3045 	}
3046 
3047 	path_after = fs_path_alloc();
3048 	if (!path_after) {
3049 		ret = -ENOMEM;
3050 		goto out;
3051 	}
3052 
3053 	ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3054 			    NULL, path_after);
3055 	if (ret == -ENOENT) {
3056 		ret = 0;
3057 		goto out;
3058 	} else if (ret < 0) {
3059 		goto out;
3060 	}
3061 
3062 	len1 = fs_path_len(path_before);
3063 	len2 = fs_path_len(path_after);
3064 	if ((parent_ino_before != parent_ino_after) && (len1 != len2 ||
3065 	     memcmp(path_before->start, path_after->start, len1))) {
3066 		ret = 1;
3067 		goto out;
3068 	}
3069 	ret = 0;
3070 
3071 out:
3072 	fs_path_free(path_before);
3073 	fs_path_free(path_after);
3074 
3075 	return ret;
3076 }
3077 
3078 /*
3079  * This does all the move/link/unlink/rmdir magic.
3080  */
3081 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3082 {
3083 	int ret = 0;
3084 	struct recorded_ref *cur;
3085 	struct recorded_ref *cur2;
3086 	struct list_head check_dirs;
3087 	struct fs_path *valid_path = NULL;
3088 	u64 ow_inode = 0;
3089 	u64 ow_gen;
3090 	int did_overwrite = 0;
3091 	int is_orphan = 0;
3092 
3093 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3094 
3095 	/*
3096 	 * This should never happen as the root dir always has the same ref
3097 	 * which is always '..'
3098 	 */
3099 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3100 	INIT_LIST_HEAD(&check_dirs);
3101 
3102 	valid_path = fs_path_alloc();
3103 	if (!valid_path) {
3104 		ret = -ENOMEM;
3105 		goto out;
3106 	}
3107 
3108 	/*
3109 	 * First, check if the first ref of the current inode was overwritten
3110 	 * before. If yes, we know that the current inode was already orphanized
3111 	 * and thus use the orphan name. If not, we can use get_cur_path to
3112 	 * get the path of the first ref as it would like while receiving at
3113 	 * this point in time.
3114 	 * New inodes are always orphan at the beginning, so force to use the
3115 	 * orphan name in this case.
3116 	 * The first ref is stored in valid_path and will be updated if it
3117 	 * gets moved around.
3118 	 */
3119 	if (!sctx->cur_inode_new) {
3120 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3121 				sctx->cur_inode_gen);
3122 		if (ret < 0)
3123 			goto out;
3124 		if (ret)
3125 			did_overwrite = 1;
3126 	}
3127 	if (sctx->cur_inode_new || did_overwrite) {
3128 		ret = gen_unique_name(sctx, sctx->cur_ino,
3129 				sctx->cur_inode_gen, valid_path);
3130 		if (ret < 0)
3131 			goto out;
3132 		is_orphan = 1;
3133 	} else {
3134 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3135 				valid_path);
3136 		if (ret < 0)
3137 			goto out;
3138 	}
3139 
3140 	list_for_each_entry(cur, &sctx->new_refs, list) {
3141 		/*
3142 		 * We may have refs where the parent directory does not exist
3143 		 * yet. This happens if the parent directories inum is higher
3144 		 * the the current inum. To handle this case, we create the
3145 		 * parent directory out of order. But we need to check if this
3146 		 * did already happen before due to other refs in the same dir.
3147 		 */
3148 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3149 		if (ret < 0)
3150 			goto out;
3151 		if (ret == inode_state_will_create) {
3152 			ret = 0;
3153 			/*
3154 			 * First check if any of the current inodes refs did
3155 			 * already create the dir.
3156 			 */
3157 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3158 				if (cur == cur2)
3159 					break;
3160 				if (cur2->dir == cur->dir) {
3161 					ret = 1;
3162 					break;
3163 				}
3164 			}
3165 
3166 			/*
3167 			 * If that did not happen, check if a previous inode
3168 			 * did already create the dir.
3169 			 */
3170 			if (!ret)
3171 				ret = did_create_dir(sctx, cur->dir);
3172 			if (ret < 0)
3173 				goto out;
3174 			if (!ret) {
3175 				ret = send_create_inode(sctx, cur->dir);
3176 				if (ret < 0)
3177 					goto out;
3178 			}
3179 		}
3180 
3181 		/*
3182 		 * Check if this new ref would overwrite the first ref of
3183 		 * another unprocessed inode. If yes, orphanize the
3184 		 * overwritten inode. If we find an overwritten ref that is
3185 		 * not the first ref, simply unlink it.
3186 		 */
3187 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3188 				cur->name, cur->name_len,
3189 				&ow_inode, &ow_gen);
3190 		if (ret < 0)
3191 			goto out;
3192 		if (ret) {
3193 			ret = is_first_ref(sctx->parent_root,
3194 					   ow_inode, cur->dir, cur->name,
3195 					   cur->name_len);
3196 			if (ret < 0)
3197 				goto out;
3198 			if (ret) {
3199 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3200 						cur->full_path);
3201 				if (ret < 0)
3202 					goto out;
3203 			} else {
3204 				ret = send_unlink(sctx, cur->full_path);
3205 				if (ret < 0)
3206 					goto out;
3207 			}
3208 		}
3209 
3210 		/*
3211 		 * link/move the ref to the new place. If we have an orphan
3212 		 * inode, move it and update valid_path. If not, link or move
3213 		 * it depending on the inode mode.
3214 		 */
3215 		if (is_orphan) {
3216 			ret = send_rename(sctx, valid_path, cur->full_path);
3217 			if (ret < 0)
3218 				goto out;
3219 			is_orphan = 0;
3220 			ret = fs_path_copy(valid_path, cur->full_path);
3221 			if (ret < 0)
3222 				goto out;
3223 		} else {
3224 			if (S_ISDIR(sctx->cur_inode_mode)) {
3225 				/*
3226 				 * Dirs can't be linked, so move it. For moved
3227 				 * dirs, we always have one new and one deleted
3228 				 * ref. The deleted ref is ignored later.
3229 				 */
3230 				if (wait_for_parent_move(sctx, cur)) {
3231 					ret = add_pending_dir_move(sctx,
3232 								   cur->dir);
3233 					*pending_move = 1;
3234 				} else {
3235 					ret = send_rename(sctx, valid_path,
3236 							  cur->full_path);
3237 					if (!ret)
3238 						ret = fs_path_copy(valid_path,
3239 							       cur->full_path);
3240 				}
3241 				if (ret < 0)
3242 					goto out;
3243 			} else {
3244 				ret = send_link(sctx, cur->full_path,
3245 						valid_path);
3246 				if (ret < 0)
3247 					goto out;
3248 			}
3249 		}
3250 		ret = dup_ref(cur, &check_dirs);
3251 		if (ret < 0)
3252 			goto out;
3253 	}
3254 
3255 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3256 		/*
3257 		 * Check if we can already rmdir the directory. If not,
3258 		 * orphanize it. For every dir item inside that gets deleted
3259 		 * later, we do this check again and rmdir it then if possible.
3260 		 * See the use of check_dirs for more details.
3261 		 */
3262 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_ino);
3263 		if (ret < 0)
3264 			goto out;
3265 		if (ret) {
3266 			ret = send_rmdir(sctx, valid_path);
3267 			if (ret < 0)
3268 				goto out;
3269 		} else if (!is_orphan) {
3270 			ret = orphanize_inode(sctx, sctx->cur_ino,
3271 					sctx->cur_inode_gen, valid_path);
3272 			if (ret < 0)
3273 				goto out;
3274 			is_orphan = 1;
3275 		}
3276 
3277 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3278 			ret = dup_ref(cur, &check_dirs);
3279 			if (ret < 0)
3280 				goto out;
3281 		}
3282 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
3283 		   !list_empty(&sctx->deleted_refs)) {
3284 		/*
3285 		 * We have a moved dir. Add the old parent to check_dirs
3286 		 */
3287 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3288 				list);
3289 		ret = dup_ref(cur, &check_dirs);
3290 		if (ret < 0)
3291 			goto out;
3292 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
3293 		/*
3294 		 * We have a non dir inode. Go through all deleted refs and
3295 		 * unlink them if they were not already overwritten by other
3296 		 * inodes.
3297 		 */
3298 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3299 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3300 					sctx->cur_ino, sctx->cur_inode_gen,
3301 					cur->name, cur->name_len);
3302 			if (ret < 0)
3303 				goto out;
3304 			if (!ret) {
3305 				ret = send_unlink(sctx, cur->full_path);
3306 				if (ret < 0)
3307 					goto out;
3308 			}
3309 			ret = dup_ref(cur, &check_dirs);
3310 			if (ret < 0)
3311 				goto out;
3312 		}
3313 		/*
3314 		 * If the inode is still orphan, unlink the orphan. This may
3315 		 * happen when a previous inode did overwrite the first ref
3316 		 * of this inode and no new refs were added for the current
3317 		 * inode. Unlinking does not mean that the inode is deleted in
3318 		 * all cases. There may still be links to this inode in other
3319 		 * places.
3320 		 */
3321 		if (is_orphan) {
3322 			ret = send_unlink(sctx, valid_path);
3323 			if (ret < 0)
3324 				goto out;
3325 		}
3326 	}
3327 
3328 	/*
3329 	 * We did collect all parent dirs where cur_inode was once located. We
3330 	 * now go through all these dirs and check if they are pending for
3331 	 * deletion and if it's finally possible to perform the rmdir now.
3332 	 * We also update the inode stats of the parent dirs here.
