xref: /openbmc/linux/fs/btrfs/send.c (revision a8fe58ce)
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 
38 static int g_verbose = 0;
39 
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
41 
42 /*
43  * A fs_path is a helper to dynamically build path names with unknown size.
44  * It reallocates the internal buffer on demand.
45  * It allows fast adding of path elements on the right side (normal path) and
46  * fast adding to the left side (reversed path). A reversed path can also be
47  * unreversed if needed.
48  */
49 struct fs_path {
50 	union {
51 		struct {
52 			char *start;
53 			char *end;
54 
55 			char *buf;
56 			unsigned short buf_len:15;
57 			unsigned short reversed:1;
58 			char inline_buf[];
59 		};
60 		/*
61 		 * Average path length does not exceed 200 bytes, we'll have
62 		 * better packing in the slab and higher chance to satisfy
63 		 * a allocation later during send.
64 		 */
65 		char pad[256];
66 	};
67 };
68 #define FS_PATH_INLINE_SIZE \
69 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
70 
71 
72 /* reused for each extent */
73 struct clone_root {
74 	struct btrfs_root *root;
75 	u64 ino;
76 	u64 offset;
77 
78 	u64 found_refs;
79 };
80 
81 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
82 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
83 
84 struct send_ctx {
85 	struct file *send_filp;
86 	loff_t send_off;
87 	char *send_buf;
88 	u32 send_size;
89 	u32 send_max_size;
90 	u64 total_send_size;
91 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
92 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
93 
94 	struct btrfs_root *send_root;
95 	struct btrfs_root *parent_root;
96 	struct clone_root *clone_roots;
97 	int clone_roots_cnt;
98 
99 	/* current state of the compare_tree call */
100 	struct btrfs_path *left_path;
101 	struct btrfs_path *right_path;
102 	struct btrfs_key *cmp_key;
103 
104 	/*
105 	 * infos of the currently processed inode. In case of deleted inodes,
106 	 * these are the values from the deleted inode.
107 	 */
108 	u64 cur_ino;
109 	u64 cur_inode_gen;
110 	int cur_inode_new;
111 	int cur_inode_new_gen;
112 	int cur_inode_deleted;
113 	u64 cur_inode_size;
114 	u64 cur_inode_mode;
115 	u64 cur_inode_rdev;
116 	u64 cur_inode_last_extent;
117 
118 	u64 send_progress;
119 
120 	struct list_head new_refs;
121 	struct list_head deleted_refs;
122 
123 	struct radix_tree_root name_cache;
124 	struct list_head name_cache_list;
125 	int name_cache_size;
126 
127 	struct file_ra_state ra;
128 
129 	char *read_buf;
130 
131 	/*
132 	 * We process inodes by their increasing order, so if before an
133 	 * incremental send we reverse the parent/child relationship of
134 	 * directories such that a directory with a lower inode number was
135 	 * the parent of a directory with a higher inode number, and the one
136 	 * becoming the new parent got renamed too, we can't rename/move the
137 	 * directory with lower inode number when we finish processing it - we
138 	 * must process the directory with higher inode number first, then
139 	 * rename/move it and then rename/move the directory with lower inode
140 	 * number. Example follows.
141 	 *
142 	 * Tree state when the first send was performed:
143 	 *
144 	 * .
145 	 * |-- a                   (ino 257)
146 	 *     |-- b               (ino 258)
147 	 *         |
148 	 *         |
149 	 *         |-- c           (ino 259)
150 	 *         |   |-- d       (ino 260)
151 	 *         |
152 	 *         |-- c2          (ino 261)
153 	 *
154 	 * Tree state when the second (incremental) send is performed:
155 	 *
156 	 * .
157 	 * |-- a                   (ino 257)
158 	 *     |-- b               (ino 258)
159 	 *         |-- c2          (ino 261)
160 	 *             |-- d2      (ino 260)
161 	 *                 |-- cc  (ino 259)
162 	 *
163 	 * The sequence of steps that lead to the second state was:
164 	 *
165 	 * mv /a/b/c/d /a/b/c2/d2
166 	 * mv /a/b/c /a/b/c2/d2/cc
167 	 *
168 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
169 	 * before we move "d", which has higher inode number.
170 	 *
171 	 * So we just memorize which move/rename operations must be performed
172 	 * later when their respective parent is processed and moved/renamed.
173 	 */
174 
175 	/* Indexed by parent directory inode number. */
176 	struct rb_root pending_dir_moves;
177 
178 	/*
179 	 * Reverse index, indexed by the inode number of a directory that
180 	 * is waiting for the move/rename of its immediate parent before its
181 	 * own move/rename can be performed.
182 	 */
183 	struct rb_root waiting_dir_moves;
184 
185 	/*
186 	 * A directory that is going to be rm'ed might have a child directory
187 	 * which is in the pending directory moves index above. In this case,
188 	 * the directory can only be removed after the move/rename of its child
189 	 * is performed. Example:
190 	 *
191 	 * Parent snapshot:
192 	 *
193 	 * .                        (ino 256)
194 	 * |-- a/                   (ino 257)
195 	 *     |-- b/               (ino 258)
196 	 *         |-- c/           (ino 259)
197 	 *         |   |-- x/       (ino 260)
198 	 *         |
199 	 *         |-- y/           (ino 261)
200 	 *
201 	 * Send snapshot:
202 	 *
203 	 * .                        (ino 256)
204 	 * |-- a/                   (ino 257)
205 	 *     |-- b/               (ino 258)
206 	 *         |-- YY/          (ino 261)
207 	 *              |-- x/      (ino 260)
208 	 *
209 	 * Sequence of steps that lead to the send snapshot:
210 	 * rm -f /a/b/c/foo.txt
211 	 * mv /a/b/y /a/b/YY
212 	 * mv /a/b/c/x /a/b/YY
213 	 * rmdir /a/b/c
214 	 *
215 	 * When the child is processed, its move/rename is delayed until its
216 	 * parent is processed (as explained above), but all other operations
217 	 * like update utimes, chown, chgrp, etc, are performed and the paths
218 	 * that it uses for those operations must use the orphanized name of
219 	 * its parent (the directory we're going to rm later), so we need to
220 	 * memorize that name.
221 	 *
222 	 * Indexed by the inode number of the directory to be deleted.
223 	 */
224 	struct rb_root orphan_dirs;
225 };
226 
227 struct pending_dir_move {
228 	struct rb_node node;
229 	struct list_head list;
230 	u64 parent_ino;
231 	u64 ino;
232 	u64 gen;
233 	bool is_orphan;
234 	struct list_head update_refs;
235 };
236 
237 struct waiting_dir_move {
238 	struct rb_node node;
239 	u64 ino;
240 	/*
241 	 * There might be some directory that could not be removed because it
242 	 * was waiting for this directory inode to be moved first. Therefore
243 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
244 	 */
245 	u64 rmdir_ino;
246 	bool orphanized;
247 };
248 
249 struct orphan_dir_info {
250 	struct rb_node node;
251 	u64 ino;
252 	u64 gen;
253 };
254 
255 struct name_cache_entry {
256 	struct list_head list;
257 	/*
258 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
259 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
260 	 * more then one inum would fall into the same entry, we use radix_list
261 	 * to store the additional entries. radix_list is also used to store
262 	 * entries where two entries have the same inum but different
263 	 * generations.
264 	 */
265 	struct list_head radix_list;
266 	u64 ino;
267 	u64 gen;
268 	u64 parent_ino;
269 	u64 parent_gen;
270 	int ret;
271 	int need_later_update;
272 	int name_len;
273 	char name[];
274 };
275 
276 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
277 
278 static struct waiting_dir_move *
279 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
280 
281 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
282 
283 static int need_send_hole(struct send_ctx *sctx)
284 {
285 	return (sctx->parent_root && !sctx->cur_inode_new &&
286 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
287 		S_ISREG(sctx->cur_inode_mode));
288 }
289 
290 static void fs_path_reset(struct fs_path *p)
291 {
292 	if (p->reversed) {
293 		p->start = p->buf + p->buf_len - 1;
294 		p->end = p->start;
295 		*p->start = 0;
296 	} else {
297 		p->start = p->buf;
298 		p->end = p->start;
299 		*p->start = 0;
300 	}
301 }
302 
303 static struct fs_path *fs_path_alloc(void)
304 {
305 	struct fs_path *p;
306 
307 	p = kmalloc(sizeof(*p), GFP_NOFS);
308 	if (!p)
309 		return NULL;
310 	p->reversed = 0;
311 	p->buf = p->inline_buf;
312 	p->buf_len = FS_PATH_INLINE_SIZE;
313 	fs_path_reset(p);
314 	return p;
315 }
316 
317 static struct fs_path *fs_path_alloc_reversed(void)
318 {
319 	struct fs_path *p;
320 
321 	p = fs_path_alloc();
322 	if (!p)
323 		return NULL;
324 	p->reversed = 1;
325 	fs_path_reset(p);
326 	return p;
327 }
328 
329 static void fs_path_free(struct fs_path *p)
330 {
331 	if (!p)
332 		return;
333 	if (p->buf != p->inline_buf)
334 		kfree(p->buf);
335 	kfree(p);
336 }
337 
338 static int fs_path_len(struct fs_path *p)
339 {
340 	return p->end - p->start;
341 }
342 
343 static int fs_path_ensure_buf(struct fs_path *p, int len)
344 {
345 	char *tmp_buf;
346 	int path_len;
347 	int old_buf_len;
348 
349 	len++;
350 
351 	if (p->buf_len >= len)
352 		return 0;
353 
354 	if (len > PATH_MAX) {
355 		WARN_ON(1);
356 		return -ENOMEM;
357 	}
358 
359 	path_len = p->end - p->start;
360 	old_buf_len = p->buf_len;
361 
362 	/*
363 	 * First time the inline_buf does not suffice
364 	 */
365 	if (p->buf == p->inline_buf) {
366 		tmp_buf = kmalloc(len, GFP_NOFS);
367 		if (tmp_buf)
368 			memcpy(tmp_buf, p->buf, old_buf_len);
369 	} else {
370 		tmp_buf = krealloc(p->buf, len, GFP_NOFS);
371 	}
372 	if (!tmp_buf)
373 		return -ENOMEM;
374 	p->buf = tmp_buf;
375 	/*
376 	 * The real size of the buffer is bigger, this will let the fast path
377 	 * happen most of the time
378 	 */
379 	p->buf_len = ksize(p->buf);
380 
381 	if (p->reversed) {
382 		tmp_buf = p->buf + old_buf_len - path_len - 1;
383 		p->end = p->buf + p->buf_len - 1;
384 		p->start = p->end - path_len;
385 		memmove(p->start, tmp_buf, path_len + 1);
386 	} else {
387 		p->start = p->buf;
388 		p->end = p->start + path_len;
389 	}
390 	return 0;
391 }
392 
393 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
394 				   char **prepared)
395 {
396 	int ret;
397 	int new_len;
398 
399 	new_len = p->end - p->start + name_len;
400 	if (p->start != p->end)
401 		new_len++;
402 	ret = fs_path_ensure_buf(p, new_len);
403 	if (ret < 0)
404 		goto out;
405 
406 	if (p->reversed) {
407 		if (p->start != p->end)
408 			*--p->start = '/';
409 		p->start -= name_len;
410 		*prepared = p->start;
411 	} else {
412 		if (p->start != p->end)
413 			*p->end++ = '/';
414 		*prepared = p->end;
415 		p->end += name_len;
416 		*p->end = 0;
417 	}
418 
419 out:
420 	return ret;
421 }
422 
423 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
424 {
425 	int ret;
426 	char *prepared;
427 
428 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
429 	if (ret < 0)
430 		goto out;
431 	memcpy(prepared, name, name_len);
432 
433 out:
434 	return ret;
435 }
436 
437 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
438 {
439 	int ret;
440 	char *prepared;
441 
442 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
443 	if (ret < 0)
444 		goto out;
445 	memcpy(prepared, p2->start, p2->end - p2->start);
446 
447 out:
448 	return ret;
449 }
450 
451 static int fs_path_add_from_extent_buffer(struct fs_path *p,
452 					  struct extent_buffer *eb,
453 					  unsigned long off, int len)
454 {
455 	int ret;
456 	char *prepared;
457 
458 	ret = fs_path_prepare_for_add(p, len, &prepared);
459 	if (ret < 0)
460 		goto out;
461 
462 	read_extent_buffer(eb, prepared, off, len);
463 
464 out:
465 	return ret;
466 }
467 
468 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
469 {
470 	int ret;
471 
472 	p->reversed = from->reversed;
473 	fs_path_reset(p);
474 
475 	ret = fs_path_add_path(p, from);
476 
477 	return ret;
478 }
479 
480 
481 static void fs_path_unreverse(struct fs_path *p)
482 {
483 	char *tmp;
484 	int len;
485 
486 	if (!p->reversed)
487 		return;
488 
489 	tmp = p->start;
490 	len = p->end - p->start;
491 	p->start = p->buf;
492 	p->end = p->start + len;
493 	memmove(p->start, tmp, len + 1);
494 	p->reversed = 0;
495 }
496 
497 static struct btrfs_path *alloc_path_for_send(void)
498 {
499 	struct btrfs_path *path;
500 
501 	path = btrfs_alloc_path();
502 	if (!path)
503 		return NULL;
504 	path->search_commit_root = 1;
505 	path->skip_locking = 1;
506 	path->need_commit_sem = 1;
507 	return path;
508 }
509 
510 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
511 {
512 	int ret;
513 	mm_segment_t old_fs;
514 	u32 pos = 0;
515 
516 	old_fs = get_fs();
517 	set_fs(KERNEL_DS);
518 
519 	while (pos < len) {
520 		ret = vfs_write(filp, (__force const char __user *)buf + pos,
521 				len - pos, off);
522 		/* TODO handle that correctly */
523 		/*if (ret == -ERESTARTSYS) {
524 			continue;
525 		}*/
526 		if (ret < 0)
527 			goto out;
528 		if (ret == 0) {
529 			ret = -EIO;
530 			goto out;
531 		}
532 		pos += ret;
533 	}
534 
535 	ret = 0;
536 
537 out:
538 	set_fs(old_fs);
539 	return ret;
540 }
541 
542 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
543 {
544 	struct btrfs_tlv_header *hdr;
545 	int total_len = sizeof(*hdr) + len;
546 	int left = sctx->send_max_size - sctx->send_size;
547 
548 	if (unlikely(left < total_len))
549 		return -EOVERFLOW;
550 
551 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
552 	hdr->tlv_type = cpu_to_le16(attr);
553 	hdr->tlv_len = cpu_to_le16(len);
554 	memcpy(hdr + 1, data, len);
555 	sctx->send_size += total_len;
556 
557 	return 0;
558 }
559 
560 #define TLV_PUT_DEFINE_INT(bits) \
561 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
562 			u##bits attr, u##bits value)			\
563 	{								\
564 		__le##bits __tmp = cpu_to_le##bits(value);		\
565 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
566 	}
567 
568 TLV_PUT_DEFINE_INT(64)
569 
570 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
571 			  const char *str, int len)
572 {
573 	if (len == -1)
574 		len = strlen(str);
575 	return tlv_put(sctx, attr, str, len);
576 }
577 
578 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
579 			const u8 *uuid)
580 {
581 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
582 }
583 
584 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
585 				  struct extent_buffer *eb,
586 				  struct btrfs_timespec *ts)
587 {
588 	struct btrfs_timespec bts;
589 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
590 	return tlv_put(sctx, attr, &bts, sizeof(bts));
591 }
592 
593 
594 #define TLV_PUT(sctx, attrtype, attrlen, data) \
595 	do { \
596 		ret = tlv_put(sctx, attrtype, attrlen, data); \
597 		if (ret < 0) \
598 			goto tlv_put_failure; \
599 	} while (0)
600 
601 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
602 	do { \
603 		ret = tlv_put_u##bits(sctx, attrtype, value); \
604 		if (ret < 0) \
605 			goto tlv_put_failure; \
606 	} while (0)
607 
608 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
609 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
610 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
611 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
612 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
613 	do { \
614 		ret = tlv_put_string(sctx, attrtype, str, len); \
615 		if (ret < 0) \
616 			goto tlv_put_failure; \
617 	} while (0)
618 #define TLV_PUT_PATH(sctx, attrtype, p) \
619 	do { \
620 		ret = tlv_put_string(sctx, attrtype, p->start, \
621 			p->end - p->start); \
622 		if (ret < 0) \
623 			goto tlv_put_failure; \
624 	} while(0)
625 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
626 	do { \
627 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
628 		if (ret < 0) \
629 			goto tlv_put_failure; \
630 	} while (0)
631 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
632 	do { \
633 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
634 		if (ret < 0) \
635 			goto tlv_put_failure; \
636 	} while (0)
637 
638 static int send_header(struct send_ctx *sctx)
639 {
640 	struct btrfs_stream_header hdr;
641 
642 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
643 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
644 
645 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
646 					&sctx->send_off);
647 }
648 
649 /*
650  * For each command/item we want to send to userspace, we call this function.
651  */
652 static int begin_cmd(struct send_ctx *sctx, int cmd)
653 {
654 	struct btrfs_cmd_header *hdr;
655 
656 	if (WARN_ON(!sctx->send_buf))
657 		return -EINVAL;
658 
659 	BUG_ON(sctx->send_size);
660 
661 	sctx->send_size += sizeof(*hdr);
662 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
663 	hdr->cmd = cpu_to_le16(cmd);
664 
665 	return 0;
666 }
667 
668 static int send_cmd(struct send_ctx *sctx)
669 {
670 	int ret;
671 	struct btrfs_cmd_header *hdr;
672 	u32 crc;
673 
674 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
675 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
676 	hdr->crc = 0;
677 
678 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
679 	hdr->crc = cpu_to_le32(crc);
680 
681 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
682 					&sctx->send_off);
683 
684 	sctx->total_send_size += sctx->send_size;
685 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
686 	sctx->send_size = 0;
687 
688 	return ret;
689 }
690 
691 /*
692  * Sends a move instruction to user space
693  */
694 static int send_rename(struct send_ctx *sctx,
695 		     struct fs_path *from, struct fs_path *to)
696 {
697 	int ret;
698 
699 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
700 
701 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
702 	if (ret < 0)
703 		goto out;
704 
705 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
706 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
707 
708 	ret = send_cmd(sctx);
709 
710 tlv_put_failure:
711 out:
712 	return ret;
713 }
714 
715 /*
716  * Sends a link instruction to user space
717  */
718 static int send_link(struct send_ctx *sctx,
719 		     struct fs_path *path, struct fs_path *lnk)
720 {
721 	int ret;
722 
723 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
724 
725 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
726 	if (ret < 0)
727 		goto out;
728 
729 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
730 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
731 
732 	ret = send_cmd(sctx);
733 
734 tlv_put_failure:
735 out:
736 	return ret;
737 }
738 
739 /*
740  * Sends an unlink instruction to user space
741  */
742 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
743 {
744 	int ret;
745 
746 verbose_printk("btrfs: send_unlink %s\n", path->start);
747 
748 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
749 	if (ret < 0)
750 		goto out;
751 
752 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
753 
754 	ret = send_cmd(sctx);
755 
756 tlv_put_failure:
757 out:
758 	return ret;
759 }
760 
761 /*
762  * Sends a rmdir instruction to user space
763  */
764 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
765 {
766 	int ret;
767 
768 verbose_printk("btrfs: send_rmdir %s\n", path->start);
769 
770 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
771 	if (ret < 0)
772 		goto out;
773 
774 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
775 
776 	ret = send_cmd(sctx);
777 
778 tlv_put_failure:
779 out:
780 	return ret;
781 }
782 
783 /*
784  * Helper function to retrieve some fields from an inode item.
785  */
786 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
787 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
788 			  u64 *gid, u64 *rdev)
789 {
790 	int ret;
791 	struct btrfs_inode_item *ii;
792 	struct btrfs_key key;
793 
794 	key.objectid = ino;
795 	key.type = BTRFS_INODE_ITEM_KEY;
796 	key.offset = 0;
797 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
798 	if (ret) {
799 		if (ret > 0)
800 			ret = -ENOENT;
801 		return ret;
802 	}
803 
804 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
805 			struct btrfs_inode_item);
806 	if (size)
807 		*size = btrfs_inode_size(path->nodes[0], ii);
808 	if (gen)
809 		*gen = btrfs_inode_generation(path->nodes[0], ii);
810 	if (mode)
811 		*mode = btrfs_inode_mode(path->nodes[0], ii);
812 	if (uid)
813 		*uid = btrfs_inode_uid(path->nodes[0], ii);
814 	if (gid)
815 		*gid = btrfs_inode_gid(path->nodes[0], ii);
816 	if (rdev)
817 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
818 
819 	return ret;
820 }
821 
822 static int get_inode_info(struct btrfs_root *root,
823 			  u64 ino, u64 *size, u64 *gen,
824 			  u64 *mode, u64 *uid, u64 *gid,
825 			  u64 *rdev)
826 {
827 	struct btrfs_path *path;
828 	int ret;
829 
830 	path = alloc_path_for_send();
831 	if (!path)
832 		return -ENOMEM;
833 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
834 			       rdev);
835 	btrfs_free_path(path);
836 	return ret;
837 }
838 
839 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
840 				   struct fs_path *p,
841 				   void *ctx);
842 
843 /*
844  * Helper function to iterate the entries in ONE btrfs_inode_ref or
845  * btrfs_inode_extref.
846  * The iterate callback may return a non zero value to stop iteration. This can
847  * be a negative value for error codes or 1 to simply stop it.
848  *
849  * path must point to the INODE_REF or INODE_EXTREF when called.
