xref: /openbmc/linux/fs/btrfs/send.c (revision 94214f14)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 #include <linux/fsverity.h>
19 
20 #include "send.h"
21 #include "ctree.h"
22 #include "backref.h"
23 #include "locking.h"
24 #include "disk-io.h"
25 #include "btrfs_inode.h"
26 #include "transaction.h"
27 #include "compression.h"
28 #include "xattr.h"
29 #include "print-tree.h"
30 #include "accessors.h"
31 #include "dir-item.h"
32 #include "file-item.h"
33 #include "ioctl.h"
34 #include "verity.h"
35 
36 /*
37  * Maximum number of references an extent can have in order for us to attempt to
38  * issue clone operations instead of write operations. This currently exists to
39  * avoid hitting limitations of the backreference walking code (taking a lot of
40  * time and using too much memory for extents with large number of references).
41  */
42 #define SEND_MAX_EXTENT_REFS	1024
43 
44 /*
45  * A fs_path is a helper to dynamically build path names with unknown size.
46  * It reallocates the internal buffer on demand.
47  * It allows fast adding of path elements on the right side (normal path) and
48  * fast adding to the left side (reversed path). A reversed path can also be
49  * unreversed if needed.
50  */
51 struct fs_path {
52 	union {
53 		struct {
54 			char *start;
55 			char *end;
56 
57 			char *buf;
58 			unsigned short buf_len:15;
59 			unsigned short reversed:1;
60 			char inline_buf[];
61 		};
62 		/*
63 		 * Average path length does not exceed 200 bytes, we'll have
64 		 * better packing in the slab and higher chance to satisfy
65 		 * a allocation later during send.
66 		 */
67 		char pad[256];
68 	};
69 };
70 #define FS_PATH_INLINE_SIZE \
71 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
72 
73 
74 /* reused for each extent */
75 struct clone_root {
76 	struct btrfs_root *root;
77 	u64 ino;
78 	u64 offset;
79 	u64 num_bytes;
80 	bool found_ref;
81 };
82 
83 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
84 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
85 
86 /*
87  * Limit the root_ids array of struct backref_cache_entry to 12 elements.
88  * This makes the size of a cache entry to be exactly 128 bytes on x86_64.
89  * The most common case is to have a single root for cloning, which corresponds
90  * to the send root. Having the user specify more than 11 clone roots is not
91  * common, and in such rare cases we simply don't use caching if the number of
92  * cloning roots that lead down to a leaf is more than 12.
93  */
94 #define SEND_MAX_BACKREF_CACHE_ROOTS 12
95 
96 /*
97  * Max number of entries in the cache.
98  * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, the size in bytes, excluding
99  * maple tree's internal nodes, is 16K.
100  */
101 #define SEND_MAX_BACKREF_CACHE_SIZE 128
102 
103 /*
104  * A backref cache entry maps a leaf to a list of IDs of roots from which the
105  * leaf is accessible and we can use for clone operations.
106  * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
107  * x86_64).
108  */
109 struct backref_cache_entry {
110 	/* List to link to the cache's lru list. */
111 	struct list_head list;
112 	/* The key for this entry in the cache. */
113 	u64 key;
114 	u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
115 	/* Number of valid elements in the root_ids array. */
116 	int num_roots;
117 };
118 
119 struct send_ctx {
120 	struct file *send_filp;
121 	loff_t send_off;
122 	char *send_buf;
123 	u32 send_size;
124 	u32 send_max_size;
125 	/*
126 	 * Whether BTRFS_SEND_A_DATA attribute was already added to current
127 	 * command (since protocol v2, data must be the last attribute).
128 	 */
129 	bool put_data;
130 	struct page **send_buf_pages;
131 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
132 	/* Protocol version compatibility requested */
133 	u32 proto;
134 
135 	struct btrfs_root *send_root;
136 	struct btrfs_root *parent_root;
137 	struct clone_root *clone_roots;
138 	int clone_roots_cnt;
139 
140 	/* current state of the compare_tree call */
141 	struct btrfs_path *left_path;
142 	struct btrfs_path *right_path;
143 	struct btrfs_key *cmp_key;
144 
145 	/*
146 	 * Keep track of the generation of the last transaction that was used
147 	 * for relocating a block group. This is periodically checked in order
148 	 * to detect if a relocation happened since the last check, so that we
149 	 * don't operate on stale extent buffers for nodes (level >= 1) or on
150 	 * stale disk_bytenr values of file extent items.
151 	 */
152 	u64 last_reloc_trans;
153 
154 	/*
155 	 * infos of the currently processed inode. In case of deleted inodes,
156 	 * these are the values from the deleted inode.
157 	 */
158 	u64 cur_ino;
159 	u64 cur_inode_gen;
160 	u64 cur_inode_size;
161 	u64 cur_inode_mode;
162 	u64 cur_inode_rdev;
163 	u64 cur_inode_last_extent;
164 	u64 cur_inode_next_write_offset;
165 	bool cur_inode_new;
166 	bool cur_inode_new_gen;
167 	bool cur_inode_deleted;
168 	bool ignore_cur_inode;
169 	bool cur_inode_needs_verity;
170 	void *verity_descriptor;
171 
172 	u64 send_progress;
173 
174 	struct list_head new_refs;
175 	struct list_head deleted_refs;
176 
177 	struct radix_tree_root name_cache;
178 	struct list_head name_cache_list;
179 	int name_cache_size;
180 
181 	/*
182 	 * The inode we are currently processing. It's not NULL only when we
183 	 * need to issue write commands for data extents from this inode.
184 	 */
185 	struct inode *cur_inode;
186 	struct file_ra_state ra;
187 	u64 page_cache_clear_start;
188 	bool clean_page_cache;
189 
190 	/*
191 	 * We process inodes by their increasing order, so if before an
192 	 * incremental send we reverse the parent/child relationship of
193 	 * directories such that a directory with a lower inode number was
194 	 * the parent of a directory with a higher inode number, and the one
195 	 * becoming the new parent got renamed too, we can't rename/move the
196 	 * directory with lower inode number when we finish processing it - we
197 	 * must process the directory with higher inode number first, then
198 	 * rename/move it and then rename/move the directory with lower inode
199 	 * number. Example follows.
200 	 *
201 	 * Tree state when the first send was performed:
202 	 *
203 	 * .
204 	 * |-- a                   (ino 257)
205 	 *     |-- b               (ino 258)
206 	 *         |
207 	 *         |
208 	 *         |-- c           (ino 259)
209 	 *         |   |-- d       (ino 260)
210 	 *         |
211 	 *         |-- c2          (ino 261)
212 	 *
213 	 * Tree state when the second (incremental) send is performed:
214 	 *
215 	 * .
216 	 * |-- a                   (ino 257)
217 	 *     |-- b               (ino 258)
218 	 *         |-- c2          (ino 261)
219 	 *             |-- d2      (ino 260)
220 	 *                 |-- cc  (ino 259)
221 	 *
222 	 * The sequence of steps that lead to the second state was:
223 	 *
224 	 * mv /a/b/c/d /a/b/c2/d2
225 	 * mv /a/b/c /a/b/c2/d2/cc
226 	 *
227 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
228 	 * before we move "d", which has higher inode number.
229 	 *
230 	 * So we just memorize which move/rename operations must be performed
231 	 * later when their respective parent is processed and moved/renamed.
232 	 */
233 
234 	/* Indexed by parent directory inode number. */
235 	struct rb_root pending_dir_moves;
236 
237 	/*
238 	 * Reverse index, indexed by the inode number of a directory that
239 	 * is waiting for the move/rename of its immediate parent before its
240 	 * own move/rename can be performed.
241 	 */
242 	struct rb_root waiting_dir_moves;
243 
244 	/*
245 	 * A directory that is going to be rm'ed might have a child directory
246 	 * which is in the pending directory moves index above. In this case,
247 	 * the directory can only be removed after the move/rename of its child
248 	 * is performed. Example:
249 	 *
250 	 * Parent snapshot:
251 	 *
252 	 * .                        (ino 256)
253 	 * |-- a/                   (ino 257)
254 	 *     |-- b/               (ino 258)
255 	 *         |-- c/           (ino 259)
256 	 *         |   |-- x/       (ino 260)
257 	 *         |
258 	 *         |-- y/           (ino 261)
259 	 *
260 	 * Send snapshot:
261 	 *
262 	 * .                        (ino 256)
263 	 * |-- a/                   (ino 257)
264 	 *     |-- b/               (ino 258)
265 	 *         |-- YY/          (ino 261)
266 	 *              |-- x/      (ino 260)
267 	 *
268 	 * Sequence of steps that lead to the send snapshot:
269 	 * rm -f /a/b/c/foo.txt
270 	 * mv /a/b/y /a/b/YY
271 	 * mv /a/b/c/x /a/b/YY
272 	 * rmdir /a/b/c
273 	 *
274 	 * When the child is processed, its move/rename is delayed until its
275 	 * parent is processed (as explained above), but all other operations
276 	 * like update utimes, chown, chgrp, etc, are performed and the paths
277 	 * that it uses for those operations must use the orphanized name of
278 	 * its parent (the directory we're going to rm later), so we need to
279 	 * memorize that name.
280 	 *
281 	 * Indexed by the inode number of the directory to be deleted.
282 	 */
283 	struct rb_root orphan_dirs;
284 
285 	struct rb_root rbtree_new_refs;
286 	struct rb_root rbtree_deleted_refs;
287 
288 	struct {
289 		u64 last_reloc_trans;
290 		struct list_head lru_list;
291 		struct maple_tree entries;
292 		/* Number of entries stored in the cache. */
293 		int size;
294 	} backref_cache;
295 };
296 
297 struct pending_dir_move {
298 	struct rb_node node;
299 	struct list_head list;
300 	u64 parent_ino;
301 	u64 ino;
302 	u64 gen;
303 	struct list_head update_refs;
304 };
305 
306 struct waiting_dir_move {
307 	struct rb_node node;
308 	u64 ino;
309 	/*
310 	 * There might be some directory that could not be removed because it
311 	 * was waiting for this directory inode to be moved first. Therefore
312 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
313 	 */
314 	u64 rmdir_ino;
315 	u64 rmdir_gen;
316 	bool orphanized;
317 };
318 
319 struct orphan_dir_info {
320 	struct rb_node node;
321 	u64 ino;
322 	u64 gen;
323 	u64 last_dir_index_offset;
324 };
325 
326 struct name_cache_entry {
327 	struct list_head list;
328 	/*
329 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
330 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
331 	 * more then one inum would fall into the same entry, we use radix_list
332 	 * to store the additional entries. radix_list is also used to store
333 	 * entries where two entries have the same inum but different
334 	 * generations.
335 	 */
336 	struct list_head radix_list;
337 	u64 ino;
338 	u64 gen;
339 	u64 parent_ino;
340 	u64 parent_gen;
341 	int ret;
342 	int need_later_update;
343 	int name_len;
344 	char name[];
345 };
346 
347 #define ADVANCE							1
348 #define ADVANCE_ONLY_NEXT					-1
349 
350 enum btrfs_compare_tree_result {
351 	BTRFS_COMPARE_TREE_NEW,
352 	BTRFS_COMPARE_TREE_DELETED,
353 	BTRFS_COMPARE_TREE_CHANGED,
354 	BTRFS_COMPARE_TREE_SAME,
355 };
356 
357 __cold
358 static void inconsistent_snapshot_error(struct send_ctx *sctx,
359 					enum btrfs_compare_tree_result result,
360 					const char *what)
361 {
362 	const char *result_string;
363 
364 	switch (result) {
365 	case BTRFS_COMPARE_TREE_NEW:
366 		result_string = "new";
367 		break;
368 	case BTRFS_COMPARE_TREE_DELETED:
369 		result_string = "deleted";
370 		break;
371 	case BTRFS_COMPARE_TREE_CHANGED:
372 		result_string = "updated";
373 		break;
374 	case BTRFS_COMPARE_TREE_SAME:
375 		ASSERT(0);
376 		result_string = "unchanged";
377 		break;
378 	default:
379 		ASSERT(0);
380 		result_string = "unexpected";
381 	}
382 
383 	btrfs_err(sctx->send_root->fs_info,
384 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
385 		  result_string, what, sctx->cmp_key->objectid,
386 		  sctx->send_root->root_key.objectid,
387 		  (sctx->parent_root ?
388 		   sctx->parent_root->root_key.objectid : 0));
389 }
390 
391 __maybe_unused
392 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
393 {
394 	switch (sctx->proto) {
395 	case 1:	 return cmd <= BTRFS_SEND_C_MAX_V1;
396 	case 2:	 return cmd <= BTRFS_SEND_C_MAX_V2;
397 	case 3:	 return cmd <= BTRFS_SEND_C_MAX_V3;
398 	default: return false;
399 	}
400 }
401 
402 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
403 
404 static struct waiting_dir_move *
405 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
406 
407 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
408 
409 static int need_send_hole(struct send_ctx *sctx)
410 {
411 	return (sctx->parent_root && !sctx->cur_inode_new &&
412 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
413 		S_ISREG(sctx->cur_inode_mode));
414 }
415 
416 static void fs_path_reset(struct fs_path *p)
417 {
418 	if (p->reversed) {
419 		p->start = p->buf + p->buf_len - 1;
420 		p->end = p->start;
421 		*p->start = 0;
422 	} else {
423 		p->start = p->buf;
424 		p->end = p->start;
425 		*p->start = 0;
426 	}
427 }
428 
429 static struct fs_path *fs_path_alloc(void)
430 {
431 	struct fs_path *p;
432 
433 	p = kmalloc(sizeof(*p), GFP_KERNEL);
434 	if (!p)
435 		return NULL;
436 	p->reversed = 0;
437 	p->buf = p->inline_buf;
438 	p->buf_len = FS_PATH_INLINE_SIZE;
439 	fs_path_reset(p);
440 	return p;
441 }
442 
443 static struct fs_path *fs_path_alloc_reversed(void)
444 {
445 	struct fs_path *p;
446 
447 	p = fs_path_alloc();
448 	if (!p)
449 		return NULL;
450 	p->reversed = 1;
451 	fs_path_reset(p);
452 	return p;
453 }
454 
455 static void fs_path_free(struct fs_path *p)
456 {
457 	if (!p)
458 		return;
459 	if (p->buf != p->inline_buf)
460 		kfree(p->buf);
461 	kfree(p);
462 }
463 
464 static int fs_path_len(struct fs_path *p)
465 {
466 	return p->end - p->start;
467 }
468 
469 static int fs_path_ensure_buf(struct fs_path *p, int len)
470 {
471 	char *tmp_buf;
472 	int path_len;
473 	int old_buf_len;
474 
475 	len++;
476 
477 	if (p->buf_len >= len)
478 		return 0;
479 
480 	if (len > PATH_MAX) {
481 		WARN_ON(1);
482 		return -ENOMEM;
483 	}
484 
485 	path_len = p->end - p->start;
486 	old_buf_len = p->buf_len;
487 
488 	/*
489 	 * Allocate to the next largest kmalloc bucket size, to let
490 	 * the fast path happen most of the time.
491 	 */
492 	len = kmalloc_size_roundup(len);
493 	/*
494 	 * First time the inline_buf does not suffice
495 	 */
496 	if (p->buf == p->inline_buf) {
497 		tmp_buf = kmalloc(len, GFP_KERNEL);
498 		if (tmp_buf)
499 			memcpy(tmp_buf, p->buf, old_buf_len);
500 	} else {
501 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
502 	}
503 	if (!tmp_buf)
504 		return -ENOMEM;
505 	p->buf = tmp_buf;
506 	p->buf_len = len;
507 
508 	if (p->reversed) {
509 		tmp_buf = p->buf + old_buf_len - path_len - 1;
510 		p->end = p->buf + p->buf_len - 1;
511 		p->start = p->end - path_len;
512 		memmove(p->start, tmp_buf, path_len + 1);
513 	} else {
514 		p->start = p->buf;
515 		p->end = p->start + path_len;
516 	}
517 	return 0;
518 }
519 
520 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
521 				   char **prepared)
522 {
523 	int ret;
524 	int new_len;
525 
526 	new_len = p->end - p->start + name_len;
527 	if (p->start != p->end)
528 		new_len++;
529 	ret = fs_path_ensure_buf(p, new_len);
530 	if (ret < 0)
531 		goto out;
532 
533 	if (p->reversed) {
534 		if (p->start != p->end)
535 			*--p->start = '/';
536 		p->start -= name_len;
537 		*prepared = p->start;
538 	} else {
539 		if (p->start != p->end)
540 			*p->end++ = '/';
541 		*prepared = p->end;
542 		p->end += name_len;
543 		*p->end = 0;
544 	}
545 
546 out:
547 	return ret;
548 }
549 
550 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
551 {
552 	int ret;
553 	char *prepared;
554 
555 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
556 	if (ret < 0)
557 		goto out;
558 	memcpy(prepared, name, name_len);
559 
560 out:
561 	return ret;
562 }
563 
564 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
565 {
566 	int ret;
567 	char *prepared;
568 
569 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
570 	if (ret < 0)
571 		goto out;
572 	memcpy(prepared, p2->start, p2->end - p2->start);
573 
574 out:
575 	return ret;
576 }
577 
578 static int fs_path_add_from_extent_buffer(struct fs_path *p,
579 					  struct extent_buffer *eb,
580 					  unsigned long off, int len)
581 {
582 	int ret;
583 	char *prepared;
584 
585 	ret = fs_path_prepare_for_add(p, len, &prepared);
586 	if (ret < 0)
587 		goto out;
588 
589 	read_extent_buffer(eb, prepared, off, len);
590 
591 out:
592 	return ret;
593 }
594 
595 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
596 {
597 	p->reversed = from->reversed;
598 	fs_path_reset(p);
599 
600 	return fs_path_add_path(p, from);
601 }
602 
603 static void fs_path_unreverse(struct fs_path *p)
604 {
605 	char *tmp;
606 	int len;
607 
608 	if (!p->reversed)
609 		return;
610 
611 	tmp = p->start;
612 	len = p->end - p->start;
613 	p->start = p->buf;
614 	p->end = p->start + len;
615 	memmove(p->start, tmp, len + 1);
616 	p->reversed = 0;
617 }
618 
619 static struct btrfs_path *alloc_path_for_send(void)
620 {
621 	struct btrfs_path *path;
622 
623 	path = btrfs_alloc_path();
624 	if (!path)
625 		return NULL;
626 	path->search_commit_root = 1;
627 	path->skip_locking = 1;
628 	path->need_commit_sem = 1;
629 	return path;
630 }
631 
632 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
633 {
634 	int ret;
635 	u32 pos = 0;
636 
637 	while (pos < len) {
638 		ret = kernel_write(filp, buf + pos, len - pos, off);
639 		if (ret < 0)
640 			return ret;
641 		if (ret == 0)
642 			return -EIO;
643 		pos += ret;
644 	}
645 
646 	return 0;
647 }
648 
649 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
650 {
651 	struct btrfs_tlv_header *hdr;
652 	int total_len = sizeof(*hdr) + len;
653 	int left = sctx->send_max_size - sctx->send_size;
654 
655 	if (WARN_ON_ONCE(sctx->put_data))
656 		return -EINVAL;
657 
658 	if (unlikely(left < total_len))
659 		return -EOVERFLOW;
660 
661 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
662 	put_unaligned_le16(attr, &hdr->tlv_type);
663 	put_unaligned_le16(len, &hdr->tlv_len);
664 	memcpy(hdr + 1, data, len);
665 	sctx->send_size += total_len;
666 
667 	return 0;
668 }
669 
670 #define TLV_PUT_DEFINE_INT(bits) \
671 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
672 			u##bits attr, u##bits value)			\
673 	{								\
674 		__le##bits __tmp = cpu_to_le##bits(value);		\
675 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
676 	}
677 
678 TLV_PUT_DEFINE_INT(8)
679 TLV_PUT_DEFINE_INT(32)
680 TLV_PUT_DEFINE_INT(64)
681 
682 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
683 			  const char *str, int len)
684 {
685 	if (len == -1)
686 		len = strlen(str);
687 	return tlv_put(sctx, attr, str, len);
688 }
689 
690 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
691 			const u8 *uuid)
692 {
693 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
694 }
695 
696 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
697 				  struct extent_buffer *eb,
698 				  struct btrfs_timespec *ts)
699 {
700 	struct btrfs_timespec bts;
701 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
702 	return tlv_put(sctx, attr, &bts, sizeof(bts));
703 }
704 
705 
706 #define TLV_PUT(sctx, attrtype, data, attrlen) \
707 	do { \
708 		ret = tlv_put(sctx, attrtype, data, attrlen); \
709 		if (ret < 0) \
710 			goto tlv_put_failure; \
711 	} while (0)
712 
713 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
714 	do { \
715 		ret = tlv_put_u##bits(sctx, attrtype, value); \
716 		if (ret < 0) \
717 			goto tlv_put_failure; \
718 	} while (0)
719 
720 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
721 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
722 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
723 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
724 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
725 	do { \
726 		ret = tlv_put_string(sctx, attrtype, str, len); \
727 		if (ret < 0) \
728 			goto tlv_put_failure; \
729 	} while (0)
730 #define TLV_PUT_PATH(sctx, attrtype, p) \
731 	do { \
732 		ret = tlv_put_string(sctx, attrtype, p->start, \
733 			p->end - p->start); \
734 		if (ret < 0) \
735 			goto tlv_put_failure; \
736 	} while(0)
737 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
738 	do { \
739 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
740 		if (ret < 0) \
741 			goto tlv_put_failure; \
742 	} while (0)
743 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
744 	do { \
745 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
746 		if (ret < 0) \
747 			goto tlv_put_failure; \
748 	} while (0)
749 
750 static int send_header(struct send_ctx *sctx)
751 {
752 	struct btrfs_stream_header hdr;
753 
754 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
755 	hdr.version = cpu_to_le32(sctx->proto);
756 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
757 					&sctx->send_off);
758 }
759 
760 /*
761  * For each command/item we want to send to userspace, we call this function.
762  */
763 static int begin_cmd(struct send_ctx *sctx, int cmd)
764 {
765 	struct btrfs_cmd_header *hdr;
766 
767 	if (WARN_ON(!sctx->send_buf))
768 		return -EINVAL;
769 
770 	BUG_ON(sctx->send_size);
771 
772 	sctx->send_size += sizeof(*hdr);
773 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
774 	put_unaligned_le16(cmd, &hdr->cmd);
775 
776 	return 0;
777 }
778 
779 static int send_cmd(struct send_ctx *sctx)
780 {
781 	int ret;
782 	struct btrfs_cmd_header *hdr;
783 	u32 crc;
784 
785 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
786 	put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
787 	put_unaligned_le32(0, &hdr->crc);
788 
789 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
790 	put_unaligned_le32(crc, &hdr->crc);
791 
792 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
793 					&sctx->send_off);
794 
795 	sctx->send_size = 0;
796 	sctx->put_data = false;
797 
798 	return ret;
799 }
800 
801 /*
802  * Sends a move instruction to user space
803  */
804 static int send_rename(struct send_ctx *sctx,
805 		     struct fs_path *from, struct fs_path *to)
806 {
807 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
808 	int ret;
809 
810 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
811 
812 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
813 	if (ret < 0)
814 		goto out;
815 
816 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
817 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
818 
819 	ret = send_cmd(sctx);
820 
821 tlv_put_failure:
822 out:
823 	return ret;
824 }
825 
826 /*
827  * Sends a link instruction to user space
828  */
829 static int send_link(struct send_ctx *sctx,
830 		     struct fs_path *path, struct fs_path *lnk)
831 {
832 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
833 	int ret;
834 
835 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
836 
837 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
838 	if (ret < 0)
839 		goto out;
840 
841 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
842 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
843 
844 	ret = send_cmd(sctx);
845 
846 tlv_put_failure:
847 out:
848 	return ret;
849 }
850 
851 /*
852  * Sends an unlink instruction to user space
853  */
854 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
855 {
856 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
857 	int ret;
858 
859 	btrfs_debug(fs_info, "send_unlink %s", path->start);
860 
861 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
862 	if (ret < 0)
863 		goto out;
864 
865 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
866 
867 	ret = send_cmd(sctx);
868 
869 tlv_put_failure:
870 out:
871 	return ret;
872 }
873 
874 /*
875  * Sends a rmdir instruction to user space
876  */
877 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
878 {
879 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
880 	int ret;
881 
882 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
883 
884 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
885 	if (ret < 0)
886 		goto out;
887 
888 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
889 
890 	ret = send_cmd(sctx);
891 
892 tlv_put_failure:
893 out:
894 	return ret;
895 }
896 
897 struct btrfs_inode_info {
898 	u64 size;
899 	u64 gen;
900 	u64 mode;
901 	u64 uid;
902 	u64 gid;
903 	u64 rdev;
904 	u64 fileattr;
905 	u64 nlink;
906 };
907 
908 /*
909  * Helper function to retrieve some fields from an inode item.
910  */
911 static int get_inode_info(struct btrfs_root *root, u64 ino,
912 			  struct btrfs_inode_info *info)
913 {
914 	int ret;
915 	struct btrfs_path *path;
916 	struct btrfs_inode_item *ii;
917 	struct btrfs_key key;
918 
919 	path = alloc_path_for_send();
920 	if (!path)
921 		return -ENOMEM;
922 
923 	key.objectid = ino;
924 	key.type = BTRFS_INODE_ITEM_KEY;
925 	key.offset = 0;
926 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
927 	if (ret) {
928 		if (ret > 0)
929 			ret = -ENOENT;
930 		goto out;
931 	}
932 
933 	if (!info)
934 		goto out;
935 
936 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
937 			struct btrfs_inode_item);
938 	info->size = btrfs_inode_size(path->nodes[0], ii);
939 	info->gen = btrfs_inode_generation(path->nodes[0], ii);
940 	info->mode = btrfs_inode_mode(path->nodes[0], ii);
941 	info->uid = btrfs_inode_uid(path->nodes[0], ii);
942 	info->gid = btrfs_inode_gid(path->nodes[0], ii);
943 	info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
944 	info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
945 	/*
946 	 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
947 	 * otherwise logically split to 32/32 parts.
948 	 */
949 	info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
950 
951 out:
952 	btrfs_free_path(path);
953 	return ret;
954 }
955 
956 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
957 {
958 	int ret;
959 	struct btrfs_inode_info info;
960 
961 	if (!gen)
962 		return -EPERM;
963 
964 	ret = get_inode_info(root, ino, &info);
965 	if (!ret)
966 		*gen = info.gen;
967 	return ret;
968 }
969 
970 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
971 				   struct fs_path *p,
972 				   void *ctx);
973 
974 /*
975  * Helper function to iterate the entries in ONE btrfs_inode_ref or
976  * btrfs_inode_extref.
977  * The iterate callback may return a non zero value to stop iteration. This can
978  * be a negative value for error codes or 1 to simply stop it.
979  *
980  * path must point to the INODE_REF or INODE_EXTREF when called.
981  */
982 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
983 			     struct btrfs_key *found_key, int resolve,
984 			     iterate_inode_ref_t iterate, void *ctx)
985 {
986 	struct extent_buffer *eb = path->nodes[0];
987 	struct btrfs_inode_ref *iref;
988 	struct btrfs_inode_extref *extref;
989 	struct btrfs_path *tmp_path;
990 	struct fs_path *p;
991 	u32 cur = 0;
992 	u32 total;
993 	int slot = path->slots[0];
994 	u32 name_len;
995 	char *start;
996 	int ret = 0;
997 	int num = 0;
998 	int index;
999 	u64 dir;
1000 	unsigned long name_off;
1001 	unsigned long elem_size;
1002 	unsigned long ptr;
1003 
1004 	p = fs_path_alloc_reversed();
1005 	if (!p)
1006 		return -ENOMEM;
1007 
1008 	tmp_path = alloc_path_for_send();
1009 	if (!tmp_path) {
1010 		fs_path_free(p);
1011 		return -ENOMEM;
1012 	}
1013 
1014 
1015 	if (found_key->type == BTRFS_INODE_REF_KEY) {
1016 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1017 						    struct btrfs_inode_ref);
1018 		total = btrfs_item_size(eb, slot);
1019 		elem_size = sizeof(*iref);
1020 	} else {
1021 		ptr = btrfs_item_ptr_offset(eb, slot);
1022 		total = btrfs_item_size(eb, slot);
1023 		elem_size = sizeof(*extref);
1024 	}
1025 
1026 	while (cur < total) {
1027 		fs_path_reset(p);
1028 
1029 		if (found_key->type == BTRFS_INODE_REF_KEY) {
1030 			iref = (struct btrfs_inode_ref *)(ptr + cur);
1031 			name_len = btrfs_inode_ref_name_len(eb, iref);
1032 			name_off = (unsigned long)(iref + 1);
1033 			index = btrfs_inode_ref_index(eb, iref);
1034 			dir = found_key->offset;
1035 		} else {
1036 			extref = (struct btrfs_inode_extref *)(ptr + cur);
1037 			name_len = btrfs_inode_extref_name_len(eb, extref);
1038 			name_off = (unsigned long)&extref->name;
1039 			index = btrfs_inode_extref_index(eb, extref);
1040 			dir = btrfs_inode_extref_parent(eb, extref);
1041 		}
1042 
1043 		if (resolve) {
1044 			start = btrfs_ref_to_path(root, tmp_path, name_len,
1045 						  name_off, eb, dir,
1046 						  p->buf, p->buf_len);
1047 			if (IS_ERR(start)) {
1048 				ret = PTR_ERR(start);
1049 				goto out;
1050 			}
1051 			if (start < p->buf) {
1052 				/* overflow , try again with larger buffer */
1053 				ret = fs_path_ensure_buf(p,
1054 						p->buf_len + p->buf - start);
1055 				if (ret < 0)
1056 					goto out;
1057 				start = btrfs_ref_to_path(root, tmp_path,
1058 							  name_len, name_off,
1059 							  eb, dir,
1060 							  p->buf, p->buf_len);
1061 				if (IS_ERR(start)) {
1062 					ret = PTR_ERR(start);
1063 					goto out;
1064 				}
1065 				BUG_ON(start < p->buf);
1066 			}
1067 			p->start = start;
1068 		} else {
1069 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1070 							     name_len);
1071 			if (ret < 0)
1072 				goto out;
1073 		}
1074 
1075 		cur += elem_size + name_len;
1076 		ret = iterate(num, dir, index, p, ctx);
1077 		if (ret)
1078 			goto out;
1079 		num++;
1080 	}
1081 
1082 out:
1083 	btrfs_free_path(tmp_path);
1084 	fs_path_free(p);
1085 	return ret;
1086 }
1087 
1088 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1089 				  const char *name, int name_len,
1090 				  const char *data, int data_len,
1091 				  void *ctx);
1092 
1093 /*
1094  * Helper function to iterate the entries in ONE btrfs_dir_item.
1095  * The iterate callback may return a non zero value to stop iteration. This can
1096  * be a negative value for error codes or 1 to simply stop it.
1097  *
1098  * path must point to the dir item when called.
1099  */
1100 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1101 			    iterate_dir_item_t iterate, void *ctx)
1102 {
1103 	int ret = 0;
1104 	struct extent_buffer *eb;
1105 	struct btrfs_dir_item *di;
1106 	struct btrfs_key di_key;
1107 	char *buf = NULL;
1108 	int buf_len;
1109 	u32 name_len;
1110 	u32 data_len;
1111 	u32 cur;
1112 	u32 len;
1113 	u32 total;
1114 	int slot;
1115 	int num;
1116 
1117 	/*
1118 	 * Start with a small buffer (1 page). If later we end up needing more
1119 	 * space, which can happen for xattrs on a fs with a leaf size greater
1120 	 * then the page size, attempt to increase the buffer. Typically xattr
1121 	 * values are small.
