xref: /openbmc/linux/fs/btrfs/send.c (revision 92a2c6b2)
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 
38 static int g_verbose = 0;
39 
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
41 
42 /*
43  * A fs_path is a helper to dynamically build path names with unknown size.
44  * It reallocates the internal buffer on demand.
45  * It allows fast adding of path elements on the right side (normal path) and
46  * fast adding to the left side (reversed path). A reversed path can also be
47  * unreversed if needed.
48  */
49 struct fs_path {
50 	union {
51 		struct {
52 			char *start;
53 			char *end;
54 
55 			char *buf;
56 			unsigned short buf_len:15;
57 			unsigned short reversed:1;
58 			char inline_buf[];
59 		};
60 		/*
61 		 * Average path length does not exceed 200 bytes, we'll have
62 		 * better packing in the slab and higher chance to satisfy
63 		 * a allocation later during send.
64 		 */
65 		char pad[256];
66 	};
67 };
68 #define FS_PATH_INLINE_SIZE \
69 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
70 
71 
72 /* reused for each extent */
73 struct clone_root {
74 	struct btrfs_root *root;
75 	u64 ino;
76 	u64 offset;
77 
78 	u64 found_refs;
79 };
80 
81 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
82 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
83 
84 struct send_ctx {
85 	struct file *send_filp;
86 	loff_t send_off;
87 	char *send_buf;
88 	u32 send_size;
89 	u32 send_max_size;
90 	u64 total_send_size;
91 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
92 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
93 
94 	struct btrfs_root *send_root;
95 	struct btrfs_root *parent_root;
96 	struct clone_root *clone_roots;
97 	int clone_roots_cnt;
98 
99 	/* current state of the compare_tree call */
100 	struct btrfs_path *left_path;
101 	struct btrfs_path *right_path;
102 	struct btrfs_key *cmp_key;
103 
104 	/*
105 	 * infos of the currently processed inode. In case of deleted inodes,
106 	 * these are the values from the deleted inode.
107 	 */
108 	u64 cur_ino;
109 	u64 cur_inode_gen;
110 	int cur_inode_new;
111 	int cur_inode_new_gen;
112 	int cur_inode_deleted;
113 	u64 cur_inode_size;
114 	u64 cur_inode_mode;
115 	u64 cur_inode_rdev;
116 	u64 cur_inode_last_extent;
117 
118 	u64 send_progress;
119 
120 	struct list_head new_refs;
121 	struct list_head deleted_refs;
122 
123 	struct radix_tree_root name_cache;
124 	struct list_head name_cache_list;
125 	int name_cache_size;
126 
127 	struct file_ra_state ra;
128 
129 	char *read_buf;
130 
131 	/*
132 	 * We process inodes by their increasing order, so if before an
133 	 * incremental send we reverse the parent/child relationship of
134 	 * directories such that a directory with a lower inode number was
135 	 * the parent of a directory with a higher inode number, and the one
136 	 * becoming the new parent got renamed too, we can't rename/move the
137 	 * directory with lower inode number when we finish processing it - we
138 	 * must process the directory with higher inode number first, then
139 	 * rename/move it and then rename/move the directory with lower inode
140 	 * number. Example follows.
141 	 *
142 	 * Tree state when the first send was performed:
143 	 *
144 	 * .
145 	 * |-- a                   (ino 257)
146 	 *     |-- b               (ino 258)
147 	 *         |
148 	 *         |
149 	 *         |-- c           (ino 259)
150 	 *         |   |-- d       (ino 260)
151 	 *         |
152 	 *         |-- c2          (ino 261)
153 	 *
154 	 * Tree state when the second (incremental) send is performed:
155 	 *
156 	 * .
157 	 * |-- a                   (ino 257)
158 	 *     |-- b               (ino 258)
159 	 *         |-- c2          (ino 261)
160 	 *             |-- d2      (ino 260)
161 	 *                 |-- cc  (ino 259)
162 	 *
163 	 * The sequence of steps that lead to the second state was:
164 	 *
165 	 * mv /a/b/c/d /a/b/c2/d2
166 	 * mv /a/b/c /a/b/c2/d2/cc
167 	 *
168 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
169 	 * before we move "d", which has higher inode number.
170 	 *
171 	 * So we just memorize which move/rename operations must be performed
172 	 * later when their respective parent is processed and moved/renamed.
173 	 */
174 
175 	/* Indexed by parent directory inode number. */
176 	struct rb_root pending_dir_moves;
177 
178 	/*
179 	 * Reverse index, indexed by the inode number of a directory that
180 	 * is waiting for the move/rename of its immediate parent before its
181 	 * own move/rename can be performed.
182 	 */
183 	struct rb_root waiting_dir_moves;
184 
185 	/*
186 	 * A directory that is going to be rm'ed might have a child directory
187 	 * which is in the pending directory moves index above. In this case,
188 	 * the directory can only be removed after the move/rename of its child
189 	 * is performed. Example:
190 	 *
191 	 * Parent snapshot:
192 	 *
193 	 * .                        (ino 256)
194 	 * |-- a/                   (ino 257)
195 	 *     |-- b/               (ino 258)
196 	 *         |-- c/           (ino 259)
197 	 *         |   |-- x/       (ino 260)
198 	 *         |
199 	 *         |-- y/           (ino 261)
200 	 *
201 	 * Send snapshot:
202 	 *
203 	 * .                        (ino 256)
204 	 * |-- a/                   (ino 257)
205 	 *     |-- b/               (ino 258)
206 	 *         |-- YY/          (ino 261)
207 	 *              |-- x/      (ino 260)
208 	 *
209 	 * Sequence of steps that lead to the send snapshot:
210 	 * rm -f /a/b/c/foo.txt
211 	 * mv /a/b/y /a/b/YY
212 	 * mv /a/b/c/x /a/b/YY
213 	 * rmdir /a/b/c
214 	 *
215 	 * When the child is processed, its move/rename is delayed until its
216 	 * parent is processed (as explained above), but all other operations
217 	 * like update utimes, chown, chgrp, etc, are performed and the paths
218 	 * that it uses for those operations must use the orphanized name of
219 	 * its parent (the directory we're going to rm later), so we need to
220 	 * memorize that name.
221 	 *
222 	 * Indexed by the inode number of the directory to be deleted.
223 	 */
224 	struct rb_root orphan_dirs;
225 };
226 
227 struct pending_dir_move {
228 	struct rb_node node;
229 	struct list_head list;
230 	u64 parent_ino;
231 	u64 ino;
232 	u64 gen;
233 	struct list_head update_refs;
234 };
235 
236 struct waiting_dir_move {
237 	struct rb_node node;
238 	u64 ino;
239 	/*
240 	 * There might be some directory that could not be removed because it
241 	 * was waiting for this directory inode to be moved first. Therefore
242 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
243 	 */
244 	u64 rmdir_ino;
245 };
246 
247 struct orphan_dir_info {
248 	struct rb_node node;
249 	u64 ino;
250 	u64 gen;
251 };
252 
253 struct name_cache_entry {
254 	struct list_head list;
255 	/*
256 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
257 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
258 	 * more then one inum would fall into the same entry, we use radix_list
259 	 * to store the additional entries. radix_list is also used to store
260 	 * entries where two entries have the same inum but different
261 	 * generations.
262 	 */
263 	struct list_head radix_list;
264 	u64 ino;
265 	u64 gen;
266 	u64 parent_ino;
267 	u64 parent_gen;
268 	int ret;
269 	int need_later_update;
270 	int name_len;
271 	char name[];
272 };
273 
274 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
275 
276 static struct waiting_dir_move *
277 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
278 
279 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
280 
281 static int need_send_hole(struct send_ctx *sctx)
282 {
283 	return (sctx->parent_root && !sctx->cur_inode_new &&
284 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
285 		S_ISREG(sctx->cur_inode_mode));
286 }
287 
288 static void fs_path_reset(struct fs_path *p)
289 {
290 	if (p->reversed) {
291 		p->start = p->buf + p->buf_len - 1;
292 		p->end = p->start;
293 		*p->start = 0;
294 	} else {
295 		p->start = p->buf;
296 		p->end = p->start;
297 		*p->start = 0;
298 	}
299 }
300 
301 static struct fs_path *fs_path_alloc(void)
302 {
303 	struct fs_path *p;
304 
305 	p = kmalloc(sizeof(*p), GFP_NOFS);
306 	if (!p)
307 		return NULL;
308 	p->reversed = 0;
309 	p->buf = p->inline_buf;
310 	p->buf_len = FS_PATH_INLINE_SIZE;
311 	fs_path_reset(p);
312 	return p;
313 }
314 
315 static struct fs_path *fs_path_alloc_reversed(void)
316 {
317 	struct fs_path *p;
318 
319 	p = fs_path_alloc();
320 	if (!p)
321 		return NULL;
322 	p->reversed = 1;
323 	fs_path_reset(p);
324 	return p;
325 }
326 
327 static void fs_path_free(struct fs_path *p)
328 {
329 	if (!p)
330 		return;
331 	if (p->buf != p->inline_buf)
332 		kfree(p->buf);
333 	kfree(p);
334 }
335 
336 static int fs_path_len(struct fs_path *p)
337 {
338 	return p->end - p->start;
339 }
340 
341 static int fs_path_ensure_buf(struct fs_path *p, int len)
342 {
343 	char *tmp_buf;
344 	int path_len;
345 	int old_buf_len;
346 
347 	len++;
348 
349 	if (p->buf_len >= len)
350 		return 0;
351 
352 	if (len > PATH_MAX) {
353 		WARN_ON(1);
354 		return -ENOMEM;
355 	}
356 
357 	path_len = p->end - p->start;
358 	old_buf_len = p->buf_len;
359 
360 	/*
361 	 * First time the inline_buf does not suffice
362 	 */
363 	if (p->buf == p->inline_buf) {
364 		tmp_buf = kmalloc(len, GFP_NOFS);
365 		if (tmp_buf)
366 			memcpy(tmp_buf, p->buf, old_buf_len);
367 	} else {
368 		tmp_buf = krealloc(p->buf, len, GFP_NOFS);
369 	}
370 	if (!tmp_buf)
371 		return -ENOMEM;
372 	p->buf = tmp_buf;
373 	/*
374 	 * The real size of the buffer is bigger, this will let the fast path
375 	 * happen most of the time
376 	 */
377 	p->buf_len = ksize(p->buf);
378 
379 	if (p->reversed) {
380 		tmp_buf = p->buf + old_buf_len - path_len - 1;
381 		p->end = p->buf + p->buf_len - 1;
382 		p->start = p->end - path_len;
383 		memmove(p->start, tmp_buf, path_len + 1);
384 	} else {
385 		p->start = p->buf;
386 		p->end = p->start + path_len;
387 	}
388 	return 0;
389 }
390 
391 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
392 				   char **prepared)
393 {
394 	int ret;
395 	int new_len;
396 
397 	new_len = p->end - p->start + name_len;
398 	if (p->start != p->end)
399 		new_len++;
400 	ret = fs_path_ensure_buf(p, new_len);
401 	if (ret < 0)
402 		goto out;
403 
404 	if (p->reversed) {
405 		if (p->start != p->end)
406 			*--p->start = '/';
407 		p->start -= name_len;
408 		*prepared = p->start;
409 	} else {
410 		if (p->start != p->end)
411 			*p->end++ = '/';
412 		*prepared = p->end;
413 		p->end += name_len;
414 		*p->end = 0;
415 	}
416 
417 out:
418 	return ret;
419 }
420 
421 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
422 {
423 	int ret;
424 	char *prepared;
425 
426 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
427 	if (ret < 0)
428 		goto out;
429 	memcpy(prepared, name, name_len);
430 
431 out:
432 	return ret;
433 }
434 
435 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
436 {
437 	int ret;
438 	char *prepared;
439 
440 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
441 	if (ret < 0)
442 		goto out;
443 	memcpy(prepared, p2->start, p2->end - p2->start);
444 
445 out:
446 	return ret;
447 }
448 
449 static int fs_path_add_from_extent_buffer(struct fs_path *p,
450 					  struct extent_buffer *eb,
451 					  unsigned long off, int len)
452 {
453 	int ret;
454 	char *prepared;
455 
456 	ret = fs_path_prepare_for_add(p, len, &prepared);
457 	if (ret < 0)
458 		goto out;
459 
460 	read_extent_buffer(eb, prepared, off, len);
461 
462 out:
463 	return ret;
464 }
465 
466 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
467 {
468 	int ret;
469 
470 	p->reversed = from->reversed;
471 	fs_path_reset(p);
472 
473 	ret = fs_path_add_path(p, from);
474 
475 	return ret;
476 }
477 
478 
479 static void fs_path_unreverse(struct fs_path *p)
480 {
481 	char *tmp;
482 	int len;
483 
484 	if (!p->reversed)
485 		return;
486 
487 	tmp = p->start;
488 	len = p->end - p->start;
489 	p->start = p->buf;
490 	p->end = p->start + len;
491 	memmove(p->start, tmp, len + 1);
492 	p->reversed = 0;
493 }
494 
495 static struct btrfs_path *alloc_path_for_send(void)
496 {
497 	struct btrfs_path *path;
498 
499 	path = btrfs_alloc_path();
