1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/fs.h> 8 #include <linux/file.h> 9 #include <linux/sort.h> 10 #include <linux/mount.h> 11 #include <linux/xattr.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/radix-tree.h> 14 #include <linux/vmalloc.h> 15 #include <linux/string.h> 16 #include <linux/compat.h> 17 #include <linux/crc32c.h> 18 19 #include "send.h" 20 #include "backref.h" 21 #include "locking.h" 22 #include "disk-io.h" 23 #include "btrfs_inode.h" 24 #include "transaction.h" 25 #include "compression.h" 26 #include "xattr.h" 27 #include "print-tree.h" 28 29 /* 30 * Maximum number of references an extent can have in order for us to attempt to 31 * issue clone operations instead of write operations. This currently exists to 32 * avoid hitting limitations of the backreference walking code (taking a lot of 33 * time and using too much memory for extents with large number of references). 34 */ 35 #define SEND_MAX_EXTENT_REFS 64 36 37 /* 38 * A fs_path is a helper to dynamically build path names with unknown size. 39 * It reallocates the internal buffer on demand. 40 * It allows fast adding of path elements on the right side (normal path) and 41 * fast adding to the left side (reversed path). A reversed path can also be 42 * unreversed if needed. 43 */ 44 struct fs_path { 45 union { 46 struct { 47 char *start; 48 char *end; 49 50 char *buf; 51 unsigned short buf_len:15; 52 unsigned short reversed:1; 53 char inline_buf[]; 54 }; 55 /* 56 * Average path length does not exceed 200 bytes, we'll have 57 * better packing in the slab and higher chance to satisfy 58 * a allocation later during send. 59 */ 60 char pad[256]; 61 }; 62 }; 63 #define FS_PATH_INLINE_SIZE \ 64 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 65 66 67 /* reused for each extent */ 68 struct clone_root { 69 struct btrfs_root *root; 70 u64 ino; 71 u64 offset; 72 73 u64 found_refs; 74 }; 75 76 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 77 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 78 79 struct send_ctx { 80 struct file *send_filp; 81 loff_t send_off; 82 char *send_buf; 83 u32 send_size; 84 u32 send_max_size; 85 u64 total_send_size; 86 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 87 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 88 /* Protocol version compatibility requested */ 89 u32 proto; 90 91 struct btrfs_root *send_root; 92 struct btrfs_root *parent_root; 93 struct clone_root *clone_roots; 94 int clone_roots_cnt; 95 96 /* current state of the compare_tree call */ 97 struct btrfs_path *left_path; 98 struct btrfs_path *right_path; 99 struct btrfs_key *cmp_key; 100 101 /* 102 * Keep track of the generation of the last transaction that was used 103 * for relocating a block group. This is periodically checked in order 104 * to detect if a relocation happened since the last check, so that we 105 * don't operate on stale extent buffers for nodes (level >= 1) or on 106 * stale disk_bytenr values of file extent items. 107 */ 108 u64 last_reloc_trans; 109 110 /* 111 * infos of the currently processed inode. In case of deleted inodes, 112 * these are the values from the deleted inode. 113 */ 114 u64 cur_ino; 115 u64 cur_inode_gen; 116 int cur_inode_new; 117 int cur_inode_new_gen; 118 int cur_inode_deleted; 119 u64 cur_inode_size; 120 u64 cur_inode_mode; 121 u64 cur_inode_rdev; 122 u64 cur_inode_last_extent; 123 u64 cur_inode_next_write_offset; 124 bool ignore_cur_inode; 125 126 u64 send_progress; 127 128 struct list_head new_refs; 129 struct list_head deleted_refs; 130 131 struct radix_tree_root name_cache; 132 struct list_head name_cache_list; 133 int name_cache_size; 134 135 struct file_ra_state ra; 136 137 /* 138 * We process inodes by their increasing order, so if before an 139 * incremental send we reverse the parent/child relationship of 140 * directories such that a directory with a lower inode number was 141 * the parent of a directory with a higher inode number, and the one 142 * becoming the new parent got renamed too, we can't rename/move the 143 * directory with lower inode number when we finish processing it - we 144 * must process the directory with higher inode number first, then 145 * rename/move it and then rename/move the directory with lower inode 146 * number. Example follows. 147 * 148 * Tree state when the first send was performed: 149 * 150 * . 151 * |-- a (ino 257) 152 * |-- b (ino 258) 153 * | 154 * | 155 * |-- c (ino 259) 156 * | |-- d (ino 260) 157 * | 158 * |-- c2 (ino 261) 159 * 160 * Tree state when the second (incremental) send is performed: 161 * 162 * . 163 * |-- a (ino 257) 164 * |-- b (ino 258) 165 * |-- c2 (ino 261) 166 * |-- d2 (ino 260) 167 * |-- cc (ino 259) 168 * 169 * The sequence of steps that lead to the second state was: 170 * 171 * mv /a/b/c/d /a/b/c2/d2 172 * mv /a/b/c /a/b/c2/d2/cc 173 * 174 * "c" has lower inode number, but we can't move it (2nd mv operation) 175 * before we move "d", which has higher inode number. 176 * 177 * So we just memorize which move/rename operations must be performed 178 * later when their respective parent is processed and moved/renamed. 179 */ 180 181 /* Indexed by parent directory inode number. */ 182 struct rb_root pending_dir_moves; 183 184 /* 185 * Reverse index, indexed by the inode number of a directory that 186 * is waiting for the move/rename of its immediate parent before its 187 * own move/rename can be performed. 188 */ 189 struct rb_root waiting_dir_moves; 190 191 /* 192 * A directory that is going to be rm'ed might have a child directory 193 * which is in the pending directory moves index above. In this case, 194 * the directory can only be removed after the move/rename of its child 195 * is performed. Example: 196 * 197 * Parent snapshot: 198 * 199 * . (ino 256) 200 * |-- a/ (ino 257) 201 * |-- b/ (ino 258) 202 * |-- c/ (ino 259) 203 * | |-- x/ (ino 260) 204 * | 205 * |-- y/ (ino 261) 206 * 207 * Send snapshot: 208 * 209 * . (ino 256) 210 * |-- a/ (ino 257) 211 * |-- b/ (ino 258) 212 * |-- YY/ (ino 261) 213 * |-- x/ (ino 260) 214 * 215 * Sequence of steps that lead to the send snapshot: 216 * rm -f /a/b/c/foo.txt 217 * mv /a/b/y /a/b/YY 218 * mv /a/b/c/x /a/b/YY 219 * rmdir /a/b/c 220 * 221 * When the child is processed, its move/rename is delayed until its 222 * parent is processed (as explained above), but all other operations 223 * like update utimes, chown, chgrp, etc, are performed and the paths 224 * that it uses for those operations must use the orphanized name of 225 * its parent (the directory we're going to rm later), so we need to 226 * memorize that name. 227 * 228 * Indexed by the inode number of the directory to be deleted. 229 */ 230 struct rb_root orphan_dirs; 231 }; 232 233 struct pending_dir_move { 234 struct rb_node node; 235 struct list_head list; 236 u64 parent_ino; 237 u64 ino; 238 u64 gen; 239 struct list_head update_refs; 240 }; 241 242 struct waiting_dir_move { 243 struct rb_node node; 244 u64 ino; 245 /* 246 * There might be some directory that could not be removed because it 247 * was waiting for this directory inode to be moved first. Therefore 248 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 249 */ 250 u64 rmdir_ino; 251 u64 rmdir_gen; 252 bool orphanized; 253 }; 254 255 struct orphan_dir_info { 256 struct rb_node node; 257 u64 ino; 258 u64 gen; 259 u64 last_dir_index_offset; 260 }; 261 262 struct name_cache_entry { 263 struct list_head list; 264 /* 265 * radix_tree has only 32bit entries but we need to handle 64bit inums. 266 * We use the lower 32bit of the 64bit inum to store it in the tree. If 267 * more then one inum would fall into the same entry, we use radix_list 268 * to store the additional entries. radix_list is also used to store 269 * entries where two entries have the same inum but different 270 * generations. 271 */ 272 struct list_head radix_list; 273 u64 ino; 274 u64 gen; 275 u64 parent_ino; 276 u64 parent_gen; 277 int ret; 278 int need_later_update; 279 int name_len; 280 char name[]; 281 }; 282 283 #define ADVANCE 1 284 #define ADVANCE_ONLY_NEXT -1 285 286 enum btrfs_compare_tree_result { 287 BTRFS_COMPARE_TREE_NEW, 288 BTRFS_COMPARE_TREE_DELETED, 289 BTRFS_COMPARE_TREE_CHANGED, 290 BTRFS_COMPARE_TREE_SAME, 291 }; 292 293 __cold 294 static void inconsistent_snapshot_error(struct send_ctx *sctx, 295 enum btrfs_compare_tree_result result, 296 const char *what) 297 { 298 const char *result_string; 299 300 switch (result) { 301 case BTRFS_COMPARE_TREE_NEW: 302 result_string = "new"; 303 break; 304 case BTRFS_COMPARE_TREE_DELETED: 305 result_string = "deleted"; 306 break; 307 case BTRFS_COMPARE_TREE_CHANGED: 308 result_string = "updated"; 309 break; 310 case BTRFS_COMPARE_TREE_SAME: 311 ASSERT(0); 312 result_string = "unchanged"; 313 break; 314 default: 315 ASSERT(0); 316 result_string = "unexpected"; 317 } 318 319 btrfs_err(sctx->send_root->fs_info, 320 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 321 result_string, what, sctx->cmp_key->objectid, 322 sctx->send_root->root_key.objectid, 323 (sctx->parent_root ? 324 sctx->parent_root->root_key.objectid : 0)); 325 } 326 327 __maybe_unused 328 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd) 329 { 330 switch (sctx->proto) { 331 case 1: return cmd < __BTRFS_SEND_C_MAX_V1; 332 case 2: return cmd < __BTRFS_SEND_C_MAX_V2; 333 default: return false; 334 } 335 } 336 337 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 338 339 static struct waiting_dir_move * 340 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 341 342 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); 343 344 static int need_send_hole(struct send_ctx *sctx) 345 { 346 return (sctx->parent_root && !sctx->cur_inode_new && 347 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 348 S_ISREG(sctx->cur_inode_mode)); 349 } 350 351 static void fs_path_reset(struct fs_path *p) 352 { 353 if (p->reversed) { 354 p->start = p->buf + p->buf_len - 1; 355 p->end = p->start; 356 *p->start = 0; 357 } else { 358 p->start = p->buf; 359 p->end = p->start; 360 *p->start = 0; 361 } 362 } 363 364 static struct fs_path *fs_path_alloc(void) 365 { 366 struct fs_path *p; 367 368 p = kmalloc(sizeof(*p), GFP_KERNEL); 369 if (!p) 370 return NULL; 371 p->reversed = 0; 372 p->buf = p->inline_buf; 373 p->buf_len = FS_PATH_INLINE_SIZE; 374 fs_path_reset(p); 375 return p; 376 } 377 378 static struct fs_path *fs_path_alloc_reversed(void) 379 { 380 struct fs_path *p; 381 382 p = fs_path_alloc(); 383 if (!p) 384 return NULL; 385 p->reversed = 1; 386 fs_path_reset(p); 387 return p; 388 } 389 390 static void fs_path_free(struct fs_path *p) 391 { 392 if (!p) 393 return; 394 if (p->buf != p->inline_buf) 395 kfree(p->buf); 396 kfree(p); 397 } 398 399 static int fs_path_len(struct fs_path *p) 400 { 401 return p->end - p->start; 402 } 403 404 static int fs_path_ensure_buf(struct fs_path *p, int len) 405 { 406 char *tmp_buf; 407 int path_len; 408 int old_buf_len; 409 410 len++; 411 412 if (p->buf_len >= len) 413 return 0; 414 415 if (len > PATH_MAX) { 416 WARN_ON(1); 417 return -ENOMEM; 418 } 419 420 path_len = p->end - p->start; 421 old_buf_len = p->buf_len; 422 423 /* 424 * First time the inline_buf does not suffice 425 */ 426 if (p->buf == p->inline_buf) { 427 tmp_buf = kmalloc(len, GFP_KERNEL); 428 if (tmp_buf) 429 memcpy(tmp_buf, p->buf, old_buf_len); 430 } else { 431 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 432 } 433 if (!tmp_buf) 434 return -ENOMEM; 435 p->buf = tmp_buf; 436 /* 437 * The real size of the buffer is bigger, this will let the fast path 438 * happen most of the time 439 */ 440 p->buf_len = ksize(p->buf); 441 442 if (p->reversed) { 443 tmp_buf = p->buf + old_buf_len - path_len - 1; 444 p->end = p->buf + p->buf_len - 1; 445 p->start = p->end - path_len; 446 memmove(p->start, tmp_buf, path_len + 1); 447 } else { 448 p->start = p->buf; 449 p->end = p->start + path_len; 450 } 451 return 0; 452 } 453 454 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 455 char **prepared) 456 { 457 int ret; 458 int new_len; 459 460 new_len = p->end - p->start + name_len; 461 if (p->start != p->end) 462 new_len++; 463 ret = fs_path_ensure_buf(p, new_len); 464 if (ret < 0) 465 goto out; 466 467 if (p->reversed) { 468 if (p->start != p->end) 469 *--p->start = '/'; 470 p->start -= name_len; 471 *prepared = p->start; 472 } else { 473 if (p->start != p->end) 474 *p->end++ = '/'; 475 *prepared = p->end; 476 p->end += name_len; 477 *p->end = 0; 478 } 479 480 out: 481 return ret; 482 } 483 484 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 485 { 486 int ret; 487 char *prepared; 488 489 ret = fs_path_prepare_for_add(p, name_len, &prepared); 490 if (ret < 0) 491 goto out; 492 memcpy(prepared, name, name_len); 493 494 out: 495 return ret; 496 } 497 498 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 499 { 500 int ret; 501 char *prepared; 502 503 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 504 if (ret < 0) 505 goto out; 506 memcpy(prepared, p2->start, p2->end - p2->start); 507 508 out: 509 return ret; 510 } 511 512 static int fs_path_add_from_extent_buffer(struct fs_path *p, 513 struct extent_buffer *eb, 514 unsigned long off, int len) 515 { 516 int ret; 517 char *prepared; 518 519 ret = fs_path_prepare_for_add(p, len, &prepared); 520 if (ret < 0) 521 goto out; 522 523 read_extent_buffer(eb, prepared, off, len); 524 525 out: 526 return ret; 527 } 528 529 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 530 { 531 int ret; 532 533 p->reversed = from->reversed; 534 fs_path_reset(p); 535 536 ret = fs_path_add_path(p, from); 537 538 return ret; 539 } 540 541 542 static void fs_path_unreverse(struct fs_path *p) 543 { 544 char *tmp; 545 int len; 546 547 if (!p->reversed) 548 return; 549 550 tmp = p->start; 551 len = p->end - p->start; 552 p->start = p->buf; 553 p->end = p->start + len; 554 memmove(p->start, tmp, len + 1); 555 p->reversed = 0; 556 } 557 558 static struct btrfs_path *alloc_path_for_send(void) 559 { 560 struct btrfs_path *path; 561 562 path = btrfs_alloc_path(); 563 if (!path) 564 return NULL; 565 path->search_commit_root = 1; 566 path->skip_locking = 1; 567 path->need_commit_sem = 1; 568 return path; 569 } 570 571 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 572 { 573 int ret; 574 u32 pos = 0; 575 576 while (pos < len) { 577 ret = kernel_write(filp, buf + pos, len - pos, off); 578 /* TODO handle that correctly */ 579 /*if (ret == -ERESTARTSYS) { 580 continue; 581 }*/ 582 if (ret < 0) 583 return ret; 584 if (ret == 0) { 585 return -EIO; 586 } 587 pos += ret; 588 } 589 590 return 0; 591 } 592 593 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 594 { 595 struct btrfs_tlv_header *hdr; 596 int total_len = sizeof(*hdr) + len; 597 int left = sctx->send_max_size - sctx->send_size; 598 599 if (unlikely(left < total_len)) 600 return -EOVERFLOW; 601 602 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 603 put_unaligned_le16(attr, &hdr->tlv_type); 604 put_unaligned_le16(len, &hdr->tlv_len); 605 memcpy(hdr + 1, data, len); 606 sctx->send_size += total_len; 607 608 return 0; 609 } 610 611 #define TLV_PUT_DEFINE_INT(bits) \ 612 static int tlv_put_u##bits(struct send_ctx *sctx, \ 613 u##bits attr, u##bits value) \ 614 { \ 615 __le##bits __tmp = cpu_to_le##bits(value); \ 616 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 617 } 618 619 TLV_PUT_DEFINE_INT(64) 620 621 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 622 const char *str, int len) 623 { 624 if (len == -1) 625 len = strlen(str); 626 return tlv_put(sctx, attr, str, len); 627 } 628 629 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 630 const u8 *uuid) 631 { 632 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 633 } 634 635 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 636 struct extent_buffer *eb, 637 struct btrfs_timespec *ts) 638 { 639 struct btrfs_timespec bts; 640 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 641 return tlv_put(sctx, attr, &bts, sizeof(bts)); 642 } 643 644 645 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 646 do { \ 647 ret = tlv_put(sctx, attrtype, data, attrlen); \ 648 if (ret < 0) \ 649 goto tlv_put_failure; \ 650 } while (0) 651 652 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 653 do { \ 654 ret = tlv_put_u##bits(sctx, attrtype, value); \ 655 if (ret < 0) \ 656 goto tlv_put_failure; \ 657 } while (0) 658 659 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 660 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 661 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 662 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 663 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 664 do { \ 665 ret = tlv_put_string(sctx, attrtype, str, len); \ 666 if (ret < 0) \ 667 goto tlv_put_failure; \ 668 } while (0) 669 #define TLV_PUT_PATH(sctx, attrtype, p) \ 670 do { \ 671 ret = tlv_put_string(sctx, attrtype, p->start, \ 672 p->end - p->start); \ 673 if (ret < 0) \ 674 goto tlv_put_failure; \ 675 } while(0) 676 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 677 do { \ 678 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 679 if (ret < 0) \ 680 goto tlv_put_failure; \ 681 } while (0) 682 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 683 do { \ 684 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 685 if (ret < 0) \ 686 goto tlv_put_failure; \ 687 } while (0) 688 689 static int send_header(struct send_ctx *sctx) 690 { 691 struct btrfs_stream_header hdr; 692 693 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 694 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 695 696 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 697 &sctx->send_off); 698 } 699 700 /* 701 * For each command/item we want to send to userspace, we call this function. 702 */ 703 static int begin_cmd(struct send_ctx *sctx, int cmd) 704 { 705 struct btrfs_cmd_header *hdr; 706 707 if (WARN_ON(!sctx->send_buf)) 708 return -EINVAL; 709 710 BUG_ON(sctx->send_size); 711 712 sctx->send_size += sizeof(*hdr); 713 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 714 put_unaligned_le16(cmd, &hdr->cmd); 715 716 return 0; 717 } 718 719 static int send_cmd(struct send_ctx *sctx) 720 { 721 int ret; 722 struct btrfs_cmd_header *hdr; 723 u32 crc; 724 725 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 726 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 727 put_unaligned_le32(0, &hdr->crc); 728 729 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 730 put_unaligned_le32(crc, &hdr->crc); 731 732 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 733 &sctx->send_off); 734 735 sctx->total_send_size += sctx->send_size; 736 sctx->cmd_send_size[get_unaligned_le16(&hdr->cmd)] += sctx->send_size; 737 sctx->send_size = 0; 738 739 return ret; 740 } 741 742 /* 743 * Sends a move instruction to user space 744 */ 745 static int send_rename(struct send_ctx *sctx, 746 struct fs_path *from, struct fs_path *to) 747 { 748 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 749 int ret; 750 751 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 752 753 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 754 if (ret < 0) 755 goto out; 756 757 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 758 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 759 760 ret = send_cmd(sctx); 761 762 tlv_put_failure: 763 out: 764 return ret; 765 } 766 767 /* 768 * Sends a link instruction to user space 769 */ 770 static int send_link(struct send_ctx *sctx, 771 struct fs_path *path, struct fs_path *lnk) 772 { 773 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 774 int ret; 775 776 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 777 778 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 779 if (ret < 0) 780 goto out; 781 782 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 783 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 784 785 ret = send_cmd(sctx); 786 787 tlv_put_failure: 788 out: 789 return ret; 790 } 791 792 /* 793 * Sends an unlink instruction to user space 794 */ 795 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 796 { 797 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 798 int ret; 799 800 btrfs_debug(fs_info, "send_unlink %s", path->start); 801 802 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 803 if (ret < 0) 804 goto out; 805 806 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 807 808 ret = send_cmd(sctx); 809 810 tlv_put_failure: 811 out: 812 return ret; 813 } 814 815 /* 816 * Sends a rmdir instruction to user space 817 */ 818 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 819 { 820 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 821 int ret; 822 823 btrfs_debug(fs_info, "send_rmdir %s", path->start); 824 825 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 826 if (ret < 0) 827 goto out; 828 829 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 830 831 ret = send_cmd(sctx); 832 833 tlv_put_failure: 834 out: 835 return ret; 836 } 837 838 /* 839 * Helper function to retrieve some fields from an inode item. 840 */ 841 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 842 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 843 u64 *gid, u64 *rdev) 844 { 845 int ret; 846 struct btrfs_inode_item *ii; 847 struct btrfs_key key; 848 849 key.objectid = ino; 850 key.type = BTRFS_INODE_ITEM_KEY; 851 key.offset = 0; 852 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 853 if (ret) { 854 if (ret > 0) 855 ret = -ENOENT; 856 return ret; 857 } 858 859 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 860 struct btrfs_inode_item); 861 if (size) 862 *size = btrfs_inode_size(path->nodes[0], ii); 863 if (gen) 864 *gen = btrfs_inode_generation(path->nodes[0], ii); 865 if (mode) 866 *mode = btrfs_inode_mode(path->nodes[0], ii); 867 if (uid) 868 *uid = btrfs_inode_uid(path->nodes[0], ii); 869 if (gid) 870 *gid = btrfs_inode_gid(path->nodes[0], ii); 871 if (rdev) 872 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 873 874 return ret; 875 } 876 877 static int get_inode_info(struct btrfs_root *root, 878 u64 ino, u64 *size, u64 *gen, 879 u64 *mode, u64 *uid, u64 *gid, 880 u64 *rdev) 881 { 882 struct btrfs_path *path; 883 int ret; 884 885 path = alloc_path_for_send(); 886 if (!path) 887 return -ENOMEM; 888 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 889 rdev); 890 btrfs_free_path(path); 891 return ret; 892 } 893 894 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 895 struct fs_path *p, 896 void *ctx); 897 898 /* 899 * Helper function to iterate the entries in ONE btrfs_inode_ref or 900 * btrfs_inode_extref. 901 * The iterate callback may return a non zero value to stop iteration. This can 902 * be a negative value for error codes or 1 to simply stop it. 903 * 904 * path must point to the INODE_REF or INODE_EXTREF when called. 905 */ 906 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 907 struct btrfs_key *found_key, int resolve, 908 iterate_inode_ref_t iterate, void *ctx) 909 { 910 struct extent_buffer *eb = path->nodes[0]; 911 struct btrfs_inode_ref *iref; 912 struct btrfs_inode_extref *extref; 913 struct btrfs_path *tmp_path; 914 struct fs_path *p; 915 u32 cur = 0; 916 u32 total; 917 int slot = path->slots[0]; 918 u32 name_len; 919 char *start; 920 int ret = 0; 921 int num = 0; 922 int index; 923 u64 dir; 924 unsigned long name_off; 925 unsigned long elem_size; 926 unsigned long ptr; 927 928 p = fs_path_alloc_reversed(); 929 if (!p) 930 return -ENOMEM; 931 932 tmp_path = alloc_path_for_send(); 933 if (!tmp_path) { 934 fs_path_free(p); 935 return -ENOMEM; 936 } 937 938 939 if (found_key->type == BTRFS_INODE_REF_KEY) { 940 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 941 struct btrfs_inode_ref); 942 total = btrfs_item_size(eb, slot); 943 elem_size = sizeof(*iref); 944 } else { 945 ptr = btrfs_item_ptr_offset(eb, slot); 946 total = btrfs_item_size(eb, slot); 947 elem_size = sizeof(*extref); 948 } 949 950 while (cur < total) { 951 fs_path_reset(p); 952 953 if (found_key->type == BTRFS_INODE_REF_KEY) { 954 iref = (struct btrfs_inode_ref *)(ptr + cur); 955 name_len = btrfs_inode_ref_name_len(eb, iref); 956 name_off = (unsigned long)(iref + 1); 957 index = btrfs_inode_ref_index(eb, iref); 958 dir = found_key->offset; 959 } else { 960 extref = (struct btrfs_inode_extref *)(ptr + cur); 961 name_len = btrfs_inode_extref_name_len(eb, extref); 962 name_off = (unsigned long)&extref->name; 963 index = btrfs_inode_extref_index(eb, extref); 964 dir = btrfs_inode_extref_parent(eb, extref); 965 } 966 967 if (resolve) { 968 start = btrfs_ref_to_path(root, tmp_path, name_len, 969 name_off, eb, dir, 970 p->buf, p->buf_len); 971 if (IS_ERR(start)) { 972 ret = PTR_ERR(start); 973 goto out; 974 } 975 if (start < p->buf) { 976 /* overflow , try again with larger buffer */ 977 ret = fs_path_ensure_buf(p, 978 p->buf_len + p->buf - start); 979 if (ret < 0) 980 goto out; 981 start = btrfs_ref_to_path(root, tmp_path, 982 name_len, name_off, 983 eb, dir, 984 p->buf, p->buf_len); 985 if (IS_ERR(start)) { 986 ret = PTR_ERR(start); 987 goto out; 988 } 989 BUG_ON(start < p->buf); 990 } 991 p->start = start; 992 } else { 993 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 994 name_len); 995 if (ret < 0) 996 goto out; 997 } 998 999 cur += elem_size + name_len; 1000 ret = iterate(num, dir, index, p, ctx); 1001 if (ret) 1002 goto out; 1003 num++; 1004 } 1005 1006 out: 1007 btrfs_free_path(tmp_path); 1008 fs_path_free(p); 1009 return ret; 1010 } 1011 1012 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 1013 const char *name, int name_len, 1014 const char *data, int data_len, 1015 void *ctx); 1016 1017 /* 1018 * Helper function to iterate the entries in ONE btrfs_dir_item. 1019 * The iterate callback may return a non zero value to stop iteration. This can 1020 * be a negative value for error codes or 1 to simply stop it. 1021 * 1022 * path must point to the dir item when called. 1023 */ 1024 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1025 iterate_dir_item_t iterate, void *ctx) 1026 { 1027 int ret = 0; 1028 struct extent_buffer *eb; 1029 struct btrfs_dir_item *di; 1030 struct btrfs_key di_key; 1031 char *buf = NULL; 1032 int buf_len; 1033 u32 name_len; 1034 u32 data_len; 1035 u32 cur; 1036 u32 len; 1037 u32 total; 1038 int slot; 1039 int num; 1040 1041 /* 1042 * Start with a small buffer (1 page). If later we end up needing more 1043 * space, which can happen for xattrs on a fs with a leaf size greater 1044 * then the page size, attempt to increase the buffer. Typically xattr 1045 * values are small. 