1122 	 */
1123 	buf_len = PATH_MAX;
1124 	buf = kmalloc(buf_len, GFP_KERNEL);
1125 	if (!buf) {
1126 		ret = -ENOMEM;
1127 		goto out;
1128 	}
1129 
1130 	eb = path->nodes[0];
1131 	slot = path->slots[0];
1132 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1133 	cur = 0;
1134 	len = 0;
1135 	total = btrfs_item_size(eb, slot);
1136 
1137 	num = 0;
1138 	while (cur < total) {
1139 		name_len = btrfs_dir_name_len(eb, di);
1140 		data_len = btrfs_dir_data_len(eb, di);
1141 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1142 
1143 		if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1144 			if (name_len > XATTR_NAME_MAX) {
1145 				ret = -ENAMETOOLONG;
1146 				goto out;
1147 			}
1148 			if (name_len + data_len >
1149 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1150 				ret = -E2BIG;
1151 				goto out;
1152 			}
1153 		} else {
1154 			/*
1155 			 * Path too long
1156 			 */
1157 			if (name_len + data_len > PATH_MAX) {
1158 				ret = -ENAMETOOLONG;
1159 				goto out;
1160 			}
1161 		}
1162 
1163 		if (name_len + data_len > buf_len) {
1164 			buf_len = name_len + data_len;
1165 			if (is_vmalloc_addr(buf)) {
1166 				vfree(buf);
1167 				buf = NULL;
1168 			} else {
1169 				char *tmp = krealloc(buf, buf_len,
1170 						GFP_KERNEL | __GFP_NOWARN);
1171 
1172 				if (!tmp)
1173 					kfree(buf);
1174 				buf = tmp;
1175 			}
1176 			if (!buf) {
1177 				buf = kvmalloc(buf_len, GFP_KERNEL);
1178 				if (!buf) {
1179 					ret = -ENOMEM;
1180 					goto out;
1181 				}
1182 			}
1183 		}
1184 
1185 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1186 				name_len + data_len);
1187 
1188 		len = sizeof(*di) + name_len + data_len;
1189 		di = (struct btrfs_dir_item *)((char *)di + len);
1190 		cur += len;
1191 
1192 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1193 			      data_len, ctx);
1194 		if (ret < 0)
1195 			goto out;
1196 		if (ret) {
1197 			ret = 0;
1198 			goto out;
1199 		}
1200 
1201 		num++;
1202 	}
1203 
1204 out:
1205 	kvfree(buf);
1206 	return ret;
1207 }
1208 
1209 static int __copy_first_ref(int num, u64 dir, int index,
1210 			    struct fs_path *p, void *ctx)
1211 {
1212 	int ret;
1213 	struct fs_path *pt = ctx;
1214 
1215 	ret = fs_path_copy(pt, p);
1216 	if (ret < 0)
1217 		return ret;
1218 
1219 	/* we want the first only */
1220 	return 1;
1221 }
1222 
1223 /*
1224  * Retrieve the first path of an inode. If an inode has more then one
1225  * ref/hardlink, this is ignored.
1226  */
1227 static int get_inode_path(struct btrfs_root *root,
1228 			  u64 ino, struct fs_path *path)
1229 {
1230 	int ret;
1231 	struct btrfs_key key, found_key;
1232 	struct btrfs_path *p;
1233 
1234 	p = alloc_path_for_send();
1235 	if (!p)
1236 		return -ENOMEM;
1237 
1238 	fs_path_reset(path);
1239 
1240 	key.objectid = ino;
1241 	key.type = BTRFS_INODE_REF_KEY;
1242 	key.offset = 0;
1243 
1244 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1245 	if (ret < 0)
1246 		goto out;
1247 	if (ret) {
1248 		ret = 1;
1249 		goto out;
1250 	}
1251 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1252 	if (found_key.objectid != ino ||
1253 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1254 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1255 		ret = -ENOENT;
1256 		goto out;
1257 	}
1258 
1259 	ret = iterate_inode_ref(root, p, &found_key, 1,
1260 				__copy_first_ref, path);
1261 	if (ret < 0)
1262 		goto out;
1263 	ret = 0;
1264 
1265 out:
1266 	btrfs_free_path(p);
1267 	return ret;
1268 }
1269 
1270 struct backref_ctx {
1271 	struct send_ctx *sctx;
1272 
1273 	/* number of total found references */
1274 	u64 found;
1275 
1276 	/*
1277 	 * used for clones found in send_root. clones found behind cur_objectid
1278 	 * and cur_offset are not considered as allowed clones.
1279 	 */
1280 	u64 cur_objectid;
1281 	u64 cur_offset;
1282 
1283 	/* may be truncated in case it's the last extent in a file */
1284 	u64 extent_len;
1285 
1286 	/* The bytenr the file extent item we are processing refers to. */
1287 	u64 bytenr;
1288 	/* The owner (root id) of the data backref for the current extent. */
1289 	u64 backref_owner;
1290 	/* The offset of the data backref for the current extent. */
1291 	u64 backref_offset;
1292 };
1293 
1294 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1295 {
1296 	u64 root = (u64)(uintptr_t)key;
1297 	const struct clone_root *cr = elt;
1298 
1299 	if (root < cr->root->root_key.objectid)
1300 		return -1;
1301 	if (root > cr->root->root_key.objectid)
1302 		return 1;
1303 	return 0;
1304 }
1305 
1306 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1307 {
1308 	const struct clone_root *cr1 = e1;
1309 	const struct clone_root *cr2 = e2;
1310 
1311 	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1312 		return -1;
1313 	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1314 		return 1;
1315 	return 0;
1316 }
1317 
1318 /*
1319  * Called for every backref that is found for the current extent.
1320  * Results are collected in sctx->clone_roots->ino/offset.
1321  */
1322 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1323 			    void *ctx_)
1324 {
1325 	struct backref_ctx *bctx = ctx_;
1326 	struct clone_root *clone_root;
1327 
1328 	/* First check if the root is in the list of accepted clone sources */
1329 	clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1330 			     bctx->sctx->clone_roots_cnt,
1331 			     sizeof(struct clone_root),
1332 			     __clone_root_cmp_bsearch);
1333 	if (!clone_root)
1334 		return 0;
1335 
1336 	/* This is our own reference, bail out as we can't clone from it. */
1337 	if (clone_root->root == bctx->sctx->send_root &&
1338 	    ino == bctx->cur_objectid &&
1339 	    offset == bctx->cur_offset)
1340 		return 0;
1341 
1342 	/*
1343 	 * Make sure we don't consider clones from send_root that are
1344 	 * behind the current inode/offset.
1345 	 */
1346 	if (clone_root->root == bctx->sctx->send_root) {
1347 		/*
1348 		 * If the source inode was not yet processed we can't issue a
1349 		 * clone operation, as the source extent does not exist yet at
1350 		 * the destination of the stream.
1351 		 */
1352 		if (ino > bctx->cur_objectid)
1353 			return 0;
1354 		/*
1355 		 * We clone from the inode currently being sent as long as the
1356 		 * source extent is already processed, otherwise we could try
1357 		 * to clone from an extent that does not exist yet at the
1358 		 * destination of the stream.
1359 		 */
1360 		if (ino == bctx->cur_objectid &&
1361 		    offset + bctx->extent_len >
1362 		    bctx->sctx->cur_inode_next_write_offset)
1363 			return 0;
1364 	}
1365 
1366 	bctx->found++;
1367 	clone_root->found_ref = true;
1368 
1369 	/*
1370 	 * If the given backref refers to a file extent item with a larger
1371 	 * number of bytes than what we found before, use the new one so that
1372 	 * we clone more optimally and end up doing less writes and getting
1373 	 * less exclusive, non-shared extents at the destination.
1374 	 */
1375 	if (num_bytes > clone_root->num_bytes) {
1376 		clone_root->ino = ino;
1377 		clone_root->offset = offset;
1378 		clone_root->num_bytes = num_bytes;
1379 
1380 		/*
1381 		 * Found a perfect candidate, so there's no need to continue
1382 		 * backref walking.
1383 		 */
1384 		if (num_bytes >= bctx->extent_len)
1385 			return BTRFS_ITERATE_EXTENT_INODES_STOP;
1386 	}
1387 
1388 	return 0;
1389 }
1390 
1391 static void empty_backref_cache(struct send_ctx *sctx)
1392 {
1393 	struct backref_cache_entry *entry;
1394 	struct backref_cache_entry *tmp;
1395 
1396 	list_for_each_entry_safe(entry, tmp, &sctx->backref_cache.lru_list, list)
1397 		kfree(entry);
1398 
1399 	INIT_LIST_HEAD(&sctx->backref_cache.lru_list);
1400 	mtree_destroy(&sctx->backref_cache.entries);
1401 	sctx->backref_cache.size = 0;
1402 }
1403 
1404 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1405 				 const u64 **root_ids_ret, int *root_count_ret)
1406 {
1407 	struct backref_ctx *bctx = ctx;
1408 	struct send_ctx *sctx = bctx->sctx;
1409 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1410 	const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1411 	struct backref_cache_entry *entry;
1412 
1413 	if (sctx->backref_cache.size == 0)
1414 		return false;
1415 
1416 	/*
1417 	 * If relocation happened since we first filled the cache, then we must
1418 	 * empty the cache and can not use it, because even though we operate on
1419 	 * read-only roots, their leaves and nodes may have been reallocated and
1420 	 * now be used for different nodes/leaves of the same tree or some other
1421 	 * tree.
1422 	 *
1423 	 * We are called from iterate_extent_inodes() while either holding a
1424 	 * transaction handle or holding fs_info->commit_root_sem, so no need
1425 	 * to take any lock here.
1426 	 */
1427 	if (fs_info->last_reloc_trans > sctx->backref_cache.last_reloc_trans) {
1428 		empty_backref_cache(sctx);
1429 		return false;
1430 	}
1431 
1432 	entry = mtree_load(&sctx->backref_cache.entries, key);
1433 	if (!entry)
1434 		return false;
1435 
1436 	*root_ids_ret = entry->root_ids;
1437 	*root_count_ret = entry->num_roots;
1438 	list_move_tail(&entry->list, &sctx->backref_cache.lru_list);
1439 
1440 	return true;
1441 }
1442 
1443 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1444 				void *ctx)
1445 {
1446 	struct backref_ctx *bctx = ctx;
1447 	struct send_ctx *sctx = bctx->sctx;
1448 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1449 	struct backref_cache_entry *new_entry;
1450 	struct ulist_iterator uiter;
1451 	struct ulist_node *node;
1452 	int ret;
1453 
1454 	/*
1455 	 * We're called while holding a transaction handle or while holding
1456 	 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1457 	 * NOFS allocation.
1458 	 */
1459 	new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1460 	/* No worries, cache is optional. */
1461 	if (!new_entry)
1462 		return;
1463 
1464 	new_entry->key = leaf_bytenr >> fs_info->sectorsize_bits;
1465 	new_entry->num_roots = 0;
1466 	ULIST_ITER_INIT(&uiter);
1467 	while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1468 		const u64 root_id = node->val;
1469 		struct clone_root *root;
1470 
1471 		root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1472 			       sctx->clone_roots_cnt, sizeof(struct clone_root),
1473 			       __clone_root_cmp_bsearch);
1474 		if (!root)
1475 			continue;
1476 
1477 		/* Too many roots, just exit, no worries as caching is optional. */
1478 		if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1479 			kfree(new_entry);
1480 			return;
1481 		}
1482 
1483 		new_entry->root_ids[new_entry->num_roots] = root_id;
1484 		new_entry->num_roots++;
1485 	}
1486 
1487 	/*
1488 	 * We may have not added any roots to the new cache entry, which means
1489 	 * none of the roots is part of the list of roots from which we are
1490 	 * allowed to clone. Cache the new entry as it's still useful to avoid
1491 	 * backref walking to determine which roots have a path to the leaf.
1492 	 */
1493 
1494 	if (sctx->backref_cache.size >= SEND_MAX_BACKREF_CACHE_SIZE) {
1495 		struct backref_cache_entry *lru_entry;
1496 		struct backref_cache_entry *mt_entry;
1497 
1498 		lru_entry = list_first_entry(&sctx->backref_cache.lru_list,
1499 					     struct backref_cache_entry, list);
1500 		mt_entry = mtree_erase(&sctx->backref_cache.entries, lru_entry->key);
1501 		ASSERT(mt_entry == lru_entry);
1502 		list_del(&mt_entry->list);
1503 		kfree(mt_entry);
1504 		sctx->backref_cache.size--;
1505 	}
1506 
1507 	ret = mtree_insert(&sctx->backref_cache.entries, new_entry->key,
1508 			   new_entry, GFP_NOFS);
1509 	ASSERT(ret == 0 || ret == -ENOMEM);
1510 	if (ret) {
1511 		/* Caching is optional, no worries. */
1512 		kfree(new_entry);
1513 		return;
1514 	}
1515 
1516 	list_add_tail(&new_entry->list, &sctx->backref_cache.lru_list);
1517 
1518 	/*
1519 	 * We are called from iterate_extent_inodes() while either holding a
1520 	 * transaction handle or holding fs_info->commit_root_sem, so no need
1521 	 * to take any lock here.
1522 	 */
1523 	if (sctx->backref_cache.size == 0)
1524 		sctx->backref_cache.last_reloc_trans = fs_info->last_reloc_trans;
1525 
1526 	sctx->backref_cache.size++;
1527 }
1528 
1529 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1530 			     const struct extent_buffer *leaf, void *ctx)
1531 {
1532 	const u64 refs = btrfs_extent_refs(leaf, ei);
1533 	const struct backref_ctx *bctx = ctx;
1534 	const struct send_ctx *sctx = bctx->sctx;
1535 
1536 	if (bytenr == bctx->bytenr) {
1537 		const u64 flags = btrfs_extent_flags(leaf, ei);
1538 
1539 		if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1540 			return -EUCLEAN;
1541 
1542 		/*
1543 		 * If we have only one reference and only the send root as a
1544 		 * clone source - meaning no clone roots were given in the
1545 		 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1546 		 * it's our reference and there's no point in doing backref
1547 		 * walking which is expensive, so exit early.
1548 		 */
1549 		if (refs == 1 && sctx->clone_roots_cnt == 1)
1550 			return -ENOENT;
1551 	}
1552 
1553 	/*
1554 	 * Backreference walking (iterate_extent_inodes() below) is currently
1555 	 * too expensive when an extent has a large number of references, both
1556 	 * in time spent and used memory. So for now just fallback to write
1557 	 * operations instead of clone operations when an extent has more than
1558 	 * a certain amount of references.
1559 	 */
1560 	if (refs > SEND_MAX_EXTENT_REFS)
1561 		return -ENOENT;
1562 
1563 	return 0;
1564 }
1565 
1566 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1567 {
1568 	const struct backref_ctx *bctx = ctx;
1569 
1570 	if (ino == bctx->cur_objectid &&
1571 	    root == bctx->backref_owner &&
1572 	    offset == bctx->backref_offset)
1573 		return true;
1574 
1575 	return false;
1576 }
1577 
1578 /*
1579  * Given an inode, offset and extent item, it finds a good clone for a clone
1580  * instruction. Returns -ENOENT when none could be found. The function makes
1581  * sure that the returned clone is usable at the point where sending is at the
1582  * moment. This means, that no clones are accepted which lie behind the current
1583  * inode+offset.
1584  *
1585  * path must point to the extent item when called.
1586  */
1587 static int find_extent_clone(struct send_ctx *sctx,
1588 			     struct btrfs_path *path,
1589 			     u64 ino, u64 data_offset,
1590 			     u64 ino_size,
1591 			     struct clone_root **found)
1592 {
1593 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1594 	int ret;
1595 	int extent_type;
1596 	u64 logical;
1597 	u64 disk_byte;
1598 	u64 num_bytes;
1599 	struct btrfs_file_extent_item *fi;
1600 	struct extent_buffer *eb = path->nodes[0];
1601 	struct backref_ctx backref_ctx = { 0 };
1602 	struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1603 	struct clone_root *cur_clone_root;
1604 	int compressed;
1605 	u32 i;
1606 
1607 	/*
1608 	 * With fallocate we can get prealloc extents beyond the inode's i_size,
1609 	 * so we don't do anything here because clone operations can not clone
1610 	 * to a range beyond i_size without increasing the i_size of the
1611 	 * destination inode.
1612 	 */
1613 	if (data_offset >= ino_size)
1614 		return 0;
1615 
1616 	fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1617 	extent_type = btrfs_file_extent_type(eb, fi);
1618 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1619 		return -ENOENT;
1620 
1621 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1622 	if (disk_byte == 0)
1623 		return -ENOENT;
1624 
1625 	compressed = btrfs_file_extent_compression(eb, fi);
1626 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1627 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1628 
1629 	/*
1630 	 * Setup the clone roots.
1631 	 */
1632 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1633 		cur_clone_root = sctx->clone_roots + i;
1634 		cur_clone_root->ino = (u64)-1;
1635 		cur_clone_root->offset = 0;
1636 		cur_clone_root->num_bytes = 0;
1637 		cur_clone_root->found_ref = false;
1638 	}
1639 
1640 	backref_ctx.sctx = sctx;
1641 	backref_ctx.cur_objectid = ino;
1642 	backref_ctx.cur_offset = data_offset;
1643 	backref_ctx.bytenr = disk_byte;
1644 	/*
1645 	 * Use the header owner and not the send root's id, because in case of a
1646 	 * snapshot we can have shared subtrees.
1647 	 */
1648 	backref_ctx.backref_owner = btrfs_header_owner(eb);
1649 	backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1650 
1651 	/*
1652 	 * The last extent of a file may be too large due to page alignment.
1653 	 * We need to adjust extent_len in this case so that the checks in
1654 	 * iterate_backrefs() work.
1655 	 */
1656 	if (data_offset + num_bytes >= ino_size)
1657 		backref_ctx.extent_len = ino_size - data_offset;
1658 	else
1659 		backref_ctx.extent_len = num_bytes;
1660 
1661 	/*
1662 	 * Now collect all backrefs.
1663 	 */
1664 	backref_walk_ctx.bytenr = disk_byte;
1665 	if (compressed == BTRFS_COMPRESS_NONE)
1666 		backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1667 	backref_walk_ctx.fs_info = fs_info;
1668 	backref_walk_ctx.cache_lookup = lookup_backref_cache;
1669 	backref_walk_ctx.cache_store = store_backref_cache;
1670 	backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1671 	backref_walk_ctx.check_extent_item = check_extent_item;
1672 	backref_walk_ctx.user_ctx = &backref_ctx;
1673 
1674 	/*
1675 	 * If have a single clone root, then it's the send root and we can tell
1676 	 * the backref walking code to skip our own backref and not resolve it,
1677 	 * since we can not use it for cloning - the source and destination
1678 	 * ranges can't overlap and in case the leaf is shared through a subtree
1679 	 * due to snapshots, we can't use those other roots since they are not
1680 	 * in the list of clone roots.
1681 	 */
1682 	if (sctx->clone_roots_cnt == 1)
1683 		backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1684 
1685 	ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1686 				    &backref_ctx);
1687 	if (ret < 0)
1688 		return ret;
1689 
1690 	down_read(&fs_info->commit_root_sem);
1691 	if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1692 		/*
1693 		 * A transaction commit for a transaction in which block group
1694 		 * relocation was done just happened.
1695 		 * The disk_bytenr of the file extent item we processed is
1696 		 * possibly stale, referring to the extent's location before
1697 		 * relocation. So act as if we haven't found any clone sources
1698 		 * and fallback to write commands, which will read the correct
1699 		 * data from the new extent location. Otherwise we will fail
1700 		 * below because we haven't found our own back reference or we
1701 		 * could be getting incorrect sources in case the old extent
1702 		 * was already reallocated after the relocation.
1703 		 */
1704 		up_read(&fs_info->commit_root_sem);
1705 		return -ENOENT;
1706 	}
1707 	up_read(&fs_info->commit_root_sem);
1708 
1709 	btrfs_debug(fs_info,
1710 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1711 		    data_offset, ino, num_bytes, logical);
1712 
1713 	if (!backref_ctx.found) {
1714 		btrfs_debug(fs_info, "no clones found");
1715 		return -ENOENT;
1716 	}
1717 
1718 	cur_clone_root = NULL;
1719 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1720 		struct clone_root *clone_root = &sctx->clone_roots[i];
1721 
1722 		if (!clone_root->found_ref)
1723 			continue;
1724 
1725 		/*
1726 		 * Choose the root from which we can clone more bytes, to
1727 		 * minimize write operations and therefore have more extent
1728 		 * sharing at the destination (the same as in the source).
1729 		 */
1730 		if (!cur_clone_root ||
1731 		    clone_root->num_bytes > cur_clone_root->num_bytes) {
1732 			cur_clone_root = clone_root;
1733 
1734 			/*
1735 			 * We found an optimal clone candidate (any inode from
1736 			 * any root is fine), so we're done.
1737 			 */
1738 			if (clone_root->num_bytes >= backref_ctx.extent_len)
1739 				break;
1740 		}
1741 	}
1742 
1743 	if (cur_clone_root) {
1744 		*found = cur_clone_root;
1745 		ret = 0;
1746 	} else {
1747 		ret = -ENOENT;
1748 	}
1749 
1750 	return ret;
1751 }
1752 
1753 static int read_symlink(struct btrfs_root *root,
1754 			u64 ino,
1755 			struct fs_path *dest)
1756 {
1757 	int ret;
1758 	struct btrfs_path *path;
1759 	struct btrfs_key key;
1760 	struct btrfs_file_extent_item *ei;
1761 	u8 type;
1762 	u8 compression;
1763 	unsigned long off;
1764 	int len;
1765 
1766 	path = alloc_path_for_send();
1767 	if (!path)
1768 		return -ENOMEM;
1769 
1770 	key.objectid = ino;
1771 	key.type = BTRFS_EXTENT_DATA_KEY;
1772 	key.offset = 0;
1773 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1774 	if (ret < 0)
1775 		goto out;
1776 	if (ret) {
1777 		/*
1778 		 * An empty symlink inode. Can happen in rare error paths when
1779 		 * creating a symlink (transaction committed before the inode
1780 		 * eviction handler removed the symlink inode items and a crash
1781 		 * happened in between or the subvol was snapshoted in between).
1782 		 * Print an informative message to dmesg/syslog so that the user
1783 		 * can delete the symlink.
1784 		 */
1785 		btrfs_err(root->fs_info,
1786 			  "Found empty symlink inode %llu at root %llu",
1787 			  ino, root->root_key.objectid);
1788 		ret = -EIO;
1789 		goto out;
1790 	}
1791 
1792 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1793 			struct btrfs_file_extent_item);
1794 	type = btrfs_file_extent_type(path->nodes[0], ei);
1795 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1796 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1797 	BUG_ON(compression);
1798 
1799 	off = btrfs_file_extent_inline_start(ei);
1800 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1801 
1802 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1803 
1804 out:
1805 	btrfs_free_path(path);
1806 	return ret;
1807 }
1808 
1809 /*
1810  * Helper function to generate a file name that is unique in the root of
1811  * send_root and parent_root. This is used to generate names for orphan inodes.
1812  */
1813 static int gen_unique_name(struct send_ctx *sctx,
1814 			   u64 ino, u64 gen,
1815 			   struct fs_path *dest)
1816 {
1817 	int ret = 0;
1818 	struct btrfs_path *path;
1819 	struct btrfs_dir_item *di;
1820 	char tmp[64];
1821 	int len;
1822 	u64 idx = 0;
1823 
1824 	path = alloc_path_for_send();
1825 	if (!path)
1826 		return -ENOMEM;
1827 
1828 	while (1) {
1829 		struct fscrypt_str tmp_name;
1830 
1831 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1832 				ino, gen, idx);
1833 		ASSERT(len < sizeof(tmp));
1834 		tmp_name.name = tmp;
1835 		tmp_name.len = strlen(tmp);
1836 
1837 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1838 				path, BTRFS_FIRST_FREE_OBJECTID,
1839 				&tmp_name, 0);
1840 		btrfs_release_path(path);
1841 		if (IS_ERR(di)) {
1842 			ret = PTR_ERR(di);
1843 			goto out;
1844 		}
1845 		if (di) {
1846 			/* not unique, try again */
1847 			idx++;
1848 			continue;
1849 		}
1850 
1851 		if (!sctx->parent_root) {
1852 			/* unique */
1853 			ret = 0;
1854 			break;
1855 		}
1856 
1857 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1858 				path, BTRFS_FIRST_FREE_OBJECTID,
1859 				&tmp_name, 0);
1860 		btrfs_release_path(path);
1861 		if (IS_ERR(di)) {
1862 			ret = PTR_ERR(di);
1863 			goto out;
1864 		}
1865 		if (di) {
1866 			/* not unique, try again */
1867 			idx++;
1868 			continue;
1869 		}
1870 		/* unique */
1871 		break;
1872 	}
1873 
1874 	ret = fs_path_add(dest, tmp, strlen(tmp));
1875 
1876 out:
1877 	btrfs_free_path(path);
1878 	return ret;
1879 }
1880 
1881 enum inode_state {
1882 	inode_state_no_change,
1883 	inode_state_will_create,
1884 	inode_state_did_create,
1885 	inode_state_will_delete,
1886 	inode_state_did_delete,
1887 };
1888 
1889 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1890 {
1891 	int ret;
1892 	int left_ret;
1893 	int right_ret;
1894 	u64 left_gen;
1895 	u64 right_gen;
1896 	struct btrfs_inode_info info;
1897 
1898 	ret = get_inode_info(sctx->send_root, ino, &info);
1899 	if (ret < 0 && ret != -ENOENT)
1900 		goto out;
1901 	left_ret = (info.nlink == 0) ? -ENOENT : ret;
1902 	left_gen = info.gen;
1903 
1904 	if (!sctx->parent_root) {
1905 		right_ret = -ENOENT;
1906 	} else {
1907 		ret = get_inode_info(sctx->parent_root, ino, &info);
1908 		if (ret < 0 && ret != -ENOENT)
1909 			goto out;
1910 		right_ret = (info.nlink == 0) ? -ENOENT : ret;
1911 		right_gen = info.gen;
1912 	}
1913 
1914 	if (!left_ret && !right_ret) {
1915 		if (left_gen == gen && right_gen == gen) {
1916 			ret = inode_state_no_change;
1917 		} else if (left_gen == gen) {
1918 			if (ino < sctx->send_progress)
1919 				ret = inode_state_did_create;
1920 			else
1921 				ret = inode_state_will_create;
1922 		} else if (right_gen == gen) {
1923 			if (ino < sctx->send_progress)
1924 				ret = inode_state_did_delete;
1925 			else
1926 				ret = inode_state_will_delete;
1927 		} else  {
1928 			ret = -ENOENT;
1929 		}
1930 	} else if (!left_ret) {
1931 		if (left_gen == gen) {
1932 			if (ino < sctx->send_progress)
1933 				ret = inode_state_did_create;
1934 			else
1935 				ret = inode_state_will_create;
1936 		} else {
1937 			ret = -ENOENT;
1938 		}
1939 	} else if (!right_ret) {
1940 		if (right_gen == gen) {
1941 			if (ino < sctx->send_progress)
1942 				ret = inode_state_did_delete;
1943 			else
1944 				ret = inode_state_will_delete;
1945 		} else {
1946 			ret = -ENOENT;
1947 		}
1948 	} else {
1949 		ret = -ENOENT;
1950 	}
1951 
1952 out:
1953 	return ret;
1954 }
1955 
1956 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1957 {
1958 	int ret;
1959 
1960 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1961 		return 1;
1962 
1963 	ret = get_cur_inode_state(sctx, ino, gen);
1964 	if (ret < 0)
1965 		goto out;
1966 
1967 	if (ret == inode_state_no_change ||
1968 	    ret == inode_state_did_create ||
1969 	    ret == inode_state_will_delete)
1970 		ret = 1;
1971 	else
1972 		ret = 0;
1973 
1974 out:
1975 	return ret;
1976 }
1977 
1978 /*
1979  * Helper function to lookup a dir item in a dir.
1980  */
1981 static int lookup_dir_item_inode(struct btrfs_root *root,
1982 				 u64 dir, const char *name, int name_len,
1983 				 u64 *found_inode)
1984 {
1985 	int ret = 0;
1986 	struct btrfs_dir_item *di;
1987 	struct btrfs_key key;
1988 	struct btrfs_path *path;
1989 	struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
1990 
1991 	path = alloc_path_for_send();
1992 	if (!path)
1993 		return -ENOMEM;
1994 
1995 	di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
1996 	if (IS_ERR_OR_NULL(di)) {
1997 		ret = di ? PTR_ERR(di) : -ENOENT;
1998 		goto out;
1999 	}
2000 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
2001 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
2002 		ret = -ENOENT;
2003 		goto out;
2004 	}
2005 	*found_inode = key.objectid;
2006 
2007 out:
2008 	btrfs_free_path(path);
2009 	return ret;
2010 }
2011 
2012 /*
2013  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2014  * generation of the parent dir and the name of the dir entry.
2015  */
2016 static int get_first_ref(struct btrfs_root *root, u64 ino,
2017 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
2018 {
2019 	int ret;
2020 	struct btrfs_key key;
2021 	struct btrfs_key found_key;
2022 	struct btrfs_path *path;
2023 	int len;
2024 	u64 parent_dir;
2025 
2026 	path = alloc_path_for_send();
2027 	if (!path)
2028 		return -ENOMEM;
2029 
2030 	key.objectid = ino;
2031 	key.type = BTRFS_INODE_REF_KEY;
2032 	key.offset = 0;
2033 
2034 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2035 	if (ret < 0)
2036 		goto out;
2037 	if (!ret)
2038 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2039 				path->slots[0]);
2040 	if (ret || found_key.objectid != ino ||
2041 	    (found_key.type != BTRFS_INODE_REF_KEY &&
2042 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2043 		ret = -ENOENT;
2044 		goto out;
2045 	}
2046 
2047 	if (found_key.type == BTRFS_INODE_REF_KEY) {
2048 		struct btrfs_inode_ref *iref;
2049 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2050 				      struct btrfs_inode_ref);
2051 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2052 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2053 						     (unsigned long)(iref + 1),
2054 						     len);
2055 		parent_dir = found_key.offset;
2056 	} else {
2057 		struct btrfs_inode_extref *extref;
2058 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2059 					struct btrfs_inode_extref);
2060 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2061 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2062 					(unsigned long)&extref->name, len);
2063 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2064 	}
2065 	if (ret < 0)
2066 		goto out;
2067 	btrfs_release_path(path);
2068 
2069 	if (dir_gen) {
2070 		ret = get_inode_gen(root, parent_dir, dir_gen);
2071 		if (ret < 0)
2072 			goto out;
2073 	}
2074 
2075 	*dir = parent_dir;
2076 
2077 out:
2078 	btrfs_free_path(path);
2079 	return ret;
2080 }
2081 
2082 static int is_first_ref(struct btrfs_root *root,
2083 			u64 ino, u64 dir,
2084 			const char *name, int name_len)
2085 {
2086 	int ret;
2087 	struct fs_path *tmp_name;
2088 	u64 tmp_dir;
2089 
2090 	tmp_name = fs_path_alloc();
2091 	if (!tmp_name)
2092 		return -ENOMEM;
2093 
2094 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2095 	if (ret < 0)
2096 		goto out;
2097 
2098 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2099 		ret = 0;
2100 		goto out;
2101 	}
2102 
2103 	ret = !memcmp(tmp_name->start, name, name_len);
2104 
2105 out:
2106 	fs_path_free(tmp_name);
2107 	return ret;
2108 }
2109 
2110 /*
2111  * Used by process_recorded_refs to determine if a new ref would overwrite an
2112  * already existing ref. In case it detects an overwrite, it returns the
2113  * inode/gen in who_ino/who_gen.
2114  * When an overwrite is detected, process_recorded_refs does proper orphanizing
2115  * to make sure later references to the overwritten inode are possible.
2116  * Orphanizing is however only required for the first ref of an inode.
2117  * process_recorded_refs does an additional is_first_ref check to see if
2118  * orphanizing is really required.
2119  */
2120 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2121 			      const char *name, int name_len,
2122 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
2123 {
2124 	int ret = 0;
2125 	u64 gen;
2126 	u64 other_inode = 0;
2127 	struct btrfs_inode_info info;
2128 
2129 	if (!sctx->parent_root)
2130 		goto out;
2131 
2132 	ret = is_inode_existent(sctx, dir, dir_gen);
2133 	if (ret <= 0)
2134 		goto out;
2135 
2136 	/*
2137 	 * If we have a parent root we need to verify that the parent dir was
2138 	 * not deleted and then re-created, if it was then we have no overwrite
2139 	 * and we can just unlink this entry.
2140 	 */
2141 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
2142 		ret = get_inode_gen(sctx->parent_root, dir, &gen);
2143 		if (ret < 0 && ret != -ENOENT)
2144 			goto out;
2145 		if (ret) {
2146 			ret = 0;
2147 			goto out;
2148 		}
2149 		if (gen != dir_gen)
2150 			goto out;
2151 	}
2152 
2153 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2154 				    &other_inode);
2155 	if (ret < 0 && ret != -ENOENT)
2156 		goto out;
2157 	if (ret) {
2158 		ret = 0;
2159 		goto out;
2160 	}
2161 
2162 	/*
2163 	 * Check if the overwritten ref was already processed. If yes, the ref
2164 	 * was already unlinked/moved, so we can safely assume that we will not
2165 	 * overwrite anything at this point in time.
2166 	 */
2167 	if (other_inode > sctx->send_progress ||
2168 	    is_waiting_for_move(sctx, other_inode)) {
2169 		ret = get_inode_info(sctx->parent_root, other_inode, &info);
2170 		if (ret < 0)
2171 			goto out;
2172 
2173 		ret = 1;
2174 		*who_ino = other_inode;
2175 		*who_gen = info.gen;
2176 		*who_mode = info.mode;
2177 	} else {
2178 		ret = 0;
2179 	}
2180 
2181 out:
2182 	return ret;
2183 }
2184 
2185 /*
2186  * Checks if the ref was overwritten by an already processed inode. This is
2187  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2188  * thus the orphan name needs be used.