500 	if (!path)
501 		return NULL;
502 	path->search_commit_root = 1;
503 	path->skip_locking = 1;
504 	path->need_commit_sem = 1;
505 	return path;
506 }
507 
508 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
509 {
510 	int ret;
511 	mm_segment_t old_fs;
512 	u32 pos = 0;
513 
514 	old_fs = get_fs();
515 	set_fs(KERNEL_DS);
516 
517 	while (pos < len) {
518 		ret = vfs_write(filp, (__force const char __user *)buf + pos,
519 				len - pos, off);
520 		/* TODO handle that correctly */
521 		/*if (ret == -ERESTARTSYS) {
522 			continue;
523 		}*/
524 		if (ret < 0)
525 			goto out;
526 		if (ret == 0) {
527 			ret = -EIO;
528 			goto out;
529 		}
530 		pos += ret;
531 	}
532 
533 	ret = 0;
534 
535 out:
536 	set_fs(old_fs);
537 	return ret;
538 }
539 
540 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
541 {
542 	struct btrfs_tlv_header *hdr;
543 	int total_len = sizeof(*hdr) + len;
544 	int left = sctx->send_max_size - sctx->send_size;
545 
546 	if (unlikely(left < total_len))
547 		return -EOVERFLOW;
548 
549 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
550 	hdr->tlv_type = cpu_to_le16(attr);
551 	hdr->tlv_len = cpu_to_le16(len);
552 	memcpy(hdr + 1, data, len);
553 	sctx->send_size += total_len;
554 
555 	return 0;
556 }
557 
558 #define TLV_PUT_DEFINE_INT(bits) \
559 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
560 			u##bits attr, u##bits value)			\
561 	{								\
562 		__le##bits __tmp = cpu_to_le##bits(value);		\
563 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
564 	}
565 
566 TLV_PUT_DEFINE_INT(64)
567 
568 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
569 			  const char *str, int len)
570 {
571 	if (len == -1)
572 		len = strlen(str);
573 	return tlv_put(sctx, attr, str, len);
574 }
575 
576 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
577 			const u8 *uuid)
578 {
579 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
580 }
581 
582 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
583 				  struct extent_buffer *eb,
584 				  struct btrfs_timespec *ts)
585 {
586 	struct btrfs_timespec bts;
587 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
588 	return tlv_put(sctx, attr, &bts, sizeof(bts));
589 }
590 
591 
592 #define TLV_PUT(sctx, attrtype, attrlen, data) \
593 	do { \
594 		ret = tlv_put(sctx, attrtype, attrlen, data); \
595 		if (ret < 0) \
596 			goto tlv_put_failure; \
597 	} while (0)
598 
599 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
600 	do { \
601 		ret = tlv_put_u##bits(sctx, attrtype, value); \
602 		if (ret < 0) \
603 			goto tlv_put_failure; \
604 	} while (0)
605 
606 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
607 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
608 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
609 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
610 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
611 	do { \
612 		ret = tlv_put_string(sctx, attrtype, str, len); \
613 		if (ret < 0) \
614 			goto tlv_put_failure; \
615 	} while (0)
616 #define TLV_PUT_PATH(sctx, attrtype, p) \
617 	do { \
618 		ret = tlv_put_string(sctx, attrtype, p->start, \
619 			p->end - p->start); \
620 		if (ret < 0) \
621 			goto tlv_put_failure; \
622 	} while(0)
623 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
624 	do { \
625 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
626 		if (ret < 0) \
627 			goto tlv_put_failure; \
628 	} while (0)
629 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
630 	do { \
631 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
632 		if (ret < 0) \
633 			goto tlv_put_failure; \
634 	} while (0)
635 
636 static int send_header(struct send_ctx *sctx)
637 {
638 	struct btrfs_stream_header hdr;
639 
640 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
641 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
642 
643 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
644 					&sctx->send_off);
645 }
646 
647 /*
648  * For each command/item we want to send to userspace, we call this function.
649  */
650 static int begin_cmd(struct send_ctx *sctx, int cmd)
651 {
652 	struct btrfs_cmd_header *hdr;
653 
654 	if (WARN_ON(!sctx->send_buf))
655 		return -EINVAL;
656 
657 	BUG_ON(sctx->send_size);
658 
659 	sctx->send_size += sizeof(*hdr);
660 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
661 	hdr->cmd = cpu_to_le16(cmd);
662 
663 	return 0;
664 }
665 
666 static int send_cmd(struct send_ctx *sctx)
667 {
668 	int ret;
669 	struct btrfs_cmd_header *hdr;
670 	u32 crc;
671 
672 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
673 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
674 	hdr->crc = 0;
675 
676 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
677 	hdr->crc = cpu_to_le32(crc);
678 
679 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
680 					&sctx->send_off);
681 
682 	sctx->total_send_size += sctx->send_size;
683 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
684 	sctx->send_size = 0;
685 
686 	return ret;
687 }
688 
689 /*
690  * Sends a move instruction to user space
691  */
692 static int send_rename(struct send_ctx *sctx,
693 		     struct fs_path *from, struct fs_path *to)
694 {
695 	int ret;
696 
697 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
698 
699 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
700 	if (ret < 0)
701 		goto out;
702 
703 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
704 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
705 
706 	ret = send_cmd(sctx);
707 
708 tlv_put_failure:
709 out:
710 	return ret;
711 }
712 
713 /*
714  * Sends a link instruction to user space
715  */
716 static int send_link(struct send_ctx *sctx,
717 		     struct fs_path *path, struct fs_path *lnk)
718 {
719 	int ret;
720 
721 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
722 
723 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
724 	if (ret < 0)
725 		goto out;
726 
727 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
728 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
729 
730 	ret = send_cmd(sctx);
731 
732 tlv_put_failure:
733 out:
734 	return ret;
735 }
736 
737 /*
738  * Sends an unlink instruction to user space
739  */
740 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
741 {
742 	int ret;
743 
744 verbose_printk("btrfs: send_unlink %s\n", path->start);
745 
746 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
747 	if (ret < 0)
748 		goto out;
749 
750 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
751 
752 	ret = send_cmd(sctx);
753 
754 tlv_put_failure:
755 out:
756 	return ret;
757 }
758 
759 /*
760  * Sends a rmdir instruction to user space
761  */
762 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
763 {
764 	int ret;
765 
766 verbose_printk("btrfs: send_rmdir %s\n", path->start);
767 
768 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
769 	if (ret < 0)
770 		goto out;
771 
772 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
773 
774 	ret = send_cmd(sctx);
775 
776 tlv_put_failure:
777 out:
778 	return ret;
779 }
780 
781 /*
782  * Helper function to retrieve some fields from an inode item.
783  */
784 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
785 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
786 			  u64 *gid, u64 *rdev)
787 {
788 	int ret;
789 	struct btrfs_inode_item *ii;
790 	struct btrfs_key key;
791 
792 	key.objectid = ino;
793 	key.type = BTRFS_INODE_ITEM_KEY;
794 	key.offset = 0;
795 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
796 	if (ret) {
797 		if (ret > 0)
798 			ret = -ENOENT;
799 		return ret;
800 	}
801 
802 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
803 			struct btrfs_inode_item);
804 	if (size)
805 		*size = btrfs_inode_size(path->nodes[0], ii);
806 	if (gen)
807 		*gen = btrfs_inode_generation(path->nodes[0], ii);
808 	if (mode)
809 		*mode = btrfs_inode_mode(path->nodes[0], ii);
810 	if (uid)
811 		*uid = btrfs_inode_uid(path->nodes[0], ii);
812 	if (gid)
813 		*gid = btrfs_inode_gid(path->nodes[0], ii);
814 	if (rdev)
815 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
816 
817 	return ret;
818 }
819 
820 static int get_inode_info(struct btrfs_root *root,
821 			  u64 ino, u64 *size, u64 *gen,
822 			  u64 *mode, u64 *uid, u64 *gid,
823 			  u64 *rdev)
824 {
825 	struct btrfs_path *path;
826 	int ret;
827 
828 	path = alloc_path_for_send();
829 	if (!path)
830 		return -ENOMEM;
831 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
832 			       rdev);
833 	btrfs_free_path(path);
834 	return ret;
835 }
836 
837 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
838 				   struct fs_path *p,
839 				   void *ctx);
840 
841 /*
842  * Helper function to iterate the entries in ONE btrfs_inode_ref or
843  * btrfs_inode_extref.
844  * The iterate callback may return a non zero value to stop iteration. This can
845  * be a negative value for error codes or 1 to simply stop it.
846  *
847  * path must point to the INODE_REF or INODE_EXTREF when called.
848  */
849 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
850 			     struct btrfs_key *found_key, int resolve,
851 			     iterate_inode_ref_t iterate, void *ctx)
852 {
853 	struct extent_buffer *eb = path->nodes[0];
854 	struct btrfs_item *item;
855 	struct btrfs_inode_ref *iref;
856 	struct btrfs_inode_extref *extref;
857 	struct btrfs_path *tmp_path;
858 	struct fs_path *p;
859 	u32 cur = 0;
860 	u32 total;
861 	int slot = path->slots[0];
862 	u32 name_len;
863 	char *start;
864 	int ret = 0;
865 	int num = 0;
866 	int index;
867 	u64 dir;
868 	unsigned long name_off;
869 	unsigned long elem_size;
870 	unsigned long ptr;
871 
872 	p = fs_path_alloc_reversed();
873 	if (!p)
874 		return -ENOMEM;
875 
876 	tmp_path = alloc_path_for_send();
877 	if (!tmp_path) {
878 		fs_path_free(p);
879 		return -ENOMEM;
880 	}
881 
882 
883 	if (found_key->type == BTRFS_INODE_REF_KEY) {
884 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
885 						    struct btrfs_inode_ref);
886 		item = btrfs_item_nr(slot);
887 		total = btrfs_item_size(eb, item);
888 		elem_size = sizeof(*iref);
889 	} else {
890 		ptr = btrfs_item_ptr_offset(eb, slot);
891 		total = btrfs_item_size_nr(eb, slot);
892 		elem_size = sizeof(*extref);
893 	}
894 
895 	while (cur < total) {
896 		fs_path_reset(p);
897 
898 		if (found_key->type == BTRFS_INODE_REF_KEY) {
899 			iref = (struct btrfs_inode_ref *)(ptr + cur);
900 			name_len = btrfs_inode_ref_name_len(eb, iref);
901 			name_off = (unsigned long)(iref + 1);
902 			index = btrfs_inode_ref_index(eb, iref);
903 			dir = found_key->offset;
904 		} else {
905 			extref = (struct btrfs_inode_extref *)(ptr + cur);
906 			name_len = btrfs_inode_extref_name_len(eb, extref);
907 			name_off = (unsigned long)&extref->name;
908 			index = btrfs_inode_extref_index(eb, extref);
909 			dir = btrfs_inode_extref_parent(eb, extref);
910 		}
911 
912 		if (resolve) {
913 			start = btrfs_ref_to_path(root, tmp_path, name_len,
914 						  name_off, eb, dir,
915 						  p->buf, p->buf_len);
916 			if (IS_ERR(start)) {
917 				ret = PTR_ERR(start);
918 				goto out;
919 			}
920 			if (start < p->buf) {
921 				/* overflow , try again with larger buffer */
922 				ret = fs_path_ensure_buf(p,
923 						p->buf_len + p->buf - start);
924 				if (ret < 0)
925 					goto out;
926 				start = btrfs_ref_to_path(root, tmp_path,
927 							  name_len, name_off,
928 							  eb, dir,
929 							  p->buf, p->buf_len);
930 				if (IS_ERR(start)) {
931 					ret = PTR_ERR(start);
932 					goto out;
933 				}
934 				BUG_ON(start < p->buf);
935 			}
936 			p->start = start;
937 		} else {
938 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
939 							     name_len);
940 			if (ret < 0)
941 				goto out;
942 		}
943 
944 		cur += elem_size + name_len;
945 		ret = iterate(num, dir, index, p, ctx);
946 		if (ret)
947 			goto out;
948 		num++;
949 	}
950 
951 out:
952 	btrfs_free_path(tmp_path);
953 	fs_path_free(p);
954 	return ret;
955 }
956 
957 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
958 				  const char *name, int name_len,
959 				  const char *data, int data_len,
960 				  u8 type, void *ctx);
961 
962 /*
963  * Helper function to iterate the entries in ONE btrfs_dir_item.
