xref: /openbmc/linux/fs/btrfs/send.c (revision 981ab3f1)
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 #include "compression.h"
38 
39 /*
40  * A fs_path is a helper to dynamically build path names with unknown size.
41  * It reallocates the internal buffer on demand.
42  * It allows fast adding of path elements on the right side (normal path) and
43  * fast adding to the left side (reversed path). A reversed path can also be
44  * unreversed if needed.
45  */
46 struct fs_path {
47 	union {
48 		struct {
49 			char *start;
50 			char *end;
51 
52 			char *buf;
53 			unsigned short buf_len:15;
54 			unsigned short reversed:1;
55 			char inline_buf[];
56 		};
57 		/*
58 		 * Average path length does not exceed 200 bytes, we'll have
59 		 * better packing in the slab and higher chance to satisfy
60 		 * a allocation later during send.
61 		 */
62 		char pad[256];
63 	};
64 };
65 #define FS_PATH_INLINE_SIZE \
66 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
67 
68 
69 /* reused for each extent */
70 struct clone_root {
71 	struct btrfs_root *root;
72 	u64 ino;
73 	u64 offset;
74 
75 	u64 found_refs;
76 };
77 
78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
80 
81 struct send_ctx {
82 	struct file *send_filp;
83 	loff_t send_off;
84 	char *send_buf;
85 	u32 send_size;
86 	u32 send_max_size;
87 	u64 total_send_size;
88 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
89 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
90 
91 	struct btrfs_root *send_root;
92 	struct btrfs_root *parent_root;
93 	struct clone_root *clone_roots;
94 	int clone_roots_cnt;
95 
96 	/* current state of the compare_tree call */
97 	struct btrfs_path *left_path;
98 	struct btrfs_path *right_path;
99 	struct btrfs_key *cmp_key;
100 
101 	/*
102 	 * infos of the currently processed inode. In case of deleted inodes,
103 	 * these are the values from the deleted inode.
104 	 */
105 	u64 cur_ino;
106 	u64 cur_inode_gen;
107 	int cur_inode_new;
108 	int cur_inode_new_gen;
109 	int cur_inode_deleted;
110 	u64 cur_inode_size;
111 	u64 cur_inode_mode;
112 	u64 cur_inode_rdev;
113 	u64 cur_inode_last_extent;
114 
115 	u64 send_progress;
116 
117 	struct list_head new_refs;
118 	struct list_head deleted_refs;
119 
120 	struct radix_tree_root name_cache;
121 	struct list_head name_cache_list;
122 	int name_cache_size;
123 
124 	struct file_ra_state ra;
125 
126 	char *read_buf;
127 
128 	/*
129 	 * We process inodes by their increasing order, so if before an
130 	 * incremental send we reverse the parent/child relationship of
131 	 * directories such that a directory with a lower inode number was
132 	 * the parent of a directory with a higher inode number, and the one
133 	 * becoming the new parent got renamed too, we can't rename/move the
134 	 * directory with lower inode number when we finish processing it - we
135 	 * must process the directory with higher inode number first, then
136 	 * rename/move it and then rename/move the directory with lower inode
137 	 * number. Example follows.
138 	 *
139 	 * Tree state when the first send was performed:
140 	 *
141 	 * .
142 	 * |-- a                   (ino 257)
143 	 *     |-- b               (ino 258)
144 	 *         |
145 	 *         |
146 	 *         |-- c           (ino 259)
147 	 *         |   |-- d       (ino 260)
148 	 *         |
149 	 *         |-- c2          (ino 261)
150 	 *
151 	 * Tree state when the second (incremental) send is performed:
152 	 *
153 	 * .
154 	 * |-- a                   (ino 257)
155 	 *     |-- b               (ino 258)
156 	 *         |-- c2          (ino 261)
157 	 *             |-- d2      (ino 260)
158 	 *                 |-- cc  (ino 259)
159 	 *
160 	 * The sequence of steps that lead to the second state was:
161 	 *
162 	 * mv /a/b/c/d /a/b/c2/d2
163 	 * mv /a/b/c /a/b/c2/d2/cc
164 	 *
165 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
166 	 * before we move "d", which has higher inode number.
167 	 *
168 	 * So we just memorize which move/rename operations must be performed
169 	 * later when their respective parent is processed and moved/renamed.
170 	 */
171 
172 	/* Indexed by parent directory inode number. */
173 	struct rb_root pending_dir_moves;
174 
175 	/*
176 	 * Reverse index, indexed by the inode number of a directory that
177 	 * is waiting for the move/rename of its immediate parent before its
178 	 * own move/rename can be performed.
179 	 */
180 	struct rb_root waiting_dir_moves;
181 
182 	/*
183 	 * A directory that is going to be rm'ed might have a child directory
184 	 * which is in the pending directory moves index above. In this case,
185 	 * the directory can only be removed after the move/rename of its child
186 	 * is performed. Example:
187 	 *
188 	 * Parent snapshot:
189 	 *
190 	 * .                        (ino 256)
191 	 * |-- a/                   (ino 257)
192 	 *     |-- b/               (ino 258)
193 	 *         |-- c/           (ino 259)
194 	 *         |   |-- x/       (ino 260)
195 	 *         |
196 	 *         |-- y/           (ino 261)
197 	 *
198 	 * Send snapshot:
199 	 *
200 	 * .                        (ino 256)
201 	 * |-- a/                   (ino 257)
202 	 *     |-- b/               (ino 258)
203 	 *         |-- YY/          (ino 261)
204 	 *              |-- x/      (ino 260)
205 	 *
206 	 * Sequence of steps that lead to the send snapshot:
207 	 * rm -f /a/b/c/foo.txt
208 	 * mv /a/b/y /a/b/YY
209 	 * mv /a/b/c/x /a/b/YY
210 	 * rmdir /a/b/c
211 	 *
212 	 * When the child is processed, its move/rename is delayed until its
213 	 * parent is processed (as explained above), but all other operations
214 	 * like update utimes, chown, chgrp, etc, are performed and the paths
215 	 * that it uses for those operations must use the orphanized name of
216 	 * its parent (the directory we're going to rm later), so we need to
217 	 * memorize that name.
218 	 *
219 	 * Indexed by the inode number of the directory to be deleted.
220 	 */
221 	struct rb_root orphan_dirs;
222 };
223 
224 struct pending_dir_move {
225 	struct rb_node node;
226 	struct list_head list;
227 	u64 parent_ino;
228 	u64 ino;
229 	u64 gen;
230 	struct list_head update_refs;
231 };
232 
233 struct waiting_dir_move {
234 	struct rb_node node;
235 	u64 ino;
236 	/*
237 	 * There might be some directory that could not be removed because it
238 	 * was waiting for this directory inode to be moved first. Therefore
239 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
240 	 */
241 	u64 rmdir_ino;
242 	bool orphanized;
243 };
244 
245 struct orphan_dir_info {
246 	struct rb_node node;
247 	u64 ino;
248 	u64 gen;
249 };
250 
251 struct name_cache_entry {
252 	struct list_head list;
253 	/*
254 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
255 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
256 	 * more then one inum would fall into the same entry, we use radix_list
257 	 * to store the additional entries. radix_list is also used to store
258 	 * entries where two entries have the same inum but different
259 	 * generations.
260 	 */
261 	struct list_head radix_list;
262 	u64 ino;
263 	u64 gen;
264 	u64 parent_ino;
265 	u64 parent_gen;
266 	int ret;
267 	int need_later_update;
268 	int name_len;
269 	char name[];
270 };
271 
272 static void inconsistent_snapshot_error(struct send_ctx *sctx,
273 					enum btrfs_compare_tree_result result,
274 					const char *what)
275 {
276 	const char *result_string;
277 
278 	switch (result) {
279 	case BTRFS_COMPARE_TREE_NEW:
280 		result_string = "new";
281 		break;
282 	case BTRFS_COMPARE_TREE_DELETED:
283 		result_string = "deleted";
284 		break;
285 	case BTRFS_COMPARE_TREE_CHANGED:
286 		result_string = "updated";
287 		break;
288 	case BTRFS_COMPARE_TREE_SAME:
289 		ASSERT(0);
290 		result_string = "unchanged";
291 		break;
292 	default:
293 		ASSERT(0);
294 		result_string = "unexpected";
295 	}
296 
297 	btrfs_err(sctx->send_root->fs_info,
298 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
299 		  result_string, what, sctx->cmp_key->objectid,
300 		  sctx->send_root->root_key.objectid,
301 		  (sctx->parent_root ?
302 		   sctx->parent_root->root_key.objectid : 0));
303 }
304 
305 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
306 
307 static struct waiting_dir_move *
308 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
309 
310 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
311 
312 static int need_send_hole(struct send_ctx *sctx)
313 {
314 	return (sctx->parent_root && !sctx->cur_inode_new &&
315 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
316 		S_ISREG(sctx->cur_inode_mode));
317 }
318 
319 static void fs_path_reset(struct fs_path *p)
320 {
321 	if (p->reversed) {
322 		p->start = p->buf + p->buf_len - 1;
323 		p->end = p->start;
324 		*p->start = 0;
325 	} else {
326 		p->start = p->buf;
327 		p->end = p->start;
328 		*p->start = 0;
329 	}
330 }
331 
332 static struct fs_path *fs_path_alloc(void)
333 {
334 	struct fs_path *p;
335 
336 	p = kmalloc(sizeof(*p), GFP_KERNEL);
337 	if (!p)
338 		return NULL;
339 	p->reversed = 0;
340 	p->buf = p->inline_buf;
341 	p->buf_len = FS_PATH_INLINE_SIZE;
342 	fs_path_reset(p);
343 	return p;
344 }
345 
346 static struct fs_path *fs_path_alloc_reversed(void)
347 {
348 	struct fs_path *p;
349 
350 	p = fs_path_alloc();
351 	if (!p)
352 		return NULL;
353 	p->reversed = 1;
354 	fs_path_reset(p);
355 	return p;
356 }
357 
358 static void fs_path_free(struct fs_path *p)
359 {
360 	if (!p)
361 		return;
362 	if (p->buf != p->inline_buf)
363 		kfree(p->buf);
364 	kfree(p);
365 }
366 
367 static int fs_path_len(struct fs_path *p)
368 {
369 	return p->end - p->start;
370 }
371 
372 static int fs_path_ensure_buf(struct fs_path *p, int len)
373 {
374 	char *tmp_buf;
375 	int path_len;
376 	int old_buf_len;
377 
378 	len++;
379 
380 	if (p->buf_len >= len)
381 		return 0;
382 
383 	if (len > PATH_MAX) {
384 		WARN_ON(1);
385 		return -ENOMEM;
386 	}
387 
388 	path_len = p->end - p->start;
389 	old_buf_len = p->buf_len;
390 
391 	/*
392 	 * First time the inline_buf does not suffice
393 	 */
394 	if (p->buf == p->inline_buf) {
395 		tmp_buf = kmalloc(len, GFP_KERNEL);
396 		if (tmp_buf)
397 			memcpy(tmp_buf, p->buf, old_buf_len);
398 	} else {
399 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
400 	}
401 	if (!tmp_buf)
402 		return -ENOMEM;
403 	p->buf = tmp_buf;
404 	/*
405 	 * The real size of the buffer is bigger, this will let the fast path
406 	 * happen most of the time
407 	 */
408 	p->buf_len = ksize(p->buf);
409 
410 	if (p->reversed) {
411 		tmp_buf = p->buf + old_buf_len - path_len - 1;
412 		p->end = p->buf + p->buf_len - 1;
413 		p->start = p->end - path_len;
414 		memmove(p->start, tmp_buf, path_len + 1);
415 	} else {
416 		p->start = p->buf;
417 		p->end = p->start + path_len;
418 	}
419 	return 0;
420 }
421 
422 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
423 				   char **prepared)
424 {
425 	int ret;
426 	int new_len;
427 
428 	new_len = p->end - p->start + name_len;
429 	if (p->start != p->end)
430 		new_len++;
431 	ret = fs_path_ensure_buf(p, new_len);
432 	if (ret < 0)
433 		goto out;
434 
435 	if (p->reversed) {
436 		if (p->start != p->end)
437 			*--p->start = '/';
438 		p->start -= name_len;
439 		*prepared = p->start;
440 	} else {
441 		if (p->start != p->end)
442 			*p->end++ = '/';
443 		*prepared = p->end;
444 		p->end += name_len;
445 		*p->end = 0;
446 	}
447 
448 out:
449 	return ret;
450 }
451 
452 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
453 {
454 	int ret;
455 	char *prepared;
456 
457 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
458 	if (ret < 0)
459 		goto out;
460 	memcpy(prepared, name, name_len);
461 
462 out:
463 	return ret;
464 }
465 
466 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
467 {
468 	int ret;
469 	char *prepared;
470 
471 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
472 	if (ret < 0)
473 		goto out;
474 	memcpy(prepared, p2->start, p2->end - p2->start);
475 
476 out:
477 	return ret;
478 }
479 
480 static int fs_path_add_from_extent_buffer(struct fs_path *p,
481 					  struct extent_buffer *eb,
482 					  unsigned long off, int len)
483 {
484 	int ret;
485 	char *prepared;
486 
487 	ret = fs_path_prepare_for_add(p, len, &prepared);
488 	if (ret < 0)
489 		goto out;
490 
491 	read_extent_buffer(eb, prepared, off, len);
492 
493 out:
494 	return ret;
495 }
496 
497 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
498 {
499 	int ret;
500 
501 	p->reversed = from->reversed;
502 	fs_path_reset(p);
503 
504 	ret = fs_path_add_path(p, from);
505 
506 	return ret;
507 }
508 
509 
510 static void fs_path_unreverse(struct fs_path *p)
511 {
512 	char *tmp;
513 	int len;
514 
515 	if (!p->reversed)
516 		return;
517 
518 	tmp = p->start;
519 	len = p->end - p->start;
520 	p->start = p->buf;
521 	p->end = p->start + len;
522 	memmove(p->start, tmp, len + 1);
523 	p->reversed = 0;
524 }
525 
526 static struct btrfs_path *alloc_path_for_send(void)
527 {
528 	struct btrfs_path *path;
529 
530 	path = btrfs_alloc_path();
531 	if (!path)
532 		return NULL;
533 	path->search_commit_root = 1;
534 	path->skip_locking = 1;
535 	path->need_commit_sem = 1;
536 	return path;
537 }
538 
539 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
540 {
541 	int ret;
542 	mm_segment_t old_fs;
543 	u32 pos = 0;
544 
545 	old_fs = get_fs();
546 	set_fs(KERNEL_DS);
547 
548 	while (pos < len) {
549 		ret = vfs_write(filp, (__force const char __user *)buf + pos,
550 				len - pos, off);
551 		/* TODO handle that correctly */
552 		/*if (ret == -ERESTARTSYS) {
553 			continue;
554 		}*/
555 		if (ret < 0)
556 			goto out;
557 		if (ret == 0) {
558 			ret = -EIO;
559 			goto out;
560 		}
561 		pos += ret;
562 	}
563 
564 	ret = 0;
565 
566 out:
567 	set_fs(old_fs);
568 	return ret;
569 }
570 
571 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
572 {
573 	struct btrfs_tlv_header *hdr;
574 	int total_len = sizeof(*hdr) + len;
575 	int left = sctx->send_max_size - sctx->send_size;
576 
577 	if (unlikely(left < total_len))
578 		return -EOVERFLOW;
579 
580 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
581 	hdr->tlv_type = cpu_to_le16(attr);
582 	hdr->tlv_len = cpu_to_le16(len);
583 	memcpy(hdr + 1, data, len);
584 	sctx->send_size += total_len;
585 
586 	return 0;
587 }
588 
589 #define TLV_PUT_DEFINE_INT(bits) \
590 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
591 			u##bits attr, u##bits value)			\
592 	{								\
593 		__le##bits __tmp = cpu_to_le##bits(value);		\
594 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
595 	}
596 
597 TLV_PUT_DEFINE_INT(64)
598 
599 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
600 			  const char *str, int len)
601 {
602 	if (len == -1)
603 		len = strlen(str);
604 	return tlv_put(sctx, attr, str, len);
605 }
606 
607 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
608 			const u8 *uuid)
609 {
610 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
611 }
612 
613 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
614 				  struct extent_buffer *eb,
615 				  struct btrfs_timespec *ts)
616 {
617 	struct btrfs_timespec bts;
618 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
619 	return tlv_put(sctx, attr, &bts, sizeof(bts));
620 }
621 
622 
623 #define TLV_PUT(sctx, attrtype, attrlen, data) \
624 	do { \
625 		ret = tlv_put(sctx, attrtype, attrlen, data); \
626 		if (ret < 0) \
627 			goto tlv_put_failure; \
628 	} while (0)
629 
630 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
631 	do { \
632 		ret = tlv_put_u##bits(sctx, attrtype, value); \
633 		if (ret < 0) \
634 			goto tlv_put_failure; \
635 	} while (0)
636 
637 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
638 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
639 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
640 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
641 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
642 	do { \
643 		ret = tlv_put_string(sctx, attrtype, str, len); \
644 		if (ret < 0) \
645 			goto tlv_put_failure; \
646 	} while (0)
647 #define TLV_PUT_PATH(sctx, attrtype, p) \
648 	do { \
649 		ret = tlv_put_string(sctx, attrtype, p->start, \
650 			p->end - p->start); \
651 		if (ret < 0) \
652 			goto tlv_put_failure; \
653 	} while(0)
654 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
655 	do { \
656 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
657 		if (ret < 0) \
658 			goto tlv_put_failure; \
659 	} while (0)
660 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
661 	do { \
662 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
663 		if (ret < 0) \
664 			goto tlv_put_failure; \
665 	} while (0)
666 
667 static int send_header(struct send_ctx *sctx)
668 {
669 	struct btrfs_stream_header hdr;
670 
671 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
672 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
673 
674 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
675 					&sctx->send_off);
676 }
677 
678 /*
679  * For each command/item we want to send to userspace, we call this function.
680  */
681 static int begin_cmd(struct send_ctx *sctx, int cmd)
682 {
683 	struct btrfs_cmd_header *hdr;
684 
685 	if (WARN_ON(!sctx->send_buf))
686 		return -EINVAL;
687 
688 	BUG_ON(sctx->send_size);
689 
690 	sctx->send_size += sizeof(*hdr);
691 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
692 	hdr->cmd = cpu_to_le16(cmd);
693 
694 	return 0;
695 }
696 
697 static int send_cmd(struct send_ctx *sctx)
698 {
699 	int ret;
700 	struct btrfs_cmd_header *hdr;
701 	u32 crc;
702 
703 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
704 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
705 	hdr->crc = 0;
706 
707 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
708 	hdr->crc = cpu_to_le32(crc);
709 
710 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
711 					&sctx->send_off);
712 
713 	sctx->total_send_size += sctx->send_size;
714 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
715 	sctx->send_size = 0;
716 
717 	return ret;
718 }
719 
720 /*
721  * Sends a move instruction to user space
722  */
723 static int send_rename(struct send_ctx *sctx,
724 		     struct fs_path *from, struct fs_path *to)
725 {
726 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
727 	int ret;
728 
729 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
730 
731 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
732 	if (ret < 0)
733 		goto out;
734 
735 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
736 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
737 
738 	ret = send_cmd(sctx);
739 
740 tlv_put_failure:
741 out:
742 	return ret;
743 }
744 
745 /*
746  * Sends a link instruction to user space
747  */
748 static int send_link(struct send_ctx *sctx,
749 		     struct fs_path *path, struct fs_path *lnk)
750 {
751 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
752 	int ret;
753 
754 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
755 
756 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
757 	if (ret < 0)
758 		goto out;
759 
760 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
761 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
762 
763 	ret = send_cmd(sctx);
764 
765 tlv_put_failure:
766 out:
767 	return ret;
768 }
769 
770 /*
771  * Sends an unlink instruction to user space
772  */
773 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
774 {
775 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
776 	int ret;
777 
778 	btrfs_debug(fs_info, "send_unlink %s", path->start);
779 
780 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
781 	if (ret < 0)
782 		goto out;
783 
784 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
785 
786 	ret = send_cmd(sctx);
787 
788 tlv_put_failure:
789 out:
790 	return ret;
791 }
792 
793 /*
794  * Sends a rmdir instruction to user space
795  */
796 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
797 {
798 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
799 	int ret;
800 
801 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
802 
803 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
804 	if (ret < 0)
805 		goto out;
806 
807 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
808 
809 	ret = send_cmd(sctx);
810 
811 tlv_put_failure:
812 out:
813 	return ret;
814 }
815 
816 /*
817  * Helper function to retrieve some fields from an inode item.
818  */
819 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
820 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
821 			  u64 *gid, u64 *rdev)
822 {
823 	int ret;
824 	struct btrfs_inode_item *ii;
825 	struct btrfs_key key;
826 
827 	key.objectid = ino;
828 	key.type = BTRFS_INODE_ITEM_KEY;
829 	key.offset = 0;
830 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
831 	if (ret) {
832 		if (ret > 0)
833 			ret = -ENOENT;
834 		return ret;
835 	}
836 
837 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
838 			struct btrfs_inode_item);
839 	if (size)
840 		*size = btrfs_inode_size(path->nodes[0], ii);
841 	if (gen)
842 		*gen = btrfs_inode_generation(path->nodes[0], ii);
843 	if (mode)
844 		*mode = btrfs_inode_mode(path->nodes[0], ii);
845 	if (uid)
846 		*uid = btrfs_inode_uid(path->nodes[0], ii);
847 	if (gid)
848 		*gid = btrfs_inode_gid(path->nodes[0], ii);
849 	if (rdev)
850 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
851 
852 	return ret;
853 }
854 
855 static int get_inode_info(struct btrfs_root *root,
856 			  u64 ino, u64 *size, u64 *gen,
857 			  u64 *mode, u64 *uid, u64 *gid,
858 			  u64 *rdev)
859 {
860 	struct btrfs_path *path;
861 	int ret;
862 
863 	path = alloc_path_for_send();
864 	if (!path)
865 		return -ENOMEM;
866 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
867 			       rdev);
868 	btrfs_free_path(path);
869 	return ret;
870 }
871 
872 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
873 				   struct fs_path *p,
874 				   void *ctx);
875 
876 /*
877  * Helper function to iterate the entries in ONE btrfs_inode_ref or
878  * btrfs_inode_extref.
879  * The iterate callback may return a non zero value to stop iteration. This can
880  * be a negative value for error codes or 1 to simply stop it.
881  *
882  * path must point to the INODE_REF or INODE_EXTREF when called.
883  */
884 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
885 			     struct btrfs_key *found_key, int resolve,
886 			     iterate_inode_ref_t iterate, void *ctx)
887 {
888 	struct extent_buffer *eb = path->nodes[0];
889 	struct btrfs_item *item;
890 	struct btrfs_inode_ref *iref;
891 	struct btrfs_inode_extref *extref;
892 	struct btrfs_path *tmp_path;
893 	struct fs_path *p;
894 	u32 cur = 0;
895 	u32 total;
896 	int slot = path->slots[0];
897 	u32 name_len;
898 	char *start;
899 	int ret = 0;
900 	int num = 0;
901 	int index;
902 	u64 dir;
903 	unsigned long name_off;
904 	unsigned long elem_size;
905 	unsigned long ptr;
906 
907 	p = fs_path_alloc_reversed();
908 	if (!p)
909 		return -ENOMEM;
910 
911 	tmp_path = alloc_path_for_send();
912 	if (!tmp_path) {
913 		fs_path_free(p);
914 		return -ENOMEM;
915 	}
916 
917 
918 	if (found_key->type == BTRFS_INODE_REF_KEY) {
919 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
920 						    struct btrfs_inode_ref);
921 		item = btrfs_item_nr(slot);
922 		total = btrfs_item_size(eb, item);
923 		elem_size = sizeof(*iref);
924 	} else {
925 		ptr = btrfs_item_ptr_offset(eb, slot);
926 		total = btrfs_item_size_nr(eb, slot);
927 		elem_size = sizeof(*extref);
928 	}
929 
930 	while (cur < total) {
931 		fs_path_reset(p);
932 
933 		if (found_key->type == BTRFS_INODE_REF_KEY) {
934 			iref = (struct btrfs_inode_ref *)(ptr + cur);
935 			name_len = btrfs_inode_ref_name_len(eb, iref);
936 			name_off = (unsigned long)(iref + 1);
937 			index = btrfs_inode_ref_index(eb, iref);
938 			dir = found_key->offset;
939 		} else {
940 			extref = (struct btrfs_inode_extref *)(ptr + cur);
941 			name_len = btrfs_inode_extref_name_len(eb, extref);
942 			name_off = (unsigned long)&extref->name;
943 			index = btrfs_inode_extref_index(eb, extref);
944 			dir = btrfs_inode_extref_parent(eb, extref);
945 		}
946 
947 		if (resolve) {
948 			start = btrfs_ref_to_path(root, tmp_path, name_len,
949 						  name_off, eb, dir,
950 						  p->buf, p->buf_len);
951 			if (IS_ERR(start)) {
952 				ret = PTR_ERR(start);
953 				goto out;
954 			}
955 			if (start < p->buf) {
956 				/* overflow , try again with larger buffer */
957 				ret = fs_path_ensure_buf(p,
958 						p->buf_len + p->buf - start);
959 				if (ret < 0)
960 					goto out;
961 				start = btrfs_ref_to_path(root, tmp_path,
962 							  name_len, name_off,
963 							  eb, dir,
964 							  p->buf, p->buf_len);
965 				if (IS_ERR(start)) {
966 					ret = PTR_ERR(start);
967 					goto out;
968 				}
969 				BUG_ON(start < p->buf);
970 			}
971 			p->start = start;
972 		} else {
973 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
974 							     name_len);
975 			if (ret < 0)
976 				goto out;
977 		}
978 
979 		cur += elem_size + name_len;
980 		ret = iterate(num, dir, index, p, ctx);
981 		if (ret)
982 			goto out;
983 		num++;
984 	}
985 
986 out:
987 	btrfs_free_path(tmp_path);
988 	fs_path_free(p);
989 	return ret;
990 }
991 
992 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
993 				  const char *name, int name_len,
994 				  const char *data, int data_len,
995 				  u8 type, void *ctx);
996 
997 /*
998  * Helper function to iterate the entries in ONE btrfs_dir_item.