2189  * process_recorded_refs also uses it to avoid unlinking of refs that were
2190  * overwritten.
2191  */
2192 static int did_overwrite_ref(struct send_ctx *sctx,
2193 			    u64 dir, u64 dir_gen,
2194 			    u64 ino, u64 ino_gen,
2195 			    const char *name, int name_len)
2196 {
2197 	int ret = 0;
2198 	u64 gen;
2199 	u64 ow_inode;
2200 
2201 	if (!sctx->parent_root)
2202 		goto out;
2203 
2204 	ret = is_inode_existent(sctx, dir, dir_gen);
2205 	if (ret <= 0)
2206 		goto out;
2207 
2208 	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
2209 		ret = get_inode_gen(sctx->send_root, dir, &gen);
2210 		if (ret < 0 && ret != -ENOENT)
2211 			goto out;
2212 		if (ret) {
2213 			ret = 0;
2214 			goto out;
2215 		}
2216 		if (gen != dir_gen)
2217 			goto out;
2218 	}
2219 
2220 	/* check if the ref was overwritten by another ref */
2221 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2222 				    &ow_inode);
2223 	if (ret < 0 && ret != -ENOENT)
2224 		goto out;
2225 	if (ret) {
2226 		/* was never and will never be overwritten */
2227 		ret = 0;
2228 		goto out;
2229 	}
2230 
2231 	ret = get_inode_gen(sctx->send_root, ow_inode, &gen);
2232 	if (ret < 0)
2233 		goto out;
2234 
2235 	if (ow_inode == ino && gen == ino_gen) {
2236 		ret = 0;
2237 		goto out;
2238 	}
2239 
2240 	/*
2241 	 * We know that it is or will be overwritten. Check this now.
2242 	 * The current inode being processed might have been the one that caused
2243 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2244 	 * the current inode being processed.
2245 	 */
2246 	if ((ow_inode < sctx->send_progress) ||
2247 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
2248 	     gen == sctx->cur_inode_gen))
2249 		ret = 1;
2250 	else
2251 		ret = 0;
2252 
2253 out:
2254 	return ret;
2255 }
2256 
2257 /*
2258  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2259  * that got overwritten. This is used by process_recorded_refs to determine
2260  * if it has to use the path as returned by get_cur_path or the orphan name.
2261  */
2262 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2263 {
2264 	int ret = 0;
2265 	struct fs_path *name = NULL;
2266 	u64 dir;
2267 	u64 dir_gen;
2268 
2269 	if (!sctx->parent_root)
2270 		goto out;
2271 
2272 	name = fs_path_alloc();
2273 	if (!name)
2274 		return -ENOMEM;
2275 
2276 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2277 	if (ret < 0)
2278 		goto out;
2279 
2280 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2281 			name->start, fs_path_len(name));
2282 
2283 out:
2284 	fs_path_free(name);
2285 	return ret;
2286 }
2287 
2288 /*
2289  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2290  * so we need to do some special handling in case we have clashes. This function
2291  * takes care of this with the help of name_cache_entry::radix_list.
2292  * In case of error, nce is kfreed.
2293  */
2294 static int name_cache_insert(struct send_ctx *sctx,
2295 			     struct name_cache_entry *nce)
2296 {
2297 	int ret = 0;
2298 	struct list_head *nce_head;
2299 
2300 	nce_head = radix_tree_lookup(&sctx->name_cache,
2301 			(unsigned long)nce->ino);
2302 	if (!nce_head) {
2303 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2304 		if (!nce_head) {
2305 			kfree(nce);
2306 			return -ENOMEM;
2307 		}
2308 		INIT_LIST_HEAD(nce_head);
2309 
2310 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2311 		if (ret < 0) {
2312 			kfree(nce_head);
2313 			kfree(nce);
2314 			return ret;
2315 		}
2316 	}
2317 	list_add_tail(&nce->radix_list, nce_head);
2318 	list_add_tail(&nce->list, &sctx->name_cache_list);
2319 	sctx->name_cache_size++;
2320 
2321 	return ret;
2322 }
2323 
2324 static void name_cache_delete(struct send_ctx *sctx,
2325 			      struct name_cache_entry *nce)
2326 {
2327 	struct list_head *nce_head;
2328 
2329 	nce_head = radix_tree_lookup(&sctx->name_cache,
2330 			(unsigned long)nce->ino);
2331 	if (!nce_head) {
2332 		btrfs_err(sctx->send_root->fs_info,
2333 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2334 			nce->ino, sctx->name_cache_size);
2335 	}
2336 
2337 	list_del(&nce->radix_list);
2338 	list_del(&nce->list);
2339 	sctx->name_cache_size--;
2340 
2341 	/*
2342 	 * We may not get to the final release of nce_head if the lookup fails
2343 	 */
2344 	if (nce_head && list_empty(nce_head)) {
2345 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2346 		kfree(nce_head);
2347 	}
2348 }
2349 
2350 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2351 						    u64 ino, u64 gen)
2352 {
2353 	struct list_head *nce_head;
2354 	struct name_cache_entry *cur;
2355 
2356 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2357 	if (!nce_head)
2358 		return NULL;
2359 
2360 	list_for_each_entry(cur, nce_head, radix_list) {
2361 		if (cur->ino == ino && cur->gen == gen)
2362 			return cur;
2363 	}
2364 	return NULL;
2365 }
2366 
2367 /*
2368  * Remove some entries from the beginning of name_cache_list.
2369  */
2370 static void name_cache_clean_unused(struct send_ctx *sctx)
2371 {
2372 	struct name_cache_entry *nce;
2373 
2374 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2375 		return;
2376 
2377 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2378 		nce = list_entry(sctx->name_cache_list.next,
2379 				struct name_cache_entry, list);
2380 		name_cache_delete(sctx, nce);
2381 		kfree(nce);
2382 	}
2383 }
2384 
2385 static void name_cache_free(struct send_ctx *sctx)
2386 {
2387 	struct name_cache_entry *nce;
2388 
2389 	while (!list_empty(&sctx->name_cache_list)) {
2390 		nce = list_entry(sctx->name_cache_list.next,
2391 				struct name_cache_entry, list);
2392 		name_cache_delete(sctx, nce);
2393 		kfree(nce);
2394 	}
2395 }
2396 
2397 /*
2398  * Used by get_cur_path for each ref up to the root.
2399  * Returns 0 if it succeeded.
2400  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2401  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2402  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2403  * Returns <0 in case of error.
2404  */
2405 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2406 				     u64 ino, u64 gen,
2407 				     u64 *parent_ino,
2408 				     u64 *parent_gen,
2409 				     struct fs_path *dest)
2410 {
2411 	int ret;
2412 	int nce_ret;
2413 	struct name_cache_entry *nce = NULL;
2414 
2415 	/*
2416 	 * First check if we already did a call to this function with the same
2417 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2418 	 * return the cached result.
2419 	 */
2420 	nce = name_cache_search(sctx, ino, gen);
2421 	if (nce) {
2422 		if (ino < sctx->send_progress && nce->need_later_update) {
2423 			name_cache_delete(sctx, nce);
2424 			kfree(nce);
2425 			nce = NULL;
2426 		} else {
2427 			/*
2428 			 * Removes the entry from the list and adds it back to
2429 			 * the end.  This marks the entry as recently used so
2430 			 * that name_cache_clean_unused does not remove it.
2431 			 */
2432 			list_move_tail(&nce->list, &sctx->name_cache_list);
2433 
2434 			*parent_ino = nce->parent_ino;
2435 			*parent_gen = nce->parent_gen;
2436 			ret = fs_path_add(dest, nce->name, nce->name_len);
2437 			if (ret < 0)
2438 				goto out;
2439 			ret = nce->ret;
2440 			goto out;
2441 		}
2442 	}
2443 
2444 	/*
2445 	 * If the inode is not existent yet, add the orphan name and return 1.
2446 	 * This should only happen for the parent dir that we determine in
2447 	 * record_new_ref_if_needed().
2448 	 */
2449 	ret = is_inode_existent(sctx, ino, gen);
2450 	if (ret < 0)
2451 		goto out;
2452 
2453 	if (!ret) {
2454 		ret = gen_unique_name(sctx, ino, gen, dest);
2455 		if (ret < 0)
2456 			goto out;
2457 		ret = 1;
2458 		goto out_cache;
2459 	}
2460 
2461 	/*
2462 	 * Depending on whether the inode was already processed or not, use
2463 	 * send_root or parent_root for ref lookup.
2464 	 */
2465 	if (ino < sctx->send_progress)
2466 		ret = get_first_ref(sctx->send_root, ino,
2467 				    parent_ino, parent_gen, dest);
2468 	else
2469 		ret = get_first_ref(sctx->parent_root, ino,
2470 				    parent_ino, parent_gen, dest);
2471 	if (ret < 0)
2472 		goto out;
2473 
2474 	/*
2475 	 * Check if the ref was overwritten by an inode's ref that was processed
2476 	 * earlier. If yes, treat as orphan and return 1.
2477 	 */
2478 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2479 			dest->start, dest->end - dest->start);
2480 	if (ret < 0)
2481 		goto out;
2482 	if (ret) {
2483 		fs_path_reset(dest);
2484 		ret = gen_unique_name(sctx, ino, gen, dest);
2485 		if (ret < 0)
2486 			goto out;
2487 		ret = 1;
2488 	}
2489 
2490 out_cache:
2491 	/*
2492 	 * Store the result of the lookup in the name cache.
2493 	 */
2494 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2495 	if (!nce) {
2496 		ret = -ENOMEM;
2497 		goto out;
2498 	}
2499 
2500 	nce->ino = ino;
2501 	nce->gen = gen;
2502 	nce->parent_ino = *parent_ino;
2503 	nce->parent_gen = *parent_gen;
2504 	nce->name_len = fs_path_len(dest);
2505 	nce->ret = ret;
2506 	strcpy(nce->name, dest->start);
2507 
2508 	if (ino < sctx->send_progress)
2509 		nce->need_later_update = 0;
2510 	else
2511 		nce->need_later_update = 1;
2512 
2513 	nce_ret = name_cache_insert(sctx, nce);
2514 	if (nce_ret < 0)
2515 		ret = nce_ret;
2516 	name_cache_clean_unused(sctx);
2517 
2518 out:
2519 	return ret;
2520 }
2521 
2522 /*
2523  * Magic happens here. This function returns the first ref to an inode as it
2524  * would look like while receiving the stream at this point in time.
2525  * We walk the path up to the root. For every inode in between, we check if it
2526  * was already processed/sent. If yes, we continue with the parent as found
2527  * in send_root. If not, we continue with the parent as found in parent_root.
2528  * If we encounter an inode that was deleted at this point in time, we use the
2529  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2530  * that were not created yet and overwritten inodes/refs.
2531  *
2532  * When do we have orphan inodes:
2533  * 1. When an inode is freshly created and thus no valid refs are available yet
2534  * 2. When a directory lost all it's refs (deleted) but still has dir items
2535  *    inside which were not processed yet (pending for move/delete). If anyone
2536  *    tried to get the path to the dir items, it would get a path inside that
2537  *    orphan directory.
2538  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2539  *    of an unprocessed inode. If in that case the first ref would be
2540  *    overwritten, the overwritten inode gets "orphanized". Later when we
2541  *    process this overwritten inode, it is restored at a new place by moving
2542  *    the orphan inode.
2543  *
2544  * sctx->send_progress tells this function at which point in time receiving
2545  * would be.
2546  */
2547 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2548 			struct fs_path *dest)
2549 {
2550 	int ret = 0;
2551 	struct fs_path *name = NULL;
2552 	u64 parent_inode = 0;
2553 	u64 parent_gen = 0;
2554 	int stop = 0;
2555 
2556 	name = fs_path_alloc();
2557 	if (!name) {
2558 		ret = -ENOMEM;
2559 		goto out;
2560 	}
2561 
2562 	dest->reversed = 1;
2563 	fs_path_reset(dest);
2564 
2565 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2566 		struct waiting_dir_move *wdm;
2567 
2568 		fs_path_reset(name);
2569 
2570 		if (is_waiting_for_rm(sctx, ino, gen)) {
2571 			ret = gen_unique_name(sctx, ino, gen, name);
2572 			if (ret < 0)
2573 				goto out;
2574 			ret = fs_path_add_path(dest, name);
2575 			break;
2576 		}
2577 
2578 		wdm = get_waiting_dir_move(sctx, ino);
2579 		if (wdm && wdm->orphanized) {
2580 			ret = gen_unique_name(sctx, ino, gen, name);
2581 			stop = 1;
2582 		} else if (wdm) {
2583 			ret = get_first_ref(sctx->parent_root, ino,
2584 					    &parent_inode, &parent_gen, name);
2585 		} else {
2586 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2587 							&parent_inode,
2588 							&parent_gen, name);
2589 			if (ret)
2590 				stop = 1;
2591 		}
2592 
2593 		if (ret < 0)
2594 			goto out;
2595 
2596 		ret = fs_path_add_path(dest, name);
2597 		if (ret < 0)
2598 			goto out;
2599 
2600 		ino = parent_inode;
2601 		gen = parent_gen;
2602 	}
2603 
2604 out:
2605 	fs_path_free(name);
2606 	if (!ret)
2607 		fs_path_unreverse(dest);
2608 	return ret;
2609 }
2610 
2611 /*
2612  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2613  */
2614 static int send_subvol_begin(struct send_ctx *sctx)
2615 {
2616 	int ret;
2617 	struct btrfs_root *send_root = sctx->send_root;
2618 	struct btrfs_root *parent_root = sctx->parent_root;
2619 	struct btrfs_path *path;
2620 	struct btrfs_key key;
2621 	struct btrfs_root_ref *ref;
2622 	struct extent_buffer *leaf;
2623 	char *name = NULL;
2624 	int namelen;
2625 
2626 	path = btrfs_alloc_path();
2627 	if (!path)
2628 		return -ENOMEM;
2629 
2630 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2631 	if (!name) {
2632 		btrfs_free_path(path);
2633 		return -ENOMEM;
2634 	}
2635 
2636 	key.objectid = send_root->root_key.objectid;
2637 	key.type = BTRFS_ROOT_BACKREF_KEY;
2638 	key.offset = 0;
2639 
2640 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2641 				&key, path, 1, 0);
2642 	if (ret < 0)
2643 		goto out;
2644 	if (ret) {
2645 		ret = -ENOENT;
2646 		goto out;
2647 	}
2648 
2649 	leaf = path->nodes[0];
2650 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2651 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2652 	    key.objectid != send_root->root_key.objectid) {
2653 		ret = -ENOENT;
2654 		goto out;
2655 	}
2656 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2657 	namelen = btrfs_root_ref_name_len(leaf, ref);
2658 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2659 	btrfs_release_path(path);
2660 
2661 	if (parent_root) {
2662 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2663 		if (ret < 0)
2664 			goto out;
2665 	} else {
2666 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2667 		if (ret < 0)
2668 			goto out;
2669 	}
2670 
2671 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2672 
2673 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2674 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2675 			    sctx->send_root->root_item.received_uuid);
2676 	else
2677 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2678 			    sctx->send_root->root_item.uuid);
2679 
2680 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2681 		    btrfs_root_ctransid(&sctx->send_root->root_item));
2682 	if (parent_root) {
2683 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2684 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2685 				     parent_root->root_item.received_uuid);
2686 		else
2687 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2688 				     parent_root->root_item.uuid);
2689 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2690 			    btrfs_root_ctransid(&sctx->parent_root->root_item));
2691 	}
2692 
2693 	ret = send_cmd(sctx);
2694 
2695 tlv_put_failure:
2696 out:
2697 	btrfs_free_path(path);
2698 	kfree(name);
2699 	return ret;
2700 }
2701 
2702 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2703 {
2704 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2705 	int ret = 0;
2706 	struct fs_path *p;
2707 
2708 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2709 
2710 	p = fs_path_alloc();
2711 	if (!p)
2712 		return -ENOMEM;
2713 
2714 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2715 	if (ret < 0)
2716 		goto out;
2717 
2718 	ret = get_cur_path(sctx, ino, gen, p);
2719 	if (ret < 0)
2720 		goto out;
2721 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2722 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2723 
2724 	ret = send_cmd(sctx);
2725 
2726 tlv_put_failure:
2727 out:
2728 	fs_path_free(p);
2729 	return ret;
2730 }
2731 
2732 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2733 {
2734 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2735 	int ret = 0;
2736 	struct fs_path *p;
2737 
2738 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2739 
2740 	p = fs_path_alloc();
2741 	if (!p)
2742 		return -ENOMEM;
2743 
2744 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2745 	if (ret < 0)
2746 		goto out;
2747 
2748 	ret = get_cur_path(sctx, ino, gen, p);
2749 	if (ret < 0)
2750 		goto out;
2751 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2752 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2753 
2754 	ret = send_cmd(sctx);
2755 
2756 tlv_put_failure:
2757 out:
2758 	fs_path_free(p);
2759 	return ret;
2760 }
2761 
2762 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2763 {
2764 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2765 	int ret = 0;
2766 	struct fs_path *p;
2767 
2768 	if (sctx->proto < 2)
2769 		return 0;
2770 
2771 	btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2772 
2773 	p = fs_path_alloc();
2774 	if (!p)
2775 		return -ENOMEM;
2776 
2777 	ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2778 	if (ret < 0)
2779 		goto out;
2780 
2781 	ret = get_cur_path(sctx, ino, gen, p);
2782 	if (ret < 0)
2783 		goto out;
2784 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2785 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2786 
2787 	ret = send_cmd(sctx);
2788 
2789 tlv_put_failure:
2790 out:
2791 	fs_path_free(p);
2792 	return ret;
2793 }
2794 
2795 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2796 {
2797 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2798 	int ret = 0;
2799 	struct fs_path *p;
2800 
2801 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2802 		    ino, uid, gid);
2803 
2804 	p = fs_path_alloc();
2805 	if (!p)
2806 		return -ENOMEM;
2807 
2808 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2809 	if (ret < 0)
2810 		goto out;
2811 
2812 	ret = get_cur_path(sctx, ino, gen, p);
2813 	if (ret < 0)
2814 		goto out;
2815 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2816 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2817 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2818 
2819 	ret = send_cmd(sctx);
2820 
2821 tlv_put_failure:
2822 out:
2823 	fs_path_free(p);
2824 	return ret;
2825 }
2826 
2827 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2828 {
2829 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2830 	int ret = 0;
2831 	struct fs_path *p = NULL;
2832 	struct btrfs_inode_item *ii;
2833 	struct btrfs_path *path = NULL;
2834 	struct extent_buffer *eb;
2835 	struct btrfs_key key;
2836 	int slot;
2837 
2838 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2839 
2840 	p = fs_path_alloc();
2841 	if (!p)
2842 		return -ENOMEM;
2843 
2844 	path = alloc_path_for_send();
2845 	if (!path) {
2846 		ret = -ENOMEM;
2847 		goto out;
2848 	}
2849 
2850 	key.objectid = ino;
2851 	key.type = BTRFS_INODE_ITEM_KEY;
2852 	key.offset = 0;
2853 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2854 	if (ret > 0)
2855 		ret = -ENOENT;
2856 	if (ret < 0)
2857 		goto out;
2858 
2859 	eb = path->nodes[0];
2860 	slot = path->slots[0];
2861 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2862 
2863 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2864 	if (ret < 0)
2865 		goto out;
2866 
2867 	ret = get_cur_path(sctx, ino, gen, p);
2868 	if (ret < 0)
2869 		goto out;
2870 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2871 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2872 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2873 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2874 	if (sctx->proto >= 2)
2875 		TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2876 
2877 	ret = send_cmd(sctx);
2878 
2879 tlv_put_failure:
2880 out:
2881 	fs_path_free(p);
2882 	btrfs_free_path(path);
2883 	return ret;
2884 }
2885 
2886 /*
2887  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2888  * a valid path yet because we did not process the refs yet. So, the inode
2889  * is created as orphan.
2890  */
2891 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2892 {
2893 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2894 	int ret = 0;
2895 	struct fs_path *p;
2896 	int cmd;
2897 	struct btrfs_inode_info info;
2898 	u64 gen;
2899 	u64 mode;
2900 	u64 rdev;
2901 
2902 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2903 
2904 	p = fs_path_alloc();
2905 	if (!p)
2906 		return -ENOMEM;
2907 
2908 	if (ino != sctx->cur_ino) {
2909 		ret = get_inode_info(sctx->send_root, ino, &info);
2910 		if (ret < 0)
2911 			goto out;
2912 		gen = info.gen;
2913 		mode = info.mode;
2914 		rdev = info.rdev;
2915 	} else {
2916 		gen = sctx->cur_inode_gen;
2917 		mode = sctx->cur_inode_mode;
2918 		rdev = sctx->cur_inode_rdev;
2919 	}
2920 
2921 	if (S_ISREG(mode)) {
2922 		cmd = BTRFS_SEND_C_MKFILE;
2923 	} else if (S_ISDIR(mode)) {
2924 		cmd = BTRFS_SEND_C_MKDIR;
2925 	} else if (S_ISLNK(mode)) {
2926 		cmd = BTRFS_SEND_C_SYMLINK;
2927 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2928 		cmd = BTRFS_SEND_C_MKNOD;
2929 	} else if (S_ISFIFO(mode)) {
2930 		cmd = BTRFS_SEND_C_MKFIFO;
2931 	} else if (S_ISSOCK(mode)) {
2932 		cmd = BTRFS_SEND_C_MKSOCK;
2933 	} else {
2934 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2935 				(int)(mode & S_IFMT));
2936 		ret = -EOPNOTSUPP;
2937 		goto out;
2938 	}
2939 
2940 	ret = begin_cmd(sctx, cmd);
2941 	if (ret < 0)
2942 		goto out;
2943 
2944 	ret = gen_unique_name(sctx, ino, gen, p);
2945 	if (ret < 0)
2946 		goto out;
2947 
2948 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2949 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2950 
2951 	if (S_ISLNK(mode)) {
2952 		fs_path_reset(p);
2953 		ret = read_symlink(sctx->send_root, ino, p);
2954 		if (ret < 0)
2955 			goto out;
2956 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2957 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2958 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2959 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2960 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2961 	}
2962 
2963 	ret = send_cmd(sctx);
2964 	if (ret < 0)
2965 		goto out;
2966 
2967 
2968 tlv_put_failure:
2969 out:
2970 	fs_path_free(p);
2971 	return ret;
2972 }
2973 
2974 /*
2975  * We need some special handling for inodes that get processed before the parent
2976  * directory got created. See process_recorded_refs for details.
2977  * This function does the check if we already created the dir out of order.
2978  */
2979 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2980 {
2981 	int ret = 0;
2982 	int iter_ret = 0;
2983 	struct btrfs_path *path = NULL;
2984 	struct btrfs_key key;
2985 	struct btrfs_key found_key;
2986 	struct btrfs_key di_key;
2987 	struct btrfs_dir_item *di;
2988 
2989 	path = alloc_path_for_send();
2990 	if (!path)
2991 		return -ENOMEM;
2992 
2993 	key.objectid = dir;
2994 	key.type = BTRFS_DIR_INDEX_KEY;
2995 	key.offset = 0;
2996 
2997 	btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2998 		struct extent_buffer *eb = path->nodes[0];
2999 
3000 		if (found_key.objectid != key.objectid ||
3001 		    found_key.type != key.type) {
3002 			ret = 0;
3003 			break;
3004 		}
3005 
3006 		di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
3007 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
3008 
3009 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
3010 		    di_key.objectid < sctx->send_progress) {
3011 			ret = 1;
3012 			break;
3013 		}
3014 	}
3015 	/* Catch error found during iteration */
3016 	if (iter_ret < 0)
3017 		ret = iter_ret;
3018 
3019 	btrfs_free_path(path);
3020 	return ret;
3021 }
3022 
3023 /*
3024  * Only creates the inode if it is:
3025  * 1. Not a directory
3026  * 2. Or a directory which was not created already due to out of order
3027  *    directories. See did_create_dir and process_recorded_refs for details.
3028  */
3029 static int send_create_inode_if_needed(struct send_ctx *sctx)
3030 {
3031 	int ret;
3032 
3033 	if (S_ISDIR(sctx->cur_inode_mode)) {
3034 		ret = did_create_dir(sctx, sctx->cur_ino);
3035 		if (ret < 0)
3036 			return ret;
3037 		else if (ret > 0)
3038 			return 0;
3039 	}
3040 
3041 	return send_create_inode(sctx, sctx->cur_ino);
3042 }
3043 
3044 struct recorded_ref {
3045 	struct list_head list;
3046 	char *name;
3047 	struct fs_path *full_path;
3048 	u64 dir;
3049 	u64 dir_gen;
3050 	int name_len;
3051 	struct rb_node node;
3052 	struct rb_root *root;
3053 };
3054 
3055 static struct recorded_ref *recorded_ref_alloc(void)
3056 {
3057 	struct recorded_ref *ref;
3058 
3059 	ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3060 	if (!ref)
3061 		return NULL;
3062 	RB_CLEAR_NODE(&ref->node);
3063 	INIT_LIST_HEAD(&ref->list);
3064 	return ref;
3065 }
3066 
3067 static void recorded_ref_free(struct recorded_ref *ref)
3068 {
3069 	if (!ref)
3070 		return;
3071 	if (!RB_EMPTY_NODE(&ref->node))
3072 		rb_erase(&ref->node, ref->root);
3073 	list_del(&ref->list);
3074 	fs_path_free(ref->full_path);
3075 	kfree(ref);
3076 }
3077 
3078 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3079 {
3080 	ref->full_path = path;
3081 	ref->name = (char *)kbasename(ref->full_path->start);
3082 	ref->name_len = ref->full_path->end - ref->name;
3083 }
3084 
3085 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3086 {
3087 	struct recorded_ref *new;
3088 
3089 	new = recorded_ref_alloc();
3090 	if (!new)
3091 		return -ENOMEM;
3092 
3093 	new->dir = ref->dir;
3094 	new->dir_gen = ref->dir_gen;
3095 	list_add_tail(&new->list, list);
3096 	return 0;
3097 }
3098 
3099 static void __free_recorded_refs(struct list_head *head)
3100 {
3101 	struct recorded_ref *cur;
3102 
3103 	while (!list_empty(head)) {
3104 		cur = list_entry(head->next, struct recorded_ref, list);
3105 		recorded_ref_free(cur);
3106 	}
3107 }
3108 
3109 static void free_recorded_refs(struct send_ctx *sctx)
3110 {
3111 	__free_recorded_refs(&sctx->new_refs);
3112 	__free_recorded_refs(&sctx->deleted_refs);
3113 }
3114 
3115 /*
3116  * Renames/moves a file/dir to its orphan name. Used when the first
3117  * ref of an unprocessed inode gets overwritten and for all non empty
3118  * directories.
3119  */
3120 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3121 			  struct fs_path *path)
3122 {
3123 	int ret;
3124 	struct fs_path *orphan;
3125 
3126 	orphan = fs_path_alloc();
3127 	if (!orphan)
3128 		return -ENOMEM;
3129 
3130 	ret = gen_unique_name(sctx, ino, gen, orphan);
3131 	if (ret < 0)
3132 		goto out;
3133 
3134 	ret = send_rename(sctx, path, orphan);
3135 
3136 out:
3137 	fs_path_free(orphan);
3138 	return ret;
3139 }
3140 
3141 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3142 						   u64 dir_ino, u64 dir_gen)
3143 {
3144 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
3145 	struct rb_node *parent = NULL;
3146 	struct orphan_dir_info *entry, *odi;
3147 
3148 	while (*p) {
3149 		parent = *p;
3150 		entry = rb_entry(parent, struct orphan_dir_info, node);
3151 		if (dir_ino < entry->ino)
3152 			p = &(*p)->rb_left;
3153 		else if (dir_ino > entry->ino)
3154 			p = &(*p)->rb_right;
3155 		else if (dir_gen < entry->gen)
3156 			p = &(*p)->rb_left;
3157 		else if (dir_gen > entry->gen)
3158 			p = &(*p)->rb_right;
3159 		else
3160 			return entry;
3161 	}
3162 
3163 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3164 	if (!odi)
3165 		return ERR_PTR(-ENOMEM);
3166 	odi->ino = dir_ino;
3167 	odi->gen = dir_gen;
3168 	odi->last_dir_index_offset = 0;
3169 
3170 	rb_link_node(&odi->node, parent, p);
3171 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
3172 	return odi;
3173 }
3174 
3175 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3176 						   u64 dir_ino, u64 gen)
3177 {
3178 	struct rb_node *n = sctx->orphan_dirs.rb_node;
3179 	struct orphan_dir_info *entry;
3180 
3181 	while (n) {
3182 		entry = rb_entry(n, struct orphan_dir_info, node);
3183 		if (dir_ino < entry->ino)
3184 			n = n->rb_left;
3185 		else if (dir_ino > entry->ino)
3186 			n = n->rb_right;
3187 		else if (gen < entry->gen)
3188 			n = n->rb_left;
3189 		else if (gen > entry->gen)
3190 			n = n->rb_right;
3191 		else
3192 			return entry;
3193 	}
3194 	return NULL;
3195 }
3196 
3197 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3198 {
3199 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3200 
3201 	return odi != NULL;
3202 }
3203 
3204 static void free_orphan_dir_info(struct send_ctx *sctx,
3205 				 struct orphan_dir_info *odi)
3206 {
3207 	if (!odi)
3208 		return;
3209 	rb_erase(&odi->node, &sctx->orphan_dirs);
3210 	kfree(odi);
3211 }
3212 
3213 /*
3214  * Returns 1 if a directory can be removed at this point in time.
3215  * We check this by iterating all dir items and checking if the inode behind
3216  * the dir item was already processed.
3217  */
3218 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
3219 		     u64 send_progress)
3220 {
3221 	int ret = 0;
3222 	int iter_ret = 0;
3223 	struct btrfs_root *root = sctx->parent_root;
3224 	struct btrfs_path *path;
3225 	struct btrfs_key key;
3226 	struct btrfs_key found_key;
3227 	struct btrfs_key loc;
3228 	struct btrfs_dir_item *di;
3229 	struct orphan_dir_info *odi = NULL;
3230 
3231 	/*
3232 	 * Don't try to rmdir the top/root subvolume dir.