3333 	 */
3334 	list_for_each_entry(cur, &check_dirs, list) {
3335 		/*
3336 		 * In case we had refs into dirs that were not processed yet,
3337 		 * we don't need to do the utime and rmdir logic for these dirs.
3338 		 * The dir will be processed later.
3339 		 */
3340 		if (cur->dir > sctx->cur_ino)
3341 			continue;
3342 
3343 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3344 		if (ret < 0)
3345 			goto out;
3346 
3347 		if (ret == inode_state_did_create ||
3348 		    ret == inode_state_no_change) {
3349 			/* TODO delayed utimes */
3350 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3351 			if (ret < 0)
3352 				goto out;
3353 		} else if (ret == inode_state_did_delete) {
3354 			ret = can_rmdir(sctx, cur->dir, sctx->cur_ino);
3355 			if (ret < 0)
3356 				goto out;
3357 			if (ret) {
3358 				ret = get_cur_path(sctx, cur->dir,
3359 						   cur->dir_gen, valid_path);
3360 				if (ret < 0)
3361 					goto out;
3362 				ret = send_rmdir(sctx, valid_path);
3363 				if (ret < 0)
3364 					goto out;
3365 			}
3366 		}
3367 	}
3368 
3369 	ret = 0;
3370 
3371 out:
3372 	__free_recorded_refs(&check_dirs);
3373 	free_recorded_refs(sctx);
3374 	fs_path_free(valid_path);
3375 	return ret;
3376 }
3377 
3378 static int __record_new_ref(int num, u64 dir, int index,
3379 			    struct fs_path *name,
3380 			    void *ctx)
3381 {
3382 	int ret = 0;
3383 	struct send_ctx *sctx = ctx;
3384 	struct fs_path *p;
3385 	u64 gen;
3386 
3387 	p = fs_path_alloc();
3388 	if (!p)
3389 		return -ENOMEM;
3390 
3391 	ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, NULL,
3392 			NULL, NULL);
3393 	if (ret < 0)
3394 		goto out;
3395 
3396 	ret = get_cur_path(sctx, dir, gen, p);
3397 	if (ret < 0)
3398 		goto out;
3399 	ret = fs_path_add_path(p, name);
3400 	if (ret < 0)
3401 		goto out;
3402 
3403 	ret = record_ref(&sctx->new_refs, dir, gen, p);
3404 
3405 out:
3406 	if (ret)
3407 		fs_path_free(p);
3408 	return ret;
3409 }
3410 
3411 static int __record_deleted_ref(int num, u64 dir, int index,
3412 				struct fs_path *name,
3413 				void *ctx)
3414 {
3415 	int ret = 0;
3416 	struct send_ctx *sctx = ctx;
3417 	struct fs_path *p;
3418 	u64 gen;
3419 
3420 	p = fs_path_alloc();
3421 	if (!p)
3422 		return -ENOMEM;
3423 
3424 	ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, NULL,
3425 			NULL, NULL);
3426 	if (ret < 0)
3427 		goto out;
3428 
3429 	ret = get_cur_path(sctx, dir, gen, p);
3430 	if (ret < 0)
3431 		goto out;
3432 	ret = fs_path_add_path(p, name);
3433 	if (ret < 0)
3434 		goto out;
3435 
3436 	ret = record_ref(&sctx->deleted_refs, dir, gen, p);
3437 
3438 out:
3439 	if (ret)
3440 		fs_path_free(p);
3441 	return ret;
3442 }
3443 
3444 static int record_new_ref(struct send_ctx *sctx)
3445 {
3446 	int ret;
3447 
3448 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3449 				sctx->cmp_key, 0, __record_new_ref, sctx);
3450 	if (ret < 0)
3451 		goto out;
3452 	ret = 0;
3453 
3454 out:
3455 	return ret;
3456 }
3457 
3458 static int record_deleted_ref(struct send_ctx *sctx)
3459 {
3460 	int ret;
3461 
3462 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3463 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
3464 	if (ret < 0)
3465 		goto out;
3466 	ret = 0;
3467 
3468 out:
3469 	return ret;
3470 }
3471 
3472 struct find_ref_ctx {
3473 	u64 dir;
3474 	u64 dir_gen;
3475 	struct btrfs_root *root;
3476 	struct fs_path *name;
3477 	int found_idx;
3478 };
3479 
3480 static int __find_iref(int num, u64 dir, int index,
3481 		       struct fs_path *name,
3482 		       void *ctx_)
3483 {
3484 	struct find_ref_ctx *ctx = ctx_;
3485 	u64 dir_gen;
3486 	int ret;
3487 
3488 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3489 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3490 		/*
3491 		 * To avoid doing extra lookups we'll only do this if everything
3492 		 * else matches.
3493 		 */
3494 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3495 				     NULL, NULL, NULL);
3496 		if (ret)
3497 			return ret;
3498 		if (dir_gen != ctx->dir_gen)
3499 			return 0;
3500 		ctx->found_idx = num;
3501 		return 1;
3502 	}
3503 	return 0;
3504 }
3505 
3506 static int find_iref(struct btrfs_root *root,
3507 		     struct btrfs_path *path,
3508 		     struct btrfs_key *key,
3509 		     u64 dir, u64 dir_gen, struct fs_path *name)
3510 {
3511 	int ret;
3512 	struct find_ref_ctx ctx;
3513 
3514 	ctx.dir = dir;
3515 	ctx.name = name;
3516 	ctx.dir_gen = dir_gen;
3517 	ctx.found_idx = -1;
3518 	ctx.root = root;
3519 
3520 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3521 	if (ret < 0)
3522 		return ret;
3523 
3524 	if (ctx.found_idx == -1)
3525 		return -ENOENT;
3526 
3527 	return ctx.found_idx;
3528 }
3529 
3530 static int __record_changed_new_ref(int num, u64 dir, int index,
3531 				    struct fs_path *name,
3532 				    void *ctx)
3533 {
3534 	u64 dir_gen;
3535 	int ret;
3536 	struct send_ctx *sctx = ctx;
3537 
3538 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3539 			     NULL, NULL, NULL);
3540 	if (ret)
3541 		return ret;
3542 
3543 	ret = find_iref(sctx->parent_root, sctx->right_path,
3544 			sctx->cmp_key, dir, dir_gen, name);
3545 	if (ret == -ENOENT)
3546 		ret = __record_new_ref(num, dir, index, name, sctx);
3547 	else if (ret > 0)
3548 		ret = 0;
3549 
3550 	return ret;
3551 }
3552 
3553 static int __record_changed_deleted_ref(int num, u64 dir, int index,
3554 					struct fs_path *name,
3555 					void *ctx)
3556 {
3557 	u64 dir_gen;
3558 	int ret;
3559 	struct send_ctx *sctx = ctx;
3560 
3561 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
3562 			     NULL, NULL, NULL);
3563 	if (ret)
3564 		return ret;
3565 
3566 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
3567 			dir, dir_gen, name);
3568 	if (ret == -ENOENT)
3569 		ret = __record_deleted_ref(num, dir, index, name, sctx);
3570 	else if (ret > 0)
3571 		ret = 0;
3572 
3573 	return ret;
3574 }
3575 
3576 static int record_changed_ref(struct send_ctx *sctx)
3577 {
3578 	int ret = 0;
3579 
3580 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3581 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3582 	if (ret < 0)
3583 		goto out;
3584 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3585 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3586 	if (ret < 0)
3587 		goto out;
3588 	ret = 0;
3589 
3590 out:
3591 	return ret;
3592 }
3593 
3594 /*
3595  * Record and process all refs at once. Needed when an inode changes the
3596  * generation number, which means that it was deleted and recreated.
3597  */
3598 static int process_all_refs(struct send_ctx *sctx,
3599 			    enum btrfs_compare_tree_result cmd)
3600 {
3601 	int ret;
3602 	struct btrfs_root *root;
3603 	struct btrfs_path *path;
3604 	struct btrfs_key key;
3605 	struct btrfs_key found_key;
3606 	struct extent_buffer *eb;
3607 	int slot;
3608 	iterate_inode_ref_t cb;
3609 	int pending_move = 0;
3610 
3611 	path = alloc_path_for_send();
3612 	if (!path)
3613 		return -ENOMEM;
3614 
3615 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
3616 		root = sctx->send_root;
3617 		cb = __record_new_ref;
3618 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
3619 		root = sctx->parent_root;
3620 		cb = __record_deleted_ref;
3621 	} else {
3622 		BUG();
3623 	}
3624 
3625 	key.objectid = sctx->cmp_key->objectid;
3626 	key.type = BTRFS_INODE_REF_KEY;
3627 	key.offset = 0;
3628 	while (1) {
3629 		ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3630 		if (ret < 0)
3631 			goto out;
3632 		if (ret)
3633 			break;
3634 
3635 		eb = path->nodes[0];
3636 		slot = path->slots[0];
3637 		btrfs_item_key_to_cpu(eb, &found_key, slot);
3638 
3639 		if (found_key.objectid != key.objectid ||
3640 		    (found_key.type != BTRFS_INODE_REF_KEY &&
3641 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
3642 			break;
3643 
3644 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
3645 		btrfs_release_path(path);
3646 		if (ret < 0)
3647 			goto out;
3648 
3649 		key.offset = found_key.offset + 1;
3650 	}
3651 	btrfs_release_path(path);
3652 
3653 	ret = process_recorded_refs(sctx, &pending_move);
3654 	/* Only applicable to an incremental send. */
3655 	ASSERT(pending_move == 0);
3656 
3657 out:
3658 	btrfs_free_path(path);
3659 	return ret;
3660 }
3661 
3662 static int send_set_xattr(struct send_ctx *sctx,
3663 			  struct fs_path *path,
3664 			  const char *name, int name_len,
3665 			  const char *data, int data_len)
3666 {
3667 	int ret = 0;
3668 
3669 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
3670 	if (ret < 0)
3671 		goto out;
3672 
3673 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3674 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3675 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
3676 
3677 	ret = send_cmd(sctx);
3678 
3679 tlv_put_failure:
3680 out:
3681 	return ret;
3682 }
3683 
3684 static int send_remove_xattr(struct send_ctx *sctx,
3685 			  struct fs_path *path,
3686 			  const char *name, int name_len)
3687 {
3688 	int ret = 0;
3689 
3690 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
3691 	if (ret < 0)
3692 		goto out;
3693 
3694 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3695 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3696 
3697 	ret = send_cmd(sctx);
3698 
3699 tlv_put_failure:
3700 out:
3701 	return ret;
3702 }
3703 
3704 static int __process_new_xattr(int num, struct btrfs_key *di_key,
3705 			       const char *name, int name_len,
3706 			       const char *data, int data_len,
3707 			       u8 type, void *ctx)
3708 {
3709 	int ret;
3710 	struct send_ctx *sctx = ctx;
3711 	struct fs_path *p;
3712 	posix_acl_xattr_header dummy_acl;
3713 
3714 	p = fs_path_alloc();
3715 	if (!p)
3716 		return -ENOMEM;
3717 
3718 	/*
3719 	 * This hack is needed because empty acl's are stored as zero byte
3720 	 * data in xattrs. Problem with that is, that receiving these zero byte
3721 	 * acl's will fail later. To fix this, we send a dummy acl list that
3722 	 * only contains the version number and no entries.