1046 */ 1047 buf_len = PATH_MAX; 1048 buf = kmalloc(buf_len, GFP_KERNEL); 1049 if (!buf) { 1050 ret = -ENOMEM; 1051 goto out; 1052 } 1053 1054 eb = path->nodes[0]; 1055 slot = path->slots[0]; 1056 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1057 cur = 0; 1058 len = 0; 1059 total = btrfs_item_size(eb, slot); 1060 1061 num = 0; 1062 while (cur < total) { 1063 name_len = btrfs_dir_name_len(eb, di); 1064 data_len = btrfs_dir_data_len(eb, di); 1065 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1066 1067 if (btrfs_dir_type(eb, di) == BTRFS_FT_XATTR) { 1068 if (name_len > XATTR_NAME_MAX) { 1069 ret = -ENAMETOOLONG; 1070 goto out; 1071 } 1072 if (name_len + data_len > 1073 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1074 ret = -E2BIG; 1075 goto out; 1076 } 1077 } else { 1078 /* 1079 * Path too long 1080 */ 1081 if (name_len + data_len > PATH_MAX) { 1082 ret = -ENAMETOOLONG; 1083 goto out; 1084 } 1085 } 1086 1087 if (name_len + data_len > buf_len) { 1088 buf_len = name_len + data_len; 1089 if (is_vmalloc_addr(buf)) { 1090 vfree(buf); 1091 buf = NULL; 1092 } else { 1093 char *tmp = krealloc(buf, buf_len, 1094 GFP_KERNEL | __GFP_NOWARN); 1095 1096 if (!tmp) 1097 kfree(buf); 1098 buf = tmp; 1099 } 1100 if (!buf) { 1101 buf = kvmalloc(buf_len, GFP_KERNEL); 1102 if (!buf) { 1103 ret = -ENOMEM; 1104 goto out; 1105 } 1106 } 1107 } 1108 1109 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1110 name_len + data_len); 1111 1112 len = sizeof(*di) + name_len + data_len; 1113 di = (struct btrfs_dir_item *)((char *)di + len); 1114 cur += len; 1115 1116 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1117 data_len, ctx); 1118 if (ret < 0) 1119 goto out; 1120 if (ret) { 1121 ret = 0; 1122 goto out; 1123 } 1124 1125 num++; 1126 } 1127 1128 out: 1129 kvfree(buf); 1130 return ret; 1131 } 1132 1133 static int __copy_first_ref(int num, u64 dir, int index, 1134 struct fs_path *p, void *ctx) 1135 { 1136 int ret; 1137 struct fs_path *pt = ctx; 1138 1139 ret = fs_path_copy(pt, p); 1140 if (ret < 0) 1141 return ret; 1142 1143 /* we want the first only */ 1144 return 1; 1145 } 1146 1147 /* 1148 * Retrieve the first path of an inode. If an inode has more then one 1149 * ref/hardlink, this is ignored. 1150 */ 1151 static int get_inode_path(struct btrfs_root *root, 1152 u64 ino, struct fs_path *path) 1153 { 1154 int ret; 1155 struct btrfs_key key, found_key; 1156 struct btrfs_path *p; 1157 1158 p = alloc_path_for_send(); 1159 if (!p) 1160 return -ENOMEM; 1161 1162 fs_path_reset(path); 1163 1164 key.objectid = ino; 1165 key.type = BTRFS_INODE_REF_KEY; 1166 key.offset = 0; 1167 1168 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1169 if (ret < 0) 1170 goto out; 1171 if (ret) { 1172 ret = 1; 1173 goto out; 1174 } 1175 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1176 if (found_key.objectid != ino || 1177 (found_key.type != BTRFS_INODE_REF_KEY && 1178 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1179 ret = -ENOENT; 1180 goto out; 1181 } 1182 1183 ret = iterate_inode_ref(root, p, &found_key, 1, 1184 __copy_first_ref, path); 1185 if (ret < 0) 1186 goto out; 1187 ret = 0; 1188 1189 out: 1190 btrfs_free_path(p); 1191 return ret; 1192 } 1193 1194 struct backref_ctx { 1195 struct send_ctx *sctx; 1196 1197 /* number of total found references */ 1198 u64 found; 1199 1200 /* 1201 * used for clones found in send_root. clones found behind cur_objectid 1202 * and cur_offset are not considered as allowed clones. 1203 */ 1204 u64 cur_objectid; 1205 u64 cur_offset; 1206 1207 /* may be truncated in case it's the last extent in a file */ 1208 u64 extent_len; 1209 1210 /* Just to check for bugs in backref resolving */ 1211 int found_itself; 1212 }; 1213 1214 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1215 { 1216 u64 root = (u64)(uintptr_t)key; 1217 const struct clone_root *cr = elt; 1218 1219 if (root < cr->root->root_key.objectid) 1220 return -1; 1221 if (root > cr->root->root_key.objectid) 1222 return 1; 1223 return 0; 1224 } 1225 1226 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1227 { 1228 const struct clone_root *cr1 = e1; 1229 const struct clone_root *cr2 = e2; 1230 1231 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid) 1232 return -1; 1233 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid) 1234 return 1; 1235 return 0; 1236 } 1237 1238 /* 1239 * Called for every backref that is found for the current extent. 1240 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1241 */ 1242 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1243 { 1244 struct backref_ctx *bctx = ctx_; 1245 struct clone_root *found; 1246 1247 /* First check if the root is in the list of accepted clone sources */ 1248 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1249 bctx->sctx->clone_roots_cnt, 1250 sizeof(struct clone_root), 1251 __clone_root_cmp_bsearch); 1252 if (!found) 1253 return 0; 1254 1255 if (found->root == bctx->sctx->send_root && 1256 ino == bctx->cur_objectid && 1257 offset == bctx->cur_offset) { 1258 bctx->found_itself = 1; 1259 } 1260 1261 /* 1262 * Make sure we don't consider clones from send_root that are 1263 * behind the current inode/offset. 1264 */ 1265 if (found->root == bctx->sctx->send_root) { 1266 /* 1267 * If the source inode was not yet processed we can't issue a 1268 * clone operation, as the source extent does not exist yet at 1269 * the destination of the stream. 1270 */ 1271 if (ino > bctx->cur_objectid) 1272 return 0; 1273 /* 1274 * We clone from the inode currently being sent as long as the 1275 * source extent is already processed, otherwise we could try 1276 * to clone from an extent that does not exist yet at the 1277 * destination of the stream. 1278 */ 1279 if (ino == bctx->cur_objectid && 1280 offset + bctx->extent_len > 1281 bctx->sctx->cur_inode_next_write_offset) 1282 return 0; 1283 } 1284 1285 bctx->found++; 1286 found->found_refs++; 1287 if (ino < found->ino) { 1288 found->ino = ino; 1289 found->offset = offset; 1290 } else if (found->ino == ino) { 1291 /* 1292 * same extent found more then once in the same file. 1293 */ 1294 if (found->offset > offset + bctx->extent_len) 1295 found->offset = offset; 1296 } 1297 1298 return 0; 1299 } 1300 1301 /* 1302 * Given an inode, offset and extent item, it finds a good clone for a clone 1303 * instruction. Returns -ENOENT when none could be found. The function makes 1304 * sure that the returned clone is usable at the point where sending is at the 1305 * moment. This means, that no clones are accepted which lie behind the current 1306 * inode+offset. 1307 * 1308 * path must point to the extent item when called. 1309 */ 1310 static int find_extent_clone(struct send_ctx *sctx, 1311 struct btrfs_path *path, 1312 u64 ino, u64 data_offset, 1313 u64 ino_size, 1314 struct clone_root **found) 1315 { 1316 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1317 int ret; 1318 int extent_type; 1319 u64 logical; 1320 u64 disk_byte; 1321 u64 num_bytes; 1322 u64 extent_item_pos; 1323 u64 flags = 0; 1324 struct btrfs_file_extent_item *fi; 1325 struct extent_buffer *eb = path->nodes[0]; 1326 struct backref_ctx backref_ctx = {0}; 1327 struct clone_root *cur_clone_root; 1328 struct btrfs_key found_key; 1329 struct btrfs_path *tmp_path; 1330 struct btrfs_extent_item *ei; 1331 int compressed; 1332 u32 i; 1333 1334 tmp_path = alloc_path_for_send(); 1335 if (!tmp_path) 1336 return -ENOMEM; 1337 1338 /* We only use this path under the commit sem */ 1339 tmp_path->need_commit_sem = 0; 1340 1341 if (data_offset >= ino_size) { 1342 /* 1343 * There may be extents that lie behind the file's size. 1344 * I at least had this in combination with snapshotting while 1345 * writing large files. 1346 */ 1347 ret = 0; 1348 goto out; 1349 } 1350 1351 fi = btrfs_item_ptr(eb, path->slots[0], 1352 struct btrfs_file_extent_item); 1353 extent_type = btrfs_file_extent_type(eb, fi); 1354 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1355 ret = -ENOENT; 1356 goto out; 1357 } 1358 compressed = btrfs_file_extent_compression(eb, fi); 1359 1360 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1361 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1362 if (disk_byte == 0) { 1363 ret = -ENOENT; 1364 goto out; 1365 } 1366 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1367 1368 down_read(&fs_info->commit_root_sem); 1369 ret = extent_from_logical(fs_info, disk_byte, tmp_path, 1370 &found_key, &flags); 1371 up_read(&fs_info->commit_root_sem); 1372 1373 if (ret < 0) 1374 goto out; 1375 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1376 ret = -EIO; 1377 goto out; 1378 } 1379 1380 ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0], 1381 struct btrfs_extent_item); 1382 /* 1383 * Backreference walking (iterate_extent_inodes() below) is currently 1384 * too expensive when an extent has a large number of references, both 1385 * in time spent and used memory. So for now just fallback to write 1386 * operations instead of clone operations when an extent has more than 1387 * a certain amount of references. 1388 */ 1389 if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) { 1390 ret = -ENOENT; 1391 goto out; 1392 } 1393 btrfs_release_path(tmp_path); 1394 1395 /* 1396 * Setup the clone roots. 1397 */ 1398 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1399 cur_clone_root = sctx->clone_roots + i; 1400 cur_clone_root->ino = (u64)-1; 1401 cur_clone_root->offset = 0; 1402 cur_clone_root->found_refs = 0; 1403 } 1404 1405 backref_ctx.sctx = sctx; 1406 backref_ctx.found = 0; 1407 backref_ctx.cur_objectid = ino; 1408 backref_ctx.cur_offset = data_offset; 1409 backref_ctx.found_itself = 0; 1410 backref_ctx.extent_len = num_bytes; 1411 1412 /* 1413 * The last extent of a file may be too large due to page alignment. 1414 * We need to adjust extent_len in this case so that the checks in 1415 * __iterate_backrefs work. 1416 */ 1417 if (data_offset + num_bytes >= ino_size) 1418 backref_ctx.extent_len = ino_size - data_offset; 1419 1420 /* 1421 * Now collect all backrefs. 1422 */ 1423 if (compressed == BTRFS_COMPRESS_NONE) 1424 extent_item_pos = logical - found_key.objectid; 1425 else 1426 extent_item_pos = 0; 1427 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1428 extent_item_pos, 1, __iterate_backrefs, 1429 &backref_ctx, false); 1430 1431 if (ret < 0) 1432 goto out; 1433 1434 down_read(&fs_info->commit_root_sem); 1435 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 1436 /* 1437 * A transaction commit for a transaction in which block group 1438 * relocation was done just happened. 1439 * The disk_bytenr of the file extent item we processed is 1440 * possibly stale, referring to the extent's location before 1441 * relocation. So act as if we haven't found any clone sources 1442 * and fallback to write commands, which will read the correct 1443 * data from the new extent location. Otherwise we will fail 1444 * below because we haven't found our own back reference or we 1445 * could be getting incorrect sources in case the old extent 1446 * was already reallocated after the relocation. 1447 */ 1448 up_read(&fs_info->commit_root_sem); 1449 ret = -ENOENT; 1450 goto out; 1451 } 1452 up_read(&fs_info->commit_root_sem); 1453 1454 if (!backref_ctx.found_itself) { 1455 /* found a bug in backref code? */ 1456 ret = -EIO; 1457 btrfs_err(fs_info, 1458 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu", 1459 ino, data_offset, disk_byte, found_key.objectid); 1460 goto out; 1461 } 1462 1463 btrfs_debug(fs_info, 1464 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1465 data_offset, ino, num_bytes, logical); 1466 1467 if (!backref_ctx.found) 1468 btrfs_debug(fs_info, "no clones found"); 1469 1470 cur_clone_root = NULL; 1471 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1472 if (sctx->clone_roots[i].found_refs) { 1473 if (!cur_clone_root) 1474 cur_clone_root = sctx->clone_roots + i; 1475 else if (sctx->clone_roots[i].root == sctx->send_root) 1476 /* prefer clones from send_root over others */ 1477 cur_clone_root = sctx->clone_roots + i; 1478 } 1479 1480 } 1481 1482 if (cur_clone_root) { 1483 *found = cur_clone_root; 1484 ret = 0; 1485 } else { 1486 ret = -ENOENT; 1487 } 1488 1489 out: 1490 btrfs_free_path(tmp_path); 1491 return ret; 1492 } 1493 1494 static int read_symlink(struct btrfs_root *root, 1495 u64 ino, 1496 struct fs_path *dest) 1497 { 1498 int ret; 1499 struct btrfs_path *path; 1500 struct btrfs_key key; 1501 struct btrfs_file_extent_item *ei; 1502 u8 type; 1503 u8 compression; 1504 unsigned long off; 1505 int len; 1506 1507 path = alloc_path_for_send(); 1508 if (!path) 1509 return -ENOMEM; 1510 1511 key.objectid = ino; 1512 key.type = BTRFS_EXTENT_DATA_KEY; 1513 key.offset = 0; 1514 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1515 if (ret < 0) 1516 goto out; 1517 if (ret) { 1518 /* 1519 * An empty symlink inode. Can happen in rare error paths when 1520 * creating a symlink (transaction committed before the inode 1521 * eviction handler removed the symlink inode items and a crash 1522 * happened in between or the subvol was snapshoted in between). 1523 * Print an informative message to dmesg/syslog so that the user 1524 * can delete the symlink. 1525 */ 1526 btrfs_err(root->fs_info, 1527 "Found empty symlink inode %llu at root %llu", 1528 ino, root->root_key.objectid); 1529 ret = -EIO; 1530 goto out; 1531 } 1532 1533 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1534 struct btrfs_file_extent_item); 1535 type = btrfs_file_extent_type(path->nodes[0], ei); 1536 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1537 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1538 BUG_ON(compression); 1539 1540 off = btrfs_file_extent_inline_start(ei); 1541 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1542 1543 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1544 1545 out: 1546 btrfs_free_path(path); 1547 return ret; 1548 } 1549 1550 /* 1551 * Helper function to generate a file name that is unique in the root of 1552 * send_root and parent_root. This is used to generate names for orphan inodes. 1553 */ 1554 static int gen_unique_name(struct send_ctx *sctx, 1555 u64 ino, u64 gen, 1556 struct fs_path *dest) 1557 { 1558 int ret = 0; 1559 struct btrfs_path *path; 1560 struct btrfs_dir_item *di; 1561 char tmp[64]; 1562 int len; 1563 u64 idx = 0; 1564 1565 path = alloc_path_for_send(); 1566 if (!path) 1567 return -ENOMEM; 1568 1569 while (1) { 1570 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1571 ino, gen, idx); 1572 ASSERT(len < sizeof(tmp)); 1573 1574 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1575 path, BTRFS_FIRST_FREE_OBJECTID, 1576 tmp, strlen(tmp), 0); 1577 btrfs_release_path(path); 1578 if (IS_ERR(di)) { 1579 ret = PTR_ERR(di); 1580 goto out; 1581 } 1582 if (di) { 1583 /* not unique, try again */ 1584 idx++; 1585 continue; 1586 } 1587 1588 if (!sctx->parent_root) { 1589 /* unique */ 1590 ret = 0; 1591 break; 1592 } 1593 1594 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1595 path, BTRFS_FIRST_FREE_OBJECTID, 1596 tmp, strlen(tmp), 0); 1597 btrfs_release_path(path); 1598 if (IS_ERR(di)) { 1599 ret = PTR_ERR(di); 1600 goto out; 1601 } 1602 if (di) { 1603 /* not unique, try again */ 1604 idx++; 1605 continue; 1606 } 1607 /* unique */ 1608 break; 1609 } 1610 1611 ret = fs_path_add(dest, tmp, strlen(tmp)); 1612 1613 out: 1614 btrfs_free_path(path); 1615 return ret; 1616 } 1617 1618 enum inode_state { 1619 inode_state_no_change, 1620 inode_state_will_create, 1621 inode_state_did_create, 1622 inode_state_will_delete, 1623 inode_state_did_delete, 1624 }; 1625 1626 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1627 { 1628 int ret; 1629 int left_ret; 1630 int right_ret; 1631 u64 left_gen; 1632 u64 right_gen; 1633 1634 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1635 NULL, NULL); 1636 if (ret < 0 && ret != -ENOENT) 1637 goto out; 1638 left_ret = ret; 1639 1640 if (!sctx->parent_root) { 1641 right_ret = -ENOENT; 1642 } else { 1643 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1644 NULL, NULL, NULL, NULL); 1645 if (ret < 0 && ret != -ENOENT) 1646 goto out; 1647 right_ret = ret; 1648 } 1649 1650 if (!left_ret && !right_ret) { 1651 if (left_gen == gen && right_gen == gen) { 1652 ret = inode_state_no_change; 1653 } else if (left_gen == gen) { 1654 if (ino < sctx->send_progress) 1655 ret = inode_state_did_create; 1656 else 1657 ret = inode_state_will_create; 1658 } else if (right_gen == gen) { 1659 if (ino < sctx->send_progress) 1660 ret = inode_state_did_delete; 1661 else 1662 ret = inode_state_will_delete; 1663 } else { 1664 ret = -ENOENT; 1665 } 1666 } else if (!left_ret) { 1667 if (left_gen == gen) { 1668 if (ino < sctx->send_progress) 1669 ret = inode_state_did_create; 1670 else 1671 ret = inode_state_will_create; 1672 } else { 1673 ret = -ENOENT; 1674 } 1675 } else if (!right_ret) { 1676 if (right_gen == gen) { 1677 if (ino < sctx->send_progress) 1678 ret = inode_state_did_delete; 1679 else 1680 ret = inode_state_will_delete; 1681 } else { 1682 ret = -ENOENT; 1683 } 1684 } else { 1685 ret = -ENOENT; 1686 } 1687 1688 out: 1689 return ret; 1690 } 1691 1692 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1693 { 1694 int ret; 1695 1696 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1697 return 1; 1698 1699 ret = get_cur_inode_state(sctx, ino, gen); 1700 if (ret < 0) 1701 goto out; 1702 1703 if (ret == inode_state_no_change || 1704 ret == inode_state_did_create || 1705 ret == inode_state_will_delete) 1706 ret = 1; 1707 else 1708 ret = 0; 1709 1710 out: 1711 return ret; 1712 } 1713 1714 /* 1715 * Helper function to lookup a dir item in a dir. 1716 */ 1717 static int lookup_dir_item_inode(struct btrfs_root *root, 1718 u64 dir, const char *name, int name_len, 1719 u64 *found_inode) 1720 { 1721 int ret = 0; 1722 struct btrfs_dir_item *di; 1723 struct btrfs_key key; 1724 struct btrfs_path *path; 1725 1726 path = alloc_path_for_send(); 1727 if (!path) 1728 return -ENOMEM; 1729 1730 di = btrfs_lookup_dir_item(NULL, root, path, 1731 dir, name, name_len, 0); 1732 if (IS_ERR_OR_NULL(di)) { 1733 ret = di ? PTR_ERR(di) : -ENOENT; 1734 goto out; 1735 } 1736 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1737 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1738 ret = -ENOENT; 1739 goto out; 1740 } 1741 *found_inode = key.objectid; 1742 1743 out: 1744 btrfs_free_path(path); 1745 return ret; 1746 } 1747 1748 /* 1749 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1750 * generation of the parent dir and the name of the dir entry. 1751 */ 1752 static int get_first_ref(struct btrfs_root *root, u64 ino, 1753 u64 *dir, u64 *dir_gen, struct fs_path *name) 1754 { 1755 int ret; 1756 struct btrfs_key key; 1757 struct btrfs_key found_key; 1758 struct btrfs_path *path; 1759 int len; 1760 u64 parent_dir; 1761 1762 path = alloc_path_for_send(); 1763 if (!path) 1764 return -ENOMEM; 1765 1766 key.objectid = ino; 1767 key.type = BTRFS_INODE_REF_KEY; 1768 key.offset = 0; 1769 1770 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1771 if (ret < 0) 1772 goto out; 1773 if (!ret) 1774 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1775 path->slots[0]); 1776 if (ret || found_key.objectid != ino || 1777 (found_key.type != BTRFS_INODE_REF_KEY && 1778 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1779 ret = -ENOENT; 1780 goto out; 1781 } 1782 1783 if (found_key.type == BTRFS_INODE_REF_KEY) { 1784 struct btrfs_inode_ref *iref; 1785 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1786 struct btrfs_inode_ref); 1787 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1788 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1789 (unsigned long)(iref + 1), 1790 len); 1791 parent_dir = found_key.offset; 1792 } else { 1793 struct btrfs_inode_extref *extref; 1794 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1795 struct btrfs_inode_extref); 1796 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1797 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1798 (unsigned long)&extref->name, len); 1799 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1800 } 1801 if (ret < 0) 1802 goto out; 1803 btrfs_release_path(path); 1804 1805 if (dir_gen) { 1806 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1807 NULL, NULL, NULL); 1808 if (ret < 0) 1809 goto out; 1810 } 1811 1812 *dir = parent_dir; 1813 1814 out: 1815 btrfs_free_path(path); 1816 return ret; 1817 } 1818 1819 static int is_first_ref(struct btrfs_root *root, 1820 u64 ino, u64 dir, 1821 const char *name, int name_len) 1822 { 1823 int ret; 1824 struct fs_path *tmp_name; 1825 u64 tmp_dir; 1826 1827 tmp_name = fs_path_alloc(); 1828 if (!tmp_name) 1829 return -ENOMEM; 1830 1831 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1832 if (ret < 0) 1833 goto out; 1834 1835 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1836 ret = 0; 1837 goto out; 1838 } 1839 1840 ret = !memcmp(tmp_name->start, name, name_len); 1841 1842 out: 1843 fs_path_free(tmp_name); 1844 return ret; 1845 } 1846 1847 /* 1848 * Used by process_recorded_refs to determine if a new ref would overwrite an 1849 * already existing ref. In case it detects an overwrite, it returns the 1850 * inode/gen in who_ino/who_gen. 1851 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1852 * to make sure later references to the overwritten inode are possible. 1853 * Orphanizing is however only required for the first ref of an inode. 1854 * process_recorded_refs does an additional is_first_ref check to see if 1855 * orphanizing is really required. 1856 */ 1857 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1858 const char *name, int name_len, 1859 u64 *who_ino, u64 *who_gen, u64 *who_mode) 1860 { 1861 int ret = 0; 1862 u64 gen; 1863 u64 other_inode = 0; 1864 1865 if (!sctx->parent_root) 1866 goto out; 1867 1868 ret = is_inode_existent(sctx, dir, dir_gen); 1869 if (ret <= 0) 1870 goto out; 1871 1872 /* 1873 * If we have a parent root we need to verify that the parent dir was 1874 * not deleted and then re-created, if it was then we have no overwrite 1875 * and we can just unlink this entry. 1876 */ 1877 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) { 1878 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1879 NULL, NULL, NULL); 1880 if (ret < 0 && ret != -ENOENT) 1881 goto out; 1882 if (ret) { 1883 ret = 0; 1884 goto out; 1885 } 1886 if (gen != dir_gen) 1887 goto out; 1888 } 1889 1890 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1891 &other_inode); 1892 if (ret < 0 && ret != -ENOENT) 1893 goto out; 1894 if (ret) { 1895 ret = 0; 1896 goto out; 1897 } 1898 1899 /* 1900 * Check if the overwritten ref was already processed. If yes, the ref 1901 * was already unlinked/moved, so we can safely assume that we will not 1902 * overwrite anything at this point in time. 1903 */ 1904 if (other_inode > sctx->send_progress || 1905 is_waiting_for_move(sctx, other_inode)) { 1906 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1907 who_gen, who_mode, NULL, NULL, NULL); 1908 if (ret < 0) 1909 goto out; 1910 1911 ret = 1; 1912 *who_ino = other_inode; 1913 } else { 1914 ret = 0; 1915 } 1916 1917 out: 1918 return ret; 1919 } 1920 1921 /* 1922 * Checks if the ref was overwritten by an already processed inode. This is 1923 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1924 * thus the orphan name needs be used. 1925 * process_recorded_refs also uses it to avoid unlinking of refs that were 1926 * overwritten. 1927 */ 1928 static int did_overwrite_ref(struct send_ctx *sctx, 1929 u64 dir, u64 dir_gen, 1930 u64 ino, u64 ino_gen, 1931 const char *name, int name_len) 1932 { 1933 int ret = 0; 1934 u64 gen; 1935 u64 ow_inode; 1936 1937 if (!sctx->parent_root) 1938 goto out; 1939 1940 ret = is_inode_existent(sctx, dir, dir_gen); 1941 if (ret <= 0) 1942 goto out; 1943 1944 if (dir != BTRFS_FIRST_FREE_OBJECTID) { 1945 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, 1946 NULL, NULL, NULL); 1947 if (ret < 0 && ret != -ENOENT) 1948 goto out; 1949 if (ret) { 1950 ret = 0; 1951 goto out; 1952 } 1953 if (gen != dir_gen) 1954 goto out; 1955 } 1956 1957 /* check if the ref was overwritten by another ref */ 1958 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1959 &ow_inode); 1960 if (ret < 0 && ret != -ENOENT) 1961 goto out; 1962 if (ret) { 1963 /* was never and will never be overwritten */ 1964 ret = 0; 1965 goto out; 1966 } 1967 1968 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1969 NULL, NULL); 1970 if (ret < 0) 1971 goto out; 1972 1973 if (ow_inode == ino && gen == ino_gen) { 1974 ret = 0; 1975 goto out; 1976 } 1977 1978 /* 1979 * We know that it is or will be overwritten. Check this now. 1980 * The current inode being processed might have been the one that caused 1981 * inode 'ino' to be orphanized, therefore check if ow_inode matches 1982 * the current inode being processed. 1983 */ 1984 if ((ow_inode < sctx->send_progress) || 1985 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 1986 gen == sctx->cur_inode_gen)) 1987 ret = 1; 1988 else 1989 ret = 0; 1990 1991 out: 1992 return ret; 1993 } 1994 1995 /* 1996 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1997 * that got overwritten. This is used by process_recorded_refs to determine 1998 * if it has to use the path as returned by get_cur_path or the orphan name. 1999 */ 2000 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 2001 { 2002 int ret = 0; 2003 struct fs_path *name = NULL; 2004 u64 dir; 2005 u64 dir_gen; 2006 2007 if (!sctx->parent_root) 2008 goto out; 2009 2010 name = fs_path_alloc(); 2011 if (!name) 2012 return -ENOMEM; 2013 2014 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2015 if (ret < 0) 2016 goto out; 2017 2018 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2019 name->start, fs_path_len(name)); 2020 2021 out: 2022 fs_path_free(name); 2023 return ret; 2024 } 2025 2026 /* 2027 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 2028 * so we need to do some special handling in case we have clashes. This function 2029 * takes care of this with the help of name_cache_entry::radix_list. 2030 * In case of error, nce is kfreed. 