3233 	 */
3234 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
3235 		return 0;
3236 
3237 	path = alloc_path_for_send();
3238 	if (!path)
3239 		return -ENOMEM;
3240 
3241 	key.objectid = dir;
3242 	key.type = BTRFS_DIR_INDEX_KEY;
3243 	key.offset = 0;
3244 
3245 	odi = get_orphan_dir_info(sctx, dir, dir_gen);
3246 	if (odi)
3247 		key.offset = odi->last_dir_index_offset;
3248 
3249 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3250 		struct waiting_dir_move *dm;
3251 
3252 		if (found_key.objectid != key.objectid ||
3253 		    found_key.type != key.type)
3254 			break;
3255 
3256 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3257 				struct btrfs_dir_item);
3258 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3259 
3260 		dm = get_waiting_dir_move(sctx, loc.objectid);
3261 		if (dm) {
3262 			odi = add_orphan_dir_info(sctx, dir, dir_gen);
3263 			if (IS_ERR(odi)) {
3264 				ret = PTR_ERR(odi);
3265 				goto out;
3266 			}
3267 			odi->gen = dir_gen;
3268 			odi->last_dir_index_offset = found_key.offset;
3269 			dm->rmdir_ino = dir;
3270 			dm->rmdir_gen = dir_gen;
3271 			ret = 0;
3272 			goto out;
3273 		}
3274 
3275 		if (loc.objectid > send_progress) {
3276 			odi = add_orphan_dir_info(sctx, dir, dir_gen);
3277 			if (IS_ERR(odi)) {
3278 				ret = PTR_ERR(odi);
3279 				goto out;
3280 			}
3281 			odi->gen = dir_gen;
3282 			odi->last_dir_index_offset = found_key.offset;
3283 			ret = 0;
3284 			goto out;
3285 		}
3286 	}
3287 	if (iter_ret < 0) {
3288 		ret = iter_ret;
3289 		goto out;
3290 	}
3291 	free_orphan_dir_info(sctx, odi);
3292 
3293 	ret = 1;
3294 
3295 out:
3296 	btrfs_free_path(path);
3297 	return ret;
3298 }
3299 
3300 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3301 {
3302 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3303 
3304 	return entry != NULL;
3305 }
3306 
3307 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3308 {
3309 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3310 	struct rb_node *parent = NULL;
3311 	struct waiting_dir_move *entry, *dm;
3312 
3313 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3314 	if (!dm)
3315 		return -ENOMEM;
3316 	dm->ino = ino;
3317 	dm->rmdir_ino = 0;
3318 	dm->rmdir_gen = 0;
3319 	dm->orphanized = orphanized;
3320 
3321 	while (*p) {
3322 		parent = *p;
3323 		entry = rb_entry(parent, struct waiting_dir_move, node);
3324 		if (ino < entry->ino) {
3325 			p = &(*p)->rb_left;
3326 		} else if (ino > entry->ino) {
3327 			p = &(*p)->rb_right;
3328 		} else {
3329 			kfree(dm);
3330 			return -EEXIST;
3331 		}
3332 	}
3333 
3334 	rb_link_node(&dm->node, parent, p);
3335 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3336 	return 0;
3337 }
3338 
3339 static struct waiting_dir_move *
3340 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3341 {
3342 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3343 	struct waiting_dir_move *entry;
3344 
3345 	while (n) {
3346 		entry = rb_entry(n, struct waiting_dir_move, node);
3347 		if (ino < entry->ino)
3348 			n = n->rb_left;
3349 		else if (ino > entry->ino)
3350 			n = n->rb_right;
3351 		else
3352 			return entry;
3353 	}
3354 	return NULL;
3355 }
3356 
3357 static void free_waiting_dir_move(struct send_ctx *sctx,
3358 				  struct waiting_dir_move *dm)
3359 {
3360 	if (!dm)
3361 		return;
3362 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3363 	kfree(dm);
3364 }
3365 
3366 static int add_pending_dir_move(struct send_ctx *sctx,
3367 				u64 ino,
3368 				u64 ino_gen,
3369 				u64 parent_ino,
3370 				struct list_head *new_refs,
3371 				struct list_head *deleted_refs,
3372 				const bool is_orphan)
3373 {
3374 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3375 	struct rb_node *parent = NULL;
3376 	struct pending_dir_move *entry = NULL, *pm;
3377 	struct recorded_ref *cur;
3378 	int exists = 0;
3379 	int ret;
3380 
3381 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3382 	if (!pm)
3383 		return -ENOMEM;
3384 	pm->parent_ino = parent_ino;
3385 	pm->ino = ino;
3386 	pm->gen = ino_gen;
3387 	INIT_LIST_HEAD(&pm->list);
3388 	INIT_LIST_HEAD(&pm->update_refs);
3389 	RB_CLEAR_NODE(&pm->node);
3390 
3391 	while (*p) {
3392 		parent = *p;
3393 		entry = rb_entry(parent, struct pending_dir_move, node);
3394 		if (parent_ino < entry->parent_ino) {
3395 			p = &(*p)->rb_left;
3396 		} else if (parent_ino > entry->parent_ino) {
3397 			p = &(*p)->rb_right;
3398 		} else {
3399 			exists = 1;
3400 			break;
3401 		}
3402 	}
3403 
3404 	list_for_each_entry(cur, deleted_refs, list) {
3405 		ret = dup_ref(cur, &pm->update_refs);
3406 		if (ret < 0)
3407 			goto out;
3408 	}
3409 	list_for_each_entry(cur, new_refs, list) {
3410 		ret = dup_ref(cur, &pm->update_refs);
3411 		if (ret < 0)
3412 			goto out;
3413 	}
3414 
3415 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3416 	if (ret)
3417 		goto out;
3418 
3419 	if (exists) {
3420 		list_add_tail(&pm->list, &entry->list);
3421 	} else {
3422 		rb_link_node(&pm->node, parent, p);
3423 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3424 	}
3425 	ret = 0;
3426 out:
3427 	if (ret) {
3428 		__free_recorded_refs(&pm->update_refs);
3429 		kfree(pm);
3430 	}
3431 	return ret;
3432 }
3433 
3434 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3435 						      u64 parent_ino)
3436 {
3437 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3438 	struct pending_dir_move *entry;
3439 
3440 	while (n) {
3441 		entry = rb_entry(n, struct pending_dir_move, node);
3442 		if (parent_ino < entry->parent_ino)
3443 			n = n->rb_left;
3444 		else if (parent_ino > entry->parent_ino)
3445 			n = n->rb_right;
3446 		else
3447 			return entry;
3448 	}
3449 	return NULL;
3450 }
3451 
3452 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3453 		     u64 ino, u64 gen, u64 *ancestor_ino)
3454 {
3455 	int ret = 0;
3456 	u64 parent_inode = 0;
3457 	u64 parent_gen = 0;
3458 	u64 start_ino = ino;
3459 
3460 	*ancestor_ino = 0;
3461 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3462 		fs_path_reset(name);
3463 
3464 		if (is_waiting_for_rm(sctx, ino, gen))
3465 			break;
3466 		if (is_waiting_for_move(sctx, ino)) {
3467 			if (*ancestor_ino == 0)
3468 				*ancestor_ino = ino;
3469 			ret = get_first_ref(sctx->parent_root, ino,
3470 					    &parent_inode, &parent_gen, name);
3471 		} else {
3472 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3473 							&parent_inode,
3474 							&parent_gen, name);
3475 			if (ret > 0) {
3476 				ret = 0;
3477 				break;
3478 			}
3479 		}
3480 		if (ret < 0)
3481 			break;
3482 		if (parent_inode == start_ino) {
3483 			ret = 1;
3484 			if (*ancestor_ino == 0)
3485 				*ancestor_ino = ino;
3486 			break;
3487 		}
3488 		ino = parent_inode;
3489 		gen = parent_gen;
3490 	}
3491 	return ret;
3492 }
3493 
3494 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3495 {
3496 	struct fs_path *from_path = NULL;
3497 	struct fs_path *to_path = NULL;
3498 	struct fs_path *name = NULL;
3499 	u64 orig_progress = sctx->send_progress;
3500 	struct recorded_ref *cur;
3501 	u64 parent_ino, parent_gen;
3502 	struct waiting_dir_move *dm = NULL;
3503 	u64 rmdir_ino = 0;
3504 	u64 rmdir_gen;
3505 	u64 ancestor;
3506 	bool is_orphan;
3507 	int ret;
3508 
3509 	name = fs_path_alloc();
3510 	from_path = fs_path_alloc();
3511 	if (!name || !from_path) {
3512 		ret = -ENOMEM;
3513 		goto out;
3514 	}
3515 
3516 	dm = get_waiting_dir_move(sctx, pm->ino);
3517 	ASSERT(dm);
3518 	rmdir_ino = dm->rmdir_ino;
3519 	rmdir_gen = dm->rmdir_gen;
3520 	is_orphan = dm->orphanized;
3521 	free_waiting_dir_move(sctx, dm);
3522 
3523 	if (is_orphan) {
3524 		ret = gen_unique_name(sctx, pm->ino,
3525 				      pm->gen, from_path);
3526 	} else {
3527 		ret = get_first_ref(sctx->parent_root, pm->ino,
3528 				    &parent_ino, &parent_gen, name);
3529 		if (ret < 0)
3530 			goto out;
3531 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3532 				   from_path);
3533 		if (ret < 0)
3534 			goto out;
3535 		ret = fs_path_add_path(from_path, name);
3536 	}
3537 	if (ret < 0)
3538 		goto out;
3539 
3540 	sctx->send_progress = sctx->cur_ino + 1;
3541 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3542 	if (ret < 0)
3543 		goto out;
3544 	if (ret) {
3545 		LIST_HEAD(deleted_refs);
3546 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3547 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3548 					   &pm->update_refs, &deleted_refs,
3549 					   is_orphan);
3550 		if (ret < 0)
3551 			goto out;
3552 		if (rmdir_ino) {
3553 			dm = get_waiting_dir_move(sctx, pm->ino);
3554 			ASSERT(dm);
3555 			dm->rmdir_ino = rmdir_ino;
3556 			dm->rmdir_gen = rmdir_gen;
3557 		}
3558 		goto out;
3559 	}
3560 	fs_path_reset(name);
3561 	to_path = name;
3562 	name = NULL;
3563 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3564 	if (ret < 0)
3565 		goto out;
3566 
3567 	ret = send_rename(sctx, from_path, to_path);
3568 	if (ret < 0)
3569 		goto out;
3570 
3571 	if (rmdir_ino) {
3572 		struct orphan_dir_info *odi;
3573 		u64 gen;
3574 
3575 		odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3576 		if (!odi) {
3577 			/* already deleted */
3578 			goto finish;
3579 		}
3580 		gen = odi->gen;
3581 
3582 		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3583 		if (ret < 0)
3584 			goto out;
3585 		if (!ret)
3586 			goto finish;
3587 
3588 		name = fs_path_alloc();
3589 		if (!name) {
3590 			ret = -ENOMEM;
3591 			goto out;
3592 		}
3593 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3594 		if (ret < 0)
3595 			goto out;
3596 		ret = send_rmdir(sctx, name);
3597 		if (ret < 0)
3598 			goto out;
3599 	}
3600 
3601 finish:
3602 	ret = send_utimes(sctx, pm->ino, pm->gen);
3603 	if (ret < 0)
3604 		goto out;
3605 
3606 	/*
3607 	 * After rename/move, need to update the utimes of both new parent(s)
3608 	 * and old parent(s).
3609 	 */
3610 	list_for_each_entry(cur, &pm->update_refs, list) {
3611 		/*
3612 		 * The parent inode might have been deleted in the send snapshot
3613 		 */
3614 		ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3615 		if (ret == -ENOENT) {
3616 			ret = 0;
3617 			continue;
3618 		}
3619 		if (ret < 0)
3620 			goto out;
3621 
3622 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3623 		if (ret < 0)
3624 			goto out;
3625 	}
3626 
3627 out:
3628 	fs_path_free(name);
3629 	fs_path_free(from_path);
3630 	fs_path_free(to_path);
3631 	sctx->send_progress = orig_progress;
3632 
3633 	return ret;
3634 }
3635 
3636 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3637 {
3638 	if (!list_empty(&m->list))
3639 		list_del(&m->list);
3640 	if (!RB_EMPTY_NODE(&m->node))
3641 		rb_erase(&m->node, &sctx->pending_dir_moves);
3642 	__free_recorded_refs(&m->update_refs);
3643 	kfree(m);
3644 }
3645 
3646 static void tail_append_pending_moves(struct send_ctx *sctx,
3647 				      struct pending_dir_move *moves,
3648 				      struct list_head *stack)
3649 {
3650 	if (list_empty(&moves->list)) {
3651 		list_add_tail(&moves->list, stack);
3652 	} else {
3653 		LIST_HEAD(list);
3654 		list_splice_init(&moves->list, &list);
3655 		list_add_tail(&moves->list, stack);
3656 		list_splice_tail(&list, stack);
3657 	}
3658 	if (!RB_EMPTY_NODE(&moves->node)) {
3659 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3660 		RB_CLEAR_NODE(&moves->node);
3661 	}
3662 }
3663 
3664 static int apply_children_dir_moves(struct send_ctx *sctx)
3665 {
3666 	struct pending_dir_move *pm;
3667 	struct list_head stack;
3668 	u64 parent_ino = sctx->cur_ino;
3669 	int ret = 0;
3670 
3671 	pm = get_pending_dir_moves(sctx, parent_ino);
3672 	if (!pm)
3673 		return 0;
3674 
3675 	INIT_LIST_HEAD(&stack);
3676 	tail_append_pending_moves(sctx, pm, &stack);
3677 
3678 	while (!list_empty(&stack)) {
3679 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3680 		parent_ino = pm->ino;
3681 		ret = apply_dir_move(sctx, pm);
3682 		free_pending_move(sctx, pm);
3683 		if (ret)
3684 			goto out;
3685 		pm = get_pending_dir_moves(sctx, parent_ino);
3686 		if (pm)
3687 			tail_append_pending_moves(sctx, pm, &stack);
3688 	}
3689 	return 0;
3690 
3691 out:
3692 	while (!list_empty(&stack)) {
3693 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3694 		free_pending_move(sctx, pm);
3695 	}
3696 	return ret;
3697 }
3698 
3699 /*
3700  * We might need to delay a directory rename even when no ancestor directory
3701  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3702  * renamed. This happens when we rename a directory to the old name (the name
3703  * in the parent root) of some other unrelated directory that got its rename
3704  * delayed due to some ancestor with higher number that got renamed.
3705  *
3706  * Example:
3707  *
3708  * Parent snapshot:
3709  * .                                       (ino 256)
3710  * |---- a/                                (ino 257)
3711  * |     |---- file                        (ino 260)
3712  * |
3713  * |---- b/                                (ino 258)
3714  * |---- c/                                (ino 259)
3715  *
3716  * Send snapshot:
3717  * .                                       (ino 256)
3718  * |---- a/                                (ino 258)
3719  * |---- x/                                (ino 259)
3720  *       |---- y/                          (ino 257)
3721  *             |----- file                 (ino 260)
3722  *
3723  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3724  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3725  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3726  * must issue is:
3727  *
3728  * 1 - rename 259 from 'c' to 'x'
3729  * 2 - rename 257 from 'a' to 'x/y'
3730  * 3 - rename 258 from 'b' to 'a'
3731  *
3732  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3733  * be done right away and < 0 on error.
3734  */
3735 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3736 				  struct recorded_ref *parent_ref,
3737 				  const bool is_orphan)
3738 {
3739 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3740 	struct btrfs_path *path;
3741 	struct btrfs_key key;
3742 	struct btrfs_key di_key;
3743 	struct btrfs_dir_item *di;
3744 	u64 left_gen;
3745 	u64 right_gen;
3746 	int ret = 0;
3747 	struct waiting_dir_move *wdm;
3748 
3749 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3750 		return 0;
3751 
3752 	path = alloc_path_for_send();
3753 	if (!path)
3754 		return -ENOMEM;
3755 
3756 	key.objectid = parent_ref->dir;
3757 	key.type = BTRFS_DIR_ITEM_KEY;
3758 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3759 
3760 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3761 	if (ret < 0) {
3762 		goto out;
3763 	} else if (ret > 0) {
3764 		ret = 0;
3765 		goto out;
3766 	}
3767 
3768 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3769 				       parent_ref->name_len);
3770 	if (!di) {
3771 		ret = 0;
3772 		goto out;
3773 	}
3774 	/*
3775 	 * di_key.objectid has the number of the inode that has a dentry in the
3776 	 * parent directory with the same name that sctx->cur_ino is being
3777 	 * renamed to. We need to check if that inode is in the send root as
3778 	 * well and if it is currently marked as an inode with a pending rename,
3779 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3780 	 * that it happens after that other inode is renamed.
3781 	 */
3782 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3783 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3784 		ret = 0;
3785 		goto out;
3786 	}
3787 
3788 	ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3789 	if (ret < 0)
3790 		goto out;
3791 	ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3792 	if (ret < 0) {
3793 		if (ret == -ENOENT)
3794 			ret = 0;
3795 		goto out;
3796 	}
3797 
3798 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3799 	if (right_gen != left_gen) {
3800 		ret = 0;
3801 		goto out;
3802 	}
3803 
3804 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3805 	if (wdm && !wdm->orphanized) {
3806 		ret = add_pending_dir_move(sctx,
3807 					   sctx->cur_ino,
3808 					   sctx->cur_inode_gen,
3809 					   di_key.objectid,
3810 					   &sctx->new_refs,
3811 					   &sctx->deleted_refs,
3812 					   is_orphan);
3813 		if (!ret)
3814 			ret = 1;
3815 	}
3816 out:
3817 	btrfs_free_path(path);
3818 	return ret;
3819 }
3820 
3821 /*
3822  * Check if inode ino2, or any of its ancestors, is inode ino1.
3823  * Return 1 if true, 0 if false and < 0 on error.
3824  */
3825 static int check_ino_in_path(struct btrfs_root *root,
3826 			     const u64 ino1,
3827 			     const u64 ino1_gen,
3828 			     const u64 ino2,
3829 			     const u64 ino2_gen,
3830 			     struct fs_path *fs_path)
3831 {
3832 	u64 ino = ino2;
3833 
3834 	if (ino1 == ino2)
3835 		return ino1_gen == ino2_gen;
3836 
3837 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3838 		u64 parent;
3839 		u64 parent_gen;
3840 		int ret;
3841 
3842 		fs_path_reset(fs_path);
3843 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3844 		if (ret < 0)
3845 			return ret;
3846 		if (parent == ino1)
3847 			return parent_gen == ino1_gen;
3848 		ino = parent;
3849 	}
3850 	return 0;
3851 }
3852 
3853 /*
3854  * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3855  * possible path (in case ino2 is not a directory and has multiple hard links).
3856  * Return 1 if true, 0 if false and < 0 on error.
3857  */
3858 static int is_ancestor(struct btrfs_root *root,
3859 		       const u64 ino1,
3860 		       const u64 ino1_gen,
3861 		       const u64 ino2,
3862 		       struct fs_path *fs_path)
3863 {
3864 	bool free_fs_path = false;
3865 	int ret = 0;
3866 	int iter_ret = 0;
3867 	struct btrfs_path *path = NULL;
3868 	struct btrfs_key key;
3869 
3870 	if (!fs_path) {
3871 		fs_path = fs_path_alloc();
3872 		if (!fs_path)
3873 			return -ENOMEM;
3874 		free_fs_path = true;
3875 	}
3876 
3877 	path = alloc_path_for_send();
3878 	if (!path) {
3879 		ret = -ENOMEM;
3880 		goto out;
3881 	}
3882 
3883 	key.objectid = ino2;
3884 	key.type = BTRFS_INODE_REF_KEY;
3885 	key.offset = 0;
3886 
3887 	btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3888 		struct extent_buffer *leaf = path->nodes[0];
3889 		int slot = path->slots[0];
3890 		u32 cur_offset = 0;
3891 		u32 item_size;
3892 
3893 		if (key.objectid != ino2)
3894 			break;
3895 		if (key.type != BTRFS_INODE_REF_KEY &&
3896 		    key.type != BTRFS_INODE_EXTREF_KEY)
3897 			break;
3898 
3899 		item_size = btrfs_item_size(leaf, slot);
3900 		while (cur_offset < item_size) {
3901 			u64 parent;
3902 			u64 parent_gen;
3903 
3904 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3905 				unsigned long ptr;
3906 				struct btrfs_inode_extref *extref;
3907 
3908 				ptr = btrfs_item_ptr_offset(leaf, slot);
3909 				extref = (struct btrfs_inode_extref *)
3910 					(ptr + cur_offset);
3911 				parent = btrfs_inode_extref_parent(leaf,
3912 								   extref);
3913 				cur_offset += sizeof(*extref);
3914 				cur_offset += btrfs_inode_extref_name_len(leaf,
3915 								  extref);
3916 			} else {
3917 				parent = key.offset;
3918 				cur_offset = item_size;
3919 			}
3920 
3921 			ret = get_inode_gen(root, parent, &parent_gen);
3922 			if (ret < 0)
3923 				goto out;
3924 			ret = check_ino_in_path(root, ino1, ino1_gen,
3925 						parent, parent_gen, fs_path);
3926 			if (ret)
3927 				goto out;
3928 		}
3929 	}
3930 	ret = 0;
3931 	if (iter_ret < 0)
3932 		ret = iter_ret;
3933 
3934 out:
3935 	btrfs_free_path(path);
3936 	if (free_fs_path)
3937 		fs_path_free(fs_path);
3938 	return ret;
3939 }
3940 
3941 static int wait_for_parent_move(struct send_ctx *sctx,
3942 				struct recorded_ref *parent_ref,
3943 				const bool is_orphan)
3944 {
3945 	int ret = 0;
3946 	u64 ino = parent_ref->dir;
3947 	u64 ino_gen = parent_ref->dir_gen;
3948 	u64 parent_ino_before, parent_ino_after;
3949 	struct fs_path *path_before = NULL;
3950 	struct fs_path *path_after = NULL;
3951 	int len1, len2;
3952 
3953 	path_after = fs_path_alloc();
3954 	path_before = fs_path_alloc();
3955 	if (!path_after || !path_before) {
3956 		ret = -ENOMEM;
3957 		goto out;
3958 	}
3959 
3960 	/*
3961 	 * Our current directory inode may not yet be renamed/moved because some
3962 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3963 	 * such ancestor exists and make sure our own rename/move happens after
3964 	 * that ancestor is processed to avoid path build infinite loops (done
3965 	 * at get_cur_path()).
3966 	 */
3967 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3968 		u64 parent_ino_after_gen;
3969 
3970 		if (is_waiting_for_move(sctx, ino)) {
3971 			/*
3972 			 * If the current inode is an ancestor of ino in the
3973 			 * parent root, we need to delay the rename of the
3974 			 * current inode, otherwise don't delayed the rename
3975 			 * because we can end up with a circular dependency
3976 			 * of renames, resulting in some directories never
3977 			 * getting the respective rename operations issued in
3978 			 * the send stream or getting into infinite path build
3979 			 * loops.
3980 			 */
3981 			ret = is_ancestor(sctx->parent_root,
3982 					  sctx->cur_ino, sctx->cur_inode_gen,
3983 					  ino, path_before);
3984 			if (ret)
3985 				break;
3986 		}
3987 
3988 		fs_path_reset(path_before);
3989 		fs_path_reset(path_after);
3990 
3991 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3992 				    &parent_ino_after_gen, path_after);
3993 		if (ret < 0)
3994 			goto out;
3995 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3996 				    NULL, path_before);
3997 		if (ret < 0 && ret != -ENOENT) {
3998 			goto out;
3999 		} else if (ret == -ENOENT) {
4000 			ret = 0;
4001 			break;
4002 		}
4003 
4004 		len1 = fs_path_len(path_before);
4005 		len2 = fs_path_len(path_after);
4006 		if (ino > sctx->cur_ino &&
4007 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
4008 		     memcmp(path_before->start, path_after->start, len1))) {
4009 			u64 parent_ino_gen;
4010 
4011 			ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4012 			if (ret < 0)
4013 				goto out;
4014 			if (ino_gen == parent_ino_gen) {
4015 				ret = 1;
4016 				break;
4017 			}
4018 		}
4019 		ino = parent_ino_after;
4020 		ino_gen = parent_ino_after_gen;
4021 	}
4022 
4023 out:
4024 	fs_path_free(path_before);
4025 	fs_path_free(path_after);
4026 
4027 	if (ret == 1) {
4028 		ret = add_pending_dir_move(sctx,
4029 					   sctx->cur_ino,
4030 					   sctx->cur_inode_gen,
4031 					   ino,
4032 					   &sctx->new_refs,
4033 					   &sctx->deleted_refs,
4034 					   is_orphan);
4035 		if (!ret)
4036 			ret = 1;
4037 	}
4038 
4039 	return ret;
4040 }
4041 
4042 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4043 {
4044 	int ret;
4045 	struct fs_path *new_path;
4046 
4047 	/*
4048 	 * Our reference's name member points to its full_path member string, so
4049 	 * we use here a new path.
4050 	 */
4051 	new_path = fs_path_alloc();
4052 	if (!new_path)
4053 		return -ENOMEM;
4054 
4055 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4056 	if (ret < 0) {
4057 		fs_path_free(new_path);
4058 		return ret;
4059 	}
4060 	ret = fs_path_add(new_path, ref->name, ref->name_len);
4061 	if (ret < 0) {
4062 		fs_path_free(new_path);
4063 		return ret;
4064 	}
4065 
4066 	fs_path_free(ref->full_path);
4067 	set_ref_path(ref, new_path);
4068 
4069 	return 0;
4070 }
4071 
4072 /*
4073  * When processing the new references for an inode we may orphanize an existing
4074  * directory inode because its old name conflicts with one of the new references
4075  * of the current inode. Later, when processing another new reference of our
4076  * inode, we might need to orphanize another inode, but the path we have in the
4077  * reference reflects the pre-orphanization name of the directory we previously
4078  * orphanized. For example:
4079  *
4080  * parent snapshot looks like:
4081  *
4082  * .                                     (ino 256)
4083  * |----- f1                             (ino 257)
4084  * |----- f2                             (ino 258)
4085  * |----- d1/                            (ino 259)
4086  *        |----- d2/                     (ino 260)
4087  *
4088  * send snapshot looks like:
4089  *
4090  * .                                     (ino 256)
4091  * |----- d1                             (ino 258)
4092  * |----- f2/                            (ino 259)
4093  *        |----- f2_link/                (ino 260)
4094  *        |       |----- f1              (ino 257)
4095  *        |
4096  *        |----- d2                      (ino 258)
4097  *
4098  * When processing inode 257 we compute the name for inode 259 as "d1", and we
4099  * cache it in the name cache. Later when we start processing inode 258, when
4100  * collecting all its new references we set a full path of "d1/d2" for its new
4101  * reference with name "d2". When we start processing the new references we
4102  * start by processing the new reference with name "d1", and this results in
4103  * orphanizing inode 259, since its old reference causes a conflict. Then we
4104  * move on the next new reference, with name "d2", and we find out we must
4105  * orphanize inode 260, as its old reference conflicts with ours - but for the
4106  * orphanization we use a source path corresponding to the path we stored in the
4107  * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4108  * receiver fail since the path component "d1/" no longer exists, it was renamed
4109  * to "o259-6-0/" when processing the previous new reference. So in this case we
4110  * must recompute the path in the new reference and use it for the new
4111  * orphanization operation.
4112  */
4113 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4114 {
4115 	char *name;
4116 	int ret;
4117 
4118 	name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4119 	if (!name)
4120 		return -ENOMEM;
4121 
4122 	fs_path_reset(ref->full_path);
4123 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4124 	if (ret < 0)
4125 		goto out;
4126 
4127 	ret = fs_path_add(ref->full_path, name, ref->name_len);
4128 	if (ret < 0)
4129 		goto out;
4130 
4131 	/* Update the reference's base name pointer. */
4132 	set_ref_path(ref, ref->full_path);
4133 out:
4134 	kfree(name);
4135 	return ret;
4136 }
4137 
4138 /*
4139  * This does all the move/link/unlink/rmdir magic.
4140  */
4141 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4142 {
4143 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4144 	int ret = 0;
4145 	struct recorded_ref *cur;
4146 	struct recorded_ref *cur2;
4147 	struct list_head check_dirs;
4148 	struct fs_path *valid_path = NULL;
4149 	u64 ow_inode = 0;
4150 	u64 ow_gen;
4151 	u64 ow_mode;
4152 	int did_overwrite = 0;
4153 	int is_orphan = 0;
4154 	u64 last_dir_ino_rm = 0;
4155 	bool can_rename = true;
4156 	bool orphanized_dir = false;
4157 	bool orphanized_ancestor = false;
4158 
4159 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4160 
4161 	/*
4162 	 * This should never happen as the root dir always has the same ref
4163 	 * which is always '..'
4164 	 */
4165 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
4166 	INIT_LIST_HEAD(&check_dirs);
4167 
4168 	valid_path = fs_path_alloc();
4169 	if (!valid_path) {
4170 		ret = -ENOMEM;
4171 		goto out;
4172 	}
4173 
4174 	/*
4175 	 * First, check if the first ref of the current inode was overwritten
4176 	 * before. If yes, we know that the current inode was already orphanized
4177 	 * and thus use the orphan name. If not, we can use get_cur_path to
4178 	 * get the path of the first ref as it would like while receiving at
4179 	 * this point in time.
4180 	 * New inodes are always orphan at the beginning, so force to use the
4181 	 * orphan name in this case.
4182 	 * The first ref is stored in valid_path and will be updated if it
4183 	 * gets moved around.
4184 	 */
4185 	if (!sctx->cur_inode_new) {
4186 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4187 				sctx->cur_inode_gen);
4188 		if (ret < 0)
4189 			goto out;
4190 		if (ret)
4191 			did_overwrite = 1;
4192 	}
4193 	if (sctx->cur_inode_new || did_overwrite) {
4194 		ret = gen_unique_name(sctx, sctx->cur_ino,
4195 				sctx->cur_inode_gen, valid_path);
4196 		if (ret < 0)
4197 			goto out;
4198 		is_orphan = 1;
4199 	} else {
4200 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4201 				valid_path);
4202 		if (ret < 0)
4203 			goto out;
4204 	}
4205 
4206 	/*
4207 	 * Before doing any rename and link operations, do a first pass on the
4208 	 * new references to orphanize any unprocessed inodes that may have a
4209 	 * reference that conflicts with one of the new references of the current
4210 	 * inode. This needs to happen first because a new reference may conflict
4211 	 * with the old reference of a parent directory, so we must make sure
4212 	 * that the path used for link and rename commands don't use an
4213 	 * orphanized name when an ancestor was not yet orphanized.
4214 	 *
4215 	 * Example:
4216 	 *
4217 	 * Parent snapshot:
4218 	 *
4219 	 * .                                                      (ino 256)
4220 	 * |----- testdir/                                        (ino 259)
4221 	 * |          |----- a                                    (ino 257)
4222 	 * |
4223 	 * |----- b                                               (ino 258)
4224 	 *
4225 	 * Send snapshot:
4226 	 *
4227 	 * .                                                      (ino 256)
4228 	 * |----- testdir_2/                                      (ino 259)
4229 	 * |          |----- a                                    (ino 260)
4230 	 * |
4231 	 * |----- testdir                                         (ino 257)
4232 	 * |----- b                                               (ino 257)
4233 	 * |----- b2                                              (ino 258)
4234 	 *
4235 	 * Processing the new reference for inode 257 with name "b" may happen
4236 	 * before processing the new reference with name "testdir". If so, we
4237 	 * must make sure that by the time we send a link command to create the
4238 	 * hard link "b", inode 259 was already orphanized, since the generated
4239 	 * path in "valid_path" already contains the orphanized name for 259.
4240 	 * We are processing inode 257, so only later when processing 259 we do
4241 	 * the rename operation to change its temporary (orphanized) name to
4242 	 * "testdir_2".
4243 	 */
4244 	list_for_each_entry(cur, &sctx->new_refs, list) {
4245 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4246 		if (ret < 0)
4247 			goto out;
4248 		if (ret == inode_state_will_create)
4249 			continue;
4250 
4251 		/*
4252 		 * Check if this new ref would overwrite the first ref of another
4253 		 * unprocessed inode. If yes, orphanize the overwritten inode.
4254 		 * If we find an overwritten ref that is not the first ref,
4255 		 * simply unlink it.
4256 		 */
4257 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4258 				cur->name, cur->name_len,
4259 				&ow_inode, &ow_gen, &ow_mode);
4260 		if (ret < 0)
4261 			goto out;
4262 		if (ret) {
4263 			ret = is_first_ref(sctx->parent_root,
4264 					   ow_inode, cur->dir, cur->name,
4265 					   cur->name_len);
4266 			if (ret < 0)
4267 				goto out;
4268 			if (ret) {
4269 				struct name_cache_entry *nce;
4270 				struct waiting_dir_move *wdm;
4271 
4272 				if (orphanized_dir) {
4273 					ret = refresh_ref_path(sctx, cur);
4274 					if (ret < 0)
4275 						goto out;
4276 				}
4277 
4278 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
4279 						cur->full_path);
4280 				if (ret < 0)
4281 					goto out;
4282 				if (S_ISDIR(ow_mode))
4283 					orphanized_dir = true;
4284 
4285 				/*
4286 				 * If ow_inode has its rename operation delayed
4287 				 * make sure that its orphanized name is used in
4288 				 * the source path when performing its rename
4289 				 * operation.
4290 				 */
4291 				if (is_waiting_for_move(sctx, ow_inode)) {
4292 					wdm = get_waiting_dir_move(sctx,
4293 								   ow_inode);
4294 					ASSERT(wdm);
4295 					wdm->orphanized = true;
4296 				}
4297 
4298 				/*
4299 				 * Make sure we clear our orphanized inode's
4300 				 * name from the name cache. This is because the
4301 				 * inode ow_inode might be an ancestor of some
4302 				 * other inode that will be orphanized as well
4303 				 * later and has an inode number greater than
4304 				 * sctx->send_progress. We need to prevent
4305 				 * future name lookups from using the old name
4306 				 * and get instead the orphan name.
4307 				 */
4308 				nce = name_cache_search(sctx, ow_inode, ow_gen);
4309 				if (nce) {
4310 					name_cache_delete(sctx, nce);
4311 					kfree(nce);
4312 				}
4313 
4314 				/*
4315 				 * ow_inode might currently be an ancestor of
4316 				 * cur_ino, therefore compute valid_path (the
4317 				 * current path of cur_ino) again because it
4318 				 * might contain the pre-orphanization name of
4319 				 * ow_inode, which is no longer valid.
4320 				 */
4321 				ret = is_ancestor(sctx->parent_root,
4322 						  ow_inode, ow_gen,
4323 						  sctx->cur_ino, NULL);
4324 				if (ret > 0) {
4325 					orphanized_ancestor = true;
4326 					fs_path_reset(valid_path);
4327 					ret = get_cur_path(sctx, sctx->cur_ino,
4328 							   sctx->cur_inode_gen,
4329 							   valid_path);
4330 				}
4331 				if (ret < 0)
4332 					goto out;
4333 			} else {
4334 				/*
4335 				 * If we previously orphanized a directory that
4336 				 * collided with a new reference that we already
4337 				 * processed, recompute the current path because
4338 				 * that directory may be part of the path.