3723 	 */
3724 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
3725 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
3726 		if (data_len == 0) {
3727 			dummy_acl.a_version =
3728 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
3729 			data = (char *)&dummy_acl;
3730 			data_len = sizeof(dummy_acl);
3731 		}
3732 	}
3733 
3734 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3735 	if (ret < 0)
3736 		goto out;
3737 
3738 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
3739 
3740 out:
3741 	fs_path_free(p);
3742 	return ret;
3743 }
3744 
3745 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
3746 				   const char *name, int name_len,
3747 				   const char *data, int data_len,
3748 				   u8 type, void *ctx)
3749 {
3750 	int ret;
3751 	struct send_ctx *sctx = ctx;
3752 	struct fs_path *p;
3753 
3754 	p = fs_path_alloc();
3755 	if (!p)
3756 		return -ENOMEM;
3757 
3758 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3759 	if (ret < 0)
3760 		goto out;
3761 
3762 	ret = send_remove_xattr(sctx, p, name, name_len);
3763 
3764 out:
3765 	fs_path_free(p);
3766 	return ret;
3767 }
3768 
3769 static int process_new_xattr(struct send_ctx *sctx)
3770 {
3771 	int ret = 0;
3772 
3773 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
3774 			       sctx->cmp_key, __process_new_xattr, sctx);
3775 
3776 	return ret;
3777 }
3778 
3779 static int process_deleted_xattr(struct send_ctx *sctx)
3780 {
3781 	int ret;
3782 
3783 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
3784 			       sctx->cmp_key, __process_deleted_xattr, sctx);
3785 
3786 	return ret;
3787 }
3788 
3789 struct find_xattr_ctx {
3790 	const char *name;
3791 	int name_len;
3792 	int found_idx;
3793 	char *found_data;
3794 	int found_data_len;
3795 };
3796 
3797 static int __find_xattr(int num, struct btrfs_key *di_key,
3798 			const char *name, int name_len,
3799 			const char *data, int data_len,
3800 			u8 type, void *vctx)
3801 {
3802 	struct find_xattr_ctx *ctx = vctx;
3803 
3804 	if (name_len == ctx->name_len &&
3805 	    strncmp(name, ctx->name, name_len) == 0) {
3806 		ctx->found_idx = num;
3807 		ctx->found_data_len = data_len;
3808 		ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
3809 		if (!ctx->found_data)
3810 			return -ENOMEM;
3811 		return 1;
3812 	}
3813 	return 0;
3814 }
3815 
3816 static int find_xattr(struct btrfs_root *root,
3817 		      struct btrfs_path *path,
3818 		      struct btrfs_key *key,
3819 		      const char *name, int name_len,
3820 		      char **data, int *data_len)
3821 {
3822 	int ret;
3823 	struct find_xattr_ctx ctx;
3824 
3825 	ctx.name = name;
3826 	ctx.name_len = name_len;
3827 	ctx.found_idx = -1;
3828 	ctx.found_data = NULL;
3829 	ctx.found_data_len = 0;
3830 
3831 	ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
3832 	if (ret < 0)
3833 		return ret;
3834 
3835 	if (ctx.found_idx == -1)
3836 		return -ENOENT;
3837 	if (data) {
3838 		*data = ctx.found_data;
3839 		*data_len = ctx.found_data_len;
3840 	} else {
3841 		kfree(ctx.found_data);
3842 	}
3843 	return ctx.found_idx;
3844 }
3845 
3846 
3847 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
3848 				       const char *name, int name_len,
3849 				       const char *data, int data_len,
3850 				       u8 type, void *ctx)
3851 {
3852 	int ret;
3853 	struct send_ctx *sctx = ctx;
3854 	char *found_data = NULL;
3855 	int found_data_len  = 0;
3856 
3857 	ret = find_xattr(sctx->parent_root, sctx->right_path,
3858 			 sctx->cmp_key, name, name_len, &found_data,
3859 			 &found_data_len);
3860 	if (ret == -ENOENT) {
3861 		ret = __process_new_xattr(num, di_key, name, name_len, data,
3862 				data_len, type, ctx);
3863 	} else if (ret >= 0) {
3864 		if (data_len != found_data_len ||
3865 		    memcmp(data, found_data, data_len)) {
3866 			ret = __process_new_xattr(num, di_key, name, name_len,
3867 					data, data_len, type, ctx);
3868 		} else {
3869 			ret = 0;
3870 		}
3871 	}
3872 
3873 	kfree(found_data);
3874 	return ret;
3875 }
3876 
3877 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
3878 					   const char *name, int name_len,
3879 					   const char *data, int data_len,
3880 					   u8 type, void *ctx)
3881 {
3882 	int ret;
3883 	struct send_ctx *sctx = ctx;
3884 
3885 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
3886 			 name, name_len, NULL, NULL);
3887 	if (ret == -ENOENT)
3888 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
3889 				data_len, type, ctx);
3890 	else if (ret >= 0)
3891 		ret = 0;
3892 
3893 	return ret;
3894 }
3895 
3896 static int process_changed_xattr(struct send_ctx *sctx)
3897 {
3898 	int ret = 0;
3899 
3900 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
3901 			sctx->cmp_key, __process_changed_new_xattr, sctx);
3902 	if (ret < 0)
3903 		goto out;
3904 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
3905 			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
3906 
3907 out:
3908 	return ret;
3909 }
3910 
3911 static int process_all_new_xattrs(struct send_ctx *sctx)
3912 {
3913 	int ret;
3914 	struct btrfs_root *root;
3915 	struct btrfs_path *path;
3916 	struct btrfs_key key;
3917 	struct btrfs_key found_key;
3918 	struct extent_buffer *eb;
3919 	int slot;
3920 
3921 	path = alloc_path_for_send();
3922 	if (!path)
3923 		return -ENOMEM;
3924 
3925 	root = sctx->send_root;
3926 
3927 	key.objectid = sctx->cmp_key->objectid;
3928 	key.type = BTRFS_XATTR_ITEM_KEY;
3929 	key.offset = 0;
3930 	while (1) {
3931 		ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3932 		if (ret < 0)
3933 			goto out;
3934 		if (ret) {
3935 			ret = 0;
3936 			goto out;
3937 		}
3938 
3939 		eb = path->nodes[0];
3940 		slot = path->slots[0];
3941 		btrfs_item_key_to_cpu(eb, &found_key, slot);
3942 
3943 		if (found_key.objectid != key.objectid ||
3944 		    found_key.type != key.type) {
3945 			ret = 0;
3946 			goto out;
3947 		}
3948 
3949 		ret = iterate_dir_item(root, path, &found_key,
3950 				       __process_new_xattr, sctx);
3951 		if (ret < 0)
3952 			goto out;
3953 
3954 		btrfs_release_path(path);
3955 		key.offset = found_key.offset + 1;
3956 	}
3957 
3958 out:
3959 	btrfs_free_path(path);
3960 	return ret;
3961 }
3962 
3963 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
3964 {
3965 	struct btrfs_root *root = sctx->send_root;
3966 	struct btrfs_fs_info *fs_info = root->fs_info;
3967 	struct inode *inode;
3968 	struct page *page;
3969 	char *addr;
3970 	struct btrfs_key key;
3971 	pgoff_t index = offset >> PAGE_CACHE_SHIFT;
3972 	pgoff_t last_index;
3973 	unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
3974 	ssize_t ret = 0;
3975 
3976 	key.objectid = sctx->cur_ino;
3977 	key.type = BTRFS_INODE_ITEM_KEY;
3978 	key.offset = 0;
3979 
3980 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3981 	if (IS_ERR(inode))
3982 		return PTR_ERR(inode);
3983 
3984 	if (offset + len > i_size_read(inode)) {
3985 		if (offset > i_size_read(inode))
3986 			len = 0;
3987 		else
3988 			len = offset - i_size_read(inode);
3989 	}
3990 	if (len == 0)
3991 		goto out;
3992 
3993 	last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
3994 	while (index <= last_index) {
3995 		unsigned cur_len = min_t(unsigned, len,
3996 					 PAGE_CACHE_SIZE - pg_offset);
3997 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3998 		if (!page) {
3999 			ret = -ENOMEM;
4000 			break;
4001 		}
4002 
4003 		if (!PageUptodate(page)) {
4004 			btrfs_readpage(NULL, page);
4005 			lock_page(page);
4006 			if (!PageUptodate(page)) {
4007 				unlock_page(page);
4008 				page_cache_release(page);
4009 				ret = -EIO;
4010 				break;
4011 			}
4012 		}
4013 
4014 		addr = kmap(page);
4015 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4016 		kunmap(page);
4017 		unlock_page(page);
4018 		page_cache_release(page);
4019 		index++;
4020 		pg_offset = 0;
4021 		len -= cur_len;
4022 		ret += cur_len;
4023 	}
4024 out:
4025 	iput(inode);
4026 	return ret;
4027 }
4028 
4029 /*
4030  * Read some bytes from the current inode/file and send a write command to
4031  * user space.