2031 */ 2032 static int name_cache_insert(struct send_ctx *sctx, 2033 struct name_cache_entry *nce) 2034 { 2035 int ret = 0; 2036 struct list_head *nce_head; 2037 2038 nce_head = radix_tree_lookup(&sctx->name_cache, 2039 (unsigned long)nce->ino); 2040 if (!nce_head) { 2041 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 2042 if (!nce_head) { 2043 kfree(nce); 2044 return -ENOMEM; 2045 } 2046 INIT_LIST_HEAD(nce_head); 2047 2048 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 2049 if (ret < 0) { 2050 kfree(nce_head); 2051 kfree(nce); 2052 return ret; 2053 } 2054 } 2055 list_add_tail(&nce->radix_list, nce_head); 2056 list_add_tail(&nce->list, &sctx->name_cache_list); 2057 sctx->name_cache_size++; 2058 2059 return ret; 2060 } 2061 2062 static void name_cache_delete(struct send_ctx *sctx, 2063 struct name_cache_entry *nce) 2064 { 2065 struct list_head *nce_head; 2066 2067 nce_head = radix_tree_lookup(&sctx->name_cache, 2068 (unsigned long)nce->ino); 2069 if (!nce_head) { 2070 btrfs_err(sctx->send_root->fs_info, 2071 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2072 nce->ino, sctx->name_cache_size); 2073 } 2074 2075 list_del(&nce->radix_list); 2076 list_del(&nce->list); 2077 sctx->name_cache_size--; 2078 2079 /* 2080 * We may not get to the final release of nce_head if the lookup fails 2081 */ 2082 if (nce_head && list_empty(nce_head)) { 2083 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2084 kfree(nce_head); 2085 } 2086 } 2087 2088 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2089 u64 ino, u64 gen) 2090 { 2091 struct list_head *nce_head; 2092 struct name_cache_entry *cur; 2093 2094 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2095 if (!nce_head) 2096 return NULL; 2097 2098 list_for_each_entry(cur, nce_head, radix_list) { 2099 if (cur->ino == ino && cur->gen == gen) 2100 return cur; 2101 } 2102 return NULL; 2103 } 2104 2105 /* 2106 * Remove some entries from the beginning of name_cache_list. 2107 */ 2108 static void name_cache_clean_unused(struct send_ctx *sctx) 2109 { 2110 struct name_cache_entry *nce; 2111 2112 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2113 return; 2114 2115 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2116 nce = list_entry(sctx->name_cache_list.next, 2117 struct name_cache_entry, list); 2118 name_cache_delete(sctx, nce); 2119 kfree(nce); 2120 } 2121 } 2122 2123 static void name_cache_free(struct send_ctx *sctx) 2124 { 2125 struct name_cache_entry *nce; 2126 2127 while (!list_empty(&sctx->name_cache_list)) { 2128 nce = list_entry(sctx->name_cache_list.next, 2129 struct name_cache_entry, list); 2130 name_cache_delete(sctx, nce); 2131 kfree(nce); 2132 } 2133 } 2134 2135 /* 2136 * Used by get_cur_path for each ref up to the root. 2137 * Returns 0 if it succeeded. 2138 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2139 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2140 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2141 * Returns <0 in case of error. 2142 */ 2143 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2144 u64 ino, u64 gen, 2145 u64 *parent_ino, 2146 u64 *parent_gen, 2147 struct fs_path *dest) 2148 { 2149 int ret; 2150 int nce_ret; 2151 struct name_cache_entry *nce = NULL; 2152 2153 /* 2154 * First check if we already did a call to this function with the same 2155 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2156 * return the cached result. 2157 */ 2158 nce = name_cache_search(sctx, ino, gen); 2159 if (nce) { 2160 if (ino < sctx->send_progress && nce->need_later_update) { 2161 name_cache_delete(sctx, nce); 2162 kfree(nce); 2163 nce = NULL; 2164 } else { 2165 /* 2166 * Removes the entry from the list and adds it back to 2167 * the end. This marks the entry as recently used so 2168 * that name_cache_clean_unused does not remove it. 2169 */ 2170 list_move_tail(&nce->list, &sctx->name_cache_list); 2171 2172 *parent_ino = nce->parent_ino; 2173 *parent_gen = nce->parent_gen; 2174 ret = fs_path_add(dest, nce->name, nce->name_len); 2175 if (ret < 0) 2176 goto out; 2177 ret = nce->ret; 2178 goto out; 2179 } 2180 } 2181 2182 /* 2183 * If the inode is not existent yet, add the orphan name and return 1. 2184 * This should only happen for the parent dir that we determine in 2185 * __record_new_ref 2186 */ 2187 ret = is_inode_existent(sctx, ino, gen); 2188 if (ret < 0) 2189 goto out; 2190 2191 if (!ret) { 2192 ret = gen_unique_name(sctx, ino, gen, dest); 2193 if (ret < 0) 2194 goto out; 2195 ret = 1; 2196 goto out_cache; 2197 } 2198 2199 /* 2200 * Depending on whether the inode was already processed or not, use 2201 * send_root or parent_root for ref lookup. 2202 */ 2203 if (ino < sctx->send_progress) 2204 ret = get_first_ref(sctx->send_root, ino, 2205 parent_ino, parent_gen, dest); 2206 else 2207 ret = get_first_ref(sctx->parent_root, ino, 2208 parent_ino, parent_gen, dest); 2209 if (ret < 0) 2210 goto out; 2211 2212 /* 2213 * Check if the ref was overwritten by an inode's ref that was processed 2214 * earlier. If yes, treat as orphan and return 1. 2215 */ 2216 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2217 dest->start, dest->end - dest->start); 2218 if (ret < 0) 2219 goto out; 2220 if (ret) { 2221 fs_path_reset(dest); 2222 ret = gen_unique_name(sctx, ino, gen, dest); 2223 if (ret < 0) 2224 goto out; 2225 ret = 1; 2226 } 2227 2228 out_cache: 2229 /* 2230 * Store the result of the lookup in the name cache. 2231 */ 2232 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2233 if (!nce) { 2234 ret = -ENOMEM; 2235 goto out; 2236 } 2237 2238 nce->ino = ino; 2239 nce->gen = gen; 2240 nce->parent_ino = *parent_ino; 2241 nce->parent_gen = *parent_gen; 2242 nce->name_len = fs_path_len(dest); 2243 nce->ret = ret; 2244 strcpy(nce->name, dest->start); 2245 2246 if (ino < sctx->send_progress) 2247 nce->need_later_update = 0; 2248 else 2249 nce->need_later_update = 1; 2250 2251 nce_ret = name_cache_insert(sctx, nce); 2252 if (nce_ret < 0) 2253 ret = nce_ret; 2254 name_cache_clean_unused(sctx); 2255 2256 out: 2257 return ret; 2258 } 2259 2260 /* 2261 * Magic happens here. This function returns the first ref to an inode as it 2262 * would look like while receiving the stream at this point in time. 2263 * We walk the path up to the root. For every inode in between, we check if it 2264 * was already processed/sent. If yes, we continue with the parent as found 2265 * in send_root. If not, we continue with the parent as found in parent_root. 2266 * If we encounter an inode that was deleted at this point in time, we use the 2267 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2268 * that were not created yet and overwritten inodes/refs. 2269 * 2270 * When do we have orphan inodes: 2271 * 1. When an inode is freshly created and thus no valid refs are available yet 2272 * 2. When a directory lost all it's refs (deleted) but still has dir items 2273 * inside which were not processed yet (pending for move/delete). If anyone 2274 * tried to get the path to the dir items, it would get a path inside that 2275 * orphan directory. 2276 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2277 * of an unprocessed inode. If in that case the first ref would be 2278 * overwritten, the overwritten inode gets "orphanized". Later when we 2279 * process this overwritten inode, it is restored at a new place by moving 2280 * the orphan inode. 2281 * 2282 * sctx->send_progress tells this function at which point in time receiving 2283 * would be. 2284 */ 2285 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2286 struct fs_path *dest) 2287 { 2288 int ret = 0; 2289 struct fs_path *name = NULL; 2290 u64 parent_inode = 0; 2291 u64 parent_gen = 0; 2292 int stop = 0; 2293 2294 name = fs_path_alloc(); 2295 if (!name) { 2296 ret = -ENOMEM; 2297 goto out; 2298 } 2299 2300 dest->reversed = 1; 2301 fs_path_reset(dest); 2302 2303 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2304 struct waiting_dir_move *wdm; 2305 2306 fs_path_reset(name); 2307 2308 if (is_waiting_for_rm(sctx, ino, gen)) { 2309 ret = gen_unique_name(sctx, ino, gen, name); 2310 if (ret < 0) 2311 goto out; 2312 ret = fs_path_add_path(dest, name); 2313 break; 2314 } 2315 2316 wdm = get_waiting_dir_move(sctx, ino); 2317 if (wdm && wdm->orphanized) { 2318 ret = gen_unique_name(sctx, ino, gen, name); 2319 stop = 1; 2320 } else if (wdm) { 2321 ret = get_first_ref(sctx->parent_root, ino, 2322 &parent_inode, &parent_gen, name); 2323 } else { 2324 ret = __get_cur_name_and_parent(sctx, ino, gen, 2325 &parent_inode, 2326 &parent_gen, name); 2327 if (ret) 2328 stop = 1; 2329 } 2330 2331 if (ret < 0) 2332 goto out; 2333 2334 ret = fs_path_add_path(dest, name); 2335 if (ret < 0) 2336 goto out; 2337 2338 ino = parent_inode; 2339 gen = parent_gen; 2340 } 2341 2342 out: 2343 fs_path_free(name); 2344 if (!ret) 2345 fs_path_unreverse(dest); 2346 return ret; 2347 } 2348 2349 /* 2350 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2351 */ 2352 static int send_subvol_begin(struct send_ctx *sctx) 2353 { 2354 int ret; 2355 struct btrfs_root *send_root = sctx->send_root; 2356 struct btrfs_root *parent_root = sctx->parent_root; 2357 struct btrfs_path *path; 2358 struct btrfs_key key; 2359 struct btrfs_root_ref *ref; 2360 struct extent_buffer *leaf; 2361 char *name = NULL; 2362 int namelen; 2363 2364 path = btrfs_alloc_path(); 2365 if (!path) 2366 return -ENOMEM; 2367 2368 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2369 if (!name) { 2370 btrfs_free_path(path); 2371 return -ENOMEM; 2372 } 2373 2374 key.objectid = send_root->root_key.objectid; 2375 key.type = BTRFS_ROOT_BACKREF_KEY; 2376 key.offset = 0; 2377 2378 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2379 &key, path, 1, 0); 2380 if (ret < 0) 2381 goto out; 2382 if (ret) { 2383 ret = -ENOENT; 2384 goto out; 2385 } 2386 2387 leaf = path->nodes[0]; 2388 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2389 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2390 key.objectid != send_root->root_key.objectid) { 2391 ret = -ENOENT; 2392 goto out; 2393 } 2394 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2395 namelen = btrfs_root_ref_name_len(leaf, ref); 2396 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2397 btrfs_release_path(path); 2398 2399 if (parent_root) { 2400 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2401 if (ret < 0) 2402 goto out; 2403 } else { 2404 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2405 if (ret < 0) 2406 goto out; 2407 } 2408 2409 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2410 2411 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2412 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2413 sctx->send_root->root_item.received_uuid); 2414 else 2415 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2416 sctx->send_root->root_item.uuid); 2417 2418 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2419 btrfs_root_ctransid(&sctx->send_root->root_item)); 2420 if (parent_root) { 2421 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2422 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2423 parent_root->root_item.received_uuid); 2424 else 2425 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2426 parent_root->root_item.uuid); 2427 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2428 btrfs_root_ctransid(&sctx->parent_root->root_item)); 2429 } 2430 2431 ret = send_cmd(sctx); 2432 2433 tlv_put_failure: 2434 out: 2435 btrfs_free_path(path); 2436 kfree(name); 2437 return ret; 2438 } 2439 2440 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2441 { 2442 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2443 int ret = 0; 2444 struct fs_path *p; 2445 2446 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2447 2448 p = fs_path_alloc(); 2449 if (!p) 2450 return -ENOMEM; 2451 2452 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2453 if (ret < 0) 2454 goto out; 2455 2456 ret = get_cur_path(sctx, ino, gen, p); 2457 if (ret < 0) 2458 goto out; 2459 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2460 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2461 2462 ret = send_cmd(sctx); 2463 2464 tlv_put_failure: 2465 out: 2466 fs_path_free(p); 2467 return ret; 2468 } 2469 2470 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2471 { 2472 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2473 int ret = 0; 2474 struct fs_path *p; 2475 2476 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2477 2478 p = fs_path_alloc(); 2479 if (!p) 2480 return -ENOMEM; 2481 2482 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2483 if (ret < 0) 2484 goto out; 2485 2486 ret = get_cur_path(sctx, ino, gen, p); 2487 if (ret < 0) 2488 goto out; 2489 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2490 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2491 2492 ret = send_cmd(sctx); 2493 2494 tlv_put_failure: 2495 out: 2496 fs_path_free(p); 2497 return ret; 2498 } 2499 2500 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2501 { 2502 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2503 int ret = 0; 2504 struct fs_path *p; 2505 2506 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2507 ino, uid, gid); 2508 2509 p = fs_path_alloc(); 2510 if (!p) 2511 return -ENOMEM; 2512 2513 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2514 if (ret < 0) 2515 goto out; 2516 2517 ret = get_cur_path(sctx, ino, gen, p); 2518 if (ret < 0) 2519 goto out; 2520 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2521 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2522 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2523 2524 ret = send_cmd(sctx); 2525 2526 tlv_put_failure: 2527 out: 2528 fs_path_free(p); 2529 return ret; 2530 } 2531 2532 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2533 { 2534 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2535 int ret = 0; 2536 struct fs_path *p = NULL; 2537 struct btrfs_inode_item *ii; 2538 struct btrfs_path *path = NULL; 2539 struct extent_buffer *eb; 2540 struct btrfs_key key; 2541 int slot; 2542 2543 btrfs_debug(fs_info, "send_utimes %llu", ino); 2544 2545 p = fs_path_alloc(); 2546 if (!p) 2547 return -ENOMEM; 2548 2549 path = alloc_path_for_send(); 2550 if (!path) { 2551 ret = -ENOMEM; 2552 goto out; 2553 } 2554 2555 key.objectid = ino; 2556 key.type = BTRFS_INODE_ITEM_KEY; 2557 key.offset = 0; 2558 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2559 if (ret > 0) 2560 ret = -ENOENT; 2561 if (ret < 0) 2562 goto out; 2563 2564 eb = path->nodes[0]; 2565 slot = path->slots[0]; 2566 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2567 2568 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2569 if (ret < 0) 2570 goto out; 2571 2572 ret = get_cur_path(sctx, ino, gen, p); 2573 if (ret < 0) 2574 goto out; 2575 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2576 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2577 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2578 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2579 /* TODO Add otime support when the otime patches get into upstream */ 2580 2581 ret = send_cmd(sctx); 2582 2583 tlv_put_failure: 2584 out: 2585 fs_path_free(p); 2586 btrfs_free_path(path); 2587 return ret; 2588 } 2589 2590 /* 2591 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2592 * a valid path yet because we did not process the refs yet. So, the inode 2593 * is created as orphan. 2594 */ 2595 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2596 { 2597 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2598 int ret = 0; 2599 struct fs_path *p; 2600 int cmd; 2601 u64 gen; 2602 u64 mode; 2603 u64 rdev; 2604 2605 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2606 2607 p = fs_path_alloc(); 2608 if (!p) 2609 return -ENOMEM; 2610 2611 if (ino != sctx->cur_ino) { 2612 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2613 NULL, NULL, &rdev); 2614 if (ret < 0) 2615 goto out; 2616 } else { 2617 gen = sctx->cur_inode_gen; 2618 mode = sctx->cur_inode_mode; 2619 rdev = sctx->cur_inode_rdev; 2620 } 2621 2622 if (S_ISREG(mode)) { 2623 cmd = BTRFS_SEND_C_MKFILE; 2624 } else if (S_ISDIR(mode)) { 2625 cmd = BTRFS_SEND_C_MKDIR; 2626 } else if (S_ISLNK(mode)) { 2627 cmd = BTRFS_SEND_C_SYMLINK; 2628 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2629 cmd = BTRFS_SEND_C_MKNOD; 2630 } else if (S_ISFIFO(mode)) { 2631 cmd = BTRFS_SEND_C_MKFIFO; 2632 } else if (S_ISSOCK(mode)) { 2633 cmd = BTRFS_SEND_C_MKSOCK; 2634 } else { 2635 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2636 (int)(mode & S_IFMT)); 2637 ret = -EOPNOTSUPP; 2638 goto out; 2639 } 2640 2641 ret = begin_cmd(sctx, cmd); 2642 if (ret < 0) 2643 goto out; 2644 2645 ret = gen_unique_name(sctx, ino, gen, p); 2646 if (ret < 0) 2647 goto out; 2648 2649 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2650 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2651 2652 if (S_ISLNK(mode)) { 2653 fs_path_reset(p); 2654 ret = read_symlink(sctx->send_root, ino, p); 2655 if (ret < 0) 2656 goto out; 2657 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2658 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2659 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2660 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2661 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2662 } 2663 2664 ret = send_cmd(sctx); 2665 if (ret < 0) 2666 goto out; 2667 2668 2669 tlv_put_failure: 2670 out: 2671 fs_path_free(p); 2672 return ret; 2673 } 2674 2675 /* 2676 * We need some special handling for inodes that get processed before the parent 2677 * directory got created. See process_recorded_refs for details. 2678 * This function does the check if we already created the dir out of order. 2679 */ 2680 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2681 { 2682 int ret = 0; 2683 struct btrfs_path *path = NULL; 2684 struct btrfs_key key; 2685 struct btrfs_key found_key; 2686 struct btrfs_key di_key; 2687 struct extent_buffer *eb; 2688 struct btrfs_dir_item *di; 2689 int slot; 2690 2691 path = alloc_path_for_send(); 2692 if (!path) { 2693 ret = -ENOMEM; 2694 goto out; 2695 } 2696 2697 key.objectid = dir; 2698 key.type = BTRFS_DIR_INDEX_KEY; 2699 key.offset = 0; 2700 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2701 if (ret < 0) 2702 goto out; 2703 2704 while (1) { 2705 eb = path->nodes[0]; 2706 slot = path->slots[0]; 2707 if (slot >= btrfs_header_nritems(eb)) { 2708 ret = btrfs_next_leaf(sctx->send_root, path); 2709 if (ret < 0) { 2710 goto out; 2711 } else if (ret > 0) { 2712 ret = 0; 2713 break; 2714 } 2715 continue; 2716 } 2717 2718 btrfs_item_key_to_cpu(eb, &found_key, slot); 2719 if (found_key.objectid != key.objectid || 2720 found_key.type != key.type) { 2721 ret = 0; 2722 goto out; 2723 } 2724 2725 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2726 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2727 2728 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2729 di_key.objectid < sctx->send_progress) { 2730 ret = 1; 2731 goto out; 2732 } 2733 2734 path->slots[0]++; 2735 } 2736 2737 out: 2738 btrfs_free_path(path); 2739 return ret; 2740 } 2741 2742 /* 2743 * Only creates the inode if it is: 2744 * 1. Not a directory 2745 * 2. Or a directory which was not created already due to out of order 2746 * directories. See did_create_dir and process_recorded_refs for details. 2747 */ 2748 static int send_create_inode_if_needed(struct send_ctx *sctx) 2749 { 2750 int ret; 2751 2752 if (S_ISDIR(sctx->cur_inode_mode)) { 2753 ret = did_create_dir(sctx, sctx->cur_ino); 2754 if (ret < 0) 2755 return ret; 2756 else if (ret > 0) 2757 return 0; 2758 } 2759 2760 return send_create_inode(sctx, sctx->cur_ino); 2761 } 2762 2763 struct recorded_ref { 2764 struct list_head list; 2765 char *name; 2766 struct fs_path *full_path; 2767 u64 dir; 2768 u64 dir_gen; 2769 int name_len; 2770 }; 2771 2772 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 2773 { 2774 ref->full_path = path; 2775 ref->name = (char *)kbasename(ref->full_path->start); 2776 ref->name_len = ref->full_path->end - ref->name; 2777 } 2778 2779 /* 2780 * We need to process new refs before deleted refs, but compare_tree gives us 2781 * everything mixed. So we first record all refs and later process them. 2782 * This function is a helper to record one ref. 2783 */ 2784 static int __record_ref(struct list_head *head, u64 dir, 2785 u64 dir_gen, struct fs_path *path) 2786 { 2787 struct recorded_ref *ref; 2788 2789 ref = kmalloc(sizeof(*ref), GFP_KERNEL); 2790 if (!ref) 2791 return -ENOMEM; 2792 2793 ref->dir = dir; 2794 ref->dir_gen = dir_gen; 2795 set_ref_path(ref, path); 2796 list_add_tail(&ref->list, head); 2797 return 0; 2798 } 2799 2800 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2801 { 2802 struct recorded_ref *new; 2803 2804 new = kmalloc(sizeof(*ref), GFP_KERNEL); 2805 if (!new) 2806 return -ENOMEM; 2807 2808 new->dir = ref->dir; 2809 new->dir_gen = ref->dir_gen; 2810 new->full_path = NULL; 2811 INIT_LIST_HEAD(&new->list); 2812 list_add_tail(&new->list, list); 2813 return 0; 2814 } 2815 2816 static void __free_recorded_refs(struct list_head *head) 2817 { 2818 struct recorded_ref *cur; 2819 2820 while (!list_empty(head)) { 2821 cur = list_entry(head->next, struct recorded_ref, list); 2822 fs_path_free(cur->full_path); 2823 list_del(&cur->list); 2824 kfree(cur); 2825 } 2826 } 2827 2828 static void free_recorded_refs(struct send_ctx *sctx) 2829 { 2830 __free_recorded_refs(&sctx->new_refs); 2831 __free_recorded_refs(&sctx->deleted_refs); 2832 } 2833 2834 /* 2835 * Renames/moves a file/dir to its orphan name. Used when the first 2836 * ref of an unprocessed inode gets overwritten and for all non empty 2837 * directories. 2838 */ 2839 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2840 struct fs_path *path) 2841 { 2842 int ret; 2843 struct fs_path *orphan; 2844 2845 orphan = fs_path_alloc(); 2846 if (!orphan) 2847 return -ENOMEM; 2848 2849 ret = gen_unique_name(sctx, ino, gen, orphan); 2850 if (ret < 0) 2851 goto out; 2852 2853 ret = send_rename(sctx, path, orphan); 2854 2855 out: 2856 fs_path_free(orphan); 2857 return ret; 2858 } 2859 2860 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, 2861 u64 dir_ino, u64 dir_gen) 2862 { 2863 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2864 struct rb_node *parent = NULL; 2865 struct orphan_dir_info *entry, *odi; 2866 2867 while (*p) { 2868 parent = *p; 2869 entry = rb_entry(parent, struct orphan_dir_info, node); 2870 if (dir_ino < entry->ino) 2871 p = &(*p)->rb_left; 2872 else if (dir_ino > entry->ino) 2873 p = &(*p)->rb_right; 2874 else if (dir_gen < entry->gen) 2875 p = &(*p)->rb_left; 2876 else if (dir_gen > entry->gen) 2877 p = &(*p)->rb_right; 2878 else 2879 return entry; 2880 } 2881 2882 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 2883 if (!odi) 2884 return ERR_PTR(-ENOMEM); 2885 odi->ino = dir_ino; 2886 odi->gen = dir_gen; 2887 odi->last_dir_index_offset = 0; 2888 2889 rb_link_node(&odi->node, parent, p); 2890 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2891 return odi; 2892 } 2893 2894 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, 2895 u64 dir_ino, u64 gen) 2896 { 2897 struct rb_node *n = sctx->orphan_dirs.rb_node; 2898 struct orphan_dir_info *entry; 2899 2900 while (n) { 2901 entry = rb_entry(n, struct orphan_dir_info, node); 2902 if (dir_ino < entry->ino) 2903 n = n->rb_left; 2904 else if (dir_ino > entry->ino) 2905 n = n->rb_right; 2906 else if (gen < entry->gen) 2907 n = n->rb_left; 2908 else if (gen > entry->gen) 2909 n = n->rb_right; 2910 else 2911 return entry; 2912 } 2913 return NULL; 2914 } 2915 2916 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) 2917 { 2918 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); 2919 2920 return odi != NULL; 2921 } 2922 2923 static void free_orphan_dir_info(struct send_ctx *sctx, 2924 struct orphan_dir_info *odi) 2925 { 2926 if (!odi) 2927 return; 2928 rb_erase(&odi->node, &sctx->orphan_dirs); 2929 kfree(odi); 2930 } 2931 2932 /* 2933 * Returns 1 if a directory can be removed at this point in time. 2934 * We check this by iterating all dir items and checking if the inode behind 2935 * the dir item was already processed. 