850  */
851 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
852 			     struct btrfs_key *found_key, int resolve,
853 			     iterate_inode_ref_t iterate, void *ctx)
854 {
855 	struct extent_buffer *eb = path->nodes[0];
856 	struct btrfs_item *item;
857 	struct btrfs_inode_ref *iref;
858 	struct btrfs_inode_extref *extref;
859 	struct btrfs_path *tmp_path;
860 	struct fs_path *p;
861 	u32 cur = 0;
862 	u32 total;
863 	int slot = path->slots[0];
864 	u32 name_len;
865 	char *start;
866 	int ret = 0;
867 	int num = 0;
868 	int index;
869 	u64 dir;
870 	unsigned long name_off;
871 	unsigned long elem_size;
872 	unsigned long ptr;
873 
874 	p = fs_path_alloc_reversed();
875 	if (!p)
876 		return -ENOMEM;
877 
878 	tmp_path = alloc_path_for_send();
879 	if (!tmp_path) {
880 		fs_path_free(p);
881 		return -ENOMEM;
882 	}
883 
884 
885 	if (found_key->type == BTRFS_INODE_REF_KEY) {
886 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
887 						    struct btrfs_inode_ref);
888 		item = btrfs_item_nr(slot);
889 		total = btrfs_item_size(eb, item);
890 		elem_size = sizeof(*iref);
891 	} else {
892 		ptr = btrfs_item_ptr_offset(eb, slot);
893 		total = btrfs_item_size_nr(eb, slot);
894 		elem_size = sizeof(*extref);
895 	}
896 
897 	while (cur < total) {
898 		fs_path_reset(p);
899 
900 		if (found_key->type == BTRFS_INODE_REF_KEY) {
901 			iref = (struct btrfs_inode_ref *)(ptr + cur);
902 			name_len = btrfs_inode_ref_name_len(eb, iref);
903 			name_off = (unsigned long)(iref + 1);
904 			index = btrfs_inode_ref_index(eb, iref);
905 			dir = found_key->offset;
906 		} else {
907 			extref = (struct btrfs_inode_extref *)(ptr + cur);
908 			name_len = btrfs_inode_extref_name_len(eb, extref);
909 			name_off = (unsigned long)&extref->name;
910 			index = btrfs_inode_extref_index(eb, extref);
911 			dir = btrfs_inode_extref_parent(eb, extref);
912 		}
913 
914 		if (resolve) {
915 			start = btrfs_ref_to_path(root, tmp_path, name_len,
916 						  name_off, eb, dir,
917 						  p->buf, p->buf_len);
918 			if (IS_ERR(start)) {
919 				ret = PTR_ERR(start);
920 				goto out;
921 			}
922 			if (start < p->buf) {
923 				/* overflow , try again with larger buffer */
924 				ret = fs_path_ensure_buf(p,
925 						p->buf_len + p->buf - start);
926 				if (ret < 0)
927 					goto out;
928 				start = btrfs_ref_to_path(root, tmp_path,
929 							  name_len, name_off,
930 							  eb, dir,
931 							  p->buf, p->buf_len);
932 				if (IS_ERR(start)) {
933 					ret = PTR_ERR(start);
934 					goto out;
935 				}
936 				BUG_ON(start < p->buf);
937 			}
938 			p->start = start;
939 		} else {
940 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
941 							     name_len);
942 			if (ret < 0)
943 				goto out;
944 		}
945 
946 		cur += elem_size + name_len;
947 		ret = iterate(num, dir, index, p, ctx);
948 		if (ret)
949 			goto out;
950 		num++;
951 	}
952 
953 out:
954 	btrfs_free_path(tmp_path);
955 	fs_path_free(p);
956 	return ret;
957 }
958 
959 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
960 				  const char *name, int name_len,
961 				  const char *data, int data_len,
962 				  u8 type, void *ctx);
963 
964 /*
965  * Helper function to iterate the entries in ONE btrfs_dir_item.
966  * The iterate callback may return a non zero value to stop iteration. This can
967  * be a negative value for error codes or 1 to simply stop it.
968  *
969  * path must point to the dir item when called.
970  */
971 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
972 			    struct btrfs_key *found_key,
973 			    iterate_dir_item_t iterate, void *ctx)
974 {
975 	int ret = 0;
976 	struct extent_buffer *eb;
977 	struct btrfs_item *item;
978 	struct btrfs_dir_item *di;
979 	struct btrfs_key di_key;
980 	char *buf = NULL;
981 	int buf_len;
982 	u32 name_len;
983 	u32 data_len;
984 	u32 cur;
985 	u32 len;
986 	u32 total;
987 	int slot;
988 	int num;
989 	u8 type;
990 
991 	/*
992 	 * Start with a small buffer (1 page). If later we end up needing more
993 	 * space, which can happen for xattrs on a fs with a leaf size greater
994 	 * then the page size, attempt to increase the buffer. Typically xattr
995 	 * values are small.
996 	 */
997 	buf_len = PATH_MAX;
998 	buf = kmalloc(buf_len, GFP_NOFS);
999 	if (!buf) {
1000 		ret = -ENOMEM;
1001 		goto out;
1002 	}
1003 
1004 	eb = path->nodes[0];
1005 	slot = path->slots[0];
1006 	item = btrfs_item_nr(slot);
1007 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1008 	cur = 0;
1009 	len = 0;
1010 	total = btrfs_item_size(eb, item);
1011 
1012 	num = 0;
1013 	while (cur < total) {
1014 		name_len = btrfs_dir_name_len(eb, di);
1015 		data_len = btrfs_dir_data_len(eb, di);
1016 		type = btrfs_dir_type(eb, di);
1017 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1018 
1019 		if (type == BTRFS_FT_XATTR) {
1020 			if (name_len > XATTR_NAME_MAX) {
1021 				ret = -ENAMETOOLONG;
1022 				goto out;
1023 			}
1024 			if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
1025 				ret = -E2BIG;
1026 				goto out;
1027 			}
1028 		} else {
1029 			/*
1030 			 * Path too long
1031 			 */
1032 			if (name_len + data_len > PATH_MAX) {
1033 				ret = -ENAMETOOLONG;
1034 				goto out;
1035 			}
1036 		}
1037 
1038 		if (name_len + data_len > buf_len) {
1039 			buf_len = name_len + data_len;
1040 			if (is_vmalloc_addr(buf)) {
1041 				vfree(buf);
1042 				buf = NULL;
1043 			} else {
1044 				char *tmp = krealloc(buf, buf_len,
1045 						     GFP_NOFS | __GFP_NOWARN);
1046 
1047 				if (!tmp)
1048 					kfree(buf);
1049 				buf = tmp;
1050 			}
1051 			if (!buf) {
1052 				buf = vmalloc(buf_len);
1053 				if (!buf) {
1054 					ret = -ENOMEM;
1055 					goto out;
1056 				}
1057 			}
1058 		}
1059 
1060 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1061 				name_len + data_len);
1062 
1063 		len = sizeof(*di) + name_len + data_len;
1064 		di = (struct btrfs_dir_item *)((char *)di + len);
1065 		cur += len;
1066 
1067 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1068 				data_len, type, ctx);
1069 		if (ret < 0)
1070 			goto out;
1071 		if (ret) {
1072 			ret = 0;
1073 			goto out;
1074 		}
1075 
1076 		num++;
1077 	}
1078 
1079 out:
1080 	kvfree(buf);
1081 	return ret;
1082 }
1083 
1084 static int __copy_first_ref(int num, u64 dir, int index,
1085 			    struct fs_path *p, void *ctx)
1086 {
1087 	int ret;
1088 	struct fs_path *pt = ctx;
1089 
1090 	ret = fs_path_copy(pt, p);
1091 	if (ret < 0)
1092 		return ret;
1093 
1094 	/* we want the first only */
1095 	return 1;
1096 }
1097 
1098 /*
1099  * Retrieve the first path of an inode. If an inode has more then one
1100  * ref/hardlink, this is ignored.
1101  */
1102 static int get_inode_path(struct btrfs_root *root,
1103 			  u64 ino, struct fs_path *path)
1104 {
1105 	int ret;
1106 	struct btrfs_key key, found_key;
1107 	struct btrfs_path *p;
1108 
1109 	p = alloc_path_for_send();
1110 	if (!p)
1111 		return -ENOMEM;
1112 
1113 	fs_path_reset(path);
1114 
1115 	key.objectid = ino;
1116 	key.type = BTRFS_INODE_REF_KEY;
1117 	key.offset = 0;
1118 
1119 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1120 	if (ret < 0)
1121 		goto out;
1122 	if (ret) {
1123 		ret = 1;
1124 		goto out;
1125 	}
1126 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1127 	if (found_key.objectid != ino ||
1128 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1129 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1130 		ret = -ENOENT;
1131 		goto out;
1132 	}
1133 
1134 	ret = iterate_inode_ref(root, p, &found_key, 1,
1135 				__copy_first_ref, path);
1136 	if (ret < 0)
1137 		goto out;
1138 	ret = 0;
1139 
1140 out:
1141 	btrfs_free_path(p);
1142 	return ret;
1143 }
1144 
1145 struct backref_ctx {
1146 	struct send_ctx *sctx;
1147 
1148 	struct btrfs_path *path;
1149 	/* number of total found references */
1150 	u64 found;
1151 
1152 	/*
1153 	 * used for clones found in send_root. clones found behind cur_objectid
1154 	 * and cur_offset are not considered as allowed clones.
1155 	 */
1156 	u64 cur_objectid;
1157 	u64 cur_offset;
1158 
1159 	/* may be truncated in case it's the last extent in a file */
1160 	u64 extent_len;
1161 
1162 	/* data offset in the file extent item */
1163 	u64 data_offset;
1164 
1165 	/* Just to check for bugs in backref resolving */
1166 	int found_itself;
1167 };
1168 
1169 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1170 {
1171 	u64 root = (u64)(uintptr_t)key;
1172 	struct clone_root *cr = (struct clone_root *)elt;
1173 
1174 	if (root < cr->root->objectid)
1175 		return -1;
1176 	if (root > cr->root->objectid)
1177 		return 1;
1178 	return 0;
1179 }
1180 
1181 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1182 {
1183 	struct clone_root *cr1 = (struct clone_root *)e1;
1184 	struct clone_root *cr2 = (struct clone_root *)e2;
1185 
1186 	if (cr1->root->objectid < cr2->root->objectid)
1187 		return -1;
1188 	if (cr1->root->objectid > cr2->root->objectid)
1189 		return 1;
1190 	return 0;
1191 }
1192 
1193 /*
1194  * Called for every backref that is found for the current extent.
1195  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1196  */
1197 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1198 {
1199 	struct backref_ctx *bctx = ctx_;
1200 	struct clone_root *found;
1201 	int ret;
1202 	u64 i_size;
1203 
1204 	/* First check if the root is in the list of accepted clone sources */
1205 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1206 			bctx->sctx->clone_roots_cnt,
1207 			sizeof(struct clone_root),
1208 			__clone_root_cmp_bsearch);
1209 	if (!found)
1210 		return 0;
1211 
1212 	if (found->root == bctx->sctx->send_root &&
1213 	    ino == bctx->cur_objectid &&
1214 	    offset == bctx->cur_offset) {
1215 		bctx->found_itself = 1;
1216 	}
1217 
1218 	/*
1219 	 * There are inodes that have extents that lie behind its i_size. Don't
1220 	 * accept clones from these extents.
1221 	 */
1222 	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1223 			       NULL, NULL, NULL);
1224 	btrfs_release_path(bctx->path);
1225 	if (ret < 0)
1226 		return ret;
1227 
1228 	if (offset + bctx->data_offset + bctx->extent_len > i_size)
1229 		return 0;
1230 
1231 	/*
1232 	 * Make sure we don't consider clones from send_root that are
1233 	 * behind the current inode/offset.
1234 	 */
1235 	if (found->root == bctx->sctx->send_root) {
1236 		/*
1237 		 * TODO for the moment we don't accept clones from the inode
1238 		 * that is currently send. We may change this when
1239 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1240 		 * file.
1241 		 */
1242 		if (ino >= bctx->cur_objectid)
1243 			return 0;
1244 #if 0
1245 		if (ino > bctx->cur_objectid)
1246 			return 0;
1247 		if (offset + bctx->extent_len > bctx->cur_offset)
1248 			return 0;
1249 #endif
1250 	}
1251 
1252 	bctx->found++;
1253 	found->found_refs++;
1254 	if (ino < found->ino) {
1255 		found->ino = ino;
1256 		found->offset = offset;
1257 	} else if (found->ino == ino) {
1258 		/*
1259 		 * same extent found more then once in the same file.
1260 		 */
1261 		if (found->offset > offset + bctx->extent_len)
1262 			found->offset = offset;
1263 	}
1264 
1265 	return 0;
1266 }
1267 
1268 /*
1269  * Given an inode, offset and extent item, it finds a good clone for a clone
1270  * instruction. Returns -ENOENT when none could be found. The function makes
1271  * sure that the returned clone is usable at the point where sending is at the
1272  * moment. This means, that no clones are accepted which lie behind the current
1273  * inode+offset.
1274  *
1275  * path must point to the extent item when called.
1276  */
1277 static int find_extent_clone(struct send_ctx *sctx,
1278 			     struct btrfs_path *path,
1279 			     u64 ino, u64 data_offset,
1280 			     u64 ino_size,
1281 			     struct clone_root **found)
1282 {
1283 	int ret;
1284 	int extent_type;
1285 	u64 logical;
1286 	u64 disk_byte;
1287 	u64 num_bytes;
1288 	u64 extent_item_pos;
1289 	u64 flags = 0;
1290 	struct btrfs_file_extent_item *fi;
1291 	struct extent_buffer *eb = path->nodes[0];
1292 	struct backref_ctx *backref_ctx = NULL;
1293 	struct clone_root *cur_clone_root;
1294 	struct btrfs_key found_key;
1295 	struct btrfs_path *tmp_path;
1296 	int compressed;
1297 	u32 i;
1298 
1299 	tmp_path = alloc_path_for_send();
1300 	if (!tmp_path)
1301 		return -ENOMEM;
1302 
1303 	/* We only use this path under the commit sem */
1304 	tmp_path->need_commit_sem = 0;
1305 
1306 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1307 	if (!backref_ctx) {
1308 		ret = -ENOMEM;
1309 		goto out;
1310 	}
1311 
1312 	backref_ctx->path = tmp_path;
1313 
1314 	if (data_offset >= ino_size) {
1315 		/*
1316 		 * There may be extents that lie behind the file's size.
1317 		 * I at least had this in combination with snapshotting while
1318 		 * writing large files.
1319 		 */
1320 		ret = 0;
1321 		goto out;
1322 	}
1323 
1324 	fi = btrfs_item_ptr(eb, path->slots[0],
1325 			struct btrfs_file_extent_item);
1326 	extent_type = btrfs_file_extent_type(eb, fi);
1327 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1328 		ret = -ENOENT;
1329 		goto out;
1330 	}
1331 	compressed = btrfs_file_extent_compression(eb, fi);
1332 
1333 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1334 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1335 	if (disk_byte == 0) {
1336 		ret = -ENOENT;
1337 		goto out;
1338 	}
1339 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1340 
1341 	down_read(&sctx->send_root->fs_info->commit_root_sem);
1342 	ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1343 				  &found_key, &flags);
1344 	up_read(&sctx->send_root->fs_info->commit_root_sem);
1345 	btrfs_release_path(tmp_path);
1346 
1347 	if (ret < 0)
1348 		goto out;
1349 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1350 		ret = -EIO;
1351 		goto out;
1352 	}
1353 
1354 	/*
1355 	 * Setup the clone roots.
1356 	 */
1357 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1358 		cur_clone_root = sctx->clone_roots + i;
1359 		cur_clone_root->ino = (u64)-1;
1360 		cur_clone_root->offset = 0;
1361 		cur_clone_root->found_refs = 0;
1362 	}
1363 
1364 	backref_ctx->sctx = sctx;
1365 	backref_ctx->found = 0;
1366 	backref_ctx->cur_objectid = ino;
1367 	backref_ctx->cur_offset = data_offset;
1368 	backref_ctx->found_itself = 0;
1369 	backref_ctx->extent_len = num_bytes;
1370 	/*
1371 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1372 	 * offsets that already take into account the data offset, but not for
1373 	 * compressed extents, since the offset is logical and not relative to
1374 	 * the physical extent locations. We must take this into account to
1375 	 * avoid sending clone offsets that go beyond the source file's size,
1376 	 * which would result in the clone ioctl failing with -EINVAL on the
1377 	 * receiving end.
1378 	 */
1379 	if (compressed == BTRFS_COMPRESS_NONE)
1380 		backref_ctx->data_offset = 0;
1381 	else
1382 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1383 
1384 	/*
1385 	 * The last extent of a file may be too large due to page alignment.
1386 	 * We need to adjust extent_len in this case so that the checks in
1387 	 * __iterate_backrefs work.
1388 	 */
1389 	if (data_offset + num_bytes >= ino_size)
1390 		backref_ctx->extent_len = ino_size - data_offset;
1391 
1392 	/*
1393 	 * Now collect all backrefs.
1394 	 */
1395 	if (compressed == BTRFS_COMPRESS_NONE)
1396 		extent_item_pos = logical - found_key.objectid;
1397 	else
1398 		extent_item_pos = 0;
1399 	ret = iterate_extent_inodes(sctx->send_root->fs_info,
1400 					found_key.objectid, extent_item_pos, 1,
1401 					__iterate_backrefs, backref_ctx);
1402 
1403 	if (ret < 0)
1404 		goto out;
1405 
1406 	if (!backref_ctx->found_itself) {
1407 		/* found a bug in backref code? */
1408 		ret = -EIO;
1409 		btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1410 				"send_root. inode=%llu, offset=%llu, "
1411 				"disk_byte=%llu found extent=%llu",
1412 				ino, data_offset, disk_byte, found_key.objectid);
1413 		goto out;
1414 	}
1415 
1416 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1417 		"ino=%llu, "
1418 		"num_bytes=%llu, logical=%llu\n",
1419 		data_offset, ino, num_bytes, logical);
1420 
1421 	if (!backref_ctx->found)
1422 		verbose_printk("btrfs:    no clones found\n");
1423 
1424 	cur_clone_root = NULL;
1425 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1426 		if (sctx->clone_roots[i].found_refs) {
1427 			if (!cur_clone_root)
1428 				cur_clone_root = sctx->clone_roots + i;
1429 			else if (sctx->clone_roots[i].root == sctx->send_root)
1430 				/* prefer clones from send_root over others */
1431 				cur_clone_root = sctx->clone_roots + i;
1432 		}
1433 
1434 	}
1435 
1436 	if (cur_clone_root) {
1437 		*found = cur_clone_root;
1438 		ret = 0;
1439 	} else {
1440 		ret = -ENOENT;
1441 	}
1442 
1443 out:
1444 	btrfs_free_path(tmp_path);
1445 	kfree(backref_ctx);
1446 	return ret;
1447 }
1448 
1449 static int read_symlink(struct btrfs_root *root,
1450 			u64 ino,
1451 			struct fs_path *dest)
1452 {
1453 	int ret;
1454 	struct btrfs_path *path;
1455 	struct btrfs_key key;
1456 	struct btrfs_file_extent_item *ei;
1457 	u8 type;
1458 	u8 compression;
1459 	unsigned long off;
1460 	int len;
1461 
1462 	path = alloc_path_for_send();
1463 	if (!path)
1464 		return -ENOMEM;
1465 
1466 	key.objectid = ino;
1467 	key.type = BTRFS_EXTENT_DATA_KEY;
1468 	key.offset = 0;
1469 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1470 	if (ret < 0)
1471 		goto out;
1472 	if (ret) {
1473 		/*
1474 		 * An empty symlink inode. Can happen in rare error paths when
1475 		 * creating a symlink (transaction committed before the inode
1476 		 * eviction handler removed the symlink inode items and a crash
1477 		 * happened in between or the subvol was snapshoted in between).
1478 		 * Print an informative message to dmesg/syslog so that the user
1479 		 * can delete the symlink.
1480 		 */
1481 		btrfs_err(root->fs_info,
1482 			  "Found empty symlink inode %llu at root %llu",
1483 			  ino, root->root_key.objectid);
1484 		ret = -EIO;
1485 		goto out;
1486 	}
1487 
1488 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1489 			struct btrfs_file_extent_item);
1490 	type = btrfs_file_extent_type(path->nodes[0], ei);
1491 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1492 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1493 	BUG_ON(compression);
1494 
1495 	off = btrfs_file_extent_inline_start(ei);
1496 	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1497 
1498 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1499 
1500 out:
1501 	btrfs_free_path(path);
1502 	return ret;
1503 }
1504 
1505 /*
1506  * Helper function to generate a file name that is unique in the root of
1507  * send_root and parent_root. This is used to generate names for orphan inodes.
1508  */
1509 static int gen_unique_name(struct send_ctx *sctx,
1510 			   u64 ino, u64 gen,
1511 			   struct fs_path *dest)
1512 {
1513 	int ret = 0;
1514 	struct btrfs_path *path;
1515 	struct btrfs_dir_item *di;
1516 	char tmp[64];
1517 	int len;
1518 	u64 idx = 0;
1519 
1520 	path = alloc_path_for_send();
1521 	if (!path)
1522 		return -ENOMEM;
1523 
1524 	while (1) {
1525 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1526 				ino, gen, idx);
1527 		ASSERT(len < sizeof(tmp));
1528 
1529 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1530 				path, BTRFS_FIRST_FREE_OBJECTID,
1531 				tmp, strlen(tmp), 0);
1532 		btrfs_release_path(path);
1533 		if (IS_ERR(di)) {
1534 			ret = PTR_ERR(di);
1535 			goto out;
1536 		}
1537 		if (di) {
1538 			/* not unique, try again */
1539 			idx++;
1540 			continue;
1541 		}
1542 
1543 		if (!sctx->parent_root) {
1544 			/* unique */
1545 			ret = 0;
1546 			break;
1547 		}
1548 
1549 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1550 				path, BTRFS_FIRST_FREE_OBJECTID,
1551 				tmp, strlen(tmp), 0);
1552 		btrfs_release_path(path);
1553 		if (IS_ERR(di)) {
1554 			ret = PTR_ERR(di);
1555 			goto out;
1556 		}
1557 		if (di) {
1558 			/* not unique, try again */
1559 			idx++;
1560 			continue;
1561 		}
1562 		/* unique */
1563 		break;
1564 	}
1565 
1566 	ret = fs_path_add(dest, tmp, strlen(tmp));
1567 
1568 out:
1569 	btrfs_free_path(path);
1570 	return ret;
1571 }
1572 
1573 enum inode_state {
1574 	inode_state_no_change,
1575 	inode_state_will_create,
1576 	inode_state_did_create,
1577 	inode_state_will_delete,
1578 	inode_state_did_delete,
1579 };
1580 
1581 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1582 {
1583 	int ret;
1584 	int left_ret;
1585 	int right_ret;
1586 	u64 left_gen;
1587 	u64 right_gen;
1588 
1589 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1590 			NULL, NULL);
1591 	if (ret < 0 && ret != -ENOENT)
1592 		goto out;
1593 	left_ret = ret;
1594 
1595 	if (!sctx->parent_root) {
1596 		right_ret = -ENOENT;
1597 	} else {
1598 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1599 				NULL, NULL, NULL, NULL);
1600 		if (ret < 0 && ret != -ENOENT)
1601 			goto out;
1602 		right_ret = ret;
1603 	}
1604 
1605 	if (!left_ret && !right_ret) {
1606 		if (left_gen == gen && right_gen == gen) {
1607 			ret = inode_state_no_change;
1608 		} else if (left_gen == gen) {
1609 			if (ino < sctx->send_progress)
1610 				ret = inode_state_did_create;
1611 			else
1612 				ret = inode_state_will_create;
1613 		} else if (right_gen == gen) {
1614 			if (ino < sctx->send_progress)
1615 				ret = inode_state_did_delete;
1616 			else
1617 				ret = inode_state_will_delete;
1618 		} else  {
1619 			ret = -ENOENT;
1620 		}
1621 	} else if (!left_ret) {
1622 		if (left_gen == gen) {
1623 			if (ino < sctx->send_progress)
1624 				ret = inode_state_did_create;
1625 			else
1626 				ret = inode_state_will_create;
1627 		} else {
1628 			ret = -ENOENT;
1629 		}
1630 	} else if (!right_ret) {
1631 		if (right_gen == gen) {
1632 			if (ino < sctx->send_progress)
1633 				ret = inode_state_did_delete;
1634 			else
1635 				ret = inode_state_will_delete;
1636 		} else {
1637 			ret = -ENOENT;
1638 		}
1639 	} else {
1640 		ret = -ENOENT;
1641 	}
1642 
1643 out:
1644 	return ret;
1645 }
1646 
1647 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1648 {
1649 	int ret;
1650 
1651 	ret = get_cur_inode_state(sctx, ino, gen);
1652 	if (ret < 0)
1653 		goto out;
1654 
1655 	if (ret == inode_state_no_change ||
1656 	    ret == inode_state_did_create ||
1657 	    ret == inode_state_will_delete)
1658 		ret = 1;
1659 	else
1660 		ret = 0;
1661 
1662 out:
1663 	return ret;
1664 }
1665 
1666 /*
1667  * Helper function to lookup a dir item in a dir.