999  * The iterate callback may return a non zero value to stop iteration. This can
1000  * be a negative value for error codes or 1 to simply stop it.
1001  *
1002  * path must point to the dir item when called.
1003  */
1004 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1005 			    struct btrfs_key *found_key,
1006 			    iterate_dir_item_t iterate, void *ctx)
1007 {
1008 	int ret = 0;
1009 	struct extent_buffer *eb;
1010 	struct btrfs_item *item;
1011 	struct btrfs_dir_item *di;
1012 	struct btrfs_key di_key;
1013 	char *buf = NULL;
1014 	int buf_len;
1015 	u32 name_len;
1016 	u32 data_len;
1017 	u32 cur;
1018 	u32 len;
1019 	u32 total;
1020 	int slot;
1021 	int num;
1022 	u8 type;
1023 
1024 	/*
1025 	 * Start with a small buffer (1 page). If later we end up needing more
1026 	 * space, which can happen for xattrs on a fs with a leaf size greater
1027 	 * then the page size, attempt to increase the buffer. Typically xattr
1028 	 * values are small.
1029 	 */
1030 	buf_len = PATH_MAX;
1031 	buf = kmalloc(buf_len, GFP_KERNEL);
1032 	if (!buf) {
1033 		ret = -ENOMEM;
1034 		goto out;
1035 	}
1036 
1037 	eb = path->nodes[0];
1038 	slot = path->slots[0];
1039 	item = btrfs_item_nr(slot);
1040 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1041 	cur = 0;
1042 	len = 0;
1043 	total = btrfs_item_size(eb, item);
1044 
1045 	num = 0;
1046 	while (cur < total) {
1047 		name_len = btrfs_dir_name_len(eb, di);
1048 		data_len = btrfs_dir_data_len(eb, di);
1049 		type = btrfs_dir_type(eb, di);
1050 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1051 
1052 		if (type == BTRFS_FT_XATTR) {
1053 			if (name_len > XATTR_NAME_MAX) {
1054 				ret = -ENAMETOOLONG;
1055 				goto out;
1056 			}
1057 			if (name_len + data_len >
1058 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1059 				ret = -E2BIG;
1060 				goto out;
1061 			}
1062 		} else {
1063 			/*
1064 			 * Path too long
1065 			 */
1066 			if (name_len + data_len > PATH_MAX) {
1067 				ret = -ENAMETOOLONG;
1068 				goto out;
1069 			}
1070 		}
1071 
1072 		ret = btrfs_is_name_len_valid(eb, path->slots[0],
1073 			  (unsigned long)(di + 1), name_len + data_len);
1074 		if (!ret) {
1075 			ret = -EIO;
1076 			goto out;
1077 		}
1078 		if (name_len + data_len > buf_len) {
1079 			buf_len = name_len + data_len;
1080 			if (is_vmalloc_addr(buf)) {
1081 				vfree(buf);
1082 				buf = NULL;
1083 			} else {
1084 				char *tmp = krealloc(buf, buf_len,
1085 						GFP_KERNEL | __GFP_NOWARN);
1086 
1087 				if (!tmp)
1088 					kfree(buf);
1089 				buf = tmp;
1090 			}
1091 			if (!buf) {
1092 				buf = kvmalloc(buf_len, GFP_KERNEL);
1093 				if (!buf) {
1094 					ret = -ENOMEM;
1095 					goto out;
1096 				}
1097 			}
1098 		}
1099 
1100 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1101 				name_len + data_len);
1102 
1103 		len = sizeof(*di) + name_len + data_len;
1104 		di = (struct btrfs_dir_item *)((char *)di + len);
1105 		cur += len;
1106 
1107 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1108 				data_len, type, ctx);
1109 		if (ret < 0)
1110 			goto out;
1111 		if (ret) {
1112 			ret = 0;
1113 			goto out;
1114 		}
1115 
1116 		num++;
1117 	}
1118 
1119 out:
1120 	kvfree(buf);
1121 	return ret;
1122 }
1123 
1124 static int __copy_first_ref(int num, u64 dir, int index,
1125 			    struct fs_path *p, void *ctx)
1126 {
1127 	int ret;
1128 	struct fs_path *pt = ctx;
1129 
1130 	ret = fs_path_copy(pt, p);
1131 	if (ret < 0)
1132 		return ret;
1133 
1134 	/* we want the first only */
1135 	return 1;
1136 }
1137 
1138 /*
1139  * Retrieve the first path of an inode. If an inode has more then one
1140  * ref/hardlink, this is ignored.
1141  */
1142 static int get_inode_path(struct btrfs_root *root,
1143 			  u64 ino, struct fs_path *path)
1144 {
1145 	int ret;
1146 	struct btrfs_key key, found_key;
1147 	struct btrfs_path *p;
1148 
1149 	p = alloc_path_for_send();
1150 	if (!p)
1151 		return -ENOMEM;
1152 
1153 	fs_path_reset(path);
1154 
1155 	key.objectid = ino;
1156 	key.type = BTRFS_INODE_REF_KEY;
1157 	key.offset = 0;
1158 
1159 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1160 	if (ret < 0)
1161 		goto out;
1162 	if (ret) {
1163 		ret = 1;
1164 		goto out;
1165 	}
1166 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1167 	if (found_key.objectid != ino ||
1168 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1169 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1170 		ret = -ENOENT;
1171 		goto out;
1172 	}
1173 
1174 	ret = iterate_inode_ref(root, p, &found_key, 1,
1175 				__copy_first_ref, path);
1176 	if (ret < 0)
1177 		goto out;
1178 	ret = 0;
1179 
1180 out:
1181 	btrfs_free_path(p);
1182 	return ret;
1183 }
1184 
1185 struct backref_ctx {
1186 	struct send_ctx *sctx;
1187 
1188 	struct btrfs_path *path;
1189 	/* number of total found references */
1190 	u64 found;
1191 
1192 	/*
1193 	 * used for clones found in send_root. clones found behind cur_objectid
1194 	 * and cur_offset are not considered as allowed clones.
1195 	 */
1196 	u64 cur_objectid;
1197 	u64 cur_offset;
1198 
1199 	/* may be truncated in case it's the last extent in a file */
1200 	u64 extent_len;
1201 
1202 	/* data offset in the file extent item */
1203 	u64 data_offset;
1204 
1205 	/* Just to check for bugs in backref resolving */
1206 	int found_itself;
1207 };
1208 
1209 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1210 {
1211 	u64 root = (u64)(uintptr_t)key;
1212 	struct clone_root *cr = (struct clone_root *)elt;
1213 
1214 	if (root < cr->root->objectid)
1215 		return -1;
1216 	if (root > cr->root->objectid)
1217 		return 1;
1218 	return 0;
1219 }
1220 
1221 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1222 {
1223 	struct clone_root *cr1 = (struct clone_root *)e1;
1224 	struct clone_root *cr2 = (struct clone_root *)e2;
1225 
1226 	if (cr1->root->objectid < cr2->root->objectid)
1227 		return -1;
1228 	if (cr1->root->objectid > cr2->root->objectid)
1229 		return 1;
1230 	return 0;
1231 }
1232 
1233 /*
1234  * Called for every backref that is found for the current extent.
1235  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1236  */
1237 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1238 {
1239 	struct backref_ctx *bctx = ctx_;
1240 	struct clone_root *found;
1241 	int ret;
1242 	u64 i_size;
1243 
1244 	/* First check if the root is in the list of accepted clone sources */
1245 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1246 			bctx->sctx->clone_roots_cnt,
1247 			sizeof(struct clone_root),
1248 			__clone_root_cmp_bsearch);
1249 	if (!found)
1250 		return 0;
1251 
1252 	if (found->root == bctx->sctx->send_root &&
1253 	    ino == bctx->cur_objectid &&
1254 	    offset == bctx->cur_offset) {
1255 		bctx->found_itself = 1;
1256 	}
1257 
1258 	/*
1259 	 * There are inodes that have extents that lie behind its i_size. Don't
1260 	 * accept clones from these extents.
1261 	 */
1262 	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1263 			       NULL, NULL, NULL);
1264 	btrfs_release_path(bctx->path);
1265 	if (ret < 0)
1266 		return ret;
1267 
1268 	if (offset + bctx->data_offset + bctx->extent_len > i_size)
1269 		return 0;
1270 
1271 	/*
1272 	 * Make sure we don't consider clones from send_root that are
1273 	 * behind the current inode/offset.
1274 	 */
1275 	if (found->root == bctx->sctx->send_root) {
1276 		/*
1277 		 * TODO for the moment we don't accept clones from the inode
1278 		 * that is currently send. We may change this when
1279 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1280 		 * file.
1281 		 */
1282 		if (ino >= bctx->cur_objectid)
1283 			return 0;
1284 #if 0
1285 		if (ino > bctx->cur_objectid)
1286 			return 0;
1287 		if (offset + bctx->extent_len > bctx->cur_offset)
1288 			return 0;
1289 #endif
1290 	}
1291 
1292 	bctx->found++;
1293 	found->found_refs++;
1294 	if (ino < found->ino) {
1295 		found->ino = ino;
1296 		found->offset = offset;
1297 	} else if (found->ino == ino) {
1298 		/*
1299 		 * same extent found more then once in the same file.
1300 		 */
1301 		if (found->offset > offset + bctx->extent_len)
1302 			found->offset = offset;
1303 	}
1304 
1305 	return 0;
1306 }
1307 
1308 /*
1309  * Given an inode, offset and extent item, it finds a good clone for a clone
1310  * instruction. Returns -ENOENT when none could be found. The function makes
1311  * sure that the returned clone is usable at the point where sending is at the
1312  * moment. This means, that no clones are accepted which lie behind the current
1313  * inode+offset.
1314  *
1315  * path must point to the extent item when called.
1316  */
1317 static int find_extent_clone(struct send_ctx *sctx,
1318 			     struct btrfs_path *path,
1319 			     u64 ino, u64 data_offset,
1320 			     u64 ino_size,
1321 			     struct clone_root **found)
1322 {
1323 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1324 	int ret;
1325 	int extent_type;
1326 	u64 logical;
1327 	u64 disk_byte;
1328 	u64 num_bytes;
1329 	u64 extent_item_pos;
1330 	u64 flags = 0;
1331 	struct btrfs_file_extent_item *fi;
1332 	struct extent_buffer *eb = path->nodes[0];
1333 	struct backref_ctx *backref_ctx = NULL;
1334 	struct clone_root *cur_clone_root;
1335 	struct btrfs_key found_key;
1336 	struct btrfs_path *tmp_path;
1337 	int compressed;
1338 	u32 i;
1339 
1340 	tmp_path = alloc_path_for_send();
1341 	if (!tmp_path)
1342 		return -ENOMEM;
1343 
1344 	/* We only use this path under the commit sem */
1345 	tmp_path->need_commit_sem = 0;
1346 
1347 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1348 	if (!backref_ctx) {
1349 		ret = -ENOMEM;
1350 		goto out;
1351 	}
1352 
1353 	backref_ctx->path = tmp_path;
1354 
1355 	if (data_offset >= ino_size) {
1356 		/*
1357 		 * There may be extents that lie behind the file's size.
1358 		 * I at least had this in combination with snapshotting while
1359 		 * writing large files.
1360 		 */
1361 		ret = 0;
1362 		goto out;
1363 	}
1364 
1365 	fi = btrfs_item_ptr(eb, path->slots[0],
1366 			struct btrfs_file_extent_item);
1367 	extent_type = btrfs_file_extent_type(eb, fi);
1368 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1369 		ret = -ENOENT;
1370 		goto out;
1371 	}
1372 	compressed = btrfs_file_extent_compression(eb, fi);
1373 
1374 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1375 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1376 	if (disk_byte == 0) {
1377 		ret = -ENOENT;
1378 		goto out;
1379 	}
1380 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1381 
1382 	down_read(&fs_info->commit_root_sem);
1383 	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1384 				  &found_key, &flags);
1385 	up_read(&fs_info->commit_root_sem);
1386 	btrfs_release_path(tmp_path);
1387 
1388 	if (ret < 0)
1389 		goto out;
1390 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1391 		ret = -EIO;
1392 		goto out;
1393 	}
1394 
1395 	/*
1396 	 * Setup the clone roots.
1397 	 */
1398 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1399 		cur_clone_root = sctx->clone_roots + i;
1400 		cur_clone_root->ino = (u64)-1;
1401 		cur_clone_root->offset = 0;
1402 		cur_clone_root->found_refs = 0;
1403 	}
1404 
1405 	backref_ctx->sctx = sctx;
1406 	backref_ctx->found = 0;
1407 	backref_ctx->cur_objectid = ino;
1408 	backref_ctx->cur_offset = data_offset;
1409 	backref_ctx->found_itself = 0;
1410 	backref_ctx->extent_len = num_bytes;
1411 	/*
1412 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1413 	 * offsets that already take into account the data offset, but not for
1414 	 * compressed extents, since the offset is logical and not relative to
1415 	 * the physical extent locations. We must take this into account to
1416 	 * avoid sending clone offsets that go beyond the source file's size,
1417 	 * which would result in the clone ioctl failing with -EINVAL on the
1418 	 * receiving end.
1419 	 */
1420 	if (compressed == BTRFS_COMPRESS_NONE)
1421 		backref_ctx->data_offset = 0;
1422 	else
1423 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1424 
1425 	/*
1426 	 * The last extent of a file may be too large due to page alignment.
1427 	 * We need to adjust extent_len in this case so that the checks in
1428 	 * __iterate_backrefs work.
1429 	 */
1430 	if (data_offset + num_bytes >= ino_size)
1431 		backref_ctx->extent_len = ino_size - data_offset;
1432 
1433 	/*
1434 	 * Now collect all backrefs.
1435 	 */
1436 	if (compressed == BTRFS_COMPRESS_NONE)
1437 		extent_item_pos = logical - found_key.objectid;
1438 	else
1439 		extent_item_pos = 0;
1440 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1441 				    extent_item_pos, 1, __iterate_backrefs,
1442 				    backref_ctx);
1443 
1444 	if (ret < 0)
1445 		goto out;
1446 
1447 	if (!backref_ctx->found_itself) {
1448 		/* found a bug in backref code? */
1449 		ret = -EIO;
1450 		btrfs_err(fs_info,
1451 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1452 			  ino, data_offset, disk_byte, found_key.objectid);
1453 		goto out;
1454 	}
1455 
1456 	btrfs_debug(fs_info,
1457 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1458 		    data_offset, ino, num_bytes, logical);
1459 
1460 	if (!backref_ctx->found)
1461 		btrfs_debug(fs_info, "no clones found");
1462 
1463 	cur_clone_root = NULL;
1464 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1465 		if (sctx->clone_roots[i].found_refs) {
1466 			if (!cur_clone_root)
1467 				cur_clone_root = sctx->clone_roots + i;
1468 			else if (sctx->clone_roots[i].root == sctx->send_root)
1469 				/* prefer clones from send_root over others */
1470 				cur_clone_root = sctx->clone_roots + i;
1471 		}
1472 
1473 	}
1474 
1475 	if (cur_clone_root) {
1476 		*found = cur_clone_root;
1477 		ret = 0;
1478 	} else {
1479 		ret = -ENOENT;
1480 	}
1481 
1482 out:
1483 	btrfs_free_path(tmp_path);
1484 	kfree(backref_ctx);
1485 	return ret;
1486 }
1487 
1488 static int read_symlink(struct btrfs_root *root,
1489 			u64 ino,
1490 			struct fs_path *dest)
1491 {
1492 	int ret;
1493 	struct btrfs_path *path;
1494 	struct btrfs_key key;
1495 	struct btrfs_file_extent_item *ei;
1496 	u8 type;
1497 	u8 compression;
1498 	unsigned long off;
1499 	int len;
1500 
1501 	path = alloc_path_for_send();
1502 	if (!path)
1503 		return -ENOMEM;
1504 
1505 	key.objectid = ino;
1506 	key.type = BTRFS_EXTENT_DATA_KEY;
1507 	key.offset = 0;
1508 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1509 	if (ret < 0)
1510 		goto out;
1511 	if (ret) {
1512 		/*
1513 		 * An empty symlink inode. Can happen in rare error paths when
1514 		 * creating a symlink (transaction committed before the inode
1515 		 * eviction handler removed the symlink inode items and a crash
1516 		 * happened in between or the subvol was snapshoted in between).
1517 		 * Print an informative message to dmesg/syslog so that the user
1518 		 * can delete the symlink.
1519 		 */
1520 		btrfs_err(root->fs_info,
1521 			  "Found empty symlink inode %llu at root %llu",
1522 			  ino, root->root_key.objectid);
1523 		ret = -EIO;
1524 		goto out;
1525 	}
1526 
1527 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1528 			struct btrfs_file_extent_item);
1529 	type = btrfs_file_extent_type(path->nodes[0], ei);
1530 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1531 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1532 	BUG_ON(compression);
1533 
1534 	off = btrfs_file_extent_inline_start(ei);
1535 	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1536 
1537 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1538 
1539 out:
1540 	btrfs_free_path(path);
1541 	return ret;
1542 }
1543 
1544 /*
1545  * Helper function to generate a file name that is unique in the root of
1546  * send_root and parent_root. This is used to generate names for orphan inodes.
1547  */
1548 static int gen_unique_name(struct send_ctx *sctx,
1549 			   u64 ino, u64 gen,
1550 			   struct fs_path *dest)
1551 {
1552 	int ret = 0;
1553 	struct btrfs_path *path;
1554 	struct btrfs_dir_item *di;
1555 	char tmp[64];
1556 	int len;
1557 	u64 idx = 0;
1558 
1559 	path = alloc_path_for_send();
1560 	if (!path)
1561 		return -ENOMEM;
1562 
1563 	while (1) {
1564 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1565 				ino, gen, idx);
1566 		ASSERT(len < sizeof(tmp));
1567 
1568 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1569 				path, BTRFS_FIRST_FREE_OBJECTID,
1570 				tmp, strlen(tmp), 0);
1571 		btrfs_release_path(path);
1572 		if (IS_ERR(di)) {
1573 			ret = PTR_ERR(di);
1574 			goto out;
1575 		}
1576 		if (di) {
1577 			/* not unique, try again */
1578 			idx++;
1579 			continue;
1580 		}
1581 
1582 		if (!sctx->parent_root) {
1583 			/* unique */
1584 			ret = 0;
1585 			break;
1586 		}
1587 
1588 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1589 				path, BTRFS_FIRST_FREE_OBJECTID,
1590 				tmp, strlen(tmp), 0);
1591 		btrfs_release_path(path);
1592 		if (IS_ERR(di)) {
1593 			ret = PTR_ERR(di);
1594 			goto out;
1595 		}
1596 		if (di) {
1597 			/* not unique, try again */
1598 			idx++;
1599 			continue;
1600 		}
1601 		/* unique */
1602 		break;
1603 	}
1604 
1605 	ret = fs_path_add(dest, tmp, strlen(tmp));
1606 
1607 out:
1608 	btrfs_free_path(path);
1609 	return ret;
1610 }
1611 
1612 enum inode_state {
1613 	inode_state_no_change,
1614 	inode_state_will_create,
1615 	inode_state_did_create,
1616 	inode_state_will_delete,
1617 	inode_state_did_delete,
1618 };
1619 
1620 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1621 {
1622 	int ret;
1623 	int left_ret;
1624 	int right_ret;
1625 	u64 left_gen;
1626 	u64 right_gen;
1627 
1628 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1629 			NULL, NULL);
1630 	if (ret < 0 && ret != -ENOENT)
1631 		goto out;
1632 	left_ret = ret;
1633 
1634 	if (!sctx->parent_root) {
1635 		right_ret = -ENOENT;
1636 	} else {
1637 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1638 				NULL, NULL, NULL, NULL);
1639 		if (ret < 0 && ret != -ENOENT)
1640 			goto out;
1641 		right_ret = ret;
1642 	}
1643 
1644 	if (!left_ret && !right_ret) {
1645 		if (left_gen == gen && right_gen == gen) {
1646 			ret = inode_state_no_change;
1647 		} else if (left_gen == gen) {
1648 			if (ino < sctx->send_progress)
1649 				ret = inode_state_did_create;
1650 			else
1651 				ret = inode_state_will_create;
1652 		} else if (right_gen == gen) {
1653 			if (ino < sctx->send_progress)
1654 				ret = inode_state_did_delete;
1655 			else
1656 				ret = inode_state_will_delete;
1657 		} else  {
1658 			ret = -ENOENT;
1659 		}
1660 	} else if (!left_ret) {
1661 		if (left_gen == gen) {
1662 			if (ino < sctx->send_progress)
1663 				ret = inode_state_did_create;
1664 			else
1665 				ret = inode_state_will_create;
1666 		} else {
1667 			ret = -ENOENT;
1668 		}
1669 	} else if (!right_ret) {
1670 		if (right_gen == gen) {
1671 			if (ino < sctx->send_progress)
1672 				ret = inode_state_did_delete;
1673 			else
1674 				ret = inode_state_will_delete;
1675 		} else {
1676 			ret = -ENOENT;
1677 		}
1678 	} else {
1679 		ret = -ENOENT;
1680 	}
1681 
1682 out:
1683 	return ret;
1684 }
1685 
1686 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1687 {
1688 	int ret;
1689 
1690 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1691 		return 1;
1692 
1693 	ret = get_cur_inode_state(sctx, ino, gen);
1694 	if (ret < 0)
1695 		goto out;
1696 
1697 	if (ret == inode_state_no_change ||
1698 	    ret == inode_state_did_create ||
1699 	    ret == inode_state_will_delete)
1700 		ret = 1;
1701 	else
1702 		ret = 0;
1703 
1704 out:
1705 	return ret;
1706 }
1707 
1708 /*
1709  * Helper function to lookup a dir item in a dir.
1710  */
1711 static int lookup_dir_item_inode(struct btrfs_root *root,
1712 				 u64 dir, const char *name, int name_len,
1713 				 u64 *found_inode,
1714 				 u8 *found_type)
1715 {
1716 	int ret = 0;
1717 	struct btrfs_dir_item *di;
1718 	struct btrfs_key key;
1719 	struct btrfs_path *path;
1720 
1721 	path = alloc_path_for_send();
1722 	if (!path)
1723 		return -ENOMEM;
1724 
1725 	di = btrfs_lookup_dir_item(NULL, root, path,
1726 			dir, name, name_len, 0);
1727 	if (!di) {
1728 		ret = -ENOENT;
1729 		goto out;
1730 	}
1731 	if (IS_ERR(di)) {
1732 		ret = PTR_ERR(di);
1733 		goto out;
1734 	}
1735 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1736 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1737 		ret = -ENOENT;
1738 		goto out;
1739 	}
1740 	*found_inode = key.objectid;
1741 	*found_type = btrfs_dir_type(path->nodes[0], di);
1742 
1743 out:
1744 	btrfs_free_path(path);
1745 	return ret;
1746 }
1747 
1748 /*
1749  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1750  * generation of the parent dir and the name of the dir entry.