964  * The iterate callback may return a non zero value to stop iteration. This can
965  * be a negative value for error codes or 1 to simply stop it.
966  *
967  * path must point to the dir item when called.
968  */
969 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
970 			    struct btrfs_key *found_key,
971 			    iterate_dir_item_t iterate, void *ctx)
972 {
973 	int ret = 0;
974 	struct extent_buffer *eb;
975 	struct btrfs_item *item;
976 	struct btrfs_dir_item *di;
977 	struct btrfs_key di_key;
978 	char *buf = NULL;
979 	int buf_len;
980 	u32 name_len;
981 	u32 data_len;
982 	u32 cur;
983 	u32 len;
984 	u32 total;
985 	int slot;
986 	int num;
987 	u8 type;
988 
989 	/*
990 	 * Start with a small buffer (1 page). If later we end up needing more
991 	 * space, which can happen for xattrs on a fs with a leaf size greater
992 	 * then the page size, attempt to increase the buffer. Typically xattr
993 	 * values are small.
994 	 */
995 	buf_len = PATH_MAX;
996 	buf = kmalloc(buf_len, GFP_NOFS);
997 	if (!buf) {
998 		ret = -ENOMEM;
999 		goto out;
1000 	}
1001 
1002 	eb = path->nodes[0];
1003 	slot = path->slots[0];
1004 	item = btrfs_item_nr(slot);
1005 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1006 	cur = 0;
1007 	len = 0;
1008 	total = btrfs_item_size(eb, item);
1009 
1010 	num = 0;
1011 	while (cur < total) {
1012 		name_len = btrfs_dir_name_len(eb, di);
1013 		data_len = btrfs_dir_data_len(eb, di);
1014 		type = btrfs_dir_type(eb, di);
1015 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1016 
1017 		if (type == BTRFS_FT_XATTR) {
1018 			if (name_len > XATTR_NAME_MAX) {
1019 				ret = -ENAMETOOLONG;
1020 				goto out;
1021 			}
1022 			if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
1023 				ret = -E2BIG;
1024 				goto out;
1025 			}
1026 		} else {
1027 			/*
1028 			 * Path too long
1029 			 */
1030 			if (name_len + data_len > PATH_MAX) {
1031 				ret = -ENAMETOOLONG;
1032 				goto out;
1033 			}
1034 		}
1035 
1036 		if (name_len + data_len > buf_len) {
1037 			buf_len = name_len + data_len;
1038 			if (is_vmalloc_addr(buf)) {
1039 				vfree(buf);
1040 				buf = NULL;
1041 			} else {
1042 				char *tmp = krealloc(buf, buf_len,
1043 						     GFP_NOFS | __GFP_NOWARN);
1044 
1045 				if (!tmp)
1046 					kfree(buf);
1047 				buf = tmp;
1048 			}
1049 			if (!buf) {
1050 				buf = vmalloc(buf_len);
1051 				if (!buf) {
1052 					ret = -ENOMEM;
1053 					goto out;
1054 				}
1055 			}
1056 		}
1057 
1058 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1059 				name_len + data_len);
1060 
1061 		len = sizeof(*di) + name_len + data_len;
1062 		di = (struct btrfs_dir_item *)((char *)di + len);
1063 		cur += len;
1064 
1065 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1066 				data_len, type, ctx);
1067 		if (ret < 0)
1068 			goto out;
1069 		if (ret) {
1070 			ret = 0;
1071 			goto out;
1072 		}
1073 
1074 		num++;
1075 	}
1076 
1077 out:
1078 	kvfree(buf);
1079 	return ret;
1080 }
1081 
1082 static int __copy_first_ref(int num, u64 dir, int index,
1083 			    struct fs_path *p, void *ctx)
1084 {
1085 	int ret;
1086 	struct fs_path *pt = ctx;
1087 
1088 	ret = fs_path_copy(pt, p);
1089 	if (ret < 0)
1090 		return ret;
1091 
1092 	/* we want the first only */
1093 	return 1;
1094 }
1095 
1096 /*
1097  * Retrieve the first path of an inode. If an inode has more then one
1098  * ref/hardlink, this is ignored.
1099  */
1100 static int get_inode_path(struct btrfs_root *root,
1101 			  u64 ino, struct fs_path *path)
1102 {
1103 	int ret;
1104 	struct btrfs_key key, found_key;
1105 	struct btrfs_path *p;
1106 
1107 	p = alloc_path_for_send();
1108 	if (!p)
1109 		return -ENOMEM;
1110 
1111 	fs_path_reset(path);
1112 
1113 	key.objectid = ino;
1114 	key.type = BTRFS_INODE_REF_KEY;
1115 	key.offset = 0;
1116 
1117 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1118 	if (ret < 0)
1119 		goto out;
1120 	if (ret) {
1121 		ret = 1;
1122 		goto out;
1123 	}
1124 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1125 	if (found_key.objectid != ino ||
1126 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1127 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1128 		ret = -ENOENT;
1129 		goto out;
1130 	}
1131 
1132 	ret = iterate_inode_ref(root, p, &found_key, 1,
1133 				__copy_first_ref, path);
1134 	if (ret < 0)
1135 		goto out;
1136 	ret = 0;
1137 
1138 out:
1139 	btrfs_free_path(p);
1140 	return ret;
1141 }
1142 
1143 struct backref_ctx {
1144 	struct send_ctx *sctx;
1145 
1146 	struct btrfs_path *path;
1147 	/* number of total found references */
1148 	u64 found;
1149 
1150 	/*
1151 	 * used for clones found in send_root. clones found behind cur_objectid
1152 	 * and cur_offset are not considered as allowed clones.
1153 	 */
1154 	u64 cur_objectid;
1155 	u64 cur_offset;
1156 
1157 	/* may be truncated in case it's the last extent in a file */
1158 	u64 extent_len;
1159 
1160 	/* Just to check for bugs in backref resolving */
1161 	int found_itself;
1162 };
1163 
1164 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1165 {
1166 	u64 root = (u64)(uintptr_t)key;
1167 	struct clone_root *cr = (struct clone_root *)elt;
1168 
1169 	if (root < cr->root->objectid)
1170 		return -1;
1171 	if (root > cr->root->objectid)
1172 		return 1;
1173 	return 0;
1174 }
1175 
1176 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1177 {
1178 	struct clone_root *cr1 = (struct clone_root *)e1;
1179 	struct clone_root *cr2 = (struct clone_root *)e2;
1180 
1181 	if (cr1->root->objectid < cr2->root->objectid)
1182 		return -1;
1183 	if (cr1->root->objectid > cr2->root->objectid)
1184 		return 1;
1185 	return 0;
1186 }
1187 
1188 /*
1189  * Called for every backref that is found for the current extent.
1190  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1191  */
1192 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1193 {
1194 	struct backref_ctx *bctx = ctx_;
1195 	struct clone_root *found;
1196 	int ret;
1197 	u64 i_size;
1198 
1199 	/* First check if the root is in the list of accepted clone sources */
1200 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1201 			bctx->sctx->clone_roots_cnt,
1202 			sizeof(struct clone_root),
1203 			__clone_root_cmp_bsearch);
1204 	if (!found)
1205 		return 0;
1206 
1207 	if (found->root == bctx->sctx->send_root &&
1208 	    ino == bctx->cur_objectid &&
1209 	    offset == bctx->cur_offset) {
1210 		bctx->found_itself = 1;
1211 	}
1212 
1213 	/*
1214 	 * There are inodes that have extents that lie behind its i_size. Don't
1215 	 * accept clones from these extents.
1216 	 */
1217 	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1218 			       NULL, NULL, NULL);
1219 	btrfs_release_path(bctx->path);
1220 	if (ret < 0)
1221 		return ret;
1222 
1223 	if (offset + bctx->extent_len > i_size)
1224 		return 0;
1225 
1226 	/*
1227 	 * Make sure we don't consider clones from send_root that are
1228 	 * behind the current inode/offset.
1229 	 */
1230 	if (found->root == bctx->sctx->send_root) {
1231 		/*
1232 		 * TODO for the moment we don't accept clones from the inode
1233 		 * that is currently send. We may change this when
1234 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1235 		 * file.
1236 		 */
1237 		if (ino >= bctx->cur_objectid)
1238 			return 0;
1239 #if 0
1240 		if (ino > bctx->cur_objectid)
1241 			return 0;
1242 		if (offset + bctx->extent_len > bctx->cur_offset)
1243 			return 0;
1244 #endif
1245 	}
1246 
1247 	bctx->found++;
1248 	found->found_refs++;
1249 	if (ino < found->ino) {
1250 		found->ino = ino;
1251 		found->offset = offset;
1252 	} else if (found->ino == ino) {
1253 		/*
1254 		 * same extent found more then once in the same file.
1255 		 */
1256 		if (found->offset > offset + bctx->extent_len)
1257 			found->offset = offset;
1258 	}
1259 
1260 	return 0;
1261 }
1262 
1263 /*
1264  * Given an inode, offset and extent item, it finds a good clone for a clone
1265  * instruction. Returns -ENOENT when none could be found. The function makes
1266  * sure that the returned clone is usable at the point where sending is at the
1267  * moment. This means, that no clones are accepted which lie behind the current
1268  * inode+offset.
1269  *
1270  * path must point to the extent item when called.
1271  */
1272 static int find_extent_clone(struct send_ctx *sctx,
1273 			     struct btrfs_path *path,
1274 			     u64 ino, u64 data_offset,
1275 			     u64 ino_size,
1276 			     struct clone_root **found)
1277 {
1278 	int ret;
1279 	int extent_type;
1280 	u64 logical;
1281 	u64 disk_byte;
1282 	u64 num_bytes;
1283 	u64 extent_item_pos;
1284 	u64 flags = 0;
1285 	struct btrfs_file_extent_item *fi;
1286 	struct extent_buffer *eb = path->nodes[0];
1287 	struct backref_ctx *backref_ctx = NULL;
1288 	struct clone_root *cur_clone_root;
1289 	struct btrfs_key found_key;
1290 	struct btrfs_path *tmp_path;
1291 	int compressed;
1292 	u32 i;
1293 
1294 	tmp_path = alloc_path_for_send();
1295 	if (!tmp_path)
1296 		return -ENOMEM;
1297 
1298 	/* We only use this path under the commit sem */
1299 	tmp_path->need_commit_sem = 0;
1300 
1301 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1302 	if (!backref_ctx) {
1303 		ret = -ENOMEM;
1304 		goto out;
1305 	}
1306 
1307 	backref_ctx->path = tmp_path;
1308 
1309 	if (data_offset >= ino_size) {
1310 		/*
1311 		 * There may be extents that lie behind the file's size.