1668  */
1669 static int lookup_dir_item_inode(struct btrfs_root *root,
1670 				 u64 dir, const char *name, int name_len,
1671 				 u64 *found_inode,
1672 				 u8 *found_type)
1673 {
1674 	int ret = 0;
1675 	struct btrfs_dir_item *di;
1676 	struct btrfs_key key;
1677 	struct btrfs_path *path;
1678 
1679 	path = alloc_path_for_send();
1680 	if (!path)
1681 		return -ENOMEM;
1682 
1683 	di = btrfs_lookup_dir_item(NULL, root, path,
1684 			dir, name, name_len, 0);
1685 	if (!di) {
1686 		ret = -ENOENT;
1687 		goto out;
1688 	}
1689 	if (IS_ERR(di)) {
1690 		ret = PTR_ERR(di);
1691 		goto out;
1692 	}
1693 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1694 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1695 		ret = -ENOENT;
1696 		goto out;
1697 	}
1698 	*found_inode = key.objectid;
1699 	*found_type = btrfs_dir_type(path->nodes[0], di);
1700 
1701 out:
1702 	btrfs_free_path(path);
1703 	return ret;
1704 }
1705 
1706 /*
1707  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1708  * generation of the parent dir and the name of the dir entry.
1709  */
1710 static int get_first_ref(struct btrfs_root *root, u64 ino,
1711 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1712 {
1713 	int ret;
1714 	struct btrfs_key key;
1715 	struct btrfs_key found_key;
1716 	struct btrfs_path *path;
1717 	int len;
1718 	u64 parent_dir;
1719 
1720 	path = alloc_path_for_send();
1721 	if (!path)
1722 		return -ENOMEM;
1723 
1724 	key.objectid = ino;
1725 	key.type = BTRFS_INODE_REF_KEY;
1726 	key.offset = 0;
1727 
1728 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1729 	if (ret < 0)
1730 		goto out;
1731 	if (!ret)
1732 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1733 				path->slots[0]);
1734 	if (ret || found_key.objectid != ino ||
1735 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1736 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1737 		ret = -ENOENT;
1738 		goto out;
1739 	}
1740 
1741 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1742 		struct btrfs_inode_ref *iref;
1743 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1744 				      struct btrfs_inode_ref);
1745 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1746 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1747 						     (unsigned long)(iref + 1),
1748 						     len);
1749 		parent_dir = found_key.offset;
1750 	} else {
1751 		struct btrfs_inode_extref *extref;
1752 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1753 					struct btrfs_inode_extref);
1754 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1755 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1756 					(unsigned long)&extref->name, len);
1757 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1758 	}
1759 	if (ret < 0)
1760 		goto out;
1761 	btrfs_release_path(path);
1762 
1763 	if (dir_gen) {
1764 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1765 				     NULL, NULL, NULL);
1766 		if (ret < 0)
1767 			goto out;
1768 	}
1769 
1770 	*dir = parent_dir;
1771 
1772 out:
1773 	btrfs_free_path(path);
1774 	return ret;
1775 }
1776 
1777 static int is_first_ref(struct btrfs_root *root,
1778 			u64 ino, u64 dir,
1779 			const char *name, int name_len)
1780 {
1781 	int ret;
1782 	struct fs_path *tmp_name;
1783 	u64 tmp_dir;
1784 
1785 	tmp_name = fs_path_alloc();
1786 	if (!tmp_name)
1787 		return -ENOMEM;
1788 
1789 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1790 	if (ret < 0)
1791 		goto out;
1792 
1793 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1794 		ret = 0;
1795 		goto out;
1796 	}
1797 
1798 	ret = !memcmp(tmp_name->start, name, name_len);
1799 
1800 out:
1801 	fs_path_free(tmp_name);
1802 	return ret;
1803 }
1804 
1805 /*
1806  * Used by process_recorded_refs to determine if a new ref would overwrite an
1807  * already existing ref. In case it detects an overwrite, it returns the
1808  * inode/gen in who_ino/who_gen.
1809  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1810  * to make sure later references to the overwritten inode are possible.
1811  * Orphanizing is however only required for the first ref of an inode.
1812  * process_recorded_refs does an additional is_first_ref check to see if
1813  * orphanizing is really required.
1814  */
1815 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1816 			      const char *name, int name_len,
1817 			      u64 *who_ino, u64 *who_gen)
1818 {
1819 	int ret = 0;
1820 	u64 gen;
1821 	u64 other_inode = 0;
1822 	u8 other_type = 0;
1823 
1824 	if (!sctx->parent_root)
1825 		goto out;
1826 
1827 	ret = is_inode_existent(sctx, dir, dir_gen);
1828 	if (ret <= 0)
1829 		goto out;
1830 
1831 	/*
1832 	 * If we have a parent root we need to verify that the parent dir was
1833 	 * not delted and then re-created, if it was then we have no overwrite
1834 	 * and we can just unlink this entry.
1835 	 */
1836 	if (sctx->parent_root) {
1837 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1838 				     NULL, NULL, NULL);
1839 		if (ret < 0 && ret != -ENOENT)
1840 			goto out;
1841 		if (ret) {
1842 			ret = 0;
1843 			goto out;
1844 		}
1845 		if (gen != dir_gen)
1846 			goto out;
1847 	}
1848 
1849 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1850 			&other_inode, &other_type);
1851 	if (ret < 0 && ret != -ENOENT)
1852 		goto out;
1853 	if (ret) {
1854 		ret = 0;
1855 		goto out;
1856 	}
1857 
1858 	/*
1859 	 * Check if the overwritten ref was already processed. If yes, the ref
1860 	 * was already unlinked/moved, so we can safely assume that we will not
1861 	 * overwrite anything at this point in time.
1862 	 */
1863 	if (other_inode > sctx->send_progress) {
1864 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1865 				who_gen, NULL, NULL, NULL, NULL);
1866 		if (ret < 0)
1867 			goto out;
1868 
1869 		ret = 1;
1870 		*who_ino = other_inode;
1871 	} else {
1872 		ret = 0;
1873 	}
1874 
1875 out:
1876 	return ret;
1877 }
1878 
1879 /*
1880  * Checks if the ref was overwritten by an already processed inode. This is
1881  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1882  * thus the orphan name needs be used.
1883  * process_recorded_refs also uses it to avoid unlinking of refs that were
1884  * overwritten.
1885  */
1886 static int did_overwrite_ref(struct send_ctx *sctx,
1887 			    u64 dir, u64 dir_gen,
1888 			    u64 ino, u64 ino_gen,
1889 			    const char *name, int name_len)
1890 {
1891 	int ret = 0;
1892 	u64 gen;
1893 	u64 ow_inode;
1894 	u8 other_type;
1895 
1896 	if (!sctx->parent_root)
1897 		goto out;
1898 
1899 	ret = is_inode_existent(sctx, dir, dir_gen);
1900 	if (ret <= 0)
1901 		goto out;
1902 
1903 	/* check if the ref was overwritten by another ref */
1904 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1905 			&ow_inode, &other_type);
1906 	if (ret < 0 && ret != -ENOENT)
1907 		goto out;
1908 	if (ret) {
1909 		/* was never and will never be overwritten */
1910 		ret = 0;
1911 		goto out;
1912 	}
1913 
1914 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1915 			NULL, NULL);
1916 	if (ret < 0)
1917 		goto out;
1918 
1919 	if (ow_inode == ino && gen == ino_gen) {
1920 		ret = 0;
1921 		goto out;
1922 	}
1923 
1924 	/*
1925 	 * We know that it is or will be overwritten. Check this now.
1926 	 * The current inode being processed might have been the one that caused
1927 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1928 	 * the current inode being processed.
1929 	 */
1930 	if ((ow_inode < sctx->send_progress) ||
1931 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1932 	     gen == sctx->cur_inode_gen))
1933 		ret = 1;
1934 	else
1935 		ret = 0;
1936 
1937 out:
1938 	return ret;
1939 }
1940 
1941 /*
1942  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1943  * that got overwritten. This is used by process_recorded_refs to determine
1944  * if it has to use the path as returned by get_cur_path or the orphan name.
1945  */
1946 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1947 {
1948 	int ret = 0;
1949 	struct fs_path *name = NULL;
1950 	u64 dir;
1951 	u64 dir_gen;
1952 
1953 	if (!sctx->parent_root)
1954 		goto out;
1955 
1956 	name = fs_path_alloc();
1957 	if (!name)
1958 		return -ENOMEM;
1959 
1960 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1961 	if (ret < 0)
1962 		goto out;
1963 
1964 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1965 			name->start, fs_path_len(name));
1966 
1967 out:
1968 	fs_path_free(name);
1969 	return ret;
1970 }
1971 
1972 /*
1973  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1974  * so we need to do some special handling in case we have clashes. This function
1975  * takes care of this with the help of name_cache_entry::radix_list.
1976  * In case of error, nce is kfreed.
1977  */
1978 static int name_cache_insert(struct send_ctx *sctx,
1979 			     struct name_cache_entry *nce)
1980 {
1981 	int ret = 0;
1982 	struct list_head *nce_head;
1983 
1984 	nce_head = radix_tree_lookup(&sctx->name_cache,
1985 			(unsigned long)nce->ino);
1986 	if (!nce_head) {
1987 		nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1988 		if (!nce_head) {
1989 			kfree(nce);
1990 			return -ENOMEM;
1991 		}
1992 		INIT_LIST_HEAD(nce_head);
1993 
1994 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1995 		if (ret < 0) {
1996 			kfree(nce_head);
1997 			kfree(nce);
1998 			return ret;
1999 		}
2000 	}
2001 	list_add_tail(&nce->radix_list, nce_head);
2002 	list_add_tail(&nce->list, &sctx->name_cache_list);
2003 	sctx->name_cache_size++;
2004 
2005 	return ret;
2006 }
2007 
2008 static void name_cache_delete(struct send_ctx *sctx,
2009 			      struct name_cache_entry *nce)
2010 {
2011 	struct list_head *nce_head;
2012 
2013 	nce_head = radix_tree_lookup(&sctx->name_cache,
2014 			(unsigned long)nce->ino);
2015 	if (!nce_head) {
2016 		btrfs_err(sctx->send_root->fs_info,
2017 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2018 			nce->ino, sctx->name_cache_size);
2019 	}
2020 
2021 	list_del(&nce->radix_list);
2022 	list_del(&nce->list);
2023 	sctx->name_cache_size--;
2024 
2025 	/*
2026 	 * We may not get to the final release of nce_head if the lookup fails
2027 	 */
2028 	if (nce_head && list_empty(nce_head)) {
2029 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2030 		kfree(nce_head);
2031 	}
2032 }
2033 
2034 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2035 						    u64 ino, u64 gen)
2036 {
2037 	struct list_head *nce_head;
2038 	struct name_cache_entry *cur;
2039 
2040 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2041 	if (!nce_head)
2042 		return NULL;
2043 
2044 	list_for_each_entry(cur, nce_head, radix_list) {
2045 		if (cur->ino == ino && cur->gen == gen)
2046 			return cur;
2047 	}
2048 	return NULL;
2049 }
2050 
2051 /*
2052  * Removes the entry from the list and adds it back to the end. This marks the
2053  * entry as recently used so that name_cache_clean_unused does not remove it.
2054  */
2055 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2056 {
2057 	list_del(&nce->list);
2058 	list_add_tail(&nce->list, &sctx->name_cache_list);
2059 }
2060 
2061 /*
2062  * Remove some entries from the beginning of name_cache_list.
2063  */
2064 static void name_cache_clean_unused(struct send_ctx *sctx)
2065 {
2066 	struct name_cache_entry *nce;
2067 
2068 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2069 		return;
2070 
2071 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2072 		nce = list_entry(sctx->name_cache_list.next,
2073 				struct name_cache_entry, list);
2074 		name_cache_delete(sctx, nce);
2075 		kfree(nce);
2076 	}
2077 }
2078 
2079 static void name_cache_free(struct send_ctx *sctx)
2080 {
2081 	struct name_cache_entry *nce;
2082 
2083 	while (!list_empty(&sctx->name_cache_list)) {
2084 		nce = list_entry(sctx->name_cache_list.next,
2085 				struct name_cache_entry, list);
2086 		name_cache_delete(sctx, nce);
2087 		kfree(nce);
2088 	}
2089 }
2090 
2091 /*
2092  * Used by get_cur_path for each ref up to the root.
2093  * Returns 0 if it succeeded.
2094  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2095  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2096  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2097  * Returns <0 in case of error.
2098  */
2099 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2100 				     u64 ino, u64 gen,
2101 				     u64 *parent_ino,
2102 				     u64 *parent_gen,
2103 				     struct fs_path *dest)
2104 {
2105 	int ret;
2106 	int nce_ret;
2107 	struct name_cache_entry *nce = NULL;
2108 
2109 	/*
2110 	 * First check if we already did a call to this function with the same
2111 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2112 	 * return the cached result.
2113 	 */
2114 	nce = name_cache_search(sctx, ino, gen);
2115 	if (nce) {
2116 		if (ino < sctx->send_progress && nce->need_later_update) {
2117 			name_cache_delete(sctx, nce);
2118 			kfree(nce);
2119 			nce = NULL;
2120 		} else {
2121 			name_cache_used(sctx, nce);
2122 			*parent_ino = nce->parent_ino;
2123 			*parent_gen = nce->parent_gen;
2124 			ret = fs_path_add(dest, nce->name, nce->name_len);
2125 			if (ret < 0)
2126 				goto out;
2127 			ret = nce->ret;
2128 			goto out;
2129 		}
2130 	}
2131 
2132 	/*
2133 	 * If the inode is not existent yet, add the orphan name and return 1.
2134 	 * This should only happen for the parent dir that we determine in
2135 	 * __record_new_ref
2136 	 */
2137 	ret = is_inode_existent(sctx, ino, gen);
2138 	if (ret < 0)
2139 		goto out;
2140 
2141 	if (!ret) {
2142 		ret = gen_unique_name(sctx, ino, gen, dest);
2143 		if (ret < 0)
2144 			goto out;
2145 		ret = 1;
2146 		goto out_cache;
2147 	}
2148 
2149 	/*
2150 	 * Depending on whether the inode was already processed or not, use
2151 	 * send_root or parent_root for ref lookup.
2152 	 */
2153 	if (ino < sctx->send_progress)
2154 		ret = get_first_ref(sctx->send_root, ino,
2155 				    parent_ino, parent_gen, dest);
2156 	else
2157 		ret = get_first_ref(sctx->parent_root, ino,
2158 				    parent_ino, parent_gen, dest);
2159 	if (ret < 0)
2160 		goto out;
2161 
2162 	/*
2163 	 * Check if the ref was overwritten by an inode's ref that was processed
2164 	 * earlier. If yes, treat as orphan and return 1.
2165 	 */
2166 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2167 			dest->start, dest->end - dest->start);
2168 	if (ret < 0)
2169 		goto out;
2170 	if (ret) {
2171 		fs_path_reset(dest);
2172 		ret = gen_unique_name(sctx, ino, gen, dest);
2173 		if (ret < 0)
2174 			goto out;
2175 		ret = 1;
2176 	}
2177 
2178 out_cache:
2179 	/*
2180 	 * Store the result of the lookup in the name cache.
2181 	 */
2182 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2183 	if (!nce) {
2184 		ret = -ENOMEM;
2185 		goto out;
2186 	}
2187 
2188 	nce->ino = ino;
2189 	nce->gen = gen;
2190 	nce->parent_ino = *parent_ino;
2191 	nce->parent_gen = *parent_gen;
2192 	nce->name_len = fs_path_len(dest);
2193 	nce->ret = ret;
2194 	strcpy(nce->name, dest->start);
2195 
2196 	if (ino < sctx->send_progress)
2197 		nce->need_later_update = 0;
2198 	else
2199 		nce->need_later_update = 1;
2200 
2201 	nce_ret = name_cache_insert(sctx, nce);
2202 	if (nce_ret < 0)
2203 		ret = nce_ret;
2204 	name_cache_clean_unused(sctx);
2205 
2206 out:
2207 	return ret;
2208 }
2209 
2210 /*
2211  * Magic happens here. This function returns the first ref to an inode as it
2212  * would look like while receiving the stream at this point in time.
2213  * We walk the path up to the root. For every inode in between, we check if it
2214  * was already processed/sent. If yes, we continue with the parent as found
2215  * in send_root. If not, we continue with the parent as found in parent_root.
2216  * If we encounter an inode that was deleted at this point in time, we use the
2217  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2218  * that were not created yet and overwritten inodes/refs.
2219  *
2220  * When do we have have orphan inodes:
2221  * 1. When an inode is freshly created and thus no valid refs are available yet
2222  * 2. When a directory lost all it's refs (deleted) but still has dir items
2223  *    inside which were not processed yet (pending for move/delete). If anyone
2224  *    tried to get the path to the dir items, it would get a path inside that
2225  *    orphan directory.
2226  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2227  *    of an unprocessed inode. If in that case the first ref would be
2228  *    overwritten, the overwritten inode gets "orphanized". Later when we
2229  *    process this overwritten inode, it is restored at a new place by moving
2230  *    the orphan inode.
2231  *
2232  * sctx->send_progress tells this function at which point in time receiving
2233  * would be.
2234  */
2235 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2236 			struct fs_path *dest)
2237 {
2238 	int ret = 0;
2239 	struct fs_path *name = NULL;
2240 	u64 parent_inode = 0;
2241 	u64 parent_gen = 0;
2242 	int stop = 0;
2243 
2244 	name = fs_path_alloc();
2245 	if (!name) {
2246 		ret = -ENOMEM;
2247 		goto out;
2248 	}
2249 
2250 	dest->reversed = 1;
2251 	fs_path_reset(dest);
2252 
2253 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2254 		struct waiting_dir_move *wdm;
2255 
2256 		fs_path_reset(name);
2257 
2258 		if (is_waiting_for_rm(sctx, ino)) {
2259 			ret = gen_unique_name(sctx, ino, gen, name);
2260 			if (ret < 0)
2261 				goto out;
2262 			ret = fs_path_add_path(dest, name);
2263 			break;
2264 		}
2265 
2266 		wdm = get_waiting_dir_move(sctx, ino);
2267 		if (wdm && wdm->orphanized) {
2268 			ret = gen_unique_name(sctx, ino, gen, name);
2269 			stop = 1;
2270 		} else if (wdm) {
2271 			ret = get_first_ref(sctx->parent_root, ino,
2272 					    &parent_inode, &parent_gen, name);
2273 		} else {
2274 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2275 							&parent_inode,
2276 							&parent_gen, name);
2277 			if (ret)
2278 				stop = 1;
2279 		}
2280 
2281 		if (ret < 0)
2282 			goto out;
2283 
2284 		ret = fs_path_add_path(dest, name);
2285 		if (ret < 0)
2286 			goto out;
2287 
2288 		ino = parent_inode;
2289 		gen = parent_gen;
2290 	}
2291 
2292 out:
2293 	fs_path_free(name);
2294 	if (!ret)
2295 		fs_path_unreverse(dest);
2296 	return ret;
2297 }
2298 
2299 /*
2300  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2301  */
2302 static int send_subvol_begin(struct send_ctx *sctx)
2303 {
2304 	int ret;
2305 	struct btrfs_root *send_root = sctx->send_root;
2306 	struct btrfs_root *parent_root = sctx->parent_root;
2307 	struct btrfs_path *path;
2308 	struct btrfs_key key;
2309 	struct btrfs_root_ref *ref;
2310 	struct extent_buffer *leaf;
2311 	char *name = NULL;
2312 	int namelen;
2313 
2314 	path = btrfs_alloc_path();
2315 	if (!path)
2316 		return -ENOMEM;
2317 
2318 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2319 	if (!name) {
2320 		btrfs_free_path(path);
2321 		return -ENOMEM;
2322 	}
2323 
2324 	key.objectid = send_root->objectid;
2325 	key.type = BTRFS_ROOT_BACKREF_KEY;
2326 	key.offset = 0;
2327 
2328 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2329 				&key, path, 1, 0);
2330 	if (ret < 0)
2331 		goto out;
2332 	if (ret) {
2333 		ret = -ENOENT;
2334 		goto out;
2335 	}
2336 
2337 	leaf = path->nodes[0];
2338 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2339 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2340 	    key.objectid != send_root->objectid) {
2341 		ret = -ENOENT;
2342 		goto out;
2343 	}
2344 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2345 	namelen = btrfs_root_ref_name_len(leaf, ref);
2346 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2347 	btrfs_release_path(path);
2348 
2349 	if (parent_root) {
2350 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2351 		if (ret < 0)
2352 			goto out;
2353 	} else {
2354 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2355 		if (ret < 0)
2356 			goto out;
2357 	}
2358 
2359 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2360 
2361 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2362 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2363 			    sctx->send_root->root_item.received_uuid);
2364 	else
2365 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2366 			    sctx->send_root->root_item.uuid);
2367 
2368 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2369 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2370 	if (parent_root) {
2371 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2372 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2373 				     parent_root->root_item.received_uuid);
2374 		else
2375 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2376 				     parent_root->root_item.uuid);
2377 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2378 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2379 	}
2380 
2381 	ret = send_cmd(sctx);
2382 
2383 tlv_put_failure:
2384 out:
2385 	btrfs_free_path(path);
2386 	kfree(name);
2387 	return ret;
2388 }
2389 
2390 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2391 {
2392 	int ret = 0;
2393 	struct fs_path *p;
2394 
2395 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2396 
2397 	p = fs_path_alloc();
2398 	if (!p)
2399 		return -ENOMEM;
2400 
2401 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2402 	if (ret < 0)
2403 		goto out;
2404 
2405 	ret = get_cur_path(sctx, ino, gen, p);
2406 	if (ret < 0)
2407 		goto out;
2408 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2409 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2410 
2411 	ret = send_cmd(sctx);
2412 
2413 tlv_put_failure:
2414 out:
2415 	fs_path_free(p);
2416 	return ret;
2417 }
2418 
2419 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2420 {
2421 	int ret = 0;
2422 	struct fs_path *p;
2423 
2424 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2425 
2426 	p = fs_path_alloc();
2427 	if (!p)
2428 		return -ENOMEM;
2429 
2430 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2431 	if (ret < 0)
2432 		goto out;
2433 
2434 	ret = get_cur_path(sctx, ino, gen, p);
2435 	if (ret < 0)
2436 		goto out;
2437 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2438 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2439 
2440 	ret = send_cmd(sctx);
2441 
2442 tlv_put_failure:
2443 out:
2444 	fs_path_free(p);
2445 	return ret;
2446 }
2447 
2448 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2449 {
2450 	int ret = 0;
2451 	struct fs_path *p;
2452 
2453 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2454 
2455 	p = fs_path_alloc();
2456 	if (!p)
2457 		return -ENOMEM;
2458 
2459 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2460 	if (ret < 0)
2461 		goto out;
2462 
2463 	ret = get_cur_path(sctx, ino, gen, p);
2464 	if (ret < 0)
2465 		goto out;
2466 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2467 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2468 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2469 
2470 	ret = send_cmd(sctx);
2471 
2472 tlv_put_failure:
2473 out:
2474 	fs_path_free(p);
2475 	return ret;
2476 }
2477 
2478 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2479 {
2480 	int ret = 0;
2481 	struct fs_path *p = NULL;
2482 	struct btrfs_inode_item *ii;
2483 	struct btrfs_path *path = NULL;
2484 	struct extent_buffer *eb;
2485 	struct btrfs_key key;
2486 	int slot;
2487 
2488 verbose_printk("btrfs: send_utimes %llu\n", ino);
2489 
2490 	p = fs_path_alloc();
2491 	if (!p)
2492 		return -ENOMEM;
2493 
2494 	path = alloc_path_for_send();
2495 	if (!path) {
2496 		ret = -ENOMEM;
2497 		goto out;
2498 	}
2499 
2500 	key.objectid = ino;
2501 	key.type = BTRFS_INODE_ITEM_KEY;
2502 	key.offset = 0;
2503 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2504 	if (ret < 0)
2505 		goto out;
2506 
2507 	eb = path->nodes[0];
2508 	slot = path->slots[0];
2509 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2510 
2511 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2512 	if (ret < 0)
2513 		goto out;
2514 
2515 	ret = get_cur_path(sctx, ino, gen, p);
2516 	if (ret < 0)
2517 		goto out;
2518 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2519 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2520 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2521 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2522 	/* TODO Add otime support when the otime patches get into upstream */
2523 
2524 	ret = send_cmd(sctx);
2525 
2526 tlv_put_failure:
2527 out:
2528 	fs_path_free(p);
2529 	btrfs_free_path(path);
2530 	return ret;
2531 }
2532 
2533 /*
2534  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2535  * a valid path yet because we did not process the refs yet. So, the inode
2536  * is created as orphan.