1751  */
1752 static int get_first_ref(struct btrfs_root *root, u64 ino,
1753 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1754 {
1755 	int ret;
1756 	struct btrfs_key key;
1757 	struct btrfs_key found_key;
1758 	struct btrfs_path *path;
1759 	int len;
1760 	u64 parent_dir;
1761 
1762 	path = alloc_path_for_send();
1763 	if (!path)
1764 		return -ENOMEM;
1765 
1766 	key.objectid = ino;
1767 	key.type = BTRFS_INODE_REF_KEY;
1768 	key.offset = 0;
1769 
1770 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1771 	if (ret < 0)
1772 		goto out;
1773 	if (!ret)
1774 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1775 				path->slots[0]);
1776 	if (ret || found_key.objectid != ino ||
1777 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1778 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1779 		ret = -ENOENT;
1780 		goto out;
1781 	}
1782 
1783 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1784 		struct btrfs_inode_ref *iref;
1785 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1786 				      struct btrfs_inode_ref);
1787 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1788 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1789 						     (unsigned long)(iref + 1),
1790 						     len);
1791 		parent_dir = found_key.offset;
1792 	} else {
1793 		struct btrfs_inode_extref *extref;
1794 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1795 					struct btrfs_inode_extref);
1796 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1797 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1798 					(unsigned long)&extref->name, len);
1799 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1800 	}
1801 	if (ret < 0)
1802 		goto out;
1803 	btrfs_release_path(path);
1804 
1805 	if (dir_gen) {
1806 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1807 				     NULL, NULL, NULL);
1808 		if (ret < 0)
1809 			goto out;
1810 	}
1811 
1812 	*dir = parent_dir;
1813 
1814 out:
1815 	btrfs_free_path(path);
1816 	return ret;
1817 }
1818 
1819 static int is_first_ref(struct btrfs_root *root,
1820 			u64 ino, u64 dir,
1821 			const char *name, int name_len)
1822 {
1823 	int ret;
1824 	struct fs_path *tmp_name;
1825 	u64 tmp_dir;
1826 
1827 	tmp_name = fs_path_alloc();
1828 	if (!tmp_name)
1829 		return -ENOMEM;
1830 
1831 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1832 	if (ret < 0)
1833 		goto out;
1834 
1835 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1836 		ret = 0;
1837 		goto out;
1838 	}
1839 
1840 	ret = !memcmp(tmp_name->start, name, name_len);
1841 
1842 out:
1843 	fs_path_free(tmp_name);
1844 	return ret;
1845 }
1846 
1847 /*
1848  * Used by process_recorded_refs to determine if a new ref would overwrite an
1849  * already existing ref. In case it detects an overwrite, it returns the
1850  * inode/gen in who_ino/who_gen.
1851  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1852  * to make sure later references to the overwritten inode are possible.
1853  * Orphanizing is however only required for the first ref of an inode.
1854  * process_recorded_refs does an additional is_first_ref check to see if
1855  * orphanizing is really required.
1856  */
1857 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1858 			      const char *name, int name_len,
1859 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1860 {
1861 	int ret = 0;
1862 	u64 gen;
1863 	u64 other_inode = 0;
1864 	u8 other_type = 0;
1865 
1866 	if (!sctx->parent_root)
1867 		goto out;
1868 
1869 	ret = is_inode_existent(sctx, dir, dir_gen);
1870 	if (ret <= 0)
1871 		goto out;
1872 
1873 	/*
1874 	 * If we have a parent root we need to verify that the parent dir was
1875 	 * not deleted and then re-created, if it was then we have no overwrite
1876 	 * and we can just unlink this entry.
1877 	 */
1878 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1879 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1880 				     NULL, NULL, NULL);
1881 		if (ret < 0 && ret != -ENOENT)
1882 			goto out;
1883 		if (ret) {
1884 			ret = 0;
1885 			goto out;
1886 		}
1887 		if (gen != dir_gen)
1888 			goto out;
1889 	}
1890 
1891 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1892 			&other_inode, &other_type);
1893 	if (ret < 0 && ret != -ENOENT)
1894 		goto out;
1895 	if (ret) {
1896 		ret = 0;
1897 		goto out;
1898 	}
1899 
1900 	/*
1901 	 * Check if the overwritten ref was already processed. If yes, the ref
1902 	 * was already unlinked/moved, so we can safely assume that we will not
1903 	 * overwrite anything at this point in time.
1904 	 */
1905 	if (other_inode > sctx->send_progress ||
1906 	    is_waiting_for_move(sctx, other_inode)) {
1907 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1908 				who_gen, who_mode, NULL, NULL, NULL);
1909 		if (ret < 0)
1910 			goto out;
1911 
1912 		ret = 1;
1913 		*who_ino = other_inode;
1914 	} else {
1915 		ret = 0;
1916 	}
1917 
1918 out:
1919 	return ret;
1920 }
1921 
1922 /*
1923  * Checks if the ref was overwritten by an already processed inode. This is
1924  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1925  * thus the orphan name needs be used.
1926  * process_recorded_refs also uses it to avoid unlinking of refs that were
1927  * overwritten.
1928  */
1929 static int did_overwrite_ref(struct send_ctx *sctx,
1930 			    u64 dir, u64 dir_gen,
1931 			    u64 ino, u64 ino_gen,
1932 			    const char *name, int name_len)
1933 {
1934 	int ret = 0;
1935 	u64 gen;
1936 	u64 ow_inode;
1937 	u8 other_type;
1938 
1939 	if (!sctx->parent_root)
1940 		goto out;
1941 
1942 	ret = is_inode_existent(sctx, dir, dir_gen);
1943 	if (ret <= 0)
1944 		goto out;
1945 
1946 	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1947 		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1948 				     NULL, NULL, NULL);
1949 		if (ret < 0 && ret != -ENOENT)
1950 			goto out;
1951 		if (ret) {
1952 			ret = 0;
1953 			goto out;
1954 		}
1955 		if (gen != dir_gen)
1956 			goto out;
1957 	}
1958 
1959 	/* check if the ref was overwritten by another ref */
1960 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1961 			&ow_inode, &other_type);
1962 	if (ret < 0 && ret != -ENOENT)
1963 		goto out;
1964 	if (ret) {
1965 		/* was never and will never be overwritten */
1966 		ret = 0;
1967 		goto out;
1968 	}
1969 
1970 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1971 			NULL, NULL);
1972 	if (ret < 0)
1973 		goto out;
1974 
1975 	if (ow_inode == ino && gen == ino_gen) {
1976 		ret = 0;
1977 		goto out;
1978 	}
1979 
1980 	/*
1981 	 * We know that it is or will be overwritten. Check this now.
1982 	 * The current inode being processed might have been the one that caused
1983 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1984 	 * the current inode being processed.
1985 	 */
1986 	if ((ow_inode < sctx->send_progress) ||
1987 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1988 	     gen == sctx->cur_inode_gen))
1989 		ret = 1;
1990 	else
1991 		ret = 0;
1992 
1993 out:
1994 	return ret;
1995 }
1996 
1997 /*
1998  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1999  * that got overwritten. This is used by process_recorded_refs to determine
2000  * if it has to use the path as returned by get_cur_path or the orphan name.
2001  */
2002 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2003 {
2004 	int ret = 0;
2005 	struct fs_path *name = NULL;
2006 	u64 dir;
2007 	u64 dir_gen;
2008 
2009 	if (!sctx->parent_root)
2010 		goto out;
2011 
2012 	name = fs_path_alloc();
2013 	if (!name)
2014 		return -ENOMEM;
2015 
2016 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2017 	if (ret < 0)
2018 		goto out;
2019 
2020 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2021 			name->start, fs_path_len(name));
2022 
2023 out:
2024 	fs_path_free(name);
2025 	return ret;
2026 }
2027 
2028 /*
2029  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2030  * so we need to do some special handling in case we have clashes. This function
2031  * takes care of this with the help of name_cache_entry::radix_list.
2032  * In case of error, nce is kfreed.
2033  */
2034 static int name_cache_insert(struct send_ctx *sctx,
2035 			     struct name_cache_entry *nce)
2036 {
2037 	int ret = 0;
2038 	struct list_head *nce_head;
2039 
2040 	nce_head = radix_tree_lookup(&sctx->name_cache,
2041 			(unsigned long)nce->ino);
2042 	if (!nce_head) {
2043 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2044 		if (!nce_head) {
2045 			kfree(nce);
2046 			return -ENOMEM;
2047 		}
2048 		INIT_LIST_HEAD(nce_head);
2049 
2050 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2051 		if (ret < 0) {
2052 			kfree(nce_head);
2053 			kfree(nce);
2054 			return ret;
2055 		}
2056 	}
2057 	list_add_tail(&nce->radix_list, nce_head);
2058 	list_add_tail(&nce->list, &sctx->name_cache_list);
2059 	sctx->name_cache_size++;
2060 
2061 	return ret;
2062 }
2063 
2064 static void name_cache_delete(struct send_ctx *sctx,
2065 			      struct name_cache_entry *nce)
2066 {
2067 	struct list_head *nce_head;
2068 
2069 	nce_head = radix_tree_lookup(&sctx->name_cache,
2070 			(unsigned long)nce->ino);
2071 	if (!nce_head) {
2072 		btrfs_err(sctx->send_root->fs_info,
2073 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2074 			nce->ino, sctx->name_cache_size);
2075 	}
2076 
2077 	list_del(&nce->radix_list);
2078 	list_del(&nce->list);
2079 	sctx->name_cache_size--;
2080 
2081 	/*
2082 	 * We may not get to the final release of nce_head if the lookup fails
2083 	 */
2084 	if (nce_head && list_empty(nce_head)) {
2085 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2086 		kfree(nce_head);
2087 	}
2088 }
2089 
2090 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2091 						    u64 ino, u64 gen)
2092 {
2093 	struct list_head *nce_head;
2094 	struct name_cache_entry *cur;
2095 
2096 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2097 	if (!nce_head)
2098 		return NULL;
2099 
2100 	list_for_each_entry(cur, nce_head, radix_list) {
2101 		if (cur->ino == ino && cur->gen == gen)
2102 			return cur;
2103 	}
2104 	return NULL;
2105 }
2106 
2107 /*
2108  * Removes the entry from the list and adds it back to the end. This marks the
2109  * entry as recently used so that name_cache_clean_unused does not remove it.
2110  */
2111 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2112 {
2113 	list_del(&nce->list);
2114 	list_add_tail(&nce->list, &sctx->name_cache_list);
2115 }
2116 
2117 /*
2118  * Remove some entries from the beginning of name_cache_list.
2119  */
2120 static void name_cache_clean_unused(struct send_ctx *sctx)
2121 {
2122 	struct name_cache_entry *nce;
2123 
2124 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2125 		return;
2126 
2127 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2128 		nce = list_entry(sctx->name_cache_list.next,
2129 				struct name_cache_entry, list);
2130 		name_cache_delete(sctx, nce);
2131 		kfree(nce);
2132 	}
2133 }
2134 
2135 static void name_cache_free(struct send_ctx *sctx)
2136 {
2137 	struct name_cache_entry *nce;
2138 
2139 	while (!list_empty(&sctx->name_cache_list)) {
2140 		nce = list_entry(sctx->name_cache_list.next,
2141 				struct name_cache_entry, list);
2142 		name_cache_delete(sctx, nce);
2143 		kfree(nce);
2144 	}
2145 }
2146 
2147 /*
2148  * Used by get_cur_path for each ref up to the root.
2149  * Returns 0 if it succeeded.
2150  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2151  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2152  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2153  * Returns <0 in case of error.
2154  */
2155 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2156 				     u64 ino, u64 gen,
2157 				     u64 *parent_ino,
2158 				     u64 *parent_gen,
2159 				     struct fs_path *dest)
2160 {
2161 	int ret;
2162 	int nce_ret;
2163 	struct name_cache_entry *nce = NULL;
2164 
2165 	/*
2166 	 * First check if we already did a call to this function with the same
2167 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2168 	 * return the cached result.
2169 	 */
2170 	nce = name_cache_search(sctx, ino, gen);
2171 	if (nce) {
2172 		if (ino < sctx->send_progress && nce->need_later_update) {
2173 			name_cache_delete(sctx, nce);
2174 			kfree(nce);
2175 			nce = NULL;
2176 		} else {
2177 			name_cache_used(sctx, nce);
2178 			*parent_ino = nce->parent_ino;
2179 			*parent_gen = nce->parent_gen;
2180 			ret = fs_path_add(dest, nce->name, nce->name_len);
2181 			if (ret < 0)
2182 				goto out;
2183 			ret = nce->ret;
2184 			goto out;
2185 		}
2186 	}
2187 
2188 	/*
2189 	 * If the inode is not existent yet, add the orphan name and return 1.
2190 	 * This should only happen for the parent dir that we determine in
2191 	 * __record_new_ref
2192 	 */
2193 	ret = is_inode_existent(sctx, ino, gen);
2194 	if (ret < 0)
2195 		goto out;
2196 
2197 	if (!ret) {
2198 		ret = gen_unique_name(sctx, ino, gen, dest);
2199 		if (ret < 0)
2200 			goto out;
2201 		ret = 1;
2202 		goto out_cache;
2203 	}
2204 
2205 	/*
2206 	 * Depending on whether the inode was already processed or not, use
2207 	 * send_root or parent_root for ref lookup.
2208 	 */
2209 	if (ino < sctx->send_progress)
2210 		ret = get_first_ref(sctx->send_root, ino,
2211 				    parent_ino, parent_gen, dest);
2212 	else
2213 		ret = get_first_ref(sctx->parent_root, ino,
2214 				    parent_ino, parent_gen, dest);
2215 	if (ret < 0)
2216 		goto out;
2217 
2218 	/*
2219 	 * Check if the ref was overwritten by an inode's ref that was processed
2220 	 * earlier. If yes, treat as orphan and return 1.
2221 	 */
2222 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2223 			dest->start, dest->end - dest->start);
2224 	if (ret < 0)
2225 		goto out;
2226 	if (ret) {
2227 		fs_path_reset(dest);
2228 		ret = gen_unique_name(sctx, ino, gen, dest);
2229 		if (ret < 0)
2230 			goto out;
2231 		ret = 1;
2232 	}
2233 
2234 out_cache:
2235 	/*
2236 	 * Store the result of the lookup in the name cache.
2237 	 */
2238 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2239 	if (!nce) {
2240 		ret = -ENOMEM;
2241 		goto out;
2242 	}
2243 
2244 	nce->ino = ino;
2245 	nce->gen = gen;
2246 	nce->parent_ino = *parent_ino;
2247 	nce->parent_gen = *parent_gen;
2248 	nce->name_len = fs_path_len(dest);
2249 	nce->ret = ret;
2250 	strcpy(nce->name, dest->start);
2251 
2252 	if (ino < sctx->send_progress)
2253 		nce->need_later_update = 0;
2254 	else
2255 		nce->need_later_update = 1;
2256 
2257 	nce_ret = name_cache_insert(sctx, nce);
2258 	if (nce_ret < 0)
2259 		ret = nce_ret;
2260 	name_cache_clean_unused(sctx);
2261 
2262 out:
2263 	return ret;
2264 }
2265 
2266 /*
2267  * Magic happens here. This function returns the first ref to an inode as it
2268  * would look like while receiving the stream at this point in time.
2269  * We walk the path up to the root. For every inode in between, we check if it
2270  * was already processed/sent. If yes, we continue with the parent as found
2271  * in send_root. If not, we continue with the parent as found in parent_root.
2272  * If we encounter an inode that was deleted at this point in time, we use the
2273  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2274  * that were not created yet and overwritten inodes/refs.
2275  *
2276  * When do we have have orphan inodes:
2277  * 1. When an inode is freshly created and thus no valid refs are available yet
2278  * 2. When a directory lost all it's refs (deleted) but still has dir items
2279  *    inside which were not processed yet (pending for move/delete). If anyone
2280  *    tried to get the path to the dir items, it would get a path inside that
2281  *    orphan directory.
2282  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2283  *    of an unprocessed inode. If in that case the first ref would be
2284  *    overwritten, the overwritten inode gets "orphanized". Later when we
2285  *    process this overwritten inode, it is restored at a new place by moving
2286  *    the orphan inode.
2287  *
2288  * sctx->send_progress tells this function at which point in time receiving
2289  * would be.
2290  */
2291 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2292 			struct fs_path *dest)
2293 {
2294 	int ret = 0;
2295 	struct fs_path *name = NULL;
2296 	u64 parent_inode = 0;
2297 	u64 parent_gen = 0;
2298 	int stop = 0;
2299 
2300 	name = fs_path_alloc();
2301 	if (!name) {
2302 		ret = -ENOMEM;
2303 		goto out;
2304 	}
2305 
2306 	dest->reversed = 1;
2307 	fs_path_reset(dest);
2308 
2309 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2310 		struct waiting_dir_move *wdm;
2311 
2312 		fs_path_reset(name);
2313 
2314 		if (is_waiting_for_rm(sctx, ino)) {
2315 			ret = gen_unique_name(sctx, ino, gen, name);
2316 			if (ret < 0)
2317 				goto out;
2318 			ret = fs_path_add_path(dest, name);
2319 			break;
2320 		}
2321 
2322 		wdm = get_waiting_dir_move(sctx, ino);
2323 		if (wdm && wdm->orphanized) {
2324 			ret = gen_unique_name(sctx, ino, gen, name);
2325 			stop = 1;
2326 		} else if (wdm) {
2327 			ret = get_first_ref(sctx->parent_root, ino,
2328 					    &parent_inode, &parent_gen, name);
2329 		} else {
2330 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2331 							&parent_inode,
2332 							&parent_gen, name);
2333 			if (ret)
2334 				stop = 1;
2335 		}
2336 
2337 		if (ret < 0)
2338 			goto out;
2339 
2340 		ret = fs_path_add_path(dest, name);
2341 		if (ret < 0)
2342 			goto out;
2343 
2344 		ino = parent_inode;
2345 		gen = parent_gen;
2346 	}
2347 
2348 out:
2349 	fs_path_free(name);
2350 	if (!ret)
2351 		fs_path_unreverse(dest);
2352 	return ret;
2353 }
2354 
2355 /*
2356  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2357  */
2358 static int send_subvol_begin(struct send_ctx *sctx)
2359 {
2360 	int ret;
2361 	struct btrfs_root *send_root = sctx->send_root;
2362 	struct btrfs_root *parent_root = sctx->parent_root;
2363 	struct btrfs_path *path;
2364 	struct btrfs_key key;
2365 	struct btrfs_root_ref *ref;
2366 	struct extent_buffer *leaf;
2367 	char *name = NULL;
2368 	int namelen;
2369 
2370 	path = btrfs_alloc_path();
2371 	if (!path)
2372 		return -ENOMEM;
2373 
2374 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2375 	if (!name) {
2376 		btrfs_free_path(path);
2377 		return -ENOMEM;
2378 	}
2379 
2380 	key.objectid = send_root->objectid;
2381 	key.type = BTRFS_ROOT_BACKREF_KEY;
2382 	key.offset = 0;
2383 
2384 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2385 				&key, path, 1, 0);
2386 	if (ret < 0)
2387 		goto out;
2388 	if (ret) {
2389 		ret = -ENOENT;
2390 		goto out;
2391 	}
2392 
2393 	leaf = path->nodes[0];
2394 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2395 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2396 	    key.objectid != send_root->objectid) {
2397 		ret = -ENOENT;
2398 		goto out;
2399 	}
2400 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2401 	namelen = btrfs_root_ref_name_len(leaf, ref);
2402 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2403 	btrfs_release_path(path);
2404 
2405 	if (parent_root) {
2406 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2407 		if (ret < 0)
2408 			goto out;
2409 	} else {
2410 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2411 		if (ret < 0)
2412 			goto out;
2413 	}
2414 
2415 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2416 
2417 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2418 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2419 			    sctx->send_root->root_item.received_uuid);
2420 	else
2421 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2422 			    sctx->send_root->root_item.uuid);
2423 
2424 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2425 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2426 	if (parent_root) {
2427 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2428 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2429 				     parent_root->root_item.received_uuid);
2430 		else
2431 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2432 				     parent_root->root_item.uuid);
2433 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2434 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2435 	}
2436 
2437 	ret = send_cmd(sctx);
2438 
2439 tlv_put_failure:
2440 out:
2441 	btrfs_free_path(path);
2442 	kfree(name);
2443 	return ret;
2444 }
2445 
2446 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2447 {
2448 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2449 	int ret = 0;
2450 	struct fs_path *p;
2451 
2452 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2453 
2454 	p = fs_path_alloc();
2455 	if (!p)
2456 		return -ENOMEM;
2457 
2458 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2459 	if (ret < 0)
2460 		goto out;
2461 
2462 	ret = get_cur_path(sctx, ino, gen, p);
2463 	if (ret < 0)
2464 		goto out;
2465 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2466 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2467 
2468 	ret = send_cmd(sctx);
2469 
2470 tlv_put_failure:
2471 out:
2472 	fs_path_free(p);
2473 	return ret;
2474 }
2475 
2476 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2477 {
2478 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2479 	int ret = 0;
2480 	struct fs_path *p;
2481 
2482 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2483 
2484 	p = fs_path_alloc();
2485 	if (!p)
2486 		return -ENOMEM;
2487 
2488 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2489 	if (ret < 0)
2490 		goto out;
2491 
2492 	ret = get_cur_path(sctx, ino, gen, p);
2493 	if (ret < 0)
2494 		goto out;
2495 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2496 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2497 
2498 	ret = send_cmd(sctx);
2499 
2500 tlv_put_failure:
2501 out:
2502 	fs_path_free(p);
2503 	return ret;
2504 }
2505 
2506 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2507 {
2508 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2509 	int ret = 0;
2510 	struct fs_path *p;
2511 
2512 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2513 		    ino, uid, gid);
2514 
2515 	p = fs_path_alloc();
2516 	if (!p)
2517 		return -ENOMEM;
2518 
2519 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2520 	if (ret < 0)
2521 		goto out;
2522 
2523 	ret = get_cur_path(sctx, ino, gen, p);
2524 	if (ret < 0)
2525 		goto out;
2526 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2527 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2528 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2529 
2530 	ret = send_cmd(sctx);
2531 
2532 tlv_put_failure:
2533 out:
2534 	fs_path_free(p);
2535 	return ret;
2536 }
2537 
2538 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2539 {
2540 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2541 	int ret = 0;
2542 	struct fs_path *p = NULL;
2543 	struct btrfs_inode_item *ii;
2544 	struct btrfs_path *path = NULL;
2545 	struct extent_buffer *eb;
2546 	struct btrfs_key key;
2547 	int slot;
2548 
2549 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2550 
2551 	p = fs_path_alloc();
2552 	if (!p)
2553 		return -ENOMEM;
2554 
2555 	path = alloc_path_for_send();
2556 	if (!path) {
2557 		ret = -ENOMEM;
2558 		goto out;
2559 	}
2560 
2561 	key.objectid = ino;
2562 	key.type = BTRFS_INODE_ITEM_KEY;
2563 	key.offset = 0;
2564 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2565 	if (ret > 0)
2566 		ret = -ENOENT;
2567 	if (ret < 0)
2568 		goto out;
2569 
2570 	eb = path->nodes[0];
2571 	slot = path->slots[0];
2572 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2573 
2574 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2575 	if (ret < 0)
2576 		goto out;
2577 
2578 	ret = get_cur_path(sctx, ino, gen, p);
2579 	if (ret < 0)
2580 		goto out;
2581 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2582 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2583 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2584 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2585 	/* TODO Add otime support when the otime patches get into upstream */
2586 
2587 	ret = send_cmd(sctx);
2588 
2589 tlv_put_failure:
2590 out:
2591 	fs_path_free(p);
2592 	btrfs_free_path(path);
2593 	return ret;
2594 }
2595 
2596 /*
2597  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2598  * a valid path yet because we did not process the refs yet. So, the inode
2599  * is created as orphan.