2936 */ 2937 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2938 u64 send_progress) 2939 { 2940 int ret = 0; 2941 struct btrfs_root *root = sctx->parent_root; 2942 struct btrfs_path *path; 2943 struct btrfs_key key; 2944 struct btrfs_key found_key; 2945 struct btrfs_key loc; 2946 struct btrfs_dir_item *di; 2947 struct orphan_dir_info *odi = NULL; 2948 2949 /* 2950 * Don't try to rmdir the top/root subvolume dir. 2951 */ 2952 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2953 return 0; 2954 2955 path = alloc_path_for_send(); 2956 if (!path) 2957 return -ENOMEM; 2958 2959 key.objectid = dir; 2960 key.type = BTRFS_DIR_INDEX_KEY; 2961 key.offset = 0; 2962 2963 odi = get_orphan_dir_info(sctx, dir, dir_gen); 2964 if (odi) 2965 key.offset = odi->last_dir_index_offset; 2966 2967 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2968 if (ret < 0) 2969 goto out; 2970 2971 while (1) { 2972 struct waiting_dir_move *dm; 2973 2974 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2975 ret = btrfs_next_leaf(root, path); 2976 if (ret < 0) 2977 goto out; 2978 else if (ret > 0) 2979 break; 2980 continue; 2981 } 2982 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2983 path->slots[0]); 2984 if (found_key.objectid != key.objectid || 2985 found_key.type != key.type) 2986 break; 2987 2988 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2989 struct btrfs_dir_item); 2990 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2991 2992 dm = get_waiting_dir_move(sctx, loc.objectid); 2993 if (dm) { 2994 odi = add_orphan_dir_info(sctx, dir, dir_gen); 2995 if (IS_ERR(odi)) { 2996 ret = PTR_ERR(odi); 2997 goto out; 2998 } 2999 odi->gen = dir_gen; 3000 odi->last_dir_index_offset = found_key.offset; 3001 dm->rmdir_ino = dir; 3002 dm->rmdir_gen = dir_gen; 3003 ret = 0; 3004 goto out; 3005 } 3006 3007 if (loc.objectid > send_progress) { 3008 odi = add_orphan_dir_info(sctx, dir, dir_gen); 3009 if (IS_ERR(odi)) { 3010 ret = PTR_ERR(odi); 3011 goto out; 3012 } 3013 odi->gen = dir_gen; 3014 odi->last_dir_index_offset = found_key.offset; 3015 ret = 0; 3016 goto out; 3017 } 3018 3019 path->slots[0]++; 3020 } 3021 free_orphan_dir_info(sctx, odi); 3022 3023 ret = 1; 3024 3025 out: 3026 btrfs_free_path(path); 3027 return ret; 3028 } 3029 3030 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3031 { 3032 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3033 3034 return entry != NULL; 3035 } 3036 3037 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3038 { 3039 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3040 struct rb_node *parent = NULL; 3041 struct waiting_dir_move *entry, *dm; 3042 3043 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3044 if (!dm) 3045 return -ENOMEM; 3046 dm->ino = ino; 3047 dm->rmdir_ino = 0; 3048 dm->rmdir_gen = 0; 3049 dm->orphanized = orphanized; 3050 3051 while (*p) { 3052 parent = *p; 3053 entry = rb_entry(parent, struct waiting_dir_move, node); 3054 if (ino < entry->ino) { 3055 p = &(*p)->rb_left; 3056 } else if (ino > entry->ino) { 3057 p = &(*p)->rb_right; 3058 } else { 3059 kfree(dm); 3060 return -EEXIST; 3061 } 3062 } 3063 3064 rb_link_node(&dm->node, parent, p); 3065 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3066 return 0; 3067 } 3068 3069 static struct waiting_dir_move * 3070 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3071 { 3072 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3073 struct waiting_dir_move *entry; 3074 3075 while (n) { 3076 entry = rb_entry(n, struct waiting_dir_move, node); 3077 if (ino < entry->ino) 3078 n = n->rb_left; 3079 else if (ino > entry->ino) 3080 n = n->rb_right; 3081 else 3082 return entry; 3083 } 3084 return NULL; 3085 } 3086 3087 static void free_waiting_dir_move(struct send_ctx *sctx, 3088 struct waiting_dir_move *dm) 3089 { 3090 if (!dm) 3091 return; 3092 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3093 kfree(dm); 3094 } 3095 3096 static int add_pending_dir_move(struct send_ctx *sctx, 3097 u64 ino, 3098 u64 ino_gen, 3099 u64 parent_ino, 3100 struct list_head *new_refs, 3101 struct list_head *deleted_refs, 3102 const bool is_orphan) 3103 { 3104 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3105 struct rb_node *parent = NULL; 3106 struct pending_dir_move *entry = NULL, *pm; 3107 struct recorded_ref *cur; 3108 int exists = 0; 3109 int ret; 3110 3111 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3112 if (!pm) 3113 return -ENOMEM; 3114 pm->parent_ino = parent_ino; 3115 pm->ino = ino; 3116 pm->gen = ino_gen; 3117 INIT_LIST_HEAD(&pm->list); 3118 INIT_LIST_HEAD(&pm->update_refs); 3119 RB_CLEAR_NODE(&pm->node); 3120 3121 while (*p) { 3122 parent = *p; 3123 entry = rb_entry(parent, struct pending_dir_move, node); 3124 if (parent_ino < entry->parent_ino) { 3125 p = &(*p)->rb_left; 3126 } else if (parent_ino > entry->parent_ino) { 3127 p = &(*p)->rb_right; 3128 } else { 3129 exists = 1; 3130 break; 3131 } 3132 } 3133 3134 list_for_each_entry(cur, deleted_refs, list) { 3135 ret = dup_ref(cur, &pm->update_refs); 3136 if (ret < 0) 3137 goto out; 3138 } 3139 list_for_each_entry(cur, new_refs, list) { 3140 ret = dup_ref(cur, &pm->update_refs); 3141 if (ret < 0) 3142 goto out; 3143 } 3144 3145 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3146 if (ret) 3147 goto out; 3148 3149 if (exists) { 3150 list_add_tail(&pm->list, &entry->list); 3151 } else { 3152 rb_link_node(&pm->node, parent, p); 3153 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3154 } 3155 ret = 0; 3156 out: 3157 if (ret) { 3158 __free_recorded_refs(&pm->update_refs); 3159 kfree(pm); 3160 } 3161 return ret; 3162 } 3163 3164 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3165 u64 parent_ino) 3166 { 3167 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3168 struct pending_dir_move *entry; 3169 3170 while (n) { 3171 entry = rb_entry(n, struct pending_dir_move, node); 3172 if (parent_ino < entry->parent_ino) 3173 n = n->rb_left; 3174 else if (parent_ino > entry->parent_ino) 3175 n = n->rb_right; 3176 else 3177 return entry; 3178 } 3179 return NULL; 3180 } 3181 3182 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3183 u64 ino, u64 gen, u64 *ancestor_ino) 3184 { 3185 int ret = 0; 3186 u64 parent_inode = 0; 3187 u64 parent_gen = 0; 3188 u64 start_ino = ino; 3189 3190 *ancestor_ino = 0; 3191 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3192 fs_path_reset(name); 3193 3194 if (is_waiting_for_rm(sctx, ino, gen)) 3195 break; 3196 if (is_waiting_for_move(sctx, ino)) { 3197 if (*ancestor_ino == 0) 3198 *ancestor_ino = ino; 3199 ret = get_first_ref(sctx->parent_root, ino, 3200 &parent_inode, &parent_gen, name); 3201 } else { 3202 ret = __get_cur_name_and_parent(sctx, ino, gen, 3203 &parent_inode, 3204 &parent_gen, name); 3205 if (ret > 0) { 3206 ret = 0; 3207 break; 3208 } 3209 } 3210 if (ret < 0) 3211 break; 3212 if (parent_inode == start_ino) { 3213 ret = 1; 3214 if (*ancestor_ino == 0) 3215 *ancestor_ino = ino; 3216 break; 3217 } 3218 ino = parent_inode; 3219 gen = parent_gen; 3220 } 3221 return ret; 3222 } 3223 3224 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3225 { 3226 struct fs_path *from_path = NULL; 3227 struct fs_path *to_path = NULL; 3228 struct fs_path *name = NULL; 3229 u64 orig_progress = sctx->send_progress; 3230 struct recorded_ref *cur; 3231 u64 parent_ino, parent_gen; 3232 struct waiting_dir_move *dm = NULL; 3233 u64 rmdir_ino = 0; 3234 u64 rmdir_gen; 3235 u64 ancestor; 3236 bool is_orphan; 3237 int ret; 3238 3239 name = fs_path_alloc(); 3240 from_path = fs_path_alloc(); 3241 if (!name || !from_path) { 3242 ret = -ENOMEM; 3243 goto out; 3244 } 3245 3246 dm = get_waiting_dir_move(sctx, pm->ino); 3247 ASSERT(dm); 3248 rmdir_ino = dm->rmdir_ino; 3249 rmdir_gen = dm->rmdir_gen; 3250 is_orphan = dm->orphanized; 3251 free_waiting_dir_move(sctx, dm); 3252 3253 if (is_orphan) { 3254 ret = gen_unique_name(sctx, pm->ino, 3255 pm->gen, from_path); 3256 } else { 3257 ret = get_first_ref(sctx->parent_root, pm->ino, 3258 &parent_ino, &parent_gen, name); 3259 if (ret < 0) 3260 goto out; 3261 ret = get_cur_path(sctx, parent_ino, parent_gen, 3262 from_path); 3263 if (ret < 0) 3264 goto out; 3265 ret = fs_path_add_path(from_path, name); 3266 } 3267 if (ret < 0) 3268 goto out; 3269 3270 sctx->send_progress = sctx->cur_ino + 1; 3271 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3272 if (ret < 0) 3273 goto out; 3274 if (ret) { 3275 LIST_HEAD(deleted_refs); 3276 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3277 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3278 &pm->update_refs, &deleted_refs, 3279 is_orphan); 3280 if (ret < 0) 3281 goto out; 3282 if (rmdir_ino) { 3283 dm = get_waiting_dir_move(sctx, pm->ino); 3284 ASSERT(dm); 3285 dm->rmdir_ino = rmdir_ino; 3286 dm->rmdir_gen = rmdir_gen; 3287 } 3288 goto out; 3289 } 3290 fs_path_reset(name); 3291 to_path = name; 3292 name = NULL; 3293 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3294 if (ret < 0) 3295 goto out; 3296 3297 ret = send_rename(sctx, from_path, to_path); 3298 if (ret < 0) 3299 goto out; 3300 3301 if (rmdir_ino) { 3302 struct orphan_dir_info *odi; 3303 u64 gen; 3304 3305 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); 3306 if (!odi) { 3307 /* already deleted */ 3308 goto finish; 3309 } 3310 gen = odi->gen; 3311 3312 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino); 3313 if (ret < 0) 3314 goto out; 3315 if (!ret) 3316 goto finish; 3317 3318 name = fs_path_alloc(); 3319 if (!name) { 3320 ret = -ENOMEM; 3321 goto out; 3322 } 3323 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3324 if (ret < 0) 3325 goto out; 3326 ret = send_rmdir(sctx, name); 3327 if (ret < 0) 3328 goto out; 3329 } 3330 3331 finish: 3332 ret = send_utimes(sctx, pm->ino, pm->gen); 3333 if (ret < 0) 3334 goto out; 3335 3336 /* 3337 * After rename/move, need to update the utimes of both new parent(s) 3338 * and old parent(s). 3339 */ 3340 list_for_each_entry(cur, &pm->update_refs, list) { 3341 /* 3342 * The parent inode might have been deleted in the send snapshot 3343 */ 3344 ret = get_inode_info(sctx->send_root, cur->dir, NULL, 3345 NULL, NULL, NULL, NULL, NULL); 3346 if (ret == -ENOENT) { 3347 ret = 0; 3348 continue; 3349 } 3350 if (ret < 0) 3351 goto out; 3352 3353 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3354 if (ret < 0) 3355 goto out; 3356 } 3357 3358 out: 3359 fs_path_free(name); 3360 fs_path_free(from_path); 3361 fs_path_free(to_path); 3362 sctx->send_progress = orig_progress; 3363 3364 return ret; 3365 } 3366 3367 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3368 { 3369 if (!list_empty(&m->list)) 3370 list_del(&m->list); 3371 if (!RB_EMPTY_NODE(&m->node)) 3372 rb_erase(&m->node, &sctx->pending_dir_moves); 3373 __free_recorded_refs(&m->update_refs); 3374 kfree(m); 3375 } 3376 3377 static void tail_append_pending_moves(struct send_ctx *sctx, 3378 struct pending_dir_move *moves, 3379 struct list_head *stack) 3380 { 3381 if (list_empty(&moves->list)) { 3382 list_add_tail(&moves->list, stack); 3383 } else { 3384 LIST_HEAD(list); 3385 list_splice_init(&moves->list, &list); 3386 list_add_tail(&moves->list, stack); 3387 list_splice_tail(&list, stack); 3388 } 3389 if (!RB_EMPTY_NODE(&moves->node)) { 3390 rb_erase(&moves->node, &sctx->pending_dir_moves); 3391 RB_CLEAR_NODE(&moves->node); 3392 } 3393 } 3394 3395 static int apply_children_dir_moves(struct send_ctx *sctx) 3396 { 3397 struct pending_dir_move *pm; 3398 struct list_head stack; 3399 u64 parent_ino = sctx->cur_ino; 3400 int ret = 0; 3401 3402 pm = get_pending_dir_moves(sctx, parent_ino); 3403 if (!pm) 3404 return 0; 3405 3406 INIT_LIST_HEAD(&stack); 3407 tail_append_pending_moves(sctx, pm, &stack); 3408 3409 while (!list_empty(&stack)) { 3410 pm = list_first_entry(&stack, struct pending_dir_move, list); 3411 parent_ino = pm->ino; 3412 ret = apply_dir_move(sctx, pm); 3413 free_pending_move(sctx, pm); 3414 if (ret) 3415 goto out; 3416 pm = get_pending_dir_moves(sctx, parent_ino); 3417 if (pm) 3418 tail_append_pending_moves(sctx, pm, &stack); 3419 } 3420 return 0; 3421 3422 out: 3423 while (!list_empty(&stack)) { 3424 pm = list_first_entry(&stack, struct pending_dir_move, list); 3425 free_pending_move(sctx, pm); 3426 } 3427 return ret; 3428 } 3429 3430 /* 3431 * We might need to delay a directory rename even when no ancestor directory 3432 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3433 * renamed. This happens when we rename a directory to the old name (the name 3434 * in the parent root) of some other unrelated directory that got its rename 3435 * delayed due to some ancestor with higher number that got renamed. 3436 * 3437 * Example: 3438 * 3439 * Parent snapshot: 3440 * . (ino 256) 3441 * |---- a/ (ino 257) 3442 * | |---- file (ino 260) 3443 * | 3444 * |---- b/ (ino 258) 3445 * |---- c/ (ino 259) 3446 * 3447 * Send snapshot: 3448 * . (ino 256) 3449 * |---- a/ (ino 258) 3450 * |---- x/ (ino 259) 3451 * |---- y/ (ino 257) 3452 * |----- file (ino 260) 3453 * 3454 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3455 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3456 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3457 * must issue is: 3458 * 3459 * 1 - rename 259 from 'c' to 'x' 3460 * 2 - rename 257 from 'a' to 'x/y' 3461 * 3 - rename 258 from 'b' to 'a' 3462 * 3463 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3464 * be done right away and < 0 on error. 3465 */ 3466 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3467 struct recorded_ref *parent_ref, 3468 const bool is_orphan) 3469 { 3470 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3471 struct btrfs_path *path; 3472 struct btrfs_key key; 3473 struct btrfs_key di_key; 3474 struct btrfs_dir_item *di; 3475 u64 left_gen; 3476 u64 right_gen; 3477 int ret = 0; 3478 struct waiting_dir_move *wdm; 3479 3480 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3481 return 0; 3482 3483 path = alloc_path_for_send(); 3484 if (!path) 3485 return -ENOMEM; 3486 3487 key.objectid = parent_ref->dir; 3488 key.type = BTRFS_DIR_ITEM_KEY; 3489 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3490 3491 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3492 if (ret < 0) { 3493 goto out; 3494 } else if (ret > 0) { 3495 ret = 0; 3496 goto out; 3497 } 3498 3499 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3500 parent_ref->name_len); 3501 if (!di) { 3502 ret = 0; 3503 goto out; 3504 } 3505 /* 3506 * di_key.objectid has the number of the inode that has a dentry in the 3507 * parent directory with the same name that sctx->cur_ino is being 3508 * renamed to. We need to check if that inode is in the send root as 3509 * well and if it is currently marked as an inode with a pending rename, 3510 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3511 * that it happens after that other inode is renamed. 3512 */ 3513 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3514 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3515 ret = 0; 3516 goto out; 3517 } 3518 3519 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3520 &left_gen, NULL, NULL, NULL, NULL); 3521 if (ret < 0) 3522 goto out; 3523 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3524 &right_gen, NULL, NULL, NULL, NULL); 3525 if (ret < 0) { 3526 if (ret == -ENOENT) 3527 ret = 0; 3528 goto out; 3529 } 3530 3531 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3532 if (right_gen != left_gen) { 3533 ret = 0; 3534 goto out; 3535 } 3536 3537 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3538 if (wdm && !wdm->orphanized) { 3539 ret = add_pending_dir_move(sctx, 3540 sctx->cur_ino, 3541 sctx->cur_inode_gen, 3542 di_key.objectid, 3543 &sctx->new_refs, 3544 &sctx->deleted_refs, 3545 is_orphan); 3546 if (!ret) 3547 ret = 1; 3548 } 3549 out: 3550 btrfs_free_path(path); 3551 return ret; 3552 } 3553 3554 /* 3555 * Check if inode ino2, or any of its ancestors, is inode ino1. 3556 * Return 1 if true, 0 if false and < 0 on error. 3557 */ 3558 static int check_ino_in_path(struct btrfs_root *root, 3559 const u64 ino1, 3560 const u64 ino1_gen, 3561 const u64 ino2, 3562 const u64 ino2_gen, 3563 struct fs_path *fs_path) 3564 { 3565 u64 ino = ino2; 3566 3567 if (ino1 == ino2) 3568 return ino1_gen == ino2_gen; 3569 3570 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3571 u64 parent; 3572 u64 parent_gen; 3573 int ret; 3574 3575 fs_path_reset(fs_path); 3576 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3577 if (ret < 0) 3578 return ret; 3579 if (parent == ino1) 3580 return parent_gen == ino1_gen; 3581 ino = parent; 3582 } 3583 return 0; 3584 } 3585 3586 /* 3587 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any 3588 * possible path (in case ino2 is not a directory and has multiple hard links). 3589 * Return 1 if true, 0 if false and < 0 on error. 3590 */ 3591 static int is_ancestor(struct btrfs_root *root, 3592 const u64 ino1, 3593 const u64 ino1_gen, 3594 const u64 ino2, 3595 struct fs_path *fs_path) 3596 { 3597 bool free_fs_path = false; 3598 int ret = 0; 3599 struct btrfs_path *path = NULL; 3600 struct btrfs_key key; 3601 3602 if (!fs_path) { 3603 fs_path = fs_path_alloc(); 3604 if (!fs_path) 3605 return -ENOMEM; 3606 free_fs_path = true; 3607 } 3608 3609 path = alloc_path_for_send(); 3610 if (!path) { 3611 ret = -ENOMEM; 3612 goto out; 3613 } 3614 3615 key.objectid = ino2; 3616 key.type = BTRFS_INODE_REF_KEY; 3617 key.offset = 0; 3618 3619 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3620 if (ret < 0) 3621 goto out; 3622 3623 while (true) { 3624 struct extent_buffer *leaf = path->nodes[0]; 3625 int slot = path->slots[0]; 3626 u32 cur_offset = 0; 3627 u32 item_size; 3628 3629 if (slot >= btrfs_header_nritems(leaf)) { 3630 ret = btrfs_next_leaf(root, path); 3631 if (ret < 0) 3632 goto out; 3633 if (ret > 0) 3634 break; 3635 continue; 3636 } 3637 3638 btrfs_item_key_to_cpu(leaf, &key, slot); 3639 if (key.objectid != ino2) 3640 break; 3641 if (key.type != BTRFS_INODE_REF_KEY && 3642 key.type != BTRFS_INODE_EXTREF_KEY) 3643 break; 3644 3645 item_size = btrfs_item_size(leaf, slot); 3646 while (cur_offset < item_size) { 3647 u64 parent; 3648 u64 parent_gen; 3649 3650 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3651 unsigned long ptr; 3652 struct btrfs_inode_extref *extref; 3653 3654 ptr = btrfs_item_ptr_offset(leaf, slot); 3655 extref = (struct btrfs_inode_extref *) 3656 (ptr + cur_offset); 3657 parent = btrfs_inode_extref_parent(leaf, 3658 extref); 3659 cur_offset += sizeof(*extref); 3660 cur_offset += btrfs_inode_extref_name_len(leaf, 3661 extref); 3662 } else { 3663 parent = key.offset; 3664 cur_offset = item_size; 3665 } 3666 3667 ret = get_inode_info(root, parent, NULL, &parent_gen, 3668 NULL, NULL, NULL, NULL); 3669 if (ret < 0) 3670 goto out; 3671 ret = check_ino_in_path(root, ino1, ino1_gen, 3672 parent, parent_gen, fs_path); 3673 if (ret) 3674 goto out; 3675 } 3676 path->slots[0]++; 3677 } 3678 ret = 0; 3679 out: 3680 btrfs_free_path(path); 3681 if (free_fs_path) 3682 fs_path_free(fs_path); 3683 return ret; 3684 } 3685 3686 static int wait_for_parent_move(struct send_ctx *sctx, 3687 struct recorded_ref *parent_ref, 3688 const bool is_orphan) 3689 { 3690 int ret = 0; 3691 u64 ino = parent_ref->dir; 3692 u64 ino_gen = parent_ref->dir_gen; 3693 u64 parent_ino_before, parent_ino_after; 3694 struct fs_path *path_before = NULL; 3695 struct fs_path *path_after = NULL; 3696 int len1, len2; 3697 3698 path_after = fs_path_alloc(); 3699 path_before = fs_path_alloc(); 3700 if (!path_after || !path_before) { 3701 ret = -ENOMEM; 3702 goto out; 3703 } 3704 3705 /* 3706 * Our current directory inode may not yet be renamed/moved because some 3707 * ancestor (immediate or not) has to be renamed/moved first. So find if 3708 * such ancestor exists and make sure our own rename/move happens after 3709 * that ancestor is processed to avoid path build infinite loops (done 3710 * at get_cur_path()). 3711 */ 3712 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3713 u64 parent_ino_after_gen; 3714 3715 if (is_waiting_for_move(sctx, ino)) { 3716 /* 3717 * If the current inode is an ancestor of ino in the 3718 * parent root, we need to delay the rename of the 3719 * current inode, otherwise don't delayed the rename 3720 * because we can end up with a circular dependency 3721 * of renames, resulting in some directories never 3722 * getting the respective rename operations issued in 3723 * the send stream or getting into infinite path build 3724 * loops. 3725 */ 3726 ret = is_ancestor(sctx->parent_root, 3727 sctx->cur_ino, sctx->cur_inode_gen, 3728 ino, path_before); 3729 if (ret) 3730 break; 3731 } 3732 3733 fs_path_reset(path_before); 3734 fs_path_reset(path_after); 3735 3736 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3737 &parent_ino_after_gen, path_after); 3738 if (ret < 0) 3739 goto out; 3740 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3741 NULL, path_before); 3742 if (ret < 0 && ret != -ENOENT) { 3743 goto out; 3744 } else if (ret == -ENOENT) { 3745 ret = 0; 3746 break; 3747 } 3748 3749 len1 = fs_path_len(path_before); 3750 len2 = fs_path_len(path_after); 3751 if (ino > sctx->cur_ino && 3752 (parent_ino_before != parent_ino_after || len1 != len2 || 3753 memcmp(path_before->start, path_after->start, len1))) { 3754 u64 parent_ino_gen; 3755 3756 ret = get_inode_info(sctx->parent_root, ino, NULL, 3757 &parent_ino_gen, NULL, NULL, NULL, 3758 NULL); 3759 if (ret < 0) 3760 goto out; 3761 if (ino_gen == parent_ino_gen) { 3762 ret = 1; 3763 break; 3764 } 3765 } 3766 ino = parent_ino_after; 3767 ino_gen = parent_ino_after_gen; 3768 } 3769 3770 out: 3771 fs_path_free(path_before); 3772 fs_path_free(path_after); 3773 3774 if (ret == 1) { 3775 ret = add_pending_dir_move(sctx, 3776 sctx->cur_ino, 3777 sctx->cur_inode_gen, 3778 ino, 3779 &sctx->new_refs, 3780 &sctx->deleted_refs, 3781 is_orphan); 3782 if (!ret) 3783 ret = 1; 3784 } 3785 3786 return ret; 3787 } 3788 3789 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3790 { 3791 int ret; 3792 struct fs_path *new_path; 3793 3794 /* 3795 * Our reference's name member points to its full_path member string, so 3796 * we use here a new path. 3797 */ 3798 new_path = fs_path_alloc(); 3799 if (!new_path) 3800 return -ENOMEM; 3801 3802 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 3803 if (ret < 0) { 3804 fs_path_free(new_path); 3805 return ret; 3806 } 3807 ret = fs_path_add(new_path, ref->name, ref->name_len); 3808 if (ret < 0) { 3809 fs_path_free(new_path); 3810 return ret; 3811 } 3812 3813 fs_path_free(ref->full_path); 3814 set_ref_path(ref, new_path); 3815 3816 return 0; 3817 } 3818 3819 /* 3820 * When processing the new references for an inode we may orphanize an existing 3821 * directory inode because its old name conflicts with one of the new references 3822 * of the current inode. Later, when processing another new reference of our 3823 * inode, we might need to orphanize another inode, but the path we have in the 3824 * reference reflects the pre-orphanization name of the directory we previously 3825 * orphanized. For example: 3826 * 3827 * parent snapshot looks like: 3828 * 3829 * . (ino 256) 3830 * |----- f1 (ino 257) 3831 * |----- f2 (ino 258) 3832 * |----- d1/ (ino 259) 3833 * |----- d2/ (ino 260) 3834 * 3835 * send snapshot looks like: 3836 * 3837 * . (ino 256) 3838 * |----- d1 (ino 258) 3839 * |----- f2/ (ino 259) 3840 * |----- f2_link/ (ino 260) 3841 * | |----- f1 (ino 257) 3842 * | 3843 * |----- d2 (ino 258) 3844 * 3845 * When processing inode 257 we compute the name for inode 259 as "d1", and we 3846 * cache it in the name cache. Later when we start processing inode 258, when 3847 * collecting all its new references we set a full path of "d1/d2" for its new 3848 * reference with name "d2". When we start processing the new references we 3849 * start by processing the new reference with name "d1", and this results in 3850 * orphanizing inode 259, since its old reference causes a conflict. Then we 3851 * move on the next new reference, with name "d2", and we find out we must 3852 * orphanize inode 260, as its old reference conflicts with ours - but for the 3853 * orphanization we use a source path corresponding to the path we stored in the 3854 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 3855 * receiver fail since the path component "d1/" no longer exists, it was renamed 3856 * to "o259-6-0/" when processing the previous new reference. So in this case we 3857 * must recompute the path in the new reference and use it for the new 3858 * orphanization operation. 3859 */ 3860 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3861 { 3862 char *name; 3863 int ret; 3864 3865 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 3866 if (!name) 3867 return -ENOMEM; 3868 3869 fs_path_reset(ref->full_path); 3870 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 3871 if (ret < 0) 3872 goto out; 3873 3874 ret = fs_path_add(ref->full_path, name, ref->name_len); 3875 if (ret < 0) 3876 goto out; 3877 3878 /* Update the reference's base name pointer. */ 3879 set_ref_path(ref, ref->full_path); 3880 out: 3881 kfree(name); 3882 return ret; 3883 } 3884 3885 /* 3886 * This does all the move/link/unlink/rmdir magic. 3887 */ 3888 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3889 { 3890 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 3891 int ret = 0; 3892 struct recorded_ref *cur; 3893 struct recorded_ref *cur2; 3894 struct list_head check_dirs; 3895 struct fs_path *valid_path = NULL; 3896 u64 ow_inode = 0; 3897 u64 ow_gen; 3898 u64 ow_mode; 3899 int did_overwrite = 0; 3900 int is_orphan = 0; 3901 u64 last_dir_ino_rm = 0; 3902 bool can_rename = true; 3903 bool orphanized_dir = false; 3904 bool orphanized_ancestor = false; 3905 3906 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 3907 3908 /* 3909 * This should never happen as the root dir always has the same ref 3910 * which is always '..' 3911 */ 3912 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3913 INIT_LIST_HEAD(&check_dirs); 3914 3915 valid_path = fs_path_alloc(); 3916 if (!valid_path) { 3917 ret = -ENOMEM; 3918 goto out; 3919 } 3920 3921 /* 3922 * First, check if the first ref of the current inode was overwritten 3923 * before. If yes, we know that the current inode was already orphanized 3924 * and thus use the orphan name. If not, we can use get_cur_path to 3925 * get the path of the first ref as it would like while receiving at 3926 * this point in time. 3927 * New inodes are always orphan at the beginning, so force to use the 3928 * orphan name in this case. 3929 * The first ref is stored in valid_path and will be updated if it 3930 * gets moved around. 3931 */ 3932 if (!sctx->cur_inode_new) { 3933 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3934 sctx->cur_inode_gen); 3935 if (ret < 0) 3936 goto out; 3937 if (ret) 3938 did_overwrite = 1; 3939 } 3940 if (sctx->cur_inode_new || did_overwrite) { 3941 ret = gen_unique_name(sctx, sctx->cur_ino, 3942 sctx->cur_inode_gen, valid_path); 3943 if (ret < 0) 3944 goto out; 3945 is_orphan = 1; 3946 } else { 3947 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3948 valid_path); 3949 if (ret < 0) 3950 goto out; 3951 } 3952 3953 /* 3954 * Before doing any rename and link operations, do a first pass on the 3955 * new references to orphanize any unprocessed inodes that may have a 3956 * reference that conflicts with one of the new references of the current 3957 * inode. This needs to happen first because a new reference may conflict 3958 * with the old reference of a parent directory, so we must make sure 3959 * that the path used for link and rename commands don't use an 3960 * orphanized name when an ancestor was not yet orphanized. 3961 * 3962 * Example: 3963 * 3964 * Parent snapshot: 3965 * 3966 * . (ino 256) 3967 * |----- testdir/ (ino 259) 3968 * | |----- a (ino 257) 3969 * | 3970 * |----- b (ino 258) 3971 * 3972 * Send snapshot: 3973 * 3974 * . (ino 256) 3975 * |----- testdir_2/ (ino 259) 3976 * | |----- a (ino 260) 3977 * | 3978 * |----- testdir (ino 257) 3979 * |----- b (ino 257) 3980 * |----- b2 (ino 258) 3981 * 3982 * Processing the new reference for inode 257 with name "b" may happen 3983 * before processing the new reference with name "testdir". If so, we 3984 * must make sure that by the time we send a link command to create the 3985 * hard link "b", inode 259 was already orphanized, since the generated 3986 * path in "valid_path" already contains the orphanized name for 259. 3987 * We are processing inode 257, so only later when processing 259 we do 3988 * the rename operation to change its temporary (orphanized) name to 3989 * "testdir_2". 3990 */ 3991 list_for_each_entry(cur, &sctx->new_refs, list) { 3992 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3993 if (ret < 0) 3994 goto out; 3995 if (ret == inode_state_will_create) 3996 continue; 3997 3998 /* 3999 * Check if this new ref would overwrite the first ref of another 4000 * unprocessed inode. If yes, orphanize the overwritten inode. 4001 * If we find an overwritten ref that is not the first ref, 4002 * simply unlink it. 4003 */ 4004 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4005 cur->name, cur->name_len, 4006 &ow_inode, &ow_gen, &ow_mode); 4007 if (ret < 0) 4008 goto out; 4009 if (ret) { 4010 ret = is_first_ref(sctx->parent_root, 4011 ow_inode, cur->dir, cur->name, 4012 cur->name_len); 4013 if (ret < 0) 4014 goto out; 4015 if (ret) { 4016 struct name_cache_entry *nce; 4017 struct waiting_dir_move *wdm; 4018 4019 if (orphanized_dir) { 4020 ret = refresh_ref_path(sctx, cur); 4021 if (ret < 0) 4022 goto out; 4023 } 4024 4025 ret = orphanize_inode(sctx, ow_inode, ow_gen, 4026 cur->full_path); 4027 if (ret < 0) 4028 goto out; 4029 if (S_ISDIR(ow_mode)) 4030 orphanized_dir = true; 4031 4032 /* 4033 * If ow_inode has its rename operation delayed 4034 * make sure that its orphanized name is used in 4035 * the source path when performing its rename 4036 * operation. 4037 */ 4038 if (is_waiting_for_move(sctx, ow_inode)) { 4039 wdm = get_waiting_dir_move(sctx, 4040 ow_inode); 4041 ASSERT(wdm); 4042 wdm->orphanized = true; 4043 } 4044 4045 /* 4046 * Make sure we clear our orphanized inode's 4047 * name from the name cache. This is because the 4048 * inode ow_inode might be an ancestor of some 4049 * other inode that will be orphanized as well 4050 * later and has an inode number greater than 4051 * sctx->send_progress. We need to prevent 4052 * future name lookups from using the old name 4053 * and get instead the orphan name. 4054 */ 4055 nce = name_cache_search(sctx, ow_inode, ow_gen); 4056 if (nce) { 4057 name_cache_delete(sctx, nce); 4058 kfree(nce); 4059 } 4060 4061 /* 4062 * ow_inode might currently be an ancestor of 4063 * cur_ino, therefore compute valid_path (the 4064 * current path of cur_ino) again because it 4065 * might contain the pre-orphanization name of 4066 * ow_inode, which is no longer valid. 