1312 		 * I at least had this in combination with snapshotting while
1313 		 * writing large files.
1314 		 */
1315 		ret = 0;
1316 		goto out;
1317 	}
1318 
1319 	fi = btrfs_item_ptr(eb, path->slots[0],
1320 			struct btrfs_file_extent_item);
1321 	extent_type = btrfs_file_extent_type(eb, fi);
1322 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1323 		ret = -ENOENT;
1324 		goto out;
1325 	}
1326 	compressed = btrfs_file_extent_compression(eb, fi);
1327 
1328 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1329 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1330 	if (disk_byte == 0) {
1331 		ret = -ENOENT;
1332 		goto out;
1333 	}
1334 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1335 
1336 	down_read(&sctx->send_root->fs_info->commit_root_sem);
1337 	ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1338 				  &found_key, &flags);
1339 	up_read(&sctx->send_root->fs_info->commit_root_sem);
1340 	btrfs_release_path(tmp_path);
1341 
1342 	if (ret < 0)
1343 		goto out;
1344 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1345 		ret = -EIO;
1346 		goto out;
1347 	}
1348 
1349 	/*
1350 	 * Setup the clone roots.
1351 	 */
1352 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1353 		cur_clone_root = sctx->clone_roots + i;
1354 		cur_clone_root->ino = (u64)-1;
1355 		cur_clone_root->offset = 0;
1356 		cur_clone_root->found_refs = 0;
1357 	}
1358 
1359 	backref_ctx->sctx = sctx;
1360 	backref_ctx->found = 0;
1361 	backref_ctx->cur_objectid = ino;
1362 	backref_ctx->cur_offset = data_offset;
1363 	backref_ctx->found_itself = 0;
1364 	backref_ctx->extent_len = num_bytes;
1365 
1366 	/*
1367 	 * The last extent of a file may be too large due to page alignment.
1368 	 * We need to adjust extent_len in this case so that the checks in
1369 	 * __iterate_backrefs work.
1370 	 */
1371 	if (data_offset + num_bytes >= ino_size)
1372 		backref_ctx->extent_len = ino_size - data_offset;
1373 
1374 	/*
1375 	 * Now collect all backrefs.
1376 	 */
1377 	if (compressed == BTRFS_COMPRESS_NONE)
1378 		extent_item_pos = logical - found_key.objectid;
1379 	else
1380 		extent_item_pos = 0;
1381 	ret = iterate_extent_inodes(sctx->send_root->fs_info,
1382 					found_key.objectid, extent_item_pos, 1,
1383 					__iterate_backrefs, backref_ctx);
1384 
1385 	if (ret < 0)
1386 		goto out;
1387 
1388 	if (!backref_ctx->found_itself) {
1389 		/* found a bug in backref code? */
1390 		ret = -EIO;
1391 		btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1392 				"send_root. inode=%llu, offset=%llu, "
1393 				"disk_byte=%llu found extent=%llu",
1394 				ino, data_offset, disk_byte, found_key.objectid);
1395 		goto out;
1396 	}
1397 
1398 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1399 		"ino=%llu, "
1400 		"num_bytes=%llu, logical=%llu\n",
1401 		data_offset, ino, num_bytes, logical);
1402 
1403 	if (!backref_ctx->found)
1404 		verbose_printk("btrfs:    no clones found\n");
1405 
1406 	cur_clone_root = NULL;
1407 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1408 		if (sctx->clone_roots[i].found_refs) {
1409 			if (!cur_clone_root)
1410 				cur_clone_root = sctx->clone_roots + i;
1411 			else if (sctx->clone_roots[i].root == sctx->send_root)
1412 				/* prefer clones from send_root over others */
1413 				cur_clone_root = sctx->clone_roots + i;
1414 		}
1415 
1416 	}
1417 
1418 	if (cur_clone_root) {
1419 		if (compressed != BTRFS_COMPRESS_NONE) {
1420 			/*
1421 			 * Offsets given by iterate_extent_inodes() are relative
1422 			 * to the start of the extent, we need to add logical
1423 			 * offset from the file extent item.
1424 			 * (See why at backref.c:check_extent_in_eb())
1425 			 */
1426 			cur_clone_root->offset += btrfs_file_extent_offset(eb,
1427 									   fi);
1428 		}
1429 		*found = cur_clone_root;
1430 		ret = 0;
1431 	} else {
1432 		ret = -ENOENT;
1433 	}
1434 
1435 out:
1436 	btrfs_free_path(tmp_path);
1437 	kfree(backref_ctx);
1438 	return ret;
1439 }
1440 
1441 static int read_symlink(struct btrfs_root *root,
1442 			u64 ino,
1443 			struct fs_path *dest)
1444 {
1445 	int ret;
1446 	struct btrfs_path *path;
1447 	struct btrfs_key key;
1448 	struct btrfs_file_extent_item *ei;
1449 	u8 type;
1450 	u8 compression;
1451 	unsigned long off;
1452 	int len;
1453 
1454 	path = alloc_path_for_send();
1455 	if (!path)
1456 		return -ENOMEM;
1457 
1458 	key.objectid = ino;
1459 	key.type = BTRFS_EXTENT_DATA_KEY;
1460 	key.offset = 0;
1461 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1462 	if (ret < 0)
1463 		goto out;
1464 	BUG_ON(ret);
1465 
1466 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1467 			struct btrfs_file_extent_item);
1468 	type = btrfs_file_extent_type(path->nodes[0], ei);
1469 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1470 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1471 	BUG_ON(compression);
1472 
1473 	off = btrfs_file_extent_inline_start(ei);
1474 	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1475 
1476 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1477 
1478 out:
1479 	btrfs_free_path(path);
1480 	return ret;
1481 }
1482 
1483 /*
1484  * Helper function to generate a file name that is unique in the root of
1485  * send_root and parent_root. This is used to generate names for orphan inodes.
1486  */
1487 static int gen_unique_name(struct send_ctx *sctx,
1488 			   u64 ino, u64 gen,
1489 			   struct fs_path *dest)
1490 {
1491 	int ret = 0;
1492 	struct btrfs_path *path;
1493 	struct btrfs_dir_item *di;
1494 	char tmp[64];
1495 	int len;
1496 	u64 idx = 0;
1497 
1498 	path = alloc_path_for_send();
1499 	if (!path)
1500 		return -ENOMEM;
1501 
1502 	while (1) {
1503 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1504 				ino, gen, idx);
1505 		ASSERT(len < sizeof(tmp));
1506 
1507 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1508 				path, BTRFS_FIRST_FREE_OBJECTID,
1509 				tmp, strlen(tmp), 0);
1510 		btrfs_release_path(path);
1511 		if (IS_ERR(di)) {
1512 			ret = PTR_ERR(di);
1513 			goto out;
1514 		}
1515 		if (di) {
1516 			/* not unique, try again */
1517 			idx++;
1518 			continue;
1519 		}
1520 
1521 		if (!sctx->parent_root) {
1522 			/* unique */
1523 			ret = 0;
1524 			break;
1525 		}
1526 
1527 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1528 				path, BTRFS_FIRST_FREE_OBJECTID,
1529 				tmp, strlen(tmp), 0);
1530 		btrfs_release_path(path);
1531 		if (IS_ERR(di)) {
1532 			ret = PTR_ERR(di);
1533 			goto out;
1534 		}
1535 		if (di) {
1536 			/* not unique, try again */
1537 			idx++;
1538 			continue;
1539 		}
1540 		/* unique */
1541 		break;
1542 	}
1543 
1544 	ret = fs_path_add(dest, tmp, strlen(tmp));
1545 
1546 out:
1547 	btrfs_free_path(path);
1548 	return ret;
1549 }
1550 
1551 enum inode_state {
1552 	inode_state_no_change,
1553 	inode_state_will_create,
1554 	inode_state_did_create,
1555 	inode_state_will_delete,
1556 	inode_state_did_delete,
1557 };
1558 
1559 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1560 {
1561 	int ret;
1562 	int left_ret;
1563 	int right_ret;
1564 	u64 left_gen;
1565 	u64 right_gen;
1566 
1567 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1568 			NULL, NULL);
1569 	if (ret < 0 && ret != -ENOENT)
1570 		goto out;
1571 	left_ret = ret;
1572 
1573 	if (!sctx->parent_root) {
1574 		right_ret = -ENOENT;
1575 	} else {
1576 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1577 				NULL, NULL, NULL, NULL);
1578 		if (ret < 0 && ret != -ENOENT)
1579 			goto out;
1580 		right_ret = ret;
1581 	}
1582 
1583 	if (!left_ret && !right_ret) {
1584 		if (left_gen == gen && right_gen == gen) {
1585 			ret = inode_state_no_change;
1586 		} else if (left_gen == gen) {
1587 			if (ino < sctx->send_progress)
1588 				ret = inode_state_did_create;
1589 			else
1590 				ret = inode_state_will_create;
1591 		} else if (right_gen == gen) {
1592 			if (ino < sctx->send_progress)
1593 				ret = inode_state_did_delete;
1594 			else
1595 				ret = inode_state_will_delete;
1596 		} else  {
1597 			ret = -ENOENT;
1598 		}
1599 	} else if (!left_ret) {
1600 		if (left_gen == gen) {
1601 			if (ino < sctx->send_progress)
1602 				ret = inode_state_did_create;
1603 			else
1604 				ret = inode_state_will_create;
1605 		} else {
1606 			ret = -ENOENT;
1607 		}
1608 	} else if (!right_ret) {
1609 		if (right_gen == gen) {
1610 			if (ino < sctx->send_progress)
1611 				ret = inode_state_did_delete;
1612 			else
1613 				ret = inode_state_will_delete;
1614 		} else {
1615 			ret = -ENOENT;
1616 		}
1617 	} else {
1618 		ret = -ENOENT;
1619 	}
1620 
1621 out:
1622 	return ret;
1623 }
1624 
1625 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1626 {
1627 	int ret;
1628 
1629 	ret = get_cur_inode_state(sctx, ino, gen);
1630 	if (ret < 0)
1631 		goto out;
1632 
1633 	if (ret == inode_state_no_change ||
1634 	    ret == inode_state_did_create ||
1635 	    ret == inode_state_will_delete)
1636 		ret = 1;
1637 	else
1638 		ret = 0;
1639 
1640 out:
1641 	return ret;
1642 }
1643 
1644 /*
1645  * Helper function to lookup a dir item in a dir.
1646  */
1647 static int lookup_dir_item_inode(struct btrfs_root *root,
1648 				 u64 dir, const char *name, int name_len,
1649 				 u64 *found_inode,
1650 				 u8 *found_type)
1651 {
1652 	int ret = 0;
1653 	struct btrfs_dir_item *di;
1654 	struct btrfs_key key;
1655 	struct btrfs_path *path;
1656 
1657 	path = alloc_path_for_send();
1658 	if (!path)
1659 		return -ENOMEM;
1660 
1661 	di = btrfs_lookup_dir_item(NULL, root, path,
1662 			dir, name, name_len, 0);
1663 	if (!di) {
1664 		ret = -ENOENT;
1665 		goto out;
1666 	}
1667 	if (IS_ERR(di)) {
1668 		ret = PTR_ERR(di);
1669 		goto out;
1670 	}
1671 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1672 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1673 		ret = -ENOENT;
1674 		goto out;
1675 	}
1676 	*found_inode = key.objectid;
1677 	*found_type = btrfs_dir_type(path->nodes[0], di);
1678 
1679 out:
1680 	btrfs_free_path(path);
1681 	return ret;
1682 }
1683 
1684 /*
1685  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1686  * generation of the parent dir and the name of the dir entry.