4032  */
4033 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4034 {
4035 	int ret = 0;
4036 	struct fs_path *p;
4037 	ssize_t num_read = 0;
4038 
4039 	p = fs_path_alloc();
4040 	if (!p)
4041 		return -ENOMEM;
4042 
4043 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4044 
4045 	num_read = fill_read_buf(sctx, offset, len);
4046 	if (num_read <= 0) {
4047 		if (num_read < 0)
4048 			ret = num_read;
4049 		goto out;
4050 	}
4051 
4052 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4053 	if (ret < 0)
4054 		goto out;
4055 
4056 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4057 	if (ret < 0)
4058 		goto out;
4059 
4060 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4061 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4062 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4063 
4064 	ret = send_cmd(sctx);
4065 
4066 tlv_put_failure:
4067 out:
4068 	fs_path_free(p);
4069 	if (ret < 0)
4070 		return ret;
4071 	return num_read;
4072 }
4073 
4074 /*
4075  * Send a clone command to user space.
4076  */
4077 static int send_clone(struct send_ctx *sctx,
4078 		      u64 offset, u32 len,
4079 		      struct clone_root *clone_root)
4080 {
4081 	int ret = 0;
4082 	struct fs_path *p;
4083 	u64 gen;
4084 
4085 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4086 	       "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4087 		clone_root->root->objectid, clone_root->ino,
4088 		clone_root->offset);
4089 
4090 	p = fs_path_alloc();
4091 	if (!p)
4092 		return -ENOMEM;
4093 
4094 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4095 	if (ret < 0)
4096 		goto out;
4097 
4098 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4099 	if (ret < 0)
4100 		goto out;
4101 
4102 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4103 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4104 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4105 
4106 	if (clone_root->root == sctx->send_root) {
4107 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4108 				&gen, NULL, NULL, NULL, NULL);
4109 		if (ret < 0)
4110 			goto out;
4111 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4112 	} else {
4113 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4114 	}
4115 	if (ret < 0)
4116 		goto out;
4117 
4118 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4119 			clone_root->root->root_item.uuid);
4120 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4121 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4122 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4123 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4124 			clone_root->offset);
4125 
4126 	ret = send_cmd(sctx);
4127 
4128 tlv_put_failure:
4129 out:
4130 	fs_path_free(p);
4131 	return ret;
4132 }
4133 
4134 /*
4135  * Send an update extent command to user space.
4136  */
4137 static int send_update_extent(struct send_ctx *sctx,
4138 			      u64 offset, u32 len)
4139 {
4140 	int ret = 0;
4141 	struct fs_path *p;
4142 
4143 	p = fs_path_alloc();
4144 	if (!p)
4145 		return -ENOMEM;
4146 
4147 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4148 	if (ret < 0)
4149 		goto out;
4150 
4151 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4152 	if (ret < 0)
4153 		goto out;
4154 
4155 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4156 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4157 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4158 
4159 	ret = send_cmd(sctx);
4160 
4161 tlv_put_failure:
4162 out:
4163 	fs_path_free(p);
4164 	return ret;
4165 }
4166 
4167 static int send_hole(struct send_ctx *sctx, u64 end)
4168 {
4169 	struct fs_path *p = NULL;
4170 	u64 offset = sctx->cur_inode_last_extent;
4171 	u64 len;
4172 	int ret = 0;
4173 
4174 	p = fs_path_alloc();
4175 	if (!p)
4176 		return -ENOMEM;
4177 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4178 	while (offset < end) {
4179 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4180 
4181 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4182 		if (ret < 0)
4183 			break;
4184 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4185 		if (ret < 0)
4186 			break;
4187 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4188 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4189 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4190 		ret = send_cmd(sctx);
4191 		if (ret < 0)
4192 			break;
4193 		offset += len;
4194 	}
4195 tlv_put_failure:
4196 	fs_path_free(p);
4197 	return ret;
4198 }
4199 
4200 static int send_write_or_clone(struct send_ctx *sctx,
4201 			       struct btrfs_path *path,
4202 			       struct btrfs_key *key,
4203 			       struct clone_root *clone_root)
4204 {
4205 	int ret = 0;
4206 	struct btrfs_file_extent_item *ei;
4207 	u64 offset = key->offset;
4208 	u64 pos = 0;
4209 	u64 len;
4210 	u32 l;
4211 	u8 type;
4212 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4213 
4214 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4215 			struct btrfs_file_extent_item);
4216 	type = btrfs_file_extent_type(path->nodes[0], ei);
4217 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4218 		len = btrfs_file_extent_inline_len(path->nodes[0],
4219 						   path->slots[0], ei);
4220 		/*
4221 		 * it is possible the inline item won't cover the whole page,
4222 		 * but there may be items after this page.  Make
4223 		 * sure to send the whole thing
4224 		 */
4225 		len = PAGE_CACHE_ALIGN(len);
4226 	} else {
4227 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4228 	}
4229 
4230 	if (offset + len > sctx->cur_inode_size)
4231 		len = sctx->cur_inode_size - offset;
4232 	if (len == 0) {
4233 		ret = 0;
4234 		goto out;
4235 	}
4236 
4237 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
4238 		ret = send_clone(sctx, offset, len, clone_root);
4239 	} else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
4240 		ret = send_update_extent(sctx, offset, len);
4241 	} else {
4242 		while (pos < len) {
4243 			l = len - pos;
4244 			if (l > BTRFS_SEND_READ_SIZE)
4245 				l = BTRFS_SEND_READ_SIZE;
4246 			ret = send_write(sctx, pos + offset, l);
4247 			if (ret < 0)
4248 				goto out;
4249 			if (!ret)
4250 				break;
4251 			pos += ret;
4252 		}
4253 		ret = 0;
4254 	}
4255 out:
4256 	return ret;
4257 }
4258 
4259 static int is_extent_unchanged(struct send_ctx *sctx,
4260 			       struct btrfs_path *left_path,
4261 			       struct btrfs_key *ekey)
4262 {
4263 	int ret = 0;
4264 	struct btrfs_key key;
4265 	struct btrfs_path *path = NULL;
4266 	struct extent_buffer *eb;
4267 	int slot;
4268 	struct btrfs_key found_key;
4269 	struct btrfs_file_extent_item *ei;
4270 	u64 left_disknr;
4271 	u64 right_disknr;
4272 	u64 left_offset;
4273 	u64 right_offset;
4274 	u64 left_offset_fixed;
4275 	u64 left_len;
4276 	u64 right_len;
4277 	u64 left_gen;
4278 	u64 right_gen;
4279 	u8 left_type;
4280 	u8 right_type;
4281 
4282 	path = alloc_path_for_send();
4283 	if (!path)
4284 		return -ENOMEM;
4285 
4286 	eb = left_path->nodes[0];
4287 	slot = left_path->slots[0];
4288 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4289 	left_type = btrfs_file_extent_type(eb, ei);
4290 
4291 	if (left_type != BTRFS_FILE_EXTENT_REG) {
4292 		ret = 0;
4293 		goto out;
4294 	}
4295 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4296 	left_len = btrfs_file_extent_num_bytes(eb, ei);
4297 	left_offset = btrfs_file_extent_offset(eb, ei);
4298 	left_gen = btrfs_file_extent_generation(eb, ei);
4299 
4300 	/*
4301 	 * Following comments will refer to these graphics. L is the left
4302 	 * extents which we are checking at the moment. 1-8 are the right
4303 	 * extents that we iterate.
4304 	 *
4305 	 *       |-----L-----|
4306 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4307 	 *
4308 	 *       |-----L-----|
4309 	 * |--1--|-2b-|...(same as above)
4310 	 *
4311 	 * Alternative situation. Happens on files where extents got split.
4312 	 *       |-----L-----|
4313 	 * |-----------7-----------|-6-|
4314 	 *
4315 	 * Alternative situation. Happens on files which got larger.
4316 	 *       |-----L-----|
4317 	 * |-8-|
4318 	 * Nothing follows after 8.
4319 	 */
4320 
4321 	key.objectid = ekey->objectid;
4322 	key.type = BTRFS_EXTENT_DATA_KEY;
4323 	key.offset = ekey->offset;
4324 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4325 	if (ret < 0)
4326 		goto out;
4327 	if (ret) {
4328 		ret = 0;
4329 		goto out;
4330 	}
4331 
4332 	/*
4333 	 * Handle special case where the right side has no extents at all.
4334 	 */
4335 	eb = path->nodes[0];
4336 	slot = path->slots[0];
4337 	btrfs_item_key_to_cpu(eb, &found_key, slot);
4338 	if (found_key.objectid != key.objectid ||
4339 	    found_key.type != key.type) {
4340 		/* If we're a hole then just pretend nothing changed */
4341 		ret = (left_disknr) ? 0 : 1;
4342 		goto out;
4343 	}
4344 
4345 	/*
4346 	 * We're now on 2a, 2b or 7.