2600  */
2601 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2602 {
2603 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2604 	int ret = 0;
2605 	struct fs_path *p;
2606 	int cmd;
2607 	u64 gen;
2608 	u64 mode;
2609 	u64 rdev;
2610 
2611 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2612 
2613 	p = fs_path_alloc();
2614 	if (!p)
2615 		return -ENOMEM;
2616 
2617 	if (ino != sctx->cur_ino) {
2618 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2619 				     NULL, NULL, &rdev);
2620 		if (ret < 0)
2621 			goto out;
2622 	} else {
2623 		gen = sctx->cur_inode_gen;
2624 		mode = sctx->cur_inode_mode;
2625 		rdev = sctx->cur_inode_rdev;
2626 	}
2627 
2628 	if (S_ISREG(mode)) {
2629 		cmd = BTRFS_SEND_C_MKFILE;
2630 	} else if (S_ISDIR(mode)) {
2631 		cmd = BTRFS_SEND_C_MKDIR;
2632 	} else if (S_ISLNK(mode)) {
2633 		cmd = BTRFS_SEND_C_SYMLINK;
2634 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2635 		cmd = BTRFS_SEND_C_MKNOD;
2636 	} else if (S_ISFIFO(mode)) {
2637 		cmd = BTRFS_SEND_C_MKFIFO;
2638 	} else if (S_ISSOCK(mode)) {
2639 		cmd = BTRFS_SEND_C_MKSOCK;
2640 	} else {
2641 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2642 				(int)(mode & S_IFMT));
2643 		ret = -ENOTSUPP;
2644 		goto out;
2645 	}
2646 
2647 	ret = begin_cmd(sctx, cmd);
2648 	if (ret < 0)
2649 		goto out;
2650 
2651 	ret = gen_unique_name(sctx, ino, gen, p);
2652 	if (ret < 0)
2653 		goto out;
2654 
2655 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2656 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2657 
2658 	if (S_ISLNK(mode)) {
2659 		fs_path_reset(p);
2660 		ret = read_symlink(sctx->send_root, ino, p);
2661 		if (ret < 0)
2662 			goto out;
2663 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2664 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2665 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2666 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2667 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2668 	}
2669 
2670 	ret = send_cmd(sctx);
2671 	if (ret < 0)
2672 		goto out;
2673 
2674 
2675 tlv_put_failure:
2676 out:
2677 	fs_path_free(p);
2678 	return ret;
2679 }
2680 
2681 /*
2682  * We need some special handling for inodes that get processed before the parent
2683  * directory got created. See process_recorded_refs for details.
2684  * This function does the check if we already created the dir out of order.
2685  */
2686 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2687 {
2688 	int ret = 0;
2689 	struct btrfs_path *path = NULL;
2690 	struct btrfs_key key;
2691 	struct btrfs_key found_key;
2692 	struct btrfs_key di_key;
2693 	struct extent_buffer *eb;
2694 	struct btrfs_dir_item *di;
2695 	int slot;
2696 
2697 	path = alloc_path_for_send();
2698 	if (!path) {
2699 		ret = -ENOMEM;
2700 		goto out;
2701 	}
2702 
2703 	key.objectid = dir;
2704 	key.type = BTRFS_DIR_INDEX_KEY;
2705 	key.offset = 0;
2706 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2707 	if (ret < 0)
2708 		goto out;
2709 
2710 	while (1) {
2711 		eb = path->nodes[0];
2712 		slot = path->slots[0];
2713 		if (slot >= btrfs_header_nritems(eb)) {
2714 			ret = btrfs_next_leaf(sctx->send_root, path);
2715 			if (ret < 0) {
2716 				goto out;
2717 			} else if (ret > 0) {
2718 				ret = 0;
2719 				break;
2720 			}
2721 			continue;
2722 		}
2723 
2724 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2725 		if (found_key.objectid != key.objectid ||
2726 		    found_key.type != key.type) {
2727 			ret = 0;
2728 			goto out;
2729 		}
2730 
2731 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2732 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2733 
2734 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2735 		    di_key.objectid < sctx->send_progress) {
2736 			ret = 1;
2737 			goto out;
2738 		}
2739 
2740 		path->slots[0]++;
2741 	}
2742 
2743 out:
2744 	btrfs_free_path(path);
2745 	return ret;
2746 }
2747 
2748 /*
2749  * Only creates the inode if it is:
2750  * 1. Not a directory
2751  * 2. Or a directory which was not created already due to out of order
2752  *    directories. See did_create_dir and process_recorded_refs for details.
2753  */
2754 static int send_create_inode_if_needed(struct send_ctx *sctx)
2755 {
2756 	int ret;
2757 
2758 	if (S_ISDIR(sctx->cur_inode_mode)) {
2759 		ret = did_create_dir(sctx, sctx->cur_ino);
2760 		if (ret < 0)
2761 			goto out;
2762 		if (ret) {
2763 			ret = 0;
2764 			goto out;
2765 		}
2766 	}
2767 
2768 	ret = send_create_inode(sctx, sctx->cur_ino);
2769 	if (ret < 0)
2770 		goto out;
2771 
2772 out:
2773 	return ret;
2774 }
2775 
2776 struct recorded_ref {
2777 	struct list_head list;
2778 	char *name;
2779 	struct fs_path *full_path;
2780 	u64 dir;
2781 	u64 dir_gen;
2782 	int name_len;
2783 };
2784 
2785 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2786 {
2787 	ref->full_path = path;
2788 	ref->name = (char *)kbasename(ref->full_path->start);
2789 	ref->name_len = ref->full_path->end - ref->name;
2790 }
2791 
2792 /*
2793  * We need to process new refs before deleted refs, but compare_tree gives us
2794  * everything mixed. So we first record all refs and later process them.
2795  * This function is a helper to record one ref.
2796  */
2797 static int __record_ref(struct list_head *head, u64 dir,
2798 		      u64 dir_gen, struct fs_path *path)
2799 {
2800 	struct recorded_ref *ref;
2801 
2802 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2803 	if (!ref)
2804 		return -ENOMEM;
2805 
2806 	ref->dir = dir;
2807 	ref->dir_gen = dir_gen;
2808 	set_ref_path(ref, path);
2809 	list_add_tail(&ref->list, head);
2810 	return 0;
2811 }
2812 
2813 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2814 {
2815 	struct recorded_ref *new;
2816 
2817 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2818 	if (!new)
2819 		return -ENOMEM;
2820 
2821 	new->dir = ref->dir;
2822 	new->dir_gen = ref->dir_gen;
2823 	new->full_path = NULL;
2824 	INIT_LIST_HEAD(&new->list);
2825 	list_add_tail(&new->list, list);
2826 	return 0;
2827 }
2828 
2829 static void __free_recorded_refs(struct list_head *head)
2830 {
2831 	struct recorded_ref *cur;
2832 
2833 	while (!list_empty(head)) {
2834 		cur = list_entry(head->next, struct recorded_ref, list);
2835 		fs_path_free(cur->full_path);
2836 		list_del(&cur->list);
2837 		kfree(cur);
2838 	}
2839 }
2840 
2841 static void free_recorded_refs(struct send_ctx *sctx)
2842 {
2843 	__free_recorded_refs(&sctx->new_refs);
2844 	__free_recorded_refs(&sctx->deleted_refs);
2845 }
2846 
2847 /*
2848  * Renames/moves a file/dir to its orphan name. Used when the first
2849  * ref of an unprocessed inode gets overwritten and for all non empty
2850  * directories.
2851  */
2852 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2853 			  struct fs_path *path)
2854 {
2855 	int ret;
2856 	struct fs_path *orphan;
2857 
2858 	orphan = fs_path_alloc();
2859 	if (!orphan)
2860 		return -ENOMEM;
2861 
2862 	ret = gen_unique_name(sctx, ino, gen, orphan);
2863 	if (ret < 0)
2864 		goto out;
2865 
2866 	ret = send_rename(sctx, path, orphan);
2867 
2868 out:
2869 	fs_path_free(orphan);
2870 	return ret;
2871 }
2872 
2873 static struct orphan_dir_info *
2874 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2875 {
2876 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2877 	struct rb_node *parent = NULL;
2878 	struct orphan_dir_info *entry, *odi;
2879 
2880 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2881 	if (!odi)
2882 		return ERR_PTR(-ENOMEM);
2883 	odi->ino = dir_ino;
2884 	odi->gen = 0;
2885 
2886 	while (*p) {
2887 		parent = *p;
2888 		entry = rb_entry(parent, struct orphan_dir_info, node);
2889 		if (dir_ino < entry->ino) {
2890 			p = &(*p)->rb_left;
2891 		} else if (dir_ino > entry->ino) {
2892 			p = &(*p)->rb_right;
2893 		} else {
2894 			kfree(odi);
2895 			return entry;
2896 		}
2897 	}
2898 
2899 	rb_link_node(&odi->node, parent, p);
2900 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2901 	return odi;
2902 }
2903 
2904 static struct orphan_dir_info *
2905 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2906 {
2907 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2908 	struct orphan_dir_info *entry;
2909 
2910 	while (n) {
2911 		entry = rb_entry(n, struct orphan_dir_info, node);
2912 		if (dir_ino < entry->ino)
2913 			n = n->rb_left;
2914 		else if (dir_ino > entry->ino)
2915 			n = n->rb_right;
2916 		else
2917 			return entry;
2918 	}
2919 	return NULL;
2920 }
2921 
2922 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2923 {
2924 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2925 
2926 	return odi != NULL;
2927 }
2928 
2929 static void free_orphan_dir_info(struct send_ctx *sctx,
2930 				 struct orphan_dir_info *odi)
2931 {
2932 	if (!odi)
2933 		return;
2934 	rb_erase(&odi->node, &sctx->orphan_dirs);
2935 	kfree(odi);
2936 }
2937 
2938 /*
2939  * Returns 1 if a directory can be removed at this point in time.
2940  * We check this by iterating all dir items and checking if the inode behind
2941  * the dir item was already processed.
2942  */
2943 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2944 		     u64 send_progress)
2945 {
2946 	int ret = 0;
2947 	struct btrfs_root *root = sctx->parent_root;
2948 	struct btrfs_path *path;
2949 	struct btrfs_key key;
2950 	struct btrfs_key found_key;
2951 	struct btrfs_key loc;
2952 	struct btrfs_dir_item *di;
2953 
2954 	/*
2955 	 * Don't try to rmdir the top/root subvolume dir.
2956 	 */
2957 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2958 		return 0;
2959 
2960 	path = alloc_path_for_send();
2961 	if (!path)
2962 		return -ENOMEM;
2963 
2964 	key.objectid = dir;
2965 	key.type = BTRFS_DIR_INDEX_KEY;
2966 	key.offset = 0;
2967 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2968 	if (ret < 0)
2969 		goto out;
2970 
2971 	while (1) {
2972 		struct waiting_dir_move *dm;
2973 
2974 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2975 			ret = btrfs_next_leaf(root, path);
2976 			if (ret < 0)
2977 				goto out;
2978 			else if (ret > 0)
2979 				break;
2980 			continue;
2981 		}
2982 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2983 				      path->slots[0]);
2984 		if (found_key.objectid != key.objectid ||
2985 		    found_key.type != key.type)
2986 			break;
2987 
2988 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2989 				struct btrfs_dir_item);
2990 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2991 
2992 		dm = get_waiting_dir_move(sctx, loc.objectid);
2993 		if (dm) {
2994 			struct orphan_dir_info *odi;
2995 
2996 			odi = add_orphan_dir_info(sctx, dir);
2997 			if (IS_ERR(odi)) {
2998 				ret = PTR_ERR(odi);
2999 				goto out;
3000 			}
3001 			odi->gen = dir_gen;
3002 			dm->rmdir_ino = dir;
3003 			ret = 0;
3004 			goto out;
3005 		}
3006 
3007 		if (loc.objectid > send_progress) {
3008 			struct orphan_dir_info *odi;
3009 
3010 			odi = get_orphan_dir_info(sctx, dir);
3011 			free_orphan_dir_info(sctx, odi);
3012 			ret = 0;
3013 			goto out;
3014 		}
3015 
3016 		path->slots[0]++;
3017 	}
3018 
3019 	ret = 1;
3020 
3021 out:
3022 	btrfs_free_path(path);
3023 	return ret;
3024 }
3025 
3026 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3027 {
3028 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3029 
3030 	return entry != NULL;
3031 }
3032 
3033 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3034 {
3035 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3036 	struct rb_node *parent = NULL;
3037 	struct waiting_dir_move *entry, *dm;
3038 
3039 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3040 	if (!dm)
3041 		return -ENOMEM;
3042 	dm->ino = ino;
3043 	dm->rmdir_ino = 0;
3044 	dm->orphanized = orphanized;
3045 
3046 	while (*p) {
3047 		parent = *p;
3048 		entry = rb_entry(parent, struct waiting_dir_move, node);
3049 		if (ino < entry->ino) {
3050 			p = &(*p)->rb_left;
3051 		} else if (ino > entry->ino) {
3052 			p = &(*p)->rb_right;
3053 		} else {
3054 			kfree(dm);
3055 			return -EEXIST;
3056 		}
3057 	}
3058 
3059 	rb_link_node(&dm->node, parent, p);
3060 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3061 	return 0;
3062 }
3063 
3064 static struct waiting_dir_move *
3065 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3066 {
3067 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3068 	struct waiting_dir_move *entry;
3069 
3070 	while (n) {
3071 		entry = rb_entry(n, struct waiting_dir_move, node);
3072 		if (ino < entry->ino)
3073 			n = n->rb_left;
3074 		else if (ino > entry->ino)
3075 			n = n->rb_right;
3076 		else
3077 			return entry;
3078 	}
3079 	return NULL;
3080 }
3081 
3082 static void free_waiting_dir_move(struct send_ctx *sctx,
3083 				  struct waiting_dir_move *dm)
3084 {
3085 	if (!dm)
3086 		return;
3087 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3088 	kfree(dm);
3089 }
3090 
3091 static int add_pending_dir_move(struct send_ctx *sctx,
3092 				u64 ino,
3093 				u64 ino_gen,
3094 				u64 parent_ino,
3095 				struct list_head *new_refs,
3096 				struct list_head *deleted_refs,
3097 				const bool is_orphan)
3098 {
3099 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3100 	struct rb_node *parent = NULL;
3101 	struct pending_dir_move *entry = NULL, *pm;
3102 	struct recorded_ref *cur;
3103 	int exists = 0;
3104 	int ret;
3105 
3106 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3107 	if (!pm)
3108 		return -ENOMEM;
3109 	pm->parent_ino = parent_ino;
3110 	pm->ino = ino;
3111 	pm->gen = ino_gen;
3112 	INIT_LIST_HEAD(&pm->list);
3113 	INIT_LIST_HEAD(&pm->update_refs);
3114 	RB_CLEAR_NODE(&pm->node);
3115 
3116 	while (*p) {
3117 		parent = *p;
3118 		entry = rb_entry(parent, struct pending_dir_move, node);
3119 		if (parent_ino < entry->parent_ino) {
3120 			p = &(*p)->rb_left;
3121 		} else if (parent_ino > entry->parent_ino) {
3122 			p = &(*p)->rb_right;
3123 		} else {
3124 			exists = 1;
3125 			break;
3126 		}
3127 	}
3128 
3129 	list_for_each_entry(cur, deleted_refs, list) {
3130 		ret = dup_ref(cur, &pm->update_refs);
3131 		if (ret < 0)
3132 			goto out;
3133 	}
3134 	list_for_each_entry(cur, new_refs, list) {
3135 		ret = dup_ref(cur, &pm->update_refs);
3136 		if (ret < 0)
3137 			goto out;
3138 	}
3139 
3140 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3141 	if (ret)
3142 		goto out;
3143 
3144 	if (exists) {
3145 		list_add_tail(&pm->list, &entry->list);
3146 	} else {
3147 		rb_link_node(&pm->node, parent, p);
3148 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3149 	}
3150 	ret = 0;
3151 out:
3152 	if (ret) {
3153 		__free_recorded_refs(&pm->update_refs);
3154 		kfree(pm);
3155 	}
3156 	return ret;
3157 }
3158 
3159 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3160 						      u64 parent_ino)
3161 {
3162 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3163 	struct pending_dir_move *entry;
3164 
3165 	while (n) {
3166 		entry = rb_entry(n, struct pending_dir_move, node);
3167 		if (parent_ino < entry->parent_ino)
3168 			n = n->rb_left;
3169 		else if (parent_ino > entry->parent_ino)
3170 			n = n->rb_right;
3171 		else
3172 			return entry;
3173 	}
3174 	return NULL;
3175 }
3176 
3177 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3178 		     u64 ino, u64 gen, u64 *ancestor_ino)
3179 {
3180 	int ret = 0;
3181 	u64 parent_inode = 0;
3182 	u64 parent_gen = 0;
3183 	u64 start_ino = ino;
3184 
3185 	*ancestor_ino = 0;
3186 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3187 		fs_path_reset(name);
3188 
3189 		if (is_waiting_for_rm(sctx, ino))
3190 			break;
3191 		if (is_waiting_for_move(sctx, ino)) {
3192 			if (*ancestor_ino == 0)
3193 				*ancestor_ino = ino;
3194 			ret = get_first_ref(sctx->parent_root, ino,
3195 					    &parent_inode, &parent_gen, name);
3196 		} else {
3197 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3198 							&parent_inode,
3199 							&parent_gen, name);
3200 			if (ret > 0) {
3201 				ret = 0;
3202 				break;
3203 			}
3204 		}
3205 		if (ret < 0)
3206 			break;
3207 		if (parent_inode == start_ino) {
3208 			ret = 1;
3209 			if (*ancestor_ino == 0)
3210 				*ancestor_ino = ino;
3211 			break;
3212 		}
3213 		ino = parent_inode;
3214 		gen = parent_gen;
3215 	}
3216 	return ret;
3217 }
3218 
3219 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3220 {
3221 	struct fs_path *from_path = NULL;
3222 	struct fs_path *to_path = NULL;
3223 	struct fs_path *name = NULL;
3224 	u64 orig_progress = sctx->send_progress;
3225 	struct recorded_ref *cur;
3226 	u64 parent_ino, parent_gen;
3227 	struct waiting_dir_move *dm = NULL;
3228 	u64 rmdir_ino = 0;
3229 	u64 ancestor;
3230 	bool is_orphan;
3231 	int ret;
3232 
3233 	name = fs_path_alloc();
3234 	from_path = fs_path_alloc();
3235 	if (!name || !from_path) {
3236 		ret = -ENOMEM;
3237 		goto out;
3238 	}
3239 
3240 	dm = get_waiting_dir_move(sctx, pm->ino);
3241 	ASSERT(dm);
3242 	rmdir_ino = dm->rmdir_ino;
3243 	is_orphan = dm->orphanized;
3244 	free_waiting_dir_move(sctx, dm);
3245 
3246 	if (is_orphan) {
3247 		ret = gen_unique_name(sctx, pm->ino,
3248 				      pm->gen, from_path);
3249 	} else {
3250 		ret = get_first_ref(sctx->parent_root, pm->ino,
3251 				    &parent_ino, &parent_gen, name);
3252 		if (ret < 0)
3253 			goto out;
3254 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3255 				   from_path);
3256 		if (ret < 0)
3257 			goto out;
3258 		ret = fs_path_add_path(from_path, name);
3259 	}
3260 	if (ret < 0)
3261 		goto out;
3262 
3263 	sctx->send_progress = sctx->cur_ino + 1;
3264 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3265 	if (ret < 0)
3266 		goto out;
3267 	if (ret) {
3268 		LIST_HEAD(deleted_refs);
3269 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3270 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3271 					   &pm->update_refs, &deleted_refs,
3272 					   is_orphan);
3273 		if (ret < 0)
3274 			goto out;
3275 		if (rmdir_ino) {
3276 			dm = get_waiting_dir_move(sctx, pm->ino);
3277 			ASSERT(dm);
3278 			dm->rmdir_ino = rmdir_ino;
3279 		}
3280 		goto out;
3281 	}
3282 	fs_path_reset(name);
3283 	to_path = name;
3284 	name = NULL;
3285 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3286 	if (ret < 0)
3287 		goto out;
3288 
3289 	ret = send_rename(sctx, from_path, to_path);
3290 	if (ret < 0)
3291 		goto out;
3292 
3293 	if (rmdir_ino) {
3294 		struct orphan_dir_info *odi;
3295 
3296 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3297 		if (!odi) {
3298 			/* already deleted */
3299 			goto finish;
3300 		}
3301 		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
3302 		if (ret < 0)
3303 			goto out;
3304 		if (!ret)
3305 			goto finish;
3306 
3307 		name = fs_path_alloc();
3308 		if (!name) {
3309 			ret = -ENOMEM;
3310 			goto out;
3311 		}
3312 		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3313 		if (ret < 0)
3314 			goto out;
3315 		ret = send_rmdir(sctx, name);
3316 		if (ret < 0)
3317 			goto out;
3318 		free_orphan_dir_info(sctx, odi);
3319 	}
3320 
3321 finish:
3322 	ret = send_utimes(sctx, pm->ino, pm->gen);
3323 	if (ret < 0)
3324 		goto out;
3325 
3326 	/*
3327 	 * After rename/move, need to update the utimes of both new parent(s)
3328 	 * and old parent(s).
3329 	 */
3330 	list_for_each_entry(cur, &pm->update_refs, list) {
3331 		/*
3332 		 * The parent inode might have been deleted in the send snapshot
3333 		 */
3334 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3335 				     NULL, NULL, NULL, NULL, NULL);
3336 		if (ret == -ENOENT) {
3337 			ret = 0;
3338 			continue;
3339 		}
3340 		if (ret < 0)
3341 			goto out;
3342 
3343 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3344 		if (ret < 0)
3345 			goto out;
3346 	}
3347 
3348 out:
3349 	fs_path_free(name);
3350 	fs_path_free(from_path);
3351 	fs_path_free(to_path);
3352 	sctx->send_progress = orig_progress;
3353 
3354 	return ret;
3355 }
3356 
3357 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3358 {
3359 	if (!list_empty(&m->list))
3360 		list_del(&m->list);
3361 	if (!RB_EMPTY_NODE(&m->node))
3362 		rb_erase(&m->node, &sctx->pending_dir_moves);
3363 	__free_recorded_refs(&m->update_refs);
3364 	kfree(m);
3365 }
3366 
3367 static void tail_append_pending_moves(struct pending_dir_move *moves,
3368 				      struct list_head *stack)
3369 {
3370 	if (list_empty(&moves->list)) {
3371 		list_add_tail(&moves->list, stack);
3372 	} else {
3373 		LIST_HEAD(list);
3374 		list_splice_init(&moves->list, &list);
3375 		list_add_tail(&moves->list, stack);
3376 		list_splice_tail(&list, stack);
3377 	}
3378 }
3379 
3380 static int apply_children_dir_moves(struct send_ctx *sctx)
3381 {
3382 	struct pending_dir_move *pm;
3383 	struct list_head stack;
3384 	u64 parent_ino = sctx->cur_ino;
3385 	int ret = 0;
3386 
3387 	pm = get_pending_dir_moves(sctx, parent_ino);
3388 	if (!pm)
3389 		return 0;
3390 
3391 	INIT_LIST_HEAD(&stack);
3392 	tail_append_pending_moves(pm, &stack);
3393 
3394 	while (!list_empty(&stack)) {
3395 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3396 		parent_ino = pm->ino;
3397 		ret = apply_dir_move(sctx, pm);
3398 		free_pending_move(sctx, pm);
3399 		if (ret)
3400 			goto out;
3401 		pm = get_pending_dir_moves(sctx, parent_ino);
3402 		if (pm)
3403 			tail_append_pending_moves(pm, &stack);
3404 	}
3405 	return 0;
3406 
3407 out:
3408 	while (!list_empty(&stack)) {
3409 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3410 		free_pending_move(sctx, pm);
3411 	}
3412 	return ret;
3413 }
3414 
3415 /*
3416  * We might need to delay a directory rename even when no ancestor directory
3417  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3418  * renamed. This happens when we rename a directory to the old name (the name
3419  * in the parent root) of some other unrelated directory that got its rename
3420  * delayed due to some ancestor with higher number that got renamed.
3421  *
3422  * Example:
3423  *
3424  * Parent snapshot:
3425  * .                                       (ino 256)
3426  * |---- a/                                (ino 257)
3427  * |     |---- file                        (ino 260)
3428  * |
3429  * |---- b/                                (ino 258)
3430  * |---- c/                                (ino 259)
3431  *
3432  * Send snapshot:
3433  * .                                       (ino 256)
3434  * |---- a/                                (ino 258)
3435  * |---- x/                                (ino 259)
3436  *       |---- y/                          (ino 257)
3437  *             |----- file                 (ino 260)
3438  *
3439  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3440  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3441  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3442  * must issue is:
3443  *
3444  * 1 - rename 259 from 'c' to 'x'
3445  * 2 - rename 257 from 'a' to 'x/y'
3446  * 3 - rename 258 from 'b' to 'a'
3447  *
3448  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3449  * be done right away and < 0 on error.
3450  */
3451 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3452 				  struct recorded_ref *parent_ref,
3453 				  const bool is_orphan)
3454 {
3455 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3456 	struct btrfs_path *path;
3457 	struct btrfs_key key;
3458 	struct btrfs_key di_key;
3459 	struct btrfs_dir_item *di;
3460 	u64 left_gen;
3461 	u64 right_gen;
3462 	int ret = 0;
3463 	struct waiting_dir_move *wdm;
3464 
3465 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3466 		return 0;
3467 
3468 	path = alloc_path_for_send();
3469 	if (!path)
3470 		return -ENOMEM;
3471 
3472 	key.objectid = parent_ref->dir;
3473 	key.type = BTRFS_DIR_ITEM_KEY;
3474 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3475 
3476 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3477 	if (ret < 0) {
3478 		goto out;
3479 	} else if (ret > 0) {
3480 		ret = 0;
3481 		goto out;
3482 	}
3483 
3484 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3485 				       parent_ref->name_len);
3486 	if (!di) {
3487 		ret = 0;
3488 		goto out;
3489 	}
3490 	/*
3491 	 * di_key.objectid has the number of the inode that has a dentry in the
3492 	 * parent directory with the same name that sctx->cur_ino is being
3493 	 * renamed to. We need to check if that inode is in the send root as
3494 	 * well and if it is currently marked as an inode with a pending rename,
3495 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3496 	 * that it happens after that other inode is renamed.