2537  */
2538 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2539 {
2540 	int ret = 0;
2541 	struct fs_path *p;
2542 	int cmd;
2543 	u64 gen;
2544 	u64 mode;
2545 	u64 rdev;
2546 
2547 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2548 
2549 	p = fs_path_alloc();
2550 	if (!p)
2551 		return -ENOMEM;
2552 
2553 	if (ino != sctx->cur_ino) {
2554 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2555 				     NULL, NULL, &rdev);
2556 		if (ret < 0)
2557 			goto out;
2558 	} else {
2559 		gen = sctx->cur_inode_gen;
2560 		mode = sctx->cur_inode_mode;
2561 		rdev = sctx->cur_inode_rdev;
2562 	}
2563 
2564 	if (S_ISREG(mode)) {
2565 		cmd = BTRFS_SEND_C_MKFILE;
2566 	} else if (S_ISDIR(mode)) {
2567 		cmd = BTRFS_SEND_C_MKDIR;
2568 	} else if (S_ISLNK(mode)) {
2569 		cmd = BTRFS_SEND_C_SYMLINK;
2570 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2571 		cmd = BTRFS_SEND_C_MKNOD;
2572 	} else if (S_ISFIFO(mode)) {
2573 		cmd = BTRFS_SEND_C_MKFIFO;
2574 	} else if (S_ISSOCK(mode)) {
2575 		cmd = BTRFS_SEND_C_MKSOCK;
2576 	} else {
2577 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2578 				(int)(mode & S_IFMT));
2579 		ret = -ENOTSUPP;
2580 		goto out;
2581 	}
2582 
2583 	ret = begin_cmd(sctx, cmd);
2584 	if (ret < 0)
2585 		goto out;
2586 
2587 	ret = gen_unique_name(sctx, ino, gen, p);
2588 	if (ret < 0)
2589 		goto out;
2590 
2591 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2592 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2593 
2594 	if (S_ISLNK(mode)) {
2595 		fs_path_reset(p);
2596 		ret = read_symlink(sctx->send_root, ino, p);
2597 		if (ret < 0)
2598 			goto out;
2599 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2600 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2601 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2602 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2603 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2604 	}
2605 
2606 	ret = send_cmd(sctx);
2607 	if (ret < 0)
2608 		goto out;
2609 
2610 
2611 tlv_put_failure:
2612 out:
2613 	fs_path_free(p);
2614 	return ret;
2615 }
2616 
2617 /*
2618  * We need some special handling for inodes that get processed before the parent
2619  * directory got created. See process_recorded_refs for details.
2620  * This function does the check if we already created the dir out of order.
2621  */
2622 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2623 {
2624 	int ret = 0;
2625 	struct btrfs_path *path = NULL;
2626 	struct btrfs_key key;
2627 	struct btrfs_key found_key;
2628 	struct btrfs_key di_key;
2629 	struct extent_buffer *eb;
2630 	struct btrfs_dir_item *di;
2631 	int slot;
2632 
2633 	path = alloc_path_for_send();
2634 	if (!path) {
2635 		ret = -ENOMEM;
2636 		goto out;
2637 	}
2638 
2639 	key.objectid = dir;
2640 	key.type = BTRFS_DIR_INDEX_KEY;
2641 	key.offset = 0;
2642 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2643 	if (ret < 0)
2644 		goto out;
2645 
2646 	while (1) {
2647 		eb = path->nodes[0];
2648 		slot = path->slots[0];
2649 		if (slot >= btrfs_header_nritems(eb)) {
2650 			ret = btrfs_next_leaf(sctx->send_root, path);
2651 			if (ret < 0) {
2652 				goto out;
2653 			} else if (ret > 0) {
2654 				ret = 0;
2655 				break;
2656 			}
2657 			continue;
2658 		}
2659 
2660 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2661 		if (found_key.objectid != key.objectid ||
2662 		    found_key.type != key.type) {
2663 			ret = 0;
2664 			goto out;
2665 		}
2666 
2667 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2668 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2669 
2670 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2671 		    di_key.objectid < sctx->send_progress) {
2672 			ret = 1;
2673 			goto out;
2674 		}
2675 
2676 		path->slots[0]++;
2677 	}
2678 
2679 out:
2680 	btrfs_free_path(path);
2681 	return ret;
2682 }
2683 
2684 /*
2685  * Only creates the inode if it is:
2686  * 1. Not a directory
2687  * 2. Or a directory which was not created already due to out of order
2688  *    directories. See did_create_dir and process_recorded_refs for details.
2689  */
2690 static int send_create_inode_if_needed(struct send_ctx *sctx)
2691 {
2692 	int ret;
2693 
2694 	if (S_ISDIR(sctx->cur_inode_mode)) {
2695 		ret = did_create_dir(sctx, sctx->cur_ino);
2696 		if (ret < 0)
2697 			goto out;
2698 		if (ret) {
2699 			ret = 0;
2700 			goto out;
2701 		}
2702 	}
2703 
2704 	ret = send_create_inode(sctx, sctx->cur_ino);
2705 	if (ret < 0)
2706 		goto out;
2707 
2708 out:
2709 	return ret;
2710 }
2711 
2712 struct recorded_ref {
2713 	struct list_head list;
2714 	char *dir_path;
2715 	char *name;
2716 	struct fs_path *full_path;
2717 	u64 dir;
2718 	u64 dir_gen;
2719 	int dir_path_len;
2720 	int name_len;
2721 };
2722 
2723 /*
2724  * We need to process new refs before deleted refs, but compare_tree gives us
2725  * everything mixed. So we first record all refs and later process them.
2726  * This function is a helper to record one ref.
2727  */
2728 static int __record_ref(struct list_head *head, u64 dir,
2729 		      u64 dir_gen, struct fs_path *path)
2730 {
2731 	struct recorded_ref *ref;
2732 
2733 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
2734 	if (!ref)
2735 		return -ENOMEM;
2736 
2737 	ref->dir = dir;
2738 	ref->dir_gen = dir_gen;
2739 	ref->full_path = path;
2740 
2741 	ref->name = (char *)kbasename(ref->full_path->start);
2742 	ref->name_len = ref->full_path->end - ref->name;
2743 	ref->dir_path = ref->full_path->start;
2744 	if (ref->name == ref->full_path->start)
2745 		ref->dir_path_len = 0;
2746 	else
2747 		ref->dir_path_len = ref->full_path->end -
2748 				ref->full_path->start - 1 - ref->name_len;
2749 
2750 	list_add_tail(&ref->list, head);
2751 	return 0;
2752 }
2753 
2754 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2755 {
2756 	struct recorded_ref *new;
2757 
2758 	new = kmalloc(sizeof(*ref), GFP_NOFS);
2759 	if (!new)
2760 		return -ENOMEM;
2761 
2762 	new->dir = ref->dir;
2763 	new->dir_gen = ref->dir_gen;
2764 	new->full_path = NULL;
2765 	INIT_LIST_HEAD(&new->list);
2766 	list_add_tail(&new->list, list);
2767 	return 0;
2768 }
2769 
2770 static void __free_recorded_refs(struct list_head *head)
2771 {
2772 	struct recorded_ref *cur;
2773 
2774 	while (!list_empty(head)) {
2775 		cur = list_entry(head->next, struct recorded_ref, list);
2776 		fs_path_free(cur->full_path);
2777 		list_del(&cur->list);
2778 		kfree(cur);
2779 	}
2780 }
2781 
2782 static void free_recorded_refs(struct send_ctx *sctx)
2783 {
2784 	__free_recorded_refs(&sctx->new_refs);
2785 	__free_recorded_refs(&sctx->deleted_refs);
2786 }
2787 
2788 /*
2789  * Renames/moves a file/dir to its orphan name. Used when the first
2790  * ref of an unprocessed inode gets overwritten and for all non empty
2791  * directories.
2792  */
2793 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2794 			  struct fs_path *path)
2795 {
2796 	int ret;
2797 	struct fs_path *orphan;
2798 
2799 	orphan = fs_path_alloc();
2800 	if (!orphan)
2801 		return -ENOMEM;
2802 
2803 	ret = gen_unique_name(sctx, ino, gen, orphan);
2804 	if (ret < 0)
2805 		goto out;
2806 
2807 	ret = send_rename(sctx, path, orphan);
2808 
2809 out:
2810 	fs_path_free(orphan);
2811 	return ret;
2812 }
2813 
2814 static struct orphan_dir_info *
2815 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2816 {
2817 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2818 	struct rb_node *parent = NULL;
2819 	struct orphan_dir_info *entry, *odi;
2820 
2821 	odi = kmalloc(sizeof(*odi), GFP_NOFS);
2822 	if (!odi)
2823 		return ERR_PTR(-ENOMEM);
2824 	odi->ino = dir_ino;
2825 	odi->gen = 0;
2826 
2827 	while (*p) {
2828 		parent = *p;
2829 		entry = rb_entry(parent, struct orphan_dir_info, node);
2830 		if (dir_ino < entry->ino) {
2831 			p = &(*p)->rb_left;
2832 		} else if (dir_ino > entry->ino) {
2833 			p = &(*p)->rb_right;
2834 		} else {
2835 			kfree(odi);
2836 			return entry;
2837 		}
2838 	}
2839 
2840 	rb_link_node(&odi->node, parent, p);
2841 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2842 	return odi;
2843 }
2844 
2845 static struct orphan_dir_info *
2846 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2847 {
2848 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2849 	struct orphan_dir_info *entry;
2850 
2851 	while (n) {
2852 		entry = rb_entry(n, struct orphan_dir_info, node);
2853 		if (dir_ino < entry->ino)
2854 			n = n->rb_left;
2855 		else if (dir_ino > entry->ino)
2856 			n = n->rb_right;
2857 		else
2858 			return entry;
2859 	}
2860 	return NULL;
2861 }
2862 
2863 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2864 {
2865 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2866 
2867 	return odi != NULL;
2868 }
2869 
2870 static void free_orphan_dir_info(struct send_ctx *sctx,
2871 				 struct orphan_dir_info *odi)
2872 {
2873 	if (!odi)
2874 		return;
2875 	rb_erase(&odi->node, &sctx->orphan_dirs);
2876 	kfree(odi);
2877 }
2878 
2879 /*
2880  * Returns 1 if a directory can be removed at this point in time.
2881  * We check this by iterating all dir items and checking if the inode behind
2882  * the dir item was already processed.
2883  */
2884 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2885 		     u64 send_progress)
2886 {
2887 	int ret = 0;
2888 	struct btrfs_root *root = sctx->parent_root;
2889 	struct btrfs_path *path;
2890 	struct btrfs_key key;
2891 	struct btrfs_key found_key;
2892 	struct btrfs_key loc;
2893 	struct btrfs_dir_item *di;
2894 
2895 	/*
2896 	 * Don't try to rmdir the top/root subvolume dir.
2897 	 */
2898 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2899 		return 0;
2900 
2901 	path = alloc_path_for_send();
2902 	if (!path)
2903 		return -ENOMEM;
2904 
2905 	key.objectid = dir;
2906 	key.type = BTRFS_DIR_INDEX_KEY;
2907 	key.offset = 0;
2908 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2909 	if (ret < 0)
2910 		goto out;
2911 
2912 	while (1) {
2913 		struct waiting_dir_move *dm;
2914 
2915 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2916 			ret = btrfs_next_leaf(root, path);
2917 			if (ret < 0)
2918 				goto out;
2919 			else if (ret > 0)
2920 				break;
2921 			continue;
2922 		}
2923 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2924 				      path->slots[0]);
2925 		if (found_key.objectid != key.objectid ||
2926 		    found_key.type != key.type)
2927 			break;
2928 
2929 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2930 				struct btrfs_dir_item);
2931 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2932 
2933 		dm = get_waiting_dir_move(sctx, loc.objectid);
2934 		if (dm) {
2935 			struct orphan_dir_info *odi;
2936 
2937 			odi = add_orphan_dir_info(sctx, dir);
2938 			if (IS_ERR(odi)) {
2939 				ret = PTR_ERR(odi);
2940 				goto out;
2941 			}
2942 			odi->gen = dir_gen;
2943 			dm->rmdir_ino = dir;
2944 			ret = 0;
2945 			goto out;
2946 		}
2947 
2948 		if (loc.objectid > send_progress) {
2949 			ret = 0;
2950 			goto out;
2951 		}
2952 
2953 		path->slots[0]++;
2954 	}
2955 
2956 	ret = 1;
2957 
2958 out:
2959 	btrfs_free_path(path);
2960 	return ret;
2961 }
2962 
2963 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2964 {
2965 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2966 
2967 	return entry != NULL;
2968 }
2969 
2970 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
2971 {
2972 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2973 	struct rb_node *parent = NULL;
2974 	struct waiting_dir_move *entry, *dm;
2975 
2976 	dm = kmalloc(sizeof(*dm), GFP_NOFS);
2977 	if (!dm)
2978 		return -ENOMEM;
2979 	dm->ino = ino;
2980 	dm->rmdir_ino = 0;
2981 	dm->orphanized = orphanized;
2982 
2983 	while (*p) {
2984 		parent = *p;
2985 		entry = rb_entry(parent, struct waiting_dir_move, node);
2986 		if (ino < entry->ino) {
2987 			p = &(*p)->rb_left;
2988 		} else if (ino > entry->ino) {
2989 			p = &(*p)->rb_right;
2990 		} else {
2991 			kfree(dm);
2992 			return -EEXIST;
2993 		}
2994 	}
2995 
2996 	rb_link_node(&dm->node, parent, p);
2997 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2998 	return 0;
2999 }
3000 
3001 static struct waiting_dir_move *
3002 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3003 {
3004 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3005 	struct waiting_dir_move *entry;
3006 
3007 	while (n) {
3008 		entry = rb_entry(n, struct waiting_dir_move, node);
3009 		if (ino < entry->ino)
3010 			n = n->rb_left;
3011 		else if (ino > entry->ino)
3012 			n = n->rb_right;
3013 		else
3014 			return entry;
3015 	}
3016 	return NULL;
3017 }
3018 
3019 static void free_waiting_dir_move(struct send_ctx *sctx,
3020 				  struct waiting_dir_move *dm)
3021 {
3022 	if (!dm)
3023 		return;
3024 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3025 	kfree(dm);
3026 }
3027 
3028 static int add_pending_dir_move(struct send_ctx *sctx,
3029 				u64 ino,
3030 				u64 ino_gen,
3031 				u64 parent_ino,
3032 				struct list_head *new_refs,
3033 				struct list_head *deleted_refs,
3034 				const bool is_orphan)
3035 {
3036 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3037 	struct rb_node *parent = NULL;
3038 	struct pending_dir_move *entry = NULL, *pm;
3039 	struct recorded_ref *cur;
3040 	int exists = 0;
3041 	int ret;
3042 
3043 	pm = kmalloc(sizeof(*pm), GFP_NOFS);
3044 	if (!pm)
3045 		return -ENOMEM;
3046 	pm->parent_ino = parent_ino;
3047 	pm->ino = ino;
3048 	pm->gen = ino_gen;
3049 	pm->is_orphan = is_orphan;
3050 	INIT_LIST_HEAD(&pm->list);
3051 	INIT_LIST_HEAD(&pm->update_refs);
3052 	RB_CLEAR_NODE(&pm->node);
3053 
3054 	while (*p) {
3055 		parent = *p;
3056 		entry = rb_entry(parent, struct pending_dir_move, node);
3057 		if (parent_ino < entry->parent_ino) {
3058 			p = &(*p)->rb_left;
3059 		} else if (parent_ino > entry->parent_ino) {
3060 			p = &(*p)->rb_right;
3061 		} else {
3062 			exists = 1;
3063 			break;
3064 		}
3065 	}
3066 
3067 	list_for_each_entry(cur, deleted_refs, list) {
3068 		ret = dup_ref(cur, &pm->update_refs);
3069 		if (ret < 0)
3070 			goto out;
3071 	}
3072 	list_for_each_entry(cur, new_refs, list) {
3073 		ret = dup_ref(cur, &pm->update_refs);
3074 		if (ret < 0)
3075 			goto out;
3076 	}
3077 
3078 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3079 	if (ret)
3080 		goto out;
3081 
3082 	if (exists) {
3083 		list_add_tail(&pm->list, &entry->list);
3084 	} else {
3085 		rb_link_node(&pm->node, parent, p);
3086 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3087 	}
3088 	ret = 0;
3089 out:
3090 	if (ret) {
3091 		__free_recorded_refs(&pm->update_refs);
3092 		kfree(pm);
3093 	}
3094 	return ret;
3095 }
3096 
3097 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3098 						      u64 parent_ino)
3099 {
3100 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3101 	struct pending_dir_move *entry;
3102 
3103 	while (n) {
3104 		entry = rb_entry(n, struct pending_dir_move, node);
3105 		if (parent_ino < entry->parent_ino)
3106 			n = n->rb_left;
3107 		else if (parent_ino > entry->parent_ino)
3108 			n = n->rb_right;
3109 		else
3110 			return entry;
3111 	}
3112 	return NULL;
3113 }
3114 
3115 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3116 {
3117 	struct fs_path *from_path = NULL;
3118 	struct fs_path *to_path = NULL;
3119 	struct fs_path *name = NULL;
3120 	u64 orig_progress = sctx->send_progress;
3121 	struct recorded_ref *cur;
3122 	u64 parent_ino, parent_gen;
3123 	struct waiting_dir_move *dm = NULL;
3124 	u64 rmdir_ino = 0;
3125 	int ret;
3126 
3127 	name = fs_path_alloc();
3128 	from_path = fs_path_alloc();
3129 	if (!name || !from_path) {
3130 		ret = -ENOMEM;
3131 		goto out;
3132 	}
3133 
3134 	dm = get_waiting_dir_move(sctx, pm->ino);
3135 	ASSERT(dm);
3136 	rmdir_ino = dm->rmdir_ino;
3137 	free_waiting_dir_move(sctx, dm);
3138 
3139 	if (pm->is_orphan) {
3140 		ret = gen_unique_name(sctx, pm->ino,
3141 				      pm->gen, from_path);
3142 	} else {
3143 		ret = get_first_ref(sctx->parent_root, pm->ino,
3144 				    &parent_ino, &parent_gen, name);
3145 		if (ret < 0)
3146 			goto out;
3147 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3148 				   from_path);
3149 		if (ret < 0)
3150 			goto out;
3151 		ret = fs_path_add_path(from_path, name);
3152 	}
3153 	if (ret < 0)
3154 		goto out;
3155 
3156 	sctx->send_progress = sctx->cur_ino + 1;
3157 	fs_path_reset(name);
3158 	to_path = name;
3159 	name = NULL;
3160 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3161 	if (ret < 0)
3162 		goto out;
3163 
3164 	ret = send_rename(sctx, from_path, to_path);
3165 	if (ret < 0)
3166 		goto out;
3167 
3168 	if (rmdir_ino) {
3169 		struct orphan_dir_info *odi;
3170 
3171 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3172 		if (!odi) {
3173 			/* already deleted */
3174 			goto finish;
3175 		}
3176 		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3177 		if (ret < 0)
3178 			goto out;
3179 		if (!ret)
3180 			goto finish;
3181 
3182 		name = fs_path_alloc();
3183 		if (!name) {
3184 			ret = -ENOMEM;
3185 			goto out;
3186 		}
3187 		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3188 		if (ret < 0)
3189 			goto out;
3190 		ret = send_rmdir(sctx, name);
3191 		if (ret < 0)
3192 			goto out;
3193 		free_orphan_dir_info(sctx, odi);
3194 	}
3195 
3196 finish:
3197 	ret = send_utimes(sctx, pm->ino, pm->gen);
3198 	if (ret < 0)
3199 		goto out;
3200 
3201 	/*
3202 	 * After rename/move, need to update the utimes of both new parent(s)
3203 	 * and old parent(s).