1687  */
1688 static int get_first_ref(struct btrfs_root *root, u64 ino,
1689 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1690 {
1691 	int ret;
1692 	struct btrfs_key key;
1693 	struct btrfs_key found_key;
1694 	struct btrfs_path *path;
1695 	int len;
1696 	u64 parent_dir;
1697 
1698 	path = alloc_path_for_send();
1699 	if (!path)
1700 		return -ENOMEM;
1701 
1702 	key.objectid = ino;
1703 	key.type = BTRFS_INODE_REF_KEY;
1704 	key.offset = 0;
1705 
1706 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1707 	if (ret < 0)
1708 		goto out;
1709 	if (!ret)
1710 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1711 				path->slots[0]);
1712 	if (ret || found_key.objectid != ino ||
1713 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1714 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1715 		ret = -ENOENT;
1716 		goto out;
1717 	}
1718 
1719 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1720 		struct btrfs_inode_ref *iref;
1721 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1722 				      struct btrfs_inode_ref);
1723 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1724 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1725 						     (unsigned long)(iref + 1),
1726 						     len);
1727 		parent_dir = found_key.offset;
1728 	} else {
1729 		struct btrfs_inode_extref *extref;
1730 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1731 					struct btrfs_inode_extref);
1732 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1733 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1734 					(unsigned long)&extref->name, len);
1735 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1736 	}
1737 	if (ret < 0)
1738 		goto out;
1739 	btrfs_release_path(path);
1740 
1741 	if (dir_gen) {
1742 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1743 				     NULL, NULL, NULL);
1744 		if (ret < 0)
1745 			goto out;
1746 	}
1747 
1748 	*dir = parent_dir;
1749 
1750 out:
1751 	btrfs_free_path(path);
1752 	return ret;
1753 }
1754 
1755 static int is_first_ref(struct btrfs_root *root,
1756 			u64 ino, u64 dir,
1757 			const char *name, int name_len)
1758 {
1759 	int ret;
1760 	struct fs_path *tmp_name;
1761 	u64 tmp_dir;
1762 
1763 	tmp_name = fs_path_alloc();
1764 	if (!tmp_name)
1765 		return -ENOMEM;
1766 
1767 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1768 	if (ret < 0)
1769 		goto out;
1770 
1771 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1772 		ret = 0;
1773 		goto out;
1774 	}
1775 
1776 	ret = !memcmp(tmp_name->start, name, name_len);
1777 
1778 out:
1779 	fs_path_free(tmp_name);
1780 	return ret;
1781 }
1782 
1783 /*
1784  * Used by process_recorded_refs to determine if a new ref would overwrite an
1785  * already existing ref. In case it detects an overwrite, it returns the
1786  * inode/gen in who_ino/who_gen.
1787  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1788  * to make sure later references to the overwritten inode are possible.
1789  * Orphanizing is however only required for the first ref of an inode.
1790  * process_recorded_refs does an additional is_first_ref check to see if
1791  * orphanizing is really required.
1792  */
1793 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1794 			      const char *name, int name_len,
1795 			      u64 *who_ino, u64 *who_gen)
1796 {
1797 	int ret = 0;
1798 	u64 gen;
1799 	u64 other_inode = 0;
1800 	u8 other_type = 0;
1801 
1802 	if (!sctx->parent_root)
1803 		goto out;
1804 
1805 	ret = is_inode_existent(sctx, dir, dir_gen);
1806 	if (ret <= 0)
1807 		goto out;
1808 
1809 	/*
1810 	 * If we have a parent root we need to verify that the parent dir was
1811 	 * not delted and then re-created, if it was then we have no overwrite
1812 	 * and we can just unlink this entry.
1813 	 */
1814 	if (sctx->parent_root) {
1815 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1816 				     NULL, NULL, NULL);
1817 		if (ret < 0 && ret != -ENOENT)
1818 			goto out;
1819 		if (ret) {
1820 			ret = 0;
1821 			goto out;
1822 		}
1823 		if (gen != dir_gen)
1824 			goto out;
1825 	}
1826 
1827 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1828 			&other_inode, &other_type);
1829 	if (ret < 0 && ret != -ENOENT)
1830 		goto out;
1831 	if (ret) {
1832 		ret = 0;
1833 		goto out;
1834 	}
1835 
1836 	/*
1837 	 * Check if the overwritten ref was already processed. If yes, the ref
1838 	 * was already unlinked/moved, so we can safely assume that we will not
1839 	 * overwrite anything at this point in time.
1840 	 */
1841 	if (other_inode > sctx->send_progress) {
1842 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1843 				who_gen, NULL, NULL, NULL, NULL);
1844 		if (ret < 0)
1845 			goto out;
1846 
1847 		ret = 1;
1848 		*who_ino = other_inode;
1849 	} else {
1850 		ret = 0;
1851 	}
1852 
1853 out:
1854 	return ret;
1855 }
1856 
1857 /*
1858  * Checks if the ref was overwritten by an already processed inode. This is
1859  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1860  * thus the orphan name needs be used.
1861  * process_recorded_refs also uses it to avoid unlinking of refs that were
1862  * overwritten.
1863  */
1864 static int did_overwrite_ref(struct send_ctx *sctx,
1865 			    u64 dir, u64 dir_gen,
1866 			    u64 ino, u64 ino_gen,
1867 			    const char *name, int name_len)
1868 {
1869 	int ret = 0;
1870 	u64 gen;
1871 	u64 ow_inode;
1872 	u8 other_type;
1873 
1874 	if (!sctx->parent_root)
1875 		goto out;
1876 
1877 	ret = is_inode_existent(sctx, dir, dir_gen);
1878 	if (ret <= 0)
1879 		goto out;
1880 
1881 	/* check if the ref was overwritten by another ref */
1882 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1883 			&ow_inode, &other_type);
1884 	if (ret < 0 && ret != -ENOENT)
1885 		goto out;
1886 	if (ret) {
1887 		/* was never and will never be overwritten */
1888 		ret = 0;
1889 		goto out;
1890 	}
1891 
1892 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1893 			NULL, NULL);
1894 	if (ret < 0)
1895 		goto out;
1896 
1897 	if (ow_inode == ino && gen == ino_gen) {
1898 		ret = 0;
1899 		goto out;
1900 	}
1901 
1902 	/* we know that it is or will be overwritten. check this now */
1903 	if (ow_inode < sctx->send_progress)
1904 		ret = 1;
1905 	else
1906 		ret = 0;
1907 
1908 out:
1909 	return ret;
1910 }
1911 
1912 /*
1913  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1914  * that got overwritten. This is used by process_recorded_refs to determine
1915  * if it has to use the path as returned by get_cur_path or the orphan name.
1916  */
1917 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1918 {
1919 	int ret = 0;
1920 	struct fs_path *name = NULL;
1921 	u64 dir;
1922 	u64 dir_gen;
1923 
1924 	if (!sctx->parent_root)
1925 		goto out;
1926 
1927 	name = fs_path_alloc();
1928 	if (!name)
1929 		return -ENOMEM;
1930 
1931 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1932 	if (ret < 0)
1933 		goto out;
1934 
1935 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1936 			name->start, fs_path_len(name));
1937 
1938 out:
1939 	fs_path_free(name);
1940 	return ret;
1941 }
1942 
1943 /*
1944  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1945  * so we need to do some special handling in case we have clashes. This function
1946  * takes care of this with the help of name_cache_entry::radix_list.
1947  * In case of error, nce is kfreed.
1948  */
1949 static int name_cache_insert(struct send_ctx *sctx,
1950 			     struct name_cache_entry *nce)
1951 {
1952 	int ret = 0;
1953 	struct list_head *nce_head;
1954 
1955 	nce_head = radix_tree_lookup(&sctx->name_cache,
1956 			(unsigned long)nce->ino);
1957 	if (!nce_head) {
1958 		nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1959 		if (!nce_head) {
1960 			kfree(nce);
1961 			return -ENOMEM;
1962 		}
1963 		INIT_LIST_HEAD(nce_head);
1964 
1965 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1966 		if (ret < 0) {
1967 			kfree(nce_head);
1968 			kfree(nce);
1969 			return ret;
1970 		}
1971 	}
1972 	list_add_tail(&nce->radix_list, nce_head);
1973 	list_add_tail(&nce->list, &sctx->name_cache_list);
1974 	sctx->name_cache_size++;
1975 
1976 	return ret;
1977 }
1978 
1979 static void name_cache_delete(struct send_ctx *sctx,
1980 			      struct name_cache_entry *nce)
1981 {
1982 	struct list_head *nce_head;
1983 
1984 	nce_head = radix_tree_lookup(&sctx->name_cache,
1985 			(unsigned long)nce->ino);
1986 	if (!nce_head) {
1987 		btrfs_err(sctx->send_root->fs_info,
1988 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
1989 			nce->ino, sctx->name_cache_size);
1990 	}
1991 
1992 	list_del(&nce->radix_list);
1993 	list_del(&nce->list);
1994 	sctx->name_cache_size--;
1995 
1996 	/*
1997 	 * We may not get to the final release of nce_head if the lookup fails
1998 	 */
1999 	if (nce_head && list_empty(nce_head)) {
2000 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2001 		kfree(nce_head);
2002 	}
2003 }
2004 
2005 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2006 						    u64 ino, u64 gen)
2007 {
2008 	struct list_head *nce_head;
2009 	struct name_cache_entry *cur;
2010 
2011 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2012 	if (!nce_head)
2013 		return NULL;
2014 
2015 	list_for_each_entry(cur, nce_head, radix_list) {
2016 		if (cur->ino == ino && cur->gen == gen)
2017 			return cur;
2018 	}
2019 	return NULL;
2020 }
2021 
2022 /*
2023  * Removes the entry from the list and adds it back to the end. This marks the
2024  * entry as recently used so that name_cache_clean_unused does not remove it.
2025  */
2026 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2027 {
2028 	list_del(&nce->list);
2029 	list_add_tail(&nce->list, &sctx->name_cache_list);
2030 }
2031 
2032 /*
2033  * Remove some entries from the beginning of name_cache_list.
2034  */
2035 static void name_cache_clean_unused(struct send_ctx *sctx)
2036 {
2037 	struct name_cache_entry *nce;
2038 
2039 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2040 		return;
2041 
2042 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2043 		nce = list_entry(sctx->name_cache_list.next,
2044 				struct name_cache_entry, list);
2045 		name_cache_delete(sctx, nce);
2046 		kfree(nce);
2047 	}
2048 }
2049 
2050 static void name_cache_free(struct send_ctx *sctx)
2051 {
2052 	struct name_cache_entry *nce;
2053 
2054 	while (!list_empty(&sctx->name_cache_list)) {
2055 		nce = list_entry(sctx->name_cache_list.next,
2056 				struct name_cache_entry, list);
2057 		name_cache_delete(sctx, nce);
2058 		kfree(nce);
2059 	}
2060 }
2061 
2062 /*
2063  * Used by get_cur_path for each ref up to the root.
2064  * Returns 0 if it succeeded.
2065  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2066  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2067  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2068  * Returns <0 in case of error.
2069  */
2070 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2071 				     u64 ino, u64 gen,
2072 				     u64 *parent_ino,
2073 				     u64 *parent_gen,
2074 				     struct fs_path *dest)
2075 {
2076 	int ret;
2077 	int nce_ret;
2078 	struct name_cache_entry *nce = NULL;
2079 
2080 	/*
2081 	 * First check if we already did a call to this function with the same
2082 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2083 	 * return the cached result.
2084 	 */
2085 	nce = name_cache_search(sctx, ino, gen);
2086 	if (nce) {
2087 		if (ino < sctx->send_progress && nce->need_later_update) {
2088 			name_cache_delete(sctx, nce);
2089 			kfree(nce);
2090 			nce = NULL;
2091 		} else {
2092 			name_cache_used(sctx, nce);
2093 			*parent_ino = nce->parent_ino;
2094 			*parent_gen = nce->parent_gen;
2095 			ret = fs_path_add(dest, nce->name, nce->name_len);
2096 			if (ret < 0)
2097 				goto out;
2098 			ret = nce->ret;
2099 			goto out;
2100 		}
2101 	}
2102 
2103 	/*
2104 	 * If the inode is not existent yet, add the orphan name and return 1.