4067 */ 4068 ret = is_ancestor(sctx->parent_root, 4069 ow_inode, ow_gen, 4070 sctx->cur_ino, NULL); 4071 if (ret > 0) { 4072 orphanized_ancestor = true; 4073 fs_path_reset(valid_path); 4074 ret = get_cur_path(sctx, sctx->cur_ino, 4075 sctx->cur_inode_gen, 4076 valid_path); 4077 } 4078 if (ret < 0) 4079 goto out; 4080 } else { 4081 /* 4082 * If we previously orphanized a directory that 4083 * collided with a new reference that we already 4084 * processed, recompute the current path because 4085 * that directory may be part of the path. 4086 */ 4087 if (orphanized_dir) { 4088 ret = refresh_ref_path(sctx, cur); 4089 if (ret < 0) 4090 goto out; 4091 } 4092 ret = send_unlink(sctx, cur->full_path); 4093 if (ret < 0) 4094 goto out; 4095 } 4096 } 4097 4098 } 4099 4100 list_for_each_entry(cur, &sctx->new_refs, list) { 4101 /* 4102 * We may have refs where the parent directory does not exist 4103 * yet. This happens if the parent directories inum is higher 4104 * than the current inum. To handle this case, we create the 4105 * parent directory out of order. But we need to check if this 4106 * did already happen before due to other refs in the same dir. 4107 */ 4108 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4109 if (ret < 0) 4110 goto out; 4111 if (ret == inode_state_will_create) { 4112 ret = 0; 4113 /* 4114 * First check if any of the current inodes refs did 4115 * already create the dir. 4116 */ 4117 list_for_each_entry(cur2, &sctx->new_refs, list) { 4118 if (cur == cur2) 4119 break; 4120 if (cur2->dir == cur->dir) { 4121 ret = 1; 4122 break; 4123 } 4124 } 4125 4126 /* 4127 * If that did not happen, check if a previous inode 4128 * did already create the dir. 4129 */ 4130 if (!ret) 4131 ret = did_create_dir(sctx, cur->dir); 4132 if (ret < 0) 4133 goto out; 4134 if (!ret) { 4135 ret = send_create_inode(sctx, cur->dir); 4136 if (ret < 0) 4137 goto out; 4138 } 4139 } 4140 4141 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4142 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4143 if (ret < 0) 4144 goto out; 4145 if (ret == 1) { 4146 can_rename = false; 4147 *pending_move = 1; 4148 } 4149 } 4150 4151 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4152 can_rename) { 4153 ret = wait_for_parent_move(sctx, cur, is_orphan); 4154 if (ret < 0) 4155 goto out; 4156 if (ret == 1) { 4157 can_rename = false; 4158 *pending_move = 1; 4159 } 4160 } 4161 4162 /* 4163 * link/move the ref to the new place. If we have an orphan 4164 * inode, move it and update valid_path. If not, link or move 4165 * it depending on the inode mode. 4166 */ 4167 if (is_orphan && can_rename) { 4168 ret = send_rename(sctx, valid_path, cur->full_path); 4169 if (ret < 0) 4170 goto out; 4171 is_orphan = 0; 4172 ret = fs_path_copy(valid_path, cur->full_path); 4173 if (ret < 0) 4174 goto out; 4175 } else if (can_rename) { 4176 if (S_ISDIR(sctx->cur_inode_mode)) { 4177 /* 4178 * Dirs can't be linked, so move it. For moved 4179 * dirs, we always have one new and one deleted 4180 * ref. The deleted ref is ignored later. 4181 */ 4182 ret = send_rename(sctx, valid_path, 4183 cur->full_path); 4184 if (!ret) 4185 ret = fs_path_copy(valid_path, 4186 cur->full_path); 4187 if (ret < 0) 4188 goto out; 4189 } else { 4190 /* 4191 * We might have previously orphanized an inode 4192 * which is an ancestor of our current inode, 4193 * so our reference's full path, which was 4194 * computed before any such orphanizations, must 4195 * be updated. 4196 */ 4197 if (orphanized_dir) { 4198 ret = update_ref_path(sctx, cur); 4199 if (ret < 0) 4200 goto out; 4201 } 4202 ret = send_link(sctx, cur->full_path, 4203 valid_path); 4204 if (ret < 0) 4205 goto out; 4206 } 4207 } 4208 ret = dup_ref(cur, &check_dirs); 4209 if (ret < 0) 4210 goto out; 4211 } 4212 4213 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4214 /* 4215 * Check if we can already rmdir the directory. If not, 4216 * orphanize it. For every dir item inside that gets deleted 4217 * later, we do this check again and rmdir it then if possible. 4218 * See the use of check_dirs for more details. 4219 */ 4220 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4221 sctx->cur_ino); 4222 if (ret < 0) 4223 goto out; 4224 if (ret) { 4225 ret = send_rmdir(sctx, valid_path); 4226 if (ret < 0) 4227 goto out; 4228 } else if (!is_orphan) { 4229 ret = orphanize_inode(sctx, sctx->cur_ino, 4230 sctx->cur_inode_gen, valid_path); 4231 if (ret < 0) 4232 goto out; 4233 is_orphan = 1; 4234 } 4235 4236 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4237 ret = dup_ref(cur, &check_dirs); 4238 if (ret < 0) 4239 goto out; 4240 } 4241 } else if (S_ISDIR(sctx->cur_inode_mode) && 4242 !list_empty(&sctx->deleted_refs)) { 4243 /* 4244 * We have a moved dir. Add the old parent to check_dirs 4245 */ 4246 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4247 list); 4248 ret = dup_ref(cur, &check_dirs); 4249 if (ret < 0) 4250 goto out; 4251 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4252 /* 4253 * We have a non dir inode. Go through all deleted refs and 4254 * unlink them if they were not already overwritten by other 4255 * inodes. 4256 */ 4257 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4258 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4259 sctx->cur_ino, sctx->cur_inode_gen, 4260 cur->name, cur->name_len); 4261 if (ret < 0) 4262 goto out; 4263 if (!ret) { 4264 /* 4265 * If we orphanized any ancestor before, we need 4266 * to recompute the full path for deleted names, 4267 * since any such path was computed before we 4268 * processed any references and orphanized any 4269 * ancestor inode. 4270 */ 4271 if (orphanized_ancestor) { 4272 ret = update_ref_path(sctx, cur); 4273 if (ret < 0) 4274 goto out; 4275 } 4276 ret = send_unlink(sctx, cur->full_path); 4277 if (ret < 0) 4278 goto out; 4279 } 4280 ret = dup_ref(cur, &check_dirs); 4281 if (ret < 0) 4282 goto out; 4283 } 4284 /* 4285 * If the inode is still orphan, unlink the orphan. This may 4286 * happen when a previous inode did overwrite the first ref 4287 * of this inode and no new refs were added for the current 4288 * inode. Unlinking does not mean that the inode is deleted in 4289 * all cases. There may still be links to this inode in other 4290 * places. 4291 */ 4292 if (is_orphan) { 4293 ret = send_unlink(sctx, valid_path); 4294 if (ret < 0) 4295 goto out; 4296 } 4297 } 4298 4299 /* 4300 * We did collect all parent dirs where cur_inode was once located. We 4301 * now go through all these dirs and check if they are pending for 4302 * deletion and if it's finally possible to perform the rmdir now. 4303 * We also update the inode stats of the parent dirs here. 4304 */ 4305 list_for_each_entry(cur, &check_dirs, list) { 4306 /* 4307 * In case we had refs into dirs that were not processed yet, 4308 * we don't need to do the utime and rmdir logic for these dirs. 4309 * The dir will be processed later. 4310 */ 4311 if (cur->dir > sctx->cur_ino) 4312 continue; 4313 4314 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4315 if (ret < 0) 4316 goto out; 4317 4318 if (ret == inode_state_did_create || 4319 ret == inode_state_no_change) { 4320 /* TODO delayed utimes */ 4321 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 4322 if (ret < 0) 4323 goto out; 4324 } else if (ret == inode_state_did_delete && 4325 cur->dir != last_dir_ino_rm) { 4326 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 4327 sctx->cur_ino); 4328 if (ret < 0) 4329 goto out; 4330 if (ret) { 4331 ret = get_cur_path(sctx, cur->dir, 4332 cur->dir_gen, valid_path); 4333 if (ret < 0) 4334 goto out; 4335 ret = send_rmdir(sctx, valid_path); 4336 if (ret < 0) 4337 goto out; 4338 last_dir_ino_rm = cur->dir; 4339 } 4340 } 4341 } 4342 4343 ret = 0; 4344 4345 out: 4346 __free_recorded_refs(&check_dirs); 4347 free_recorded_refs(sctx); 4348 fs_path_free(valid_path); 4349 return ret; 4350 } 4351 4352 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name, 4353 void *ctx, struct list_head *refs) 4354 { 4355 int ret = 0; 4356 struct send_ctx *sctx = ctx; 4357 struct fs_path *p; 4358 u64 gen; 4359 4360 p = fs_path_alloc(); 4361 if (!p) 4362 return -ENOMEM; 4363 4364 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 4365 NULL, NULL); 4366 if (ret < 0) 4367 goto out; 4368 4369 ret = get_cur_path(sctx, dir, gen, p); 4370 if (ret < 0) 4371 goto out; 4372 ret = fs_path_add_path(p, name); 4373 if (ret < 0) 4374 goto out; 4375 4376 ret = __record_ref(refs, dir, gen, p); 4377 4378 out: 4379 if (ret) 4380 fs_path_free(p); 4381 return ret; 4382 } 4383 4384 static int __record_new_ref(int num, u64 dir, int index, 4385 struct fs_path *name, 4386 void *ctx) 4387 { 4388 struct send_ctx *sctx = ctx; 4389 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs); 4390 } 4391 4392 4393 static int __record_deleted_ref(int num, u64 dir, int index, 4394 struct fs_path *name, 4395 void *ctx) 4396 { 4397 struct send_ctx *sctx = ctx; 4398 return record_ref(sctx->parent_root, dir, name, ctx, 4399 &sctx->deleted_refs); 4400 } 4401 4402 static int record_new_ref(struct send_ctx *sctx) 4403 { 4404 int ret; 4405 4406 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4407 sctx->cmp_key, 0, __record_new_ref, sctx); 4408 if (ret < 0) 4409 goto out; 4410 ret = 0; 4411 4412 out: 4413 return ret; 4414 } 4415 4416 static int record_deleted_ref(struct send_ctx *sctx) 4417 { 4418 int ret; 4419 4420 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4421 sctx->cmp_key, 0, __record_deleted_ref, sctx); 4422 if (ret < 0) 4423 goto out; 4424 ret = 0; 4425 4426 out: 4427 return ret; 4428 } 4429 4430 struct find_ref_ctx { 4431 u64 dir; 4432 u64 dir_gen; 4433 struct btrfs_root *root; 4434 struct fs_path *name; 4435 int found_idx; 4436 }; 4437 4438 static int __find_iref(int num, u64 dir, int index, 4439 struct fs_path *name, 4440 void *ctx_) 4441 { 4442 struct find_ref_ctx *ctx = ctx_; 4443 u64 dir_gen; 4444 int ret; 4445 4446 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 4447 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 4448 /* 4449 * To avoid doing extra lookups we'll only do this if everything 4450 * else matches. 4451 */ 4452 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 4453 NULL, NULL, NULL); 4454 if (ret) 4455 return ret; 4456 if (dir_gen != ctx->dir_gen) 4457 return 0; 4458 ctx->found_idx = num; 4459 return 1; 4460 } 4461 return 0; 4462 } 4463 4464 static int find_iref(struct btrfs_root *root, 4465 struct btrfs_path *path, 4466 struct btrfs_key *key, 4467 u64 dir, u64 dir_gen, struct fs_path *name) 4468 { 4469 int ret; 4470 struct find_ref_ctx ctx; 4471 4472 ctx.dir = dir; 4473 ctx.name = name; 4474 ctx.dir_gen = dir_gen; 4475 ctx.found_idx = -1; 4476 ctx.root = root; 4477 4478 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 4479 if (ret < 0) 4480 return ret; 4481 4482 if (ctx.found_idx == -1) 4483 return -ENOENT; 4484 4485 return ctx.found_idx; 4486 } 4487 4488 static int __record_changed_new_ref(int num, u64 dir, int index, 4489 struct fs_path *name, 4490 void *ctx) 4491 { 4492 u64 dir_gen; 4493 int ret; 4494 struct send_ctx *sctx = ctx; 4495 4496 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 4497 NULL, NULL, NULL); 4498 if (ret) 4499 return ret; 4500 4501 ret = find_iref(sctx->parent_root, sctx->right_path, 4502 sctx->cmp_key, dir, dir_gen, name); 4503 if (ret == -ENOENT) 4504 ret = __record_new_ref(num, dir, index, name, sctx); 4505 else if (ret > 0) 4506 ret = 0; 4507 4508 return ret; 4509 } 4510 4511 static int __record_changed_deleted_ref(int num, u64 dir, int index, 4512 struct fs_path *name, 4513 void *ctx) 4514 { 4515 u64 dir_gen; 4516 int ret; 4517 struct send_ctx *sctx = ctx; 4518 4519 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 4520 NULL, NULL, NULL); 4521 if (ret) 4522 return ret; 4523 4524 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4525 dir, dir_gen, name); 4526 if (ret == -ENOENT) 4527 ret = __record_deleted_ref(num, dir, index, name, sctx); 4528 else if (ret > 0) 4529 ret = 0; 4530 4531 return ret; 4532 } 4533 4534 static int record_changed_ref(struct send_ctx *sctx) 4535 { 4536 int ret = 0; 4537 4538 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4539 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 4540 if (ret < 0) 4541 goto out; 4542 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4543 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 4544 if (ret < 0) 4545 goto out; 4546 ret = 0; 4547 4548 out: 4549 return ret; 4550 } 4551 4552 /* 4553 * Record and process all refs at once. Needed when an inode changes the 4554 * generation number, which means that it was deleted and recreated. 4555 */ 4556 static int process_all_refs(struct send_ctx *sctx, 4557 enum btrfs_compare_tree_result cmd) 4558 { 4559 int ret; 4560 struct btrfs_root *root; 4561 struct btrfs_path *path; 4562 struct btrfs_key key; 4563 struct btrfs_key found_key; 4564 struct extent_buffer *eb; 4565 int slot; 4566 iterate_inode_ref_t cb; 4567 int pending_move = 0; 4568 4569 path = alloc_path_for_send(); 4570 if (!path) 4571 return -ENOMEM; 4572 4573 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4574 root = sctx->send_root; 4575 cb = __record_new_ref; 4576 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4577 root = sctx->parent_root; 4578 cb = __record_deleted_ref; 4579 } else { 4580 btrfs_err(sctx->send_root->fs_info, 4581 "Wrong command %d in process_all_refs", cmd); 4582 ret = -EINVAL; 4583 goto out; 4584 } 4585 4586 key.objectid = sctx->cmp_key->objectid; 4587 key.type = BTRFS_INODE_REF_KEY; 4588 key.offset = 0; 4589 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4590 if (ret < 0) 4591 goto out; 4592 4593 while (1) { 4594 eb = path->nodes[0]; 4595 slot = path->slots[0]; 4596 if (slot >= btrfs_header_nritems(eb)) { 4597 ret = btrfs_next_leaf(root, path); 4598 if (ret < 0) 4599 goto out; 4600 else if (ret > 0) 4601 break; 4602 continue; 4603 } 4604 4605 btrfs_item_key_to_cpu(eb, &found_key, slot); 4606 4607 if (found_key.objectid != key.objectid || 4608 (found_key.type != BTRFS_INODE_REF_KEY && 4609 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4610 break; 4611 4612 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4613 if (ret < 0) 4614 goto out; 4615 4616 path->slots[0]++; 4617 } 4618 btrfs_release_path(path); 4619 4620 /* 4621 * We don't actually care about pending_move as we are simply 4622 * re-creating this inode and will be rename'ing it into place once we 4623 * rename the parent directory. 4624 */ 4625 ret = process_recorded_refs(sctx, &pending_move); 4626 out: 4627 btrfs_free_path(path); 4628 return ret; 4629 } 4630 4631 static int send_set_xattr(struct send_ctx *sctx, 4632 struct fs_path *path, 4633 const char *name, int name_len, 4634 const char *data, int data_len) 4635 { 4636 int ret = 0; 4637 4638 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4639 if (ret < 0) 4640 goto out; 4641 4642 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4643 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4644 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4645 4646 ret = send_cmd(sctx); 4647 4648 tlv_put_failure: 4649 out: 4650 return ret; 4651 } 4652 4653 static int send_remove_xattr(struct send_ctx *sctx, 4654 struct fs_path *path, 4655 const char *name, int name_len) 4656 { 4657 int ret = 0; 4658 4659 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4660 if (ret < 0) 4661 goto out; 4662 4663 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4664 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4665 4666 ret = send_cmd(sctx); 4667 4668 tlv_put_failure: 4669 out: 4670 return ret; 4671 } 4672 4673 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4674 const char *name, int name_len, const char *data, 4675 int data_len, void *ctx) 4676 { 4677 int ret; 4678 struct send_ctx *sctx = ctx; 4679 struct fs_path *p; 4680 struct posix_acl_xattr_header dummy_acl; 4681 4682 /* Capabilities are emitted by finish_inode_if_needed */ 4683 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4684 return 0; 4685 4686 p = fs_path_alloc(); 4687 if (!p) 4688 return -ENOMEM; 4689 4690 /* 4691 * This hack is needed because empty acls are stored as zero byte 4692 * data in xattrs. Problem with that is, that receiving these zero byte 4693 * acls will fail later. To fix this, we send a dummy acl list that 4694 * only contains the version number and no entries. 4695 */ 4696 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4697 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4698 if (data_len == 0) { 4699 dummy_acl.a_version = 4700 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4701 data = (char *)&dummy_acl; 4702 data_len = sizeof(dummy_acl); 4703 } 4704 } 4705 4706 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4707 if (ret < 0) 4708 goto out; 4709 4710 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4711 4712 out: 4713 fs_path_free(p); 4714 return ret; 4715 } 4716 4717 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4718 const char *name, int name_len, 4719 const char *data, int data_len, void *ctx) 4720 { 4721 int ret; 4722 struct send_ctx *sctx = ctx; 4723 struct fs_path *p; 4724 4725 p = fs_path_alloc(); 4726 if (!p) 4727 return -ENOMEM; 4728 4729 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4730 if (ret < 0) 4731 goto out; 4732 4733 ret = send_remove_xattr(sctx, p, name, name_len); 4734 4735 out: 4736 fs_path_free(p); 4737 return ret; 4738 } 4739 4740 static int process_new_xattr(struct send_ctx *sctx) 4741 { 4742 int ret = 0; 4743 4744 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4745 __process_new_xattr, sctx); 4746 4747 return ret; 4748 } 4749 4750 static int process_deleted_xattr(struct send_ctx *sctx) 4751 { 4752 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4753 __process_deleted_xattr, sctx); 4754 } 4755 4756 struct find_xattr_ctx { 4757 const char *name; 4758 int name_len; 4759 int found_idx; 4760 char *found_data; 4761 int found_data_len; 4762 }; 4763 4764 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name, 4765 int name_len, const char *data, int data_len, void *vctx) 4766 { 4767 struct find_xattr_ctx *ctx = vctx; 4768 4769 if (name_len == ctx->name_len && 4770 strncmp(name, ctx->name, name_len) == 0) { 4771 ctx->found_idx = num; 4772 ctx->found_data_len = data_len; 4773 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4774 if (!ctx->found_data) 4775 return -ENOMEM; 4776 return 1; 4777 } 4778 return 0; 4779 } 4780 4781 static int find_xattr(struct btrfs_root *root, 4782 struct btrfs_path *path, 4783 struct btrfs_key *key, 4784 const char *name, int name_len, 4785 char **data, int *data_len) 4786 { 4787 int ret; 4788 struct find_xattr_ctx ctx; 4789 4790 ctx.name = name; 4791 ctx.name_len = name_len; 4792 ctx.found_idx = -1; 4793 ctx.found_data = NULL; 4794 ctx.found_data_len = 0; 4795 4796 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 4797 if (ret < 0) 4798 return ret; 4799 4800 if (ctx.found_idx == -1) 4801 return -ENOENT; 4802 if (data) { 4803 *data = ctx.found_data; 4804 *data_len = ctx.found_data_len; 4805 } else { 4806 kfree(ctx.found_data); 4807 } 4808 return ctx.found_idx; 4809 } 4810 4811 4812 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4813 const char *name, int name_len, 4814 const char *data, int data_len, 4815 void *ctx) 4816 { 4817 int ret; 4818 struct send_ctx *sctx = ctx; 4819 char *found_data = NULL; 4820 int found_data_len = 0; 4821 4822 ret = find_xattr(sctx->parent_root, sctx->right_path, 4823 sctx->cmp_key, name, name_len, &found_data, 4824 &found_data_len); 4825 if (ret == -ENOENT) { 4826 ret = __process_new_xattr(num, di_key, name, name_len, data, 4827 data_len, ctx); 4828 } else if (ret >= 0) { 4829 if (data_len != found_data_len || 4830 memcmp(data, found_data, data_len)) { 4831 ret = __process_new_xattr(num, di_key, name, name_len, 4832 data, data_len, ctx); 4833 } else { 4834 ret = 0; 4835 } 4836 } 4837 4838 kfree(found_data); 4839 return ret; 4840 } 4841 4842 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4843 const char *name, int name_len, 4844 const char *data, int data_len, 4845 void *ctx) 4846 { 4847 int ret; 4848 struct send_ctx *sctx = ctx; 4849 4850 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4851 name, name_len, NULL, NULL); 4852 if (ret == -ENOENT) 4853 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4854 data_len, ctx); 4855 else if (ret >= 0) 4856 ret = 0; 4857 4858 return ret; 4859 } 4860 4861 static int process_changed_xattr(struct send_ctx *sctx) 4862 { 4863 int ret = 0; 4864 4865 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4866 __process_changed_new_xattr, sctx); 4867 if (ret < 0) 4868 goto out; 4869 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4870 __process_changed_deleted_xattr, sctx); 4871 4872 out: 4873 return ret; 4874 } 4875 4876 static int process_all_new_xattrs(struct send_ctx *sctx) 4877 { 4878 int ret; 4879 struct btrfs_root *root; 4880 struct btrfs_path *path; 4881 struct btrfs_key key; 4882 struct btrfs_key found_key; 4883 struct extent_buffer *eb; 4884 int slot; 4885 4886 path = alloc_path_for_send(); 4887 if (!path) 4888 return -ENOMEM; 4889 4890 root = sctx->send_root; 4891 4892 key.objectid = sctx->cmp_key->objectid; 4893 key.type = BTRFS_XATTR_ITEM_KEY; 4894 key.offset = 0; 4895 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4896 if (ret < 0) 4897 goto out; 4898 4899 while (1) { 4900 eb = path->nodes[0]; 4901 slot = path->slots[0]; 4902 if (slot >= btrfs_header_nritems(eb)) { 4903 ret = btrfs_next_leaf(root, path); 4904 if (ret < 0) { 4905 goto out; 4906 } else if (ret > 0) { 4907 ret = 0; 4908 break; 4909 } 4910 continue; 4911 } 4912 4913 btrfs_item_key_to_cpu(eb, &found_key, slot); 4914 if (found_key.objectid != key.objectid || 4915 found_key.type != key.type) { 4916 ret = 0; 4917 goto out; 4918 } 4919 4920 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 4921 if (ret < 0) 4922 goto out; 4923 4924 path->slots[0]++; 4925 } 4926 4927 out: 4928 btrfs_free_path(path); 4929 return ret; 4930 } 4931 4932 static inline u64 max_send_read_size(const struct send_ctx *sctx) 4933 { 4934 return sctx->send_max_size - SZ_16K; 4935 } 4936 4937 static int put_data_header(struct send_ctx *sctx, u32 len) 4938 { 4939 struct btrfs_tlv_header *hdr; 4940 4941 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) 4942 return -EOVERFLOW; 4943 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 4944 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 4945 put_unaligned_le16(len, &hdr->tlv_len); 4946 sctx->send_size += sizeof(*hdr); 4947 return 0; 4948 } 4949 4950 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 4951 { 4952 struct btrfs_root *root = sctx->send_root; 4953 struct btrfs_fs_info *fs_info = root->fs_info; 4954 struct inode *inode; 4955 struct page *page; 4956 pgoff_t index = offset >> PAGE_SHIFT; 4957 pgoff_t last_index; 4958 unsigned pg_offset = offset_in_page(offset); 4959 int ret; 4960 4961 ret = put_data_header(sctx, len); 4962 if (ret) 4963 return ret; 4964 4965 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root); 4966 if (IS_ERR(inode)) 4967 return PTR_ERR(inode); 4968 4969 last_index = (offset + len - 1) >> PAGE_SHIFT; 4970 4971 /* initial readahead */ 4972 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 4973 file_ra_state_init(&sctx->ra, inode->i_mapping); 4974 4975 while (index <= last_index) { 4976 unsigned cur_len = min_t(unsigned, len, 4977 PAGE_SIZE - pg_offset); 4978 4979 page = find_lock_page(inode->i_mapping, index); 4980 if (!page) { 4981 page_cache_sync_readahead(inode->i_mapping, &sctx->ra, 4982 NULL, index, last_index + 1 - index); 4983 4984 page = find_or_create_page(inode->i_mapping, index, 4985 GFP_KERNEL); 4986 if (!page) { 4987 ret = -ENOMEM; 4988 break; 4989 } 4990 } 4991 4992 if (PageReadahead(page)) { 4993 page_cache_async_readahead(inode->i_mapping, &sctx->ra, 4994 NULL, page, index, last_index + 1 - index); 4995 } 4996 4997 if (!PageUptodate(page)) { 4998 btrfs_readpage(NULL, page); 4999 lock_page(page); 5000 if (!PageUptodate(page)) { 5001 unlock_page(page); 5002 btrfs_err(fs_info, 5003 "send: IO error at offset %llu for inode %llu root %llu", 5004 page_offset(page), sctx->cur_ino, 5005 sctx->send_root->root_key.objectid); 5006 put_page(page); 5007 ret = -EIO; 5008 break; 5009 } 5010 } 5011 5012 memcpy_from_page(sctx->send_buf + sctx->send_size, page, 5013 pg_offset, cur_len); 5014 unlock_page(page); 5015 put_page(page); 5016 index++; 5017 pg_offset = 0; 5018 len -= cur_len; 5019 sctx->send_size += cur_len; 5020 } 5021 iput(inode); 5022 return ret; 5023 } 5024 5025 /* 5026 * Read some bytes from the current inode/file and send a write command to 5027 * user space. 5028 */ 5029 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 5030 { 5031 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5032 int ret = 0; 5033 struct fs_path *p; 5034 5035 p = fs_path_alloc(); 5036 if (!p) 5037 return -ENOMEM; 5038 5039 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 5040 5041 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5042 if (ret < 0) 5043 goto out; 5044 5045 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5046 if (ret < 0) 5047 goto out; 5048 5049 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5050 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5051 ret = put_file_data(sctx, offset, len); 5052 if (ret < 0) 5053 goto out; 5054 5055 ret = send_cmd(sctx); 5056 5057 tlv_put_failure: 5058 out: 5059 fs_path_free(p); 5060 return ret; 5061 } 5062 5063 /* 5064 * Send a clone command to user space. 5065 */ 5066 static int send_clone(struct send_ctx *sctx, 5067 u64 offset, u32 len, 5068 struct clone_root *clone_root) 5069 { 5070 int ret = 0; 5071 struct fs_path *p; 5072 u64 gen; 5073 5074 btrfs_debug(sctx->send_root->fs_info, 5075 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 5076 offset, len, clone_root->root->root_key.objectid, 5077 clone_root->ino, clone_root->offset); 5078 5079 p = fs_path_alloc(); 5080 if (!p) 5081 return -ENOMEM; 5082 5083 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5084 if (ret < 0) 5085 goto out; 5086 5087 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5088 if (ret < 0) 5089 goto out; 5090 5091 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5092 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5093 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5094 5095 if (clone_root->root == sctx->send_root) { 5096 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 5097 &gen, NULL, NULL, NULL, NULL); 5098 if (ret < 0) 5099 goto out; 5100 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5101 } else { 5102 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5103 } 5104 if (ret < 0) 5105 goto out; 5106 5107 /* 5108 * If the parent we're using has a received_uuid set then use that as 5109 * our clone source as that is what we will look for when doing a 5110 * receive. 