4347 	 */
4348 	key = found_key;
4349 	while (key.offset < ekey->offset + left_len) {
4350 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4351 		right_type = btrfs_file_extent_type(eb, ei);
4352 		if (right_type != BTRFS_FILE_EXTENT_REG) {
4353 			ret = 0;
4354 			goto out;
4355 		}
4356 
4357 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4358 		right_len = btrfs_file_extent_num_bytes(eb, ei);
4359 		right_offset = btrfs_file_extent_offset(eb, ei);
4360 		right_gen = btrfs_file_extent_generation(eb, ei);
4361 
4362 		/*
4363 		 * Are we at extent 8? If yes, we know the extent is changed.
4364 		 * This may only happen on the first iteration.
4365 		 */
4366 		if (found_key.offset + right_len <= ekey->offset) {
4367 			/* If we're a hole just pretend nothing changed */
4368 			ret = (left_disknr) ? 0 : 1;
4369 			goto out;
4370 		}
4371 
4372 		left_offset_fixed = left_offset;
4373 		if (key.offset < ekey->offset) {
4374 			/* Fix the right offset for 2a and 7. */
4375 			right_offset += ekey->offset - key.offset;
4376 		} else {
4377 			/* Fix the left offset for all behind 2a and 2b */
4378 			left_offset_fixed += key.offset - ekey->offset;
4379 		}
4380 
4381 		/*
4382 		 * Check if we have the same extent.
4383 		 */
4384 		if (left_disknr != right_disknr ||
4385 		    left_offset_fixed != right_offset ||
4386 		    left_gen != right_gen) {
4387 			ret = 0;
4388 			goto out;
4389 		}
4390 
4391 		/*
4392 		 * Go to the next extent.
4393 		 */
4394 		ret = btrfs_next_item(sctx->parent_root, path);
4395 		if (ret < 0)
4396 			goto out;
4397 		if (!ret) {
4398 			eb = path->nodes[0];
4399 			slot = path->slots[0];
4400 			btrfs_item_key_to_cpu(eb, &found_key, slot);
4401 		}
4402 		if (ret || found_key.objectid != key.objectid ||
4403 		    found_key.type != key.type) {
4404 			key.offset += right_len;
4405 			break;
4406 		}
4407 		if (found_key.offset != key.offset + right_len) {
4408 			ret = 0;
4409 			goto out;
4410 		}
4411 		key = found_key;
4412 	}
4413 
4414 	/*
4415 	 * We're now behind the left extent (treat as unchanged) or at the end
4416 	 * of the right side (treat as changed).
4417 	 */
4418 	if (key.offset >= ekey->offset + left_len)
4419 		ret = 1;
4420 	else
4421 		ret = 0;
4422 
4423 
4424 out:
4425 	btrfs_free_path(path);
4426 	return ret;
4427 }
4428 
4429 static int get_last_extent(struct send_ctx *sctx, u64 offset)
4430 {
4431 	struct btrfs_path *path;
4432 	struct btrfs_root *root = sctx->send_root;
4433 	struct btrfs_file_extent_item *fi;
4434 	struct btrfs_key key;
4435 	u64 extent_end;
4436 	u8 type;
4437 	int ret;
4438 
4439 	path = alloc_path_for_send();
4440 	if (!path)
4441 		return -ENOMEM;
4442 
4443 	sctx->cur_inode_last_extent = 0;
4444 
4445 	key.objectid = sctx->cur_ino;
4446 	key.type = BTRFS_EXTENT_DATA_KEY;
4447 	key.offset = offset;
4448 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
4449 	if (ret < 0)
4450 		goto out;
4451 	ret = 0;
4452 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4453 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
4454 		goto out;
4455 
4456 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4457 			    struct btrfs_file_extent_item);
4458 	type = btrfs_file_extent_type(path->nodes[0], fi);
4459 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4460 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4461 							path->slots[0], fi);
4462 		extent_end = ALIGN(key.offset + size,
4463 				   sctx->send_root->sectorsize);
4464 	} else {
4465 		extent_end = key.offset +
4466 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
4467 	}
4468 	sctx->cur_inode_last_extent = extent_end;
4469 out:
4470 	btrfs_free_path(path);
4471 	return ret;
4472 }
4473 
4474 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
4475 			   struct btrfs_key *key)
4476 {
4477 	struct btrfs_file_extent_item *fi;
4478 	u64 extent_end;
4479 	u8 type;
4480 	int ret = 0;
4481 
4482 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
4483 		return 0;
4484 
4485 	if (sctx->cur_inode_last_extent == (u64)-1) {
4486 		ret = get_last_extent(sctx, key->offset - 1);
4487 		if (ret)
4488 			return ret;
4489 	}
4490 
4491 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4492 			    struct btrfs_file_extent_item);
4493 	type = btrfs_file_extent_type(path->nodes[0], fi);
4494 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4495 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4496 							path->slots[0], fi);
4497 		extent_end = ALIGN(key->offset + size,
4498 				   sctx->send_root->sectorsize);
4499 	} else {
4500 		extent_end = key->offset +
4501 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
4502 	}
4503 
4504 	if (path->slots[0] == 0 &&
4505 	    sctx->cur_inode_last_extent < key->offset) {
4506 		/*
4507 		 * We might have skipped entire leafs that contained only
4508 		 * file extent items for our current inode. These leafs have
4509 		 * a generation number smaller (older) than the one in the
4510 		 * current leaf and the leaf our last extent came from, and
4511 		 * are located between these 2 leafs.
4512 		 */
4513 		ret = get_last_extent(sctx, key->offset - 1);
4514 		if (ret)
4515 			return ret;
4516 	}
4517 
4518 	if (sctx->cur_inode_last_extent < key->offset)
4519 		ret = send_hole(sctx, key->offset);
4520 	sctx->cur_inode_last_extent = extent_end;
4521 	return ret;
4522 }
4523 
4524 static int process_extent(struct send_ctx *sctx,
4525 			  struct btrfs_path *path,
4526 			  struct btrfs_key *key)
4527 {
4528 	struct clone_root *found_clone = NULL;
4529 	int ret = 0;
4530 
4531 	if (S_ISLNK(sctx->cur_inode_mode))
4532 		return 0;
4533 
4534 	if (sctx->parent_root && !sctx->cur_inode_new) {
4535 		ret = is_extent_unchanged(sctx, path, key);
4536 		if (ret < 0)
4537 			goto out;
4538 		if (ret) {
4539 			ret = 0;
4540 			goto out_hole;
4541 		}
4542 	} else {
4543 		struct btrfs_file_extent_item *ei;
4544 		u8 type;
4545 
4546 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4547 				    struct btrfs_file_extent_item);
4548 		type = btrfs_file_extent_type(path->nodes[0], ei);
4549 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
4550 		    type == BTRFS_FILE_EXTENT_REG) {
4551 			/*
4552 			 * The send spec does not have a prealloc command yet,
4553 			 * so just leave a hole for prealloc'ed extents until
4554 			 * we have enough commands queued up to justify rev'ing
4555 			 * the send spec.
4556 			 */
4557 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
4558 				ret = 0;
4559 				goto out;
4560 			}
4561 
4562 			/* Have a hole, just skip it. */
4563 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
4564 				ret = 0;
4565 				goto out;
4566 			}
4567 		}
4568 	}
4569 
4570 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
4571 			sctx->cur_inode_size, &found_clone);
4572 	if (ret != -ENOENT && ret < 0)
4573 		goto out;
4574 
4575 	ret = send_write_or_clone(sctx, path, key, found_clone);
4576 	if (ret)
4577 		goto out;
4578 out_hole:
4579 	ret = maybe_send_hole(sctx, path, key);
4580 out:
4581 	return ret;
4582 }
4583 
4584 static int process_all_extents(struct send_ctx *sctx)
4585 {
4586 	int ret;
4587 	struct btrfs_root *root;
4588 	struct btrfs_path *path;
4589 	struct btrfs_key key;
4590 	struct btrfs_key found_key;
4591 	struct extent_buffer *eb;
4592 	int slot;
4593 
4594 	root = sctx->send_root;
4595 	path = alloc_path_for_send();
4596 	if (!path)
4597 		return -ENOMEM;
4598 
4599 	key.objectid = sctx->cmp_key->objectid;
4600 	key.type = BTRFS_EXTENT_DATA_KEY;
4601 	key.offset = 0;
4602 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4603 	if (ret < 0)
4604 		goto out;
4605 
4606 	while (1) {
4607 		eb = path->nodes[0];
4608 		slot = path->slots[0];
4609 
4610 		if (slot >= btrfs_header_nritems(eb)) {
4611 			ret = btrfs_next_leaf(root, path);
4612 			if (ret < 0) {
4613 				goto out;
4614 			} else if (ret > 0) {
4615 				ret = 0;
4616 				break;
4617 			}
4618 			continue;
4619 		}
4620 
4621 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4622 
4623 		if (found_key.objectid != key.objectid ||
4624 		    found_key.type != key.type) {
4625 			ret = 0;
4626 			goto out;
4627 		}
4628 
4629 		ret = process_extent(sctx, path, &found_key);
4630 		if (ret < 0)
4631 			goto out;
4632 
4633 		path->slots[0]++;
4634 	}
4635 
4636 out:
4637 	btrfs_free_path(path);
4638 	return ret;
4639 }
4640 
4641 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
4642 					   int *pending_move,
4643 					   int *refs_processed)
4644 {
4645 	int ret = 0;
4646 
4647 	if (sctx->cur_ino == 0)
4648 		goto out;
4649 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
4650 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
4651 		goto out;
4652 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
4653 		goto out;
4654 
4655 	ret = process_recorded_refs(sctx, pending_move);
4656 	if (ret < 0)
4657 		goto out;
4658 
4659 	*refs_processed = 1;
4660 out:
4661 	return ret;
4662 }
4663 
4664 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
4665 {
4666 	int ret = 0;
4667 	u64 left_mode;
4668 	u64 left_uid;
4669 	u64 left_gid;
4670 	u64 right_mode;
4671 	u64 right_uid;
4672 	u64 right_gid;
4673 	int need_chmod = 0;
4674 	int need_chown = 0;
4675 	int pending_move = 0;
4676 	int refs_processed = 0;
4677 
4678 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
4679 					      &refs_processed);
4680 	if (ret < 0)
4681 		goto out;
4682 
4683 	/*
4684 	 * We have processed the refs and thus need to advance send_progress.