4339 				 */
4340 				if (orphanized_dir) {
4341 					ret = refresh_ref_path(sctx, cur);
4342 					if (ret < 0)
4343 						goto out;
4344 				}
4345 				ret = send_unlink(sctx, cur->full_path);
4346 				if (ret < 0)
4347 					goto out;
4348 			}
4349 		}
4350 
4351 	}
4352 
4353 	list_for_each_entry(cur, &sctx->new_refs, list) {
4354 		/*
4355 		 * We may have refs where the parent directory does not exist
4356 		 * yet. This happens if the parent directories inum is higher
4357 		 * than the current inum. To handle this case, we create the
4358 		 * parent directory out of order. But we need to check if this
4359 		 * did already happen before due to other refs in the same dir.
4360 		 */
4361 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4362 		if (ret < 0)
4363 			goto out;
4364 		if (ret == inode_state_will_create) {
4365 			ret = 0;
4366 			/*
4367 			 * First check if any of the current inodes refs did
4368 			 * already create the dir.
4369 			 */
4370 			list_for_each_entry(cur2, &sctx->new_refs, list) {
4371 				if (cur == cur2)
4372 					break;
4373 				if (cur2->dir == cur->dir) {
4374 					ret = 1;
4375 					break;
4376 				}
4377 			}
4378 
4379 			/*
4380 			 * If that did not happen, check if a previous inode
4381 			 * did already create the dir.
4382 			 */
4383 			if (!ret)
4384 				ret = did_create_dir(sctx, cur->dir);
4385 			if (ret < 0)
4386 				goto out;
4387 			if (!ret) {
4388 				ret = send_create_inode(sctx, cur->dir);
4389 				if (ret < 0)
4390 					goto out;
4391 			}
4392 		}
4393 
4394 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4395 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4396 			if (ret < 0)
4397 				goto out;
4398 			if (ret == 1) {
4399 				can_rename = false;
4400 				*pending_move = 1;
4401 			}
4402 		}
4403 
4404 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4405 		    can_rename) {
4406 			ret = wait_for_parent_move(sctx, cur, is_orphan);
4407 			if (ret < 0)
4408 				goto out;
4409 			if (ret == 1) {
4410 				can_rename = false;
4411 				*pending_move = 1;
4412 			}
4413 		}
4414 
4415 		/*
4416 		 * link/move the ref to the new place. If we have an orphan
4417 		 * inode, move it and update valid_path. If not, link or move
4418 		 * it depending on the inode mode.
4419 		 */
4420 		if (is_orphan && can_rename) {
4421 			ret = send_rename(sctx, valid_path, cur->full_path);
4422 			if (ret < 0)
4423 				goto out;
4424 			is_orphan = 0;
4425 			ret = fs_path_copy(valid_path, cur->full_path);
4426 			if (ret < 0)
4427 				goto out;
4428 		} else if (can_rename) {
4429 			if (S_ISDIR(sctx->cur_inode_mode)) {
4430 				/*
4431 				 * Dirs can't be linked, so move it. For moved
4432 				 * dirs, we always have one new and one deleted
4433 				 * ref. The deleted ref is ignored later.
4434 				 */
4435 				ret = send_rename(sctx, valid_path,
4436 						  cur->full_path);
4437 				if (!ret)
4438 					ret = fs_path_copy(valid_path,
4439 							   cur->full_path);
4440 				if (ret < 0)
4441 					goto out;
4442 			} else {
4443 				/*
4444 				 * We might have previously orphanized an inode
4445 				 * which is an ancestor of our current inode,
4446 				 * so our reference's full path, which was
4447 				 * computed before any such orphanizations, must
4448 				 * be updated.
4449 				 */
4450 				if (orphanized_dir) {
4451 					ret = update_ref_path(sctx, cur);
4452 					if (ret < 0)
4453 						goto out;
4454 				}
4455 				ret = send_link(sctx, cur->full_path,
4456 						valid_path);
4457 				if (ret < 0)
4458 					goto out;
4459 			}
4460 		}
4461 		ret = dup_ref(cur, &check_dirs);
4462 		if (ret < 0)
4463 			goto out;
4464 	}
4465 
4466 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4467 		/*
4468 		 * Check if we can already rmdir the directory. If not,
4469 		 * orphanize it. For every dir item inside that gets deleted
4470 		 * later, we do this check again and rmdir it then if possible.
4471 		 * See the use of check_dirs for more details.
4472 		 */
4473 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4474 				sctx->cur_ino);
4475 		if (ret < 0)
4476 			goto out;
4477 		if (ret) {
4478 			ret = send_rmdir(sctx, valid_path);
4479 			if (ret < 0)
4480 				goto out;
4481 		} else if (!is_orphan) {
4482 			ret = orphanize_inode(sctx, sctx->cur_ino,
4483 					sctx->cur_inode_gen, valid_path);
4484 			if (ret < 0)
4485 				goto out;
4486 			is_orphan = 1;
4487 		}
4488 
4489 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4490 			ret = dup_ref(cur, &check_dirs);
4491 			if (ret < 0)
4492 				goto out;
4493 		}
4494 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4495 		   !list_empty(&sctx->deleted_refs)) {
4496 		/*
4497 		 * We have a moved dir. Add the old parent to check_dirs
4498 		 */
4499 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4500 				list);
4501 		ret = dup_ref(cur, &check_dirs);
4502 		if (ret < 0)
4503 			goto out;
4504 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4505 		/*
4506 		 * We have a non dir inode. Go through all deleted refs and
4507 		 * unlink them if they were not already overwritten by other
4508 		 * inodes.
4509 		 */
4510 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4511 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4512 					sctx->cur_ino, sctx->cur_inode_gen,
4513 					cur->name, cur->name_len);
4514 			if (ret < 0)
4515 				goto out;
4516 			if (!ret) {
4517 				/*
4518 				 * If we orphanized any ancestor before, we need
4519 				 * to recompute the full path for deleted names,
4520 				 * since any such path was computed before we
4521 				 * processed any references and orphanized any
4522 				 * ancestor inode.
4523 				 */
4524 				if (orphanized_ancestor) {
4525 					ret = update_ref_path(sctx, cur);
4526 					if (ret < 0)
4527 						goto out;
4528 				}
4529 				ret = send_unlink(sctx, cur->full_path);
4530 				if (ret < 0)
4531 					goto out;
4532 			}
4533 			ret = dup_ref(cur, &check_dirs);
4534 			if (ret < 0)
4535 				goto out;
4536 		}
4537 		/*
4538 		 * If the inode is still orphan, unlink the orphan. This may
4539 		 * happen when a previous inode did overwrite the first ref
4540 		 * of this inode and no new refs were added for the current
4541 		 * inode. Unlinking does not mean that the inode is deleted in
4542 		 * all cases. There may still be links to this inode in other
4543 		 * places.
4544 		 */
4545 		if (is_orphan) {
4546 			ret = send_unlink(sctx, valid_path);
4547 			if (ret < 0)
4548 				goto out;
4549 		}
4550 	}
4551 
4552 	/*
4553 	 * We did collect all parent dirs where cur_inode was once located. We
4554 	 * now go through all these dirs and check if they are pending for
4555 	 * deletion and if it's finally possible to perform the rmdir now.
4556 	 * We also update the inode stats of the parent dirs here.
4557 	 */
4558 	list_for_each_entry(cur, &check_dirs, list) {
4559 		/*
4560 		 * In case we had refs into dirs that were not processed yet,
4561 		 * we don't need to do the utime and rmdir logic for these dirs.
4562 		 * The dir will be processed later.
4563 		 */
4564 		if (cur->dir > sctx->cur_ino)
4565 			continue;
4566 
4567 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4568 		if (ret < 0)
4569 			goto out;
4570 
4571 		if (ret == inode_state_did_create ||
4572 		    ret == inode_state_no_change) {
4573 			/* TODO delayed utimes */
4574 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4575 			if (ret < 0)
4576 				goto out;
4577 		} else if (ret == inode_state_did_delete &&
4578 			   cur->dir != last_dir_ino_rm) {
4579 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4580 					sctx->cur_ino);
4581 			if (ret < 0)
4582 				goto out;
4583 			if (ret) {
4584 				ret = get_cur_path(sctx, cur->dir,
4585 						   cur->dir_gen, valid_path);
4586 				if (ret < 0)
4587 					goto out;
4588 				ret = send_rmdir(sctx, valid_path);
4589 				if (ret < 0)
4590 					goto out;
4591 				last_dir_ino_rm = cur->dir;
4592 			}
4593 		}
4594 	}
4595 
4596 	ret = 0;
4597 
4598 out:
4599 	__free_recorded_refs(&check_dirs);
4600 	free_recorded_refs(sctx);
4601 	fs_path_free(valid_path);
4602 	return ret;
4603 }
4604 
4605 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4606 {
4607 	const struct recorded_ref *data = k;
4608 	const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4609 	int result;
4610 
4611 	if (data->dir > ref->dir)
4612 		return 1;
4613 	if (data->dir < ref->dir)
4614 		return -1;
4615 	if (data->dir_gen > ref->dir_gen)
4616 		return 1;
4617 	if (data->dir_gen < ref->dir_gen)
4618 		return -1;
4619 	if (data->name_len > ref->name_len)
4620 		return 1;
4621 	if (data->name_len < ref->name_len)
4622 		return -1;
4623 	result = strcmp(data->name, ref->name);
4624 	if (result > 0)
4625 		return 1;
4626 	if (result < 0)
4627 		return -1;
4628 	return 0;
4629 }
4630 
4631 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4632 {
4633 	const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4634 
4635 	return rbtree_ref_comp(entry, parent) < 0;
4636 }
4637 
4638 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4639 			      struct fs_path *name, u64 dir, u64 dir_gen,
4640 			      struct send_ctx *sctx)
4641 {
4642 	int ret = 0;
4643 	struct fs_path *path = NULL;
4644 	struct recorded_ref *ref = NULL;
4645 
4646 	path = fs_path_alloc();
4647 	if (!path) {
4648 		ret = -ENOMEM;
4649 		goto out;
4650 	}
4651 
4652 	ref = recorded_ref_alloc();
4653 	if (!ref) {
4654 		ret = -ENOMEM;
4655 		goto out;
4656 	}
4657 
4658 	ret = get_cur_path(sctx, dir, dir_gen, path);
4659 	if (ret < 0)
4660 		goto out;
4661 	ret = fs_path_add_path(path, name);
4662 	if (ret < 0)
4663 		goto out;
4664 
4665 	ref->dir = dir;
4666 	ref->dir_gen = dir_gen;
4667 	set_ref_path(ref, path);
4668 	list_add_tail(&ref->list, refs);
4669 	rb_add(&ref->node, root, rbtree_ref_less);
4670 	ref->root = root;
4671 out:
4672 	if (ret) {
4673 		if (path && (!ref || !ref->full_path))
4674 			fs_path_free(path);
4675 		recorded_ref_free(ref);
4676 	}
4677 	return ret;
4678 }
4679 
4680 static int record_new_ref_if_needed(int num, u64 dir, int index,
4681 				    struct fs_path *name, void *ctx)
4682 {
4683 	int ret = 0;
4684 	struct send_ctx *sctx = ctx;
4685 	struct rb_node *node = NULL;
4686 	struct recorded_ref data;
4687 	struct recorded_ref *ref;
4688 	u64 dir_gen;
4689 
4690 	ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4691 	if (ret < 0)
4692 		goto out;
4693 
4694 	data.dir = dir;
4695 	data.dir_gen = dir_gen;
4696 	set_ref_path(&data, name);
4697 	node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4698 	if (node) {
4699 		ref = rb_entry(node, struct recorded_ref, node);
4700 		recorded_ref_free(ref);
4701 	} else {
4702 		ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4703 					 &sctx->new_refs, name, dir, dir_gen,
4704 					 sctx);
4705 	}
4706 out:
4707 	return ret;
4708 }
4709 
4710 static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4711 					struct fs_path *name, void *ctx)
4712 {
4713 	int ret = 0;
4714 	struct send_ctx *sctx = ctx;
4715 	struct rb_node *node = NULL;
4716 	struct recorded_ref data;
4717 	struct recorded_ref *ref;
4718 	u64 dir_gen;
4719 
4720 	ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4721 	if (ret < 0)
4722 		goto out;
4723 
4724 	data.dir = dir;
4725 	data.dir_gen = dir_gen;
4726 	set_ref_path(&data, name);
4727 	node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4728 	if (node) {
4729 		ref = rb_entry(node, struct recorded_ref, node);
4730 		recorded_ref_free(ref);
4731 	} else {
4732 		ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4733 					 &sctx->deleted_refs, name, dir,
4734 					 dir_gen, sctx);
4735 	}
4736 out:
4737 	return ret;
4738 }
4739 
4740 static int record_new_ref(struct send_ctx *sctx)
4741 {
4742 	int ret;
4743 
4744 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4745 				sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4746 	if (ret < 0)
4747 		goto out;
4748 	ret = 0;
4749 
4750 out:
4751 	return ret;
4752 }
4753 
4754 static int record_deleted_ref(struct send_ctx *sctx)
4755 {
4756 	int ret;
4757 
4758 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4759 				sctx->cmp_key, 0, record_deleted_ref_if_needed,
4760 				sctx);
4761 	if (ret < 0)
4762 		goto out;
4763 	ret = 0;
4764 
4765 out:
4766 	return ret;
4767 }
4768 
4769 static int record_changed_ref(struct send_ctx *sctx)
4770 {
4771 	int ret = 0;
4772 
4773 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4774 			sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4775 	if (ret < 0)
4776 		goto out;
4777 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4778 			sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4779 	if (ret < 0)
4780 		goto out;
4781 	ret = 0;
4782 
4783 out:
4784 	return ret;
4785 }
4786 
4787 /*
4788  * Record and process all refs at once. Needed when an inode changes the
4789  * generation number, which means that it was deleted and recreated.
4790  */
4791 static int process_all_refs(struct send_ctx *sctx,
4792 			    enum btrfs_compare_tree_result cmd)
4793 {
4794 	int ret = 0;
4795 	int iter_ret = 0;
4796 	struct btrfs_root *root;
4797 	struct btrfs_path *path;
4798 	struct btrfs_key key;
4799 	struct btrfs_key found_key;
4800 	iterate_inode_ref_t cb;
4801 	int pending_move = 0;
4802 
4803 	path = alloc_path_for_send();
4804 	if (!path)
4805 		return -ENOMEM;
4806 
4807 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4808 		root = sctx->send_root;
4809 		cb = record_new_ref_if_needed;
4810 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4811 		root = sctx->parent_root;
4812 		cb = record_deleted_ref_if_needed;
4813 	} else {
4814 		btrfs_err(sctx->send_root->fs_info,
4815 				"Wrong command %d in process_all_refs", cmd);
4816 		ret = -EINVAL;
4817 		goto out;
4818 	}
4819 
4820 	key.objectid = sctx->cmp_key->objectid;
4821 	key.type = BTRFS_INODE_REF_KEY;
4822 	key.offset = 0;
4823 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4824 		if (found_key.objectid != key.objectid ||
4825 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4826 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4827 			break;
4828 
4829 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4830 		if (ret < 0)
4831 			goto out;
4832 	}
4833 	/* Catch error found during iteration */
4834 	if (iter_ret < 0) {
4835 		ret = iter_ret;
4836 		goto out;
4837 	}
4838 	btrfs_release_path(path);
4839 
4840 	/*
4841 	 * We don't actually care about pending_move as we are simply
4842 	 * re-creating this inode and will be rename'ing it into place once we
4843 	 * rename the parent directory.
4844 	 */
4845 	ret = process_recorded_refs(sctx, &pending_move);
4846 out:
4847 	btrfs_free_path(path);
4848 	return ret;
4849 }
4850 
4851 static int send_set_xattr(struct send_ctx *sctx,
4852 			  struct fs_path *path,
4853 			  const char *name, int name_len,
4854 			  const char *data, int data_len)
4855 {
4856 	int ret = 0;
4857 
4858 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4859 	if (ret < 0)
4860 		goto out;
4861 
4862 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4863 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4864 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4865 
4866 	ret = send_cmd(sctx);
4867 
4868 tlv_put_failure:
4869 out:
4870 	return ret;
4871 }
4872 
4873 static int send_remove_xattr(struct send_ctx *sctx,
4874 			  struct fs_path *path,
4875 			  const char *name, int name_len)
4876 {
4877 	int ret = 0;
4878 
4879 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4880 	if (ret < 0)
4881 		goto out;
4882 
4883 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4884 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4885 
4886 	ret = send_cmd(sctx);
4887 
4888 tlv_put_failure:
4889 out:
4890 	return ret;
4891 }
4892 
4893 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4894 			       const char *name, int name_len, const char *data,
4895 			       int data_len, void *ctx)
4896 {
4897 	int ret;
4898 	struct send_ctx *sctx = ctx;
4899 	struct fs_path *p;
4900 	struct posix_acl_xattr_header dummy_acl;
4901 
4902 	/* Capabilities are emitted by finish_inode_if_needed */
4903 	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4904 		return 0;
4905 
4906 	p = fs_path_alloc();
4907 	if (!p)
4908 		return -ENOMEM;
4909 
4910 	/*
4911 	 * This hack is needed because empty acls are stored as zero byte
4912 	 * data in xattrs. Problem with that is, that receiving these zero byte
4913 	 * acls will fail later. To fix this, we send a dummy acl list that
4914 	 * only contains the version number and no entries.
4915 	 */
4916 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4917 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4918 		if (data_len == 0) {
4919 			dummy_acl.a_version =
4920 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4921 			data = (char *)&dummy_acl;
4922 			data_len = sizeof(dummy_acl);
4923 		}
4924 	}
4925 
4926 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4927 	if (ret < 0)
4928 		goto out;
4929 
4930 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4931 
4932 out:
4933 	fs_path_free(p);
4934 	return ret;
4935 }
4936 
4937 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4938 				   const char *name, int name_len,
4939 				   const char *data, int data_len, void *ctx)
4940 {
4941 	int ret;
4942 	struct send_ctx *sctx = ctx;
4943 	struct fs_path *p;
4944 
4945 	p = fs_path_alloc();
4946 	if (!p)
4947 		return -ENOMEM;
4948 
4949 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4950 	if (ret < 0)
4951 		goto out;
4952 
4953 	ret = send_remove_xattr(sctx, p, name, name_len);
4954 
4955 out:
4956 	fs_path_free(p);
4957 	return ret;
4958 }
4959 
4960 static int process_new_xattr(struct send_ctx *sctx)
4961 {
4962 	int ret = 0;
4963 
4964 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4965 			       __process_new_xattr, sctx);
4966 
4967 	return ret;
4968 }
4969 
4970 static int process_deleted_xattr(struct send_ctx *sctx)
4971 {
4972 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4973 				__process_deleted_xattr, sctx);
4974 }
4975 
4976 struct find_xattr_ctx {
4977 	const char *name;
4978 	int name_len;
4979 	int found_idx;
4980 	char *found_data;
4981 	int found_data_len;
4982 };
4983 
4984 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
4985 			int name_len, const char *data, int data_len, void *vctx)
4986 {
4987 	struct find_xattr_ctx *ctx = vctx;
4988 
4989 	if (name_len == ctx->name_len &&
4990 	    strncmp(name, ctx->name, name_len) == 0) {
4991 		ctx->found_idx = num;
4992 		ctx->found_data_len = data_len;
4993 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4994 		if (!ctx->found_data)
4995 			return -ENOMEM;
4996 		return 1;
4997 	}
4998 	return 0;
4999 }
5000 
5001 static int find_xattr(struct btrfs_root *root,
5002 		      struct btrfs_path *path,
5003 		      struct btrfs_key *key,
5004 		      const char *name, int name_len,
5005 		      char **data, int *data_len)
5006 {
5007 	int ret;
5008 	struct find_xattr_ctx ctx;
5009 
5010 	ctx.name = name;
5011 	ctx.name_len = name_len;
5012 	ctx.found_idx = -1;
5013 	ctx.found_data = NULL;
5014 	ctx.found_data_len = 0;
5015 
5016 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5017 	if (ret < 0)
5018 		return ret;
5019 
5020 	if (ctx.found_idx == -1)
5021 		return -ENOENT;
5022 	if (data) {
5023 		*data = ctx.found_data;
5024 		*data_len = ctx.found_data_len;
5025 	} else {
5026 		kfree(ctx.found_data);
5027 	}
5028 	return ctx.found_idx;
5029 }
5030 
5031 
5032 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5033 				       const char *name, int name_len,
5034 				       const char *data, int data_len,
5035 				       void *ctx)
5036 {
5037 	int ret;
5038 	struct send_ctx *sctx = ctx;
5039 	char *found_data = NULL;
5040 	int found_data_len  = 0;
5041 
5042 	ret = find_xattr(sctx->parent_root, sctx->right_path,
5043 			 sctx->cmp_key, name, name_len, &found_data,
5044 			 &found_data_len);
5045 	if (ret == -ENOENT) {
5046 		ret = __process_new_xattr(num, di_key, name, name_len, data,
5047 					  data_len, ctx);
5048 	} else if (ret >= 0) {
5049 		if (data_len != found_data_len ||
5050 		    memcmp(data, found_data, data_len)) {
5051 			ret = __process_new_xattr(num, di_key, name, name_len,
5052 						  data, data_len, ctx);
5053 		} else {
5054 			ret = 0;
5055 		}
5056 	}
5057 
5058 	kfree(found_data);
5059 	return ret;
5060 }
5061 
5062 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5063 					   const char *name, int name_len,
5064 					   const char *data, int data_len,
5065 					   void *ctx)
5066 {
5067 	int ret;
5068 	struct send_ctx *sctx = ctx;
5069 
5070 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5071 			 name, name_len, NULL, NULL);
5072 	if (ret == -ENOENT)
5073 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5074 					      data_len, ctx);
5075 	else if (ret >= 0)
5076 		ret = 0;
5077 
5078 	return ret;
5079 }
5080 
5081 static int process_changed_xattr(struct send_ctx *sctx)
5082 {
5083 	int ret = 0;
5084 
5085 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5086 			__process_changed_new_xattr, sctx);
5087 	if (ret < 0)
5088 		goto out;
5089 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
5090 			__process_changed_deleted_xattr, sctx);
5091 
5092 out:
5093 	return ret;
5094 }
5095 
5096 static int process_all_new_xattrs(struct send_ctx *sctx)
5097 {
5098 	int ret = 0;
5099 	int iter_ret = 0;
5100 	struct btrfs_root *root;
5101 	struct btrfs_path *path;
5102 	struct btrfs_key key;
5103 	struct btrfs_key found_key;
5104 
5105 	path = alloc_path_for_send();
5106 	if (!path)
5107 		return -ENOMEM;
5108 
5109 	root = sctx->send_root;
5110 
5111 	key.objectid = sctx->cmp_key->objectid;
5112 	key.type = BTRFS_XATTR_ITEM_KEY;
5113 	key.offset = 0;
5114 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5115 		if (found_key.objectid != key.objectid ||
5116 		    found_key.type != key.type) {
5117 			ret = 0;
5118 			break;
5119 		}
5120 
5121 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5122 		if (ret < 0)
5123 			break;
5124 	}
5125 	/* Catch error found during iteration */
5126 	if (iter_ret < 0)
5127 		ret = iter_ret;
5128 
5129 	btrfs_free_path(path);
5130 	return ret;
5131 }
5132 
5133 static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5134 		       struct fsverity_descriptor *desc)
5135 {
5136 	int ret;
5137 
5138 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5139 	if (ret < 0)
5140 		goto out;
5141 
5142 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5143 	TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5144 			le8_to_cpu(desc->hash_algorithm));
5145 	TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5146 			1U << le8_to_cpu(desc->log_blocksize));
5147 	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5148 			le8_to_cpu(desc->salt_size));
5149 	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5150 			le32_to_cpu(desc->sig_size));
5151 
5152 	ret = send_cmd(sctx);
5153 
5154 tlv_put_failure:
5155 out:
5156 	return ret;
5157 }
5158 
5159 static int process_verity(struct send_ctx *sctx)
5160 {
5161 	int ret = 0;
5162 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5163 	struct inode *inode;
5164 	struct fs_path *p;
5165 
5166 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, sctx->send_root);
5167 	if (IS_ERR(inode))
5168 		return PTR_ERR(inode);
5169 
5170 	ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5171 	if (ret < 0)
5172 		goto iput;
5173 
5174 	if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5175 		ret = -EMSGSIZE;
5176 		goto iput;
5177 	}
5178 	if (!sctx->verity_descriptor) {
5179 		sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5180 						   GFP_KERNEL);
5181 		if (!sctx->verity_descriptor) {
5182 			ret = -ENOMEM;
5183 			goto iput;
5184 		}
5185 	}
5186 
5187 	ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5188 	if (ret < 0)
5189 		goto iput;
5190 
5191 	p = fs_path_alloc();
5192 	if (!p) {
5193 		ret = -ENOMEM;
5194 		goto iput;
5195 	}
5196 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5197 	if (ret < 0)
5198 		goto free_path;
5199 
5200 	ret = send_verity(sctx, p, sctx->verity_descriptor);
5201 	if (ret < 0)
5202 		goto free_path;
5203 
5204 free_path:
5205 	fs_path_free(p);
5206 iput:
5207 	iput(inode);
5208 	return ret;
5209 }
5210 
5211 static inline u64 max_send_read_size(const struct send_ctx *sctx)
5212 {
5213 	return sctx->send_max_size - SZ_16K;
5214 }
5215 
5216 static int put_data_header(struct send_ctx *sctx, u32 len)
5217 {
5218 	if (WARN_ON_ONCE(sctx->put_data))
5219 		return -EINVAL;
5220 	sctx->put_data = true;
5221 	if (sctx->proto >= 2) {
5222 		/*
5223 		 * Since v2, the data attribute header doesn't include a length,
5224 		 * it is implicitly to the end of the command.
5225 		 */
5226 		if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5227 			return -EOVERFLOW;
5228 		put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5229 		sctx->send_size += sizeof(__le16);
5230 	} else {
5231 		struct btrfs_tlv_header *hdr;
5232 
5233 		if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5234 			return -EOVERFLOW;
5235 		hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5236 		put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5237 		put_unaligned_le16(len, &hdr->tlv_len);
5238 		sctx->send_size += sizeof(*hdr);
5239 	}
5240 	return 0;
5241 }
5242 
5243 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5244 {
5245 	struct btrfs_root *root = sctx->send_root;
5246 	struct btrfs_fs_info *fs_info = root->fs_info;
5247 	struct page *page;
5248 	pgoff_t index = offset >> PAGE_SHIFT;
5249 	pgoff_t last_index;
5250 	unsigned pg_offset = offset_in_page(offset);
5251 	int ret;
5252 
5253 	ret = put_data_header(sctx, len);
5254 	if (ret)
5255 		return ret;
5256 
5257 	last_index = (offset + len - 1) >> PAGE_SHIFT;
5258 
5259 	while (index <= last_index) {
5260 		unsigned cur_len = min_t(unsigned, len,
5261 					 PAGE_SIZE - pg_offset);
5262 
5263 		page = find_lock_page(sctx->cur_inode->i_mapping, index);
5264 		if (!page) {
5265 			page_cache_sync_readahead(sctx->cur_inode->i_mapping,
5266 						  &sctx->ra, NULL, index,
5267 						  last_index + 1 - index);
5268 
5269 			page = find_or_create_page(sctx->cur_inode->i_mapping,
5270 						   index, GFP_KERNEL);
5271 			if (!page) {
5272 				ret = -ENOMEM;
5273 				break;
5274 			}
5275 		}
5276 
5277 		if (PageReadahead(page))
5278 			page_cache_async_readahead(sctx->cur_inode->i_mapping,
5279 						   &sctx->ra, NULL, page_folio(page),
5280 						   index, last_index + 1 - index);
5281 
5282 		if (!PageUptodate(page)) {
5283 			btrfs_read_folio(NULL, page_folio(page));
5284 			lock_page(page);
5285 			if (!PageUptodate(page)) {
5286 				unlock_page(page);
5287 				btrfs_err(fs_info,
5288 			"send: IO error at offset %llu for inode %llu root %llu",
5289 					page_offset(page), sctx->cur_ino,
5290 					sctx->send_root->root_key.objectid);
5291 				put_page(page);
5292 				ret = -EIO;
5293 				break;
5294 			}
5295 		}
5296 
5297 		memcpy_from_page(sctx->send_buf + sctx->send_size, page,
5298 				 pg_offset, cur_len);
5299 		unlock_page(page);
5300 		put_page(page);
5301 		index++;
5302 		pg_offset = 0;
5303 		len -= cur_len;
5304 		sctx->send_size += cur_len;
5305 	}
5306 
5307 	return ret;
5308 }
5309 
5310 /*
5311  * Read some bytes from the current inode/file and send a write command to
5312  * user space.
5313  */
5314 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5315 {
5316 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5317 	int ret = 0;
5318 	struct fs_path *p;
5319 
5320 	p = fs_path_alloc();
5321 	if (!p)
5322 		return -ENOMEM;
5323 
5324 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5325 
5326 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5327 	if (ret < 0)
5328 		goto out;
5329 
5330 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5331 	if (ret < 0)
5332 		goto out;
5333 
5334 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5335 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5336 	ret = put_file_data(sctx, offset, len);
5337 	if (ret < 0)
5338 		goto out;
5339 
5340 	ret = send_cmd(sctx);
5341 
5342 tlv_put_failure:
5343 out:
5344 	fs_path_free(p);
5345 	return ret;
5346 }
5347 
5348 /*
5349  * Send a clone command to user space.
5350  */
5351 static int send_clone(struct send_ctx *sctx,
5352 		      u64 offset, u32 len,
5353 		      struct clone_root *clone_root)
5354 {
5355 	int ret = 0;
5356 	struct fs_path *p;
5357 	u64 gen;
5358 
5359 	btrfs_debug(sctx->send_root->fs_info,
5360 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5361 		    offset, len, clone_root->root->root_key.objectid,
5362 		    clone_root->ino, clone_root->offset);
5363 
5364 	p = fs_path_alloc();
5365 	if (!p)
5366 		return -ENOMEM;
5367 
5368 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5369 	if (ret < 0)
5370 		goto out;
5371 
5372 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5373 	if (ret < 0)
5374 		goto out;
5375 
5376 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5377 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5378 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5379 
5380 	if (clone_root->root == sctx->send_root) {
5381 		ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5382 		if (ret < 0)
5383 			goto out;
5384 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
5385 	} else {
5386 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
5387 	}
5388 	if (ret < 0)
5389 		goto out;
5390 
5391 	/*
5392 	 * If the parent we're using has a received_uuid set then use that as
5393 	 * our clone source as that is what we will look for when doing a
5394 	 * receive.
5395 	 *
5396 	 * This covers the case that we create a snapshot off of a received
5397 	 * subvolume and then use that as the parent and try to receive on a
5398 	 * different host.
5399 	 */
5400 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5401 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5402 			     clone_root->root->root_item.received_uuid);
5403 	else
5404 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5405 			     clone_root->root->root_item.uuid);
5406 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5407 		    btrfs_root_ctransid(&clone_root->root->root_item));
5408 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5409 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5410 			clone_root->offset);
5411 
5412 	ret = send_cmd(sctx);
5413 
5414 tlv_put_failure:
5415 out:
5416 	fs_path_free(p);
5417 	return ret;
5418 }
5419 
5420 /*
5421  * Send an update extent command to user space.
5422  */
5423 static int send_update_extent(struct send_ctx *sctx,
5424 			      u64 offset, u32 len)
5425 {
5426 	int ret = 0;
5427 	struct fs_path *p;
5428 
5429 	p = fs_path_alloc();
5430 	if (!p)
5431 		return -ENOMEM;
5432 
5433 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5434 	if (ret < 0)
5435 		goto out;
5436 
5437 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5438 	if (ret < 0)
5439 		goto out;
5440 
5441 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5442 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5443 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5444 
5445 	ret = send_cmd(sctx);
5446 
5447 tlv_put_failure:
5448 out:
5449 	fs_path_free(p);
5450 	return ret;
5451 }
5452 
5453 static int send_hole(struct send_ctx *sctx, u64 end)
5454 {
5455 	struct fs_path *p = NULL;
5456 	u64 read_size = max_send_read_size(sctx);
5457 	u64 offset = sctx->cur_inode_last_extent;
5458 	int ret = 0;
5459 
5460 	/*
5461 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5462 	 * fallocate (for extent preallocation and hole punching), sending a
5463 	 * write of zeroes starting at EOF or beyond would later require issuing
5464 	 * a truncate operation which would undo the write and achieve nothing.
5465 	 */
5466 	if (offset >= sctx->cur_inode_size)
5467 		return 0;
5468 
5469 	/*
5470 	 * Don't go beyond the inode's i_size due to prealloc extents that start
5471 	 * after the i_size.