5111 * 5112 * This covers the case that we create a snapshot off of a received 5113 * subvolume and then use that as the parent and try to receive on a 5114 * different host. 5115 */ 5116 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5117 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5118 clone_root->root->root_item.received_uuid); 5119 else 5120 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5121 clone_root->root->root_item.uuid); 5122 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5123 btrfs_root_ctransid(&clone_root->root->root_item)); 5124 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5125 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5126 clone_root->offset); 5127 5128 ret = send_cmd(sctx); 5129 5130 tlv_put_failure: 5131 out: 5132 fs_path_free(p); 5133 return ret; 5134 } 5135 5136 /* 5137 * Send an update extent command to user space. 5138 */ 5139 static int send_update_extent(struct send_ctx *sctx, 5140 u64 offset, u32 len) 5141 { 5142 int ret = 0; 5143 struct fs_path *p; 5144 5145 p = fs_path_alloc(); 5146 if (!p) 5147 return -ENOMEM; 5148 5149 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5150 if (ret < 0) 5151 goto out; 5152 5153 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5154 if (ret < 0) 5155 goto out; 5156 5157 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5158 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5159 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5160 5161 ret = send_cmd(sctx); 5162 5163 tlv_put_failure: 5164 out: 5165 fs_path_free(p); 5166 return ret; 5167 } 5168 5169 static int send_hole(struct send_ctx *sctx, u64 end) 5170 { 5171 struct fs_path *p = NULL; 5172 u64 read_size = max_send_read_size(sctx); 5173 u64 offset = sctx->cur_inode_last_extent; 5174 int ret = 0; 5175 5176 /* 5177 * A hole that starts at EOF or beyond it. Since we do not yet support 5178 * fallocate (for extent preallocation and hole punching), sending a 5179 * write of zeroes starting at EOF or beyond would later require issuing 5180 * a truncate operation which would undo the write and achieve nothing. 5181 */ 5182 if (offset >= sctx->cur_inode_size) 5183 return 0; 5184 5185 /* 5186 * Don't go beyond the inode's i_size due to prealloc extents that start 5187 * after the i_size. 5188 */ 5189 end = min_t(u64, end, sctx->cur_inode_size); 5190 5191 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5192 return send_update_extent(sctx, offset, end - offset); 5193 5194 p = fs_path_alloc(); 5195 if (!p) 5196 return -ENOMEM; 5197 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5198 if (ret < 0) 5199 goto tlv_put_failure; 5200 while (offset < end) { 5201 u64 len = min(end - offset, read_size); 5202 5203 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5204 if (ret < 0) 5205 break; 5206 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5207 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5208 ret = put_data_header(sctx, len); 5209 if (ret < 0) 5210 break; 5211 memset(sctx->send_buf + sctx->send_size, 0, len); 5212 sctx->send_size += len; 5213 ret = send_cmd(sctx); 5214 if (ret < 0) 5215 break; 5216 offset += len; 5217 } 5218 sctx->cur_inode_next_write_offset = offset; 5219 tlv_put_failure: 5220 fs_path_free(p); 5221 return ret; 5222 } 5223 5224 static int send_extent_data(struct send_ctx *sctx, 5225 const u64 offset, 5226 const u64 len) 5227 { 5228 u64 read_size = max_send_read_size(sctx); 5229 u64 sent = 0; 5230 5231 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5232 return send_update_extent(sctx, offset, len); 5233 5234 while (sent < len) { 5235 u64 size = min(len - sent, read_size); 5236 int ret; 5237 5238 ret = send_write(sctx, offset + sent, size); 5239 if (ret < 0) 5240 return ret; 5241 sent += size; 5242 } 5243 return 0; 5244 } 5245 5246 /* 5247 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5248 * found, call send_set_xattr function to emit it. 5249 * 5250 * Return 0 if there isn't a capability, or when the capability was emitted 5251 * successfully, or < 0 if an error occurred. 5252 */ 5253 static int send_capabilities(struct send_ctx *sctx) 5254 { 5255 struct fs_path *fspath = NULL; 5256 struct btrfs_path *path; 5257 struct btrfs_dir_item *di; 5258 struct extent_buffer *leaf; 5259 unsigned long data_ptr; 5260 char *buf = NULL; 5261 int buf_len; 5262 int ret = 0; 5263 5264 path = alloc_path_for_send(); 5265 if (!path) 5266 return -ENOMEM; 5267 5268 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5269 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5270 if (!di) { 5271 /* There is no xattr for this inode */ 5272 goto out; 5273 } else if (IS_ERR(di)) { 5274 ret = PTR_ERR(di); 5275 goto out; 5276 } 5277 5278 leaf = path->nodes[0]; 5279 buf_len = btrfs_dir_data_len(leaf, di); 5280 5281 fspath = fs_path_alloc(); 5282 buf = kmalloc(buf_len, GFP_KERNEL); 5283 if (!fspath || !buf) { 5284 ret = -ENOMEM; 5285 goto out; 5286 } 5287 5288 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5289 if (ret < 0) 5290 goto out; 5291 5292 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5293 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5294 5295 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS, 5296 strlen(XATTR_NAME_CAPS), buf, buf_len); 5297 out: 5298 kfree(buf); 5299 fs_path_free(fspath); 5300 btrfs_free_path(path); 5301 return ret; 5302 } 5303 5304 static int clone_range(struct send_ctx *sctx, 5305 struct clone_root *clone_root, 5306 const u64 disk_byte, 5307 u64 data_offset, 5308 u64 offset, 5309 u64 len) 5310 { 5311 struct btrfs_path *path; 5312 struct btrfs_key key; 5313 int ret; 5314 u64 clone_src_i_size = 0; 5315 5316 /* 5317 * Prevent cloning from a zero offset with a length matching the sector 5318 * size because in some scenarios this will make the receiver fail. 5319 * 5320 * For example, if in the source filesystem the extent at offset 0 5321 * has a length of sectorsize and it was written using direct IO, then 5322 * it can never be an inline extent (even if compression is enabled). 5323 * Then this extent can be cloned in the original filesystem to a non 5324 * zero file offset, but it may not be possible to clone in the 5325 * destination filesystem because it can be inlined due to compression 5326 * on the destination filesystem (as the receiver's write operations are 5327 * always done using buffered IO). The same happens when the original 5328 * filesystem does not have compression enabled but the destination 5329 * filesystem has. 5330 */ 5331 if (clone_root->offset == 0 && 5332 len == sctx->send_root->fs_info->sectorsize) 5333 return send_extent_data(sctx, offset, len); 5334 5335 path = alloc_path_for_send(); 5336 if (!path) 5337 return -ENOMEM; 5338 5339 /* 5340 * There are inodes that have extents that lie behind its i_size. Don't 5341 * accept clones from these extents. 5342 */ 5343 ret = __get_inode_info(clone_root->root, path, clone_root->ino, 5344 &clone_src_i_size, NULL, NULL, NULL, NULL, NULL); 5345 btrfs_release_path(path); 5346 if (ret < 0) 5347 goto out; 5348 5349 /* 5350 * We can't send a clone operation for the entire range if we find 5351 * extent items in the respective range in the source file that 5352 * refer to different extents or if we find holes. 5353 * So check for that and do a mix of clone and regular write/copy 5354 * operations if needed. 5355 * 5356 * Example: 5357 * 5358 * mkfs.btrfs -f /dev/sda 5359 * mount /dev/sda /mnt 5360 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5361 * cp --reflink=always /mnt/foo /mnt/bar 5362 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5363 * btrfs subvolume snapshot -r /mnt /mnt/snap 5364 * 5365 * If when we send the snapshot and we are processing file bar (which 5366 * has a higher inode number than foo) we blindly send a clone operation 5367 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5368 * a file bar that matches the content of file foo - iow, doesn't match 5369 * the content from bar in the original filesystem. 5370 */ 5371 key.objectid = clone_root->ino; 5372 key.type = BTRFS_EXTENT_DATA_KEY; 5373 key.offset = clone_root->offset; 5374 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5375 if (ret < 0) 5376 goto out; 5377 if (ret > 0 && path->slots[0] > 0) { 5378 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5379 if (key.objectid == clone_root->ino && 5380 key.type == BTRFS_EXTENT_DATA_KEY) 5381 path->slots[0]--; 5382 } 5383 5384 while (true) { 5385 struct extent_buffer *leaf = path->nodes[0]; 5386 int slot = path->slots[0]; 5387 struct btrfs_file_extent_item *ei; 5388 u8 type; 5389 u64 ext_len; 5390 u64 clone_len; 5391 u64 clone_data_offset; 5392 5393 if (slot >= btrfs_header_nritems(leaf)) { 5394 ret = btrfs_next_leaf(clone_root->root, path); 5395 if (ret < 0) 5396 goto out; 5397 else if (ret > 0) 5398 break; 5399 continue; 5400 } 5401 5402 btrfs_item_key_to_cpu(leaf, &key, slot); 5403 5404 /* 5405 * We might have an implicit trailing hole (NO_HOLES feature 5406 * enabled). We deal with it after leaving this loop. 5407 */ 5408 if (key.objectid != clone_root->ino || 5409 key.type != BTRFS_EXTENT_DATA_KEY) 5410 break; 5411 5412 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5413 type = btrfs_file_extent_type(leaf, ei); 5414 if (type == BTRFS_FILE_EXTENT_INLINE) { 5415 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5416 ext_len = PAGE_ALIGN(ext_len); 5417 } else { 5418 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5419 } 5420 5421 if (key.offset + ext_len <= clone_root->offset) 5422 goto next; 5423 5424 if (key.offset > clone_root->offset) { 5425 /* Implicit hole, NO_HOLES feature enabled. */ 5426 u64 hole_len = key.offset - clone_root->offset; 5427 5428 if (hole_len > len) 5429 hole_len = len; 5430 ret = send_extent_data(sctx, offset, hole_len); 5431 if (ret < 0) 5432 goto out; 5433 5434 len -= hole_len; 5435 if (len == 0) 5436 break; 5437 offset += hole_len; 5438 clone_root->offset += hole_len; 5439 data_offset += hole_len; 5440 } 5441 5442 if (key.offset >= clone_root->offset + len) 5443 break; 5444 5445 if (key.offset >= clone_src_i_size) 5446 break; 5447 5448 if (key.offset + ext_len > clone_src_i_size) 5449 ext_len = clone_src_i_size - key.offset; 5450 5451 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 5452 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 5453 clone_root->offset = key.offset; 5454 if (clone_data_offset < data_offset && 5455 clone_data_offset + ext_len > data_offset) { 5456 u64 extent_offset; 5457 5458 extent_offset = data_offset - clone_data_offset; 5459 ext_len -= extent_offset; 5460 clone_data_offset += extent_offset; 5461 clone_root->offset += extent_offset; 5462 } 5463 } 5464 5465 clone_len = min_t(u64, ext_len, len); 5466 5467 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5468 clone_data_offset == data_offset) { 5469 const u64 src_end = clone_root->offset + clone_len; 5470 const u64 sectorsize = SZ_64K; 5471 5472 /* 5473 * We can't clone the last block, when its size is not 5474 * sector size aligned, into the middle of a file. If we 5475 * do so, the receiver will get a failure (-EINVAL) when 5476 * trying to clone or will silently corrupt the data in 5477 * the destination file if it's on a kernel without the 5478 * fix introduced by commit ac765f83f1397646 5479 * ("Btrfs: fix data corruption due to cloning of eof 5480 * block). 5481 * 5482 * So issue a clone of the aligned down range plus a 5483 * regular write for the eof block, if we hit that case. 5484 * 5485 * Also, we use the maximum possible sector size, 64K, 5486 * because we don't know what's the sector size of the 5487 * filesystem that receives the stream, so we have to 5488 * assume the largest possible sector size. 5489 */ 5490 if (src_end == clone_src_i_size && 5491 !IS_ALIGNED(src_end, sectorsize) && 5492 offset + clone_len < sctx->cur_inode_size) { 5493 u64 slen; 5494 5495 slen = ALIGN_DOWN(src_end - clone_root->offset, 5496 sectorsize); 5497 if (slen > 0) { 5498 ret = send_clone(sctx, offset, slen, 5499 clone_root); 5500 if (ret < 0) 5501 goto out; 5502 } 5503 ret = send_extent_data(sctx, offset + slen, 5504 clone_len - slen); 5505 } else { 5506 ret = send_clone(sctx, offset, clone_len, 5507 clone_root); 5508 } 5509 } else { 5510 ret = send_extent_data(sctx, offset, clone_len); 5511 } 5512 5513 if (ret < 0) 5514 goto out; 5515 5516 len -= clone_len; 5517 if (len == 0) 5518 break; 5519 offset += clone_len; 5520 clone_root->offset += clone_len; 5521 5522 /* 5523 * If we are cloning from the file we are currently processing, 5524 * and using the send root as the clone root, we must stop once 5525 * the current clone offset reaches the current eof of the file 5526 * at the receiver, otherwise we would issue an invalid clone 5527 * operation (source range going beyond eof) and cause the 5528 * receiver to fail. So if we reach the current eof, bail out 5529 * and fallback to a regular write. 5530 */ 5531 if (clone_root->root == sctx->send_root && 5532 clone_root->ino == sctx->cur_ino && 5533 clone_root->offset >= sctx->cur_inode_next_write_offset) 5534 break; 5535 5536 data_offset += clone_len; 5537 next: 5538 path->slots[0]++; 5539 } 5540 5541 if (len > 0) 5542 ret = send_extent_data(sctx, offset, len); 5543 else 5544 ret = 0; 5545 out: 5546 btrfs_free_path(path); 5547 return ret; 5548 } 5549 5550 static int send_write_or_clone(struct send_ctx *sctx, 5551 struct btrfs_path *path, 5552 struct btrfs_key *key, 5553 struct clone_root *clone_root) 5554 { 5555 int ret = 0; 5556 u64 offset = key->offset; 5557 u64 end; 5558 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 5559 5560 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 5561 if (offset >= end) 5562 return 0; 5563 5564 if (clone_root && IS_ALIGNED(end, bs)) { 5565 struct btrfs_file_extent_item *ei; 5566 u64 disk_byte; 5567 u64 data_offset; 5568 5569 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5570 struct btrfs_file_extent_item); 5571 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 5572 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 5573 ret = clone_range(sctx, clone_root, disk_byte, data_offset, 5574 offset, end - offset); 5575 } else { 5576 ret = send_extent_data(sctx, offset, end - offset); 5577 } 5578 sctx->cur_inode_next_write_offset = end; 5579 return ret; 5580 } 5581 5582 static int is_extent_unchanged(struct send_ctx *sctx, 5583 struct btrfs_path *left_path, 5584 struct btrfs_key *ekey) 5585 { 5586 int ret = 0; 5587 struct btrfs_key key; 5588 struct btrfs_path *path = NULL; 5589 struct extent_buffer *eb; 5590 int slot; 5591 struct btrfs_key found_key; 5592 struct btrfs_file_extent_item *ei; 5593 u64 left_disknr; 5594 u64 right_disknr; 5595 u64 left_offset; 5596 u64 right_offset; 5597 u64 left_offset_fixed; 5598 u64 left_len; 5599 u64 right_len; 5600 u64 left_gen; 5601 u64 right_gen; 5602 u8 left_type; 5603 u8 right_type; 5604 5605 path = alloc_path_for_send(); 5606 if (!path) 5607 return -ENOMEM; 5608 5609 eb = left_path->nodes[0]; 5610 slot = left_path->slots[0]; 5611 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5612 left_type = btrfs_file_extent_type(eb, ei); 5613 5614 if (left_type != BTRFS_FILE_EXTENT_REG) { 5615 ret = 0; 5616 goto out; 5617 } 5618 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5619 left_len = btrfs_file_extent_num_bytes(eb, ei); 5620 left_offset = btrfs_file_extent_offset(eb, ei); 5621 left_gen = btrfs_file_extent_generation(eb, ei); 5622 5623 /* 5624 * Following comments will refer to these graphics. L is the left 5625 * extents which we are checking at the moment. 1-8 are the right 5626 * extents that we iterate. 5627 * 5628 * |-----L-----| 5629 * |-1-|-2a-|-3-|-4-|-5-|-6-| 5630 * 5631 * |-----L-----| 5632 * |--1--|-2b-|...(same as above) 5633 * 5634 * Alternative situation. Happens on files where extents got split. 5635 * |-----L-----| 5636 * |-----------7-----------|-6-| 5637 * 5638 * Alternative situation. Happens on files which got larger. 5639 * |-----L-----| 5640 * |-8-| 5641 * Nothing follows after 8. 5642 */ 5643 5644 key.objectid = ekey->objectid; 5645 key.type = BTRFS_EXTENT_DATA_KEY; 5646 key.offset = ekey->offset; 5647 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 5648 if (ret < 0) 5649 goto out; 5650 if (ret) { 5651 ret = 0; 5652 goto out; 5653 } 5654 5655 /* 5656 * Handle special case where the right side has no extents at all. 5657 */ 5658 eb = path->nodes[0]; 5659 slot = path->slots[0]; 5660 btrfs_item_key_to_cpu(eb, &found_key, slot); 5661 if (found_key.objectid != key.objectid || 5662 found_key.type != key.type) { 5663 /* If we're a hole then just pretend nothing changed */ 5664 ret = (left_disknr) ? 0 : 1; 5665 goto out; 5666 } 5667 5668 /* 5669 * We're now on 2a, 2b or 7. 5670 */ 5671 key = found_key; 5672 while (key.offset < ekey->offset + left_len) { 5673 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5674 right_type = btrfs_file_extent_type(eb, ei); 5675 if (right_type != BTRFS_FILE_EXTENT_REG && 5676 right_type != BTRFS_FILE_EXTENT_INLINE) { 5677 ret = 0; 5678 goto out; 5679 } 5680 5681 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5682 right_len = btrfs_file_extent_ram_bytes(eb, ei); 5683 right_len = PAGE_ALIGN(right_len); 5684 } else { 5685 right_len = btrfs_file_extent_num_bytes(eb, ei); 5686 } 5687 5688 /* 5689 * Are we at extent 8? If yes, we know the extent is changed. 5690 * This may only happen on the first iteration. 5691 */ 5692 if (found_key.offset + right_len <= ekey->offset) { 5693 /* If we're a hole just pretend nothing changed */ 5694 ret = (left_disknr) ? 0 : 1; 5695 goto out; 5696 } 5697 5698 /* 5699 * We just wanted to see if when we have an inline extent, what 5700 * follows it is a regular extent (wanted to check the above 5701 * condition for inline extents too). This should normally not 5702 * happen but it's possible for example when we have an inline 5703 * compressed extent representing data with a size matching 5704 * the page size (currently the same as sector size). 5705 */ 5706 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5707 ret = 0; 5708 goto out; 5709 } 5710 5711 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5712 right_offset = btrfs_file_extent_offset(eb, ei); 5713 right_gen = btrfs_file_extent_generation(eb, ei); 5714 5715 left_offset_fixed = left_offset; 5716 if (key.offset < ekey->offset) { 5717 /* Fix the right offset for 2a and 7. */ 5718 right_offset += ekey->offset - key.offset; 5719 } else { 5720 /* Fix the left offset for all behind 2a and 2b */ 5721 left_offset_fixed += key.offset - ekey->offset; 5722 } 5723 5724 /* 5725 * Check if we have the same extent. 5726 */ 5727 if (left_disknr != right_disknr || 5728 left_offset_fixed != right_offset || 5729 left_gen != right_gen) { 5730 ret = 0; 5731 goto out; 5732 } 5733 5734 /* 5735 * Go to the next extent. 5736 */ 5737 ret = btrfs_next_item(sctx->parent_root, path); 5738 if (ret < 0) 5739 goto out; 5740 if (!ret) { 5741 eb = path->nodes[0]; 5742 slot = path->slots[0]; 5743 btrfs_item_key_to_cpu(eb, &found_key, slot); 5744 } 5745 if (ret || found_key.objectid != key.objectid || 5746 found_key.type != key.type) { 5747 key.offset += right_len; 5748 break; 5749 } 5750 if (found_key.offset != key.offset + right_len) { 5751 ret = 0; 5752 goto out; 5753 } 5754 key = found_key; 5755 } 5756 5757 /* 5758 * We're now behind the left extent (treat as unchanged) or at the end 5759 * of the right side (treat as changed). 5760 */ 5761 if (key.offset >= ekey->offset + left_len) 5762 ret = 1; 5763 else 5764 ret = 0; 5765 5766 5767 out: 5768 btrfs_free_path(path); 5769 return ret; 5770 } 5771 5772 static int get_last_extent(struct send_ctx *sctx, u64 offset) 5773 { 5774 struct btrfs_path *path; 5775 struct btrfs_root *root = sctx->send_root; 5776 struct btrfs_key key; 5777 int ret; 5778 5779 path = alloc_path_for_send(); 5780 if (!path) 5781 return -ENOMEM; 5782 5783 sctx->cur_inode_last_extent = 0; 5784 5785 key.objectid = sctx->cur_ino; 5786 key.type = BTRFS_EXTENT_DATA_KEY; 5787 key.offset = offset; 5788 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 5789 if (ret < 0) 5790 goto out; 5791 ret = 0; 5792 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 5793 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 5794 goto out; 5795 5796 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 5797 out: 5798 btrfs_free_path(path); 5799 return ret; 5800 } 5801 5802 static int range_is_hole_in_parent(struct send_ctx *sctx, 5803 const u64 start, 5804 const u64 end) 5805 { 5806 struct btrfs_path *path; 5807 struct btrfs_key key; 5808 struct btrfs_root *root = sctx->parent_root; 5809 u64 search_start = start; 5810 int ret; 5811 5812 path = alloc_path_for_send(); 5813 if (!path) 5814 return -ENOMEM; 5815 5816 key.objectid = sctx->cur_ino; 5817 key.type = BTRFS_EXTENT_DATA_KEY; 5818 key.offset = search_start; 5819 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5820 if (ret < 0) 5821 goto out; 5822 if (ret > 0 && path->slots[0] > 0) 5823 path->slots[0]--; 5824 5825 while (search_start < end) { 5826 struct extent_buffer *leaf = path->nodes[0]; 5827 int slot = path->slots[0]; 5828 struct btrfs_file_extent_item *fi; 5829 u64 extent_end; 5830 5831 if (slot >= btrfs_header_nritems(leaf)) { 5832 ret = btrfs_next_leaf(root, path); 5833 if (ret < 0) 5834 goto out; 5835 else if (ret > 0) 5836 break; 5837 continue; 5838 } 5839 5840 btrfs_item_key_to_cpu(leaf, &key, slot); 5841 if (key.objectid < sctx->cur_ino || 5842 key.type < BTRFS_EXTENT_DATA_KEY) 5843 goto next; 5844 if (key.objectid > sctx->cur_ino || 5845 key.type > BTRFS_EXTENT_DATA_KEY || 5846 key.offset >= end) 5847 break; 5848 5849 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5850 extent_end = btrfs_file_extent_end(path); 5851 if (extent_end <= start) 5852 goto next; 5853 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 5854 search_start = extent_end; 5855 goto next; 5856 } 5857 ret = 0; 5858 goto out; 5859 next: 5860 path->slots[0]++; 5861 } 5862 ret = 1; 5863 out: 5864 btrfs_free_path(path); 5865 return ret; 5866 } 5867 5868 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 5869 struct btrfs_key *key) 5870 { 5871 int ret = 0; 5872 5873 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 5874 return 0; 5875 5876 if (sctx->cur_inode_last_extent == (u64)-1) { 5877 ret = get_last_extent(sctx, key->offset - 1); 5878 if (ret) 5879 return ret; 5880 } 5881 5882 if (path->slots[0] == 0 && 5883 sctx->cur_inode_last_extent < key->offset) { 5884 /* 5885 * We might have skipped entire leafs that contained only 5886 * file extent items for our current inode. These leafs have 5887 * a generation number smaller (older) than the one in the 5888 * current leaf and the leaf our last extent came from, and 5889 * are located between these 2 leafs. 5890 */ 5891 ret = get_last_extent(sctx, key->offset - 1); 5892 if (ret) 5893 return ret; 5894 } 5895 5896 if (sctx->cur_inode_last_extent < key->offset) { 5897 ret = range_is_hole_in_parent(sctx, 5898 sctx->cur_inode_last_extent, 5899 key->offset); 5900 if (ret < 0) 5901 return ret; 5902 else if (ret == 0) 5903 ret = send_hole(sctx, key->offset); 5904 else 5905 ret = 0; 5906 } 5907 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 5908 return ret; 5909 } 5910 5911 static int process_extent(struct send_ctx *sctx, 5912 struct btrfs_path *path, 5913 struct btrfs_key *key) 5914 { 5915 struct clone_root *found_clone = NULL; 5916 int ret = 0; 5917 5918 if (S_ISLNK(sctx->cur_inode_mode)) 5919 return 0; 5920 5921 if (sctx->parent_root && !sctx->cur_inode_new) { 5922 ret = is_extent_unchanged(sctx, path, key); 5923 if (ret < 0) 5924 goto out; 5925 if (ret) { 5926 ret = 0; 5927 goto out_hole; 5928 } 5929 } else { 5930 struct btrfs_file_extent_item *ei; 5931 u8 type; 5932 5933 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5934 struct btrfs_file_extent_item); 5935 type = btrfs_file_extent_type(path->nodes[0], ei); 5936 if (type == BTRFS_FILE_EXTENT_PREALLOC || 5937 type == BTRFS_FILE_EXTENT_REG) { 5938 /* 5939 * The send spec does not have a prealloc command yet, 5940 * so just leave a hole for prealloc'ed extents until 5941 * we have enough commands queued up to justify rev'ing 5942 * the send spec. 5943 */ 5944 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 5945 ret = 0; 5946 goto out; 5947 } 5948 5949 /* Have a hole, just skip it. */ 5950 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 5951 ret = 0; 5952 goto out; 5953 } 5954 } 5955 } 5956 5957 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 5958 sctx->cur_inode_size, &found_clone); 5959 if (ret != -ENOENT && ret < 0) 5960 goto out; 5961 5962 ret = send_write_or_clone(sctx, path, key, found_clone); 5963 if (ret) 5964 goto out; 5965 out_hole: 5966 ret = maybe_send_hole(sctx, path, key); 5967 out: 5968 return ret; 5969 } 5970 5971 static int process_all_extents(struct send_ctx *sctx) 5972 { 5973 int ret; 5974 struct btrfs_root *root; 5975 struct btrfs_path *path; 5976 struct btrfs_key key; 5977 struct btrfs_key found_key; 5978 struct extent_buffer *eb; 5979 int slot; 5980 5981 root = sctx->send_root; 5982 path = alloc_path_for_send(); 5983 if (!path) 5984 return -ENOMEM; 5985 5986 key.objectid = sctx->cmp_key->objectid; 5987 key.type = BTRFS_EXTENT_DATA_KEY; 5988 key.offset = 0; 5989 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5990 if (ret < 0) 5991 goto out; 5992 5993 while (1) { 5994 eb = path->nodes[0]; 5995 slot = path->slots[0]; 5996 5997 if (slot >= btrfs_header_nritems(eb)) { 5998 ret = btrfs_next_leaf(root, path); 5999 if (ret < 0) { 6000 goto out; 6001 } else if (ret > 0) { 6002 ret = 0; 6003 break; 6004 } 6005 continue; 6006 } 6007 6008 btrfs_item_key_to_cpu(eb, &found_key, slot); 6009 6010 if (found_key.objectid != key.objectid || 6011 found_key.type != key.type) { 6012 ret = 0; 6013 goto out; 6014 } 6015 6016 ret = process_extent(sctx, path, &found_key); 6017 if (ret < 0) 6018 goto out; 6019 6020 path->slots[0]++; 6021 } 6022 6023 out: 6024 btrfs_free_path(path); 6025 return ret; 6026 } 6027 6028 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 6029 int *pending_move, 6030 int *refs_processed) 6031 { 6032 int ret = 0; 6033 6034 if (sctx->cur_ino == 0) 6035 goto out; 6036 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 6037 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 6038 goto out; 6039 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 6040 goto out; 6041 6042 ret = process_recorded_refs(sctx, pending_move); 6043 if (ret < 0) 6044 goto out; 6045 6046 *refs_processed = 1; 6047 out: 6048 return ret; 6049 } 6050 6051 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 6052 { 6053 int ret = 0; 6054 u64 left_mode; 6055 u64 left_uid; 6056 u64 left_gid; 6057 u64 right_mode; 6058 u64 right_uid; 6059 u64 right_gid; 6060 int need_chmod = 0; 6061 int need_chown = 0; 6062 int need_truncate = 1; 6063 int pending_move = 0; 6064 int refs_processed = 0; 6065 6066 if (sctx->ignore_cur_inode) 6067 return 0; 6068 6069 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 6070 &refs_processed); 6071 if (ret < 0) 6072 goto out; 6073 6074 /* 6075 * We have processed the refs and thus need to advance send_progress. 