3497 	 */
3498 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3499 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3500 		ret = 0;
3501 		goto out;
3502 	}
3503 
3504 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3505 			     &left_gen, NULL, NULL, NULL, NULL);
3506 	if (ret < 0)
3507 		goto out;
3508 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3509 			     &right_gen, NULL, NULL, NULL, NULL);
3510 	if (ret < 0) {
3511 		if (ret == -ENOENT)
3512 			ret = 0;
3513 		goto out;
3514 	}
3515 
3516 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3517 	if (right_gen != left_gen) {
3518 		ret = 0;
3519 		goto out;
3520 	}
3521 
3522 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3523 	if (wdm && !wdm->orphanized) {
3524 		ret = add_pending_dir_move(sctx,
3525 					   sctx->cur_ino,
3526 					   sctx->cur_inode_gen,
3527 					   di_key.objectid,
3528 					   &sctx->new_refs,
3529 					   &sctx->deleted_refs,
3530 					   is_orphan);
3531 		if (!ret)
3532 			ret = 1;
3533 	}
3534 out:
3535 	btrfs_free_path(path);
3536 	return ret;
3537 }
3538 
3539 /*
3540  * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3541  * Return 1 if true, 0 if false and < 0 on error.
3542  */
3543 static int is_ancestor(struct btrfs_root *root,
3544 		       const u64 ino1,
3545 		       const u64 ino1_gen,
3546 		       const u64 ino2,
3547 		       struct fs_path *fs_path)
3548 {
3549 	u64 ino = ino2;
3550 	bool free_path = false;
3551 	int ret = 0;
3552 
3553 	if (!fs_path) {
3554 		fs_path = fs_path_alloc();
3555 		if (!fs_path)
3556 			return -ENOMEM;
3557 		free_path = true;
3558 	}
3559 
3560 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3561 		u64 parent;
3562 		u64 parent_gen;
3563 
3564 		fs_path_reset(fs_path);
3565 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3566 		if (ret < 0) {
3567 			if (ret == -ENOENT && ino == ino2)
3568 				ret = 0;
3569 			goto out;
3570 		}
3571 		if (parent == ino1) {
3572 			ret = parent_gen == ino1_gen ? 1 : 0;
3573 			goto out;
3574 		}
3575 		ino = parent;
3576 	}
3577  out:
3578 	if (free_path)
3579 		fs_path_free(fs_path);
3580 	return ret;
3581 }
3582 
3583 static int wait_for_parent_move(struct send_ctx *sctx,
3584 				struct recorded_ref *parent_ref,
3585 				const bool is_orphan)
3586 {
3587 	int ret = 0;
3588 	u64 ino = parent_ref->dir;
3589 	u64 ino_gen = parent_ref->dir_gen;
3590 	u64 parent_ino_before, parent_ino_after;
3591 	struct fs_path *path_before = NULL;
3592 	struct fs_path *path_after = NULL;
3593 	int len1, len2;
3594 
3595 	path_after = fs_path_alloc();
3596 	path_before = fs_path_alloc();
3597 	if (!path_after || !path_before) {
3598 		ret = -ENOMEM;
3599 		goto out;
3600 	}
3601 
3602 	/*
3603 	 * Our current directory inode may not yet be renamed/moved because some
3604 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3605 	 * such ancestor exists and make sure our own rename/move happens after
3606 	 * that ancestor is processed to avoid path build infinite loops (done
3607 	 * at get_cur_path()).
3608 	 */
3609 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3610 		u64 parent_ino_after_gen;
3611 
3612 		if (is_waiting_for_move(sctx, ino)) {
3613 			/*
3614 			 * If the current inode is an ancestor of ino in the
3615 			 * parent root, we need to delay the rename of the
3616 			 * current inode, otherwise don't delayed the rename
3617 			 * because we can end up with a circular dependency
3618 			 * of renames, resulting in some directories never
3619 			 * getting the respective rename operations issued in
3620 			 * the send stream or getting into infinite path build
3621 			 * loops.
3622 			 */
3623 			ret = is_ancestor(sctx->parent_root,
3624 					  sctx->cur_ino, sctx->cur_inode_gen,
3625 					  ino, path_before);
3626 			if (ret)
3627 				break;
3628 		}
3629 
3630 		fs_path_reset(path_before);
3631 		fs_path_reset(path_after);
3632 
3633 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3634 				    &parent_ino_after_gen, path_after);
3635 		if (ret < 0)
3636 			goto out;
3637 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3638 				    NULL, path_before);
3639 		if (ret < 0 && ret != -ENOENT) {
3640 			goto out;
3641 		} else if (ret == -ENOENT) {
3642 			ret = 0;
3643 			break;
3644 		}
3645 
3646 		len1 = fs_path_len(path_before);
3647 		len2 = fs_path_len(path_after);
3648 		if (ino > sctx->cur_ino &&
3649 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3650 		     memcmp(path_before->start, path_after->start, len1))) {
3651 			u64 parent_ino_gen;
3652 
3653 			ret = get_inode_info(sctx->parent_root, ino, NULL,
3654 					     &parent_ino_gen, NULL, NULL, NULL,
3655 					     NULL);
3656 			if (ret < 0)
3657 				goto out;
3658 			if (ino_gen == parent_ino_gen) {
3659 				ret = 1;
3660 				break;
3661 			}
3662 		}
3663 		ino = parent_ino_after;
3664 		ino_gen = parent_ino_after_gen;
3665 	}
3666 
3667 out:
3668 	fs_path_free(path_before);
3669 	fs_path_free(path_after);
3670 
3671 	if (ret == 1) {
3672 		ret = add_pending_dir_move(sctx,
3673 					   sctx->cur_ino,
3674 					   sctx->cur_inode_gen,
3675 					   ino,
3676 					   &sctx->new_refs,
3677 					   &sctx->deleted_refs,
3678 					   is_orphan);
3679 		if (!ret)
3680 			ret = 1;
3681 	}
3682 
3683 	return ret;
3684 }
3685 
3686 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3687 {
3688 	int ret;
3689 	struct fs_path *new_path;
3690 
3691 	/*
3692 	 * Our reference's name member points to its full_path member string, so
3693 	 * we use here a new path.
3694 	 */
3695 	new_path = fs_path_alloc();
3696 	if (!new_path)
3697 		return -ENOMEM;
3698 
3699 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3700 	if (ret < 0) {
3701 		fs_path_free(new_path);
3702 		return ret;
3703 	}
3704 	ret = fs_path_add(new_path, ref->name, ref->name_len);
3705 	if (ret < 0) {
3706 		fs_path_free(new_path);
3707 		return ret;
3708 	}
3709 
3710 	fs_path_free(ref->full_path);
3711 	set_ref_path(ref, new_path);
3712 
3713 	return 0;
3714 }
3715 
3716 /*
3717  * This does all the move/link/unlink/rmdir magic.
3718  */
3719 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3720 {
3721 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3722 	int ret = 0;
3723 	struct recorded_ref *cur;
3724 	struct recorded_ref *cur2;
3725 	struct list_head check_dirs;
3726 	struct fs_path *valid_path = NULL;
3727 	u64 ow_inode = 0;
3728 	u64 ow_gen;
3729 	u64 ow_mode;
3730 	int did_overwrite = 0;
3731 	int is_orphan = 0;
3732 	u64 last_dir_ino_rm = 0;
3733 	bool can_rename = true;
3734 	bool orphanized_dir = false;
3735 	bool orphanized_ancestor = false;
3736 
3737 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3738 
3739 	/*
3740 	 * This should never happen as the root dir always has the same ref
3741 	 * which is always '..'
3742 	 */
3743 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3744 	INIT_LIST_HEAD(&check_dirs);
3745 
3746 	valid_path = fs_path_alloc();
3747 	if (!valid_path) {
3748 		ret = -ENOMEM;
3749 		goto out;
3750 	}
3751 
3752 	/*
3753 	 * First, check if the first ref of the current inode was overwritten
3754 	 * before. If yes, we know that the current inode was already orphanized
3755 	 * and thus use the orphan name. If not, we can use get_cur_path to
3756 	 * get the path of the first ref as it would like while receiving at
3757 	 * this point in time.
3758 	 * New inodes are always orphan at the beginning, so force to use the
3759 	 * orphan name in this case.
3760 	 * The first ref is stored in valid_path and will be updated if it
3761 	 * gets moved around.
3762 	 */
3763 	if (!sctx->cur_inode_new) {
3764 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3765 				sctx->cur_inode_gen);
3766 		if (ret < 0)
3767 			goto out;
3768 		if (ret)
3769 			did_overwrite = 1;
3770 	}
3771 	if (sctx->cur_inode_new || did_overwrite) {
3772 		ret = gen_unique_name(sctx, sctx->cur_ino,
3773 				sctx->cur_inode_gen, valid_path);
3774 		if (ret < 0)
3775 			goto out;
3776 		is_orphan = 1;
3777 	} else {
3778 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3779 				valid_path);
3780 		if (ret < 0)
3781 			goto out;
3782 	}
3783 
3784 	list_for_each_entry(cur, &sctx->new_refs, list) {
3785 		/*
3786 		 * We may have refs where the parent directory does not exist
3787 		 * yet. This happens if the parent directories inum is higher
3788 		 * the the current inum. To handle this case, we create the
3789 		 * parent directory out of order. But we need to check if this
3790 		 * did already happen before due to other refs in the same dir.
3791 		 */
3792 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3793 		if (ret < 0)
3794 			goto out;
3795 		if (ret == inode_state_will_create) {
3796 			ret = 0;
3797 			/*
3798 			 * First check if any of the current inodes refs did
3799 			 * already create the dir.
3800 			 */
3801 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3802 				if (cur == cur2)
3803 					break;
3804 				if (cur2->dir == cur->dir) {
3805 					ret = 1;
3806 					break;
3807 				}
3808 			}
3809 
3810 			/*
3811 			 * If that did not happen, check if a previous inode
3812 			 * did already create the dir.
3813 			 */
3814 			if (!ret)
3815 				ret = did_create_dir(sctx, cur->dir);
3816 			if (ret < 0)
3817 				goto out;
3818 			if (!ret) {
3819 				ret = send_create_inode(sctx, cur->dir);
3820 				if (ret < 0)
3821 					goto out;
3822 			}
3823 		}
3824 
3825 		/*
3826 		 * Check if this new ref would overwrite the first ref of
3827 		 * another unprocessed inode. If yes, orphanize the
3828 		 * overwritten inode. If we find an overwritten ref that is
3829 		 * not the first ref, simply unlink it.
3830 		 */
3831 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3832 				cur->name, cur->name_len,
3833 				&ow_inode, &ow_gen, &ow_mode);
3834 		if (ret < 0)
3835 			goto out;
3836 		if (ret) {
3837 			ret = is_first_ref(sctx->parent_root,
3838 					   ow_inode, cur->dir, cur->name,
3839 					   cur->name_len);
3840 			if (ret < 0)
3841 				goto out;
3842 			if (ret) {
3843 				struct name_cache_entry *nce;
3844 				struct waiting_dir_move *wdm;
3845 
3846 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3847 						cur->full_path);
3848 				if (ret < 0)
3849 					goto out;
3850 				if (S_ISDIR(ow_mode))
3851 					orphanized_dir = true;
3852 
3853 				/*
3854 				 * If ow_inode has its rename operation delayed
3855 				 * make sure that its orphanized name is used in
3856 				 * the source path when performing its rename
3857 				 * operation.
3858 				 */
3859 				if (is_waiting_for_move(sctx, ow_inode)) {
3860 					wdm = get_waiting_dir_move(sctx,
3861 								   ow_inode);
3862 					ASSERT(wdm);
3863 					wdm->orphanized = true;
3864 				}
3865 
3866 				/*
3867 				 * Make sure we clear our orphanized inode's
3868 				 * name from the name cache. This is because the
3869 				 * inode ow_inode might be an ancestor of some
3870 				 * other inode that will be orphanized as well
3871 				 * later and has an inode number greater than
3872 				 * sctx->send_progress. We need to prevent
3873 				 * future name lookups from using the old name
3874 				 * and get instead the orphan name.
3875 				 */
3876 				nce = name_cache_search(sctx, ow_inode, ow_gen);
3877 				if (nce) {
3878 					name_cache_delete(sctx, nce);
3879 					kfree(nce);
3880 				}
3881 
3882 				/*
3883 				 * ow_inode might currently be an ancestor of
3884 				 * cur_ino, therefore compute valid_path (the
3885 				 * current path of cur_ino) again because it
3886 				 * might contain the pre-orphanization name of
3887 				 * ow_inode, which is no longer valid.
3888 				 */
3889 				ret = is_ancestor(sctx->parent_root,
3890 						  ow_inode, ow_gen,
3891 						  sctx->cur_ino, NULL);
3892 				if (ret > 0) {
3893 					orphanized_ancestor = true;
3894 					fs_path_reset(valid_path);
3895 					ret = get_cur_path(sctx, sctx->cur_ino,
3896 							   sctx->cur_inode_gen,
3897 							   valid_path);
3898 				}
3899 				if (ret < 0)
3900 					goto out;
3901 			} else {
3902 				ret = send_unlink(sctx, cur->full_path);
3903 				if (ret < 0)
3904 					goto out;
3905 			}
3906 		}
3907 
3908 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3909 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3910 			if (ret < 0)
3911 				goto out;
3912 			if (ret == 1) {
3913 				can_rename = false;
3914 				*pending_move = 1;
3915 			}
3916 		}
3917 
3918 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3919 		    can_rename) {
3920 			ret = wait_for_parent_move(sctx, cur, is_orphan);
3921 			if (ret < 0)
3922 				goto out;
3923 			if (ret == 1) {
3924 				can_rename = false;
3925 				*pending_move = 1;
3926 			}
3927 		}
3928 
3929 		/*
3930 		 * link/move the ref to the new place. If we have an orphan
3931 		 * inode, move it and update valid_path. If not, link or move
3932 		 * it depending on the inode mode.
3933 		 */
3934 		if (is_orphan && can_rename) {
3935 			ret = send_rename(sctx, valid_path, cur->full_path);
3936 			if (ret < 0)
3937 				goto out;
3938 			is_orphan = 0;
3939 			ret = fs_path_copy(valid_path, cur->full_path);
3940 			if (ret < 0)
3941 				goto out;
3942 		} else if (can_rename) {
3943 			if (S_ISDIR(sctx->cur_inode_mode)) {
3944 				/*
3945 				 * Dirs can't be linked, so move it. For moved
3946 				 * dirs, we always have one new and one deleted
3947 				 * ref. The deleted ref is ignored later.
3948 				 */
3949 				ret = send_rename(sctx, valid_path,
3950 						  cur->full_path);
3951 				if (!ret)
3952 					ret = fs_path_copy(valid_path,
3953 							   cur->full_path);
3954 				if (ret < 0)
3955 					goto out;
3956 			} else {
3957 				/*
3958 				 * We might have previously orphanized an inode
3959 				 * which is an ancestor of our current inode,
3960 				 * so our reference's full path, which was
3961 				 * computed before any such orphanizations, must
3962 				 * be updated.
3963 				 */
3964 				if (orphanized_dir) {
3965 					ret = update_ref_path(sctx, cur);
3966 					if (ret < 0)
3967 						goto out;
3968 				}
3969 				ret = send_link(sctx, cur->full_path,
3970 						valid_path);
3971 				if (ret < 0)
3972 					goto out;
3973 			}
3974 		}
3975 		ret = dup_ref(cur, &check_dirs);
3976 		if (ret < 0)
3977 			goto out;
3978 	}
3979 
3980 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3981 		/*
3982 		 * Check if we can already rmdir the directory. If not,
3983 		 * orphanize it. For every dir item inside that gets deleted
3984 		 * later, we do this check again and rmdir it then if possible.
3985 		 * See the use of check_dirs for more details.
3986 		 */
3987 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3988 				sctx->cur_ino);
3989 		if (ret < 0)
3990 			goto out;
3991 		if (ret) {
3992 			ret = send_rmdir(sctx, valid_path);
3993 			if (ret < 0)
3994 				goto out;
3995 		} else if (!is_orphan) {
3996 			ret = orphanize_inode(sctx, sctx->cur_ino,
3997 					sctx->cur_inode_gen, valid_path);
3998 			if (ret < 0)
3999 				goto out;
4000 			is_orphan = 1;
4001 		}
4002 
4003 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4004 			ret = dup_ref(cur, &check_dirs);
4005 			if (ret < 0)
4006 				goto out;
4007 		}
4008 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4009 		   !list_empty(&sctx->deleted_refs)) {
4010 		/*
4011 		 * We have a moved dir. Add the old parent to check_dirs
4012 		 */
4013 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4014 				list);
4015 		ret = dup_ref(cur, &check_dirs);
4016 		if (ret < 0)
4017 			goto out;
4018 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4019 		/*
4020 		 * We have a non dir inode. Go through all deleted refs and
4021 		 * unlink them if they were not already overwritten by other
4022 		 * inodes.
4023 		 */
4024 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4025 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4026 					sctx->cur_ino, sctx->cur_inode_gen,
4027 					cur->name, cur->name_len);
4028 			if (ret < 0)
4029 				goto out;
4030 			if (!ret) {
4031 				/*
4032 				 * If we orphanized any ancestor before, we need
4033 				 * to recompute the full path for deleted names,
4034 				 * since any such path was computed before we
4035 				 * processed any references and orphanized any
4036 				 * ancestor inode.
4037 				 */
4038 				if (orphanized_ancestor) {
4039 					ret = update_ref_path(sctx, cur);
4040 					if (ret < 0)
4041 						goto out;
4042 				}
4043 				ret = send_unlink(sctx, cur->full_path);
4044 				if (ret < 0)
4045 					goto out;
4046 			}
4047 			ret = dup_ref(cur, &check_dirs);
4048 			if (ret < 0)
4049 				goto out;
4050 		}
4051 		/*
4052 		 * If the inode is still orphan, unlink the orphan. This may
4053 		 * happen when a previous inode did overwrite the first ref
4054 		 * of this inode and no new refs were added for the current
4055 		 * inode. Unlinking does not mean that the inode is deleted in
4056 		 * all cases. There may still be links to this inode in other
4057 		 * places.
4058 		 */
4059 		if (is_orphan) {
4060 			ret = send_unlink(sctx, valid_path);
4061 			if (ret < 0)
4062 				goto out;
4063 		}
4064 	}
4065 
4066 	/*
4067 	 * We did collect all parent dirs where cur_inode was once located. We
4068 	 * now go through all these dirs and check if they are pending for
4069 	 * deletion and if it's finally possible to perform the rmdir now.
4070 	 * We also update the inode stats of the parent dirs here.
4071 	 */
4072 	list_for_each_entry(cur, &check_dirs, list) {
4073 		/*
4074 		 * In case we had refs into dirs that were not processed yet,
4075 		 * we don't need to do the utime and rmdir logic for these dirs.
4076 		 * The dir will be processed later.
4077 		 */
4078 		if (cur->dir > sctx->cur_ino)
4079 			continue;
4080 
4081 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4082 		if (ret < 0)
4083 			goto out;
4084 
4085 		if (ret == inode_state_did_create ||
4086 		    ret == inode_state_no_change) {
4087 			/* TODO delayed utimes */
4088 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4089 			if (ret < 0)
4090 				goto out;
4091 		} else if (ret == inode_state_did_delete &&
4092 			   cur->dir != last_dir_ino_rm) {
4093 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4094 					sctx->cur_ino);
4095 			if (ret < 0)
4096 				goto out;
4097 			if (ret) {
4098 				ret = get_cur_path(sctx, cur->dir,
4099 						   cur->dir_gen, valid_path);
4100 				if (ret < 0)
4101 					goto out;
4102 				ret = send_rmdir(sctx, valid_path);
4103 				if (ret < 0)
4104 					goto out;
4105 				last_dir_ino_rm = cur->dir;
4106 			}
4107 		}
4108 	}
4109 
4110 	ret = 0;
4111 
4112 out:
4113 	__free_recorded_refs(&check_dirs);
4114 	free_recorded_refs(sctx);
4115 	fs_path_free(valid_path);
4116 	return ret;
4117 }
4118 
4119 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
4120 		      struct fs_path *name, void *ctx, struct list_head *refs)
4121 {
4122 	int ret = 0;
4123 	struct send_ctx *sctx = ctx;
4124 	struct fs_path *p;
4125 	u64 gen;
4126 
4127 	p = fs_path_alloc();
4128 	if (!p)
4129 		return -ENOMEM;
4130 
4131 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4132 			NULL, NULL);
4133 	if (ret < 0)
4134 		goto out;
4135 
4136 	ret = get_cur_path(sctx, dir, gen, p);
4137 	if (ret < 0)
4138 		goto out;
4139 	ret = fs_path_add_path(p, name);
4140 	if (ret < 0)
4141 		goto out;
4142 
4143 	ret = __record_ref(refs, dir, gen, p);
4144 
4145 out:
4146 	if (ret)
4147 		fs_path_free(p);
4148 	return ret;
4149 }
4150 
4151 static int __record_new_ref(int num, u64 dir, int index,
4152 			    struct fs_path *name,
4153 			    void *ctx)
4154 {
4155 	struct send_ctx *sctx = ctx;
4156 	return record_ref(sctx->send_root, num, dir, index, name,
4157 			  ctx, &sctx->new_refs);
4158 }
4159 
4160 
4161 static int __record_deleted_ref(int num, u64 dir, int index,
4162 				struct fs_path *name,
4163 				void *ctx)
4164 {
4165 	struct send_ctx *sctx = ctx;
4166 	return record_ref(sctx->parent_root, num, dir, index, name,
4167 			  ctx, &sctx->deleted_refs);
4168 }
4169 
4170 static int record_new_ref(struct send_ctx *sctx)
4171 {
4172 	int ret;
4173 
4174 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4175 				sctx->cmp_key, 0, __record_new_ref, sctx);
4176 	if (ret < 0)
4177 		goto out;
4178 	ret = 0;
4179 
4180 out:
4181 	return ret;
4182 }
4183 
4184 static int record_deleted_ref(struct send_ctx *sctx)
4185 {
4186 	int ret;
4187 
4188 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4189 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4190 	if (ret < 0)
4191 		goto out;
4192 	ret = 0;
4193 
4194 out:
4195 	return ret;
4196 }
4197 
4198 struct find_ref_ctx {
4199 	u64 dir;
4200 	u64 dir_gen;
4201 	struct btrfs_root *root;
4202 	struct fs_path *name;
4203 	int found_idx;
4204 };
4205 
4206 static int __find_iref(int num, u64 dir, int index,
4207 		       struct fs_path *name,
4208 		       void *ctx_)
4209 {
4210 	struct find_ref_ctx *ctx = ctx_;
4211 	u64 dir_gen;
4212 	int ret;
4213 
4214 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4215 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4216 		/*
4217 		 * To avoid doing extra lookups we'll only do this if everything
4218 		 * else matches.
4219 		 */
4220 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4221 				     NULL, NULL, NULL);
4222 		if (ret)
4223 			return ret;
4224 		if (dir_gen != ctx->dir_gen)
4225 			return 0;
4226 		ctx->found_idx = num;
4227 		return 1;
4228 	}
4229 	return 0;
4230 }
4231 
4232 static int find_iref(struct btrfs_root *root,
4233 		     struct btrfs_path *path,
4234 		     struct btrfs_key *key,
4235 		     u64 dir, u64 dir_gen, struct fs_path *name)
4236 {
4237 	int ret;
4238 	struct find_ref_ctx ctx;
4239 
4240 	ctx.dir = dir;
4241 	ctx.name = name;
4242 	ctx.dir_gen = dir_gen;
4243 	ctx.found_idx = -1;
4244 	ctx.root = root;
4245 
4246 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4247 	if (ret < 0)
4248 		return ret;
4249 
4250 	if (ctx.found_idx == -1)
4251 		return -ENOENT;
4252 
4253 	return ctx.found_idx;
4254 }
4255 
4256 static int __record_changed_new_ref(int num, u64 dir, int index,
4257 				    struct fs_path *name,
4258 				    void *ctx)
4259 {
4260 	u64 dir_gen;
4261 	int ret;
4262 	struct send_ctx *sctx = ctx;
4263 
4264 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4265 			     NULL, NULL, NULL);
4266 	if (ret)
4267 		return ret;
4268 
4269 	ret = find_iref(sctx->parent_root, sctx->right_path,
4270 			sctx->cmp_key, dir, dir_gen, name);
4271 	if (ret == -ENOENT)
4272 		ret = __record_new_ref(num, dir, index, name, sctx);
4273 	else if (ret > 0)
4274 		ret = 0;
4275 
4276 	return ret;
4277 }
4278 
4279 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4280 					struct fs_path *name,
4281 					void *ctx)
4282 {
4283 	u64 dir_gen;
4284 	int ret;
4285 	struct send_ctx *sctx = ctx;
4286 
4287 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4288 			     NULL, NULL, NULL);
4289 	if (ret)
4290 		return ret;
4291 
4292 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4293 			dir, dir_gen, name);
4294 	if (ret == -ENOENT)
4295 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4296 	else if (ret > 0)
4297 		ret = 0;
4298 
4299 	return ret;
4300 }
4301 
4302 static int record_changed_ref(struct send_ctx *sctx)
4303 {
4304 	int ret = 0;
4305 
4306 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4307 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4308 	if (ret < 0)
4309 		goto out;
4310 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4311 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4312 	if (ret < 0)
4313 		goto out;
4314 	ret = 0;
4315 
4316 out:
4317 	return ret;
4318 }
4319 
4320 /*
4321  * Record and process all refs at once. Needed when an inode changes the
4322  * generation number, which means that it was deleted and recreated.