4685 	 * Now, calls to get_cur_xxx will take the updated refs of the current
4686 	 * inode into account.
4687 	 *
4688 	 * On the other hand, if our current inode is a directory and couldn't
4689 	 * be moved/renamed because its parent was renamed/moved too and it has
4690 	 * a higher inode number, we can only move/rename our current inode
4691 	 * after we moved/renamed its parent. Therefore in this case operate on
4692 	 * the old path (pre move/rename) of our current inode, and the
4693 	 * move/rename will be performed later.
4694 	 */
4695 	if (refs_processed && !pending_move)
4696 		sctx->send_progress = sctx->cur_ino + 1;
4697 
4698 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
4699 		goto out;
4700 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
4701 		goto out;
4702 
4703 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
4704 			&left_mode, &left_uid, &left_gid, NULL);
4705 	if (ret < 0)
4706 		goto out;
4707 
4708 	if (!sctx->parent_root || sctx->cur_inode_new) {
4709 		need_chown = 1;
4710 		if (!S_ISLNK(sctx->cur_inode_mode))
4711 			need_chmod = 1;
4712 	} else {
4713 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
4714 				NULL, NULL, &right_mode, &right_uid,
4715 				&right_gid, NULL);
4716 		if (ret < 0)
4717 			goto out;
4718 
4719 		if (left_uid != right_uid || left_gid != right_gid)
4720 			need_chown = 1;
4721 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
4722 			need_chmod = 1;
4723 	}
4724 
4725 	if (S_ISREG(sctx->cur_inode_mode)) {
4726 		if (need_send_hole(sctx)) {
4727 			if (sctx->cur_inode_last_extent == (u64)-1) {
4728 				ret = get_last_extent(sctx, (u64)-1);
4729 				if (ret)
4730 					goto out;
4731 			}
4732 			if (sctx->cur_inode_last_extent <
4733 			    sctx->cur_inode_size) {
4734 				ret = send_hole(sctx, sctx->cur_inode_size);
4735 				if (ret)
4736 					goto out;
4737 			}
4738 		}
4739 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4740 				sctx->cur_inode_size);
4741 		if (ret < 0)
4742 			goto out;
4743 	}
4744 
4745 	if (need_chown) {
4746 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4747 				left_uid, left_gid);
4748 		if (ret < 0)
4749 			goto out;
4750 	}
4751 	if (need_chmod) {
4752 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4753 				left_mode);
4754 		if (ret < 0)
4755 			goto out;
4756 	}
4757 
4758 	/*
4759 	 * If other directory inodes depended on our current directory
4760 	 * inode's move/rename, now do their move/rename operations.
4761 	 */
4762 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
4763 		ret = apply_children_dir_moves(sctx);
4764 		if (ret)
4765 			goto out;
4766 	}
4767 
4768 	/*
4769 	 * Need to send that every time, no matter if it actually
4770 	 * changed between the two trees as we have done changes to
4771 	 * the inode before.
4772 	 */
4773 	sctx->send_progress = sctx->cur_ino + 1;
4774 	ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4775 	if (ret < 0)
4776 		goto out;
4777 
4778 out:
4779 	return ret;
4780 }
4781 
4782 static int changed_inode(struct send_ctx *sctx,
4783 			 enum btrfs_compare_tree_result result)
4784 {
4785 	int ret = 0;
4786 	struct btrfs_key *key = sctx->cmp_key;
4787 	struct btrfs_inode_item *left_ii = NULL;
4788 	struct btrfs_inode_item *right_ii = NULL;
4789 	u64 left_gen = 0;
4790 	u64 right_gen = 0;
4791 
4792 	sctx->cur_ino = key->objectid;
4793 	sctx->cur_inode_new_gen = 0;
4794 	sctx->cur_inode_last_extent = (u64)-1;
4795 
4796 	/*
4797 	 * Set send_progress to current inode. This will tell all get_cur_xxx
4798 	 * functions that the current inode's refs are not updated yet. Later,
4799 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
4800 	 */
4801 	sctx->send_progress = sctx->cur_ino;
4802 
4803 	if (result == BTRFS_COMPARE_TREE_NEW ||
4804 	    result == BTRFS_COMPARE_TREE_CHANGED) {
4805 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
4806 				sctx->left_path->slots[0],
4807 				struct btrfs_inode_item);
4808 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
4809 				left_ii);
4810 	} else {
4811 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4812 				sctx->right_path->slots[0],
4813 				struct btrfs_inode_item);
4814 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4815 				right_ii);
4816 	}
4817 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
4818 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4819 				sctx->right_path->slots[0],
4820 				struct btrfs_inode_item);
4821 
4822 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4823 				right_ii);
4824 
4825 		/*
4826 		 * The cur_ino = root dir case is special here. We can't treat
4827 		 * the inode as deleted+reused because it would generate a
4828 		 * stream that tries to delete/mkdir the root dir.
4829 		 */
4830 		if (left_gen != right_gen &&
4831 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
4832 			sctx->cur_inode_new_gen = 1;
4833 	}
4834 
4835 	if (result == BTRFS_COMPARE_TREE_NEW) {
4836 		sctx->cur_inode_gen = left_gen;
4837 		sctx->cur_inode_new = 1;
4838 		sctx->cur_inode_deleted = 0;
4839 		sctx->cur_inode_size = btrfs_inode_size(
4840 				sctx->left_path->nodes[0], left_ii);
4841 		sctx->cur_inode_mode = btrfs_inode_mode(
4842 				sctx->left_path->nodes[0], left_ii);
4843 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
4844 			ret = send_create_inode_if_needed(sctx);
4845 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
4846 		sctx->cur_inode_gen = right_gen;
4847 		sctx->cur_inode_new = 0;
4848 		sctx->cur_inode_deleted = 1;
4849 		sctx->cur_inode_size = btrfs_inode_size(
4850 				sctx->right_path->nodes[0], right_ii);
4851 		sctx->cur_inode_mode = btrfs_inode_mode(
4852 				sctx->right_path->nodes[0], right_ii);
4853 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
4854 		/*
4855 		 * We need to do some special handling in case the inode was
4856 		 * reported as changed with a changed generation number. This
4857 		 * means that the original inode was deleted and new inode
4858 		 * reused the same inum. So we have to treat the old inode as
4859 		 * deleted and the new one as new.
4860 		 */
4861 		if (sctx->cur_inode_new_gen) {
4862 			/*
4863 			 * First, process the inode as if it was deleted.
4864 			 */
4865 			sctx->cur_inode_gen = right_gen;
4866 			sctx->cur_inode_new = 0;
4867 			sctx->cur_inode_deleted = 1;
4868 			sctx->cur_inode_size = btrfs_inode_size(
4869 					sctx->right_path->nodes[0], right_ii);
4870 			sctx->cur_inode_mode = btrfs_inode_mode(
4871 					sctx->right_path->nodes[0], right_ii);
4872 			ret = process_all_refs(sctx,
4873 					BTRFS_COMPARE_TREE_DELETED);
4874 			if (ret < 0)
4875 				goto out;
4876 
4877 			/*
4878 			 * Now process the inode as if it was new.
4879 			 */
4880 			sctx->cur_inode_gen = left_gen;
4881 			sctx->cur_inode_new = 1;
4882 			sctx->cur_inode_deleted = 0;
4883 			sctx->cur_inode_size = btrfs_inode_size(
4884 					sctx->left_path->nodes[0], left_ii);
4885 			sctx->cur_inode_mode = btrfs_inode_mode(
4886 					sctx->left_path->nodes[0], left_ii);
4887 			ret = send_create_inode_if_needed(sctx);
4888 			if (ret < 0)
4889 				goto out;
4890 
4891 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
4892 			if (ret < 0)
4893 				goto out;
4894 			/*
4895 			 * Advance send_progress now as we did not get into
4896 			 * process_recorded_refs_if_needed in the new_gen case.
4897 			 */
4898 			sctx->send_progress = sctx->cur_ino + 1;
4899 
4900 			/*
4901 			 * Now process all extents and xattrs of the inode as if
4902 			 * they were all new.
4903 			 */
4904 			ret = process_all_extents(sctx);
4905 			if (ret < 0)
4906 				goto out;
4907 			ret = process_all_new_xattrs(sctx);
4908 			if (ret < 0)
4909 				goto out;
4910 		} else {
4911 			sctx->cur_inode_gen = left_gen;
4912 			sctx->cur_inode_new = 0;
4913 			sctx->cur_inode_new_gen = 0;
4914 			sctx->cur_inode_deleted = 0;
4915 			sctx->cur_inode_size = btrfs_inode_size(
4916 					sctx->left_path->nodes[0], left_ii);
4917 			sctx->cur_inode_mode = btrfs_inode_mode(
4918 					sctx->left_path->nodes[0], left_ii);
4919 		}
4920 	}
4921 
4922 out:
4923 	return ret;
4924 }
4925 
4926 /*
4927  * We have to process new refs before deleted refs, but compare_trees gives us
4928  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
4929  * first and later process them in process_recorded_refs.