6076 * Now, calls to get_cur_xxx will take the updated refs of the current 6077 * inode into account. 6078 * 6079 * On the other hand, if our current inode is a directory and couldn't 6080 * be moved/renamed because its parent was renamed/moved too and it has 6081 * a higher inode number, we can only move/rename our current inode 6082 * after we moved/renamed its parent. Therefore in this case operate on 6083 * the old path (pre move/rename) of our current inode, and the 6084 * move/rename will be performed later. 6085 */ 6086 if (refs_processed && !pending_move) 6087 sctx->send_progress = sctx->cur_ino + 1; 6088 6089 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 6090 goto out; 6091 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 6092 goto out; 6093 6094 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 6095 &left_mode, &left_uid, &left_gid, NULL); 6096 if (ret < 0) 6097 goto out; 6098 6099 if (!sctx->parent_root || sctx->cur_inode_new) { 6100 need_chown = 1; 6101 if (!S_ISLNK(sctx->cur_inode_mode)) 6102 need_chmod = 1; 6103 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 6104 need_truncate = 0; 6105 } else { 6106 u64 old_size; 6107 6108 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 6109 &old_size, NULL, &right_mode, &right_uid, 6110 &right_gid, NULL); 6111 if (ret < 0) 6112 goto out; 6113 6114 if (left_uid != right_uid || left_gid != right_gid) 6115 need_chown = 1; 6116 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 6117 need_chmod = 1; 6118 if ((old_size == sctx->cur_inode_size) || 6119 (sctx->cur_inode_size > old_size && 6120 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 6121 need_truncate = 0; 6122 } 6123 6124 if (S_ISREG(sctx->cur_inode_mode)) { 6125 if (need_send_hole(sctx)) { 6126 if (sctx->cur_inode_last_extent == (u64)-1 || 6127 sctx->cur_inode_last_extent < 6128 sctx->cur_inode_size) { 6129 ret = get_last_extent(sctx, (u64)-1); 6130 if (ret) 6131 goto out; 6132 } 6133 if (sctx->cur_inode_last_extent < 6134 sctx->cur_inode_size) { 6135 ret = send_hole(sctx, sctx->cur_inode_size); 6136 if (ret) 6137 goto out; 6138 } 6139 } 6140 if (need_truncate) { 6141 ret = send_truncate(sctx, sctx->cur_ino, 6142 sctx->cur_inode_gen, 6143 sctx->cur_inode_size); 6144 if (ret < 0) 6145 goto out; 6146 } 6147 } 6148 6149 if (need_chown) { 6150 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6151 left_uid, left_gid); 6152 if (ret < 0) 6153 goto out; 6154 } 6155 if (need_chmod) { 6156 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6157 left_mode); 6158 if (ret < 0) 6159 goto out; 6160 } 6161 6162 ret = send_capabilities(sctx); 6163 if (ret < 0) 6164 goto out; 6165 6166 /* 6167 * If other directory inodes depended on our current directory 6168 * inode's move/rename, now do their move/rename operations. 6169 */ 6170 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6171 ret = apply_children_dir_moves(sctx); 6172 if (ret) 6173 goto out; 6174 /* 6175 * Need to send that every time, no matter if it actually 6176 * changed between the two trees as we have done changes to 6177 * the inode before. If our inode is a directory and it's 6178 * waiting to be moved/renamed, we will send its utimes when 6179 * it's moved/renamed, therefore we don't need to do it here. 6180 */ 6181 sctx->send_progress = sctx->cur_ino + 1; 6182 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6183 if (ret < 0) 6184 goto out; 6185 } 6186 6187 out: 6188 return ret; 6189 } 6190 6191 struct parent_paths_ctx { 6192 struct list_head *refs; 6193 struct send_ctx *sctx; 6194 }; 6195 6196 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name, 6197 void *ctx) 6198 { 6199 struct parent_paths_ctx *ppctx = ctx; 6200 6201 return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx, 6202 ppctx->refs); 6203 } 6204 6205 /* 6206 * Issue unlink operations for all paths of the current inode found in the 6207 * parent snapshot. 6208 */ 6209 static int btrfs_unlink_all_paths(struct send_ctx *sctx) 6210 { 6211 LIST_HEAD(deleted_refs); 6212 struct btrfs_path *path; 6213 struct btrfs_key key; 6214 struct parent_paths_ctx ctx; 6215 int ret; 6216 6217 path = alloc_path_for_send(); 6218 if (!path) 6219 return -ENOMEM; 6220 6221 key.objectid = sctx->cur_ino; 6222 key.type = BTRFS_INODE_REF_KEY; 6223 key.offset = 0; 6224 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 6225 if (ret < 0) 6226 goto out; 6227 6228 ctx.refs = &deleted_refs; 6229 ctx.sctx = sctx; 6230 6231 while (true) { 6232 struct extent_buffer *eb = path->nodes[0]; 6233 int slot = path->slots[0]; 6234 6235 if (slot >= btrfs_header_nritems(eb)) { 6236 ret = btrfs_next_leaf(sctx->parent_root, path); 6237 if (ret < 0) 6238 goto out; 6239 else if (ret > 0) 6240 break; 6241 continue; 6242 } 6243 6244 btrfs_item_key_to_cpu(eb, &key, slot); 6245 if (key.objectid != sctx->cur_ino) 6246 break; 6247 if (key.type != BTRFS_INODE_REF_KEY && 6248 key.type != BTRFS_INODE_EXTREF_KEY) 6249 break; 6250 6251 ret = iterate_inode_ref(sctx->parent_root, path, &key, 1, 6252 record_parent_ref, &ctx); 6253 if (ret < 0) 6254 goto out; 6255 6256 path->slots[0]++; 6257 } 6258 6259 while (!list_empty(&deleted_refs)) { 6260 struct recorded_ref *ref; 6261 6262 ref = list_first_entry(&deleted_refs, struct recorded_ref, list); 6263 ret = send_unlink(sctx, ref->full_path); 6264 if (ret < 0) 6265 goto out; 6266 fs_path_free(ref->full_path); 6267 list_del(&ref->list); 6268 kfree(ref); 6269 } 6270 ret = 0; 6271 out: 6272 btrfs_free_path(path); 6273 if (ret) 6274 __free_recorded_refs(&deleted_refs); 6275 return ret; 6276 } 6277 6278 static int changed_inode(struct send_ctx *sctx, 6279 enum btrfs_compare_tree_result result) 6280 { 6281 int ret = 0; 6282 struct btrfs_key *key = sctx->cmp_key; 6283 struct btrfs_inode_item *left_ii = NULL; 6284 struct btrfs_inode_item *right_ii = NULL; 6285 u64 left_gen = 0; 6286 u64 right_gen = 0; 6287 6288 sctx->cur_ino = key->objectid; 6289 sctx->cur_inode_new_gen = 0; 6290 sctx->cur_inode_last_extent = (u64)-1; 6291 sctx->cur_inode_next_write_offset = 0; 6292 sctx->ignore_cur_inode = false; 6293 6294 /* 6295 * Set send_progress to current inode. This will tell all get_cur_xxx 6296 * functions that the current inode's refs are not updated yet. Later, 6297 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6298 */ 6299 sctx->send_progress = sctx->cur_ino; 6300 6301 if (result == BTRFS_COMPARE_TREE_NEW || 6302 result == BTRFS_COMPARE_TREE_CHANGED) { 6303 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6304 sctx->left_path->slots[0], 6305 struct btrfs_inode_item); 6306 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6307 left_ii); 6308 } else { 6309 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6310 sctx->right_path->slots[0], 6311 struct btrfs_inode_item); 6312 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6313 right_ii); 6314 } 6315 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6316 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6317 sctx->right_path->slots[0], 6318 struct btrfs_inode_item); 6319 6320 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6321 right_ii); 6322 6323 /* 6324 * The cur_ino = root dir case is special here. We can't treat 6325 * the inode as deleted+reused because it would generate a 6326 * stream that tries to delete/mkdir the root dir. 6327 */ 6328 if (left_gen != right_gen && 6329 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6330 sctx->cur_inode_new_gen = 1; 6331 } 6332 6333 /* 6334 * Normally we do not find inodes with a link count of zero (orphans) 6335 * because the most common case is to create a snapshot and use it 6336 * for a send operation. However other less common use cases involve 6337 * using a subvolume and send it after turning it to RO mode just 6338 * after deleting all hard links of a file while holding an open 6339 * file descriptor against it or turning a RO snapshot into RW mode, 6340 * keep an open file descriptor against a file, delete it and then 6341 * turn the snapshot back to RO mode before using it for a send 6342 * operation. So if we find such cases, ignore the inode and all its 6343 * items completely if it's a new inode, or if it's a changed inode 6344 * make sure all its previous paths (from the parent snapshot) are all 6345 * unlinked and all other the inode items are ignored. 6346 */ 6347 if (result == BTRFS_COMPARE_TREE_NEW || 6348 result == BTRFS_COMPARE_TREE_CHANGED) { 6349 u32 nlinks; 6350 6351 nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6352 if (nlinks == 0) { 6353 sctx->ignore_cur_inode = true; 6354 if (result == BTRFS_COMPARE_TREE_CHANGED) 6355 ret = btrfs_unlink_all_paths(sctx); 6356 goto out; 6357 } 6358 } 6359 6360 if (result == BTRFS_COMPARE_TREE_NEW) { 6361 sctx->cur_inode_gen = left_gen; 6362 sctx->cur_inode_new = 1; 6363 sctx->cur_inode_deleted = 0; 6364 sctx->cur_inode_size = btrfs_inode_size( 6365 sctx->left_path->nodes[0], left_ii); 6366 sctx->cur_inode_mode = btrfs_inode_mode( 6367 sctx->left_path->nodes[0], left_ii); 6368 sctx->cur_inode_rdev = btrfs_inode_rdev( 6369 sctx->left_path->nodes[0], left_ii); 6370 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6371 ret = send_create_inode_if_needed(sctx); 6372 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6373 sctx->cur_inode_gen = right_gen; 6374 sctx->cur_inode_new = 0; 6375 sctx->cur_inode_deleted = 1; 6376 sctx->cur_inode_size = btrfs_inode_size( 6377 sctx->right_path->nodes[0], right_ii); 6378 sctx->cur_inode_mode = btrfs_inode_mode( 6379 sctx->right_path->nodes[0], right_ii); 6380 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6381 /* 6382 * We need to do some special handling in case the inode was 6383 * reported as changed with a changed generation number. This 6384 * means that the original inode was deleted and new inode 6385 * reused the same inum. So we have to treat the old inode as 6386 * deleted and the new one as new. 6387 */ 6388 if (sctx->cur_inode_new_gen) { 6389 /* 6390 * First, process the inode as if it was deleted. 6391 */ 6392 sctx->cur_inode_gen = right_gen; 6393 sctx->cur_inode_new = 0; 6394 sctx->cur_inode_deleted = 1; 6395 sctx->cur_inode_size = btrfs_inode_size( 6396 sctx->right_path->nodes[0], right_ii); 6397 sctx->cur_inode_mode = btrfs_inode_mode( 6398 sctx->right_path->nodes[0], right_ii); 6399 ret = process_all_refs(sctx, 6400 BTRFS_COMPARE_TREE_DELETED); 6401 if (ret < 0) 6402 goto out; 6403 6404 /* 6405 * Now process the inode as if it was new. 6406 */ 6407 sctx->cur_inode_gen = left_gen; 6408 sctx->cur_inode_new = 1; 6409 sctx->cur_inode_deleted = 0; 6410 sctx->cur_inode_size = btrfs_inode_size( 6411 sctx->left_path->nodes[0], left_ii); 6412 sctx->cur_inode_mode = btrfs_inode_mode( 6413 sctx->left_path->nodes[0], left_ii); 6414 sctx->cur_inode_rdev = btrfs_inode_rdev( 6415 sctx->left_path->nodes[0], left_ii); 6416 ret = send_create_inode_if_needed(sctx); 6417 if (ret < 0) 6418 goto out; 6419 6420 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 6421 if (ret < 0) 6422 goto out; 6423 /* 6424 * Advance send_progress now as we did not get into 6425 * process_recorded_refs_if_needed in the new_gen case. 6426 */ 6427 sctx->send_progress = sctx->cur_ino + 1; 6428 6429 /* 6430 * Now process all extents and xattrs of the inode as if 6431 * they were all new. 6432 */ 6433 ret = process_all_extents(sctx); 6434 if (ret < 0) 6435 goto out; 6436 ret = process_all_new_xattrs(sctx); 6437 if (ret < 0) 6438 goto out; 6439 } else { 6440 sctx->cur_inode_gen = left_gen; 6441 sctx->cur_inode_new = 0; 6442 sctx->cur_inode_new_gen = 0; 6443 sctx->cur_inode_deleted = 0; 6444 sctx->cur_inode_size = btrfs_inode_size( 6445 sctx->left_path->nodes[0], left_ii); 6446 sctx->cur_inode_mode = btrfs_inode_mode( 6447 sctx->left_path->nodes[0], left_ii); 6448 } 6449 } 6450 6451 out: 6452 return ret; 6453 } 6454 6455 /* 6456 * We have to process new refs before deleted refs, but compare_trees gives us 6457 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 6458 * first and later process them in process_recorded_refs. 6459 * For the cur_inode_new_gen case, we skip recording completely because 6460 * changed_inode did already initiate processing of refs. The reason for this is 6461 * that in this case, compare_tree actually compares the refs of 2 different 6462 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 6463 * refs of the right tree as deleted and all refs of the left tree as new. 6464 */ 6465 static int changed_ref(struct send_ctx *sctx, 6466 enum btrfs_compare_tree_result result) 6467 { 6468 int ret = 0; 6469 6470 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6471 inconsistent_snapshot_error(sctx, result, "reference"); 6472 return -EIO; 6473 } 6474 6475 if (!sctx->cur_inode_new_gen && 6476 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 6477 if (result == BTRFS_COMPARE_TREE_NEW) 6478 ret = record_new_ref(sctx); 6479 else if (result == BTRFS_COMPARE_TREE_DELETED) 6480 ret = record_deleted_ref(sctx); 6481 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6482 ret = record_changed_ref(sctx); 6483 } 6484 6485 return ret; 6486 } 6487 6488 /* 6489 * Process new/deleted/changed xattrs. We skip processing in the 6490 * cur_inode_new_gen case because changed_inode did already initiate processing 6491 * of xattrs. The reason is the same as in changed_ref 6492 */ 6493 static int changed_xattr(struct send_ctx *sctx, 6494 enum btrfs_compare_tree_result result) 6495 { 6496 int ret = 0; 6497 6498 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6499 inconsistent_snapshot_error(sctx, result, "xattr"); 6500 return -EIO; 6501 } 6502 6503 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6504 if (result == BTRFS_COMPARE_TREE_NEW) 6505 ret = process_new_xattr(sctx); 6506 else if (result == BTRFS_COMPARE_TREE_DELETED) 6507 ret = process_deleted_xattr(sctx); 6508 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6509 ret = process_changed_xattr(sctx); 6510 } 6511 6512 return ret; 6513 } 6514 6515 /* 6516 * Process new/deleted/changed extents. We skip processing in the 6517 * cur_inode_new_gen case because changed_inode did already initiate processing 6518 * of extents. The reason is the same as in changed_ref 6519 */ 6520 static int changed_extent(struct send_ctx *sctx, 6521 enum btrfs_compare_tree_result result) 6522 { 6523 int ret = 0; 6524 6525 /* 6526 * We have found an extent item that changed without the inode item 6527 * having changed. This can happen either after relocation (where the 6528 * disk_bytenr of an extent item is replaced at 6529 * relocation.c:replace_file_extents()) or after deduplication into a 6530 * file in both the parent and send snapshots (where an extent item can 6531 * get modified or replaced with a new one). Note that deduplication 6532 * updates the inode item, but it only changes the iversion (sequence 6533 * field in the inode item) of the inode, so if a file is deduplicated 6534 * the same amount of times in both the parent and send snapshots, its 6535 * iversion becomes the same in both snapshots, whence the inode item is 6536 * the same on both snapshots. 6537 */ 6538 if (sctx->cur_ino != sctx->cmp_key->objectid) 6539 return 0; 6540 6541 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6542 if (result != BTRFS_COMPARE_TREE_DELETED) 6543 ret = process_extent(sctx, sctx->left_path, 6544 sctx->cmp_key); 6545 } 6546 6547 return ret; 6548 } 6549 6550 static int dir_changed(struct send_ctx *sctx, u64 dir) 6551 { 6552 u64 orig_gen, new_gen; 6553 int ret; 6554 6555 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 6556 NULL, NULL); 6557 if (ret) 6558 return ret; 6559 6560 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 6561 NULL, NULL, NULL); 6562 if (ret) 6563 return ret; 6564 6565 return (orig_gen != new_gen) ? 1 : 0; 6566 } 6567 6568 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 6569 struct btrfs_key *key) 6570 { 6571 struct btrfs_inode_extref *extref; 6572 struct extent_buffer *leaf; 6573 u64 dirid = 0, last_dirid = 0; 6574 unsigned long ptr; 6575 u32 item_size; 6576 u32 cur_offset = 0; 6577 int ref_name_len; 6578 int ret = 0; 6579 6580 /* Easy case, just check this one dirid */ 6581 if (key->type == BTRFS_INODE_REF_KEY) { 6582 dirid = key->offset; 6583 6584 ret = dir_changed(sctx, dirid); 6585 goto out; 6586 } 6587 6588 leaf = path->nodes[0]; 6589 item_size = btrfs_item_size(leaf, path->slots[0]); 6590 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 6591 while (cur_offset < item_size) { 6592 extref = (struct btrfs_inode_extref *)(ptr + 6593 cur_offset); 6594 dirid = btrfs_inode_extref_parent(leaf, extref); 6595 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 6596 cur_offset += ref_name_len + sizeof(*extref); 6597 if (dirid == last_dirid) 6598 continue; 6599 ret = dir_changed(sctx, dirid); 6600 if (ret) 6601 break; 6602 last_dirid = dirid; 6603 } 6604 out: 6605 return ret; 6606 } 6607 6608 /* 6609 * Updates compare related fields in sctx and simply forwards to the actual 6610 * changed_xxx functions. 6611 */ 6612 static int changed_cb(struct btrfs_path *left_path, 6613 struct btrfs_path *right_path, 6614 struct btrfs_key *key, 6615 enum btrfs_compare_tree_result result, 6616 struct send_ctx *sctx) 6617 { 6618 int ret = 0; 6619 6620 /* 6621 * We can not hold the commit root semaphore here. This is because in 6622 * the case of sending and receiving to the same filesystem, using a 6623 * pipe, could result in a deadlock: 6624 * 6625 * 1) The task running send blocks on the pipe because it's full; 6626 * 6627 * 2) The task running receive, which is the only consumer of the pipe, 6628 * is waiting for a transaction commit (for example due to a space 6629 * reservation when doing a write or triggering a transaction commit 6630 * when creating a subvolume); 6631 * 6632 * 3) The transaction is waiting to write lock the commit root semaphore, 6633 * but can not acquire it since it's being held at 1). 6634 * 6635 * Down this call chain we write to the pipe through kernel_write(). 6636 * The same type of problem can also happen when sending to a file that 6637 * is stored in the same filesystem - when reserving space for a write 6638 * into the file, we can trigger a transaction commit. 6639 * 6640 * Our caller has supplied us with clones of leaves from the send and 6641 * parent roots, so we're safe here from a concurrent relocation and 6642 * further reallocation of metadata extents while we are here. Below we 6643 * also assert that the leaves are clones. 6644 */ 6645 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem); 6646 6647 /* 6648 * We always have a send root, so left_path is never NULL. We will not 6649 * have a leaf when we have reached the end of the send root but have 6650 * not yet reached the end of the parent root. 6651 */ 6652 if (left_path->nodes[0]) 6653 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 6654 &left_path->nodes[0]->bflags)); 6655 /* 6656 * When doing a full send we don't have a parent root, so right_path is 6657 * NULL. When doing an incremental send, we may have reached the end of 6658 * the parent root already, so we don't have a leaf at right_path. 6659 */ 6660 if (right_path && right_path->nodes[0]) 6661 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 6662 &right_path->nodes[0]->bflags)); 6663 6664 if (result == BTRFS_COMPARE_TREE_SAME) { 6665 if (key->type == BTRFS_INODE_REF_KEY || 6666 key->type == BTRFS_INODE_EXTREF_KEY) { 6667 ret = compare_refs(sctx, left_path, key); 6668 if (!ret) 6669 return 0; 6670 if (ret < 0) 6671 return ret; 6672 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 6673 return maybe_send_hole(sctx, left_path, key); 6674 } else { 6675 return 0; 6676 } 6677 result = BTRFS_COMPARE_TREE_CHANGED; 6678 ret = 0; 6679 } 6680 6681 sctx->left_path = left_path; 6682 sctx->right_path = right_path; 6683 sctx->cmp_key = key; 6684 6685 ret = finish_inode_if_needed(sctx, 0); 6686 if (ret < 0) 6687 goto out; 6688 6689 /* Ignore non-FS objects */ 6690 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 6691 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 6692 goto out; 6693 6694 if (key->type == BTRFS_INODE_ITEM_KEY) { 6695 ret = changed_inode(sctx, result); 6696 } else if (!sctx->ignore_cur_inode) { 6697 if (key->type == BTRFS_INODE_REF_KEY || 6698 key->type == BTRFS_INODE_EXTREF_KEY) 6699 ret = changed_ref(sctx, result); 6700 else if (key->type == BTRFS_XATTR_ITEM_KEY) 6701 ret = changed_xattr(sctx, result); 6702 else if (key->type == BTRFS_EXTENT_DATA_KEY) 6703 ret = changed_extent(sctx, result); 6704 } 6705 6706 out: 6707 return ret; 6708 } 6709 6710 static int search_key_again(const struct send_ctx *sctx, 6711 struct btrfs_root *root, 6712 struct btrfs_path *path, 6713 const struct btrfs_key *key) 6714 { 6715 int ret; 6716 6717 if (!path->need_commit_sem) 6718 lockdep_assert_held_read(&root->fs_info->commit_root_sem); 6719 6720 /* 6721 * Roots used for send operations are readonly and no one can add, 6722 * update or remove keys from them, so we should be able to find our 6723 * key again. The only exception is deduplication, which can operate on 6724 * readonly roots and add, update or remove keys to/from them - but at 6725 * the moment we don't allow it to run in parallel with send. 6726 */ 6727 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 6728 ASSERT(ret <= 0); 6729 if (ret > 0) { 6730 btrfs_print_tree(path->nodes[path->lowest_level], false); 6731 btrfs_err(root->fs_info, 6732 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d", 6733 key->objectid, key->type, key->offset, 6734 (root == sctx->parent_root ? "parent" : "send"), 6735 root->root_key.objectid, path->lowest_level, 6736 path->slots[path->lowest_level]); 6737 return -EUCLEAN; 6738 } 6739 6740 return ret; 6741 } 6742 6743 static int full_send_tree(struct send_ctx *sctx) 6744 { 6745 int ret; 6746 struct btrfs_root *send_root = sctx->send_root; 6747 struct btrfs_key key; 6748 struct btrfs_fs_info *fs_info = send_root->fs_info; 6749 struct btrfs_path *path; 6750 6751 path = alloc_path_for_send(); 6752 if (!path) 6753 return -ENOMEM; 6754 path->reada = READA_FORWARD_ALWAYS; 6755 6756 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 6757 key.type = BTRFS_INODE_ITEM_KEY; 6758 key.offset = 0; 6759 6760 down_read(&fs_info->commit_root_sem); 6761 sctx->last_reloc_trans = fs_info->last_reloc_trans; 6762 up_read(&fs_info->commit_root_sem); 6763 6764 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 6765 if (ret < 0) 6766 goto out; 6767 if (ret) 6768 goto out_finish; 6769 6770 while (1) { 6771 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 6772 6773 ret = changed_cb(path, NULL, &key, 6774 BTRFS_COMPARE_TREE_NEW, sctx); 6775 if (ret < 0) 6776 goto out; 6777 6778 down_read(&fs_info->commit_root_sem); 6779 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 6780 sctx->last_reloc_trans = fs_info->last_reloc_trans; 6781 up_read(&fs_info->commit_root_sem); 6782 /* 6783 * A transaction used for relocating a block group was 6784 * committed or is about to finish its commit. Release 6785 * our path (leaf) and restart the search, so that we 6786 * avoid operating on any file extent items that are 6787 * stale, with a disk_bytenr that reflects a pre 6788 * relocation value. This way we avoid as much as 6789 * possible to fallback to regular writes when checking 6790 * if we can clone file ranges. 6791 */ 6792 btrfs_release_path(path); 6793 ret = search_key_again(sctx, send_root, path, &key); 6794 if (ret < 0) 6795 goto out; 6796 } else { 6797 up_read(&fs_info->commit_root_sem); 6798 } 6799 6800 ret = btrfs_next_item(send_root, path); 6801 if (ret < 0) 6802 goto out; 6803 if (ret) { 6804 ret = 0; 6805 break; 6806 } 6807 } 6808 6809 out_finish: 6810 ret = finish_inode_if_needed(sctx, 1); 6811 6812 out: 6813 btrfs_free_path(path); 6814 return ret; 6815 } 6816 6817 static int replace_node_with_clone(struct btrfs_path *path, int level) 6818 { 6819 struct extent_buffer *clone; 6820 6821 clone = btrfs_clone_extent_buffer(path->nodes[level]); 6822 if (!clone) 6823 return -ENOMEM; 6824 6825 free_extent_buffer(path->nodes[level]); 6826 path->nodes[level] = clone; 6827 6828 return 0; 6829 } 6830 6831 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen) 6832 { 6833 struct extent_buffer *eb; 6834 struct extent_buffer *parent = path->nodes[*level]; 6835 int slot = path->slots[*level]; 6836 const int nritems = btrfs_header_nritems(parent); 6837 u64 reada_max; 6838 u64 reada_done = 0; 6839 6840 lockdep_assert_held_read(&parent->fs_info->commit_root_sem); 6841 6842 BUG_ON(*level == 0); 6843 eb = btrfs_read_node_slot(parent, slot); 6844 if (IS_ERR(eb)) 6845 return PTR_ERR(eb); 6846 6847 /* 6848 * Trigger readahead for the next leaves we will process, so that it is 6849 * very likely that when we need them they are already in memory and we 6850 * will not block on disk IO. For nodes we only do readahead for one, 6851 * since the time window between processing nodes is typically larger. 