4323  */
4324 static int process_all_refs(struct send_ctx *sctx,
4325 			    enum btrfs_compare_tree_result cmd)
4326 {
4327 	int ret;
4328 	struct btrfs_root *root;
4329 	struct btrfs_path *path;
4330 	struct btrfs_key key;
4331 	struct btrfs_key found_key;
4332 	struct extent_buffer *eb;
4333 	int slot;
4334 	iterate_inode_ref_t cb;
4335 	int pending_move = 0;
4336 
4337 	path = alloc_path_for_send();
4338 	if (!path)
4339 		return -ENOMEM;
4340 
4341 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4342 		root = sctx->send_root;
4343 		cb = __record_new_ref;
4344 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4345 		root = sctx->parent_root;
4346 		cb = __record_deleted_ref;
4347 	} else {
4348 		btrfs_err(sctx->send_root->fs_info,
4349 				"Wrong command %d in process_all_refs", cmd);
4350 		ret = -EINVAL;
4351 		goto out;
4352 	}
4353 
4354 	key.objectid = sctx->cmp_key->objectid;
4355 	key.type = BTRFS_INODE_REF_KEY;
4356 	key.offset = 0;
4357 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4358 	if (ret < 0)
4359 		goto out;
4360 
4361 	while (1) {
4362 		eb = path->nodes[0];
4363 		slot = path->slots[0];
4364 		if (slot >= btrfs_header_nritems(eb)) {
4365 			ret = btrfs_next_leaf(root, path);
4366 			if (ret < 0)
4367 				goto out;
4368 			else if (ret > 0)
4369 				break;
4370 			continue;
4371 		}
4372 
4373 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4374 
4375 		if (found_key.objectid != key.objectid ||
4376 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4377 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4378 			break;
4379 
4380 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4381 		if (ret < 0)
4382 			goto out;
4383 
4384 		path->slots[0]++;
4385 	}
4386 	btrfs_release_path(path);
4387 
4388 	/*
4389 	 * We don't actually care about pending_move as we are simply
4390 	 * re-creating this inode and will be rename'ing it into place once we
4391 	 * rename the parent directory.
4392 	 */
4393 	ret = process_recorded_refs(sctx, &pending_move);
4394 out:
4395 	btrfs_free_path(path);
4396 	return ret;
4397 }
4398 
4399 static int send_set_xattr(struct send_ctx *sctx,
4400 			  struct fs_path *path,
4401 			  const char *name, int name_len,
4402 			  const char *data, int data_len)
4403 {
4404 	int ret = 0;
4405 
4406 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4407 	if (ret < 0)
4408 		goto out;
4409 
4410 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4411 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4412 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4413 
4414 	ret = send_cmd(sctx);
4415 
4416 tlv_put_failure:
4417 out:
4418 	return ret;
4419 }
4420 
4421 static int send_remove_xattr(struct send_ctx *sctx,
4422 			  struct fs_path *path,
4423 			  const char *name, int name_len)
4424 {
4425 	int ret = 0;
4426 
4427 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4428 	if (ret < 0)
4429 		goto out;
4430 
4431 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4432 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4433 
4434 	ret = send_cmd(sctx);
4435 
4436 tlv_put_failure:
4437 out:
4438 	return ret;
4439 }
4440 
4441 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4442 			       const char *name, int name_len,
4443 			       const char *data, int data_len,
4444 			       u8 type, void *ctx)
4445 {
4446 	int ret;
4447 	struct send_ctx *sctx = ctx;
4448 	struct fs_path *p;
4449 	struct posix_acl_xattr_header dummy_acl;
4450 
4451 	p = fs_path_alloc();
4452 	if (!p)
4453 		return -ENOMEM;
4454 
4455 	/*
4456 	 * This hack is needed because empty acls are stored as zero byte
4457 	 * data in xattrs. Problem with that is, that receiving these zero byte
4458 	 * acls will fail later. To fix this, we send a dummy acl list that
4459 	 * only contains the version number and no entries.
4460 	 */
4461 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4462 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4463 		if (data_len == 0) {
4464 			dummy_acl.a_version =
4465 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4466 			data = (char *)&dummy_acl;
4467 			data_len = sizeof(dummy_acl);
4468 		}
4469 	}
4470 
4471 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4472 	if (ret < 0)
4473 		goto out;
4474 
4475 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4476 
4477 out:
4478 	fs_path_free(p);
4479 	return ret;
4480 }
4481 
4482 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4483 				   const char *name, int name_len,
4484 				   const char *data, int data_len,
4485 				   u8 type, void *ctx)
4486 {
4487 	int ret;
4488 	struct send_ctx *sctx = ctx;
4489 	struct fs_path *p;
4490 
4491 	p = fs_path_alloc();
4492 	if (!p)
4493 		return -ENOMEM;
4494 
4495 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4496 	if (ret < 0)
4497 		goto out;
4498 
4499 	ret = send_remove_xattr(sctx, p, name, name_len);
4500 
4501 out:
4502 	fs_path_free(p);
4503 	return ret;
4504 }
4505 
4506 static int process_new_xattr(struct send_ctx *sctx)
4507 {
4508 	int ret = 0;
4509 
4510 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4511 			       sctx->cmp_key, __process_new_xattr, sctx);
4512 
4513 	return ret;
4514 }
4515 
4516 static int process_deleted_xattr(struct send_ctx *sctx)
4517 {
4518 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4519 				sctx->cmp_key, __process_deleted_xattr, sctx);
4520 }
4521 
4522 struct find_xattr_ctx {
4523 	const char *name;
4524 	int name_len;
4525 	int found_idx;
4526 	char *found_data;
4527 	int found_data_len;
4528 };
4529 
4530 static int __find_xattr(int num, struct btrfs_key *di_key,
4531 			const char *name, int name_len,
4532 			const char *data, int data_len,
4533 			u8 type, void *vctx)
4534 {
4535 	struct find_xattr_ctx *ctx = vctx;
4536 
4537 	if (name_len == ctx->name_len &&
4538 	    strncmp(name, ctx->name, name_len) == 0) {
4539 		ctx->found_idx = num;
4540 		ctx->found_data_len = data_len;
4541 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4542 		if (!ctx->found_data)
4543 			return -ENOMEM;
4544 		return 1;
4545 	}
4546 	return 0;
4547 }
4548 
4549 static int find_xattr(struct btrfs_root *root,
4550 		      struct btrfs_path *path,
4551 		      struct btrfs_key *key,
4552 		      const char *name, int name_len,
4553 		      char **data, int *data_len)
4554 {
4555 	int ret;
4556 	struct find_xattr_ctx ctx;
4557 
4558 	ctx.name = name;
4559 	ctx.name_len = name_len;
4560 	ctx.found_idx = -1;
4561 	ctx.found_data = NULL;
4562 	ctx.found_data_len = 0;
4563 
4564 	ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4565 	if (ret < 0)
4566 		return ret;
4567 
4568 	if (ctx.found_idx == -1)
4569 		return -ENOENT;
4570 	if (data) {
4571 		*data = ctx.found_data;
4572 		*data_len = ctx.found_data_len;
4573 	} else {
4574 		kfree(ctx.found_data);
4575 	}
4576 	return ctx.found_idx;
4577 }
4578 
4579 
4580 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4581 				       const char *name, int name_len,
4582 				       const char *data, int data_len,
4583 				       u8 type, void *ctx)
4584 {
4585 	int ret;
4586 	struct send_ctx *sctx = ctx;
4587 	char *found_data = NULL;
4588 	int found_data_len  = 0;
4589 
4590 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4591 			 sctx->cmp_key, name, name_len, &found_data,
4592 			 &found_data_len);
4593 	if (ret == -ENOENT) {
4594 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4595 				data_len, type, ctx);
4596 	} else if (ret >= 0) {
4597 		if (data_len != found_data_len ||
4598 		    memcmp(data, found_data, data_len)) {
4599 			ret = __process_new_xattr(num, di_key, name, name_len,
4600 					data, data_len, type, ctx);
4601 		} else {
4602 			ret = 0;
4603 		}
4604 	}
4605 
4606 	kfree(found_data);
4607 	return ret;
4608 }
4609 
4610 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4611 					   const char *name, int name_len,
4612 					   const char *data, int data_len,
4613 					   u8 type, void *ctx)
4614 {
4615 	int ret;
4616 	struct send_ctx *sctx = ctx;
4617 
4618 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4619 			 name, name_len, NULL, NULL);
4620 	if (ret == -ENOENT)
4621 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4622 				data_len, type, ctx);
4623 	else if (ret >= 0)
4624 		ret = 0;
4625 
4626 	return ret;
4627 }
4628 
4629 static int process_changed_xattr(struct send_ctx *sctx)
4630 {
4631 	int ret = 0;
4632 
4633 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4634 			sctx->cmp_key, __process_changed_new_xattr, sctx);
4635 	if (ret < 0)
4636 		goto out;
4637 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4638 			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4639 
4640 out:
4641 	return ret;
4642 }
4643 
4644 static int process_all_new_xattrs(struct send_ctx *sctx)
4645 {
4646 	int ret;
4647 	struct btrfs_root *root;
4648 	struct btrfs_path *path;
4649 	struct btrfs_key key;
4650 	struct btrfs_key found_key;
4651 	struct extent_buffer *eb;
4652 	int slot;
4653 
4654 	path = alloc_path_for_send();
4655 	if (!path)
4656 		return -ENOMEM;
4657 
4658 	root = sctx->send_root;
4659 
4660 	key.objectid = sctx->cmp_key->objectid;
4661 	key.type = BTRFS_XATTR_ITEM_KEY;
4662 	key.offset = 0;
4663 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4664 	if (ret < 0)
4665 		goto out;
4666 
4667 	while (1) {
4668 		eb = path->nodes[0];
4669 		slot = path->slots[0];
4670 		if (slot >= btrfs_header_nritems(eb)) {
4671 			ret = btrfs_next_leaf(root, path);
4672 			if (ret < 0) {
4673 				goto out;
4674 			} else if (ret > 0) {
4675 				ret = 0;
4676 				break;
4677 			}
4678 			continue;
4679 		}
4680 
4681 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4682 		if (found_key.objectid != key.objectid ||
4683 		    found_key.type != key.type) {
4684 			ret = 0;
4685 			goto out;
4686 		}
4687 
4688 		ret = iterate_dir_item(root, path, &found_key,
4689 				       __process_new_xattr, sctx);
4690 		if (ret < 0)
4691 			goto out;
4692 
4693 		path->slots[0]++;
4694 	}
4695 
4696 out:
4697 	btrfs_free_path(path);
4698 	return ret;
4699 }
4700 
4701 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4702 {
4703 	struct btrfs_root *root = sctx->send_root;
4704 	struct btrfs_fs_info *fs_info = root->fs_info;
4705 	struct inode *inode;
4706 	struct page *page;
4707 	char *addr;
4708 	struct btrfs_key key;
4709 	pgoff_t index = offset >> PAGE_SHIFT;
4710 	pgoff_t last_index;
4711 	unsigned pg_offset = offset & ~PAGE_MASK;
4712 	ssize_t ret = 0;
4713 
4714 	key.objectid = sctx->cur_ino;
4715 	key.type = BTRFS_INODE_ITEM_KEY;
4716 	key.offset = 0;
4717 
4718 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4719 	if (IS_ERR(inode))
4720 		return PTR_ERR(inode);
4721 
4722 	if (offset + len > i_size_read(inode)) {
4723 		if (offset > i_size_read(inode))
4724 			len = 0;
4725 		else
4726 			len = offset - i_size_read(inode);
4727 	}
4728 	if (len == 0)
4729 		goto out;
4730 
4731 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4732 
4733 	/* initial readahead */
4734 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4735 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4736 	btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4737 		       last_index - index + 1);
4738 
4739 	while (index <= last_index) {
4740 		unsigned cur_len = min_t(unsigned, len,
4741 					 PAGE_SIZE - pg_offset);
4742 		page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL);
4743 		if (!page) {
4744 			ret = -ENOMEM;
4745 			break;
4746 		}
4747 
4748 		if (!PageUptodate(page)) {
4749 			btrfs_readpage(NULL, page);
4750 			lock_page(page);
4751 			if (!PageUptodate(page)) {
4752 				unlock_page(page);
4753 				put_page(page);
4754 				ret = -EIO;
4755 				break;
4756 			}
4757 		}
4758 
4759 		addr = kmap(page);
4760 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4761 		kunmap(page);
4762 		unlock_page(page);
4763 		put_page(page);
4764 		index++;
4765 		pg_offset = 0;
4766 		len -= cur_len;
4767 		ret += cur_len;
4768 	}
4769 out:
4770 	iput(inode);
4771 	return ret;
4772 }
4773 
4774 /*
4775  * Read some bytes from the current inode/file and send a write command to
4776  * user space.
4777  */
4778 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4779 {
4780 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4781 	int ret = 0;
4782 	struct fs_path *p;
4783 	ssize_t num_read = 0;
4784 
4785 	p = fs_path_alloc();
4786 	if (!p)
4787 		return -ENOMEM;
4788 
4789 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4790 
4791 	num_read = fill_read_buf(sctx, offset, len);
4792 	if (num_read <= 0) {
4793 		if (num_read < 0)
4794 			ret = num_read;
4795 		goto out;
4796 	}
4797 
4798 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4799 	if (ret < 0)
4800 		goto out;
4801 
4802 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4803 	if (ret < 0)
4804 		goto out;
4805 
4806 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4807 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4808 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4809 
4810 	ret = send_cmd(sctx);
4811 
4812 tlv_put_failure:
4813 out:
4814 	fs_path_free(p);
4815 	if (ret < 0)
4816 		return ret;
4817 	return num_read;
4818 }
4819 
4820 /*
4821  * Send a clone command to user space.
4822  */
4823 static int send_clone(struct send_ctx *sctx,
4824 		      u64 offset, u32 len,
4825 		      struct clone_root *clone_root)
4826 {
4827 	int ret = 0;
4828 	struct fs_path *p;
4829 	u64 gen;
4830 
4831 	btrfs_debug(sctx->send_root->fs_info,
4832 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4833 		    offset, len, clone_root->root->objectid, clone_root->ino,
4834 		    clone_root->offset);
4835 
4836 	p = fs_path_alloc();
4837 	if (!p)
4838 		return -ENOMEM;
4839 
4840 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4841 	if (ret < 0)
4842 		goto out;
4843 
4844 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4845 	if (ret < 0)
4846 		goto out;
4847 
4848 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4849 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4850 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4851 
4852 	if (clone_root->root == sctx->send_root) {
4853 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4854 				&gen, NULL, NULL, NULL, NULL);
4855 		if (ret < 0)
4856 			goto out;
4857 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4858 	} else {
4859 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4860 	}
4861 	if (ret < 0)
4862 		goto out;
4863 
4864 	/*
4865 	 * If the parent we're using has a received_uuid set then use that as
4866 	 * our clone source as that is what we will look for when doing a
4867 	 * receive.
4868 	 *
4869 	 * This covers the case that we create a snapshot off of a received
4870 	 * subvolume and then use that as the parent and try to receive on a
4871 	 * different host.
4872 	 */
4873 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4874 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4875 			     clone_root->root->root_item.received_uuid);
4876 	else
4877 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4878 			     clone_root->root->root_item.uuid);
4879 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4880 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4881 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4882 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4883 			clone_root->offset);
4884 
4885 	ret = send_cmd(sctx);
4886 
4887 tlv_put_failure:
4888 out:
4889 	fs_path_free(p);
4890 	return ret;
4891 }
4892 
4893 /*
4894  * Send an update extent command to user space.
4895  */
4896 static int send_update_extent(struct send_ctx *sctx,
4897 			      u64 offset, u32 len)
4898 {
4899 	int ret = 0;
4900 	struct fs_path *p;
4901 
4902 	p = fs_path_alloc();
4903 	if (!p)
4904 		return -ENOMEM;
4905 
4906 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4907 	if (ret < 0)
4908 		goto out;
4909 
4910 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4911 	if (ret < 0)
4912 		goto out;
4913 
4914 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4915 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4916 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4917 
4918 	ret = send_cmd(sctx);
4919 
4920 tlv_put_failure:
4921 out:
4922 	fs_path_free(p);
4923 	return ret;
4924 }
4925 
4926 static int send_hole(struct send_ctx *sctx, u64 end)
4927 {
4928 	struct fs_path *p = NULL;
4929 	u64 offset = sctx->cur_inode_last_extent;
4930 	u64 len;
4931 	int ret = 0;
4932 
4933 	p = fs_path_alloc();
4934 	if (!p)
4935 		return -ENOMEM;
4936 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4937 	if (ret < 0)
4938 		goto tlv_put_failure;
4939 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4940 	while (offset < end) {
4941 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4942 
4943 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4944 		if (ret < 0)
4945 			break;
4946 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4947 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4948 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4949 		ret = send_cmd(sctx);
4950 		if (ret < 0)
4951 			break;
4952 		offset += len;
4953 	}
4954 tlv_put_failure:
4955 	fs_path_free(p);
4956 	return ret;
4957 }
4958 
4959 static int send_extent_data(struct send_ctx *sctx,
4960 			    const u64 offset,
4961 			    const u64 len)
4962 {
4963 	u64 sent = 0;
4964 
4965 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4966 		return send_update_extent(sctx, offset, len);
4967 
4968 	while (sent < len) {
4969 		u64 size = len - sent;
4970 		int ret;
4971 
4972 		if (size > BTRFS_SEND_READ_SIZE)
4973 			size = BTRFS_SEND_READ_SIZE;
4974 		ret = send_write(sctx, offset + sent, size);
4975 		if (ret < 0)
4976 			return ret;
4977 		if (!ret)
4978 			break;
4979 		sent += ret;
4980 	}
4981 	return 0;
4982 }
4983 
4984 static int clone_range(struct send_ctx *sctx,
4985 		       struct clone_root *clone_root,
4986 		       const u64 disk_byte,
4987 		       u64 data_offset,
4988 		       u64 offset,
4989 		       u64 len)
4990 {
4991 	struct btrfs_path *path;
4992 	struct btrfs_key key;
4993 	int ret;
4994 
4995 	path = alloc_path_for_send();
4996 	if (!path)
4997 		return -ENOMEM;
4998 
4999 	/*
5000 	 * We can't send a clone operation for the entire range if we find
5001 	 * extent items in the respective range in the source file that
5002 	 * refer to different extents or if we find holes.
5003 	 * So check for that and do a mix of clone and regular write/copy
5004 	 * operations if needed.
5005 	 *
5006 	 * Example:
5007 	 *
5008 	 * mkfs.btrfs -f /dev/sda
5009 	 * mount /dev/sda /mnt
5010 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5011 	 * cp --reflink=always /mnt/foo /mnt/bar
5012 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5013 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5014 	 *
5015 	 * If when we send the snapshot and we are processing file bar (which
5016 	 * has a higher inode number than foo) we blindly send a clone operation
5017 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5018 	 * a file bar that matches the content of file foo - iow, doesn't match
5019 	 * the content from bar in the original filesystem.
5020 	 */
5021 	key.objectid = clone_root->ino;
5022 	key.type = BTRFS_EXTENT_DATA_KEY;
5023 	key.offset = clone_root->offset;
5024 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5025 	if (ret < 0)
5026 		goto out;
5027 	if (ret > 0 && path->slots[0] > 0) {
5028 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5029 		if (key.objectid == clone_root->ino &&
5030 		    key.type == BTRFS_EXTENT_DATA_KEY)
5031 			path->slots[0]--;
5032 	}
5033 
5034 	while (true) {
5035 		struct extent_buffer *leaf = path->nodes[0];
5036 		int slot = path->slots[0];
5037 		struct btrfs_file_extent_item *ei;
5038 		u8 type;
5039 		u64 ext_len;
5040 		u64 clone_len;
5041 
5042 		if (slot >= btrfs_header_nritems(leaf)) {
5043 			ret = btrfs_next_leaf(clone_root->root, path);
5044 			if (ret < 0)
5045 				goto out;
5046 			else if (ret > 0)
5047 				break;
5048 			continue;
5049 		}
5050 
5051 		btrfs_item_key_to_cpu(leaf, &key, slot);
5052 
5053 		/*
5054 		 * We might have an implicit trailing hole (NO_HOLES feature
5055 		 * enabled). We deal with it after leaving this loop.
5056 		 */
5057 		if (key.objectid != clone_root->ino ||
5058 		    key.type != BTRFS_EXTENT_DATA_KEY)
5059 			break;
5060 
5061 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5062 		type = btrfs_file_extent_type(leaf, ei);
5063 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5064 			ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
5065 			ext_len = PAGE_ALIGN(ext_len);
5066 		} else {
5067 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5068 		}
5069 
5070 		if (key.offset + ext_len <= clone_root->offset)
5071 			goto next;
5072 
5073 		if (key.offset > clone_root->offset) {
5074 			/* Implicit hole, NO_HOLES feature enabled. */
5075 			u64 hole_len = key.offset - clone_root->offset;
5076 
5077 			if (hole_len > len)
5078 				hole_len = len;
5079 			ret = send_extent_data(sctx, offset, hole_len);
5080 			if (ret < 0)
5081 				goto out;
5082 
5083 			len -= hole_len;
5084 			if (len == 0)
5085 				break;
5086 			offset += hole_len;
5087 			clone_root->offset += hole_len;
5088 			data_offset += hole_len;
5089 		}
5090 
5091 		if (key.offset >= clone_root->offset + len)
5092 			break;
5093 
5094 		clone_len = min_t(u64, ext_len, len);
5095 
5096 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5097 		    btrfs_file_extent_offset(leaf, ei) == data_offset)
5098 			ret = send_clone(sctx, offset, clone_len, clone_root);
5099 		else
5100 			ret = send_extent_data(sctx, offset, clone_len);
5101 
5102 		if (ret < 0)
5103 			goto out;
5104 
5105 		len -= clone_len;
5106 		if (len == 0)
5107 			break;
5108 		offset += clone_len;
5109 		clone_root->offset += clone_len;
5110 		data_offset += clone_len;
5111 next:
5112 		path->slots[0]++;
5113 	}
5114 
5115 	if (len > 0)
5116 		ret = send_extent_data(sctx, offset, len);
5117 	else
5118 		ret = 0;
5119 out:
5120 	btrfs_free_path(path);
5121 	return ret;
5122 }
5123 
5124 static int send_write_or_clone(struct send_ctx *sctx,
5125 			       struct btrfs_path *path,
5126 			       struct btrfs_key *key,
5127 			       struct clone_root *clone_root)
5128 {
5129 	int ret = 0;
5130 	struct btrfs_file_extent_item *ei;
5131 	u64 offset = key->offset;
5132 	u64 len;
5133 	u8 type;
5134 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5135 
5136 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5137 			struct btrfs_file_extent_item);
5138 	type = btrfs_file_extent_type(path->nodes[0], ei);
5139 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5140 		len = btrfs_file_extent_inline_len(path->nodes[0],
5141 						   path->slots[0], ei);
5142 		/*
5143 		 * it is possible the inline item won't cover the whole page,
5144 		 * but there may be items after this page.  Make
5145 		 * sure to send the whole thing
5146 		 */
5147 		len = PAGE_ALIGN(len);
5148 	} else {
5149 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5150 	}
5151 
5152 	if (offset + len > sctx->cur_inode_size)
5153 		len = sctx->cur_inode_size - offset;
5154 	if (len == 0) {
5155 		ret = 0;
5156 		goto out;
5157 	}
5158 
5159 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
5160 		u64 disk_byte;
5161 		u64 data_offset;
5162 
5163 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5164 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5165 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5166 				  offset, len);
5167 	} else {
5168 		ret = send_extent_data(sctx, offset, len);
5169 	}
5170 out:
5171 	return ret;
5172 }
5173 
5174 static int is_extent_unchanged(struct send_ctx *sctx,
5175 			       struct btrfs_path *left_path,
5176 			       struct btrfs_key *ekey)
5177 {
5178 	int ret = 0;
5179 	struct btrfs_key key;
5180 	struct btrfs_path *path = NULL;
5181 	struct extent_buffer *eb;
5182 	int slot;
5183 	struct btrfs_key found_key;
5184 	struct btrfs_file_extent_item *ei;
5185 	u64 left_disknr;
5186 	u64 right_disknr;
5187 	u64 left_offset;
5188 	u64 right_offset;
5189 	u64 left_offset_fixed;
5190 	u64 left_len;
5191 	u64 right_len;
5192 	u64 left_gen;
5193 	u64 right_gen;
5194 	u8 left_type;
5195 	u8 right_type;
5196 
5197 	path = alloc_path_for_send();
5198 	if (!path)
5199 		return -ENOMEM;
5200 
5201 	eb = left_path->nodes[0];
5202 	slot = left_path->slots[0];
5203 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5204 	left_type = btrfs_file_extent_type(eb, ei);
5205 
5206 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5207 		ret = 0;
5208 		goto out;
5209 	}
5210 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5211 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5212 	left_offset = btrfs_file_extent_offset(eb, ei);
5213 	left_gen = btrfs_file_extent_generation(eb, ei);
5214 
5215 	/*
5216 	 * Following comments will refer to these graphics. L is the left
5217 	 * extents which we are checking at the moment. 1-8 are the right
5218 	 * extents that we iterate.