3204 	 */
3205 	list_for_each_entry(cur, &pm->update_refs, list) {
3206 		if (cur->dir == rmdir_ino)
3207 			continue;
3208 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3209 		if (ret < 0)
3210 			goto out;
3211 	}
3212 
3213 out:
3214 	fs_path_free(name);
3215 	fs_path_free(from_path);
3216 	fs_path_free(to_path);
3217 	sctx->send_progress = orig_progress;
3218 
3219 	return ret;
3220 }
3221 
3222 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3223 {
3224 	if (!list_empty(&m->list))
3225 		list_del(&m->list);
3226 	if (!RB_EMPTY_NODE(&m->node))
3227 		rb_erase(&m->node, &sctx->pending_dir_moves);
3228 	__free_recorded_refs(&m->update_refs);
3229 	kfree(m);
3230 }
3231 
3232 static void tail_append_pending_moves(struct pending_dir_move *moves,
3233 				      struct list_head *stack)
3234 {
3235 	if (list_empty(&moves->list)) {
3236 		list_add_tail(&moves->list, stack);
3237 	} else {
3238 		LIST_HEAD(list);
3239 		list_splice_init(&moves->list, &list);
3240 		list_add_tail(&moves->list, stack);
3241 		list_splice_tail(&list, stack);
3242 	}
3243 }
3244 
3245 static int apply_children_dir_moves(struct send_ctx *sctx)
3246 {
3247 	struct pending_dir_move *pm;
3248 	struct list_head stack;
3249 	u64 parent_ino = sctx->cur_ino;
3250 	int ret = 0;
3251 
3252 	pm = get_pending_dir_moves(sctx, parent_ino);
3253 	if (!pm)
3254 		return 0;
3255 
3256 	INIT_LIST_HEAD(&stack);
3257 	tail_append_pending_moves(pm, &stack);
3258 
3259 	while (!list_empty(&stack)) {
3260 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3261 		parent_ino = pm->ino;
3262 		ret = apply_dir_move(sctx, pm);
3263 		free_pending_move(sctx, pm);
3264 		if (ret)
3265 			goto out;
3266 		pm = get_pending_dir_moves(sctx, parent_ino);
3267 		if (pm)
3268 			tail_append_pending_moves(pm, &stack);
3269 	}
3270 	return 0;
3271 
3272 out:
3273 	while (!list_empty(&stack)) {
3274 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3275 		free_pending_move(sctx, pm);
3276 	}
3277 	return ret;
3278 }
3279 
3280 /*
3281  * We might need to delay a directory rename even when no ancestor directory
3282  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3283  * renamed. This happens when we rename a directory to the old name (the name
3284  * in the parent root) of some other unrelated directory that got its rename
3285  * delayed due to some ancestor with higher number that got renamed.
3286  *
3287  * Example:
3288  *
3289  * Parent snapshot:
3290  * .                                       (ino 256)
3291  * |---- a/                                (ino 257)
3292  * |     |---- file                        (ino 260)
3293  * |
3294  * |---- b/                                (ino 258)
3295  * |---- c/                                (ino 259)
3296  *
3297  * Send snapshot:
3298  * .                                       (ino 256)
3299  * |---- a/                                (ino 258)
3300  * |---- x/                                (ino 259)
3301  *       |---- y/                          (ino 257)
3302  *             |----- file                 (ino 260)
3303  *
3304  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3305  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3306  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3307  * must issue is:
3308  *
3309  * 1 - rename 259 from 'c' to 'x'
3310  * 2 - rename 257 from 'a' to 'x/y'
3311  * 3 - rename 258 from 'b' to 'a'
3312  *
3313  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3314  * be done right away and < 0 on error.
3315  */
3316 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3317 				  struct recorded_ref *parent_ref,
3318 				  const bool is_orphan)
3319 {
3320 	struct btrfs_path *path;
3321 	struct btrfs_key key;
3322 	struct btrfs_key di_key;
3323 	struct btrfs_dir_item *di;
3324 	u64 left_gen;
3325 	u64 right_gen;
3326 	int ret = 0;
3327 
3328 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3329 		return 0;
3330 
3331 	path = alloc_path_for_send();
3332 	if (!path)
3333 		return -ENOMEM;
3334 
3335 	key.objectid = parent_ref->dir;
3336 	key.type = BTRFS_DIR_ITEM_KEY;
3337 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3338 
3339 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3340 	if (ret < 0) {
3341 		goto out;
3342 	} else if (ret > 0) {
3343 		ret = 0;
3344 		goto out;
3345 	}
3346 
3347 	di = btrfs_match_dir_item_name(sctx->parent_root, path,
3348 				       parent_ref->name, parent_ref->name_len);
3349 	if (!di) {
3350 		ret = 0;
3351 		goto out;
3352 	}
3353 	/*
3354 	 * di_key.objectid has the number of the inode that has a dentry in the
3355 	 * parent directory with the same name that sctx->cur_ino is being
3356 	 * renamed to. We need to check if that inode is in the send root as
3357 	 * well and if it is currently marked as an inode with a pending rename,
3358 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3359 	 * that it happens after that other inode is renamed.
3360 	 */
3361 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3362 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3363 		ret = 0;
3364 		goto out;
3365 	}
3366 
3367 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3368 			     &left_gen, NULL, NULL, NULL, NULL);
3369 	if (ret < 0)
3370 		goto out;
3371 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3372 			     &right_gen, NULL, NULL, NULL, NULL);
3373 	if (ret < 0) {
3374 		if (ret == -ENOENT)
3375 			ret = 0;
3376 		goto out;
3377 	}
3378 
3379 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3380 	if (right_gen != left_gen) {
3381 		ret = 0;
3382 		goto out;
3383 	}
3384 
3385 	if (is_waiting_for_move(sctx, di_key.objectid)) {
3386 		ret = add_pending_dir_move(sctx,
3387 					   sctx->cur_ino,
3388 					   sctx->cur_inode_gen,
3389 					   di_key.objectid,
3390 					   &sctx->new_refs,
3391 					   &sctx->deleted_refs,
3392 					   is_orphan);
3393 		if (!ret)
3394 			ret = 1;
3395 	}
3396 out:
3397 	btrfs_free_path(path);
3398 	return ret;
3399 }
3400 
3401 /*
3402  * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3403  * Return 1 if true, 0 if false and < 0 on error.
3404  */
3405 static int is_ancestor(struct btrfs_root *root,
3406 		       const u64 ino1,
3407 		       const u64 ino1_gen,
3408 		       const u64 ino2,
3409 		       struct fs_path *fs_path)
3410 {
3411 	u64 ino = ino2;
3412 
3413 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3414 		int ret;
3415 		u64 parent;
3416 		u64 parent_gen;
3417 
3418 		fs_path_reset(fs_path);
3419 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3420 		if (ret < 0) {
3421 			if (ret == -ENOENT && ino == ino2)
3422 				ret = 0;
3423 			return ret;
3424 		}
3425 		if (parent == ino1)
3426 			return parent_gen == ino1_gen ? 1 : 0;
3427 		ino = parent;
3428 	}
3429 	return 0;
3430 }
3431 
3432 static int wait_for_parent_move(struct send_ctx *sctx,
3433 				struct recorded_ref *parent_ref,
3434 				const bool is_orphan)
3435 {
3436 	int ret = 0;
3437 	u64 ino = parent_ref->dir;
3438 	u64 parent_ino_before, parent_ino_after;
3439 	struct fs_path *path_before = NULL;
3440 	struct fs_path *path_after = NULL;
3441 	int len1, len2;
3442 
3443 	path_after = fs_path_alloc();
3444 	path_before = fs_path_alloc();
3445 	if (!path_after || !path_before) {
3446 		ret = -ENOMEM;
3447 		goto out;
3448 	}
3449 
3450 	/*
3451 	 * Our current directory inode may not yet be renamed/moved because some
3452 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3453 	 * such ancestor exists and make sure our own rename/move happens after
3454 	 * that ancestor is processed to avoid path build infinite loops (done
3455 	 * at get_cur_path()).
3456 	 */
3457 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3458 		if (is_waiting_for_move(sctx, ino)) {
3459 			/*
3460 			 * If the current inode is an ancestor of ino in the
3461 			 * parent root, we need to delay the rename of the
3462 			 * current inode, otherwise don't delayed the rename
3463 			 * because we can end up with a circular dependency
3464 			 * of renames, resulting in some directories never
3465 			 * getting the respective rename operations issued in
3466 			 * the send stream or getting into infinite path build
3467 			 * loops.
3468 			 */
3469 			ret = is_ancestor(sctx->parent_root,
3470 					  sctx->cur_ino, sctx->cur_inode_gen,
3471 					  ino, path_before);
3472 			break;
3473 		}
3474 
3475 		fs_path_reset(path_before);
3476 		fs_path_reset(path_after);
3477 
3478 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3479 				    NULL, path_after);
3480 		if (ret < 0)
3481 			goto out;
3482 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3483 				    NULL, path_before);
3484 		if (ret < 0 && ret != -ENOENT) {
3485 			goto out;
3486 		} else if (ret == -ENOENT) {
3487 			ret = 0;
3488 			break;
3489 		}
3490 
3491 		len1 = fs_path_len(path_before);
3492 		len2 = fs_path_len(path_after);
3493 		if (ino > sctx->cur_ino &&
3494 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3495 		     memcmp(path_before->start, path_after->start, len1))) {
3496 			ret = 1;
3497 			break;
3498 		}
3499 		ino = parent_ino_after;
3500 	}
3501 
3502 out:
3503 	fs_path_free(path_before);
3504 	fs_path_free(path_after);
3505 
3506 	if (ret == 1) {
3507 		ret = add_pending_dir_move(sctx,
3508 					   sctx->cur_ino,
3509 					   sctx->cur_inode_gen,
3510 					   ino,
3511 					   &sctx->new_refs,
3512 					   &sctx->deleted_refs,
3513 					   is_orphan);
3514 		if (!ret)
3515 			ret = 1;
3516 	}
3517 
3518 	return ret;
3519 }
3520 
3521 /*
3522  * This does all the move/link/unlink/rmdir magic.
3523  */
3524 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3525 {
3526 	int ret = 0;
3527 	struct recorded_ref *cur;
3528 	struct recorded_ref *cur2;
3529 	struct list_head check_dirs;
3530 	struct fs_path *valid_path = NULL;
3531 	u64 ow_inode = 0;
3532 	u64 ow_gen;
3533 	int did_overwrite = 0;
3534 	int is_orphan = 0;
3535 	u64 last_dir_ino_rm = 0;
3536 	bool can_rename = true;
3537 
3538 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3539 
3540 	/*
3541 	 * This should never happen as the root dir always has the same ref
3542 	 * which is always '..'
3543 	 */
3544 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3545 	INIT_LIST_HEAD(&check_dirs);
3546 
3547 	valid_path = fs_path_alloc();
3548 	if (!valid_path) {
3549 		ret = -ENOMEM;
3550 		goto out;
3551 	}
3552 
3553 	/*
3554 	 * First, check if the first ref of the current inode was overwritten
3555 	 * before. If yes, we know that the current inode was already orphanized
3556 	 * and thus use the orphan name. If not, we can use get_cur_path to
3557 	 * get the path of the first ref as it would like while receiving at
3558 	 * this point in time.
3559 	 * New inodes are always orphan at the beginning, so force to use the
3560 	 * orphan name in this case.
3561 	 * The first ref is stored in valid_path and will be updated if it
3562 	 * gets moved around.
3563 	 */
3564 	if (!sctx->cur_inode_new) {
3565 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3566 				sctx->cur_inode_gen);
3567 		if (ret < 0)
3568 			goto out;
3569 		if (ret)
3570 			did_overwrite = 1;
3571 	}
3572 	if (sctx->cur_inode_new || did_overwrite) {
3573 		ret = gen_unique_name(sctx, sctx->cur_ino,
3574 				sctx->cur_inode_gen, valid_path);
3575 		if (ret < 0)
3576 			goto out;
3577 		is_orphan = 1;
3578 	} else {
3579 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3580 				valid_path);
3581 		if (ret < 0)
3582 			goto out;
3583 	}
3584 
3585 	list_for_each_entry(cur, &sctx->new_refs, list) {
3586 		/*
3587 		 * We may have refs where the parent directory does not exist
3588 		 * yet. This happens if the parent directories inum is higher
3589 		 * the the current inum. To handle this case, we create the
3590 		 * parent directory out of order. But we need to check if this
3591 		 * did already happen before due to other refs in the same dir.
3592 		 */
3593 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3594 		if (ret < 0)
3595 			goto out;
3596 		if (ret == inode_state_will_create) {
3597 			ret = 0;
3598 			/*
3599 			 * First check if any of the current inodes refs did
3600 			 * already create the dir.
3601 			 */
3602 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3603 				if (cur == cur2)
3604 					break;
3605 				if (cur2->dir == cur->dir) {
3606 					ret = 1;
3607 					break;
3608 				}
3609 			}
3610 
3611 			/*
3612 			 * If that did not happen, check if a previous inode
3613 			 * did already create the dir.
3614 			 */
3615 			if (!ret)
3616 				ret = did_create_dir(sctx, cur->dir);
3617 			if (ret < 0)
3618 				goto out;
3619 			if (!ret) {
3620 				ret = send_create_inode(sctx, cur->dir);
3621 				if (ret < 0)
3622 					goto out;
3623 			}
3624 		}
3625 
3626 		/*
3627 		 * Check if this new ref would overwrite the first ref of
3628 		 * another unprocessed inode. If yes, orphanize the
3629 		 * overwritten inode. If we find an overwritten ref that is
3630 		 * not the first ref, simply unlink it.
3631 		 */
3632 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3633 				cur->name, cur->name_len,
3634 				&ow_inode, &ow_gen);
3635 		if (ret < 0)
3636 			goto out;
3637 		if (ret) {
3638 			ret = is_first_ref(sctx->parent_root,
3639 					   ow_inode, cur->dir, cur->name,
3640 					   cur->name_len);
3641 			if (ret < 0)
3642 				goto out;
3643 			if (ret) {
3644 				struct name_cache_entry *nce;
3645 
3646 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3647 						cur->full_path);
3648 				if (ret < 0)
3649 					goto out;
3650 				/*
3651 				 * Make sure we clear our orphanized inode's
3652 				 * name from the name cache. This is because the
3653 				 * inode ow_inode might be an ancestor of some
3654 				 * other inode that will be orphanized as well
3655 				 * later and has an inode number greater than
3656 				 * sctx->send_progress. We need to prevent
3657 				 * future name lookups from using the old name
3658 				 * and get instead the orphan name.
3659 				 */
3660 				nce = name_cache_search(sctx, ow_inode, ow_gen);
3661 				if (nce) {
3662 					name_cache_delete(sctx, nce);
3663 					kfree(nce);
3664 				}
3665 			} else {
3666 				ret = send_unlink(sctx, cur->full_path);
3667 				if (ret < 0)
3668 					goto out;
3669 			}
3670 		}
3671 
3672 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3673 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3674 			if (ret < 0)
3675 				goto out;
3676 			if (ret == 1) {
3677 				can_rename = false;
3678 				*pending_move = 1;
3679 			}
3680 		}
3681 
3682 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3683 		    can_rename) {
3684 			ret = wait_for_parent_move(sctx, cur, is_orphan);
3685 			if (ret < 0)
3686 				goto out;
3687 			if (ret == 1) {
3688 				can_rename = false;
3689 				*pending_move = 1;
3690 			}
3691 		}
3692 
3693 		/*
3694 		 * link/move the ref to the new place. If we have an orphan
3695 		 * inode, move it and update valid_path. If not, link or move
3696 		 * it depending on the inode mode.
3697 		 */
3698 		if (is_orphan && can_rename) {
3699 			ret = send_rename(sctx, valid_path, cur->full_path);
3700 			if (ret < 0)
3701 				goto out;
3702 			is_orphan = 0;
3703 			ret = fs_path_copy(valid_path, cur->full_path);
3704 			if (ret < 0)
3705 				goto out;
3706 		} else if (can_rename) {
3707 			if (S_ISDIR(sctx->cur_inode_mode)) {
3708 				/*
3709 				 * Dirs can't be linked, so move it. For moved
3710 				 * dirs, we always have one new and one deleted
3711 				 * ref. The deleted ref is ignored later.
3712 				 */
3713 				ret = send_rename(sctx, valid_path,
3714 						  cur->full_path);
3715 				if (!ret)
3716 					ret = fs_path_copy(valid_path,
3717 							   cur->full_path);
3718 				if (ret < 0)
3719 					goto out;
3720 			} else {
3721 				ret = send_link(sctx, cur->full_path,
3722 						valid_path);
3723 				if (ret < 0)
3724 					goto out;
3725 			}
3726 		}
3727 		ret = dup_ref(cur, &check_dirs);
3728 		if (ret < 0)
3729 			goto out;
3730 	}
3731 
3732 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3733 		/*
3734 		 * Check if we can already rmdir the directory. If not,
3735 		 * orphanize it. For every dir item inside that gets deleted
3736 		 * later, we do this check again and rmdir it then if possible.
3737 		 * See the use of check_dirs for more details.
3738 		 */
3739 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3740 				sctx->cur_ino);
3741 		if (ret < 0)
3742 			goto out;
3743 		if (ret) {
3744 			ret = send_rmdir(sctx, valid_path);
3745 			if (ret < 0)
3746 				goto out;
3747 		} else if (!is_orphan) {
3748 			ret = orphanize_inode(sctx, sctx->cur_ino,
3749 					sctx->cur_inode_gen, valid_path);
3750 			if (ret < 0)
3751 				goto out;
3752 			is_orphan = 1;
3753 		}
3754 
3755 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3756 			ret = dup_ref(cur, &check_dirs);
3757 			if (ret < 0)
3758 				goto out;
3759 		}
3760 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
3761 		   !list_empty(&sctx->deleted_refs)) {
3762 		/*
3763 		 * We have a moved dir. Add the old parent to check_dirs
3764 		 */
3765 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3766 				list);
3767 		ret = dup_ref(cur, &check_dirs);
3768 		if (ret < 0)
3769 			goto out;
3770 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
3771 		/*
3772 		 * We have a non dir inode. Go through all deleted refs and
3773 		 * unlink them if they were not already overwritten by other
3774 		 * inodes.
3775 		 */
3776 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3777 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3778 					sctx->cur_ino, sctx->cur_inode_gen,
3779 					cur->name, cur->name_len);
3780 			if (ret < 0)
3781 				goto out;
3782 			if (!ret) {
3783 				ret = send_unlink(sctx, cur->full_path);
3784 				if (ret < 0)
3785 					goto out;
3786 			}
3787 			ret = dup_ref(cur, &check_dirs);
3788 			if (ret < 0)
3789 				goto out;
3790 		}
3791 		/*
3792 		 * If the inode is still orphan, unlink the orphan. This may
3793 		 * happen when a previous inode did overwrite the first ref
3794 		 * of this inode and no new refs were added for the current
3795 		 * inode. Unlinking does not mean that the inode is deleted in
3796 		 * all cases. There may still be links to this inode in other
3797 		 * places.
3798 		 */
3799 		if (is_orphan) {
3800 			ret = send_unlink(sctx, valid_path);
3801 			if (ret < 0)
3802 				goto out;
3803 		}
3804 	}
3805 
3806 	/*
3807 	 * We did collect all parent dirs where cur_inode was once located. We
3808 	 * now go through all these dirs and check if they are pending for
3809 	 * deletion and if it's finally possible to perform the rmdir now.
3810 	 * We also update the inode stats of the parent dirs here.
3811 	 */
3812 	list_for_each_entry(cur, &check_dirs, list) {
3813 		/*
3814 		 * In case we had refs into dirs that were not processed yet,
3815 		 * we don't need to do the utime and rmdir logic for these dirs.
3816 		 * The dir will be processed later.
3817 		 */
3818 		if (cur->dir > sctx->cur_ino)
3819 			continue;
3820 
3821 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3822 		if (ret < 0)
3823 			goto out;
3824 
3825 		if (ret == inode_state_did_create ||
3826 		    ret == inode_state_no_change) {
3827 			/* TODO delayed utimes */
3828 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3829 			if (ret < 0)
3830 				goto out;
3831 		} else if (ret == inode_state_did_delete &&
3832 			   cur->dir != last_dir_ino_rm) {
3833 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3834 					sctx->cur_ino);
3835 			if (ret < 0)
3836 				goto out;
3837 			if (ret) {
3838 				ret = get_cur_path(sctx, cur->dir,
3839 						   cur->dir_gen, valid_path);
3840 				if (ret < 0)
3841 					goto out;
3842 				ret = send_rmdir(sctx, valid_path);
3843 				if (ret < 0)
3844 					goto out;
3845 				last_dir_ino_rm = cur->dir;
3846 			}
3847 		}
3848 	}
3849 
3850 	ret = 0;
3851 
3852 out:
3853 	__free_recorded_refs(&check_dirs);
3854 	free_recorded_refs(sctx);
3855 	fs_path_free(valid_path);
3856 	return ret;
3857 }
3858 
3859 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3860 		      struct fs_path *name, void *ctx, struct list_head *refs)
3861 {
3862 	int ret = 0;
3863 	struct send_ctx *sctx = ctx;
3864 	struct fs_path *p;
3865 	u64 gen;
3866 
3867 	p = fs_path_alloc();
3868 	if (!p)
3869 		return -ENOMEM;
3870 
3871 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3872 			NULL, NULL);
3873 	if (ret < 0)
3874 		goto out;
3875 
3876 	ret = get_cur_path(sctx, dir, gen, p);
3877 	if (ret < 0)
3878 		goto out;
3879 	ret = fs_path_add_path(p, name);
3880 	if (ret < 0)
3881 		goto out;
3882 
3883 	ret = __record_ref(refs, dir, gen, p);
3884 
3885 out:
3886 	if (ret)
3887 		fs_path_free(p);
3888 	return ret;
3889 }
3890 
3891 static int __record_new_ref(int num, u64 dir, int index,
3892 			    struct fs_path *name,
3893 			    void *ctx)
3894 {
3895 	struct send_ctx *sctx = ctx;
3896 	return record_ref(sctx->send_root, num, dir, index, name,
3897 			  ctx, &sctx->new_refs);
3898 }
3899 
3900 
3901 static int __record_deleted_ref(int num, u64 dir, int index,
3902 				struct fs_path *name,
3903 				void *ctx)
3904 {
3905 	struct send_ctx *sctx = ctx;
3906 	return record_ref(sctx->parent_root, num, dir, index, name,
3907 			  ctx, &sctx->deleted_refs);
3908 }
3909 
3910 static int record_new_ref(struct send_ctx *sctx)
3911 {
3912 	int ret;
3913 
3914 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3915 				sctx->cmp_key, 0, __record_new_ref, sctx);
3916 	if (ret < 0)
3917 		goto out;
3918 	ret = 0;
3919 
3920 out:
3921 	return ret;
3922 }
3923 
3924 static int record_deleted_ref(struct send_ctx *sctx)
3925 {
3926 	int ret;
3927 
3928 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3929 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
3930 	if (ret < 0)
3931 		goto out;
3932 	ret = 0;
3933 
3934 out:
3935 	return ret;
3936 }
3937 
3938 struct find_ref_ctx {
3939 	u64 dir;
3940 	u64 dir_gen;
3941 	struct btrfs_root *root;
3942 	struct fs_path *name;
3943 	int found_idx;
3944 };
3945 
3946 static int __find_iref(int num, u64 dir, int index,
3947 		       struct fs_path *name,
3948 		       void *ctx_)
3949 {
3950 	struct find_ref_ctx *ctx = ctx_;
3951 	u64 dir_gen;
3952 	int ret;
3953 
3954 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3955 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3956 		/*
3957 		 * To avoid doing extra lookups we'll only do this if everything
3958 		 * else matches.