6852 */ 6853 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize); 6854 6855 for (slot++; slot < nritems && reada_done < reada_max; slot++) { 6856 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) { 6857 btrfs_readahead_node_child(parent, slot); 6858 reada_done += eb->fs_info->nodesize; 6859 } 6860 } 6861 6862 path->nodes[*level - 1] = eb; 6863 path->slots[*level - 1] = 0; 6864 (*level)--; 6865 6866 if (*level == 0) 6867 return replace_node_with_clone(path, 0); 6868 6869 return 0; 6870 } 6871 6872 static int tree_move_next_or_upnext(struct btrfs_path *path, 6873 int *level, int root_level) 6874 { 6875 int ret = 0; 6876 int nritems; 6877 nritems = btrfs_header_nritems(path->nodes[*level]); 6878 6879 path->slots[*level]++; 6880 6881 while (path->slots[*level] >= nritems) { 6882 if (*level == root_level) { 6883 path->slots[*level] = nritems - 1; 6884 return -1; 6885 } 6886 6887 /* move upnext */ 6888 path->slots[*level] = 0; 6889 free_extent_buffer(path->nodes[*level]); 6890 path->nodes[*level] = NULL; 6891 (*level)++; 6892 path->slots[*level]++; 6893 6894 nritems = btrfs_header_nritems(path->nodes[*level]); 6895 ret = 1; 6896 } 6897 return ret; 6898 } 6899 6900 /* 6901 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 6902 * or down. 6903 */ 6904 static int tree_advance(struct btrfs_path *path, 6905 int *level, int root_level, 6906 int allow_down, 6907 struct btrfs_key *key, 6908 u64 reada_min_gen) 6909 { 6910 int ret; 6911 6912 if (*level == 0 || !allow_down) { 6913 ret = tree_move_next_or_upnext(path, level, root_level); 6914 } else { 6915 ret = tree_move_down(path, level, reada_min_gen); 6916 } 6917 6918 /* 6919 * Even if we have reached the end of a tree, ret is -1, update the key 6920 * anyway, so that in case we need to restart due to a block group 6921 * relocation, we can assert that the last key of the root node still 6922 * exists in the tree. 6923 */ 6924 if (*level == 0) 6925 btrfs_item_key_to_cpu(path->nodes[*level], key, 6926 path->slots[*level]); 6927 else 6928 btrfs_node_key_to_cpu(path->nodes[*level], key, 6929 path->slots[*level]); 6930 6931 return ret; 6932 } 6933 6934 static int tree_compare_item(struct btrfs_path *left_path, 6935 struct btrfs_path *right_path, 6936 char *tmp_buf) 6937 { 6938 int cmp; 6939 int len1, len2; 6940 unsigned long off1, off2; 6941 6942 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]); 6943 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]); 6944 if (len1 != len2) 6945 return 1; 6946 6947 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 6948 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 6949 right_path->slots[0]); 6950 6951 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 6952 6953 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 6954 if (cmp) 6955 return 1; 6956 return 0; 6957 } 6958 6959 /* 6960 * A transaction used for relocating a block group was committed or is about to 6961 * finish its commit. Release our paths and restart the search, so that we are 6962 * not using stale extent buffers: 6963 * 6964 * 1) For levels > 0, we are only holding references of extent buffers, without 6965 * any locks on them, which does not prevent them from having been relocated 6966 * and reallocated after the last time we released the commit root semaphore. 6967 * The exception are the root nodes, for which we always have a clone, see 6968 * the comment at btrfs_compare_trees(); 6969 * 6970 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so 6971 * we are safe from the concurrent relocation and reallocation. However they 6972 * can have file extent items with a pre relocation disk_bytenr value, so we 6973 * restart the start from the current commit roots and clone the new leaves so 6974 * that we get the post relocation disk_bytenr values. Not doing so, could 6975 * make us clone the wrong data in case there are new extents using the old 6976 * disk_bytenr that happen to be shared. 6977 */ 6978 static int restart_after_relocation(struct btrfs_path *left_path, 6979 struct btrfs_path *right_path, 6980 const struct btrfs_key *left_key, 6981 const struct btrfs_key *right_key, 6982 int left_level, 6983 int right_level, 6984 const struct send_ctx *sctx) 6985 { 6986 int root_level; 6987 int ret; 6988 6989 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem); 6990 6991 btrfs_release_path(left_path); 6992 btrfs_release_path(right_path); 6993 6994 /* 6995 * Since keys can not be added or removed to/from our roots because they 6996 * are readonly and we do not allow deduplication to run in parallel 6997 * (which can add, remove or change keys), the layout of the trees should 6998 * not change. 6999 */ 7000 left_path->lowest_level = left_level; 7001 ret = search_key_again(sctx, sctx->send_root, left_path, left_key); 7002 if (ret < 0) 7003 return ret; 7004 7005 right_path->lowest_level = right_level; 7006 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key); 7007 if (ret < 0) 7008 return ret; 7009 7010 /* 7011 * If the lowest level nodes are leaves, clone them so that they can be 7012 * safely used by changed_cb() while not under the protection of the 7013 * commit root semaphore, even if relocation and reallocation happens in 7014 * parallel. 7015 */ 7016 if (left_level == 0) { 7017 ret = replace_node_with_clone(left_path, 0); 7018 if (ret < 0) 7019 return ret; 7020 } 7021 7022 if (right_level == 0) { 7023 ret = replace_node_with_clone(right_path, 0); 7024 if (ret < 0) 7025 return ret; 7026 } 7027 7028 /* 7029 * Now clone the root nodes (unless they happen to be the leaves we have 7030 * already cloned). This is to protect against concurrent snapshotting of 7031 * the send and parent roots (see the comment at btrfs_compare_trees()). 7032 */ 7033 root_level = btrfs_header_level(sctx->send_root->commit_root); 7034 if (root_level > 0) { 7035 ret = replace_node_with_clone(left_path, root_level); 7036 if (ret < 0) 7037 return ret; 7038 } 7039 7040 root_level = btrfs_header_level(sctx->parent_root->commit_root); 7041 if (root_level > 0) { 7042 ret = replace_node_with_clone(right_path, root_level); 7043 if (ret < 0) 7044 return ret; 7045 } 7046 7047 return 0; 7048 } 7049 7050 /* 7051 * This function compares two trees and calls the provided callback for 7052 * every changed/new/deleted item it finds. 7053 * If shared tree blocks are encountered, whole subtrees are skipped, making 7054 * the compare pretty fast on snapshotted subvolumes. 7055 * 7056 * This currently works on commit roots only. As commit roots are read only, 7057 * we don't do any locking. The commit roots are protected with transactions. 7058 * Transactions are ended and rejoined when a commit is tried in between. 7059 * 7060 * This function checks for modifications done to the trees while comparing. 7061 * If it detects a change, it aborts immediately. 7062 */ 7063 static int btrfs_compare_trees(struct btrfs_root *left_root, 7064 struct btrfs_root *right_root, struct send_ctx *sctx) 7065 { 7066 struct btrfs_fs_info *fs_info = left_root->fs_info; 7067 int ret; 7068 int cmp; 7069 struct btrfs_path *left_path = NULL; 7070 struct btrfs_path *right_path = NULL; 7071 struct btrfs_key left_key; 7072 struct btrfs_key right_key; 7073 char *tmp_buf = NULL; 7074 int left_root_level; 7075 int right_root_level; 7076 int left_level; 7077 int right_level; 7078 int left_end_reached = 0; 7079 int right_end_reached = 0; 7080 int advance_left = 0; 7081 int advance_right = 0; 7082 u64 left_blockptr; 7083 u64 right_blockptr; 7084 u64 left_gen; 7085 u64 right_gen; 7086 u64 reada_min_gen; 7087 7088 left_path = btrfs_alloc_path(); 7089 if (!left_path) { 7090 ret = -ENOMEM; 7091 goto out; 7092 } 7093 right_path = btrfs_alloc_path(); 7094 if (!right_path) { 7095 ret = -ENOMEM; 7096 goto out; 7097 } 7098 7099 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 7100 if (!tmp_buf) { 7101 ret = -ENOMEM; 7102 goto out; 7103 } 7104 7105 left_path->search_commit_root = 1; 7106 left_path->skip_locking = 1; 7107 right_path->search_commit_root = 1; 7108 right_path->skip_locking = 1; 7109 7110 /* 7111 * Strategy: Go to the first items of both trees. Then do 7112 * 7113 * If both trees are at level 0 7114 * Compare keys of current items 7115 * If left < right treat left item as new, advance left tree 7116 * and repeat 7117 * If left > right treat right item as deleted, advance right tree 7118 * and repeat 7119 * If left == right do deep compare of items, treat as changed if 7120 * needed, advance both trees and repeat 7121 * If both trees are at the same level but not at level 0 7122 * Compare keys of current nodes/leafs 7123 * If left < right advance left tree and repeat 7124 * If left > right advance right tree and repeat 7125 * If left == right compare blockptrs of the next nodes/leafs 7126 * If they match advance both trees but stay at the same level 7127 * and repeat 7128 * If they don't match advance both trees while allowing to go 7129 * deeper and repeat 7130 * If tree levels are different 7131 * Advance the tree that needs it and repeat 7132 * 7133 * Advancing a tree means: 7134 * If we are at level 0, try to go to the next slot. If that's not 7135 * possible, go one level up and repeat. Stop when we found a level 7136 * where we could go to the next slot. We may at this point be on a 7137 * node or a leaf. 7138 * 7139 * If we are not at level 0 and not on shared tree blocks, go one 7140 * level deeper. 7141 * 7142 * If we are not at level 0 and on shared tree blocks, go one slot to 7143 * the right if possible or go up and right. 7144 */ 7145 7146 down_read(&fs_info->commit_root_sem); 7147 left_level = btrfs_header_level(left_root->commit_root); 7148 left_root_level = left_level; 7149 /* 7150 * We clone the root node of the send and parent roots to prevent races 7151 * with snapshot creation of these roots. Snapshot creation COWs the 7152 * root node of a tree, so after the transaction is committed the old 7153 * extent can be reallocated while this send operation is still ongoing. 7154 * So we clone them, under the commit root semaphore, to be race free. 7155 */ 7156 left_path->nodes[left_level] = 7157 btrfs_clone_extent_buffer(left_root->commit_root); 7158 if (!left_path->nodes[left_level]) { 7159 ret = -ENOMEM; 7160 goto out_unlock; 7161 } 7162 7163 right_level = btrfs_header_level(right_root->commit_root); 7164 right_root_level = right_level; 7165 right_path->nodes[right_level] = 7166 btrfs_clone_extent_buffer(right_root->commit_root); 7167 if (!right_path->nodes[right_level]) { 7168 ret = -ENOMEM; 7169 goto out_unlock; 7170 } 7171 /* 7172 * Our right root is the parent root, while the left root is the "send" 7173 * root. We know that all new nodes/leaves in the left root must have 7174 * a generation greater than the right root's generation, so we trigger 7175 * readahead for those nodes and leaves of the left root, as we know we 7176 * will need to read them at some point. 7177 */ 7178 reada_min_gen = btrfs_header_generation(right_root->commit_root); 7179 7180 if (left_level == 0) 7181 btrfs_item_key_to_cpu(left_path->nodes[left_level], 7182 &left_key, left_path->slots[left_level]); 7183 else 7184 btrfs_node_key_to_cpu(left_path->nodes[left_level], 7185 &left_key, left_path->slots[left_level]); 7186 if (right_level == 0) 7187 btrfs_item_key_to_cpu(right_path->nodes[right_level], 7188 &right_key, right_path->slots[right_level]); 7189 else 7190 btrfs_node_key_to_cpu(right_path->nodes[right_level], 7191 &right_key, right_path->slots[right_level]); 7192 7193 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7194 7195 while (1) { 7196 if (need_resched() || 7197 rwsem_is_contended(&fs_info->commit_root_sem)) { 7198 up_read(&fs_info->commit_root_sem); 7199 cond_resched(); 7200 down_read(&fs_info->commit_root_sem); 7201 } 7202 7203 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7204 ret = restart_after_relocation(left_path, right_path, 7205 &left_key, &right_key, 7206 left_level, right_level, 7207 sctx); 7208 if (ret < 0) 7209 goto out_unlock; 7210 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7211 } 7212 7213 if (advance_left && !left_end_reached) { 7214 ret = tree_advance(left_path, &left_level, 7215 left_root_level, 7216 advance_left != ADVANCE_ONLY_NEXT, 7217 &left_key, reada_min_gen); 7218 if (ret == -1) 7219 left_end_reached = ADVANCE; 7220 else if (ret < 0) 7221 goto out_unlock; 7222 advance_left = 0; 7223 } 7224 if (advance_right && !right_end_reached) { 7225 ret = tree_advance(right_path, &right_level, 7226 right_root_level, 7227 advance_right != ADVANCE_ONLY_NEXT, 7228 &right_key, reada_min_gen); 7229 if (ret == -1) 7230 right_end_reached = ADVANCE; 7231 else if (ret < 0) 7232 goto out_unlock; 7233 advance_right = 0; 7234 } 7235 7236 if (left_end_reached && right_end_reached) { 7237 ret = 0; 7238 goto out_unlock; 7239 } else if (left_end_reached) { 7240 if (right_level == 0) { 7241 up_read(&fs_info->commit_root_sem); 7242 ret = changed_cb(left_path, right_path, 7243 &right_key, 7244 BTRFS_COMPARE_TREE_DELETED, 7245 sctx); 7246 if (ret < 0) 7247 goto out; 7248 down_read(&fs_info->commit_root_sem); 7249 } 7250 advance_right = ADVANCE; 7251 continue; 7252 } else if (right_end_reached) { 7253 if (left_level == 0) { 7254 up_read(&fs_info->commit_root_sem); 7255 ret = changed_cb(left_path, right_path, 7256 &left_key, 7257 BTRFS_COMPARE_TREE_NEW, 7258 sctx); 7259 if (ret < 0) 7260 goto out; 7261 down_read(&fs_info->commit_root_sem); 7262 } 7263 advance_left = ADVANCE; 7264 continue; 7265 } 7266 7267 if (left_level == 0 && right_level == 0) { 7268 up_read(&fs_info->commit_root_sem); 7269 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7270 if (cmp < 0) { 7271 ret = changed_cb(left_path, right_path, 7272 &left_key, 7273 BTRFS_COMPARE_TREE_NEW, 7274 sctx); 7275 advance_left = ADVANCE; 7276 } else if (cmp > 0) { 7277 ret = changed_cb(left_path, right_path, 7278 &right_key, 7279 BTRFS_COMPARE_TREE_DELETED, 7280 sctx); 7281 advance_right = ADVANCE; 7282 } else { 7283 enum btrfs_compare_tree_result result; 7284 7285 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 7286 ret = tree_compare_item(left_path, right_path, 7287 tmp_buf); 7288 if (ret) 7289 result = BTRFS_COMPARE_TREE_CHANGED; 7290 else 7291 result = BTRFS_COMPARE_TREE_SAME; 7292 ret = changed_cb(left_path, right_path, 7293 &left_key, result, sctx); 7294 advance_left = ADVANCE; 7295 advance_right = ADVANCE; 7296 } 7297 7298 if (ret < 0) 7299 goto out; 7300 down_read(&fs_info->commit_root_sem); 7301 } else if (left_level == right_level) { 7302 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7303 if (cmp < 0) { 7304 advance_left = ADVANCE; 7305 } else if (cmp > 0) { 7306 advance_right = ADVANCE; 7307 } else { 7308 left_blockptr = btrfs_node_blockptr( 7309 left_path->nodes[left_level], 7310 left_path->slots[left_level]); 7311 right_blockptr = btrfs_node_blockptr( 7312 right_path->nodes[right_level], 7313 right_path->slots[right_level]); 7314 left_gen = btrfs_node_ptr_generation( 7315 left_path->nodes[left_level], 7316 left_path->slots[left_level]); 7317 right_gen = btrfs_node_ptr_generation( 7318 right_path->nodes[right_level], 7319 right_path->slots[right_level]); 7320 if (left_blockptr == right_blockptr && 7321 left_gen == right_gen) { 7322 /* 7323 * As we're on a shared block, don't 7324 * allow to go deeper. 7325 */ 7326 advance_left = ADVANCE_ONLY_NEXT; 7327 advance_right = ADVANCE_ONLY_NEXT; 7328 } else { 7329 advance_left = ADVANCE; 7330 advance_right = ADVANCE; 7331 } 7332 } 7333 } else if (left_level < right_level) { 7334 advance_right = ADVANCE; 7335 } else { 7336 advance_left = ADVANCE; 7337 } 7338 } 7339 7340 out_unlock: 7341 up_read(&fs_info->commit_root_sem); 7342 out: 7343 btrfs_free_path(left_path); 7344 btrfs_free_path(right_path); 7345 kvfree(tmp_buf); 7346 return ret; 7347 } 7348 7349 static int send_subvol(struct send_ctx *sctx) 7350 { 7351 int ret; 7352 7353 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 7354 ret = send_header(sctx); 7355 if (ret < 0) 7356 goto out; 7357 } 7358 7359 ret = send_subvol_begin(sctx); 7360 if (ret < 0) 7361 goto out; 7362 7363 if (sctx->parent_root) { 7364 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); 7365 if (ret < 0) 7366 goto out; 7367 ret = finish_inode_if_needed(sctx, 1); 7368 if (ret < 0) 7369 goto out; 7370 } else { 7371 ret = full_send_tree(sctx); 7372 if (ret < 0) 7373 goto out; 7374 } 7375 7376 out: 7377 free_recorded_refs(sctx); 7378 return ret; 7379 } 7380 7381 /* 7382 * If orphan cleanup did remove any orphans from a root, it means the tree 7383 * was modified and therefore the commit root is not the same as the current 7384 * root anymore. This is a problem, because send uses the commit root and 7385 * therefore can see inode items that don't exist in the current root anymore, 7386 * and for example make calls to btrfs_iget, which will do tree lookups based 7387 * on the current root and not on the commit root. Those lookups will fail, 7388 * returning a -ESTALE error, and making send fail with that error. So make 7389 * sure a send does not see any orphans we have just removed, and that it will 7390 * see the same inodes regardless of whether a transaction commit happened 7391 * before it started (meaning that the commit root will be the same as the 7392 * current root) or not. 7393 */ 7394 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 7395 { 7396 int i; 7397 struct btrfs_trans_handle *trans = NULL; 7398 7399 again: 7400 if (sctx->parent_root && 7401 sctx->parent_root->node != sctx->parent_root->commit_root) 7402 goto commit_trans; 7403 7404 for (i = 0; i < sctx->clone_roots_cnt; i++) 7405 if (sctx->clone_roots[i].root->node != 7406 sctx->clone_roots[i].root->commit_root) 7407 goto commit_trans; 7408 7409 if (trans) 7410 return btrfs_end_transaction(trans); 7411 7412 return 0; 7413 7414 commit_trans: 7415 /* Use any root, all fs roots will get their commit roots updated. */ 7416 if (!trans) { 7417 trans = btrfs_join_transaction(sctx->send_root); 7418 if (IS_ERR(trans)) 7419 return PTR_ERR(trans); 7420 goto again; 7421 } 7422 7423 return btrfs_commit_transaction(trans); 7424 } 7425 7426 /* 7427 * Make sure any existing dellaloc is flushed for any root used by a send 7428 * operation so that we do not miss any data and we do not race with writeback 7429 * finishing and changing a tree while send is using the tree. This could 7430 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 7431 * a send operation then uses the subvolume. 7432 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 7433 */ 7434 static int flush_delalloc_roots(struct send_ctx *sctx) 7435 { 7436 struct btrfs_root *root = sctx->parent_root; 7437 int ret; 7438 int i; 7439 7440 if (root) { 7441 ret = btrfs_start_delalloc_snapshot(root, false); 7442 if (ret) 7443 return ret; 7444 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 7445 } 7446 7447 for (i = 0; i < sctx->clone_roots_cnt; i++) { 7448 root = sctx->clone_roots[i].root; 7449 ret = btrfs_start_delalloc_snapshot(root, false); 7450 if (ret) 7451 return ret; 7452 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 7453 } 7454 7455 return 0; 7456 } 7457 7458 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 7459 { 7460 spin_lock(&root->root_item_lock); 7461 root->send_in_progress--; 7462 /* 7463 * Not much left to do, we don't know why it's unbalanced and 7464 * can't blindly reset it to 0. 7465 */ 7466 if (root->send_in_progress < 0) 7467 btrfs_err(root->fs_info, 7468 "send_in_progress unbalanced %d root %llu", 7469 root->send_in_progress, root->root_key.objectid); 7470 spin_unlock(&root->root_item_lock); 7471 } 7472 7473 static void dedupe_in_progress_warn(const struct btrfs_root *root) 7474 { 7475 btrfs_warn_rl(root->fs_info, 7476 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 7477 root->root_key.objectid, root->dedupe_in_progress); 7478 } 7479 7480 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg) 7481 { 7482 int ret = 0; 7483 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root; 7484 struct btrfs_fs_info *fs_info = send_root->fs_info; 7485 struct btrfs_root *clone_root; 7486 struct send_ctx *sctx = NULL; 7487 u32 i; 7488 u64 *clone_sources_tmp = NULL; 7489 int clone_sources_to_rollback = 0; 7490 size_t alloc_size; 7491 int sort_clone_roots = 0; 7492 7493 if (!capable(CAP_SYS_ADMIN)) 7494 return -EPERM; 7495 7496 /* 7497 * The subvolume must remain read-only during send, protect against 7498 * making it RW. This also protects against deletion. 7499 */ 7500 spin_lock(&send_root->root_item_lock); 7501 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) { 7502 dedupe_in_progress_warn(send_root); 7503 spin_unlock(&send_root->root_item_lock); 7504 return -EAGAIN; 7505 } 7506 send_root->send_in_progress++; 7507 spin_unlock(&send_root->root_item_lock); 7508 7509 /* 7510 * Userspace tools do the checks and warn the user if it's 7511 * not RO. 7512 */ 7513 if (!btrfs_root_readonly(send_root)) { 7514 ret = -EPERM; 7515 goto out; 7516 } 7517 7518 /* 7519 * Check that we don't overflow at later allocations, we request 7520 * clone_sources_count + 1 items, and compare to unsigned long inside 7521 * access_ok. 7522 */ 7523 if (arg->clone_sources_count > 7524 ULONG_MAX / sizeof(struct clone_root) - 1) { 7525 ret = -EINVAL; 7526 goto out; 7527 } 7528 7529 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 7530 ret = -EINVAL; 7531 goto out; 7532 } 7533 7534 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 7535 if (!sctx) { 7536 ret = -ENOMEM; 7537 goto out; 7538 } 7539 7540 INIT_LIST_HEAD(&sctx->new_refs); 7541 INIT_LIST_HEAD(&sctx->deleted_refs); 7542 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL); 7543 INIT_LIST_HEAD(&sctx->name_cache_list); 7544 7545 sctx->flags = arg->flags; 7546 7547 if (arg->flags & BTRFS_SEND_FLAG_VERSION) { 7548 if (arg->version > BTRFS_SEND_STREAM_VERSION) { 7549 ret = -EPROTO; 7550 goto out; 7551 } 7552 /* Zero means "use the highest version" */ 7553 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION; 7554 } else { 7555 sctx->proto = 1; 7556 } 7557 7558 sctx->send_filp = fget(arg->send_fd); 7559 if (!sctx->send_filp) { 7560 ret = -EBADF; 7561 goto out; 7562 } 7563 7564 sctx->send_root = send_root; 7565 /* 7566 * Unlikely but possible, if the subvolume is marked for deletion but 7567 * is slow to remove the directory entry, send can still be started 7568 */ 7569 if (btrfs_root_dead(sctx->send_root)) { 7570 ret = -EPERM; 7571 goto out; 7572 } 7573 7574 sctx->clone_roots_cnt = arg->clone_sources_count; 7575 7576 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 7577 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 7578 if (!sctx->send_buf) { 7579 ret = -ENOMEM; 7580 goto out; 7581 } 7582 7583 sctx->pending_dir_moves = RB_ROOT; 7584 sctx->waiting_dir_moves = RB_ROOT; 7585 sctx->orphan_dirs = RB_ROOT; 7586 7587 sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots), 7588 arg->clone_sources_count + 1, 7589 GFP_KERNEL); 7590 if (!sctx->clone_roots) { 7591 ret = -ENOMEM; 7592 goto out; 7593 } 7594 7595 alloc_size = array_size(sizeof(*arg->clone_sources), 7596 arg->clone_sources_count); 7597 7598 if (arg->clone_sources_count) { 7599 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 7600 if (!clone_sources_tmp) { 7601 ret = -ENOMEM; 7602 goto out; 7603 } 7604 7605 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 7606 alloc_size); 7607 if (ret) { 7608 ret = -EFAULT; 7609 goto out; 7610 } 7611 7612 for (i = 0; i < arg->clone_sources_count; i++) { 7613 clone_root = btrfs_get_fs_root(fs_info, 7614 clone_sources_tmp[i], true); 7615 if (IS_ERR(clone_root)) { 7616 ret = PTR_ERR(clone_root); 7617 goto out; 7618 } 7619 spin_lock(&clone_root->root_item_lock); 7620 if (!btrfs_root_readonly(clone_root) || 7621 btrfs_root_dead(clone_root)) { 7622 spin_unlock(&clone_root->root_item_lock); 7623 btrfs_put_root(clone_root); 7624 ret = -EPERM; 7625 goto out; 7626 } 7627 if (clone_root->dedupe_in_progress) { 7628 dedupe_in_progress_warn(clone_root); 7629 spin_unlock(&clone_root->root_item_lock); 7630 btrfs_put_root(clone_root); 7631 ret = -EAGAIN; 7632 goto out; 7633 } 7634 clone_root->send_in_progress++; 7635 spin_unlock(&clone_root->root_item_lock); 7636 7637 sctx->clone_roots[i].root = clone_root; 7638 clone_sources_to_rollback = i + 1; 7639 } 7640 kvfree(clone_sources_tmp); 7641 clone_sources_tmp = NULL; 7642 } 7643 7644 if (arg->parent_root) { 7645 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, 7646 true); 7647 if (IS_ERR(sctx->parent_root)) { 7648 ret = PTR_ERR(sctx->parent_root); 7649 goto out; 7650 } 7651 7652 spin_lock(&sctx->parent_root->root_item_lock); 7653 sctx->parent_root->send_in_progress++; 7654 if (!btrfs_root_readonly(sctx->parent_root) || 7655 btrfs_root_dead(sctx->parent_root)) { 7656 spin_unlock(&sctx->parent_root->root_item_lock); 7657 ret = -EPERM; 7658 goto out; 7659 } 7660 if (sctx->parent_root->dedupe_in_progress) { 7661 dedupe_in_progress_warn(sctx->parent_root); 7662 spin_unlock(&sctx->parent_root->root_item_lock); 7663 ret = -EAGAIN; 7664 goto out; 7665 } 7666 spin_unlock(&sctx->parent_root->root_item_lock); 7667 } 7668 7669 /* 7670 * Clones from send_root are allowed, but only if the clone source 7671 * is behind the current send position. This is checked while searching 7672 * for possible clone sources. 7673 */ 7674 sctx->clone_roots[sctx->clone_roots_cnt++].root = 7675 btrfs_grab_root(sctx->send_root); 7676 7677 /* We do a bsearch later */ 7678 sort(sctx->clone_roots, sctx->clone_roots_cnt, 7679 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 7680 NULL); 7681 sort_clone_roots = 1; 7682 7683 ret = flush_delalloc_roots(sctx); 7684 if (ret) 7685 goto out; 7686 7687 ret = ensure_commit_roots_uptodate(sctx); 7688 if (ret) 7689 goto out; 7690 7691 ret = send_subvol(sctx); 7692 if (ret < 0) 7693 goto out; 7694 7695 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 7696 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 7697 if (ret < 0) 7698 goto out; 7699 ret = send_cmd(sctx); 7700 if (ret < 0) 7701 goto out; 7702 } 7703 7704 out: 7705 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 7706 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 7707 struct rb_node *n; 7708 struct pending_dir_move *pm; 7709 7710 n = rb_first(&sctx->pending_dir_moves); 7711 pm = rb_entry(n, struct pending_dir_move, node); 7712 while (!list_empty(&pm->list)) { 7713 struct pending_dir_move *pm2; 7714 7715 pm2 = list_first_entry(&pm->list, 7716 struct pending_dir_move, list); 7717 free_pending_move(sctx, pm2); 7718 } 7719 free_pending_move(sctx, pm); 7720 } 7721 7722 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 7723 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 7724 struct rb_node *n; 7725 struct waiting_dir_move *dm; 7726 7727 n = rb_first(&sctx->waiting_dir_moves); 7728 dm = rb_entry(n, struct waiting_dir_move, node); 7729 rb_erase(&dm->node, &sctx->waiting_dir_moves); 7730 kfree(dm); 7731 } 7732 7733 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 7734 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 7735 struct rb_node *n; 7736 struct orphan_dir_info *odi; 7737 7738 n = rb_first(&sctx->orphan_dirs); 7739 odi = rb_entry(n, struct orphan_dir_info, node); 7740 free_orphan_dir_info(sctx, odi); 7741 } 7742 7743 if (sort_clone_roots) { 7744 for (i = 0; i < sctx->clone_roots_cnt; i++) { 7745 btrfs_root_dec_send_in_progress( 7746 sctx->clone_roots[i].root); 7747 btrfs_put_root(sctx->clone_roots[i].root); 7748 } 7749 } else { 7750 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 7751 btrfs_root_dec_send_in_progress( 7752 sctx->clone_roots[i].root); 7753 btrfs_put_root(sctx->clone_roots[i].root); 7754 } 7755 7756 btrfs_root_dec_send_in_progress(send_root); 7757 } 7758 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 7759 btrfs_root_dec_send_in_progress(sctx->parent_root); 7760 btrfs_put_root(sctx->parent_root); 7761 } 7762 7763 kvfree(clone_sources_tmp); 7764 7765 if (sctx) { 7766 if (sctx->send_filp) 7767 fput(sctx->send_filp); 7768 7769 kvfree(sctx->clone_roots); 7770 kvfree(sctx->send_buf); 7771 7772 name_cache_free(sctx); 7773 7774 kfree(sctx); 7775 } 7776 7777 return ret; 7778 } 7779