5219 	 *
5220 	 *       |-----L-----|
5221 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5222 	 *
5223 	 *       |-----L-----|
5224 	 * |--1--|-2b-|...(same as above)
5225 	 *
5226 	 * Alternative situation. Happens on files where extents got split.
5227 	 *       |-----L-----|
5228 	 * |-----------7-----------|-6-|
5229 	 *
5230 	 * Alternative situation. Happens on files which got larger.
5231 	 *       |-----L-----|
5232 	 * |-8-|
5233 	 * Nothing follows after 8.
5234 	 */
5235 
5236 	key.objectid = ekey->objectid;
5237 	key.type = BTRFS_EXTENT_DATA_KEY;
5238 	key.offset = ekey->offset;
5239 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5240 	if (ret < 0)
5241 		goto out;
5242 	if (ret) {
5243 		ret = 0;
5244 		goto out;
5245 	}
5246 
5247 	/*
5248 	 * Handle special case where the right side has no extents at all.
5249 	 */
5250 	eb = path->nodes[0];
5251 	slot = path->slots[0];
5252 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5253 	if (found_key.objectid != key.objectid ||
5254 	    found_key.type != key.type) {
5255 		/* If we're a hole then just pretend nothing changed */
5256 		ret = (left_disknr) ? 0 : 1;
5257 		goto out;
5258 	}
5259 
5260 	/*
5261 	 * We're now on 2a, 2b or 7.
5262 	 */
5263 	key = found_key;
5264 	while (key.offset < ekey->offset + left_len) {
5265 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5266 		right_type = btrfs_file_extent_type(eb, ei);
5267 		if (right_type != BTRFS_FILE_EXTENT_REG &&
5268 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5269 			ret = 0;
5270 			goto out;
5271 		}
5272 
5273 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5274 			right_len = btrfs_file_extent_inline_len(eb, slot, ei);
5275 			right_len = PAGE_ALIGN(right_len);
5276 		} else {
5277 			right_len = btrfs_file_extent_num_bytes(eb, ei);
5278 		}
5279 
5280 		/*
5281 		 * Are we at extent 8? If yes, we know the extent is changed.
5282 		 * This may only happen on the first iteration.
5283 		 */
5284 		if (found_key.offset + right_len <= ekey->offset) {
5285 			/* If we're a hole just pretend nothing changed */
5286 			ret = (left_disknr) ? 0 : 1;
5287 			goto out;
5288 		}
5289 
5290 		/*
5291 		 * We just wanted to see if when we have an inline extent, what
5292 		 * follows it is a regular extent (wanted to check the above
5293 		 * condition for inline extents too). This should normally not
5294 		 * happen but it's possible for example when we have an inline
5295 		 * compressed extent representing data with a size matching
5296 		 * the page size (currently the same as sector size).
5297 		 */
5298 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5299 			ret = 0;
5300 			goto out;
5301 		}
5302 
5303 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5304 		right_offset = btrfs_file_extent_offset(eb, ei);
5305 		right_gen = btrfs_file_extent_generation(eb, ei);
5306 
5307 		left_offset_fixed = left_offset;
5308 		if (key.offset < ekey->offset) {
5309 			/* Fix the right offset for 2a and 7. */
5310 			right_offset += ekey->offset - key.offset;
5311 		} else {
5312 			/* Fix the left offset for all behind 2a and 2b */
5313 			left_offset_fixed += key.offset - ekey->offset;
5314 		}
5315 
5316 		/*
5317 		 * Check if we have the same extent.
5318 		 */
5319 		if (left_disknr != right_disknr ||
5320 		    left_offset_fixed != right_offset ||
5321 		    left_gen != right_gen) {
5322 			ret = 0;
5323 			goto out;
5324 		}
5325 
5326 		/*
5327 		 * Go to the next extent.
5328 		 */
5329 		ret = btrfs_next_item(sctx->parent_root, path);
5330 		if (ret < 0)
5331 			goto out;
5332 		if (!ret) {
5333 			eb = path->nodes[0];
5334 			slot = path->slots[0];
5335 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5336 		}
5337 		if (ret || found_key.objectid != key.objectid ||
5338 		    found_key.type != key.type) {
5339 			key.offset += right_len;
5340 			break;
5341 		}
5342 		if (found_key.offset != key.offset + right_len) {
5343 			ret = 0;
5344 			goto out;
5345 		}
5346 		key = found_key;
5347 	}
5348 
5349 	/*
5350 	 * We're now behind the left extent (treat as unchanged) or at the end
5351 	 * of the right side (treat as changed).
5352 	 */
5353 	if (key.offset >= ekey->offset + left_len)
5354 		ret = 1;
5355 	else
5356 		ret = 0;
5357 
5358 
5359 out:
5360 	btrfs_free_path(path);
5361 	return ret;
5362 }
5363 
5364 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5365 {
5366 	struct btrfs_path *path;
5367 	struct btrfs_root *root = sctx->send_root;
5368 	struct btrfs_file_extent_item *fi;
5369 	struct btrfs_key key;
5370 	u64 extent_end;
5371 	u8 type;
5372 	int ret;
5373 
5374 	path = alloc_path_for_send();
5375 	if (!path)
5376 		return -ENOMEM;
5377 
5378 	sctx->cur_inode_last_extent = 0;
5379 
5380 	key.objectid = sctx->cur_ino;
5381 	key.type = BTRFS_EXTENT_DATA_KEY;
5382 	key.offset = offset;
5383 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5384 	if (ret < 0)
5385 		goto out;
5386 	ret = 0;
5387 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5388 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5389 		goto out;
5390 
5391 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5392 			    struct btrfs_file_extent_item);
5393 	type = btrfs_file_extent_type(path->nodes[0], fi);
5394 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5395 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5396 							path->slots[0], fi);
5397 		extent_end = ALIGN(key.offset + size,
5398 				   sctx->send_root->fs_info->sectorsize);
5399 	} else {
5400 		extent_end = key.offset +
5401 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5402 	}
5403 	sctx->cur_inode_last_extent = extent_end;
5404 out:
5405 	btrfs_free_path(path);
5406 	return ret;
5407 }
5408 
5409 static int range_is_hole_in_parent(struct send_ctx *sctx,
5410 				   const u64 start,
5411 				   const u64 end)
5412 {
5413 	struct btrfs_path *path;
5414 	struct btrfs_key key;
5415 	struct btrfs_root *root = sctx->parent_root;
5416 	u64 search_start = start;
5417 	int ret;
5418 
5419 	path = alloc_path_for_send();
5420 	if (!path)
5421 		return -ENOMEM;
5422 
5423 	key.objectid = sctx->cur_ino;
5424 	key.type = BTRFS_EXTENT_DATA_KEY;
5425 	key.offset = search_start;
5426 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5427 	if (ret < 0)
5428 		goto out;
5429 	if (ret > 0 && path->slots[0] > 0)
5430 		path->slots[0]--;
5431 
5432 	while (search_start < end) {
5433 		struct extent_buffer *leaf = path->nodes[0];
5434 		int slot = path->slots[0];
5435 		struct btrfs_file_extent_item *fi;
5436 		u64 extent_end;
5437 
5438 		if (slot >= btrfs_header_nritems(leaf)) {
5439 			ret = btrfs_next_leaf(root, path);
5440 			if (ret < 0)
5441 				goto out;
5442 			else if (ret > 0)
5443 				break;
5444 			continue;
5445 		}
5446 
5447 		btrfs_item_key_to_cpu(leaf, &key, slot);
5448 		if (key.objectid < sctx->cur_ino ||
5449 		    key.type < BTRFS_EXTENT_DATA_KEY)
5450 			goto next;
5451 		if (key.objectid > sctx->cur_ino ||
5452 		    key.type > BTRFS_EXTENT_DATA_KEY ||
5453 		    key.offset >= end)
5454 			break;
5455 
5456 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5457 		if (btrfs_file_extent_type(leaf, fi) ==
5458 		    BTRFS_FILE_EXTENT_INLINE) {
5459 			u64 size = btrfs_file_extent_inline_len(leaf, slot, fi);
5460 
5461 			extent_end = ALIGN(key.offset + size,
5462 					   root->fs_info->sectorsize);
5463 		} else {
5464 			extent_end = key.offset +
5465 				btrfs_file_extent_num_bytes(leaf, fi);
5466 		}
5467 		if (extent_end <= start)
5468 			goto next;
5469 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5470 			search_start = extent_end;
5471 			goto next;
5472 		}
5473 		ret = 0;
5474 		goto out;
5475 next:
5476 		path->slots[0]++;
5477 	}
5478 	ret = 1;
5479 out:
5480 	btrfs_free_path(path);
5481 	return ret;
5482 }
5483 
5484 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5485 			   struct btrfs_key *key)
5486 {
5487 	struct btrfs_file_extent_item *fi;
5488 	u64 extent_end;
5489 	u8 type;
5490 	int ret = 0;
5491 
5492 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5493 		return 0;
5494 
5495 	if (sctx->cur_inode_last_extent == (u64)-1) {
5496 		ret = get_last_extent(sctx, key->offset - 1);
5497 		if (ret)
5498 			return ret;
5499 	}
5500 
5501 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5502 			    struct btrfs_file_extent_item);
5503 	type = btrfs_file_extent_type(path->nodes[0], fi);
5504 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5505 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5506 							path->slots[0], fi);
5507 		extent_end = ALIGN(key->offset + size,
5508 				   sctx->send_root->fs_info->sectorsize);
5509 	} else {
5510 		extent_end = key->offset +
5511 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5512 	}
5513 
5514 	if (path->slots[0] == 0 &&
5515 	    sctx->cur_inode_last_extent < key->offset) {
5516 		/*
5517 		 * We might have skipped entire leafs that contained only
5518 		 * file extent items for our current inode. These leafs have
5519 		 * a generation number smaller (older) than the one in the
5520 		 * current leaf and the leaf our last extent came from, and
5521 		 * are located between these 2 leafs.
5522 		 */
5523 		ret = get_last_extent(sctx, key->offset - 1);
5524 		if (ret)
5525 			return ret;
5526 	}
5527 
5528 	if (sctx->cur_inode_last_extent < key->offset) {
5529 		ret = range_is_hole_in_parent(sctx,
5530 					      sctx->cur_inode_last_extent,
5531 					      key->offset);
5532 		if (ret < 0)
5533 			return ret;
5534 		else if (ret == 0)
5535 			ret = send_hole(sctx, key->offset);
5536 		else
5537 			ret = 0;
5538 	}
5539 	sctx->cur_inode_last_extent = extent_end;
5540 	return ret;
5541 }
5542 
5543 static int process_extent(struct send_ctx *sctx,
5544 			  struct btrfs_path *path,
5545 			  struct btrfs_key *key)
5546 {
5547 	struct clone_root *found_clone = NULL;
5548 	int ret = 0;
5549 
5550 	if (S_ISLNK(sctx->cur_inode_mode))
5551 		return 0;
5552 
5553 	if (sctx->parent_root && !sctx->cur_inode_new) {
5554 		ret = is_extent_unchanged(sctx, path, key);
5555 		if (ret < 0)
5556 			goto out;
5557 		if (ret) {
5558 			ret = 0;
5559 			goto out_hole;
5560 		}
5561 	} else {
5562 		struct btrfs_file_extent_item *ei;
5563 		u8 type;
5564 
5565 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5566 				    struct btrfs_file_extent_item);
5567 		type = btrfs_file_extent_type(path->nodes[0], ei);
5568 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5569 		    type == BTRFS_FILE_EXTENT_REG) {
5570 			/*
5571 			 * The send spec does not have a prealloc command yet,
5572 			 * so just leave a hole for prealloc'ed extents until
5573 			 * we have enough commands queued up to justify rev'ing
5574 			 * the send spec.
5575 			 */
5576 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5577 				ret = 0;
5578 				goto out;
5579 			}
5580 
5581 			/* Have a hole, just skip it. */
5582 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5583 				ret = 0;
5584 				goto out;
5585 			}
5586 		}
5587 	}
5588 
5589 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5590 			sctx->cur_inode_size, &found_clone);
5591 	if (ret != -ENOENT && ret < 0)
5592 		goto out;
5593 
5594 	ret = send_write_or_clone(sctx, path, key, found_clone);
5595 	if (ret)
5596 		goto out;
5597 out_hole:
5598 	ret = maybe_send_hole(sctx, path, key);
5599 out:
5600 	return ret;
5601 }
5602 
5603 static int process_all_extents(struct send_ctx *sctx)
5604 {
5605 	int ret;
5606 	struct btrfs_root *root;
5607 	struct btrfs_path *path;
5608 	struct btrfs_key key;
5609 	struct btrfs_key found_key;
5610 	struct extent_buffer *eb;
5611 	int slot;
5612 
5613 	root = sctx->send_root;
5614 	path = alloc_path_for_send();
5615 	if (!path)
5616 		return -ENOMEM;
5617 
5618 	key.objectid = sctx->cmp_key->objectid;
5619 	key.type = BTRFS_EXTENT_DATA_KEY;
5620 	key.offset = 0;
5621 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5622 	if (ret < 0)
5623 		goto out;
5624 
5625 	while (1) {
5626 		eb = path->nodes[0];
5627 		slot = path->slots[0];
5628 
5629 		if (slot >= btrfs_header_nritems(eb)) {
5630 			ret = btrfs_next_leaf(root, path);
5631 			if (ret < 0) {
5632 				goto out;
5633 			} else if (ret > 0) {
5634 				ret = 0;
5635 				break;
5636 			}
5637 			continue;
5638 		}
5639 
5640 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5641 
5642 		if (found_key.objectid != key.objectid ||
5643 		    found_key.type != key.type) {
5644 			ret = 0;
5645 			goto out;
5646 		}
5647 
5648 		ret = process_extent(sctx, path, &found_key);
5649 		if (ret < 0)
5650 			goto out;
5651 
5652 		path->slots[0]++;
5653 	}
5654 
5655 out:
5656 	btrfs_free_path(path);
5657 	return ret;
5658 }
5659 
5660 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5661 					   int *pending_move,
5662 					   int *refs_processed)
5663 {
5664 	int ret = 0;
5665 
5666 	if (sctx->cur_ino == 0)
5667 		goto out;
5668 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5669 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5670 		goto out;
5671 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5672 		goto out;
5673 
5674 	ret = process_recorded_refs(sctx, pending_move);
5675 	if (ret < 0)
5676 		goto out;
5677 
5678 	*refs_processed = 1;
5679 out:
5680 	return ret;
5681 }
5682 
5683 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5684 {
5685 	int ret = 0;
5686 	u64 left_mode;
5687 	u64 left_uid;
5688 	u64 left_gid;
5689 	u64 right_mode;
5690 	u64 right_uid;
5691 	u64 right_gid;
5692 	int need_chmod = 0;
5693 	int need_chown = 0;
5694 	int pending_move = 0;
5695 	int refs_processed = 0;
5696 
5697 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5698 					      &refs_processed);
5699 	if (ret < 0)
5700 		goto out;
5701 
5702 	/*
5703 	 * We have processed the refs and thus need to advance send_progress.
5704 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5705 	 * inode into account.
5706 	 *
5707 	 * On the other hand, if our current inode is a directory and couldn't
5708 	 * be moved/renamed because its parent was renamed/moved too and it has
5709 	 * a higher inode number, we can only move/rename our current inode
5710 	 * after we moved/renamed its parent. Therefore in this case operate on
5711 	 * the old path (pre move/rename) of our current inode, and the
5712 	 * move/rename will be performed later.
5713 	 */
5714 	if (refs_processed && !pending_move)
5715 		sctx->send_progress = sctx->cur_ino + 1;
5716 
5717 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5718 		goto out;
5719 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5720 		goto out;
5721 
5722 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5723 			&left_mode, &left_uid, &left_gid, NULL);
5724 	if (ret < 0)
5725 		goto out;
5726 
5727 	if (!sctx->parent_root || sctx->cur_inode_new) {
5728 		need_chown = 1;
5729 		if (!S_ISLNK(sctx->cur_inode_mode))
5730 			need_chmod = 1;
5731 	} else {
5732 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5733 				NULL, NULL, &right_mode, &right_uid,
5734 				&right_gid, NULL);
5735 		if (ret < 0)
5736 			goto out;
5737 
5738 		if (left_uid != right_uid || left_gid != right_gid)
5739 			need_chown = 1;
5740 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5741 			need_chmod = 1;
5742 	}
5743 
5744 	if (S_ISREG(sctx->cur_inode_mode)) {
5745 		if (need_send_hole(sctx)) {
5746 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5747 			    sctx->cur_inode_last_extent <
5748 			    sctx->cur_inode_size) {
5749 				ret = get_last_extent(sctx, (u64)-1);
5750 				if (ret)
5751 					goto out;
5752 			}
5753 			if (sctx->cur_inode_last_extent <
5754 			    sctx->cur_inode_size) {
5755 				ret = send_hole(sctx, sctx->cur_inode_size);
5756 				if (ret)
5757 					goto out;
5758 			}
5759 		}
5760 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5761 				sctx->cur_inode_size);
5762 		if (ret < 0)
5763 			goto out;
5764 	}
5765 
5766 	if (need_chown) {
5767 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5768 				left_uid, left_gid);
5769 		if (ret < 0)
5770 			goto out;
5771 	}
5772 	if (need_chmod) {
5773 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5774 				left_mode);
5775 		if (ret < 0)
5776 			goto out;
5777 	}
5778 
5779 	/*
5780 	 * If other directory inodes depended on our current directory
5781 	 * inode's move/rename, now do their move/rename operations.
5782 	 */
5783 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5784 		ret = apply_children_dir_moves(sctx);
5785 		if (ret)
5786 			goto out;
5787 		/*
5788 		 * Need to send that every time, no matter if it actually
5789 		 * changed between the two trees as we have done changes to
5790 		 * the inode before. If our inode is a directory and it's
5791 		 * waiting to be moved/renamed, we will send its utimes when
5792 		 * it's moved/renamed, therefore we don't need to do it here.
5793 		 */
5794 		sctx->send_progress = sctx->cur_ino + 1;
5795 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5796 		if (ret < 0)
5797 			goto out;
5798 	}
5799 
5800 out:
5801 	return ret;
5802 }
5803 
5804 static int changed_inode(struct send_ctx *sctx,
5805 			 enum btrfs_compare_tree_result result)
5806 {
5807 	int ret = 0;
5808 	struct btrfs_key *key = sctx->cmp_key;
5809 	struct btrfs_inode_item *left_ii = NULL;
5810 	struct btrfs_inode_item *right_ii = NULL;
5811 	u64 left_gen = 0;
5812 	u64 right_gen = 0;
5813 
5814 	sctx->cur_ino = key->objectid;
5815 	sctx->cur_inode_new_gen = 0;
5816 	sctx->cur_inode_last_extent = (u64)-1;
5817 
5818 	/*
5819 	 * Set send_progress to current inode. This will tell all get_cur_xxx
5820 	 * functions that the current inode's refs are not updated yet. Later,
5821 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5822 	 */
5823 	sctx->send_progress = sctx->cur_ino;
5824 
5825 	if (result == BTRFS_COMPARE_TREE_NEW ||
5826 	    result == BTRFS_COMPARE_TREE_CHANGED) {
5827 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5828 				sctx->left_path->slots[0],
5829 				struct btrfs_inode_item);
5830 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5831 				left_ii);
5832 	} else {
5833 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5834 				sctx->right_path->slots[0],
5835 				struct btrfs_inode_item);
5836 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5837 				right_ii);
5838 	}
5839 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
5840 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5841 				sctx->right_path->slots[0],
5842 				struct btrfs_inode_item);
5843 
5844 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5845 				right_ii);
5846 
5847 		/*
5848 		 * The cur_ino = root dir case is special here. We can't treat
5849 		 * the inode as deleted+reused because it would generate a
5850 		 * stream that tries to delete/mkdir the root dir.
5851 		 */
5852 		if (left_gen != right_gen &&
5853 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5854 			sctx->cur_inode_new_gen = 1;
5855 	}
5856 
5857 	if (result == BTRFS_COMPARE_TREE_NEW) {
5858 		sctx->cur_inode_gen = left_gen;
5859 		sctx->cur_inode_new = 1;
5860 		sctx->cur_inode_deleted = 0;
5861 		sctx->cur_inode_size = btrfs_inode_size(
5862 				sctx->left_path->nodes[0], left_ii);
5863 		sctx->cur_inode_mode = btrfs_inode_mode(
5864 				sctx->left_path->nodes[0], left_ii);
5865 		sctx->cur_inode_rdev = btrfs_inode_rdev(
5866 				sctx->left_path->nodes[0], left_ii);
5867 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5868 			ret = send_create_inode_if_needed(sctx);
5869 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
5870 		sctx->cur_inode_gen = right_gen;
5871 		sctx->cur_inode_new = 0;
5872 		sctx->cur_inode_deleted = 1;
5873 		sctx->cur_inode_size = btrfs_inode_size(
5874 				sctx->right_path->nodes[0], right_ii);
5875 		sctx->cur_inode_mode = btrfs_inode_mode(
5876 				sctx->right_path->nodes[0], right_ii);
5877 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5878 		/*
5879 		 * We need to do some special handling in case the inode was
5880 		 * reported as changed with a changed generation number. This
5881 		 * means that the original inode was deleted and new inode
5882 		 * reused the same inum. So we have to treat the old inode as
5883 		 * deleted and the new one as new.
5884 		 */
5885 		if (sctx->cur_inode_new_gen) {
5886 			/*
5887 			 * First, process the inode as if it was deleted.
5888 			 */
5889 			sctx->cur_inode_gen = right_gen;
5890 			sctx->cur_inode_new = 0;
5891 			sctx->cur_inode_deleted = 1;
5892 			sctx->cur_inode_size = btrfs_inode_size(
5893 					sctx->right_path->nodes[0], right_ii);
5894 			sctx->cur_inode_mode = btrfs_inode_mode(
5895 					sctx->right_path->nodes[0], right_ii);
5896 			ret = process_all_refs(sctx,
5897 					BTRFS_COMPARE_TREE_DELETED);
5898 			if (ret < 0)
5899 				goto out;
5900 
5901 			/*
5902 			 * Now process the inode as if it was new.
5903 			 */
5904 			sctx->cur_inode_gen = left_gen;
5905 			sctx->cur_inode_new = 1;
5906 			sctx->cur_inode_deleted = 0;
5907 			sctx->cur_inode_size = btrfs_inode_size(
5908 					sctx->left_path->nodes[0], left_ii);
5909 			sctx->cur_inode_mode = btrfs_inode_mode(
5910 					sctx->left_path->nodes[0], left_ii);
5911 			sctx->cur_inode_rdev = btrfs_inode_rdev(
5912 					sctx->left_path->nodes[0], left_ii);
5913 			ret = send_create_inode_if_needed(sctx);
5914 			if (ret < 0)
5915 				goto out;
5916 
5917 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5918 			if (ret < 0)
5919 				goto out;
5920 			/*
5921 			 * Advance send_progress now as we did not get into
5922 			 * process_recorded_refs_if_needed in the new_gen case.