5472 	 */
5473 	end = min_t(u64, end, sctx->cur_inode_size);
5474 
5475 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5476 		return send_update_extent(sctx, offset, end - offset);
5477 
5478 	p = fs_path_alloc();
5479 	if (!p)
5480 		return -ENOMEM;
5481 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5482 	if (ret < 0)
5483 		goto tlv_put_failure;
5484 	while (offset < end) {
5485 		u64 len = min(end - offset, read_size);
5486 
5487 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5488 		if (ret < 0)
5489 			break;
5490 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5491 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5492 		ret = put_data_header(sctx, len);
5493 		if (ret < 0)
5494 			break;
5495 		memset(sctx->send_buf + sctx->send_size, 0, len);
5496 		sctx->send_size += len;
5497 		ret = send_cmd(sctx);
5498 		if (ret < 0)
5499 			break;
5500 		offset += len;
5501 	}
5502 	sctx->cur_inode_next_write_offset = offset;
5503 tlv_put_failure:
5504 	fs_path_free(p);
5505 	return ret;
5506 }
5507 
5508 static int send_encoded_inline_extent(struct send_ctx *sctx,
5509 				      struct btrfs_path *path, u64 offset,
5510 				      u64 len)
5511 {
5512 	struct btrfs_root *root = sctx->send_root;
5513 	struct btrfs_fs_info *fs_info = root->fs_info;
5514 	struct inode *inode;
5515 	struct fs_path *fspath;
5516 	struct extent_buffer *leaf = path->nodes[0];
5517 	struct btrfs_key key;
5518 	struct btrfs_file_extent_item *ei;
5519 	u64 ram_bytes;
5520 	size_t inline_size;
5521 	int ret;
5522 
5523 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5524 	if (IS_ERR(inode))
5525 		return PTR_ERR(inode);
5526 
5527 	fspath = fs_path_alloc();
5528 	if (!fspath) {
5529 		ret = -ENOMEM;
5530 		goto out;
5531 	}
5532 
5533 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5534 	if (ret < 0)
5535 		goto out;
5536 
5537 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5538 	if (ret < 0)
5539 		goto out;
5540 
5541 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5542 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5543 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5544 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5545 
5546 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5547 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5548 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5549 		    min(key.offset + ram_bytes - offset, len));
5550 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5551 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5552 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5553 				btrfs_file_extent_compression(leaf, ei));
5554 	if (ret < 0)
5555 		goto out;
5556 	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5557 
5558 	ret = put_data_header(sctx, inline_size);
5559 	if (ret < 0)
5560 		goto out;
5561 	read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5562 			   btrfs_file_extent_inline_start(ei), inline_size);
5563 	sctx->send_size += inline_size;
5564 
5565 	ret = send_cmd(sctx);
5566 
5567 tlv_put_failure:
5568 out:
5569 	fs_path_free(fspath);
5570 	iput(inode);
5571 	return ret;
5572 }
5573 
5574 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5575 			       u64 offset, u64 len)
5576 {
5577 	struct btrfs_root *root = sctx->send_root;
5578 	struct btrfs_fs_info *fs_info = root->fs_info;
5579 	struct inode *inode;
5580 	struct fs_path *fspath;
5581 	struct extent_buffer *leaf = path->nodes[0];
5582 	struct btrfs_key key;
5583 	struct btrfs_file_extent_item *ei;
5584 	u64 disk_bytenr, disk_num_bytes;
5585 	u32 data_offset;
5586 	struct btrfs_cmd_header *hdr;
5587 	u32 crc;
5588 	int ret;
5589 
5590 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5591 	if (IS_ERR(inode))
5592 		return PTR_ERR(inode);
5593 
5594 	fspath = fs_path_alloc();
5595 	if (!fspath) {
5596 		ret = -ENOMEM;
5597 		goto out;
5598 	}
5599 
5600 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5601 	if (ret < 0)
5602 		goto out;
5603 
5604 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5605 	if (ret < 0)
5606 		goto out;
5607 
5608 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5609 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5610 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5611 	disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5612 
5613 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5614 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5615 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5616 		    min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5617 			len));
5618 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5619 		    btrfs_file_extent_ram_bytes(leaf, ei));
5620 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5621 		    offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5622 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5623 				btrfs_file_extent_compression(leaf, ei));
5624 	if (ret < 0)
5625 		goto out;
5626 	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5627 	TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5628 
5629 	ret = put_data_header(sctx, disk_num_bytes);
5630 	if (ret < 0)
5631 		goto out;
5632 
5633 	/*
5634 	 * We want to do I/O directly into the send buffer, so get the next page
5635 	 * boundary in the send buffer. This means that there may be a gap
5636 	 * between the beginning of the command and the file data.
5637 	 */
5638 	data_offset = ALIGN(sctx->send_size, PAGE_SIZE);
5639 	if (data_offset > sctx->send_max_size ||
5640 	    sctx->send_max_size - data_offset < disk_num_bytes) {
5641 		ret = -EOVERFLOW;
5642 		goto out;
5643 	}
5644 
5645 	/*
5646 	 * Note that send_buf is a mapping of send_buf_pages, so this is really
5647 	 * reading into send_buf.
5648 	 */
5649 	ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset,
5650 						    disk_bytenr, disk_num_bytes,
5651 						    sctx->send_buf_pages +
5652 						    (data_offset >> PAGE_SHIFT));
5653 	if (ret)
5654 		goto out;
5655 
5656 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5657 	hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5658 	hdr->crc = 0;
5659 	crc = btrfs_crc32c(0, sctx->send_buf, sctx->send_size);
5660 	crc = btrfs_crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5661 	hdr->crc = cpu_to_le32(crc);
5662 
5663 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5664 			&sctx->send_off);
5665 	if (!ret) {
5666 		ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5667 				disk_num_bytes, &sctx->send_off);
5668 	}
5669 	sctx->send_size = 0;
5670 	sctx->put_data = false;
5671 
5672 tlv_put_failure:
5673 out:
5674 	fs_path_free(fspath);
5675 	iput(inode);
5676 	return ret;
5677 }
5678 
5679 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5680 			    const u64 offset, const u64 len)
5681 {
5682 	const u64 end = offset + len;
5683 	struct extent_buffer *leaf = path->nodes[0];
5684 	struct btrfs_file_extent_item *ei;
5685 	u64 read_size = max_send_read_size(sctx);
5686 	u64 sent = 0;
5687 
5688 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5689 		return send_update_extent(sctx, offset, len);
5690 
5691 	ei = btrfs_item_ptr(leaf, path->slots[0],
5692 			    struct btrfs_file_extent_item);
5693 	if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5694 	    btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5695 		bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5696 				  BTRFS_FILE_EXTENT_INLINE);
5697 
5698 		/*
5699 		 * Send the compressed extent unless the compressed data is
5700 		 * larger than the decompressed data. This can happen if we're
5701 		 * not sending the entire extent, either because it has been
5702 		 * partially overwritten/truncated or because this is a part of
5703 		 * the extent that we couldn't clone in clone_range().
5704 		 */
5705 		if (is_inline &&
5706 		    btrfs_file_extent_inline_item_len(leaf,
5707 						      path->slots[0]) <= len) {
5708 			return send_encoded_inline_extent(sctx, path, offset,
5709 							  len);
5710 		} else if (!is_inline &&
5711 			   btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5712 			return send_encoded_extent(sctx, path, offset, len);
5713 		}
5714 	}
5715 
5716 	if (sctx->cur_inode == NULL) {
5717 		struct btrfs_root *root = sctx->send_root;
5718 
5719 		sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root);
5720 		if (IS_ERR(sctx->cur_inode)) {
5721 			int err = PTR_ERR(sctx->cur_inode);
5722 
5723 			sctx->cur_inode = NULL;
5724 			return err;
5725 		}
5726 		memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5727 		file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5728 
5729 		/*
5730 		 * It's very likely there are no pages from this inode in the page
5731 		 * cache, so after reading extents and sending their data, we clean
5732 		 * the page cache to avoid trashing the page cache (adding pressure
5733 		 * to the page cache and forcing eviction of other data more useful
5734 		 * for applications).
5735 		 *
5736 		 * We decide if we should clean the page cache simply by checking
5737 		 * if the inode's mapping nrpages is 0 when we first open it, and
5738 		 * not by using something like filemap_range_has_page() before
5739 		 * reading an extent because when we ask the readahead code to
5740 		 * read a given file range, it may (and almost always does) read
5741 		 * pages from beyond that range (see the documentation for
5742 		 * page_cache_sync_readahead()), so it would not be reliable,
5743 		 * because after reading the first extent future calls to
5744 		 * filemap_range_has_page() would return true because the readahead
5745 		 * on the previous extent resulted in reading pages of the current
5746 		 * extent as well.
5747 		 */
5748 		sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5749 		sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5750 	}
5751 
5752 	while (sent < len) {
5753 		u64 size = min(len - sent, read_size);
5754 		int ret;
5755 
5756 		ret = send_write(sctx, offset + sent, size);
5757 		if (ret < 0)
5758 			return ret;
5759 		sent += size;
5760 	}
5761 
5762 	if (sctx->clean_page_cache && IS_ALIGNED(end, PAGE_SIZE)) {
5763 		/*
5764 		 * Always operate only on ranges that are a multiple of the page
5765 		 * size. This is not only to prevent zeroing parts of a page in
5766 		 * the case of subpage sector size, but also to guarantee we evict
5767 		 * pages, as passing a range that is smaller than page size does
5768 		 * not evict the respective page (only zeroes part of its content).
5769 		 *
5770 		 * Always start from the end offset of the last range cleared.
5771 		 * This is because the readahead code may (and very often does)
5772 		 * reads pages beyond the range we request for readahead. So if
5773 		 * we have an extent layout like this:
5774 		 *
5775 		 *            [ extent A ] [ extent B ] [ extent C ]
5776 		 *
5777 		 * When we ask page_cache_sync_readahead() to read extent A, it
5778 		 * may also trigger reads for pages of extent B. If we are doing
5779 		 * an incremental send and extent B has not changed between the
5780 		 * parent and send snapshots, some or all of its pages may end
5781 		 * up being read and placed in the page cache. So when truncating
5782 		 * the page cache we always start from the end offset of the
5783 		 * previously processed extent up to the end of the current
5784 		 * extent.
5785 		 */
5786 		truncate_inode_pages_range(&sctx->cur_inode->i_data,
5787 					   sctx->page_cache_clear_start,
5788 					   end - 1);
5789 		sctx->page_cache_clear_start = end;
5790 	}
5791 
5792 	return 0;
5793 }
5794 
5795 /*
5796  * Search for a capability xattr related to sctx->cur_ino. If the capability is
5797  * found, call send_set_xattr function to emit it.
5798  *
5799  * Return 0 if there isn't a capability, or when the capability was emitted
5800  * successfully, or < 0 if an error occurred.
5801  */
5802 static int send_capabilities(struct send_ctx *sctx)
5803 {
5804 	struct fs_path *fspath = NULL;
5805 	struct btrfs_path *path;
5806 	struct btrfs_dir_item *di;
5807 	struct extent_buffer *leaf;
5808 	unsigned long data_ptr;
5809 	char *buf = NULL;
5810 	int buf_len;
5811 	int ret = 0;
5812 
5813 	path = alloc_path_for_send();
5814 	if (!path)
5815 		return -ENOMEM;
5816 
5817 	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5818 				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5819 	if (!di) {
5820 		/* There is no xattr for this inode */
5821 		goto out;
5822 	} else if (IS_ERR(di)) {
5823 		ret = PTR_ERR(di);
5824 		goto out;
5825 	}
5826 
5827 	leaf = path->nodes[0];
5828 	buf_len = btrfs_dir_data_len(leaf, di);
5829 
5830 	fspath = fs_path_alloc();
5831 	buf = kmalloc(buf_len, GFP_KERNEL);
5832 	if (!fspath || !buf) {
5833 		ret = -ENOMEM;
5834 		goto out;
5835 	}
5836 
5837 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5838 	if (ret < 0)
5839 		goto out;
5840 
5841 	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5842 	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5843 
5844 	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5845 			strlen(XATTR_NAME_CAPS), buf, buf_len);
5846 out:
5847 	kfree(buf);
5848 	fs_path_free(fspath);
5849 	btrfs_free_path(path);
5850 	return ret;
5851 }
5852 
5853 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5854 		       struct clone_root *clone_root, const u64 disk_byte,
5855 		       u64 data_offset, u64 offset, u64 len)
5856 {
5857 	struct btrfs_path *path;
5858 	struct btrfs_key key;
5859 	int ret;
5860 	struct btrfs_inode_info info;
5861 	u64 clone_src_i_size = 0;
5862 
5863 	/*
5864 	 * Prevent cloning from a zero offset with a length matching the sector
5865 	 * size because in some scenarios this will make the receiver fail.
5866 	 *
5867 	 * For example, if in the source filesystem the extent at offset 0
5868 	 * has a length of sectorsize and it was written using direct IO, then
5869 	 * it can never be an inline extent (even if compression is enabled).
5870 	 * Then this extent can be cloned in the original filesystem to a non
5871 	 * zero file offset, but it may not be possible to clone in the
5872 	 * destination filesystem because it can be inlined due to compression
5873 	 * on the destination filesystem (as the receiver's write operations are
5874 	 * always done using buffered IO). The same happens when the original
5875 	 * filesystem does not have compression enabled but the destination
5876 	 * filesystem has.
5877 	 */
5878 	if (clone_root->offset == 0 &&
5879 	    len == sctx->send_root->fs_info->sectorsize)
5880 		return send_extent_data(sctx, dst_path, offset, len);
5881 
5882 	path = alloc_path_for_send();
5883 	if (!path)
5884 		return -ENOMEM;
5885 
5886 	/*
5887 	 * There are inodes that have extents that lie behind its i_size. Don't
5888 	 * accept clones from these extents.
5889 	 */
5890 	ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5891 	btrfs_release_path(path);
5892 	if (ret < 0)
5893 		goto out;
5894 	clone_src_i_size = info.size;
5895 
5896 	/*
5897 	 * We can't send a clone operation for the entire range if we find
5898 	 * extent items in the respective range in the source file that
5899 	 * refer to different extents or if we find holes.
5900 	 * So check for that and do a mix of clone and regular write/copy
5901 	 * operations if needed.
5902 	 *
5903 	 * Example:
5904 	 *
5905 	 * mkfs.btrfs -f /dev/sda
5906 	 * mount /dev/sda /mnt
5907 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5908 	 * cp --reflink=always /mnt/foo /mnt/bar
5909 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5910 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5911 	 *
5912 	 * If when we send the snapshot and we are processing file bar (which
5913 	 * has a higher inode number than foo) we blindly send a clone operation
5914 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5915 	 * a file bar that matches the content of file foo - iow, doesn't match
5916 	 * the content from bar in the original filesystem.
5917 	 */
5918 	key.objectid = clone_root->ino;
5919 	key.type = BTRFS_EXTENT_DATA_KEY;
5920 	key.offset = clone_root->offset;
5921 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5922 	if (ret < 0)
5923 		goto out;
5924 	if (ret > 0 && path->slots[0] > 0) {
5925 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5926 		if (key.objectid == clone_root->ino &&
5927 		    key.type == BTRFS_EXTENT_DATA_KEY)
5928 			path->slots[0]--;
5929 	}
5930 
5931 	while (true) {
5932 		struct extent_buffer *leaf = path->nodes[0];
5933 		int slot = path->slots[0];
5934 		struct btrfs_file_extent_item *ei;
5935 		u8 type;
5936 		u64 ext_len;
5937 		u64 clone_len;
5938 		u64 clone_data_offset;
5939 		bool crossed_src_i_size = false;
5940 
5941 		if (slot >= btrfs_header_nritems(leaf)) {
5942 			ret = btrfs_next_leaf(clone_root->root, path);
5943 			if (ret < 0)
5944 				goto out;
5945 			else if (ret > 0)
5946 				break;
5947 			continue;
5948 		}
5949 
5950 		btrfs_item_key_to_cpu(leaf, &key, slot);
5951 
5952 		/*
5953 		 * We might have an implicit trailing hole (NO_HOLES feature
5954 		 * enabled). We deal with it after leaving this loop.
5955 		 */
5956 		if (key.objectid != clone_root->ino ||
5957 		    key.type != BTRFS_EXTENT_DATA_KEY)
5958 			break;
5959 
5960 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5961 		type = btrfs_file_extent_type(leaf, ei);
5962 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5963 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5964 			ext_len = PAGE_ALIGN(ext_len);
5965 		} else {
5966 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5967 		}
5968 
5969 		if (key.offset + ext_len <= clone_root->offset)
5970 			goto next;
5971 
5972 		if (key.offset > clone_root->offset) {
5973 			/* Implicit hole, NO_HOLES feature enabled. */
5974 			u64 hole_len = key.offset - clone_root->offset;
5975 
5976 			if (hole_len > len)
5977 				hole_len = len;
5978 			ret = send_extent_data(sctx, dst_path, offset,
5979 					       hole_len);
5980 			if (ret < 0)
5981 				goto out;
5982 
5983 			len -= hole_len;
5984 			if (len == 0)
5985 				break;
5986 			offset += hole_len;
5987 			clone_root->offset += hole_len;
5988 			data_offset += hole_len;
5989 		}
5990 
5991 		if (key.offset >= clone_root->offset + len)
5992 			break;
5993 
5994 		if (key.offset >= clone_src_i_size)
5995 			break;
5996 
5997 		if (key.offset + ext_len > clone_src_i_size) {
5998 			ext_len = clone_src_i_size - key.offset;
5999 			crossed_src_i_size = true;
6000 		}
6001 
6002 		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
6003 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
6004 			clone_root->offset = key.offset;
6005 			if (clone_data_offset < data_offset &&
6006 				clone_data_offset + ext_len > data_offset) {
6007 				u64 extent_offset;
6008 
6009 				extent_offset = data_offset - clone_data_offset;
6010 				ext_len -= extent_offset;
6011 				clone_data_offset += extent_offset;
6012 				clone_root->offset += extent_offset;
6013 			}
6014 		}
6015 
6016 		clone_len = min_t(u64, ext_len, len);
6017 
6018 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6019 		    clone_data_offset == data_offset) {
6020 			const u64 src_end = clone_root->offset + clone_len;
6021 			const u64 sectorsize = SZ_64K;
6022 
6023 			/*
6024 			 * We can't clone the last block, when its size is not
6025 			 * sector size aligned, into the middle of a file. If we
6026 			 * do so, the receiver will get a failure (-EINVAL) when
6027 			 * trying to clone or will silently corrupt the data in
6028 			 * the destination file if it's on a kernel without the
6029 			 * fix introduced by commit ac765f83f1397646
6030 			 * ("Btrfs: fix data corruption due to cloning of eof
6031 			 * block).
6032 			 *
6033 			 * So issue a clone of the aligned down range plus a
6034 			 * regular write for the eof block, if we hit that case.
6035 			 *
6036 			 * Also, we use the maximum possible sector size, 64K,
6037 			 * because we don't know what's the sector size of the
6038 			 * filesystem that receives the stream, so we have to
6039 			 * assume the largest possible sector size.
6040 			 */
6041 			if (src_end == clone_src_i_size &&
6042 			    !IS_ALIGNED(src_end, sectorsize) &&
6043 			    offset + clone_len < sctx->cur_inode_size) {
6044 				u64 slen;
6045 
6046 				slen = ALIGN_DOWN(src_end - clone_root->offset,
6047 						  sectorsize);
6048 				if (slen > 0) {
6049 					ret = send_clone(sctx, offset, slen,
6050 							 clone_root);
6051 					if (ret < 0)
6052 						goto out;
6053 				}
6054 				ret = send_extent_data(sctx, dst_path,
6055 						       offset + slen,
6056 						       clone_len - slen);
6057 			} else {
6058 				ret = send_clone(sctx, offset, clone_len,
6059 						 clone_root);
6060 			}
6061 		} else if (crossed_src_i_size && clone_len < len) {
6062 			/*
6063 			 * If we are at i_size of the clone source inode and we
6064 			 * can not clone from it, terminate the loop. This is
6065 			 * to avoid sending two write operations, one with a
6066 			 * length matching clone_len and the final one after
6067 			 * this loop with a length of len - clone_len.
6068 			 *
6069 			 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6070 			 * was passed to the send ioctl), this helps avoid
6071 			 * sending an encoded write for an offset that is not
6072 			 * sector size aligned, in case the i_size of the source
6073 			 * inode is not sector size aligned. That will make the
6074 			 * receiver fallback to decompression of the data and
6075 			 * writing it using regular buffered IO, therefore while
6076 			 * not incorrect, it's not optimal due decompression and
6077 			 * possible re-compression at the receiver.
6078 			 */
6079 			break;
6080 		} else {
6081 			ret = send_extent_data(sctx, dst_path, offset,
6082 					       clone_len);
6083 		}
6084 
6085 		if (ret < 0)
6086 			goto out;
6087 
6088 		len -= clone_len;
6089 		if (len == 0)
6090 			break;
6091 		offset += clone_len;
6092 		clone_root->offset += clone_len;
6093 
6094 		/*
6095 		 * If we are cloning from the file we are currently processing,
6096 		 * and using the send root as the clone root, we must stop once
6097 		 * the current clone offset reaches the current eof of the file
6098 		 * at the receiver, otherwise we would issue an invalid clone
6099 		 * operation (source range going beyond eof) and cause the
6100 		 * receiver to fail. So if we reach the current eof, bail out
6101 		 * and fallback to a regular write.
6102 		 */
6103 		if (clone_root->root == sctx->send_root &&
6104 		    clone_root->ino == sctx->cur_ino &&
6105 		    clone_root->offset >= sctx->cur_inode_next_write_offset)
6106 			break;
6107 
6108 		data_offset += clone_len;
6109 next:
6110 		path->slots[0]++;
6111 	}
6112 
6113 	if (len > 0)
6114 		ret = send_extent_data(sctx, dst_path, offset, len);
6115 	else
6116 		ret = 0;
6117 out:
6118 	btrfs_free_path(path);
6119 	return ret;
6120 }
6121 
6122 static int send_write_or_clone(struct send_ctx *sctx,
6123 			       struct btrfs_path *path,
6124 			       struct btrfs_key *key,
6125 			       struct clone_root *clone_root)
6126 {
6127 	int ret = 0;
6128 	u64 offset = key->offset;
6129 	u64 end;
6130 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
6131 
6132 	end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6133 	if (offset >= end)
6134 		return 0;
6135 
6136 	if (clone_root && IS_ALIGNED(end, bs)) {
6137 		struct btrfs_file_extent_item *ei;
6138 		u64 disk_byte;
6139 		u64 data_offset;
6140 
6141 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6142 				    struct btrfs_file_extent_item);
6143 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6144 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6145 		ret = clone_range(sctx, path, clone_root, disk_byte,
6146 				  data_offset, offset, end - offset);
6147 	} else {
6148 		ret = send_extent_data(sctx, path, offset, end - offset);
6149 	}
6150 	sctx->cur_inode_next_write_offset = end;
6151 	return ret;
6152 }
6153 
6154 static int is_extent_unchanged(struct send_ctx *sctx,
6155 			       struct btrfs_path *left_path,
6156 			       struct btrfs_key *ekey)
6157 {
6158 	int ret = 0;
6159 	struct btrfs_key key;
6160 	struct btrfs_path *path = NULL;
6161 	struct extent_buffer *eb;
6162 	int slot;
6163 	struct btrfs_key found_key;
6164 	struct btrfs_file_extent_item *ei;
6165 	u64 left_disknr;
6166 	u64 right_disknr;
6167 	u64 left_offset;
6168 	u64 right_offset;
6169 	u64 left_offset_fixed;
6170 	u64 left_len;
6171 	u64 right_len;
6172 	u64 left_gen;
6173 	u64 right_gen;
6174 	u8 left_type;
6175 	u8 right_type;
6176 
6177 	path = alloc_path_for_send();
6178 	if (!path)
6179 		return -ENOMEM;
6180 
6181 	eb = left_path->nodes[0];
6182 	slot = left_path->slots[0];
6183 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6184 	left_type = btrfs_file_extent_type(eb, ei);
6185 
6186 	if (left_type != BTRFS_FILE_EXTENT_REG) {
6187 		ret = 0;
6188 		goto out;
6189 	}
6190 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6191 	left_len = btrfs_file_extent_num_bytes(eb, ei);
6192 	left_offset = btrfs_file_extent_offset(eb, ei);
6193 	left_gen = btrfs_file_extent_generation(eb, ei);
6194 
6195 	/*
6196 	 * Following comments will refer to these graphics. L is the left
6197 	 * extents which we are checking at the moment. 1-8 are the right
6198 	 * extents that we iterate.
6199 	 *
6200 	 *       |-----L-----|
6201 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6202 	 *
6203 	 *       |-----L-----|
6204 	 * |--1--|-2b-|...(same as above)
6205 	 *
6206 	 * Alternative situation. Happens on files where extents got split.
6207 	 *       |-----L-----|
6208 	 * |-----------7-----------|-6-|
6209 	 *
6210 	 * Alternative situation. Happens on files which got larger.
6211 	 *       |-----L-----|
6212 	 * |-8-|
6213 	 * Nothing follows after 8.
6214 	 */
6215 
6216 	key.objectid = ekey->objectid;
6217 	key.type = BTRFS_EXTENT_DATA_KEY;
6218 	key.offset = ekey->offset;
6219 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6220 	if (ret < 0)
6221 		goto out;
6222 	if (ret) {
6223 		ret = 0;
6224 		goto out;
6225 	}
6226 
6227 	/*
6228 	 * Handle special case where the right side has no extents at all.
6229 	 */
6230 	eb = path->nodes[0];
6231 	slot = path->slots[0];
6232 	btrfs_item_key_to_cpu(eb, &found_key, slot);
6233 	if (found_key.objectid != key.objectid ||
6234 	    found_key.type != key.type) {
6235 		/* If we're a hole then just pretend nothing changed */
6236 		ret = (left_disknr) ? 0 : 1;
6237 		goto out;
6238 	}
6239 
6240 	/*
6241 	 * We're now on 2a, 2b or 7.
6242 	 */
6243 	key = found_key;
6244 	while (key.offset < ekey->offset + left_len) {
6245 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6246 		right_type = btrfs_file_extent_type(eb, ei);
6247 		if (right_type != BTRFS_FILE_EXTENT_REG &&
6248 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
6249 			ret = 0;
6250 			goto out;
6251 		}
6252 
6253 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6254 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
6255 			right_len = PAGE_ALIGN(right_len);
6256 		} else {
6257 			right_len = btrfs_file_extent_num_bytes(eb, ei);
6258 		}
6259 
6260 		/*
6261 		 * Are we at extent 8? If yes, we know the extent is changed.
6262 		 * This may only happen on the first iteration.
6263 		 */
6264 		if (found_key.offset + right_len <= ekey->offset) {
6265 			/* If we're a hole just pretend nothing changed */
6266 			ret = (left_disknr) ? 0 : 1;
6267 			goto out;
6268 		}
6269 
6270 		/*
6271 		 * We just wanted to see if when we have an inline extent, what
6272 		 * follows it is a regular extent (wanted to check the above
6273 		 * condition for inline extents too). This should normally not
6274 		 * happen but it's possible for example when we have an inline
6275 		 * compressed extent representing data with a size matching
6276 		 * the page size (currently the same as sector size).
6277 		 */
6278 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6279 			ret = 0;
6280 			goto out;
6281 		}
6282 
6283 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6284 		right_offset = btrfs_file_extent_offset(eb, ei);
6285 		right_gen = btrfs_file_extent_generation(eb, ei);
6286 
6287 		left_offset_fixed = left_offset;
6288 		if (key.offset < ekey->offset) {
6289 			/* Fix the right offset for 2a and 7. */
6290 			right_offset += ekey->offset - key.offset;
6291 		} else {
6292 			/* Fix the left offset for all behind 2a and 2b */
6293 			left_offset_fixed += key.offset - ekey->offset;
6294 		}
6295 
6296 		/*
6297 		 * Check if we have the same extent.
6298 		 */
6299 		if (left_disknr != right_disknr ||
6300 		    left_offset_fixed != right_offset ||
6301 		    left_gen != right_gen) {
6302 			ret = 0;
6303 			goto out;
6304 		}
6305 
6306 		/*
6307 		 * Go to the next extent.
6308 		 */
6309 		ret = btrfs_next_item(sctx->parent_root, path);
6310 		if (ret < 0)
6311 			goto out;
6312 		if (!ret) {
6313 			eb = path->nodes[0];
6314 			slot = path->slots[0];
6315 			btrfs_item_key_to_cpu(eb, &found_key, slot);
6316 		}
6317 		if (ret || found_key.objectid != key.objectid ||
6318 		    found_key.type != key.type) {
6319 			key.offset += right_len;
6320 			break;
6321 		}
6322 		if (found_key.offset != key.offset + right_len) {
6323 			ret = 0;
6324 			goto out;
6325 		}
6326 		key = found_key;
6327 	}
6328 
6329 	/*
6330 	 * We're now behind the left extent (treat as unchanged) or at the end
6331 	 * of the right side (treat as changed).
6332 	 */
6333 	if (key.offset >= ekey->offset + left_len)
6334 		ret = 1;
6335 	else
6336 		ret = 0;
6337 
6338 
6339 out:
6340 	btrfs_free_path(path);
6341 	return ret;
6342 }
6343 
6344 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6345 {
6346 	struct btrfs_path *path;
6347 	struct btrfs_root *root = sctx->send_root;
6348 	struct btrfs_key key;
6349 	int ret;
6350 
6351 	path = alloc_path_for_send();
6352 	if (!path)
6353 		return -ENOMEM;
6354 
6355 	sctx->cur_inode_last_extent = 0;
6356 
6357 	key.objectid = sctx->cur_ino;
6358 	key.type = BTRFS_EXTENT_DATA_KEY;
6359 	key.offset = offset;
6360 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6361 	if (ret < 0)
6362 		goto out;
6363 	ret = 0;
6364 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6365 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6366 		goto out;
6367 
6368 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6369 out:
6370 	btrfs_free_path(path);
6371 	return ret;
6372 }
6373 
6374 static int range_is_hole_in_parent(struct send_ctx *sctx,
6375 				   const u64 start,
6376 				   const u64 end)
6377 {
6378 	struct btrfs_path *path;
6379 	struct btrfs_key key;
6380 	struct btrfs_root *root = sctx->parent_root;
6381 	u64 search_start = start;
6382 	int ret;
6383 
6384 	path = alloc_path_for_send();
6385 	if (!path)
6386 		return -ENOMEM;
6387 
6388 	key.objectid = sctx->cur_ino;
6389 	key.type = BTRFS_EXTENT_DATA_KEY;
6390 	key.offset = search_start;
6391 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6392 	if (ret < 0)
6393 		goto out;
6394 	if (ret > 0 && path->slots[0] > 0)
6395 		path->slots[0]--;
6396 
6397 	while (search_start < end) {
6398 		struct extent_buffer *leaf = path->nodes[0];
6399 		int slot = path->slots[0];
6400 		struct btrfs_file_extent_item *fi;
6401 		u64 extent_end;
6402 
6403 		if (slot >= btrfs_header_nritems(leaf)) {
6404 			ret = btrfs_next_leaf(root, path);
6405 			if (ret < 0)
6406 				goto out;
6407 			else if (ret > 0)
6408 				break;
6409 			continue;
6410 		}
6411 
6412 		btrfs_item_key_to_cpu(leaf, &key, slot);
6413 		if (key.objectid < sctx->cur_ino ||
6414 		    key.type < BTRFS_EXTENT_DATA_KEY)
6415 			goto next;
6416 		if (key.objectid > sctx->cur_ino ||
6417 		    key.type > BTRFS_EXTENT_DATA_KEY ||
6418 		    key.offset >= end)
6419 			break;
6420 
6421 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6422 		extent_end = btrfs_file_extent_end(path);
6423 		if (extent_end <= start)
6424 			goto next;
6425 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6426 			search_start = extent_end;
6427 			goto next;
6428 		}
6429 		ret = 0;
6430 		goto out;
6431 next:
6432 		path->slots[0]++;
6433 	}
6434 	ret = 1;
6435 out:
6436 	btrfs_free_path(path);
6437 	return ret;
6438 }
6439 
6440 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6441 			   struct btrfs_key *key)
6442 {
6443 	int ret = 0;
6444 
6445 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6446 		return 0;
6447 
6448 	if (sctx->cur_inode_last_extent == (u64)-1) {
6449 		ret = get_last_extent(sctx, key->offset - 1);
6450 		if (ret)
6451 			return ret;
6452 	}
6453 
6454 	if (path->slots[0] == 0 &&
6455 	    sctx->cur_inode_last_extent < key->offset) {
6456 		/*
6457 		 * We might have skipped entire leafs that contained only
6458 		 * file extent items for our current inode. These leafs have
6459 		 * a generation number smaller (older) than the one in the
6460 		 * current leaf and the leaf our last extent came from, and
6461 		 * are located between these 2 leafs.