4930  * For the cur_inode_new_gen case, we skip recording completely because
4931  * changed_inode did already initiate processing of refs. The reason for this is
4932  * that in this case, compare_tree actually compares the refs of 2 different
4933  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
4934  * refs of the right tree as deleted and all refs of the left tree as new.
4935  */
4936 static int changed_ref(struct send_ctx *sctx,
4937 		       enum btrfs_compare_tree_result result)
4938 {
4939 	int ret = 0;
4940 
4941 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4942 
4943 	if (!sctx->cur_inode_new_gen &&
4944 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
4945 		if (result == BTRFS_COMPARE_TREE_NEW)
4946 			ret = record_new_ref(sctx);
4947 		else if (result == BTRFS_COMPARE_TREE_DELETED)
4948 			ret = record_deleted_ref(sctx);
4949 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
4950 			ret = record_changed_ref(sctx);
4951 	}
4952 
4953 	return ret;
4954 }
4955 
4956 /*
4957  * Process new/deleted/changed xattrs. We skip processing in the
4958  * cur_inode_new_gen case because changed_inode did already initiate processing
4959  * of xattrs. The reason is the same as in changed_ref
4960  */
4961 static int changed_xattr(struct send_ctx *sctx,
4962 			 enum btrfs_compare_tree_result result)
4963 {
4964 	int ret = 0;
4965 
4966 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4967 
4968 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4969 		if (result == BTRFS_COMPARE_TREE_NEW)
4970 			ret = process_new_xattr(sctx);
4971 		else if (result == BTRFS_COMPARE_TREE_DELETED)
4972 			ret = process_deleted_xattr(sctx);
4973 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
4974 			ret = process_changed_xattr(sctx);
4975 	}
4976 
4977 	return ret;
4978 }
4979 
4980 /*
4981  * Process new/deleted/changed extents. We skip processing in the
4982  * cur_inode_new_gen case because changed_inode did already initiate processing
4983  * of extents. The reason is the same as in changed_ref
4984  */
4985 static int changed_extent(struct send_ctx *sctx,
4986 			  enum btrfs_compare_tree_result result)
4987 {
4988 	int ret = 0;
4989 
4990 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4991 
4992 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4993 		if (result != BTRFS_COMPARE_TREE_DELETED)
4994 			ret = process_extent(sctx, sctx->left_path,
4995 					sctx->cmp_key);
4996 	}
4997 
4998 	return ret;
4999 }
5000 
5001 static int dir_changed(struct send_ctx *sctx, u64 dir)
5002 {
5003 	u64 orig_gen, new_gen;
5004 	int ret;
5005 
5006 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5007 			     NULL, NULL);
5008 	if (ret)
5009 		return ret;
5010 
5011 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5012 			     NULL, NULL, NULL);
5013 	if (ret)
5014 		return ret;
5015 
5016 	return (orig_gen != new_gen) ? 1 : 0;
5017 }
5018 
5019 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5020 			struct btrfs_key *key)
5021 {
5022 	struct btrfs_inode_extref *extref;
5023 	struct extent_buffer *leaf;
5024 	u64 dirid = 0, last_dirid = 0;
5025 	unsigned long ptr;
5026 	u32 item_size;
5027 	u32 cur_offset = 0;
5028 	int ref_name_len;
5029 	int ret = 0;
5030 
5031 	/* Easy case, just check this one dirid */
5032 	if (key->type == BTRFS_INODE_REF_KEY) {
5033 		dirid = key->offset;
5034 
5035 		ret = dir_changed(sctx, dirid);
5036 		goto out;
5037 	}
5038 
5039 	leaf = path->nodes[0];
5040 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5041 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5042 	while (cur_offset < item_size) {
5043 		extref = (struct btrfs_inode_extref *)(ptr +
5044 						       cur_offset);
5045 		dirid = btrfs_inode_extref_parent(leaf, extref);
5046 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5047 		cur_offset += ref_name_len + sizeof(*extref);
5048 		if (dirid == last_dirid)
5049 			continue;
5050 		ret = dir_changed(sctx, dirid);
5051 		if (ret)
5052 			break;
5053 		last_dirid = dirid;
5054 	}
5055 out:
5056 	return ret;
5057 }
5058 
5059 /*
5060  * Updates compare related fields in sctx and simply forwards to the actual
5061  * changed_xxx functions.
5062  */
5063 static int changed_cb(struct btrfs_root *left_root,
5064 		      struct btrfs_root *right_root,
5065 		      struct btrfs_path *left_path,
5066 		      struct btrfs_path *right_path,
5067 		      struct btrfs_key *key,
5068 		      enum btrfs_compare_tree_result result,
5069 		      void *ctx)
5070 {
5071 	int ret = 0;
5072 	struct send_ctx *sctx = ctx;
5073 
5074 	if (result == BTRFS_COMPARE_TREE_SAME) {
5075 		if (key->type == BTRFS_INODE_REF_KEY ||
5076 		    key->type == BTRFS_INODE_EXTREF_KEY) {
5077 			ret = compare_refs(sctx, left_path, key);
5078 			if (!ret)
5079 				return 0;
5080 			if (ret < 0)
5081 				return ret;
5082 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5083 			return maybe_send_hole(sctx, left_path, key);
5084 		} else {
5085 			return 0;
5086 		}
5087 		result = BTRFS_COMPARE_TREE_CHANGED;
5088 		ret = 0;
5089 	}
5090 
5091 	sctx->left_path = left_path;
5092 	sctx->right_path = right_path;
5093 	sctx->cmp_key = key;
5094 
5095 	ret = finish_inode_if_needed(sctx, 0);
5096 	if (ret < 0)
5097 		goto out;
5098 
5099 	/* Ignore non-FS objects */
5100 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5101 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5102 		goto out;
5103 
5104 	if (key->type == BTRFS_INODE_ITEM_KEY)
5105 		ret = changed_inode(sctx, result);
5106 	else if (key->type == BTRFS_INODE_REF_KEY ||
5107 		 key->type == BTRFS_INODE_EXTREF_KEY)
5108 		ret = changed_ref(sctx, result);
5109 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
5110 		ret = changed_xattr(sctx, result);
5111 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
5112 		ret = changed_extent(sctx, result);
5113 
5114 out:
5115 	return ret;
5116 }
5117 
5118 static int full_send_tree(struct send_ctx *sctx)
5119 {
5120 	int ret;
5121 	struct btrfs_root *send_root = sctx->send_root;
5122 	struct btrfs_key key;
5123 	struct btrfs_key found_key;
5124 	struct btrfs_path *path;
5125 	struct extent_buffer *eb;
5126 	int slot;
5127 	u64 start_ctransid;
5128 	u64 ctransid;
5129 
5130 	path = alloc_path_for_send();
5131 	if (!path)
5132 		return -ENOMEM;
5133 
5134 	spin_lock(&send_root->root_item_lock);
5135 	start_ctransid = btrfs_root_ctransid(&send_root->root_item);
5136 	spin_unlock(&send_root->root_item_lock);
5137 
5138 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5139 	key.type = BTRFS_INODE_ITEM_KEY;
5140 	key.offset = 0;
5141 
5142 	/*
5143 	 * Make sure the tree has not changed after re-joining. We detect this
5144 	 * by comparing start_ctransid and ctransid. They should always match.
5145 	 */
5146 	spin_lock(&send_root->root_item_lock);
5147 	ctransid = btrfs_root_ctransid(&send_root->root_item);
5148 	spin_unlock(&send_root->root_item_lock);
5149 
5150 	if (ctransid != start_ctransid) {
5151 		WARN(1, KERN_WARNING "BTRFS: the root that you're trying to "
5152 				     "send was modified in between. This is "
5153 				     "probably a bug.\n");
5154 		ret = -EIO;
5155 		goto out;
5156 	}
5157 
5158 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5159 	if (ret < 0)
5160 		goto out;
5161 	if (ret)
5162 		goto out_finish;
5163 
5164 	while (1) {
5165 		eb = path->nodes[0];
5166 		slot = path->slots[0];
5167 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5168 
5169 		ret = changed_cb(send_root, NULL, path, NULL,
5170 				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5171 		if (ret < 0)
5172 			goto out;
5173 
5174 		key.objectid = found_key.objectid;
5175 		key.type = found_key.type;
5176 		key.offset = found_key.offset + 1;
5177 
5178 		ret = btrfs_next_item(send_root, path);
5179 		if (ret < 0)
5180 			goto out;
5181 		if (ret) {
5182 			ret  = 0;
5183 			break;
5184 		}
5185 	}
5186 
5187 out_finish:
5188 	ret = finish_inode_if_needed(sctx, 1);
5189 
5190 out:
5191 	btrfs_free_path(path);
5192 	return ret;
5193 }
5194 
5195 static int send_subvol(struct send_ctx *sctx)
5196 {
5197 	int ret;
5198 
5199 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5200 		ret = send_header(sctx);
5201 		if (ret < 0)
5202 			goto out;
5203 	}
5204 
5205 	ret = send_subvol_begin(sctx);
5206 	if (ret < 0)
5207 		goto out;
5208 
5209 	if (sctx->parent_root) {
5210 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5211 				changed_cb, sctx);
5212 		if (ret < 0)
5213 			goto out;
5214 		ret = finish_inode_if_needed(sctx, 1);
5215 		if (ret < 0)
5216 			goto out;
5217 	} else {
5218 		ret = full_send_tree(sctx);
5219 		if (ret < 0)
5220 			goto out;
5221 	}
5222 
5223 out:
5224 	free_recorded_refs(sctx);
5225 	return ret;
5226 }
5227 
5228 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5229 {
5230 	spin_lock(&root->root_item_lock);
5231 	root->send_in_progress--;
5232 	/*
5233 	 * Not much left to do, we don't know why it's unbalanced and
5234 	 * can't blindly reset it to 0.