3959 		 */
3960 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3961 				     NULL, NULL, NULL);
3962 		if (ret)
3963 			return ret;
3964 		if (dir_gen != ctx->dir_gen)
3965 			return 0;
3966 		ctx->found_idx = num;
3967 		return 1;
3968 	}
3969 	return 0;
3970 }
3971 
3972 static int find_iref(struct btrfs_root *root,
3973 		     struct btrfs_path *path,
3974 		     struct btrfs_key *key,
3975 		     u64 dir, u64 dir_gen, struct fs_path *name)
3976 {
3977 	int ret;
3978 	struct find_ref_ctx ctx;
3979 
3980 	ctx.dir = dir;
3981 	ctx.name = name;
3982 	ctx.dir_gen = dir_gen;
3983 	ctx.found_idx = -1;
3984 	ctx.root = root;
3985 
3986 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3987 	if (ret < 0)
3988 		return ret;
3989 
3990 	if (ctx.found_idx == -1)
3991 		return -ENOENT;
3992 
3993 	return ctx.found_idx;
3994 }
3995 
3996 static int __record_changed_new_ref(int num, u64 dir, int index,
3997 				    struct fs_path *name,
3998 				    void *ctx)
3999 {
4000 	u64 dir_gen;
4001 	int ret;
4002 	struct send_ctx *sctx = ctx;
4003 
4004 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4005 			     NULL, NULL, NULL);
4006 	if (ret)
4007 		return ret;
4008 
4009 	ret = find_iref(sctx->parent_root, sctx->right_path,
4010 			sctx->cmp_key, dir, dir_gen, name);
4011 	if (ret == -ENOENT)
4012 		ret = __record_new_ref(num, dir, index, name, sctx);
4013 	else if (ret > 0)
4014 		ret = 0;
4015 
4016 	return ret;
4017 }
4018 
4019 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4020 					struct fs_path *name,
4021 					void *ctx)
4022 {
4023 	u64 dir_gen;
4024 	int ret;
4025 	struct send_ctx *sctx = ctx;
4026 
4027 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4028 			     NULL, NULL, NULL);
4029 	if (ret)
4030 		return ret;
4031 
4032 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4033 			dir, dir_gen, name);
4034 	if (ret == -ENOENT)
4035 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4036 	else if (ret > 0)
4037 		ret = 0;
4038 
4039 	return ret;
4040 }
4041 
4042 static int record_changed_ref(struct send_ctx *sctx)
4043 {
4044 	int ret = 0;
4045 
4046 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4047 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4048 	if (ret < 0)
4049 		goto out;
4050 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4051 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4052 	if (ret < 0)
4053 		goto out;
4054 	ret = 0;
4055 
4056 out:
4057 	return ret;
4058 }
4059 
4060 /*
4061  * Record and process all refs at once. Needed when an inode changes the
4062  * generation number, which means that it was deleted and recreated.
4063  */
4064 static int process_all_refs(struct send_ctx *sctx,
4065 			    enum btrfs_compare_tree_result cmd)
4066 {
4067 	int ret;
4068 	struct btrfs_root *root;
4069 	struct btrfs_path *path;
4070 	struct btrfs_key key;
4071 	struct btrfs_key found_key;
4072 	struct extent_buffer *eb;
4073 	int slot;
4074 	iterate_inode_ref_t cb;
4075 	int pending_move = 0;
4076 
4077 	path = alloc_path_for_send();
4078 	if (!path)
4079 		return -ENOMEM;
4080 
4081 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4082 		root = sctx->send_root;
4083 		cb = __record_new_ref;
4084 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4085 		root = sctx->parent_root;
4086 		cb = __record_deleted_ref;
4087 	} else {
4088 		btrfs_err(sctx->send_root->fs_info,
4089 				"Wrong command %d in process_all_refs", cmd);
4090 		ret = -EINVAL;
4091 		goto out;
4092 	}
4093 
4094 	key.objectid = sctx->cmp_key->objectid;
4095 	key.type = BTRFS_INODE_REF_KEY;
4096 	key.offset = 0;
4097 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4098 	if (ret < 0)
4099 		goto out;
4100 
4101 	while (1) {
4102 		eb = path->nodes[0];
4103 		slot = path->slots[0];
4104 		if (slot >= btrfs_header_nritems(eb)) {
4105 			ret = btrfs_next_leaf(root, path);
4106 			if (ret < 0)
4107 				goto out;
4108 			else if (ret > 0)
4109 				break;
4110 			continue;
4111 		}
4112 
4113 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4114 
4115 		if (found_key.objectid != key.objectid ||
4116 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4117 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4118 			break;
4119 
4120 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4121 		if (ret < 0)
4122 			goto out;
4123 
4124 		path->slots[0]++;
4125 	}
4126 	btrfs_release_path(path);
4127 
4128 	ret = process_recorded_refs(sctx, &pending_move);
4129 	/* Only applicable to an incremental send. */
4130 	ASSERT(pending_move == 0);
4131 
4132 out:
4133 	btrfs_free_path(path);
4134 	return ret;
4135 }
4136 
4137 static int send_set_xattr(struct send_ctx *sctx,
4138 			  struct fs_path *path,
4139 			  const char *name, int name_len,
4140 			  const char *data, int data_len)
4141 {
4142 	int ret = 0;
4143 
4144 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4145 	if (ret < 0)
4146 		goto out;
4147 
4148 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4149 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4150 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4151 
4152 	ret = send_cmd(sctx);
4153 
4154 tlv_put_failure:
4155 out:
4156 	return ret;
4157 }
4158 
4159 static int send_remove_xattr(struct send_ctx *sctx,
4160 			  struct fs_path *path,
4161 			  const char *name, int name_len)
4162 {
4163 	int ret = 0;
4164 
4165 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4166 	if (ret < 0)
4167 		goto out;
4168 
4169 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4170 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4171 
4172 	ret = send_cmd(sctx);
4173 
4174 tlv_put_failure:
4175 out:
4176 	return ret;
4177 }
4178 
4179 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4180 			       const char *name, int name_len,
4181 			       const char *data, int data_len,
4182 			       u8 type, void *ctx)
4183 {
4184 	int ret;
4185 	struct send_ctx *sctx = ctx;
4186 	struct fs_path *p;
4187 	posix_acl_xattr_header dummy_acl;
4188 
4189 	p = fs_path_alloc();
4190 	if (!p)
4191 		return -ENOMEM;
4192 
4193 	/*
4194 	 * This hack is needed because empty acl's are stored as zero byte
4195 	 * data in xattrs. Problem with that is, that receiving these zero byte
4196 	 * acl's will fail later. To fix this, we send a dummy acl list that
4197 	 * only contains the version number and no entries.
4198 	 */
4199 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4200 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4201 		if (data_len == 0) {
4202 			dummy_acl.a_version =
4203 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4204 			data = (char *)&dummy_acl;
4205 			data_len = sizeof(dummy_acl);
4206 		}
4207 	}
4208 
4209 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4210 	if (ret < 0)
4211 		goto out;
4212 
4213 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4214 
4215 out:
4216 	fs_path_free(p);
4217 	return ret;
4218 }
4219 
4220 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4221 				   const char *name, int name_len,
4222 				   const char *data, int data_len,
4223 				   u8 type, void *ctx)
4224 {
4225 	int ret;
4226 	struct send_ctx *sctx = ctx;
4227 	struct fs_path *p;
4228 
4229 	p = fs_path_alloc();
4230 	if (!p)
4231 		return -ENOMEM;
4232 
4233 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4234 	if (ret < 0)
4235 		goto out;
4236 
4237 	ret = send_remove_xattr(sctx, p, name, name_len);
4238 
4239 out:
4240 	fs_path_free(p);
4241 	return ret;
4242 }
4243 
4244 static int process_new_xattr(struct send_ctx *sctx)
4245 {
4246 	int ret = 0;
4247 
4248 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4249 			       sctx->cmp_key, __process_new_xattr, sctx);
4250 
4251 	return ret;
4252 }
4253 
4254 static int process_deleted_xattr(struct send_ctx *sctx)
4255 {
4256 	int ret;
4257 
4258 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4259 			       sctx->cmp_key, __process_deleted_xattr, sctx);
4260 
4261 	return ret;
4262 }
4263 
4264 struct find_xattr_ctx {
4265 	const char *name;
4266 	int name_len;
4267 	int found_idx;
4268 	char *found_data;
4269 	int found_data_len;
4270 };
4271 
4272 static int __find_xattr(int num, struct btrfs_key *di_key,
4273 			const char *name, int name_len,
4274 			const char *data, int data_len,
4275 			u8 type, void *vctx)
4276 {
4277 	struct find_xattr_ctx *ctx = vctx;
4278 
4279 	if (name_len == ctx->name_len &&
4280 	    strncmp(name, ctx->name, name_len) == 0) {
4281 		ctx->found_idx = num;
4282 		ctx->found_data_len = data_len;
4283 		ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
4284 		if (!ctx->found_data)
4285 			return -ENOMEM;
4286 		return 1;
4287 	}
4288 	return 0;
4289 }
4290 
4291 static int find_xattr(struct btrfs_root *root,
4292 		      struct btrfs_path *path,
4293 		      struct btrfs_key *key,
4294 		      const char *name, int name_len,
4295 		      char **data, int *data_len)
4296 {
4297 	int ret;
4298 	struct find_xattr_ctx ctx;
4299 
4300 	ctx.name = name;
4301 	ctx.name_len = name_len;
4302 	ctx.found_idx = -1;
4303 	ctx.found_data = NULL;
4304 	ctx.found_data_len = 0;
4305 
4306 	ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4307 	if (ret < 0)
4308 		return ret;
4309 
4310 	if (ctx.found_idx == -1)
4311 		return -ENOENT;
4312 	if (data) {
4313 		*data = ctx.found_data;
4314 		*data_len = ctx.found_data_len;
4315 	} else {
4316 		kfree(ctx.found_data);
4317 	}
4318 	return ctx.found_idx;
4319 }
4320 
4321 
4322 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4323 				       const char *name, int name_len,
4324 				       const char *data, int data_len,
4325 				       u8 type, void *ctx)
4326 {
4327 	int ret;
4328 	struct send_ctx *sctx = ctx;
4329 	char *found_data = NULL;
4330 	int found_data_len  = 0;
4331 
4332 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4333 			 sctx->cmp_key, name, name_len, &found_data,
4334 			 &found_data_len);
4335 	if (ret == -ENOENT) {
4336 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4337 				data_len, type, ctx);
4338 	} else if (ret >= 0) {
4339 		if (data_len != found_data_len ||
4340 		    memcmp(data, found_data, data_len)) {
4341 			ret = __process_new_xattr(num, di_key, name, name_len,
4342 					data, data_len, type, ctx);
4343 		} else {
4344 			ret = 0;
4345 		}
4346 	}
4347 
4348 	kfree(found_data);
4349 	return ret;
4350 }
4351 
4352 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4353 					   const char *name, int name_len,
4354 					   const char *data, int data_len,
4355 					   u8 type, void *ctx)
4356 {
4357 	int ret;
4358 	struct send_ctx *sctx = ctx;
4359 
4360 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4361 			 name, name_len, NULL, NULL);
4362 	if (ret == -ENOENT)
4363 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4364 				data_len, type, ctx);
4365 	else if (ret >= 0)
4366 		ret = 0;
4367 
4368 	return ret;
4369 }
4370 
4371 static int process_changed_xattr(struct send_ctx *sctx)
4372 {
4373 	int ret = 0;
4374 
4375 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4376 			sctx->cmp_key, __process_changed_new_xattr, sctx);
4377 	if (ret < 0)
4378 		goto out;
4379 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4380 			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4381 
4382 out:
4383 	return ret;
4384 }
4385 
4386 static int process_all_new_xattrs(struct send_ctx *sctx)
4387 {
4388 	int ret;
4389 	struct btrfs_root *root;
4390 	struct btrfs_path *path;
4391 	struct btrfs_key key;
4392 	struct btrfs_key found_key;
4393 	struct extent_buffer *eb;
4394 	int slot;
4395 
4396 	path = alloc_path_for_send();
4397 	if (!path)
4398 		return -ENOMEM;
4399 
4400 	root = sctx->send_root;
4401 
4402 	key.objectid = sctx->cmp_key->objectid;
4403 	key.type = BTRFS_XATTR_ITEM_KEY;
4404 	key.offset = 0;
4405 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4406 	if (ret < 0)
4407 		goto out;
4408 
4409 	while (1) {
4410 		eb = path->nodes[0];
4411 		slot = path->slots[0];
4412 		if (slot >= btrfs_header_nritems(eb)) {
4413 			ret = btrfs_next_leaf(root, path);
4414 			if (ret < 0) {
4415 				goto out;
4416 			} else if (ret > 0) {
4417 				ret = 0;
4418 				break;
4419 			}
4420 			continue;
4421 		}
4422 
4423 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4424 		if (found_key.objectid != key.objectid ||
4425 		    found_key.type != key.type) {
4426 			ret = 0;
4427 			goto out;
4428 		}
4429 
4430 		ret = iterate_dir_item(root, path, &found_key,
4431 				       __process_new_xattr, sctx);
4432 		if (ret < 0)
4433 			goto out;
4434 
4435 		path->slots[0]++;
4436 	}
4437 
4438 out:
4439 	btrfs_free_path(path);
4440 	return ret;
4441 }
4442 
4443 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4444 {
4445 	struct btrfs_root *root = sctx->send_root;
4446 	struct btrfs_fs_info *fs_info = root->fs_info;
4447 	struct inode *inode;
4448 	struct page *page;
4449 	char *addr;
4450 	struct btrfs_key key;
4451 	pgoff_t index = offset >> PAGE_CACHE_SHIFT;
4452 	pgoff_t last_index;
4453 	unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
4454 	ssize_t ret = 0;
4455 
4456 	key.objectid = sctx->cur_ino;
4457 	key.type = BTRFS_INODE_ITEM_KEY;
4458 	key.offset = 0;
4459 
4460 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4461 	if (IS_ERR(inode))
4462 		return PTR_ERR(inode);
4463 
4464 	if (offset + len > i_size_read(inode)) {
4465 		if (offset > i_size_read(inode))
4466 			len = 0;
4467 		else
4468 			len = offset - i_size_read(inode);
4469 	}
4470 	if (len == 0)
4471 		goto out;
4472 
4473 	last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
4474 
4475 	/* initial readahead */
4476 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4477 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4478 	btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4479 		       last_index - index + 1);
4480 
4481 	while (index <= last_index) {
4482 		unsigned cur_len = min_t(unsigned, len,
4483 					 PAGE_CACHE_SIZE - pg_offset);
4484 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4485 		if (!page) {
4486 			ret = -ENOMEM;
4487 			break;
4488 		}
4489 
4490 		if (!PageUptodate(page)) {
4491 			btrfs_readpage(NULL, page);
4492 			lock_page(page);
4493 			if (!PageUptodate(page)) {
4494 				unlock_page(page);
4495 				page_cache_release(page);
4496 				ret = -EIO;
4497 				break;
4498 			}
4499 		}
4500 
4501 		addr = kmap(page);
4502 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4503 		kunmap(page);
4504 		unlock_page(page);
4505 		page_cache_release(page);
4506 		index++;
4507 		pg_offset = 0;
4508 		len -= cur_len;
4509 		ret += cur_len;
4510 	}
4511 out:
4512 	iput(inode);
4513 	return ret;
4514 }
4515 
4516 /*
4517  * Read some bytes from the current inode/file and send a write command to
4518  * user space.
4519  */
4520 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4521 {
4522 	int ret = 0;
4523 	struct fs_path *p;
4524 	ssize_t num_read = 0;
4525 
4526 	p = fs_path_alloc();
4527 	if (!p)
4528 		return -ENOMEM;
4529 
4530 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4531 
4532 	num_read = fill_read_buf(sctx, offset, len);
4533 	if (num_read <= 0) {
4534 		if (num_read < 0)
4535 			ret = num_read;
4536 		goto out;
4537 	}
4538 
4539 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4540 	if (ret < 0)
4541 		goto out;
4542 
4543 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4544 	if (ret < 0)
4545 		goto out;
4546 
4547 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4548 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4549 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4550 
4551 	ret = send_cmd(sctx);
4552 
4553 tlv_put_failure:
4554 out:
4555 	fs_path_free(p);
4556 	if (ret < 0)
4557 		return ret;
4558 	return num_read;
4559 }
4560 
4561 /*
4562  * Send a clone command to user space.
4563  */
4564 static int send_clone(struct send_ctx *sctx,
4565 		      u64 offset, u32 len,
4566 		      struct clone_root *clone_root)
4567 {
4568 	int ret = 0;
4569 	struct fs_path *p;
4570 	u64 gen;
4571 
4572 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4573 	       "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4574 		clone_root->root->objectid, clone_root->ino,
4575 		clone_root->offset);
4576 
4577 	p = fs_path_alloc();
4578 	if (!p)
4579 		return -ENOMEM;
4580 
4581 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4582 	if (ret < 0)
4583 		goto out;
4584 
4585 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4586 	if (ret < 0)
4587 		goto out;
4588 
4589 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4590 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4591 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4592 
4593 	if (clone_root->root == sctx->send_root) {
4594 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4595 				&gen, NULL, NULL, NULL, NULL);
4596 		if (ret < 0)
4597 			goto out;
4598 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4599 	} else {
4600 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4601 	}
4602 	if (ret < 0)
4603 		goto out;
4604 
4605 	/*
4606 	 * If the parent we're using has a received_uuid set then use that as
4607 	 * our clone source as that is what we will look for when doing a
4608 	 * receive.
4609 	 *
4610 	 * This covers the case that we create a snapshot off of a received
4611 	 * subvolume and then use that as the parent and try to receive on a
4612 	 * different host.
4613 	 */
4614 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4615 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4616 			     clone_root->root->root_item.received_uuid);
4617 	else
4618 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4619 			     clone_root->root->root_item.uuid);
4620 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4621 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4622 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4623 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4624 			clone_root->offset);
4625 
4626 	ret = send_cmd(sctx);
4627 
4628 tlv_put_failure:
4629 out:
4630 	fs_path_free(p);
4631 	return ret;
4632 }
4633 
4634 /*
4635  * Send an update extent command to user space.
4636  */
4637 static int send_update_extent(struct send_ctx *sctx,
4638 			      u64 offset, u32 len)
4639 {
4640 	int ret = 0;
4641 	struct fs_path *p;
4642 
4643 	p = fs_path_alloc();
4644 	if (!p)
4645 		return -ENOMEM;
4646 
4647 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4648 	if (ret < 0)
4649 		goto out;
4650 
4651 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4652 	if (ret < 0)
4653 		goto out;
4654 
4655 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4656 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4657 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4658 
4659 	ret = send_cmd(sctx);
4660 
4661 tlv_put_failure:
4662 out:
4663 	fs_path_free(p);
4664 	return ret;
4665 }
4666 
4667 static int send_hole(struct send_ctx *sctx, u64 end)
4668 {
4669 	struct fs_path *p = NULL;
4670 	u64 offset = sctx->cur_inode_last_extent;
4671 	u64 len;
4672 	int ret = 0;
4673 
4674 	p = fs_path_alloc();
4675 	if (!p)
4676 		return -ENOMEM;
4677 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4678 	if (ret < 0)
4679 		goto tlv_put_failure;
4680 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4681 	while (offset < end) {
4682 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4683 
4684 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4685 		if (ret < 0)
4686 			break;
4687 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4688 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4689 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4690 		ret = send_cmd(sctx);
4691 		if (ret < 0)
4692 			break;
4693 		offset += len;
4694 	}
4695 tlv_put_failure:
4696 	fs_path_free(p);
4697 	return ret;
4698 }
4699 
4700 static int send_extent_data(struct send_ctx *sctx,
4701 			    const u64 offset,
4702 			    const u64 len)
4703 {
4704 	u64 sent = 0;
4705 
4706 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4707 		return send_update_extent(sctx, offset, len);
4708 
4709 	while (sent < len) {
4710 		u64 size = len - sent;
4711 		int ret;
4712 
4713 		if (size > BTRFS_SEND_READ_SIZE)
4714 			size = BTRFS_SEND_READ_SIZE;
4715 		ret = send_write(sctx, offset + sent, size);
4716 		if (ret < 0)
4717 			return ret;
4718 		if (!ret)
4719 			break;
4720 		sent += ret;
4721 	}
4722 	return 0;
4723 }
4724 
4725 static int clone_range(struct send_ctx *sctx,
4726 		       struct clone_root *clone_root,
4727 		       const u64 disk_byte,
4728 		       u64 data_offset,
4729 		       u64 offset,
4730 		       u64 len)
4731 {
4732 	struct btrfs_path *path;
4733 	struct btrfs_key key;
4734 	int ret;
4735 
4736 	path = alloc_path_for_send();
4737 	if (!path)
4738 		return -ENOMEM;
4739 
4740 	/*
4741 	 * We can't send a clone operation for the entire range if we find
4742 	 * extent items in the respective range in the source file that
4743 	 * refer to different extents or if we find holes.
4744 	 * So check for that and do a mix of clone and regular write/copy
4745 	 * operations if needed.
4746 	 *
4747 	 * Example:
4748 	 *
4749 	 * mkfs.btrfs -f /dev/sda
4750 	 * mount /dev/sda /mnt
4751 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4752 	 * cp --reflink=always /mnt/foo /mnt/bar
4753 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4754 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
4755 	 *
4756 	 * If when we send the snapshot and we are processing file bar (which
4757 	 * has a higher inode number than foo) we blindly send a clone operation
4758 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4759 	 * a file bar that matches the content of file foo - iow, doesn't match
4760 	 * the content from bar in the original filesystem.
4761 	 */
4762 	key.objectid = clone_root->ino;
4763 	key.type = BTRFS_EXTENT_DATA_KEY;
4764 	key.offset = clone_root->offset;
4765 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
4766 	if (ret < 0)
4767 		goto out;
4768 	if (ret > 0 && path->slots[0] > 0) {
4769 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4770 		if (key.objectid == clone_root->ino &&
4771 		    key.type == BTRFS_EXTENT_DATA_KEY)
4772 			path->slots[0]--;
4773 	}
4774 
4775 	while (true) {
4776 		struct extent_buffer *leaf = path->nodes[0];
4777 		int slot = path->slots[0];
4778 		struct btrfs_file_extent_item *ei;
4779 		u8 type;
4780 		u64 ext_len;
4781 		u64 clone_len;
4782 
4783 		if (slot >= btrfs_header_nritems(leaf)) {
4784 			ret = btrfs_next_leaf(clone_root->root, path);
4785 			if (ret < 0)
4786 				goto out;
4787 			else if (ret > 0)
4788 				break;
4789 			continue;
4790 		}
4791 
4792 		btrfs_item_key_to_cpu(leaf, &key, slot);
4793 
4794 		/*
4795 		 * We might have an implicit trailing hole (NO_HOLES feature
4796 		 * enabled). We deal with it after leaving this loop.