2105 	 * This should only happen for the parent dir that we determine in
2106 	 * __record_new_ref
2107 	 */
2108 	ret = is_inode_existent(sctx, ino, gen);
2109 	if (ret < 0)
2110 		goto out;
2111 
2112 	if (!ret) {
2113 		ret = gen_unique_name(sctx, ino, gen, dest);
2114 		if (ret < 0)
2115 			goto out;
2116 		ret = 1;
2117 		goto out_cache;
2118 	}
2119 
2120 	/*
2121 	 * Depending on whether the inode was already processed or not, use
2122 	 * send_root or parent_root for ref lookup.
2123 	 */
2124 	if (ino < sctx->send_progress)
2125 		ret = get_first_ref(sctx->send_root, ino,
2126 				    parent_ino, parent_gen, dest);
2127 	else
2128 		ret = get_first_ref(sctx->parent_root, ino,
2129 				    parent_ino, parent_gen, dest);
2130 	if (ret < 0)
2131 		goto out;
2132 
2133 	/*
2134 	 * Check if the ref was overwritten by an inode's ref that was processed
2135 	 * earlier. If yes, treat as orphan and return 1.
2136 	 */
2137 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2138 			dest->start, dest->end - dest->start);
2139 	if (ret < 0)
2140 		goto out;
2141 	if (ret) {
2142 		fs_path_reset(dest);
2143 		ret = gen_unique_name(sctx, ino, gen, dest);
2144 		if (ret < 0)
2145 			goto out;
2146 		ret = 1;
2147 	}
2148 
2149 out_cache:
2150 	/*
2151 	 * Store the result of the lookup in the name cache.
2152 	 */
2153 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2154 	if (!nce) {
2155 		ret = -ENOMEM;
2156 		goto out;
2157 	}
2158 
2159 	nce->ino = ino;
2160 	nce->gen = gen;
2161 	nce->parent_ino = *parent_ino;
2162 	nce->parent_gen = *parent_gen;
2163 	nce->name_len = fs_path_len(dest);
2164 	nce->ret = ret;
2165 	strcpy(nce->name, dest->start);
2166 
2167 	if (ino < sctx->send_progress)
2168 		nce->need_later_update = 0;
2169 	else
2170 		nce->need_later_update = 1;
2171 
2172 	nce_ret = name_cache_insert(sctx, nce);
2173 	if (nce_ret < 0)
2174 		ret = nce_ret;
2175 	name_cache_clean_unused(sctx);
2176 
2177 out:
2178 	return ret;
2179 }
2180 
2181 /*
2182  * Magic happens here. This function returns the first ref to an inode as it
2183  * would look like while receiving the stream at this point in time.
2184  * We walk the path up to the root. For every inode in between, we check if it
2185  * was already processed/sent. If yes, we continue with the parent as found
2186  * in send_root. If not, we continue with the parent as found in parent_root.
2187  * If we encounter an inode that was deleted at this point in time, we use the
2188  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2189  * that were not created yet and overwritten inodes/refs.
2190  *
2191  * When do we have have orphan inodes:
2192  * 1. When an inode is freshly created and thus no valid refs are available yet
2193  * 2. When a directory lost all it's refs (deleted) but still has dir items
2194  *    inside which were not processed yet (pending for move/delete). If anyone
2195  *    tried to get the path to the dir items, it would get a path inside that
2196  *    orphan directory.
2197  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2198  *    of an unprocessed inode. If in that case the first ref would be
2199  *    overwritten, the overwritten inode gets "orphanized". Later when we
2200  *    process this overwritten inode, it is restored at a new place by moving
2201  *    the orphan inode.
2202  *
2203  * sctx->send_progress tells this function at which point in time receiving
2204  * would be.
2205  */
2206 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2207 			struct fs_path *dest)
2208 {
2209 	int ret = 0;
2210 	struct fs_path *name = NULL;
2211 	u64 parent_inode = 0;
2212 	u64 parent_gen = 0;
2213 	int stop = 0;
2214 
2215 	name = fs_path_alloc();
2216 	if (!name) {
2217 		ret = -ENOMEM;
2218 		goto out;
2219 	}
2220 
2221 	dest->reversed = 1;
2222 	fs_path_reset(dest);
2223 
2224 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2225 		fs_path_reset(name);
2226 
2227 		if (is_waiting_for_rm(sctx, ino)) {
2228 			ret = gen_unique_name(sctx, ino, gen, name);
2229 			if (ret < 0)
2230 				goto out;
2231 			ret = fs_path_add_path(dest, name);
2232 			break;
2233 		}
2234 
2235 		if (is_waiting_for_move(sctx, ino)) {
2236 			ret = get_first_ref(sctx->parent_root, ino,
2237 					    &parent_inode, &parent_gen, name);
2238 		} else {
2239 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2240 							&parent_inode,
2241 							&parent_gen, name);
2242 			if (ret)
2243 				stop = 1;
2244 		}
2245 
2246 		if (ret < 0)
2247 			goto out;
2248 
2249 		ret = fs_path_add_path(dest, name);
2250 		if (ret < 0)
2251 			goto out;
2252 
2253 		ino = parent_inode;
2254 		gen = parent_gen;
2255 	}
2256 
2257 out:
2258 	fs_path_free(name);
2259 	if (!ret)
2260 		fs_path_unreverse(dest);
2261 	return ret;
2262 }
2263 
2264 /*
2265  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2266  */
2267 static int send_subvol_begin(struct send_ctx *sctx)
2268 {
2269 	int ret;
2270 	struct btrfs_root *send_root = sctx->send_root;
2271 	struct btrfs_root *parent_root = sctx->parent_root;
2272 	struct btrfs_path *path;
2273 	struct btrfs_key key;
2274 	struct btrfs_root_ref *ref;
2275 	struct extent_buffer *leaf;
2276 	char *name = NULL;
2277 	int namelen;
2278 
2279 	path = btrfs_alloc_path();
2280 	if (!path)
2281 		return -ENOMEM;
2282 
2283 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2284 	if (!name) {
2285 		btrfs_free_path(path);
2286 		return -ENOMEM;
2287 	}
2288 
2289 	key.objectid = send_root->objectid;
2290 	key.type = BTRFS_ROOT_BACKREF_KEY;
2291 	key.offset = 0;
2292 
2293 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2294 				&key, path, 1, 0);
2295 	if (ret < 0)
2296 		goto out;
2297 	if (ret) {
2298 		ret = -ENOENT;
2299 		goto out;
2300 	}
2301 
2302 	leaf = path->nodes[0];
2303 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2304 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2305 	    key.objectid != send_root->objectid) {
2306 		ret = -ENOENT;
2307 		goto out;
2308 	}
2309 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2310 	namelen = btrfs_root_ref_name_len(leaf, ref);
2311 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2312 	btrfs_release_path(path);
2313 
2314 	if (parent_root) {
2315 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2316 		if (ret < 0)
2317 			goto out;
2318 	} else {
2319 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2320 		if (ret < 0)
2321 			goto out;
2322 	}
2323 
2324 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2325 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2326 			sctx->send_root->root_item.uuid);
2327 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2328 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2329 	if (parent_root) {
2330 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2331 				sctx->parent_root->root_item.uuid);
2332 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2333 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2334 	}
2335 
2336 	ret = send_cmd(sctx);
2337 
2338 tlv_put_failure:
2339 out:
2340 	btrfs_free_path(path);
2341 	kfree(name);
2342 	return ret;
2343 }
2344 
2345 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2346 {
2347 	int ret = 0;
2348 	struct fs_path *p;
2349 
2350 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2351 
2352 	p = fs_path_alloc();
2353 	if (!p)
2354 		return -ENOMEM;
2355 
2356 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2357 	if (ret < 0)
2358 		goto out;
2359 
2360 	ret = get_cur_path(sctx, ino, gen, p);
2361 	if (ret < 0)
2362 		goto out;
2363 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2364 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2365 
2366 	ret = send_cmd(sctx);
2367 
2368 tlv_put_failure:
2369 out:
2370 	fs_path_free(p);
2371 	return ret;
2372 }
2373 
2374 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2375 {
2376 	int ret = 0;
2377 	struct fs_path *p;
2378 
2379 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2380 
2381 	p = fs_path_alloc();
2382 	if (!p)
2383 		return -ENOMEM;
2384 
2385 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2386 	if (ret < 0)
2387 		goto out;
2388 
2389 	ret = get_cur_path(sctx, ino, gen, p);
2390 	if (ret < 0)
2391 		goto out;
2392 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2393 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2394 
2395 	ret = send_cmd(sctx);
2396 
2397 tlv_put_failure:
2398 out:
2399 	fs_path_free(p);
2400 	return ret;
2401 }
2402 
2403 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2404 {
2405 	int ret = 0;
2406 	struct fs_path *p;
2407 
2408 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2409 
2410 	p = fs_path_alloc();
2411 	if (!p)
2412 		return -ENOMEM;
2413 
2414 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2415 	if (ret < 0)
2416 		goto out;
2417 
2418 	ret = get_cur_path(sctx, ino, gen, p);
2419 	if (ret < 0)
2420 		goto out;
2421 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2422 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2423 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2424 
2425 	ret = send_cmd(sctx);
2426 
2427 tlv_put_failure:
2428 out:
2429 	fs_path_free(p);
2430 	return ret;
2431 }
2432 
2433 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2434 {
2435 	int ret = 0;
2436 	struct fs_path *p = NULL;
2437 	struct btrfs_inode_item *ii;
2438 	struct btrfs_path *path = NULL;
2439 	struct extent_buffer *eb;
2440 	struct btrfs_key key;
2441 	int slot;
2442 
2443 verbose_printk("btrfs: send_utimes %llu\n", ino);
2444 
2445 	p = fs_path_alloc();
2446 	if (!p)
2447 		return -ENOMEM;
2448 
2449 	path = alloc_path_for_send();
2450 	if (!path) {
2451 		ret = -ENOMEM;
2452 		goto out;
2453 	}
2454 
2455 	key.objectid = ino;
2456 	key.type = BTRFS_INODE_ITEM_KEY;
2457 	key.offset = 0;
2458 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2459 	if (ret < 0)
2460 		goto out;
2461 
2462 	eb = path->nodes[0];
2463 	slot = path->slots[0];
2464 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2465 
2466 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2467 	if (ret < 0)
2468 		goto out;
2469 
2470 	ret = get_cur_path(sctx, ino, gen, p);
2471 	if (ret < 0)
2472 		goto out;
2473 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2474 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2475 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2476 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2477 	/* TODO Add otime support when the otime patches get into upstream */
2478 
2479 	ret = send_cmd(sctx);
2480 
2481 tlv_put_failure:
2482 out:
2483 	fs_path_free(p);
2484 	btrfs_free_path(path);
2485 	return ret;
2486 }
2487 
2488 /*
2489  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2490  * a valid path yet because we did not process the refs yet. So, the inode
2491  * is created as orphan.