6462 		 */
6463 		ret = get_last_extent(sctx, key->offset - 1);
6464 		if (ret)
6465 			return ret;
6466 	}
6467 
6468 	if (sctx->cur_inode_last_extent < key->offset) {
6469 		ret = range_is_hole_in_parent(sctx,
6470 					      sctx->cur_inode_last_extent,
6471 					      key->offset);
6472 		if (ret < 0)
6473 			return ret;
6474 		else if (ret == 0)
6475 			ret = send_hole(sctx, key->offset);
6476 		else
6477 			ret = 0;
6478 	}
6479 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6480 	return ret;
6481 }
6482 
6483 static int process_extent(struct send_ctx *sctx,
6484 			  struct btrfs_path *path,
6485 			  struct btrfs_key *key)
6486 {
6487 	struct clone_root *found_clone = NULL;
6488 	int ret = 0;
6489 
6490 	if (S_ISLNK(sctx->cur_inode_mode))
6491 		return 0;
6492 
6493 	if (sctx->parent_root && !sctx->cur_inode_new) {
6494 		ret = is_extent_unchanged(sctx, path, key);
6495 		if (ret < 0)
6496 			goto out;
6497 		if (ret) {
6498 			ret = 0;
6499 			goto out_hole;
6500 		}
6501 	} else {
6502 		struct btrfs_file_extent_item *ei;
6503 		u8 type;
6504 
6505 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6506 				    struct btrfs_file_extent_item);
6507 		type = btrfs_file_extent_type(path->nodes[0], ei);
6508 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6509 		    type == BTRFS_FILE_EXTENT_REG) {
6510 			/*
6511 			 * The send spec does not have a prealloc command yet,
6512 			 * so just leave a hole for prealloc'ed extents until
6513 			 * we have enough commands queued up to justify rev'ing
6514 			 * the send spec.
6515 			 */
6516 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6517 				ret = 0;
6518 				goto out;
6519 			}
6520 
6521 			/* Have a hole, just skip it. */
6522 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6523 				ret = 0;
6524 				goto out;
6525 			}
6526 		}
6527 	}
6528 
6529 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6530 			sctx->cur_inode_size, &found_clone);
6531 	if (ret != -ENOENT && ret < 0)
6532 		goto out;
6533 
6534 	ret = send_write_or_clone(sctx, path, key, found_clone);
6535 	if (ret)
6536 		goto out;
6537 out_hole:
6538 	ret = maybe_send_hole(sctx, path, key);
6539 out:
6540 	return ret;
6541 }
6542 
6543 static int process_all_extents(struct send_ctx *sctx)
6544 {
6545 	int ret = 0;
6546 	int iter_ret = 0;
6547 	struct btrfs_root *root;
6548 	struct btrfs_path *path;
6549 	struct btrfs_key key;
6550 	struct btrfs_key found_key;
6551 
6552 	root = sctx->send_root;
6553 	path = alloc_path_for_send();
6554 	if (!path)
6555 		return -ENOMEM;
6556 
6557 	key.objectid = sctx->cmp_key->objectid;
6558 	key.type = BTRFS_EXTENT_DATA_KEY;
6559 	key.offset = 0;
6560 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6561 		if (found_key.objectid != key.objectid ||
6562 		    found_key.type != key.type) {
6563 			ret = 0;
6564 			break;
6565 		}
6566 
6567 		ret = process_extent(sctx, path, &found_key);
6568 		if (ret < 0)
6569 			break;
6570 	}
6571 	/* Catch error found during iteration */
6572 	if (iter_ret < 0)
6573 		ret = iter_ret;
6574 
6575 	btrfs_free_path(path);
6576 	return ret;
6577 }
6578 
6579 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6580 					   int *pending_move,
6581 					   int *refs_processed)
6582 {
6583 	int ret = 0;
6584 
6585 	if (sctx->cur_ino == 0)
6586 		goto out;
6587 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6588 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6589 		goto out;
6590 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6591 		goto out;
6592 
6593 	ret = process_recorded_refs(sctx, pending_move);
6594 	if (ret < 0)
6595 		goto out;
6596 
6597 	*refs_processed = 1;
6598 out:
6599 	return ret;
6600 }
6601 
6602 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6603 {
6604 	int ret = 0;
6605 	struct btrfs_inode_info info;
6606 	u64 left_mode;
6607 	u64 left_uid;
6608 	u64 left_gid;
6609 	u64 left_fileattr;
6610 	u64 right_mode;
6611 	u64 right_uid;
6612 	u64 right_gid;
6613 	u64 right_fileattr;
6614 	int need_chmod = 0;
6615 	int need_chown = 0;
6616 	bool need_fileattr = false;
6617 	int need_truncate = 1;
6618 	int pending_move = 0;
6619 	int refs_processed = 0;
6620 
6621 	if (sctx->ignore_cur_inode)
6622 		return 0;
6623 
6624 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6625 					      &refs_processed);
6626 	if (ret < 0)
6627 		goto out;
6628 
6629 	/*
6630 	 * We have processed the refs and thus need to advance send_progress.
6631 	 * Now, calls to get_cur_xxx will take the updated refs of the current
6632 	 * inode into account.
6633 	 *
6634 	 * On the other hand, if our current inode is a directory and couldn't
6635 	 * be moved/renamed because its parent was renamed/moved too and it has
6636 	 * a higher inode number, we can only move/rename our current inode
6637 	 * after we moved/renamed its parent. Therefore in this case operate on
6638 	 * the old path (pre move/rename) of our current inode, and the
6639 	 * move/rename will be performed later.
6640 	 */
6641 	if (refs_processed && !pending_move)
6642 		sctx->send_progress = sctx->cur_ino + 1;
6643 
6644 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6645 		goto out;
6646 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6647 		goto out;
6648 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6649 	if (ret < 0)
6650 		goto out;
6651 	left_mode = info.mode;
6652 	left_uid = info.uid;
6653 	left_gid = info.gid;
6654 	left_fileattr = info.fileattr;
6655 
6656 	if (!sctx->parent_root || sctx->cur_inode_new) {
6657 		need_chown = 1;
6658 		if (!S_ISLNK(sctx->cur_inode_mode))
6659 			need_chmod = 1;
6660 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6661 			need_truncate = 0;
6662 	} else {
6663 		u64 old_size;
6664 
6665 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6666 		if (ret < 0)
6667 			goto out;
6668 		old_size = info.size;
6669 		right_mode = info.mode;
6670 		right_uid = info.uid;
6671 		right_gid = info.gid;
6672 		right_fileattr = info.fileattr;
6673 
6674 		if (left_uid != right_uid || left_gid != right_gid)
6675 			need_chown = 1;
6676 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6677 			need_chmod = 1;
6678 		if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6679 			need_fileattr = true;
6680 		if ((old_size == sctx->cur_inode_size) ||
6681 		    (sctx->cur_inode_size > old_size &&
6682 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6683 			need_truncate = 0;
6684 	}
6685 
6686 	if (S_ISREG(sctx->cur_inode_mode)) {
6687 		if (need_send_hole(sctx)) {
6688 			if (sctx->cur_inode_last_extent == (u64)-1 ||
6689 			    sctx->cur_inode_last_extent <
6690 			    sctx->cur_inode_size) {
6691 				ret = get_last_extent(sctx, (u64)-1);
6692 				if (ret)
6693 					goto out;
6694 			}
6695 			if (sctx->cur_inode_last_extent <
6696 			    sctx->cur_inode_size) {
6697 				ret = send_hole(sctx, sctx->cur_inode_size);
6698 				if (ret)
6699 					goto out;
6700 			}
6701 		}
6702 		if (need_truncate) {
6703 			ret = send_truncate(sctx, sctx->cur_ino,
6704 					    sctx->cur_inode_gen,
6705 					    sctx->cur_inode_size);
6706 			if (ret < 0)
6707 				goto out;
6708 		}
6709 	}
6710 
6711 	if (need_chown) {
6712 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6713 				left_uid, left_gid);
6714 		if (ret < 0)
6715 			goto out;
6716 	}
6717 	if (need_chmod) {
6718 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6719 				left_mode);
6720 		if (ret < 0)
6721 			goto out;
6722 	}
6723 	if (need_fileattr) {
6724 		ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6725 				    left_fileattr);
6726 		if (ret < 0)
6727 			goto out;
6728 	}
6729 
6730 	if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6731 	    && sctx->cur_inode_needs_verity) {
6732 		ret = process_verity(sctx);
6733 		if (ret < 0)
6734 			goto out;
6735 	}
6736 
6737 	ret = send_capabilities(sctx);
6738 	if (ret < 0)
6739 		goto out;
6740 
6741 	/*
6742 	 * If other directory inodes depended on our current directory
6743 	 * inode's move/rename, now do their move/rename operations.
6744 	 */
6745 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6746 		ret = apply_children_dir_moves(sctx);
6747 		if (ret)
6748 			goto out;
6749 		/*
6750 		 * Need to send that every time, no matter if it actually
6751 		 * changed between the two trees as we have done changes to
6752 		 * the inode before. If our inode is a directory and it's
6753 		 * waiting to be moved/renamed, we will send its utimes when
6754 		 * it's moved/renamed, therefore we don't need to do it here.
6755 		 */
6756 		sctx->send_progress = sctx->cur_ino + 1;
6757 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6758 		if (ret < 0)
6759 			goto out;
6760 	}
6761 
6762 out:
6763 	return ret;
6764 }
6765 
6766 static void close_current_inode(struct send_ctx *sctx)
6767 {
6768 	u64 i_size;
6769 
6770 	if (sctx->cur_inode == NULL)
6771 		return;
6772 
6773 	i_size = i_size_read(sctx->cur_inode);
6774 
6775 	/*
6776 	 * If we are doing an incremental send, we may have extents between the
6777 	 * last processed extent and the i_size that have not been processed
6778 	 * because they haven't changed but we may have read some of their pages
6779 	 * through readahead, see the comments at send_extent_data().
6780 	 */
6781 	if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6782 		truncate_inode_pages_range(&sctx->cur_inode->i_data,
6783 					   sctx->page_cache_clear_start,
6784 					   round_up(i_size, PAGE_SIZE) - 1);
6785 
6786 	iput(sctx->cur_inode);
6787 	sctx->cur_inode = NULL;
6788 }
6789 
6790 static int changed_inode(struct send_ctx *sctx,
6791 			 enum btrfs_compare_tree_result result)
6792 {
6793 	int ret = 0;
6794 	struct btrfs_key *key = sctx->cmp_key;
6795 	struct btrfs_inode_item *left_ii = NULL;
6796 	struct btrfs_inode_item *right_ii = NULL;
6797 	u64 left_gen = 0;
6798 	u64 right_gen = 0;
6799 
6800 	close_current_inode(sctx);
6801 
6802 	sctx->cur_ino = key->objectid;
6803 	sctx->cur_inode_new_gen = false;
6804 	sctx->cur_inode_last_extent = (u64)-1;
6805 	sctx->cur_inode_next_write_offset = 0;
6806 	sctx->ignore_cur_inode = false;
6807 
6808 	/*
6809 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6810 	 * functions that the current inode's refs are not updated yet. Later,
6811 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6812 	 */
6813 	sctx->send_progress = sctx->cur_ino;
6814 
6815 	if (result == BTRFS_COMPARE_TREE_NEW ||
6816 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6817 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6818 				sctx->left_path->slots[0],
6819 				struct btrfs_inode_item);
6820 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6821 				left_ii);
6822 	} else {
6823 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6824 				sctx->right_path->slots[0],
6825 				struct btrfs_inode_item);
6826 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6827 				right_ii);
6828 	}
6829 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6830 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6831 				sctx->right_path->slots[0],
6832 				struct btrfs_inode_item);
6833 
6834 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6835 				right_ii);
6836 
6837 		/*
6838 		 * The cur_ino = root dir case is special here. We can't treat
6839 		 * the inode as deleted+reused because it would generate a
6840 		 * stream that tries to delete/mkdir the root dir.
6841 		 */
6842 		if (left_gen != right_gen &&
6843 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6844 			sctx->cur_inode_new_gen = true;
6845 	}
6846 
6847 	/*
6848 	 * Normally we do not find inodes with a link count of zero (orphans)
6849 	 * because the most common case is to create a snapshot and use it
6850 	 * for a send operation. However other less common use cases involve
6851 	 * using a subvolume and send it after turning it to RO mode just
6852 	 * after deleting all hard links of a file while holding an open
6853 	 * file descriptor against it or turning a RO snapshot into RW mode,
6854 	 * keep an open file descriptor against a file, delete it and then
6855 	 * turn the snapshot back to RO mode before using it for a send
6856 	 * operation. The former is what the receiver operation does.
6857 	 * Therefore, if we want to send these snapshots soon after they're
6858 	 * received, we need to handle orphan inodes as well. Moreover, orphans
6859 	 * can appear not only in the send snapshot but also in the parent
6860 	 * snapshot. Here are several cases:
6861 	 *
6862 	 * Case 1: BTRFS_COMPARE_TREE_NEW
6863 	 *       |  send snapshot  | action
6864 	 * --------------------------------
6865 	 * nlink |        0        | ignore
6866 	 *
6867 	 * Case 2: BTRFS_COMPARE_TREE_DELETED
6868 	 *       | parent snapshot | action
6869 	 * ----------------------------------
6870 	 * nlink |        0        | as usual
6871 	 * Note: No unlinks will be sent because there're no paths for it.
6872 	 *
6873 	 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6874 	 *           |       | parent snapshot | send snapshot | action
6875 	 * -----------------------------------------------------------------------
6876 	 * subcase 1 | nlink |        0        |       0       | ignore
6877 	 * subcase 2 | nlink |       >0        |       0       | new_gen(deletion)
6878 	 * subcase 3 | nlink |        0        |      >0       | new_gen(creation)
6879 	 *
6880 	 */
6881 	if (result == BTRFS_COMPARE_TREE_NEW) {
6882 		if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6883 			sctx->ignore_cur_inode = true;
6884 			goto out;
6885 		}
6886 		sctx->cur_inode_gen = left_gen;
6887 		sctx->cur_inode_new = true;
6888 		sctx->cur_inode_deleted = false;
6889 		sctx->cur_inode_size = btrfs_inode_size(
6890 				sctx->left_path->nodes[0], left_ii);
6891 		sctx->cur_inode_mode = btrfs_inode_mode(
6892 				sctx->left_path->nodes[0], left_ii);
6893 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6894 				sctx->left_path->nodes[0], left_ii);
6895 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6896 			ret = send_create_inode_if_needed(sctx);
6897 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6898 		sctx->cur_inode_gen = right_gen;
6899 		sctx->cur_inode_new = false;
6900 		sctx->cur_inode_deleted = true;
6901 		sctx->cur_inode_size = btrfs_inode_size(
6902 				sctx->right_path->nodes[0], right_ii);
6903 		sctx->cur_inode_mode = btrfs_inode_mode(
6904 				sctx->right_path->nodes[0], right_ii);
6905 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6906 		u32 new_nlinks, old_nlinks;
6907 
6908 		new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6909 		old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
6910 		if (new_nlinks == 0 && old_nlinks == 0) {
6911 			sctx->ignore_cur_inode = true;
6912 			goto out;
6913 		} else if (new_nlinks == 0 || old_nlinks == 0) {
6914 			sctx->cur_inode_new_gen = 1;
6915 		}
6916 		/*
6917 		 * We need to do some special handling in case the inode was
6918 		 * reported as changed with a changed generation number. This
6919 		 * means that the original inode was deleted and new inode
6920 		 * reused the same inum. So we have to treat the old inode as
6921 		 * deleted and the new one as new.
6922 		 */
6923 		if (sctx->cur_inode_new_gen) {
6924 			/*
6925 			 * First, process the inode as if it was deleted.
6926 			 */
6927 			if (old_nlinks > 0) {
6928 				sctx->cur_inode_gen = right_gen;
6929 				sctx->cur_inode_new = false;
6930 				sctx->cur_inode_deleted = true;
6931 				sctx->cur_inode_size = btrfs_inode_size(
6932 						sctx->right_path->nodes[0], right_ii);
6933 				sctx->cur_inode_mode = btrfs_inode_mode(
6934 						sctx->right_path->nodes[0], right_ii);
6935 				ret = process_all_refs(sctx,
6936 						BTRFS_COMPARE_TREE_DELETED);
6937 				if (ret < 0)
6938 					goto out;
6939 			}
6940 
6941 			/*
6942 			 * Now process the inode as if it was new.
6943 			 */
6944 			if (new_nlinks > 0) {
6945 				sctx->cur_inode_gen = left_gen;
6946 				sctx->cur_inode_new = true;
6947 				sctx->cur_inode_deleted = false;
6948 				sctx->cur_inode_size = btrfs_inode_size(
6949 						sctx->left_path->nodes[0],
6950 						left_ii);
6951 				sctx->cur_inode_mode = btrfs_inode_mode(
6952 						sctx->left_path->nodes[0],
6953 						left_ii);
6954 				sctx->cur_inode_rdev = btrfs_inode_rdev(
6955 						sctx->left_path->nodes[0],
6956 						left_ii);
6957 				ret = send_create_inode_if_needed(sctx);
6958 				if (ret < 0)
6959 					goto out;
6960 
6961 				ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6962 				if (ret < 0)
6963 					goto out;
6964 				/*
6965 				 * Advance send_progress now as we did not get
6966 				 * into process_recorded_refs_if_needed in the
6967 				 * new_gen case.
6968 				 */
6969 				sctx->send_progress = sctx->cur_ino + 1;
6970 
6971 				/*
6972 				 * Now process all extents and xattrs of the
6973 				 * inode as if they were all new.
6974 				 */
6975 				ret = process_all_extents(sctx);
6976 				if (ret < 0)
6977 					goto out;
6978 				ret = process_all_new_xattrs(sctx);
6979 				if (ret < 0)
6980 					goto out;
6981 			}
6982 		} else {
6983 			sctx->cur_inode_gen = left_gen;
6984 			sctx->cur_inode_new = false;
6985 			sctx->cur_inode_new_gen = false;
6986 			sctx->cur_inode_deleted = false;
6987 			sctx->cur_inode_size = btrfs_inode_size(
6988 					sctx->left_path->nodes[0], left_ii);
6989 			sctx->cur_inode_mode = btrfs_inode_mode(
6990 					sctx->left_path->nodes[0], left_ii);
6991 		}
6992 	}
6993 
6994 out:
6995 	return ret;
6996 }
6997 
6998 /*
6999  * We have to process new refs before deleted refs, but compare_trees gives us
7000  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7001  * first and later process them in process_recorded_refs.
7002  * For the cur_inode_new_gen case, we skip recording completely because
7003  * changed_inode did already initiate processing of refs. The reason for this is
7004  * that in this case, compare_tree actually compares the refs of 2 different
7005  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7006  * refs of the right tree as deleted and all refs of the left tree as new.
7007  */
7008 static int changed_ref(struct send_ctx *sctx,
7009 		       enum btrfs_compare_tree_result result)
7010 {
7011 	int ret = 0;
7012 
7013 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7014 		inconsistent_snapshot_error(sctx, result, "reference");
7015 		return -EIO;
7016 	}
7017 
7018 	if (!sctx->cur_inode_new_gen &&
7019 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7020 		if (result == BTRFS_COMPARE_TREE_NEW)
7021 			ret = record_new_ref(sctx);
7022 		else if (result == BTRFS_COMPARE_TREE_DELETED)
7023 			ret = record_deleted_ref(sctx);
7024 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7025 			ret = record_changed_ref(sctx);
7026 	}
7027 
7028 	return ret;
7029 }
7030 
7031 /*
7032  * Process new/deleted/changed xattrs. We skip processing in the
7033  * cur_inode_new_gen case because changed_inode did already initiate processing
7034  * of xattrs. The reason is the same as in changed_ref
7035  */
7036 static int changed_xattr(struct send_ctx *sctx,
7037 			 enum btrfs_compare_tree_result result)
7038 {
7039 	int ret = 0;
7040 
7041 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7042 		inconsistent_snapshot_error(sctx, result, "xattr");
7043 		return -EIO;
7044 	}
7045 
7046 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7047 		if (result == BTRFS_COMPARE_TREE_NEW)
7048 			ret = process_new_xattr(sctx);
7049 		else if (result == BTRFS_COMPARE_TREE_DELETED)
7050 			ret = process_deleted_xattr(sctx);
7051 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7052 			ret = process_changed_xattr(sctx);
7053 	}
7054 
7055 	return ret;
7056 }
7057 
7058 /*
7059  * Process new/deleted/changed extents. We skip processing in the
7060  * cur_inode_new_gen case because changed_inode did already initiate processing
7061  * of extents. The reason is the same as in changed_ref
7062  */
7063 static int changed_extent(struct send_ctx *sctx,
7064 			  enum btrfs_compare_tree_result result)
7065 {
7066 	int ret = 0;
7067 
7068 	/*
7069 	 * We have found an extent item that changed without the inode item
7070 	 * having changed. This can happen either after relocation (where the
7071 	 * disk_bytenr of an extent item is replaced at
7072 	 * relocation.c:replace_file_extents()) or after deduplication into a
7073 	 * file in both the parent and send snapshots (where an extent item can
7074 	 * get modified or replaced with a new one). Note that deduplication
7075 	 * updates the inode item, but it only changes the iversion (sequence
7076 	 * field in the inode item) of the inode, so if a file is deduplicated
7077 	 * the same amount of times in both the parent and send snapshots, its
7078 	 * iversion becomes the same in both snapshots, whence the inode item is
7079 	 * the same on both snapshots.
7080 	 */
7081 	if (sctx->cur_ino != sctx->cmp_key->objectid)
7082 		return 0;
7083 
7084 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7085 		if (result != BTRFS_COMPARE_TREE_DELETED)
7086 			ret = process_extent(sctx, sctx->left_path,
7087 					sctx->cmp_key);
7088 	}
7089 
7090 	return ret;
7091 }
7092 
7093 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7094 {
7095 	int ret = 0;
7096 
7097 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7098 		if (result == BTRFS_COMPARE_TREE_NEW)
7099 			sctx->cur_inode_needs_verity = true;
7100 	}
7101 	return ret;
7102 }
7103 
7104 static int dir_changed(struct send_ctx *sctx, u64 dir)
7105 {
7106 	u64 orig_gen, new_gen;
7107 	int ret;
7108 
7109 	ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7110 	if (ret)
7111 		return ret;
7112 
7113 	ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7114 	if (ret)
7115 		return ret;
7116 
7117 	return (orig_gen != new_gen) ? 1 : 0;
7118 }
7119 
7120 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7121 			struct btrfs_key *key)
7122 {
7123 	struct btrfs_inode_extref *extref;
7124 	struct extent_buffer *leaf;
7125 	u64 dirid = 0, last_dirid = 0;
7126 	unsigned long ptr;
7127 	u32 item_size;
7128 	u32 cur_offset = 0;
7129 	int ref_name_len;
7130 	int ret = 0;
7131 
7132 	/* Easy case, just check this one dirid */
7133 	if (key->type == BTRFS_INODE_REF_KEY) {
7134 		dirid = key->offset;
7135 
7136 		ret = dir_changed(sctx, dirid);
7137 		goto out;
7138 	}
7139 
7140 	leaf = path->nodes[0];
7141 	item_size = btrfs_item_size(leaf, path->slots[0]);
7142 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7143 	while (cur_offset < item_size) {
7144 		extref = (struct btrfs_inode_extref *)(ptr +
7145 						       cur_offset);
7146 		dirid = btrfs_inode_extref_parent(leaf, extref);
7147 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7148 		cur_offset += ref_name_len + sizeof(*extref);
7149 		if (dirid == last_dirid)
7150 			continue;
7151 		ret = dir_changed(sctx, dirid);
7152 		if (ret)
7153 			break;
7154 		last_dirid = dirid;
7155 	}
7156 out:
7157 	return ret;
7158 }
7159 
7160 /*
7161  * Updates compare related fields in sctx and simply forwards to the actual
7162  * changed_xxx functions.
7163  */
7164 static int changed_cb(struct btrfs_path *left_path,
7165 		      struct btrfs_path *right_path,
7166 		      struct btrfs_key *key,
7167 		      enum btrfs_compare_tree_result result,
7168 		      struct send_ctx *sctx)
7169 {
7170 	int ret = 0;
7171 
7172 	/*
7173 	 * We can not hold the commit root semaphore here. This is because in
7174 	 * the case of sending and receiving to the same filesystem, using a
7175 	 * pipe, could result in a deadlock:
7176 	 *
7177 	 * 1) The task running send blocks on the pipe because it's full;
7178 	 *
7179 	 * 2) The task running receive, which is the only consumer of the pipe,
7180 	 *    is waiting for a transaction commit (for example due to a space
7181 	 *    reservation when doing a write or triggering a transaction commit
7182 	 *    when creating a subvolume);
7183 	 *
7184 	 * 3) The transaction is waiting to write lock the commit root semaphore,
7185 	 *    but can not acquire it since it's being held at 1).
7186 	 *
7187 	 * Down this call chain we write to the pipe through kernel_write().
7188 	 * The same type of problem can also happen when sending to a file that
7189 	 * is stored in the same filesystem - when reserving space for a write
7190 	 * into the file, we can trigger a transaction commit.
7191 	 *
7192 	 * Our caller has supplied us with clones of leaves from the send and
7193 	 * parent roots, so we're safe here from a concurrent relocation and
7194 	 * further reallocation of metadata extents while we are here. Below we
7195 	 * also assert that the leaves are clones.
7196 	 */
7197 	lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7198 
7199 	/*
7200 	 * We always have a send root, so left_path is never NULL. We will not
7201 	 * have a leaf when we have reached the end of the send root but have
7202 	 * not yet reached the end of the parent root.
7203 	 */
7204 	if (left_path->nodes[0])
7205 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7206 				&left_path->nodes[0]->bflags));
7207 	/*
7208 	 * When doing a full send we don't have a parent root, so right_path is
7209 	 * NULL. When doing an incremental send, we may have reached the end of
7210 	 * the parent root already, so we don't have a leaf at right_path.
7211 	 */
7212 	if (right_path && right_path->nodes[0])
7213 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7214 				&right_path->nodes[0]->bflags));
7215 
7216 	if (result == BTRFS_COMPARE_TREE_SAME) {
7217 		if (key->type == BTRFS_INODE_REF_KEY ||
7218 		    key->type == BTRFS_INODE_EXTREF_KEY) {
7219 			ret = compare_refs(sctx, left_path, key);
7220 			if (!ret)
7221 				return 0;
7222 			if (ret < 0)
7223 				return ret;
7224 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7225 			return maybe_send_hole(sctx, left_path, key);
7226 		} else {
7227 			return 0;
7228 		}
7229 		result = BTRFS_COMPARE_TREE_CHANGED;
7230 		ret = 0;
7231 	}
7232 
7233 	sctx->left_path = left_path;
7234 	sctx->right_path = right_path;
7235 	sctx->cmp_key = key;
7236 
7237 	ret = finish_inode_if_needed(sctx, 0);
7238 	if (ret < 0)
7239 		goto out;
7240 
7241 	/* Ignore non-FS objects */
7242 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7243 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7244 		goto out;
7245 
7246 	if (key->type == BTRFS_INODE_ITEM_KEY) {
7247 		ret = changed_inode(sctx, result);
7248 	} else if (!sctx->ignore_cur_inode) {
7249 		if (key->type == BTRFS_INODE_REF_KEY ||
7250 		    key->type == BTRFS_INODE_EXTREF_KEY)
7251 			ret = changed_ref(sctx, result);
7252 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
7253 			ret = changed_xattr(sctx, result);
7254 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
7255 			ret = changed_extent(sctx, result);
7256 		else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7257 			 key->offset == 0)
7258 			ret = changed_verity(sctx, result);
7259 	}
7260 
7261 out:
7262 	return ret;
7263 }
7264 
7265 static int search_key_again(const struct send_ctx *sctx,
7266 			    struct btrfs_root *root,
7267 			    struct btrfs_path *path,
7268 			    const struct btrfs_key *key)
7269 {
7270 	int ret;
7271 
7272 	if (!path->need_commit_sem)
7273 		lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7274 
7275 	/*
7276 	 * Roots used for send operations are readonly and no one can add,
7277 	 * update or remove keys from them, so we should be able to find our
7278 	 * key again. The only exception is deduplication, which can operate on
7279 	 * readonly roots and add, update or remove keys to/from them - but at
7280 	 * the moment we don't allow it to run in parallel with send.
7281 	 */
7282 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7283 	ASSERT(ret <= 0);
7284 	if (ret > 0) {
7285 		btrfs_print_tree(path->nodes[path->lowest_level], false);
7286 		btrfs_err(root->fs_info,
7287 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7288 			  key->objectid, key->type, key->offset,
7289 			  (root == sctx->parent_root ? "parent" : "send"),
7290 			  root->root_key.objectid, path->lowest_level,
7291 			  path->slots[path->lowest_level]);
7292 		return -EUCLEAN;
7293 	}
7294 
7295 	return ret;
7296 }
7297 
7298 static int full_send_tree(struct send_ctx *sctx)
7299 {
7300 	int ret;
7301 	struct btrfs_root *send_root = sctx->send_root;
7302 	struct btrfs_key key;
7303 	struct btrfs_fs_info *fs_info = send_root->fs_info;
7304 	struct btrfs_path *path;
7305 
7306 	path = alloc_path_for_send();
7307 	if (!path)
7308 		return -ENOMEM;
7309 	path->reada = READA_FORWARD_ALWAYS;
7310 
7311 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7312 	key.type = BTRFS_INODE_ITEM_KEY;
7313 	key.offset = 0;
7314 
7315 	down_read(&fs_info->commit_root_sem);
7316 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7317 	up_read(&fs_info->commit_root_sem);
7318 
7319 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7320 	if (ret < 0)
7321 		goto out;
7322 	if (ret)
7323 		goto out_finish;
7324 
7325 	while (1) {
7326 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7327 
7328 		ret = changed_cb(path, NULL, &key,
7329 				 BTRFS_COMPARE_TREE_NEW, sctx);
7330 		if (ret < 0)
7331 			goto out;
7332 
7333 		down_read(&fs_info->commit_root_sem);
7334 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7335 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7336 			up_read(&fs_info->commit_root_sem);
7337 			/*
7338 			 * A transaction used for relocating a block group was
7339 			 * committed or is about to finish its commit. Release
7340 			 * our path (leaf) and restart the search, so that we
7341 			 * avoid operating on any file extent items that are
7342 			 * stale, with a disk_bytenr that reflects a pre
7343 			 * relocation value. This way we avoid as much as
7344 			 * possible to fallback to regular writes when checking
7345 			 * if we can clone file ranges.
7346 			 */
7347 			btrfs_release_path(path);
7348 			ret = search_key_again(sctx, send_root, path, &key);
7349 			if (ret < 0)
7350 				goto out;
7351 		} else {
7352 			up_read(&fs_info->commit_root_sem);
7353 		}
7354 
7355 		ret = btrfs_next_item(send_root, path);
7356 		if (ret < 0)
7357 			goto out;
7358 		if (ret) {
7359 			ret  = 0;
7360 			break;
7361 		}
7362 	}
7363 
7364 out_finish:
7365 	ret = finish_inode_if_needed(sctx, 1);
7366 
7367 out:
7368 	btrfs_free_path(path);
7369 	return ret;
7370 }
7371 
7372 static int replace_node_with_clone(struct btrfs_path *path, int level)
7373 {
7374 	struct extent_buffer *clone;
7375 
7376 	clone = btrfs_clone_extent_buffer(path->nodes[level]);
7377 	if (!clone)
7378 		return -ENOMEM;
7379 
7380 	free_extent_buffer(path->nodes[level]);
7381 	path->nodes[level] = clone;
7382 
7383 	return 0;
7384 }
7385 
7386 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7387 {
7388 	struct extent_buffer *eb;
7389 	struct extent_buffer *parent = path->nodes[*level];
7390 	int slot = path->slots[*level];
7391 	const int nritems = btrfs_header_nritems(parent);
7392 	u64 reada_max;
7393 	u64 reada_done = 0;
7394 
7395 	lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7396 
7397 	BUG_ON(*level == 0);
7398 	eb = btrfs_read_node_slot(parent, slot);
7399 	if (IS_ERR(eb))
7400 		return PTR_ERR(eb);
7401 
7402 	/*
7403 	 * Trigger readahead for the next leaves we will process, so that it is
7404 	 * very likely that when we need them they are already in memory and we
7405 	 * will not block on disk IO. For nodes we only do readahead for one,
7406 	 * since the time window between processing nodes is typically larger.