5923 			 */
5924 			sctx->send_progress = sctx->cur_ino + 1;
5925 
5926 			/*
5927 			 * Now process all extents and xattrs of the inode as if
5928 			 * they were all new.
5929 			 */
5930 			ret = process_all_extents(sctx);
5931 			if (ret < 0)
5932 				goto out;
5933 			ret = process_all_new_xattrs(sctx);
5934 			if (ret < 0)
5935 				goto out;
5936 		} else {
5937 			sctx->cur_inode_gen = left_gen;
5938 			sctx->cur_inode_new = 0;
5939 			sctx->cur_inode_new_gen = 0;
5940 			sctx->cur_inode_deleted = 0;
5941 			sctx->cur_inode_size = btrfs_inode_size(
5942 					sctx->left_path->nodes[0], left_ii);
5943 			sctx->cur_inode_mode = btrfs_inode_mode(
5944 					sctx->left_path->nodes[0], left_ii);
5945 		}
5946 	}
5947 
5948 out:
5949 	return ret;
5950 }
5951 
5952 /*
5953  * We have to process new refs before deleted refs, but compare_trees gives us
5954  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5955  * first and later process them in process_recorded_refs.
5956  * For the cur_inode_new_gen case, we skip recording completely because
5957  * changed_inode did already initiate processing of refs. The reason for this is
5958  * that in this case, compare_tree actually compares the refs of 2 different
5959  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5960  * refs of the right tree as deleted and all refs of the left tree as new.
5961  */
5962 static int changed_ref(struct send_ctx *sctx,
5963 		       enum btrfs_compare_tree_result result)
5964 {
5965 	int ret = 0;
5966 
5967 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
5968 		inconsistent_snapshot_error(sctx, result, "reference");
5969 		return -EIO;
5970 	}
5971 
5972 	if (!sctx->cur_inode_new_gen &&
5973 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5974 		if (result == BTRFS_COMPARE_TREE_NEW)
5975 			ret = record_new_ref(sctx);
5976 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5977 			ret = record_deleted_ref(sctx);
5978 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5979 			ret = record_changed_ref(sctx);
5980 	}
5981 
5982 	return ret;
5983 }
5984 
5985 /*
5986  * Process new/deleted/changed xattrs. We skip processing in the
5987  * cur_inode_new_gen case because changed_inode did already initiate processing
5988  * of xattrs. The reason is the same as in changed_ref
5989  */
5990 static int changed_xattr(struct send_ctx *sctx,
5991 			 enum btrfs_compare_tree_result result)
5992 {
5993 	int ret = 0;
5994 
5995 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
5996 		inconsistent_snapshot_error(sctx, result, "xattr");
5997 		return -EIO;
5998 	}
5999 
6000 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6001 		if (result == BTRFS_COMPARE_TREE_NEW)
6002 			ret = process_new_xattr(sctx);
6003 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6004 			ret = process_deleted_xattr(sctx);
6005 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6006 			ret = process_changed_xattr(sctx);
6007 	}
6008 
6009 	return ret;
6010 }
6011 
6012 /*
6013  * Process new/deleted/changed extents. We skip processing in the
6014  * cur_inode_new_gen case because changed_inode did already initiate processing
6015  * of extents. The reason is the same as in changed_ref
6016  */
6017 static int changed_extent(struct send_ctx *sctx,
6018 			  enum btrfs_compare_tree_result result)
6019 {
6020 	int ret = 0;
6021 
6022 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6023 
6024 		if (result == BTRFS_COMPARE_TREE_CHANGED) {
6025 			struct extent_buffer *leaf_l;
6026 			struct extent_buffer *leaf_r;
6027 			struct btrfs_file_extent_item *ei_l;
6028 			struct btrfs_file_extent_item *ei_r;
6029 
6030 			leaf_l = sctx->left_path->nodes[0];
6031 			leaf_r = sctx->right_path->nodes[0];
6032 			ei_l = btrfs_item_ptr(leaf_l,
6033 					      sctx->left_path->slots[0],
6034 					      struct btrfs_file_extent_item);
6035 			ei_r = btrfs_item_ptr(leaf_r,
6036 					      sctx->right_path->slots[0],
6037 					      struct btrfs_file_extent_item);
6038 
6039 			/*
6040 			 * We may have found an extent item that has changed
6041 			 * only its disk_bytenr field and the corresponding
6042 			 * inode item was not updated. This case happens due to
6043 			 * very specific timings during relocation when a leaf
6044 			 * that contains file extent items is COWed while
6045 			 * relocation is ongoing and its in the stage where it
6046 			 * updates data pointers. So when this happens we can
6047 			 * safely ignore it since we know it's the same extent,
6048 			 * but just at different logical and physical locations
6049 			 * (when an extent is fully replaced with a new one, we
6050 			 * know the generation number must have changed too,
6051 			 * since snapshot creation implies committing the current
6052 			 * transaction, and the inode item must have been updated
6053 			 * as well).
6054 			 * This replacement of the disk_bytenr happens at
6055 			 * relocation.c:replace_file_extents() through
6056 			 * relocation.c:btrfs_reloc_cow_block().
6057 			 */
6058 			if (btrfs_file_extent_generation(leaf_l, ei_l) ==
6059 			    btrfs_file_extent_generation(leaf_r, ei_r) &&
6060 			    btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
6061 			    btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
6062 			    btrfs_file_extent_compression(leaf_l, ei_l) ==
6063 			    btrfs_file_extent_compression(leaf_r, ei_r) &&
6064 			    btrfs_file_extent_encryption(leaf_l, ei_l) ==
6065 			    btrfs_file_extent_encryption(leaf_r, ei_r) &&
6066 			    btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
6067 			    btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
6068 			    btrfs_file_extent_type(leaf_l, ei_l) ==
6069 			    btrfs_file_extent_type(leaf_r, ei_r) &&
6070 			    btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
6071 			    btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
6072 			    btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
6073 			    btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
6074 			    btrfs_file_extent_offset(leaf_l, ei_l) ==
6075 			    btrfs_file_extent_offset(leaf_r, ei_r) &&
6076 			    btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
6077 			    btrfs_file_extent_num_bytes(leaf_r, ei_r))
6078 				return 0;
6079 		}
6080 
6081 		inconsistent_snapshot_error(sctx, result, "extent");
6082 		return -EIO;
6083 	}
6084 
6085 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6086 		if (result != BTRFS_COMPARE_TREE_DELETED)
6087 			ret = process_extent(sctx, sctx->left_path,
6088 					sctx->cmp_key);
6089 	}
6090 
6091 	return ret;
6092 }
6093 
6094 static int dir_changed(struct send_ctx *sctx, u64 dir)
6095 {
6096 	u64 orig_gen, new_gen;
6097 	int ret;
6098 
6099 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6100 			     NULL, NULL);
6101 	if (ret)
6102 		return ret;
6103 
6104 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6105 			     NULL, NULL, NULL);
6106 	if (ret)
6107 		return ret;
6108 
6109 	return (orig_gen != new_gen) ? 1 : 0;
6110 }
6111 
6112 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6113 			struct btrfs_key *key)
6114 {
6115 	struct btrfs_inode_extref *extref;
6116 	struct extent_buffer *leaf;
6117 	u64 dirid = 0, last_dirid = 0;
6118 	unsigned long ptr;
6119 	u32 item_size;
6120 	u32 cur_offset = 0;
6121 	int ref_name_len;
6122 	int ret = 0;
6123 
6124 	/* Easy case, just check this one dirid */
6125 	if (key->type == BTRFS_INODE_REF_KEY) {
6126 		dirid = key->offset;
6127 
6128 		ret = dir_changed(sctx, dirid);
6129 		goto out;
6130 	}
6131 
6132 	leaf = path->nodes[0];
6133 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6134 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6135 	while (cur_offset < item_size) {
6136 		extref = (struct btrfs_inode_extref *)(ptr +
6137 						       cur_offset);
6138 		dirid = btrfs_inode_extref_parent(leaf, extref);
6139 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6140 		cur_offset += ref_name_len + sizeof(*extref);
6141 		if (dirid == last_dirid)
6142 			continue;
6143 		ret = dir_changed(sctx, dirid);
6144 		if (ret)
6145 			break;
6146 		last_dirid = dirid;
6147 	}
6148 out:
6149 	return ret;
6150 }
6151 
6152 /*
6153  * Updates compare related fields in sctx and simply forwards to the actual
6154  * changed_xxx functions.
6155  */
6156 static int changed_cb(struct btrfs_root *left_root,
6157 		      struct btrfs_root *right_root,
6158 		      struct btrfs_path *left_path,
6159 		      struct btrfs_path *right_path,
6160 		      struct btrfs_key *key,
6161 		      enum btrfs_compare_tree_result result,
6162 		      void *ctx)
6163 {
6164 	int ret = 0;
6165 	struct send_ctx *sctx = ctx;
6166 
6167 	if (result == BTRFS_COMPARE_TREE_SAME) {
6168 		if (key->type == BTRFS_INODE_REF_KEY ||
6169 		    key->type == BTRFS_INODE_EXTREF_KEY) {
6170 			ret = compare_refs(sctx, left_path, key);
6171 			if (!ret)
6172 				return 0;
6173 			if (ret < 0)
6174 				return ret;
6175 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6176 			return maybe_send_hole(sctx, left_path, key);
6177 		} else {
6178 			return 0;
6179 		}
6180 		result = BTRFS_COMPARE_TREE_CHANGED;
6181 		ret = 0;
6182 	}
6183 
6184 	sctx->left_path = left_path;
6185 	sctx->right_path = right_path;
6186 	sctx->cmp_key = key;
6187 
6188 	ret = finish_inode_if_needed(sctx, 0);
6189 	if (ret < 0)
6190 		goto out;
6191 
6192 	/* Ignore non-FS objects */
6193 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6194 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6195 		goto out;
6196 
6197 	if (key->type == BTRFS_INODE_ITEM_KEY)
6198 		ret = changed_inode(sctx, result);
6199 	else if (key->type == BTRFS_INODE_REF_KEY ||
6200 		 key->type == BTRFS_INODE_EXTREF_KEY)
6201 		ret = changed_ref(sctx, result);
6202 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
6203 		ret = changed_xattr(sctx, result);
6204 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
6205 		ret = changed_extent(sctx, result);
6206 
6207 out:
6208 	return ret;
6209 }
6210 
6211 static int full_send_tree(struct send_ctx *sctx)
6212 {
6213 	int ret;
6214 	struct btrfs_root *send_root = sctx->send_root;
6215 	struct btrfs_key key;
6216 	struct btrfs_key found_key;
6217 	struct btrfs_path *path;
6218 	struct extent_buffer *eb;
6219 	int slot;
6220 
6221 	path = alloc_path_for_send();
6222 	if (!path)
6223 		return -ENOMEM;
6224 
6225 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6226 	key.type = BTRFS_INODE_ITEM_KEY;
6227 	key.offset = 0;
6228 
6229 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6230 	if (ret < 0)
6231 		goto out;
6232 	if (ret)
6233 		goto out_finish;
6234 
6235 	while (1) {
6236 		eb = path->nodes[0];
6237 		slot = path->slots[0];
6238 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6239 
6240 		ret = changed_cb(send_root, NULL, path, NULL,
6241 				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
6242 		if (ret < 0)
6243 			goto out;
6244 
6245 		key.objectid = found_key.objectid;
6246 		key.type = found_key.type;
6247 		key.offset = found_key.offset + 1;
6248 
6249 		ret = btrfs_next_item(send_root, path);
6250 		if (ret < 0)
6251 			goto out;
6252 		if (ret) {
6253 			ret  = 0;
6254 			break;
6255 		}
6256 	}
6257 
6258 out_finish:
6259 	ret = finish_inode_if_needed(sctx, 1);
6260 
6261 out:
6262 	btrfs_free_path(path);
6263 	return ret;
6264 }
6265 
6266 static int send_subvol(struct send_ctx *sctx)
6267 {
6268 	int ret;
6269 
6270 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6271 		ret = send_header(sctx);
6272 		if (ret < 0)
6273 			goto out;
6274 	}
6275 
6276 	ret = send_subvol_begin(sctx);
6277 	if (ret < 0)
6278 		goto out;
6279 
6280 	if (sctx->parent_root) {
6281 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6282 				changed_cb, sctx);
6283 		if (ret < 0)
6284 			goto out;
6285 		ret = finish_inode_if_needed(sctx, 1);
6286 		if (ret < 0)
6287 			goto out;
6288 	} else {
6289 		ret = full_send_tree(sctx);
6290 		if (ret < 0)
6291 			goto out;
6292 	}
6293 
6294 out:
6295 	free_recorded_refs(sctx);
6296 	return ret;
6297 }
6298 
6299 /*
6300  * If orphan cleanup did remove any orphans from a root, it means the tree
6301  * was modified and therefore the commit root is not the same as the current
6302  * root anymore. This is a problem, because send uses the commit root and
6303  * therefore can see inode items that don't exist in the current root anymore,
6304  * and for example make calls to btrfs_iget, which will do tree lookups based
6305  * on the current root and not on the commit root. Those lookups will fail,
6306  * returning a -ESTALE error, and making send fail with that error. So make
6307  * sure a send does not see any orphans we have just removed, and that it will
6308  * see the same inodes regardless of whether a transaction commit happened
6309  * before it started (meaning that the commit root will be the same as the
6310  * current root) or not.
6311  */
6312 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6313 {
6314 	int i;
6315 	struct btrfs_trans_handle *trans = NULL;
6316 
6317 again:
6318 	if (sctx->parent_root &&
6319 	    sctx->parent_root->node != sctx->parent_root->commit_root)
6320 		goto commit_trans;
6321 
6322 	for (i = 0; i < sctx->clone_roots_cnt; i++)
6323 		if (sctx->clone_roots[i].root->node !=
6324 		    sctx->clone_roots[i].root->commit_root)
6325 			goto commit_trans;
6326 
6327 	if (trans)
6328 		return btrfs_end_transaction(trans);
6329 
6330 	return 0;
6331 
6332 commit_trans:
6333 	/* Use any root, all fs roots will get their commit roots updated. */
6334 	if (!trans) {
6335 		trans = btrfs_join_transaction(sctx->send_root);
6336 		if (IS_ERR(trans))
6337 			return PTR_ERR(trans);
6338 		goto again;
6339 	}
6340 
6341 	return btrfs_commit_transaction(trans);
6342 }
6343 
6344 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6345 {
6346 	spin_lock(&root->root_item_lock);
6347 	root->send_in_progress--;
6348 	/*
6349 	 * Not much left to do, we don't know why it's unbalanced and
6350 	 * can't blindly reset it to 0.
6351 	 */
6352 	if (root->send_in_progress < 0)
6353 		btrfs_err(root->fs_info,
6354 			  "send_in_progres unbalanced %d root %llu",
6355 			  root->send_in_progress, root->root_key.objectid);
6356 	spin_unlock(&root->root_item_lock);
6357 }
6358 
6359 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
6360 {
6361 	int ret = 0;
6362 	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6363 	struct btrfs_fs_info *fs_info = send_root->fs_info;
6364 	struct btrfs_root *clone_root;
6365 	struct btrfs_ioctl_send_args *arg = NULL;
6366 	struct btrfs_key key;
6367 	struct send_ctx *sctx = NULL;
6368 	u32 i;
6369 	u64 *clone_sources_tmp = NULL;
6370 	int clone_sources_to_rollback = 0;
6371 	unsigned alloc_size;
6372 	int sort_clone_roots = 0;
6373 	int index;
6374 
6375 	if (!capable(CAP_SYS_ADMIN))
6376 		return -EPERM;
6377 
6378 	/*
6379 	 * The subvolume must remain read-only during send, protect against
6380 	 * making it RW. This also protects against deletion.
6381 	 */
6382 	spin_lock(&send_root->root_item_lock);
6383 	send_root->send_in_progress++;
6384 	spin_unlock(&send_root->root_item_lock);
6385 
6386 	/*
6387 	 * This is done when we lookup the root, it should already be complete
6388 	 * by the time we get here.
6389 	 */
6390 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6391 
6392 	/*
6393 	 * Userspace tools do the checks and warn the user if it's
6394 	 * not RO.
6395 	 */
6396 	if (!btrfs_root_readonly(send_root)) {
6397 		ret = -EPERM;
6398 		goto out;
6399 	}
6400 
6401 	arg = memdup_user(arg_, sizeof(*arg));
6402 	if (IS_ERR(arg)) {
6403 		ret = PTR_ERR(arg);
6404 		arg = NULL;
6405 		goto out;
6406 	}
6407 
6408 	/*
6409 	 * Check that we don't overflow at later allocations, we request
6410 	 * clone_sources_count + 1 items, and compare to unsigned long inside
6411 	 * access_ok.
6412 	 */
6413 	if (arg->clone_sources_count >
6414 	    ULONG_MAX / sizeof(struct clone_root) - 1) {
6415 		ret = -EINVAL;
6416 		goto out;
6417 	}
6418 
6419 	if (!access_ok(VERIFY_READ, arg->clone_sources,
6420 			sizeof(*arg->clone_sources) *
6421 			arg->clone_sources_count)) {
6422 		ret = -EFAULT;
6423 		goto out;
6424 	}
6425 
6426 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6427 		ret = -EINVAL;
6428 		goto out;
6429 	}
6430 
6431 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6432 	if (!sctx) {
6433 		ret = -ENOMEM;
6434 		goto out;
6435 	}
6436 
6437 	INIT_LIST_HEAD(&sctx->new_refs);
6438 	INIT_LIST_HEAD(&sctx->deleted_refs);
6439 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6440 	INIT_LIST_HEAD(&sctx->name_cache_list);
6441 
6442 	sctx->flags = arg->flags;
6443 
6444 	sctx->send_filp = fget(arg->send_fd);
6445 	if (!sctx->send_filp) {
6446 		ret = -EBADF;
6447 		goto out;
6448 	}
6449 
6450 	sctx->send_root = send_root;
6451 	/*
6452 	 * Unlikely but possible, if the subvolume is marked for deletion but
6453 	 * is slow to remove the directory entry, send can still be started
6454 	 */
6455 	if (btrfs_root_dead(sctx->send_root)) {
6456 		ret = -EPERM;
6457 		goto out;
6458 	}
6459 
6460 	sctx->clone_roots_cnt = arg->clone_sources_count;
6461 
6462 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6463 	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
6464 	if (!sctx->send_buf) {
6465 		ret = -ENOMEM;
6466 		goto out;
6467 	}
6468 
6469 	sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
6470 	if (!sctx->read_buf) {
6471 		ret = -ENOMEM;
6472 		goto out;
6473 	}
6474 
6475 	sctx->pending_dir_moves = RB_ROOT;
6476 	sctx->waiting_dir_moves = RB_ROOT;
6477 	sctx->orphan_dirs = RB_ROOT;
6478 
6479 	alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6480 
6481 	sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
6482 	if (!sctx->clone_roots) {
6483 		ret = -ENOMEM;
6484 		goto out;
6485 	}
6486 
6487 	alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6488 
6489 	if (arg->clone_sources_count) {
6490 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
6491 		if (!clone_sources_tmp) {
6492 			ret = -ENOMEM;
6493 			goto out;
6494 		}
6495 
6496 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6497 				alloc_size);
6498 		if (ret) {
6499 			ret = -EFAULT;
6500 			goto out;
6501 		}
6502 
6503 		for (i = 0; i < arg->clone_sources_count; i++) {
6504 			key.objectid = clone_sources_tmp[i];
6505 			key.type = BTRFS_ROOT_ITEM_KEY;
6506 			key.offset = (u64)-1;
6507 
6508 			index = srcu_read_lock(&fs_info->subvol_srcu);
6509 
6510 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6511 			if (IS_ERR(clone_root)) {
6512 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6513 				ret = PTR_ERR(clone_root);
6514 				goto out;
6515 			}
6516 			spin_lock(&clone_root->root_item_lock);
6517 			if (!btrfs_root_readonly(clone_root) ||
6518 			    btrfs_root_dead(clone_root)) {
6519 				spin_unlock(&clone_root->root_item_lock);
6520 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6521 				ret = -EPERM;
6522 				goto out;
6523 			}
6524 			clone_root->send_in_progress++;
6525 			spin_unlock(&clone_root->root_item_lock);
6526 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6527 
6528 			sctx->clone_roots[i].root = clone_root;
6529 			clone_sources_to_rollback = i + 1;
6530 		}
6531 		kvfree(clone_sources_tmp);
6532 		clone_sources_tmp = NULL;
6533 	}
6534 
6535 	if (arg->parent_root) {
6536 		key.objectid = arg->parent_root;
6537 		key.type = BTRFS_ROOT_ITEM_KEY;
6538 		key.offset = (u64)-1;
6539 
6540 		index = srcu_read_lock(&fs_info->subvol_srcu);
6541 
6542 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6543 		if (IS_ERR(sctx->parent_root)) {
6544 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6545 			ret = PTR_ERR(sctx->parent_root);
6546 			goto out;
6547 		}
6548 
6549 		spin_lock(&sctx->parent_root->root_item_lock);
6550 		sctx->parent_root->send_in_progress++;
6551 		if (!btrfs_root_readonly(sctx->parent_root) ||
6552 				btrfs_root_dead(sctx->parent_root)) {
6553 			spin_unlock(&sctx->parent_root->root_item_lock);
6554 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6555 			ret = -EPERM;
6556 			goto out;
6557 		}
6558 		spin_unlock(&sctx->parent_root->root_item_lock);
6559 
6560 		srcu_read_unlock(&fs_info->subvol_srcu, index);
6561 	}
6562 
6563 	/*
6564 	 * Clones from send_root are allowed, but only if the clone source
6565 	 * is behind the current send position. This is checked while searching
6566 	 * for possible clone sources.
6567 	 */
6568 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6569 
6570 	/* We do a bsearch later */
6571 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
6572 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6573 			NULL);
6574 	sort_clone_roots = 1;
6575 
6576 	ret = ensure_commit_roots_uptodate(sctx);
6577 	if (ret)
6578 		goto out;
6579 
6580 	current->journal_info = BTRFS_SEND_TRANS_STUB;
6581 	ret = send_subvol(sctx);
6582 	current->journal_info = NULL;
6583 	if (ret < 0)
6584 		goto out;
6585 
6586 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6587 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6588 		if (ret < 0)
6589 			goto out;
6590 		ret = send_cmd(sctx);
6591 		if (ret < 0)
6592 			goto out;
6593 	}
6594 
6595 out:
6596 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6597 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6598 		struct rb_node *n;
6599 		struct pending_dir_move *pm;
6600 
6601 		n = rb_first(&sctx->pending_dir_moves);
6602 		pm = rb_entry(n, struct pending_dir_move, node);
6603 		while (!list_empty(&pm->list)) {
6604 			struct pending_dir_move *pm2;
6605 
6606 			pm2 = list_first_entry(&pm->list,
6607 					       struct pending_dir_move, list);
6608 			free_pending_move(sctx, pm2);
6609 		}
6610 		free_pending_move(sctx, pm);
6611 	}
6612 
6613 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6614 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6615 		struct rb_node *n;
6616 		struct waiting_dir_move *dm;
6617 
6618 		n = rb_first(&sctx->waiting_dir_moves);
6619 		dm = rb_entry(n, struct waiting_dir_move, node);
6620 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
6621 		kfree(dm);
6622 	}
6623 
6624 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6625 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6626 		struct rb_node *n;
6627 		struct orphan_dir_info *odi;
6628 
6629 		n = rb_first(&sctx->orphan_dirs);
6630 		odi = rb_entry(n, struct orphan_dir_info, node);
6631 		free_orphan_dir_info(sctx, odi);
6632 	}
6633 
6634 	if (sort_clone_roots) {
6635 		for (i = 0; i < sctx->clone_roots_cnt; i++)
6636 			btrfs_root_dec_send_in_progress(
6637 					sctx->clone_roots[i].root);
6638 	} else {
6639 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6640 			btrfs_root_dec_send_in_progress(
6641 					sctx->clone_roots[i].root);
6642 
6643 		btrfs_root_dec_send_in_progress(send_root);
6644 	}
6645 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6646 		btrfs_root_dec_send_in_progress(sctx->parent_root);
6647 
6648 	kfree(arg);
6649 	kvfree(clone_sources_tmp);
6650 
6651 	if (sctx) {
6652 		if (sctx->send_filp)
6653 			fput(sctx->send_filp);
6654 
6655 		kvfree(sctx->clone_roots);
6656 		kvfree(sctx->send_buf);
6657 		kvfree(sctx->read_buf);
6658 
6659 		name_cache_free(sctx);
6660 
6661 		kfree(sctx);
6662 	}
6663 
6664 	return ret;
6665 }
6666