4797 		 */
4798 		if (key.objectid != clone_root->ino ||
4799 		    key.type != BTRFS_EXTENT_DATA_KEY)
4800 			break;
4801 
4802 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4803 		type = btrfs_file_extent_type(leaf, ei);
4804 		if (type == BTRFS_FILE_EXTENT_INLINE) {
4805 			ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
4806 			ext_len = PAGE_CACHE_ALIGN(ext_len);
4807 		} else {
4808 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
4809 		}
4810 
4811 		if (key.offset + ext_len <= clone_root->offset)
4812 			goto next;
4813 
4814 		if (key.offset > clone_root->offset) {
4815 			/* Implicit hole, NO_HOLES feature enabled. */
4816 			u64 hole_len = key.offset - clone_root->offset;
4817 
4818 			if (hole_len > len)
4819 				hole_len = len;
4820 			ret = send_extent_data(sctx, offset, hole_len);
4821 			if (ret < 0)
4822 				goto out;
4823 
4824 			len -= hole_len;
4825 			if (len == 0)
4826 				break;
4827 			offset += hole_len;
4828 			clone_root->offset += hole_len;
4829 			data_offset += hole_len;
4830 		}
4831 
4832 		if (key.offset >= clone_root->offset + len)
4833 			break;
4834 
4835 		clone_len = min_t(u64, ext_len, len);
4836 
4837 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
4838 		    btrfs_file_extent_offset(leaf, ei) == data_offset)
4839 			ret = send_clone(sctx, offset, clone_len, clone_root);
4840 		else
4841 			ret = send_extent_data(sctx, offset, clone_len);
4842 
4843 		if (ret < 0)
4844 			goto out;
4845 
4846 		len -= clone_len;
4847 		if (len == 0)
4848 			break;
4849 		offset += clone_len;
4850 		clone_root->offset += clone_len;
4851 		data_offset += clone_len;
4852 next:
4853 		path->slots[0]++;
4854 	}
4855 
4856 	if (len > 0)
4857 		ret = send_extent_data(sctx, offset, len);
4858 	else
4859 		ret = 0;
4860 out:
4861 	btrfs_free_path(path);
4862 	return ret;
4863 }
4864 
4865 static int send_write_or_clone(struct send_ctx *sctx,
4866 			       struct btrfs_path *path,
4867 			       struct btrfs_key *key,
4868 			       struct clone_root *clone_root)
4869 {
4870 	int ret = 0;
4871 	struct btrfs_file_extent_item *ei;
4872 	u64 offset = key->offset;
4873 	u64 len;
4874 	u8 type;
4875 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4876 
4877 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4878 			struct btrfs_file_extent_item);
4879 	type = btrfs_file_extent_type(path->nodes[0], ei);
4880 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4881 		len = btrfs_file_extent_inline_len(path->nodes[0],
4882 						   path->slots[0], ei);
4883 		/*
4884 		 * it is possible the inline item won't cover the whole page,
4885 		 * but there may be items after this page.  Make
4886 		 * sure to send the whole thing
4887 		 */
4888 		len = PAGE_CACHE_ALIGN(len);
4889 	} else {
4890 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4891 	}
4892 
4893 	if (offset + len > sctx->cur_inode_size)
4894 		len = sctx->cur_inode_size - offset;
4895 	if (len == 0) {
4896 		ret = 0;
4897 		goto out;
4898 	}
4899 
4900 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
4901 		u64 disk_byte;
4902 		u64 data_offset;
4903 
4904 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
4905 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
4906 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
4907 				  offset, len);
4908 	} else {
4909 		ret = send_extent_data(sctx, offset, len);
4910 	}
4911 out:
4912 	return ret;
4913 }
4914 
4915 static int is_extent_unchanged(struct send_ctx *sctx,
4916 			       struct btrfs_path *left_path,
4917 			       struct btrfs_key *ekey)
4918 {
4919 	int ret = 0;
4920 	struct btrfs_key key;
4921 	struct btrfs_path *path = NULL;
4922 	struct extent_buffer *eb;
4923 	int slot;
4924 	struct btrfs_key found_key;
4925 	struct btrfs_file_extent_item *ei;
4926 	u64 left_disknr;
4927 	u64 right_disknr;
4928 	u64 left_offset;
4929 	u64 right_offset;
4930 	u64 left_offset_fixed;
4931 	u64 left_len;
4932 	u64 right_len;
4933 	u64 left_gen;
4934 	u64 right_gen;
4935 	u8 left_type;
4936 	u8 right_type;
4937 
4938 	path = alloc_path_for_send();
4939 	if (!path)
4940 		return -ENOMEM;
4941 
4942 	eb = left_path->nodes[0];
4943 	slot = left_path->slots[0];
4944 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4945 	left_type = btrfs_file_extent_type(eb, ei);
4946 
4947 	if (left_type != BTRFS_FILE_EXTENT_REG) {
4948 		ret = 0;
4949 		goto out;
4950 	}
4951 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4952 	left_len = btrfs_file_extent_num_bytes(eb, ei);
4953 	left_offset = btrfs_file_extent_offset(eb, ei);
4954 	left_gen = btrfs_file_extent_generation(eb, ei);
4955 
4956 	/*
4957 	 * Following comments will refer to these graphics. L is the left
4958 	 * extents which we are checking at the moment. 1-8 are the right
4959 	 * extents that we iterate.
4960 	 *
4961 	 *       |-----L-----|
4962 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4963 	 *
4964 	 *       |-----L-----|
4965 	 * |--1--|-2b-|...(same as above)
4966 	 *
4967 	 * Alternative situation. Happens on files where extents got split.
4968 	 *       |-----L-----|
4969 	 * |-----------7-----------|-6-|
4970 	 *
4971 	 * Alternative situation. Happens on files which got larger.
4972 	 *       |-----L-----|
4973 	 * |-8-|
4974 	 * Nothing follows after 8.
4975 	 */
4976 
4977 	key.objectid = ekey->objectid;
4978 	key.type = BTRFS_EXTENT_DATA_KEY;
4979 	key.offset = ekey->offset;
4980 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4981 	if (ret < 0)
4982 		goto out;
4983 	if (ret) {
4984 		ret = 0;
4985 		goto out;
4986 	}
4987 
4988 	/*
4989 	 * Handle special case where the right side has no extents at all.
4990 	 */
4991 	eb = path->nodes[0];
4992 	slot = path->slots[0];
4993 	btrfs_item_key_to_cpu(eb, &found_key, slot);
4994 	if (found_key.objectid != key.objectid ||
4995 	    found_key.type != key.type) {
4996 		/* If we're a hole then just pretend nothing changed */
4997 		ret = (left_disknr) ? 0 : 1;
4998 		goto out;
4999 	}
5000 
5001 	/*
5002 	 * We're now on 2a, 2b or 7.
5003 	 */
5004 	key = found_key;
5005 	while (key.offset < ekey->offset + left_len) {
5006 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5007 		right_type = btrfs_file_extent_type(eb, ei);
5008 		if (right_type != BTRFS_FILE_EXTENT_REG) {
5009 			ret = 0;
5010 			goto out;
5011 		}
5012 
5013 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5014 		right_len = btrfs_file_extent_num_bytes(eb, ei);
5015 		right_offset = btrfs_file_extent_offset(eb, ei);
5016 		right_gen = btrfs_file_extent_generation(eb, ei);
5017 
5018 		/*
5019 		 * Are we at extent 8? If yes, we know the extent is changed.
5020 		 * This may only happen on the first iteration.
5021 		 */
5022 		if (found_key.offset + right_len <= ekey->offset) {
5023 			/* If we're a hole just pretend nothing changed */
5024 			ret = (left_disknr) ? 0 : 1;
5025 			goto out;
5026 		}
5027 
5028 		left_offset_fixed = left_offset;
5029 		if (key.offset < ekey->offset) {
5030 			/* Fix the right offset for 2a and 7. */
5031 			right_offset += ekey->offset - key.offset;
5032 		} else {
5033 			/* Fix the left offset for all behind 2a and 2b */
5034 			left_offset_fixed += key.offset - ekey->offset;
5035 		}
5036 
5037 		/*
5038 		 * Check if we have the same extent.
5039 		 */
5040 		if (left_disknr != right_disknr ||
5041 		    left_offset_fixed != right_offset ||
5042 		    left_gen != right_gen) {
5043 			ret = 0;
5044 			goto out;
5045 		}
5046 
5047 		/*
5048 		 * Go to the next extent.
5049 		 */
5050 		ret = btrfs_next_item(sctx->parent_root, path);
5051 		if (ret < 0)
5052 			goto out;
5053 		if (!ret) {
5054 			eb = path->nodes[0];
5055 			slot = path->slots[0];
5056 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5057 		}
5058 		if (ret || found_key.objectid != key.objectid ||
5059 		    found_key.type != key.type) {
5060 			key.offset += right_len;
5061 			break;
5062 		}
5063 		if (found_key.offset != key.offset + right_len) {
5064 			ret = 0;
5065 			goto out;
5066 		}
5067 		key = found_key;
5068 	}
5069 
5070 	/*
5071 	 * We're now behind the left extent (treat as unchanged) or at the end
5072 	 * of the right side (treat as changed).
5073 	 */
5074 	if (key.offset >= ekey->offset + left_len)
5075 		ret = 1;
5076 	else
5077 		ret = 0;
5078 
5079 
5080 out:
5081 	btrfs_free_path(path);
5082 	return ret;
5083 }
5084 
5085 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5086 {
5087 	struct btrfs_path *path;
5088 	struct btrfs_root *root = sctx->send_root;
5089 	struct btrfs_file_extent_item *fi;
5090 	struct btrfs_key key;
5091 	u64 extent_end;
5092 	u8 type;
5093 	int ret;
5094 
5095 	path = alloc_path_for_send();
5096 	if (!path)
5097 		return -ENOMEM;
5098 
5099 	sctx->cur_inode_last_extent = 0;
5100 
5101 	key.objectid = sctx->cur_ino;
5102 	key.type = BTRFS_EXTENT_DATA_KEY;
5103 	key.offset = offset;
5104 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5105 	if (ret < 0)
5106 		goto out;
5107 	ret = 0;
5108 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5109 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5110 		goto out;
5111 
5112 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5113 			    struct btrfs_file_extent_item);
5114 	type = btrfs_file_extent_type(path->nodes[0], fi);
5115 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5116 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5117 							path->slots[0], fi);
5118 		extent_end = ALIGN(key.offset + size,
5119 				   sctx->send_root->sectorsize);
5120 	} else {
5121 		extent_end = key.offset +
5122 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5123 	}
5124 	sctx->cur_inode_last_extent = extent_end;
5125 out:
5126 	btrfs_free_path(path);
5127 	return ret;
5128 }
5129 
5130 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5131 			   struct btrfs_key *key)
5132 {
5133 	struct btrfs_file_extent_item *fi;
5134 	u64 extent_end;
5135 	u8 type;
5136 	int ret = 0;
5137 
5138 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5139 		return 0;
5140 
5141 	if (sctx->cur_inode_last_extent == (u64)-1) {
5142 		ret = get_last_extent(sctx, key->offset - 1);
5143 		if (ret)
5144 			return ret;
5145 	}
5146 
5147 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5148 			    struct btrfs_file_extent_item);
5149 	type = btrfs_file_extent_type(path->nodes[0], fi);
5150 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5151 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5152 							path->slots[0], fi);
5153 		extent_end = ALIGN(key->offset + size,
5154 				   sctx->send_root->sectorsize);
5155 	} else {
5156 		extent_end = key->offset +
5157 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5158 	}
5159 
5160 	if (path->slots[0] == 0 &&
5161 	    sctx->cur_inode_last_extent < key->offset) {
5162 		/*
5163 		 * We might have skipped entire leafs that contained only
5164 		 * file extent items for our current inode. These leafs have
5165 		 * a generation number smaller (older) than the one in the
5166 		 * current leaf and the leaf our last extent came from, and
5167 		 * are located between these 2 leafs.
5168 		 */
5169 		ret = get_last_extent(sctx, key->offset - 1);
5170 		if (ret)
5171 			return ret;
5172 	}
5173 
5174 	if (sctx->cur_inode_last_extent < key->offset)
5175 		ret = send_hole(sctx, key->offset);
5176 	sctx->cur_inode_last_extent = extent_end;
5177 	return ret;
5178 }
5179 
5180 static int process_extent(struct send_ctx *sctx,
5181 			  struct btrfs_path *path,
5182 			  struct btrfs_key *key)
5183 {
5184 	struct clone_root *found_clone = NULL;
5185 	int ret = 0;
5186 
5187 	if (S_ISLNK(sctx->cur_inode_mode))
5188 		return 0;
5189 
5190 	if (sctx->parent_root && !sctx->cur_inode_new) {
5191 		ret = is_extent_unchanged(sctx, path, key);
5192 		if (ret < 0)
5193 			goto out;
5194 		if (ret) {
5195 			ret = 0;
5196 			goto out_hole;
5197 		}
5198 	} else {
5199 		struct btrfs_file_extent_item *ei;
5200 		u8 type;
5201 
5202 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5203 				    struct btrfs_file_extent_item);
5204 		type = btrfs_file_extent_type(path->nodes[0], ei);
5205 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5206 		    type == BTRFS_FILE_EXTENT_REG) {
5207 			/*
5208 			 * The send spec does not have a prealloc command yet,
5209 			 * so just leave a hole for prealloc'ed extents until
5210 			 * we have enough commands queued up to justify rev'ing
5211 			 * the send spec.
5212 			 */
5213 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5214 				ret = 0;
5215 				goto out;
5216 			}
5217 
5218 			/* Have a hole, just skip it. */
5219 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5220 				ret = 0;
5221 				goto out;
5222 			}
5223 		}
5224 	}
5225 
5226 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5227 			sctx->cur_inode_size, &found_clone);
5228 	if (ret != -ENOENT && ret < 0)
5229 		goto out;
5230 
5231 	ret = send_write_or_clone(sctx, path, key, found_clone);
5232 	if (ret)
5233 		goto out;
5234 out_hole:
5235 	ret = maybe_send_hole(sctx, path, key);
5236 out:
5237 	return ret;
5238 }
5239 
5240 static int process_all_extents(struct send_ctx *sctx)
5241 {
5242 	int ret;
5243 	struct btrfs_root *root;
5244 	struct btrfs_path *path;
5245 	struct btrfs_key key;
5246 	struct btrfs_key found_key;
5247 	struct extent_buffer *eb;
5248 	int slot;
5249 
5250 	root = sctx->send_root;
5251 	path = alloc_path_for_send();
5252 	if (!path)
5253 		return -ENOMEM;
5254 
5255 	key.objectid = sctx->cmp_key->objectid;
5256 	key.type = BTRFS_EXTENT_DATA_KEY;
5257 	key.offset = 0;
5258 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5259 	if (ret < 0)
5260 		goto out;
5261 
5262 	while (1) {
5263 		eb = path->nodes[0];
5264 		slot = path->slots[0];
5265 
5266 		if (slot >= btrfs_header_nritems(eb)) {
5267 			ret = btrfs_next_leaf(root, path);
5268 			if (ret < 0) {
5269 				goto out;
5270 			} else if (ret > 0) {
5271 				ret = 0;
5272 				break;
5273 			}
5274 			continue;
5275 		}
5276 
5277 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5278 
5279 		if (found_key.objectid != key.objectid ||
5280 		    found_key.type != key.type) {
5281 			ret = 0;
5282 			goto out;
5283 		}
5284 
5285 		ret = process_extent(sctx, path, &found_key);
5286 		if (ret < 0)
5287 			goto out;
5288 
5289 		path->slots[0]++;
5290 	}
5291 
5292 out:
5293 	btrfs_free_path(path);
5294 	return ret;
5295 }
5296 
5297 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5298 					   int *pending_move,
5299 					   int *refs_processed)
5300 {
5301 	int ret = 0;
5302 
5303 	if (sctx->cur_ino == 0)
5304 		goto out;
5305 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5306 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5307 		goto out;
5308 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5309 		goto out;
5310 
5311 	ret = process_recorded_refs(sctx, pending_move);
5312 	if (ret < 0)
5313 		goto out;
5314 
5315 	*refs_processed = 1;
5316 out:
5317 	return ret;
5318 }
5319 
5320 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5321 {
5322 	int ret = 0;
5323 	u64 left_mode;
5324 	u64 left_uid;
5325 	u64 left_gid;
5326 	u64 right_mode;
5327 	u64 right_uid;
5328 	u64 right_gid;
5329 	int need_chmod = 0;
5330 	int need_chown = 0;
5331 	int pending_move = 0;
5332 	int refs_processed = 0;
5333 
5334 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5335 					      &refs_processed);
5336 	if (ret < 0)
5337 		goto out;
5338 
5339 	/*
5340 	 * We have processed the refs and thus need to advance send_progress.
5341 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5342 	 * inode into account.
5343 	 *
5344 	 * On the other hand, if our current inode is a directory and couldn't
5345 	 * be moved/renamed because its parent was renamed/moved too and it has
5346 	 * a higher inode number, we can only move/rename our current inode
5347 	 * after we moved/renamed its parent. Therefore in this case operate on
5348 	 * the old path (pre move/rename) of our current inode, and the
5349 	 * move/rename will be performed later.
5350 	 */
5351 	if (refs_processed && !pending_move)
5352 		sctx->send_progress = sctx->cur_ino + 1;
5353 
5354 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5355 		goto out;
5356 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5357 		goto out;
5358 
5359 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5360 			&left_mode, &left_uid, &left_gid, NULL);
5361 	if (ret < 0)
5362 		goto out;
5363 
5364 	if (!sctx->parent_root || sctx->cur_inode_new) {
5365 		need_chown = 1;
5366 		if (!S_ISLNK(sctx->cur_inode_mode))
5367 			need_chmod = 1;
5368 	} else {
5369 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5370 				NULL, NULL, &right_mode, &right_uid,
5371 				&right_gid, NULL);
5372 		if (ret < 0)
5373 			goto out;
5374 
5375 		if (left_uid != right_uid || left_gid != right_gid)
5376 			need_chown = 1;
5377 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5378 			need_chmod = 1;
5379 	}
5380 
5381 	if (S_ISREG(sctx->cur_inode_mode)) {
5382 		if (need_send_hole(sctx)) {
5383 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5384 			    sctx->cur_inode_last_extent <
5385 			    sctx->cur_inode_size) {
5386 				ret = get_last_extent(sctx, (u64)-1);
5387 				if (ret)
5388 					goto out;
5389 			}
5390 			if (sctx->cur_inode_last_extent <
5391 			    sctx->cur_inode_size) {
5392 				ret = send_hole(sctx, sctx->cur_inode_size);
5393 				if (ret)
5394 					goto out;
5395 			}
5396 		}
5397 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5398 				sctx->cur_inode_size);
5399 		if (ret < 0)
5400 			goto out;
5401 	}
5402 
5403 	if (need_chown) {
5404 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5405 				left_uid, left_gid);
5406 		if (ret < 0)
5407 			goto out;
5408 	}
5409 	if (need_chmod) {
5410 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5411 				left_mode);
5412 		if (ret < 0)
5413 			goto out;
5414 	}
5415 
5416 	/*
5417 	 * If other directory inodes depended on our current directory
5418 	 * inode's move/rename, now do their move/rename operations.
5419 	 */
5420 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5421 		ret = apply_children_dir_moves(sctx);
5422 		if (ret)
5423 			goto out;
5424 		/*
5425 		 * Need to send that every time, no matter if it actually
5426 		 * changed between the two trees as we have done changes to
5427 		 * the inode before. If our inode is a directory and it's
5428 		 * waiting to be moved/renamed, we will send its utimes when
5429 		 * it's moved/renamed, therefore we don't need to do it here.
5430 		 */
5431 		sctx->send_progress = sctx->cur_ino + 1;
5432 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5433 		if (ret < 0)
5434 			goto out;
5435 	}
5436 
5437 out:
5438 	return ret;
5439 }
5440 
5441 static int changed_inode(struct send_ctx *sctx,
5442 			 enum btrfs_compare_tree_result result)
5443 {
5444 	int ret = 0;
5445 	struct btrfs_key *key = sctx->cmp_key;
5446 	struct btrfs_inode_item *left_ii = NULL;
5447 	struct btrfs_inode_item *right_ii = NULL;
5448 	u64 left_gen = 0;
5449 	u64 right_gen = 0;
5450 
5451 	sctx->cur_ino = key->objectid;
5452 	sctx->cur_inode_new_gen = 0;
5453 	sctx->cur_inode_last_extent = (u64)-1;
5454 
5455 	/*
5456 	 * Set send_progress to current inode. This will tell all get_cur_xxx
5457 	 * functions that the current inode's refs are not updated yet. Later,
5458 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5459 	 */
5460 	sctx->send_progress = sctx->cur_ino;
5461 
5462 	if (result == BTRFS_COMPARE_TREE_NEW ||
5463 	    result == BTRFS_COMPARE_TREE_CHANGED) {
5464 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5465 				sctx->left_path->slots[0],
5466 				struct btrfs_inode_item);
5467 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5468 				left_ii);
5469 	} else {
5470 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5471 				sctx->right_path->slots[0],
5472 				struct btrfs_inode_item);
5473 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5474 				right_ii);
5475 	}
5476 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
5477 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5478 				sctx->right_path->slots[0],
5479 				struct btrfs_inode_item);
5480 
5481 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5482 				right_ii);
5483 
5484 		/*
5485 		 * The cur_ino = root dir case is special here. We can't treat
5486 		 * the inode as deleted+reused because it would generate a
5487 		 * stream that tries to delete/mkdir the root dir.
5488 		 */
5489 		if (left_gen != right_gen &&
5490 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5491 			sctx->cur_inode_new_gen = 1;
5492 	}
5493 
5494 	if (result == BTRFS_COMPARE_TREE_NEW) {
5495 		sctx->cur_inode_gen = left_gen;
5496 		sctx->cur_inode_new = 1;
5497 		sctx->cur_inode_deleted = 0;
5498 		sctx->cur_inode_size = btrfs_inode_size(
5499 				sctx->left_path->nodes[0], left_ii);
5500 		sctx->cur_inode_mode = btrfs_inode_mode(
5501 				sctx->left_path->nodes[0], left_ii);
5502 		sctx->cur_inode_rdev = btrfs_inode_rdev(
5503 				sctx->left_path->nodes[0], left_ii);
5504 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5505 			ret = send_create_inode_if_needed(sctx);
5506 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
5507 		sctx->cur_inode_gen = right_gen;
5508 		sctx->cur_inode_new = 0;
5509 		sctx->cur_inode_deleted = 1;
5510 		sctx->cur_inode_size = btrfs_inode_size(
5511 				sctx->right_path->nodes[0], right_ii);
5512 		sctx->cur_inode_mode = btrfs_inode_mode(
5513 				sctx->right_path->nodes[0], right_ii);
5514 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5515 		/*
5516 		 * We need to do some special handling in case the inode was
5517 		 * reported as changed with a changed generation number. This
5518 		 * means that the original inode was deleted and new inode
5519 		 * reused the same inum. So we have to treat the old inode as
5520 		 * deleted and the new one as new.
5521 		 */
5522 		if (sctx->cur_inode_new_gen) {
5523 			/*
5524 			 * First, process the inode as if it was deleted.