7407 	 */
7408 	reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7409 
7410 	for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7411 		if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7412 			btrfs_readahead_node_child(parent, slot);
7413 			reada_done += eb->fs_info->nodesize;
7414 		}
7415 	}
7416 
7417 	path->nodes[*level - 1] = eb;
7418 	path->slots[*level - 1] = 0;
7419 	(*level)--;
7420 
7421 	if (*level == 0)
7422 		return replace_node_with_clone(path, 0);
7423 
7424 	return 0;
7425 }
7426 
7427 static int tree_move_next_or_upnext(struct btrfs_path *path,
7428 				    int *level, int root_level)
7429 {
7430 	int ret = 0;
7431 	int nritems;
7432 	nritems = btrfs_header_nritems(path->nodes[*level]);
7433 
7434 	path->slots[*level]++;
7435 
7436 	while (path->slots[*level] >= nritems) {
7437 		if (*level == root_level) {
7438 			path->slots[*level] = nritems - 1;
7439 			return -1;
7440 		}
7441 
7442 		/* move upnext */
7443 		path->slots[*level] = 0;
7444 		free_extent_buffer(path->nodes[*level]);
7445 		path->nodes[*level] = NULL;
7446 		(*level)++;
7447 		path->slots[*level]++;
7448 
7449 		nritems = btrfs_header_nritems(path->nodes[*level]);
7450 		ret = 1;
7451 	}
7452 	return ret;
7453 }
7454 
7455 /*
7456  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7457  * or down.
7458  */
7459 static int tree_advance(struct btrfs_path *path,
7460 			int *level, int root_level,
7461 			int allow_down,
7462 			struct btrfs_key *key,
7463 			u64 reada_min_gen)
7464 {
7465 	int ret;
7466 
7467 	if (*level == 0 || !allow_down) {
7468 		ret = tree_move_next_or_upnext(path, level, root_level);
7469 	} else {
7470 		ret = tree_move_down(path, level, reada_min_gen);
7471 	}
7472 
7473 	/*
7474 	 * Even if we have reached the end of a tree, ret is -1, update the key
7475 	 * anyway, so that in case we need to restart due to a block group
7476 	 * relocation, we can assert that the last key of the root node still
7477 	 * exists in the tree.
7478 	 */
7479 	if (*level == 0)
7480 		btrfs_item_key_to_cpu(path->nodes[*level], key,
7481 				      path->slots[*level]);
7482 	else
7483 		btrfs_node_key_to_cpu(path->nodes[*level], key,
7484 				      path->slots[*level]);
7485 
7486 	return ret;
7487 }
7488 
7489 static int tree_compare_item(struct btrfs_path *left_path,
7490 			     struct btrfs_path *right_path,
7491 			     char *tmp_buf)
7492 {
7493 	int cmp;
7494 	int len1, len2;
7495 	unsigned long off1, off2;
7496 
7497 	len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7498 	len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7499 	if (len1 != len2)
7500 		return 1;
7501 
7502 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7503 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7504 				right_path->slots[0]);
7505 
7506 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7507 
7508 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7509 	if (cmp)
7510 		return 1;
7511 	return 0;
7512 }
7513 
7514 /*
7515  * A transaction used for relocating a block group was committed or is about to
7516  * finish its commit. Release our paths and restart the search, so that we are
7517  * not using stale extent buffers:
7518  *
7519  * 1) For levels > 0, we are only holding references of extent buffers, without
7520  *    any locks on them, which does not prevent them from having been relocated
7521  *    and reallocated after the last time we released the commit root semaphore.
7522  *    The exception are the root nodes, for which we always have a clone, see
7523  *    the comment at btrfs_compare_trees();
7524  *
7525  * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7526  *    we are safe from the concurrent relocation and reallocation. However they
7527  *    can have file extent items with a pre relocation disk_bytenr value, so we
7528  *    restart the start from the current commit roots and clone the new leaves so
7529  *    that we get the post relocation disk_bytenr values. Not doing so, could
7530  *    make us clone the wrong data in case there are new extents using the old
7531  *    disk_bytenr that happen to be shared.
7532  */
7533 static int restart_after_relocation(struct btrfs_path *left_path,
7534 				    struct btrfs_path *right_path,
7535 				    const struct btrfs_key *left_key,
7536 				    const struct btrfs_key *right_key,
7537 				    int left_level,
7538 				    int right_level,
7539 				    const struct send_ctx *sctx)
7540 {
7541 	int root_level;
7542 	int ret;
7543 
7544 	lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7545 
7546 	btrfs_release_path(left_path);
7547 	btrfs_release_path(right_path);
7548 
7549 	/*
7550 	 * Since keys can not be added or removed to/from our roots because they
7551 	 * are readonly and we do not allow deduplication to run in parallel
7552 	 * (which can add, remove or change keys), the layout of the trees should
7553 	 * not change.
7554 	 */
7555 	left_path->lowest_level = left_level;
7556 	ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7557 	if (ret < 0)
7558 		return ret;
7559 
7560 	right_path->lowest_level = right_level;
7561 	ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7562 	if (ret < 0)
7563 		return ret;
7564 
7565 	/*
7566 	 * If the lowest level nodes are leaves, clone them so that they can be
7567 	 * safely used by changed_cb() while not under the protection of the
7568 	 * commit root semaphore, even if relocation and reallocation happens in
7569 	 * parallel.
7570 	 */
7571 	if (left_level == 0) {
7572 		ret = replace_node_with_clone(left_path, 0);
7573 		if (ret < 0)
7574 			return ret;
7575 	}
7576 
7577 	if (right_level == 0) {
7578 		ret = replace_node_with_clone(right_path, 0);
7579 		if (ret < 0)
7580 			return ret;
7581 	}
7582 
7583 	/*
7584 	 * Now clone the root nodes (unless they happen to be the leaves we have
7585 	 * already cloned). This is to protect against concurrent snapshotting of
7586 	 * the send and parent roots (see the comment at btrfs_compare_trees()).
7587 	 */
7588 	root_level = btrfs_header_level(sctx->send_root->commit_root);
7589 	if (root_level > 0) {
7590 		ret = replace_node_with_clone(left_path, root_level);
7591 		if (ret < 0)
7592 			return ret;
7593 	}
7594 
7595 	root_level = btrfs_header_level(sctx->parent_root->commit_root);
7596 	if (root_level > 0) {
7597 		ret = replace_node_with_clone(right_path, root_level);
7598 		if (ret < 0)
7599 			return ret;
7600 	}
7601 
7602 	return 0;
7603 }
7604 
7605 /*
7606  * This function compares two trees and calls the provided callback for
7607  * every changed/new/deleted item it finds.
7608  * If shared tree blocks are encountered, whole subtrees are skipped, making
7609  * the compare pretty fast on snapshotted subvolumes.
7610  *
7611  * This currently works on commit roots only. As commit roots are read only,
7612  * we don't do any locking. The commit roots are protected with transactions.
7613  * Transactions are ended and rejoined when a commit is tried in between.
7614  *
7615  * This function checks for modifications done to the trees while comparing.
7616  * If it detects a change, it aborts immediately.
7617  */
7618 static int btrfs_compare_trees(struct btrfs_root *left_root,
7619 			struct btrfs_root *right_root, struct send_ctx *sctx)
7620 {
7621 	struct btrfs_fs_info *fs_info = left_root->fs_info;
7622 	int ret;
7623 	int cmp;
7624 	struct btrfs_path *left_path = NULL;
7625 	struct btrfs_path *right_path = NULL;
7626 	struct btrfs_key left_key;
7627 	struct btrfs_key right_key;
7628 	char *tmp_buf = NULL;
7629 	int left_root_level;
7630 	int right_root_level;
7631 	int left_level;
7632 	int right_level;
7633 	int left_end_reached = 0;
7634 	int right_end_reached = 0;
7635 	int advance_left = 0;
7636 	int advance_right = 0;
7637 	u64 left_blockptr;
7638 	u64 right_blockptr;
7639 	u64 left_gen;
7640 	u64 right_gen;
7641 	u64 reada_min_gen;
7642 
7643 	left_path = btrfs_alloc_path();
7644 	if (!left_path) {
7645 		ret = -ENOMEM;
7646 		goto out;
7647 	}
7648 	right_path = btrfs_alloc_path();
7649 	if (!right_path) {
7650 		ret = -ENOMEM;
7651 		goto out;
7652 	}
7653 
7654 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7655 	if (!tmp_buf) {
7656 		ret = -ENOMEM;
7657 		goto out;
7658 	}
7659 
7660 	left_path->search_commit_root = 1;
7661 	left_path->skip_locking = 1;
7662 	right_path->search_commit_root = 1;
7663 	right_path->skip_locking = 1;
7664 
7665 	/*
7666 	 * Strategy: Go to the first items of both trees. Then do
7667 	 *
7668 	 * If both trees are at level 0
7669 	 *   Compare keys of current items
7670 	 *     If left < right treat left item as new, advance left tree
7671 	 *       and repeat
7672 	 *     If left > right treat right item as deleted, advance right tree
7673 	 *       and repeat
7674 	 *     If left == right do deep compare of items, treat as changed if
7675 	 *       needed, advance both trees and repeat
7676 	 * If both trees are at the same level but not at level 0
7677 	 *   Compare keys of current nodes/leafs
7678 	 *     If left < right advance left tree and repeat
7679 	 *     If left > right advance right tree and repeat
7680 	 *     If left == right compare blockptrs of the next nodes/leafs
7681 	 *       If they match advance both trees but stay at the same level
7682 	 *         and repeat
7683 	 *       If they don't match advance both trees while allowing to go
7684 	 *         deeper and repeat
7685 	 * If tree levels are different
7686 	 *   Advance the tree that needs it and repeat
7687 	 *
7688 	 * Advancing a tree means:
7689 	 *   If we are at level 0, try to go to the next slot. If that's not
7690 	 *   possible, go one level up and repeat. Stop when we found a level
7691 	 *   where we could go to the next slot. We may at this point be on a
7692 	 *   node or a leaf.
7693 	 *
7694 	 *   If we are not at level 0 and not on shared tree blocks, go one
7695 	 *   level deeper.
7696 	 *
7697 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
7698 	 *   the right if possible or go up and right.
7699 	 */
7700 
7701 	down_read(&fs_info->commit_root_sem);
7702 	left_level = btrfs_header_level(left_root->commit_root);
7703 	left_root_level = left_level;
7704 	/*
7705 	 * We clone the root node of the send and parent roots to prevent races
7706 	 * with snapshot creation of these roots. Snapshot creation COWs the
7707 	 * root node of a tree, so after the transaction is committed the old
7708 	 * extent can be reallocated while this send operation is still ongoing.
7709 	 * So we clone them, under the commit root semaphore, to be race free.
7710 	 */
7711 	left_path->nodes[left_level] =
7712 			btrfs_clone_extent_buffer(left_root->commit_root);
7713 	if (!left_path->nodes[left_level]) {
7714 		ret = -ENOMEM;
7715 		goto out_unlock;
7716 	}
7717 
7718 	right_level = btrfs_header_level(right_root->commit_root);
7719 	right_root_level = right_level;
7720 	right_path->nodes[right_level] =
7721 			btrfs_clone_extent_buffer(right_root->commit_root);
7722 	if (!right_path->nodes[right_level]) {
7723 		ret = -ENOMEM;
7724 		goto out_unlock;
7725 	}
7726 	/*
7727 	 * Our right root is the parent root, while the left root is the "send"
7728 	 * root. We know that all new nodes/leaves in the left root must have
7729 	 * a generation greater than the right root's generation, so we trigger
7730 	 * readahead for those nodes and leaves of the left root, as we know we
7731 	 * will need to read them at some point.
7732 	 */
7733 	reada_min_gen = btrfs_header_generation(right_root->commit_root);
7734 
7735 	if (left_level == 0)
7736 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
7737 				&left_key, left_path->slots[left_level]);
7738 	else
7739 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
7740 				&left_key, left_path->slots[left_level]);
7741 	if (right_level == 0)
7742 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
7743 				&right_key, right_path->slots[right_level]);
7744 	else
7745 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
7746 				&right_key, right_path->slots[right_level]);
7747 
7748 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7749 
7750 	while (1) {
7751 		if (need_resched() ||
7752 		    rwsem_is_contended(&fs_info->commit_root_sem)) {
7753 			up_read(&fs_info->commit_root_sem);
7754 			cond_resched();
7755 			down_read(&fs_info->commit_root_sem);
7756 		}
7757 
7758 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7759 			ret = restart_after_relocation(left_path, right_path,
7760 						       &left_key, &right_key,
7761 						       left_level, right_level,
7762 						       sctx);
7763 			if (ret < 0)
7764 				goto out_unlock;
7765 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7766 		}
7767 
7768 		if (advance_left && !left_end_reached) {
7769 			ret = tree_advance(left_path, &left_level,
7770 					left_root_level,
7771 					advance_left != ADVANCE_ONLY_NEXT,
7772 					&left_key, reada_min_gen);
7773 			if (ret == -1)
7774 				left_end_reached = ADVANCE;
7775 			else if (ret < 0)
7776 				goto out_unlock;
7777 			advance_left = 0;
7778 		}
7779 		if (advance_right && !right_end_reached) {
7780 			ret = tree_advance(right_path, &right_level,
7781 					right_root_level,
7782 					advance_right != ADVANCE_ONLY_NEXT,
7783 					&right_key, reada_min_gen);
7784 			if (ret == -1)
7785 				right_end_reached = ADVANCE;
7786 			else if (ret < 0)
7787 				goto out_unlock;
7788 			advance_right = 0;
7789 		}
7790 
7791 		if (left_end_reached && right_end_reached) {
7792 			ret = 0;
7793 			goto out_unlock;
7794 		} else if (left_end_reached) {
7795 			if (right_level == 0) {
7796 				up_read(&fs_info->commit_root_sem);
7797 				ret = changed_cb(left_path, right_path,
7798 						&right_key,
7799 						BTRFS_COMPARE_TREE_DELETED,
7800 						sctx);
7801 				if (ret < 0)
7802 					goto out;
7803 				down_read(&fs_info->commit_root_sem);
7804 			}
7805 			advance_right = ADVANCE;
7806 			continue;
7807 		} else if (right_end_reached) {
7808 			if (left_level == 0) {
7809 				up_read(&fs_info->commit_root_sem);
7810 				ret = changed_cb(left_path, right_path,
7811 						&left_key,
7812 						BTRFS_COMPARE_TREE_NEW,
7813 						sctx);
7814 				if (ret < 0)
7815 					goto out;
7816 				down_read(&fs_info->commit_root_sem);
7817 			}
7818 			advance_left = ADVANCE;
7819 			continue;
7820 		}
7821 
7822 		if (left_level == 0 && right_level == 0) {
7823 			up_read(&fs_info->commit_root_sem);
7824 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7825 			if (cmp < 0) {
7826 				ret = changed_cb(left_path, right_path,
7827 						&left_key,
7828 						BTRFS_COMPARE_TREE_NEW,
7829 						sctx);
7830 				advance_left = ADVANCE;
7831 			} else if (cmp > 0) {
7832 				ret = changed_cb(left_path, right_path,
7833 						&right_key,
7834 						BTRFS_COMPARE_TREE_DELETED,
7835 						sctx);
7836 				advance_right = ADVANCE;
7837 			} else {
7838 				enum btrfs_compare_tree_result result;
7839 
7840 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7841 				ret = tree_compare_item(left_path, right_path,
7842 							tmp_buf);
7843 				if (ret)
7844 					result = BTRFS_COMPARE_TREE_CHANGED;
7845 				else
7846 					result = BTRFS_COMPARE_TREE_SAME;
7847 				ret = changed_cb(left_path, right_path,
7848 						 &left_key, result, sctx);
7849 				advance_left = ADVANCE;
7850 				advance_right = ADVANCE;
7851 			}
7852 
7853 			if (ret < 0)
7854 				goto out;
7855 			down_read(&fs_info->commit_root_sem);
7856 		} else if (left_level == right_level) {
7857 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7858 			if (cmp < 0) {
7859 				advance_left = ADVANCE;
7860 			} else if (cmp > 0) {
7861 				advance_right = ADVANCE;
7862 			} else {
7863 				left_blockptr = btrfs_node_blockptr(
7864 						left_path->nodes[left_level],
7865 						left_path->slots[left_level]);
7866 				right_blockptr = btrfs_node_blockptr(
7867 						right_path->nodes[right_level],
7868 						right_path->slots[right_level]);
7869 				left_gen = btrfs_node_ptr_generation(
7870 						left_path->nodes[left_level],
7871 						left_path->slots[left_level]);
7872 				right_gen = btrfs_node_ptr_generation(
7873 						right_path->nodes[right_level],
7874 						right_path->slots[right_level]);
7875 				if (left_blockptr == right_blockptr &&
7876 				    left_gen == right_gen) {
7877 					/*
7878 					 * As we're on a shared block, don't
7879 					 * allow to go deeper.
7880 					 */
7881 					advance_left = ADVANCE_ONLY_NEXT;
7882 					advance_right = ADVANCE_ONLY_NEXT;
7883 				} else {
7884 					advance_left = ADVANCE;
7885 					advance_right = ADVANCE;
7886 				}
7887 			}
7888 		} else if (left_level < right_level) {
7889 			advance_right = ADVANCE;
7890 		} else {
7891 			advance_left = ADVANCE;
7892 		}
7893 	}
7894 
7895 out_unlock:
7896 	up_read(&fs_info->commit_root_sem);
7897 out:
7898 	btrfs_free_path(left_path);
7899 	btrfs_free_path(right_path);
7900 	kvfree(tmp_buf);
7901 	return ret;
7902 }
7903 
7904 static int send_subvol(struct send_ctx *sctx)
7905 {
7906 	int ret;
7907 
7908 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7909 		ret = send_header(sctx);
7910 		if (ret < 0)
7911 			goto out;
7912 	}
7913 
7914 	ret = send_subvol_begin(sctx);
7915 	if (ret < 0)
7916 		goto out;
7917 
7918 	if (sctx->parent_root) {
7919 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7920 		if (ret < 0)
7921 			goto out;
7922 		ret = finish_inode_if_needed(sctx, 1);
7923 		if (ret < 0)
7924 			goto out;
7925 	} else {
7926 		ret = full_send_tree(sctx);
7927 		if (ret < 0)
7928 			goto out;
7929 	}
7930 
7931 out:
7932 	free_recorded_refs(sctx);
7933 	return ret;
7934 }
7935 
7936 /*
7937  * If orphan cleanup did remove any orphans from a root, it means the tree
7938  * was modified and therefore the commit root is not the same as the current
7939  * root anymore. This is a problem, because send uses the commit root and
7940  * therefore can see inode items that don't exist in the current root anymore,
7941  * and for example make calls to btrfs_iget, which will do tree lookups based
7942  * on the current root and not on the commit root. Those lookups will fail,
7943  * returning a -ESTALE error, and making send fail with that error. So make
7944  * sure a send does not see any orphans we have just removed, and that it will
7945  * see the same inodes regardless of whether a transaction commit happened
7946  * before it started (meaning that the commit root will be the same as the
7947  * current root) or not.
7948  */
7949 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7950 {
7951 	int i;
7952 	struct btrfs_trans_handle *trans = NULL;
7953 
7954 again:
7955 	if (sctx->parent_root &&
7956 	    sctx->parent_root->node != sctx->parent_root->commit_root)
7957 		goto commit_trans;
7958 
7959 	for (i = 0; i < sctx->clone_roots_cnt; i++)
7960 		if (sctx->clone_roots[i].root->node !=
7961 		    sctx->clone_roots[i].root->commit_root)
7962 			goto commit_trans;
7963 
7964 	if (trans)
7965 		return btrfs_end_transaction(trans);
7966 
7967 	return 0;
7968 
7969 commit_trans:
7970 	/* Use any root, all fs roots will get their commit roots updated. */
7971 	if (!trans) {
7972 		trans = btrfs_join_transaction(sctx->send_root);
7973 		if (IS_ERR(trans))
7974 			return PTR_ERR(trans);
7975 		goto again;
7976 	}
7977 
7978 	return btrfs_commit_transaction(trans);
7979 }
7980 
7981 /*
7982  * Make sure any existing dellaloc is flushed for any root used by a send
7983  * operation so that we do not miss any data and we do not race with writeback
7984  * finishing and changing a tree while send is using the tree. This could
7985  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7986  * a send operation then uses the subvolume.
7987  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7988  */
7989 static int flush_delalloc_roots(struct send_ctx *sctx)
7990 {
7991 	struct btrfs_root *root = sctx->parent_root;
7992 	int ret;
7993 	int i;
7994 
7995 	if (root) {
7996 		ret = btrfs_start_delalloc_snapshot(root, false);
7997 		if (ret)
7998 			return ret;
7999 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8000 	}
8001 
8002 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
8003 		root = sctx->clone_roots[i].root;
8004 		ret = btrfs_start_delalloc_snapshot(root, false);
8005 		if (ret)
8006 			return ret;
8007 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8008 	}
8009 
8010 	return 0;
8011 }
8012 
8013 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8014 {
8015 	spin_lock(&root->root_item_lock);
8016 	root->send_in_progress--;
8017 	/*
8018 	 * Not much left to do, we don't know why it's unbalanced and
8019 	 * can't blindly reset it to 0.
8020 	 */
8021 	if (root->send_in_progress < 0)
8022 		btrfs_err(root->fs_info,
8023 			  "send_in_progress unbalanced %d root %llu",
8024 			  root->send_in_progress, root->root_key.objectid);
8025 	spin_unlock(&root->root_item_lock);
8026 }
8027 
8028 static void dedupe_in_progress_warn(const struct btrfs_root *root)
8029 {
8030 	btrfs_warn_rl(root->fs_info,
8031 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8032 		      root->root_key.objectid, root->dedupe_in_progress);
8033 }
8034 
8035 long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg)
8036 {
8037 	int ret = 0;
8038 	struct btrfs_root *send_root = BTRFS_I(inode)->root;
8039 	struct btrfs_fs_info *fs_info = send_root->fs_info;
8040 	struct btrfs_root *clone_root;
8041 	struct send_ctx *sctx = NULL;
8042 	u32 i;
8043 	u64 *clone_sources_tmp = NULL;
8044 	int clone_sources_to_rollback = 0;
8045 	size_t alloc_size;
8046 	int sort_clone_roots = 0;
8047 
8048 	if (!capable(CAP_SYS_ADMIN))
8049 		return -EPERM;
8050 
8051 	/*
8052 	 * The subvolume must remain read-only during send, protect against
8053 	 * making it RW. This also protects against deletion.
8054 	 */
8055 	spin_lock(&send_root->root_item_lock);
8056 	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
8057 		dedupe_in_progress_warn(send_root);
8058 		spin_unlock(&send_root->root_item_lock);
8059 		return -EAGAIN;
8060 	}
8061 	send_root->send_in_progress++;
8062 	spin_unlock(&send_root->root_item_lock);
8063 
8064 	/*
8065 	 * Userspace tools do the checks and warn the user if it's
8066 	 * not RO.
8067 	 */
8068 	if (!btrfs_root_readonly(send_root)) {
8069 		ret = -EPERM;
8070 		goto out;
8071 	}
8072 
8073 	/*
8074 	 * Check that we don't overflow at later allocations, we request
8075 	 * clone_sources_count + 1 items, and compare to unsigned long inside
8076 	 * access_ok.
8077 	 */
8078 	if (arg->clone_sources_count >
8079 	    ULONG_MAX / sizeof(struct clone_root) - 1) {
8080 		ret = -EINVAL;
8081 		goto out;
8082 	}
8083 
8084 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8085 		ret = -EINVAL;
8086 		goto out;
8087 	}
8088 
8089 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8090 	if (!sctx) {
8091 		ret = -ENOMEM;
8092 		goto out;
8093 	}
8094 
8095 	INIT_LIST_HEAD(&sctx->new_refs);
8096 	INIT_LIST_HEAD(&sctx->deleted_refs);
8097 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
8098 	INIT_LIST_HEAD(&sctx->name_cache_list);
8099 
8100 	INIT_LIST_HEAD(&sctx->backref_cache.lru_list);
8101 	mt_init(&sctx->backref_cache.entries);
8102 
8103 	sctx->flags = arg->flags;
8104 
8105 	if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8106 		if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8107 			ret = -EPROTO;
8108 			goto out;
8109 		}
8110 		/* Zero means "use the highest version" */
8111 		sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8112 	} else {
8113 		sctx->proto = 1;
8114 	}
8115 	if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8116 		ret = -EINVAL;
8117 		goto out;
8118 	}
8119 
8120 	sctx->send_filp = fget(arg->send_fd);
8121 	if (!sctx->send_filp) {
8122 		ret = -EBADF;
8123 		goto out;
8124 	}
8125 
8126 	sctx->send_root = send_root;
8127 	/*
8128 	 * Unlikely but possible, if the subvolume is marked for deletion but
8129 	 * is slow to remove the directory entry, send can still be started
8130 	 */
8131 	if (btrfs_root_dead(sctx->send_root)) {
8132 		ret = -EPERM;
8133 		goto out;
8134 	}
8135 
8136 	sctx->clone_roots_cnt = arg->clone_sources_count;
8137 
8138 	if (sctx->proto >= 2) {
8139 		u32 send_buf_num_pages;
8140 
8141 		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8142 		sctx->send_buf = vmalloc(sctx->send_max_size);
8143 		if (!sctx->send_buf) {
8144 			ret = -ENOMEM;
8145 			goto out;
8146 		}
8147 		send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8148 		sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8149 					       sizeof(*sctx->send_buf_pages),
8150 					       GFP_KERNEL);
8151 		if (!sctx->send_buf_pages) {
8152 			ret = -ENOMEM;
8153 			goto out;
8154 		}
8155 		for (i = 0; i < send_buf_num_pages; i++) {
8156 			sctx->send_buf_pages[i] =
8157 				vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8158 		}
8159 	} else {
8160 		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8161 		sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8162 	}
8163 	if (!sctx->send_buf) {
8164 		ret = -ENOMEM;
8165 		goto out;
8166 	}
8167 
8168 	sctx->pending_dir_moves = RB_ROOT;
8169 	sctx->waiting_dir_moves = RB_ROOT;
8170 	sctx->orphan_dirs = RB_ROOT;
8171 	sctx->rbtree_new_refs = RB_ROOT;
8172 	sctx->rbtree_deleted_refs = RB_ROOT;
8173 
8174 	sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
8175 				     arg->clone_sources_count + 1,
8176 				     GFP_KERNEL);
8177 	if (!sctx->clone_roots) {
8178 		ret = -ENOMEM;
8179 		goto out;
8180 	}
8181 
8182 	alloc_size = array_size(sizeof(*arg->clone_sources),
8183 				arg->clone_sources_count);
8184 
8185 	if (arg->clone_sources_count) {
8186 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8187 		if (!clone_sources_tmp) {
8188 			ret = -ENOMEM;
8189 			goto out;
8190 		}
8191 
8192 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8193 				alloc_size);
8194 		if (ret) {
8195 			ret = -EFAULT;
8196 			goto out;
8197 		}
8198 
8199 		for (i = 0; i < arg->clone_sources_count; i++) {
8200 			clone_root = btrfs_get_fs_root(fs_info,
8201 						clone_sources_tmp[i], true);
8202 			if (IS_ERR(clone_root)) {
8203 				ret = PTR_ERR(clone_root);
8204 				goto out;
8205 			}
8206 			spin_lock(&clone_root->root_item_lock);
8207 			if (!btrfs_root_readonly(clone_root) ||
8208 			    btrfs_root_dead(clone_root)) {
8209 				spin_unlock(&clone_root->root_item_lock);
8210 				btrfs_put_root(clone_root);
8211 				ret = -EPERM;
8212 				goto out;
8213 			}
8214 			if (clone_root->dedupe_in_progress) {
8215 				dedupe_in_progress_warn(clone_root);
8216 				spin_unlock(&clone_root->root_item_lock);
8217 				btrfs_put_root(clone_root);
8218 				ret = -EAGAIN;
8219 				goto out;
8220 			}
8221 			clone_root->send_in_progress++;
8222 			spin_unlock(&clone_root->root_item_lock);
8223 
8224 			sctx->clone_roots[i].root = clone_root;
8225 			clone_sources_to_rollback = i + 1;
8226 		}
8227 		kvfree(clone_sources_tmp);
8228 		clone_sources_tmp = NULL;
8229 	}
8230 
8231 	if (arg->parent_root) {
8232 		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8233 						      true);
8234 		if (IS_ERR(sctx->parent_root)) {
8235 			ret = PTR_ERR(sctx->parent_root);
8236 			goto out;
8237 		}
8238 
8239 		spin_lock(&sctx->parent_root->root_item_lock);
8240 		sctx->parent_root->send_in_progress++;
8241 		if (!btrfs_root_readonly(sctx->parent_root) ||
8242 				btrfs_root_dead(sctx->parent_root)) {
8243 			spin_unlock(&sctx->parent_root->root_item_lock);
8244 			ret = -EPERM;
8245 			goto out;
8246 		}
8247 		if (sctx->parent_root->dedupe_in_progress) {
8248 			dedupe_in_progress_warn(sctx->parent_root);
8249 			spin_unlock(&sctx->parent_root->root_item_lock);
8250 			ret = -EAGAIN;
8251 			goto out;
8252 		}
8253 		spin_unlock(&sctx->parent_root->root_item_lock);
8254 	}
8255 
8256 	/*
8257 	 * Clones from send_root are allowed, but only if the clone source
8258 	 * is behind the current send position. This is checked while searching
8259 	 * for possible clone sources.
8260 	 */
8261 	sctx->clone_roots[sctx->clone_roots_cnt++].root =
8262 		btrfs_grab_root(sctx->send_root);
8263 
8264 	/* We do a bsearch later */
8265 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
8266 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8267 			NULL);
8268 	sort_clone_roots = 1;
8269 
8270 	ret = flush_delalloc_roots(sctx);
8271 	if (ret)
8272 		goto out;
8273 
8274 	ret = ensure_commit_roots_uptodate(sctx);
8275 	if (ret)
8276 		goto out;
8277 
8278 	ret = send_subvol(sctx);
8279 	if (ret < 0)
8280 		goto out;
8281 
8282 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8283 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8284 		if (ret < 0)
8285 			goto out;
8286 		ret = send_cmd(sctx);
8287 		if (ret < 0)
8288 			goto out;
8289 	}
8290 
8291 out:
8292 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8293 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8294 		struct rb_node *n;
8295 		struct pending_dir_move *pm;
8296 
8297 		n = rb_first(&sctx->pending_dir_moves);
8298 		pm = rb_entry(n, struct pending_dir_move, node);
8299 		while (!list_empty(&pm->list)) {
8300 			struct pending_dir_move *pm2;
8301 
8302 			pm2 = list_first_entry(&pm->list,
8303 					       struct pending_dir_move, list);
8304 			free_pending_move(sctx, pm2);
8305 		}
8306 		free_pending_move(sctx, pm);
8307 	}
8308 
8309 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8310 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8311 		struct rb_node *n;
8312 		struct waiting_dir_move *dm;
8313 
8314 		n = rb_first(&sctx->waiting_dir_moves);
8315 		dm = rb_entry(n, struct waiting_dir_move, node);
8316 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
8317 		kfree(dm);
8318 	}
8319 
8320 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8321 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8322 		struct rb_node *n;
8323 		struct orphan_dir_info *odi;
8324 
8325 		n = rb_first(&sctx->orphan_dirs);
8326 		odi = rb_entry(n, struct orphan_dir_info, node);
8327 		free_orphan_dir_info(sctx, odi);
8328 	}
8329 
8330 	if (sort_clone_roots) {
8331 		for (i = 0; i < sctx->clone_roots_cnt; i++) {
8332 			btrfs_root_dec_send_in_progress(
8333 					sctx->clone_roots[i].root);
8334 			btrfs_put_root(sctx->clone_roots[i].root);
8335 		}
8336 	} else {
8337 		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8338 			btrfs_root_dec_send_in_progress(
8339 					sctx->clone_roots[i].root);
8340 			btrfs_put_root(sctx->clone_roots[i].root);
8341 		}
8342 
8343 		btrfs_root_dec_send_in_progress(send_root);
8344 	}
8345 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8346 		btrfs_root_dec_send_in_progress(sctx->parent_root);
8347 		btrfs_put_root(sctx->parent_root);
8348 	}
8349 
8350 	kvfree(clone_sources_tmp);
8351 
8352 	if (sctx) {
8353 		if (sctx->send_filp)
8354 			fput(sctx->send_filp);
8355 
8356 		kvfree(sctx->clone_roots);
8357 		kfree(sctx->send_buf_pages);
8358 		kvfree(sctx->send_buf);
8359 		kvfree(sctx->verity_descriptor);
8360 
8361 		name_cache_free(sctx);
8362 
8363 		close_current_inode(sctx);
8364 
8365 		empty_backref_cache(sctx);
8366 
8367 		kfree(sctx);
8368 	}
8369 
8370 	return ret;
8371 }
8372