2492  */
2493 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2494 {
2495 	int ret = 0;
2496 	struct fs_path *p;
2497 	int cmd;
2498 	u64 gen;
2499 	u64 mode;
2500 	u64 rdev;
2501 
2502 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2503 
2504 	p = fs_path_alloc();
2505 	if (!p)
2506 		return -ENOMEM;
2507 
2508 	if (ino != sctx->cur_ino) {
2509 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2510 				     NULL, NULL, &rdev);
2511 		if (ret < 0)
2512 			goto out;
2513 	} else {
2514 		gen = sctx->cur_inode_gen;
2515 		mode = sctx->cur_inode_mode;
2516 		rdev = sctx->cur_inode_rdev;
2517 	}
2518 
2519 	if (S_ISREG(mode)) {
2520 		cmd = BTRFS_SEND_C_MKFILE;
2521 	} else if (S_ISDIR(mode)) {
2522 		cmd = BTRFS_SEND_C_MKDIR;
2523 	} else if (S_ISLNK(mode)) {
2524 		cmd = BTRFS_SEND_C_SYMLINK;
2525 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2526 		cmd = BTRFS_SEND_C_MKNOD;
2527 	} else if (S_ISFIFO(mode)) {
2528 		cmd = BTRFS_SEND_C_MKFIFO;
2529 	} else if (S_ISSOCK(mode)) {
2530 		cmd = BTRFS_SEND_C_MKSOCK;
2531 	} else {
2532 		printk(KERN_WARNING "btrfs: unexpected inode type %o",
2533 				(int)(mode & S_IFMT));
2534 		ret = -ENOTSUPP;
2535 		goto out;
2536 	}
2537 
2538 	ret = begin_cmd(sctx, cmd);
2539 	if (ret < 0)
2540 		goto out;
2541 
2542 	ret = gen_unique_name(sctx, ino, gen, p);
2543 	if (ret < 0)
2544 		goto out;
2545 
2546 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2547 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2548 
2549 	if (S_ISLNK(mode)) {
2550 		fs_path_reset(p);
2551 		ret = read_symlink(sctx->send_root, ino, p);
2552 		if (ret < 0)
2553 			goto out;
2554 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2555 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2556 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2557 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2558 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2559 	}
2560 
2561 	ret = send_cmd(sctx);
2562 	if (ret < 0)
2563 		goto out;
2564 
2565 
2566 tlv_put_failure:
2567 out:
2568 	fs_path_free(p);
2569 	return ret;
2570 }
2571 
2572 /*
2573  * We need some special handling for inodes that get processed before the parent
2574  * directory got created. See process_recorded_refs for details.
2575  * This function does the check if we already created the dir out of order.
2576  */
2577 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2578 {
2579 	int ret = 0;
2580 	struct btrfs_path *path = NULL;
2581 	struct btrfs_key key;
2582 	struct btrfs_key found_key;
2583 	struct btrfs_key di_key;
2584 	struct extent_buffer *eb;
2585 	struct btrfs_dir_item *di;
2586 	int slot;
2587 
2588 	path = alloc_path_for_send();
2589 	if (!path) {
2590 		ret = -ENOMEM;
2591 		goto out;
2592 	}
2593 
2594 	key.objectid = dir;
2595 	key.type = BTRFS_DIR_INDEX_KEY;
2596 	key.offset = 0;
2597 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2598 	if (ret < 0)
2599 		goto out;
2600 
2601 	while (1) {
2602 		eb = path->nodes[0];
2603 		slot = path->slots[0];
2604 		if (slot >= btrfs_header_nritems(eb)) {
2605 			ret = btrfs_next_leaf(sctx->send_root, path);
2606 			if (ret < 0) {
2607 				goto out;
2608 			} else if (ret > 0) {
2609 				ret = 0;
2610 				break;
2611 			}
2612 			continue;
2613 		}
2614 
2615 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2616 		if (found_key.objectid != key.objectid ||
2617 		    found_key.type != key.type) {
2618 			ret = 0;
2619 			goto out;
2620 		}
2621 
2622 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2623 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2624 
2625 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2626 		    di_key.objectid < sctx->send_progress) {
2627 			ret = 1;
2628 			goto out;
2629 		}
2630 
2631 		path->slots[0]++;
2632 	}
2633 
2634 out:
2635 	btrfs_free_path(path);
2636 	return ret;
2637 }
2638 
2639 /*
2640  * Only creates the inode if it is:
2641  * 1. Not a directory
2642  * 2. Or a directory which was not created already due to out of order
2643  *    directories. See did_create_dir and process_recorded_refs for details.
2644  */
2645 static int send_create_inode_if_needed(struct send_ctx *sctx)
2646 {
2647 	int ret;
2648 
2649 	if (S_ISDIR(sctx->cur_inode_mode)) {
2650 		ret = did_create_dir(sctx, sctx->cur_ino);
2651 		if (ret < 0)
2652 			goto out;
2653 		if (ret) {
2654 			ret = 0;
2655 			goto out;
2656 		}
2657 	}
2658 
2659 	ret = send_create_inode(sctx, sctx->cur_ino);
2660 	if (ret < 0)
2661 		goto out;
2662 
2663 out:
2664 	return ret;
2665 }
2666 
2667 struct recorded_ref {
2668 	struct list_head list;
2669 	char *dir_path;
2670 	char *name;
2671 	struct fs_path *full_path;
2672 	u64 dir;
2673 	u64 dir_gen;
2674 	int dir_path_len;
2675 	int name_len;
2676 };
2677 
2678 /*
2679  * We need to process new refs before deleted refs, but compare_tree gives us
2680  * everything mixed. So we first record all refs and later process them.
2681  * This function is a helper to record one ref.
2682  */
2683 static int __record_ref(struct list_head *head, u64 dir,
2684 		      u64 dir_gen, struct fs_path *path)
2685 {
2686 	struct recorded_ref *ref;
2687 
2688 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
2689 	if (!ref)
2690 		return -ENOMEM;
2691 
2692 	ref->dir = dir;
2693 	ref->dir_gen = dir_gen;
2694 	ref->full_path = path;
2695 
2696 	ref->name = (char *)kbasename(ref->full_path->start);
2697 	ref->name_len = ref->full_path->end - ref->name;
2698 	ref->dir_path = ref->full_path->start;
2699 	if (ref->name == ref->full_path->start)
2700 		ref->dir_path_len = 0;
2701 	else
2702 		ref->dir_path_len = ref->full_path->end -
2703 				ref->full_path->start - 1 - ref->name_len;
2704 
2705 	list_add_tail(&ref->list, head);
2706 	return 0;
2707 }
2708 
2709 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2710 {
2711 	struct recorded_ref *new;
2712 
2713 	new = kmalloc(sizeof(*ref), GFP_NOFS);
2714 	if (!new)
2715 		return -ENOMEM;
2716 
2717 	new->dir = ref->dir;
2718 	new->dir_gen = ref->dir_gen;
2719 	new->full_path = NULL;
2720 	INIT_LIST_HEAD(&new->list);
2721 	list_add_tail(&new->list, list);
2722 	return 0;
2723 }
2724 
2725 static void __free_recorded_refs(struct list_head *head)
2726 {
2727 	struct recorded_ref *cur;
2728 
2729 	while (!list_empty(head)) {
2730 		cur = list_entry(head->next, struct recorded_ref, list);
2731 		fs_path_free(cur->full_path);
2732 		list_del(&cur->list);
2733 		kfree(cur);
2734 	}
2735 }
2736 
2737 static void free_recorded_refs(struct send_ctx *sctx)
2738 {
2739 	__free_recorded_refs(&sctx->new_refs);
2740 	__free_recorded_refs(&sctx->deleted_refs);
2741 }
2742 
2743 /*
2744  * Renames/moves a file/dir to its orphan name. Used when the first
2745  * ref of an unprocessed inode gets overwritten and for all non empty
2746  * directories.
2747  */
2748 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2749 			  struct fs_path *path)
2750 {
2751 	int ret;
2752 	struct fs_path *orphan;
2753 
2754 	orphan = fs_path_alloc();
2755 	if (!orphan)
2756 		return -ENOMEM;
2757 
2758 	ret = gen_unique_name(sctx, ino, gen, orphan);
2759 	if (ret < 0)
2760 		goto out;
2761 
2762 	ret = send_rename(sctx, path, orphan);
2763 
2764 out:
2765 	fs_path_free(orphan);
2766 	return ret;
2767 }
2768 
2769 static struct orphan_dir_info *
2770 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2771 {
2772 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2773 	struct rb_node *parent = NULL;
2774 	struct orphan_dir_info *entry, *odi;
2775 
2776 	odi = kmalloc(sizeof(*odi), GFP_NOFS);
2777 	if (!odi)
2778 		return ERR_PTR(-ENOMEM);
2779 	odi->ino = dir_ino;
2780 	odi->gen = 0;
2781 
2782 	while (*p) {
2783 		parent = *p;
2784 		entry = rb_entry(parent, struct orphan_dir_info, node);
2785 		if (dir_ino < entry->ino) {
2786 			p = &(*p)->rb_left;
2787 		} else if (dir_ino > entry->ino) {
2788 			p = &(*p)->rb_right;
2789 		} else {
2790 			kfree(odi);
2791 			return entry;
2792 		}
2793 	}
2794 
2795 	rb_link_node(&odi->node, parent, p);
2796 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2797 	return odi;
2798 }
2799 
2800 static struct orphan_dir_info *
2801 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2802 {
2803 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2804 	struct orphan_dir_info *entry;
2805 
2806 	while (n) {
2807 		entry = rb_entry(n, struct orphan_dir_info, node);
2808 		if (dir_ino < entry->ino)
2809 			n = n->rb_left;
2810 		else if (dir_ino > entry->ino)
2811 			n = n->rb_right;
2812 		else
2813 			return entry;
2814 	}
2815 	return NULL;
2816 }
2817 
2818 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2819 {
2820 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2821 
2822 	return odi != NULL;
2823 }
2824 
2825 static void free_orphan_dir_info(struct send_ctx *sctx,
2826 				 struct orphan_dir_info *odi)
2827 {
2828 	if (!odi)
2829 		return;
2830 	rb_erase(&odi->node, &sctx->orphan_dirs);
2831 	kfree(odi);
2832 }
2833 
2834 /*
2835  * Returns 1 if a directory can be removed at this point in time.
2836  * We check this by iterating all dir items and checking if the inode behind
2837  * the dir item was already processed.
2838  */
2839 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2840 		     u64 send_progress)
2841 {
2842 	int ret = 0;
2843 	struct btrfs_root *root = sctx->parent_root;
2844 	struct btrfs_path *path;
2845 	struct btrfs_key key;
2846 	struct btrfs_key found_key;
2847 	struct btrfs_key loc;
2848 	struct btrfs_dir_item *di;
2849 
2850 	/*
2851 	 * Don't try to rmdir the top/root subvolume dir.