5235 	 */
5236 	if (root->send_in_progress < 0)
5237 		btrfs_err(root->fs_info,
5238 			"send_in_progres unbalanced %d root %llu\n",
5239 			root->send_in_progress, root->root_key.objectid);
5240 	spin_unlock(&root->root_item_lock);
5241 }
5242 
5243 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5244 {
5245 	int ret = 0;
5246 	struct btrfs_root *send_root;
5247 	struct btrfs_root *clone_root;
5248 	struct btrfs_fs_info *fs_info;
5249 	struct btrfs_ioctl_send_args *arg = NULL;
5250 	struct btrfs_key key;
5251 	struct send_ctx *sctx = NULL;
5252 	u32 i;
5253 	u64 *clone_sources_tmp = NULL;
5254 	int clone_sources_to_rollback = 0;
5255 	int sort_clone_roots = 0;
5256 	int index;
5257 
5258 	if (!capable(CAP_SYS_ADMIN))
5259 		return -EPERM;
5260 
5261 	send_root = BTRFS_I(file_inode(mnt_file))->root;
5262 	fs_info = send_root->fs_info;
5263 
5264 	/*
5265 	 * The subvolume must remain read-only during send, protect against
5266 	 * making it RW.
5267 	 */
5268 	spin_lock(&send_root->root_item_lock);
5269 	send_root->send_in_progress++;
5270 	spin_unlock(&send_root->root_item_lock);
5271 
5272 	/*
5273 	 * This is done when we lookup the root, it should already be complete
5274 	 * by the time we get here.
5275 	 */
5276 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5277 
5278 	/*
5279 	 * Userspace tools do the checks and warn the user if it's
5280 	 * not RO.
5281 	 */
5282 	if (!btrfs_root_readonly(send_root)) {
5283 		ret = -EPERM;
5284 		goto out;
5285 	}
5286 
5287 	arg = memdup_user(arg_, sizeof(*arg));
5288 	if (IS_ERR(arg)) {
5289 		ret = PTR_ERR(arg);
5290 		arg = NULL;
5291 		goto out;
5292 	}
5293 
5294 	if (!access_ok(VERIFY_READ, arg->clone_sources,
5295 			sizeof(*arg->clone_sources) *
5296 			arg->clone_sources_count)) {
5297 		ret = -EFAULT;
5298 		goto out;
5299 	}
5300 
5301 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5302 		ret = -EINVAL;
5303 		goto out;
5304 	}
5305 
5306 	sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5307 	if (!sctx) {
5308 		ret = -ENOMEM;
5309 		goto out;
5310 	}
5311 
5312 	INIT_LIST_HEAD(&sctx->new_refs);
5313 	INIT_LIST_HEAD(&sctx->deleted_refs);
5314 	INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5315 	INIT_LIST_HEAD(&sctx->name_cache_list);
5316 
5317 	sctx->flags = arg->flags;
5318 
5319 	sctx->send_filp = fget(arg->send_fd);
5320 	if (!sctx->send_filp) {
5321 		ret = -EBADF;
5322 		goto out;
5323 	}
5324 
5325 	sctx->send_root = send_root;
5326 	sctx->clone_roots_cnt = arg->clone_sources_count;
5327 
5328 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
5329 	sctx->send_buf = vmalloc(sctx->send_max_size);
5330 	if (!sctx->send_buf) {
5331 		ret = -ENOMEM;
5332 		goto out;
5333 	}
5334 
5335 	sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
5336 	if (!sctx->read_buf) {
5337 		ret = -ENOMEM;
5338 		goto out;
5339 	}
5340 
5341 	sctx->pending_dir_moves = RB_ROOT;
5342 	sctx->waiting_dir_moves = RB_ROOT;
5343 
5344 	sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
5345 			(arg->clone_sources_count + 1));
5346 	if (!sctx->clone_roots) {
5347 		ret = -ENOMEM;
5348 		goto out;
5349 	}
5350 
5351 	if (arg->clone_sources_count) {
5352 		clone_sources_tmp = vmalloc(arg->clone_sources_count *
5353 				sizeof(*arg->clone_sources));
5354 		if (!clone_sources_tmp) {
5355 			ret = -ENOMEM;
5356 			goto out;
5357 		}
5358 
5359 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
5360 				arg->clone_sources_count *
5361 				sizeof(*arg->clone_sources));
5362 		if (ret) {
5363 			ret = -EFAULT;
5364 			goto out;
5365 		}
5366 
5367 		for (i = 0; i < arg->clone_sources_count; i++) {
5368 			key.objectid = clone_sources_tmp[i];
5369 			key.type = BTRFS_ROOT_ITEM_KEY;
5370 			key.offset = (u64)-1;
5371 
5372 			index = srcu_read_lock(&fs_info->subvol_srcu);
5373 
5374 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
5375 			if (IS_ERR(clone_root)) {
5376 				srcu_read_unlock(&fs_info->subvol_srcu, index);
5377 				ret = PTR_ERR(clone_root);
5378 				goto out;
5379 			}
5380 			clone_sources_to_rollback = i + 1;
5381 			spin_lock(&clone_root->root_item_lock);
5382 			clone_root->send_in_progress++;
5383 			if (!btrfs_root_readonly(clone_root)) {
5384 				spin_unlock(&clone_root->root_item_lock);
5385 				srcu_read_unlock(&fs_info->subvol_srcu, index);
5386 				ret = -EPERM;
5387 				goto out;
5388 			}
5389 			spin_unlock(&clone_root->root_item_lock);
5390 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5391 
5392 			sctx->clone_roots[i].root = clone_root;
5393 		}
5394 		vfree(clone_sources_tmp);
5395 		clone_sources_tmp = NULL;
5396 	}
5397 
5398 	if (arg->parent_root) {
5399 		key.objectid = arg->parent_root;
5400 		key.type = BTRFS_ROOT_ITEM_KEY;
5401 		key.offset = (u64)-1;
5402 
5403 		index = srcu_read_lock(&fs_info->subvol_srcu);
5404 
5405 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
5406 		if (IS_ERR(sctx->parent_root)) {
5407 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5408 			ret = PTR_ERR(sctx->parent_root);
5409 			goto out;
5410 		}
5411 
5412 		spin_lock(&sctx->parent_root->root_item_lock);
5413 		sctx->parent_root->send_in_progress++;
5414 		if (!btrfs_root_readonly(sctx->parent_root)) {
5415 			spin_unlock(&sctx->parent_root->root_item_lock);
5416 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5417 			ret = -EPERM;
5418 			goto out;
5419 		}
5420 		spin_unlock(&sctx->parent_root->root_item_lock);
5421 
5422 		srcu_read_unlock(&fs_info->subvol_srcu, index);
5423 	}
5424 
5425 	/*
5426 	 * Clones from send_root are allowed, but only if the clone source
5427 	 * is behind the current send position. This is checked while searching
5428 	 * for possible clone sources.
5429 	 */
5430 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
5431 
5432 	/* We do a bsearch later */
5433 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
5434 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
5435 			NULL);
5436 	sort_clone_roots = 1;
5437 
5438 	ret = send_subvol(sctx);
5439 	if (ret < 0)
5440 		goto out;
5441 
5442 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
5443 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
5444 		if (ret < 0)
5445 			goto out;
5446 		ret = send_cmd(sctx);
5447 		if (ret < 0)
5448 			goto out;
5449 	}
5450 
5451 out:
5452 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
5453 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
5454 		struct rb_node *n;
5455 		struct pending_dir_move *pm;
5456 
5457 		n = rb_first(&sctx->pending_dir_moves);
5458 		pm = rb_entry(n, struct pending_dir_move, node);
5459 		while (!list_empty(&pm->list)) {
5460 			struct pending_dir_move *pm2;
5461 
5462 			pm2 = list_first_entry(&pm->list,
5463 					       struct pending_dir_move, list);
5464 			free_pending_move(sctx, pm2);
5465 		}
5466 		free_pending_move(sctx, pm);
5467 	}
5468 
5469 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
5470 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
5471 		struct rb_node *n;
5472 		struct waiting_dir_move *dm;
5473 
5474 		n = rb_first(&sctx->waiting_dir_moves);
5475 		dm = rb_entry(n, struct waiting_dir_move, node);
5476 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
5477 		kfree(dm);
5478 	}
5479 
5480 	if (sort_clone_roots) {
5481 		for (i = 0; i < sctx->clone_roots_cnt; i++)
5482 			btrfs_root_dec_send_in_progress(
5483 					sctx->clone_roots[i].root);
5484 	} else {
5485 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
5486 			btrfs_root_dec_send_in_progress(
5487 					sctx->clone_roots[i].root);
5488 
5489 		btrfs_root_dec_send_in_progress(send_root);
5490 	}
5491 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
5492 		btrfs_root_dec_send_in_progress(sctx->parent_root);
5493 
5494 	kfree(arg);
5495 	vfree(clone_sources_tmp);
5496 
5497 	if (sctx) {
5498 		if (sctx->send_filp)
5499 			fput(sctx->send_filp);
5500 
5501 		vfree(sctx->clone_roots);
5502 		vfree(sctx->send_buf);
5503 		vfree(sctx->read_buf);
5504 
5505 		name_cache_free(sctx);
5506 
5507 		kfree(sctx);
5508 	}
5509 
5510 	return ret;
5511 }
5512