5525 			 */
5526 			sctx->cur_inode_gen = right_gen;
5527 			sctx->cur_inode_new = 0;
5528 			sctx->cur_inode_deleted = 1;
5529 			sctx->cur_inode_size = btrfs_inode_size(
5530 					sctx->right_path->nodes[0], right_ii);
5531 			sctx->cur_inode_mode = btrfs_inode_mode(
5532 					sctx->right_path->nodes[0], right_ii);
5533 			ret = process_all_refs(sctx,
5534 					BTRFS_COMPARE_TREE_DELETED);
5535 			if (ret < 0)
5536 				goto out;
5537 
5538 			/*
5539 			 * Now process the inode as if it was new.
5540 			 */
5541 			sctx->cur_inode_gen = left_gen;
5542 			sctx->cur_inode_new = 1;
5543 			sctx->cur_inode_deleted = 0;
5544 			sctx->cur_inode_size = btrfs_inode_size(
5545 					sctx->left_path->nodes[0], left_ii);
5546 			sctx->cur_inode_mode = btrfs_inode_mode(
5547 					sctx->left_path->nodes[0], left_ii);
5548 			sctx->cur_inode_rdev = btrfs_inode_rdev(
5549 					sctx->left_path->nodes[0], left_ii);
5550 			ret = send_create_inode_if_needed(sctx);
5551 			if (ret < 0)
5552 				goto out;
5553 
5554 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5555 			if (ret < 0)
5556 				goto out;
5557 			/*
5558 			 * Advance send_progress now as we did not get into
5559 			 * process_recorded_refs_if_needed in the new_gen case.
5560 			 */
5561 			sctx->send_progress = sctx->cur_ino + 1;
5562 
5563 			/*
5564 			 * Now process all extents and xattrs of the inode as if
5565 			 * they were all new.
5566 			 */
5567 			ret = process_all_extents(sctx);
5568 			if (ret < 0)
5569 				goto out;
5570 			ret = process_all_new_xattrs(sctx);
5571 			if (ret < 0)
5572 				goto out;
5573 		} else {
5574 			sctx->cur_inode_gen = left_gen;
5575 			sctx->cur_inode_new = 0;
5576 			sctx->cur_inode_new_gen = 0;
5577 			sctx->cur_inode_deleted = 0;
5578 			sctx->cur_inode_size = btrfs_inode_size(
5579 					sctx->left_path->nodes[0], left_ii);
5580 			sctx->cur_inode_mode = btrfs_inode_mode(
5581 					sctx->left_path->nodes[0], left_ii);
5582 		}
5583 	}
5584 
5585 out:
5586 	return ret;
5587 }
5588 
5589 /*
5590  * We have to process new refs before deleted refs, but compare_trees gives us
5591  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5592  * first and later process them in process_recorded_refs.
5593  * For the cur_inode_new_gen case, we skip recording completely because
5594  * changed_inode did already initiate processing of refs. The reason for this is
5595  * that in this case, compare_tree actually compares the refs of 2 different
5596  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5597  * refs of the right tree as deleted and all refs of the left tree as new.
5598  */
5599 static int changed_ref(struct send_ctx *sctx,
5600 		       enum btrfs_compare_tree_result result)
5601 {
5602 	int ret = 0;
5603 
5604 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5605 
5606 	if (!sctx->cur_inode_new_gen &&
5607 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5608 		if (result == BTRFS_COMPARE_TREE_NEW)
5609 			ret = record_new_ref(sctx);
5610 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5611 			ret = record_deleted_ref(sctx);
5612 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5613 			ret = record_changed_ref(sctx);
5614 	}
5615 
5616 	return ret;
5617 }
5618 
5619 /*
5620  * Process new/deleted/changed xattrs. We skip processing in the
5621  * cur_inode_new_gen case because changed_inode did already initiate processing
5622  * of xattrs. The reason is the same as in changed_ref
5623  */
5624 static int changed_xattr(struct send_ctx *sctx,
5625 			 enum btrfs_compare_tree_result result)
5626 {
5627 	int ret = 0;
5628 
5629 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5630 
5631 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5632 		if (result == BTRFS_COMPARE_TREE_NEW)
5633 			ret = process_new_xattr(sctx);
5634 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5635 			ret = process_deleted_xattr(sctx);
5636 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5637 			ret = process_changed_xattr(sctx);
5638 	}
5639 
5640 	return ret;
5641 }
5642 
5643 /*
5644  * Process new/deleted/changed extents. We skip processing in the
5645  * cur_inode_new_gen case because changed_inode did already initiate processing
5646  * of extents. The reason is the same as in changed_ref
5647  */
5648 static int changed_extent(struct send_ctx *sctx,
5649 			  enum btrfs_compare_tree_result result)
5650 {
5651 	int ret = 0;
5652 
5653 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5654 
5655 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5656 		if (result != BTRFS_COMPARE_TREE_DELETED)
5657 			ret = process_extent(sctx, sctx->left_path,
5658 					sctx->cmp_key);
5659 	}
5660 
5661 	return ret;
5662 }
5663 
5664 static int dir_changed(struct send_ctx *sctx, u64 dir)
5665 {
5666 	u64 orig_gen, new_gen;
5667 	int ret;
5668 
5669 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5670 			     NULL, NULL);
5671 	if (ret)
5672 		return ret;
5673 
5674 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5675 			     NULL, NULL, NULL);
5676 	if (ret)
5677 		return ret;
5678 
5679 	return (orig_gen != new_gen) ? 1 : 0;
5680 }
5681 
5682 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5683 			struct btrfs_key *key)
5684 {
5685 	struct btrfs_inode_extref *extref;
5686 	struct extent_buffer *leaf;
5687 	u64 dirid = 0, last_dirid = 0;
5688 	unsigned long ptr;
5689 	u32 item_size;
5690 	u32 cur_offset = 0;
5691 	int ref_name_len;
5692 	int ret = 0;
5693 
5694 	/* Easy case, just check this one dirid */
5695 	if (key->type == BTRFS_INODE_REF_KEY) {
5696 		dirid = key->offset;
5697 
5698 		ret = dir_changed(sctx, dirid);
5699 		goto out;
5700 	}
5701 
5702 	leaf = path->nodes[0];
5703 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5704 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5705 	while (cur_offset < item_size) {
5706 		extref = (struct btrfs_inode_extref *)(ptr +
5707 						       cur_offset);
5708 		dirid = btrfs_inode_extref_parent(leaf, extref);
5709 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5710 		cur_offset += ref_name_len + sizeof(*extref);
5711 		if (dirid == last_dirid)
5712 			continue;
5713 		ret = dir_changed(sctx, dirid);
5714 		if (ret)
5715 			break;
5716 		last_dirid = dirid;
5717 	}
5718 out:
5719 	return ret;
5720 }
5721 
5722 /*
5723  * Updates compare related fields in sctx and simply forwards to the actual
5724  * changed_xxx functions.
5725  */
5726 static int changed_cb(struct btrfs_root *left_root,
5727 		      struct btrfs_root *right_root,
5728 		      struct btrfs_path *left_path,
5729 		      struct btrfs_path *right_path,
5730 		      struct btrfs_key *key,
5731 		      enum btrfs_compare_tree_result result,
5732 		      void *ctx)
5733 {
5734 	int ret = 0;
5735 	struct send_ctx *sctx = ctx;
5736 
5737 	if (result == BTRFS_COMPARE_TREE_SAME) {
5738 		if (key->type == BTRFS_INODE_REF_KEY ||
5739 		    key->type == BTRFS_INODE_EXTREF_KEY) {
5740 			ret = compare_refs(sctx, left_path, key);
5741 			if (!ret)
5742 				return 0;
5743 			if (ret < 0)
5744 				return ret;
5745 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5746 			return maybe_send_hole(sctx, left_path, key);
5747 		} else {
5748 			return 0;
5749 		}
5750 		result = BTRFS_COMPARE_TREE_CHANGED;
5751 		ret = 0;
5752 	}
5753 
5754 	sctx->left_path = left_path;
5755 	sctx->right_path = right_path;
5756 	sctx->cmp_key = key;
5757 
5758 	ret = finish_inode_if_needed(sctx, 0);
5759 	if (ret < 0)
5760 		goto out;
5761 
5762 	/* Ignore non-FS objects */
5763 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5764 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5765 		goto out;
5766 
5767 	if (key->type == BTRFS_INODE_ITEM_KEY)
5768 		ret = changed_inode(sctx, result);
5769 	else if (key->type == BTRFS_INODE_REF_KEY ||
5770 		 key->type == BTRFS_INODE_EXTREF_KEY)
5771 		ret = changed_ref(sctx, result);
5772 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
5773 		ret = changed_xattr(sctx, result);
5774 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
5775 		ret = changed_extent(sctx, result);
5776 
5777 out:
5778 	return ret;
5779 }
5780 
5781 static int full_send_tree(struct send_ctx *sctx)
5782 {
5783 	int ret;
5784 	struct btrfs_root *send_root = sctx->send_root;
5785 	struct btrfs_key key;
5786 	struct btrfs_key found_key;
5787 	struct btrfs_path *path;
5788 	struct extent_buffer *eb;
5789 	int slot;
5790 
5791 	path = alloc_path_for_send();
5792 	if (!path)
5793 		return -ENOMEM;
5794 
5795 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5796 	key.type = BTRFS_INODE_ITEM_KEY;
5797 	key.offset = 0;
5798 
5799 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5800 	if (ret < 0)
5801 		goto out;
5802 	if (ret)
5803 		goto out_finish;
5804 
5805 	while (1) {
5806 		eb = path->nodes[0];
5807 		slot = path->slots[0];
5808 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5809 
5810 		ret = changed_cb(send_root, NULL, path, NULL,
5811 				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5812 		if (ret < 0)
5813 			goto out;
5814 
5815 		key.objectid = found_key.objectid;
5816 		key.type = found_key.type;
5817 		key.offset = found_key.offset + 1;
5818 
5819 		ret = btrfs_next_item(send_root, path);
5820 		if (ret < 0)
5821 			goto out;
5822 		if (ret) {
5823 			ret  = 0;
5824 			break;
5825 		}
5826 	}
5827 
5828 out_finish:
5829 	ret = finish_inode_if_needed(sctx, 1);
5830 
5831 out:
5832 	btrfs_free_path(path);
5833 	return ret;
5834 }
5835 
5836 static int send_subvol(struct send_ctx *sctx)
5837 {
5838 	int ret;
5839 
5840 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5841 		ret = send_header(sctx);
5842 		if (ret < 0)
5843 			goto out;
5844 	}
5845 
5846 	ret = send_subvol_begin(sctx);
5847 	if (ret < 0)
5848 		goto out;
5849 
5850 	if (sctx->parent_root) {
5851 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5852 				changed_cb, sctx);
5853 		if (ret < 0)
5854 			goto out;
5855 		ret = finish_inode_if_needed(sctx, 1);
5856 		if (ret < 0)
5857 			goto out;
5858 	} else {
5859 		ret = full_send_tree(sctx);
5860 		if (ret < 0)
5861 			goto out;
5862 	}
5863 
5864 out:
5865 	free_recorded_refs(sctx);
5866 	return ret;
5867 }
5868 
5869 /*
5870  * If orphan cleanup did remove any orphans from a root, it means the tree
5871  * was modified and therefore the commit root is not the same as the current
5872  * root anymore. This is a problem, because send uses the commit root and
5873  * therefore can see inode items that don't exist in the current root anymore,
5874  * and for example make calls to btrfs_iget, which will do tree lookups based
5875  * on the current root and not on the commit root. Those lookups will fail,
5876  * returning a -ESTALE error, and making send fail with that error. So make
5877  * sure a send does not see any orphans we have just removed, and that it will
5878  * see the same inodes regardless of whether a transaction commit happened
5879  * before it started (meaning that the commit root will be the same as the
5880  * current root) or not.
5881  */
5882 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
5883 {
5884 	int i;
5885 	struct btrfs_trans_handle *trans = NULL;
5886 
5887 again:
5888 	if (sctx->parent_root &&
5889 	    sctx->parent_root->node != sctx->parent_root->commit_root)
5890 		goto commit_trans;
5891 
5892 	for (i = 0; i < sctx->clone_roots_cnt; i++)
5893 		if (sctx->clone_roots[i].root->node !=
5894 		    sctx->clone_roots[i].root->commit_root)
5895 			goto commit_trans;
5896 
5897 	if (trans)
5898 		return btrfs_end_transaction(trans, sctx->send_root);
5899 
5900 	return 0;
5901 
5902 commit_trans:
5903 	/* Use any root, all fs roots will get their commit roots updated. */
5904 	if (!trans) {
5905 		trans = btrfs_join_transaction(sctx->send_root);
5906 		if (IS_ERR(trans))
5907 			return PTR_ERR(trans);
5908 		goto again;
5909 	}
5910 
5911 	return btrfs_commit_transaction(trans, sctx->send_root);
5912 }
5913 
5914 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5915 {
5916 	spin_lock(&root->root_item_lock);
5917 	root->send_in_progress--;
5918 	/*
5919 	 * Not much left to do, we don't know why it's unbalanced and
5920 	 * can't blindly reset it to 0.
5921 	 */
5922 	if (root->send_in_progress < 0)
5923 		btrfs_err(root->fs_info,
5924 			"send_in_progres unbalanced %d root %llu",
5925 			root->send_in_progress, root->root_key.objectid);
5926 	spin_unlock(&root->root_item_lock);
5927 }
5928 
5929 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5930 {
5931 	int ret = 0;
5932 	struct btrfs_root *send_root;
5933 	struct btrfs_root *clone_root;
5934 	struct btrfs_fs_info *fs_info;
5935 	struct btrfs_ioctl_send_args *arg = NULL;
5936 	struct btrfs_key key;
5937 	struct send_ctx *sctx = NULL;
5938 	u32 i;
5939 	u64 *clone_sources_tmp = NULL;
5940 	int clone_sources_to_rollback = 0;
5941 	int sort_clone_roots = 0;
5942 	int index;
5943 
5944 	if (!capable(CAP_SYS_ADMIN))
5945 		return -EPERM;
5946 
5947 	send_root = BTRFS_I(file_inode(mnt_file))->root;
5948 	fs_info = send_root->fs_info;
5949 
5950 	/*
5951 	 * The subvolume must remain read-only during send, protect against
5952 	 * making it RW. This also protects against deletion.
5953 	 */
5954 	spin_lock(&send_root->root_item_lock);
5955 	send_root->send_in_progress++;
5956 	spin_unlock(&send_root->root_item_lock);
5957 
5958 	/*
5959 	 * This is done when we lookup the root, it should already be complete
5960 	 * by the time we get here.
5961 	 */
5962 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5963 
5964 	/*
5965 	 * Userspace tools do the checks and warn the user if it's
5966 	 * not RO.
5967 	 */
5968 	if (!btrfs_root_readonly(send_root)) {
5969 		ret = -EPERM;
5970 		goto out;
5971 	}
5972 
5973 	arg = memdup_user(arg_, sizeof(*arg));
5974 	if (IS_ERR(arg)) {
5975 		ret = PTR_ERR(arg);
5976 		arg = NULL;
5977 		goto out;
5978 	}
5979 
5980 	if (!access_ok(VERIFY_READ, arg->clone_sources,
5981 			sizeof(*arg->clone_sources) *
5982 			arg->clone_sources_count)) {
5983 		ret = -EFAULT;
5984 		goto out;
5985 	}
5986 
5987 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5988 		ret = -EINVAL;
5989 		goto out;
5990 	}
5991 
5992 	sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5993 	if (!sctx) {
5994 		ret = -ENOMEM;
5995 		goto out;
5996 	}
5997 
5998 	INIT_LIST_HEAD(&sctx->new_refs);
5999 	INIT_LIST_HEAD(&sctx->deleted_refs);
6000 	INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
6001 	INIT_LIST_HEAD(&sctx->name_cache_list);
6002 
6003 	sctx->flags = arg->flags;
6004 
6005 	sctx->send_filp = fget(arg->send_fd);
6006 	if (!sctx->send_filp) {
6007 		ret = -EBADF;
6008 		goto out;
6009 	}
6010 
6011 	sctx->send_root = send_root;
6012 	/*
6013 	 * Unlikely but possible, if the subvolume is marked for deletion but
6014 	 * is slow to remove the directory entry, send can still be started
6015 	 */
6016 	if (btrfs_root_dead(sctx->send_root)) {
6017 		ret = -EPERM;
6018 		goto out;
6019 	}
6020 
6021 	sctx->clone_roots_cnt = arg->clone_sources_count;
6022 
6023 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6024 	sctx->send_buf = vmalloc(sctx->send_max_size);
6025 	if (!sctx->send_buf) {
6026 		ret = -ENOMEM;
6027 		goto out;
6028 	}
6029 
6030 	sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
6031 	if (!sctx->read_buf) {
6032 		ret = -ENOMEM;
6033 		goto out;
6034 	}
6035 
6036 	sctx->pending_dir_moves = RB_ROOT;
6037 	sctx->waiting_dir_moves = RB_ROOT;
6038 	sctx->orphan_dirs = RB_ROOT;
6039 
6040 	sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
6041 			(arg->clone_sources_count + 1));
6042 	if (!sctx->clone_roots) {
6043 		ret = -ENOMEM;
6044 		goto out;
6045 	}
6046 
6047 	if (arg->clone_sources_count) {
6048 		clone_sources_tmp = vmalloc(arg->clone_sources_count *
6049 				sizeof(*arg->clone_sources));
6050 		if (!clone_sources_tmp) {
6051 			ret = -ENOMEM;
6052 			goto out;
6053 		}
6054 
6055 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6056 				arg->clone_sources_count *
6057 				sizeof(*arg->clone_sources));
6058 		if (ret) {
6059 			ret = -EFAULT;
6060 			goto out;
6061 		}
6062 
6063 		for (i = 0; i < arg->clone_sources_count; i++) {
6064 			key.objectid = clone_sources_tmp[i];
6065 			key.type = BTRFS_ROOT_ITEM_KEY;
6066 			key.offset = (u64)-1;
6067 
6068 			index = srcu_read_lock(&fs_info->subvol_srcu);
6069 
6070 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6071 			if (IS_ERR(clone_root)) {
6072 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6073 				ret = PTR_ERR(clone_root);
6074 				goto out;
6075 			}
6076 			spin_lock(&clone_root->root_item_lock);
6077 			if (!btrfs_root_readonly(clone_root) ||
6078 			    btrfs_root_dead(clone_root)) {
6079 				spin_unlock(&clone_root->root_item_lock);
6080 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6081 				ret = -EPERM;
6082 				goto out;
6083 			}
6084 			clone_root->send_in_progress++;
6085 			spin_unlock(&clone_root->root_item_lock);
6086 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6087 
6088 			sctx->clone_roots[i].root = clone_root;
6089 			clone_sources_to_rollback = i + 1;
6090 		}
6091 		vfree(clone_sources_tmp);
6092 		clone_sources_tmp = NULL;
6093 	}
6094 
6095 	if (arg->parent_root) {
6096 		key.objectid = arg->parent_root;
6097 		key.type = BTRFS_ROOT_ITEM_KEY;
6098 		key.offset = (u64)-1;
6099 
6100 		index = srcu_read_lock(&fs_info->subvol_srcu);
6101 
6102 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6103 		if (IS_ERR(sctx->parent_root)) {
6104 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6105 			ret = PTR_ERR(sctx->parent_root);
6106 			goto out;
6107 		}
6108 
6109 		spin_lock(&sctx->parent_root->root_item_lock);
6110 		sctx->parent_root->send_in_progress++;
6111 		if (!btrfs_root_readonly(sctx->parent_root) ||
6112 				btrfs_root_dead(sctx->parent_root)) {
6113 			spin_unlock(&sctx->parent_root->root_item_lock);
6114 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6115 			ret = -EPERM;
6116 			goto out;
6117 		}
6118 		spin_unlock(&sctx->parent_root->root_item_lock);
6119 
6120 		srcu_read_unlock(&fs_info->subvol_srcu, index);
6121 	}
6122 
6123 	/*
6124 	 * Clones from send_root are allowed, but only if the clone source
6125 	 * is behind the current send position. This is checked while searching
6126 	 * for possible clone sources.
6127 	 */
6128 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6129 
6130 	/* We do a bsearch later */
6131 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
6132 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6133 			NULL);
6134 	sort_clone_roots = 1;
6135 
6136 	ret = ensure_commit_roots_uptodate(sctx);
6137 	if (ret)
6138 		goto out;
6139 
6140 	current->journal_info = BTRFS_SEND_TRANS_STUB;
6141 	ret = send_subvol(sctx);
6142 	current->journal_info = NULL;
6143 	if (ret < 0)
6144 		goto out;
6145 
6146 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6147 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6148 		if (ret < 0)
6149 			goto out;
6150 		ret = send_cmd(sctx);
6151 		if (ret < 0)
6152 			goto out;
6153 	}
6154 
6155 out:
6156 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6157 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6158 		struct rb_node *n;
6159 		struct pending_dir_move *pm;
6160 
6161 		n = rb_first(&sctx->pending_dir_moves);
6162 		pm = rb_entry(n, struct pending_dir_move, node);
6163 		while (!list_empty(&pm->list)) {
6164 			struct pending_dir_move *pm2;
6165 
6166 			pm2 = list_first_entry(&pm->list,
6167 					       struct pending_dir_move, list);
6168 			free_pending_move(sctx, pm2);
6169 		}
6170 		free_pending_move(sctx, pm);
6171 	}
6172 
6173 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6174 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6175 		struct rb_node *n;
6176 		struct waiting_dir_move *dm;
6177 
6178 		n = rb_first(&sctx->waiting_dir_moves);
6179 		dm = rb_entry(n, struct waiting_dir_move, node);
6180 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
6181 		kfree(dm);
6182 	}
6183 
6184 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6185 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6186 		struct rb_node *n;
6187 		struct orphan_dir_info *odi;
6188 
6189 		n = rb_first(&sctx->orphan_dirs);
6190 		odi = rb_entry(n, struct orphan_dir_info, node);
6191 		free_orphan_dir_info(sctx, odi);
6192 	}
6193 
6194 	if (sort_clone_roots) {
6195 		for (i = 0; i < sctx->clone_roots_cnt; i++)
6196 			btrfs_root_dec_send_in_progress(
6197 					sctx->clone_roots[i].root);
6198 	} else {
6199 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6200 			btrfs_root_dec_send_in_progress(
6201 					sctx->clone_roots[i].root);
6202 
6203 		btrfs_root_dec_send_in_progress(send_root);
6204 	}
6205 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6206 		btrfs_root_dec_send_in_progress(sctx->parent_root);
6207 
6208 	kfree(arg);
6209 	vfree(clone_sources_tmp);
6210 
6211 	if (sctx) {
6212 		if (sctx->send_filp)
6213 			fput(sctx->send_filp);
6214 
6215 		vfree(sctx->clone_roots);
6216 		vfree(sctx->send_buf);
6217 		vfree(sctx->read_buf);
6218 
6219 		name_cache_free(sctx);
6220 
6221 		kfree(sctx);
6222 	}
6223 
6224 	return ret;
6225 }
6226