2852 	 */
2853 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2854 		return 0;
2855 
2856 	path = alloc_path_for_send();
2857 	if (!path)
2858 		return -ENOMEM;
2859 
2860 	key.objectid = dir;
2861 	key.type = BTRFS_DIR_INDEX_KEY;
2862 	key.offset = 0;
2863 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2864 	if (ret < 0)
2865 		goto out;
2866 
2867 	while (1) {
2868 		struct waiting_dir_move *dm;
2869 
2870 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2871 			ret = btrfs_next_leaf(root, path);
2872 			if (ret < 0)
2873 				goto out;
2874 			else if (ret > 0)
2875 				break;
2876 			continue;
2877 		}
2878 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2879 				      path->slots[0]);
2880 		if (found_key.objectid != key.objectid ||
2881 		    found_key.type != key.type)
2882 			break;
2883 
2884 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2885 				struct btrfs_dir_item);
2886 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2887 
2888 		dm = get_waiting_dir_move(sctx, loc.objectid);
2889 		if (dm) {
2890 			struct orphan_dir_info *odi;
2891 
2892 			odi = add_orphan_dir_info(sctx, dir);
2893 			if (IS_ERR(odi)) {
2894 				ret = PTR_ERR(odi);
2895 				goto out;
2896 			}
2897 			odi->gen = dir_gen;
2898 			dm->rmdir_ino = dir;
2899 			ret = 0;
2900 			goto out;
2901 		}
2902 
2903 		if (loc.objectid > send_progress) {
2904 			ret = 0;
2905 			goto out;
2906 		}
2907 
2908 		path->slots[0]++;
2909 	}
2910 
2911 	ret = 1;
2912 
2913 out:
2914 	btrfs_free_path(path);
2915 	return ret;
2916 }
2917 
2918 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2919 {
2920 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2921 
2922 	return entry != NULL;
2923 }
2924 
2925 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2926 {
2927 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2928 	struct rb_node *parent = NULL;
2929 	struct waiting_dir_move *entry, *dm;
2930 
2931 	dm = kmalloc(sizeof(*dm), GFP_NOFS);
2932 	if (!dm)
2933 		return -ENOMEM;
2934 	dm->ino = ino;
2935 	dm->rmdir_ino = 0;
2936 
2937 	while (*p) {
2938 		parent = *p;
2939 		entry = rb_entry(parent, struct waiting_dir_move, node);
2940 		if (ino < entry->ino) {
2941 			p = &(*p)->rb_left;
2942 		} else if (ino > entry->ino) {
2943 			p = &(*p)->rb_right;
2944 		} else {
2945 			kfree(dm);
2946 			return -EEXIST;
2947 		}
2948 	}
2949 
2950 	rb_link_node(&dm->node, parent, p);
2951 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2952 	return 0;
2953 }
2954 
2955 static struct waiting_dir_move *
2956 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2957 {
2958 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2959 	struct waiting_dir_move *entry;
2960 
2961 	while (n) {
2962 		entry = rb_entry(n, struct waiting_dir_move, node);
2963 		if (ino < entry->ino)
2964 			n = n->rb_left;
2965 		else if (ino > entry->ino)
2966 			n = n->rb_right;
2967 		else
2968 			return entry;
2969 	}
2970 	return NULL;
2971 }
2972 
2973 static void free_waiting_dir_move(struct send_ctx *sctx,
2974 				  struct waiting_dir_move *dm)
2975 {
2976 	if (!dm)
2977 		return;
2978 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
2979 	kfree(dm);
2980 }
2981 
2982 static int add_pending_dir_move(struct send_ctx *sctx,
2983 				u64 ino,
2984 				u64 ino_gen,
2985 				u64 parent_ino,
2986 				struct list_head *new_refs,
2987 				struct list_head *deleted_refs)
2988 {
2989 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
2990 	struct rb_node *parent = NULL;
2991 	struct pending_dir_move *entry = NULL, *pm;
2992 	struct recorded_ref *cur;
2993 	int exists = 0;
2994 	int ret;
2995 
2996 	pm = kmalloc(sizeof(*pm), GFP_NOFS);
2997 	if (!pm)
2998 		return -ENOMEM;
2999 	pm->parent_ino = parent_ino;
3000 	pm->ino = ino;
3001 	pm->gen = ino_gen;
3002 	INIT_LIST_HEAD(&pm->list);
3003 	INIT_LIST_HEAD(&pm->update_refs);
3004 	RB_CLEAR_NODE(&pm->node);
3005 
3006 	while (*p) {
3007 		parent = *p;
3008 		entry = rb_entry(parent, struct pending_dir_move, node);
3009 		if (parent_ino < entry->parent_ino) {
3010 			p = &(*p)->rb_left;
3011 		} else if (parent_ino > entry->parent_ino) {
3012 			p = &(*p)->rb_right;
3013 		} else {
3014 			exists = 1;
3015 			break;
3016 		}
3017 	}
3018 
3019 	list_for_each_entry(cur, deleted_refs, list) {
3020 		ret = dup_ref(cur, &pm->update_refs);
3021 		if (ret < 0)
3022 			goto out;
3023 	}
3024 	list_for_each_entry(cur, new_refs, list) {
3025 		ret = dup_ref(cur, &pm->update_refs);
3026 		if (ret < 0)
3027 			goto out;
3028 	}
3029 
3030 	ret = add_waiting_dir_move(sctx, pm->ino);
3031 	if (ret)
3032 		goto out;
3033 
3034 	if (exists) {
3035 		list_add_tail(&pm->list, &entry->list);
3036 	} else {
3037 		rb_link_node(&pm->node, parent, p);
3038 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3039 	}
3040 	ret = 0;
3041 out:
3042 	if (ret) {
3043 		__free_recorded_refs(&pm->update_refs);
3044 		kfree(pm);
3045 	}
3046 	return ret;
3047 }
3048 
3049 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3050 						      u64 parent_ino)
3051 {
3052 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3053 	struct pending_dir_move *entry;
3054 
3055 	while (n) {
3056 		entry = rb_entry(n, struct pending_dir_move, node);
3057 		if (parent_ino < entry->parent_ino)
3058 			n = n->rb_left;
3059 		else if (parent_ino > entry->parent_ino)
3060 			n = n->rb_right;
3061 		else
3062 			return entry;
3063 	}
3064 	return NULL;
3065 }
3066 
3067 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3068 		     u64 ino, u64 gen, u64 *ancestor_ino)
3069 {
3070 	int ret = 0;
3071 	u64 parent_inode = 0;
3072 	u64 parent_gen = 0;
3073 	u64 start_ino = ino;
3074 
3075 	*ancestor_ino = 0;
3076 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3077 		fs_path_reset(name);
3078 
3079 		if (is_waiting_for_rm(sctx, ino))
3080 			break;
3081 		if (is_waiting_for_move(sctx, ino)) {
3082 			if (*ancestor_ino == 0)
3083 				*ancestor_ino = ino;
3084 			ret = get_first_ref(sctx->parent_root, ino,
3085 					    &parent_inode, &parent_gen, name);
3086 		} else {
3087 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3088 							&parent_inode,
3089 							&parent_gen, name);
3090 			if (ret > 0) {
3091 				ret = 0;
3092 				break;
3093 			}
3094 		}
3095 		if (ret < 0)
3096 			break;
3097 		if (parent_inode == start_ino) {
3098 			ret = 1;
3099 			if (*ancestor_ino == 0)
3100 				*ancestor_ino = ino;
3101 			break;
3102 		}
3103 		ino = parent_inode;
3104 		gen = parent_gen;
3105 	}
3106 	return ret;
3107 }
3108 
3109 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3110 {
3111 	struct fs_path *from_path = NULL;
3112 	struct fs_path *to_path = NULL;
3113 	struct fs_path *name = NULL;
3114 	u64 orig_progress = sctx->send_progress;
3115 	struct recorded_ref *cur;
3116 	u64 parent_ino, parent_gen;
3117 	struct waiting_dir_move *dm = NULL;
3118 	u64 rmdir_ino = 0;
3119 	int ret;
3120 	u64 ancestor = 0;
3121 
3122 	name = fs_path_alloc();
3123 	from_path = fs_path_alloc();
3124 	if (!name || !from_path) {
3125 		ret = -ENOMEM;
3126 		goto out;
3127 	}
3128 
3129 	dm = get_waiting_dir_move(sctx, pm->ino);
3130 	ASSERT(dm);
3131 	rmdir_ino = dm->rmdir_ino;
3132 	free_waiting_dir_move(sctx, dm);
3133 
3134 	ret = get_first_ref(sctx->parent_root, pm->ino,
3135 			    &parent_ino, &parent_gen, name);
3136 	if (ret < 0)
3137 		goto out;
3138 
3139 	ret = get_cur_path(sctx, parent_ino, parent_gen,
3140 			   from_path);
3141 	if (ret < 0)
3142 		goto out;
3143 	ret = fs_path_add_path(from_path, name);
3144 	if (ret < 0)
3145 		goto out;
3146 
3147 	sctx->send_progress = sctx->cur_ino + 1;
3148 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3149 	if (ret) {
3150 		LIST_HEAD(deleted_refs);
3151 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3152 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3153 					   &pm->update_refs, &deleted_refs);
3154 		if (ret < 0)
3155 			goto out;
3156 		if (rmdir_ino) {
3157 			dm = get_waiting_dir_move(sctx, pm->ino);
3158 			ASSERT(dm);
3159 			dm->rmdir_ino = rmdir_ino;
3160 		}
3161 		goto out;
3162 	}
3163 	fs_path_reset(name);
3164 	to_path = name;
3165 	name = NULL;
3166 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3167 	if (ret < 0)
3168 		goto out;
3169 
3170 	ret = send_rename(sctx, from_path, to_path);
3171 	if (ret < 0)
3172 		goto out;
3173 
3174 	if (rmdir_ino) {
3175 		struct orphan_dir_info *odi;
3176 
3177 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3178 		if (!odi) {
3179 			/* already deleted */
3180 			goto finish;
3181 		}
3182 		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3183 		if (ret < 0)
3184 			goto out;
3185 		if (!ret)
3186 			goto finish;
3187 
3188 		name = fs_path_alloc();
3189 		if (!name) {
3190 			ret = -ENOMEM;
3191 			goto out;
3192 		}
3193 		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3194 		if (ret < 0)
3195 			goto out;
3196 		ret = send_rmdir(sctx, name);
3197 		if (ret < 0)
3198 			goto out;
3199 		free_orphan_dir_info(sctx, odi);
3200 	}
3201 
3202 finish:
3203 	ret = send_utimes(sctx, pm->ino, pm->gen);
3204 	if (ret < 0)
3205 		goto out;
3206 
3207 	/*
3208 	 * After rename/move, need to update the utimes of both new parent(s)
3209 	 * and old parent(s).
3210 	 */
3211 	list_for_each_entry(cur, &pm->update_refs, list) {
3212 		if (cur->dir == rmdir_ino)
3213 			continue;
3214 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3215 		if (ret < 0)
3216 			goto out;
3217 	}
3218 
3219 out:
3220 	fs_path_free(name);
3221 	fs_path_free(from_path);
3222 	fs_path_free(to_path);
3223 	sctx->send_progress = orig_progress;
3224 
3225 	return ret;
3226 }
3227 
3228 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3229 {
3230 	if (!list_empty(&m->list))
3231 		list_del(&m->list);
3232 	if (!RB_EMPTY_NODE(&m->node))
3233 		rb_erase(&m->node, &sctx->pending_dir_moves);
3234 	__free_recorded_refs(&m->update_refs);
3235 	kfree(m);
3236 }
3237 
3238 static void tail_append_pending_moves(struct pending_dir_move *moves,
3239 				      struct list_head *stack)
3240 {
3241 	if (list_empty(&moves->list)) {
3242 		list_add_tail(&moves->list, stack);
3243 	} else {
3244 		LIST_HEAD(list);
3245 		list_splice_init(&moves->list, &list);
3246 		list_add_tail(&moves->list, stack);
3247 		list_splice_tail(&list, stack);
3248 	}
3249 }
3250 
3251 static int apply_children_dir_moves(struct send_ctx *sctx)
3252 {
3253 	struct pending_dir_move *pm;
3254 	struct list_head stack;
3255 	u64 parent_ino = sctx->cur_ino;
3256 	int ret = 0;
3257 
3258 	pm = get_pending_dir_moves(sctx, parent_ino);
3259 	if (!pm)
3260 		return 0;
3261 
3262 	INIT_LIST_HEAD(&stack);
3263 	tail_append_pending_moves(pm, &stack);
3264 
3265 	while (!list_empty(&stack)) {
3266 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3267 		parent_ino = pm->ino;
3268 		ret = apply_dir_move(sctx, pm);
3269 		free_pending_move(sctx, pm);
3270 		if (ret)
3271 			goto out;
3272 		pm = get_pending_dir_moves(sctx, parent_ino);
3273 		if (pm)
3274 			tail_append_pending_moves(pm, &stack);
3275 	}
3276 	return 0;
3277 
3278 out:
3279 	while (!list_empty(&stack)) {
3280 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3281 		free_pending_move(sctx, pm);
3282 	}
3283 	return ret;
3284 }
3285 
3286 static int wait_for_parent_move(struct send_ctx *sctx,
3287 				struct recorded_ref *parent_ref)
3288 {
3289 	int ret = 0;
3290 	u64 ino = parent_ref->dir;
3291 	u64 parent_ino_before, parent_ino_after;
3292 	struct fs_path *path_before = NULL;
3293 	struct fs_path *path_after = NULL;
3294 	int len1, len2;
3295 
3296 	path_after = fs_path_alloc();
3297 	path_before = fs_path_alloc();
3298 	if (!path_after || !path_before) {
3299 		ret = -ENOMEM;
3300 		goto out;
3301 	}
3302 
3303 	/*
3304 	 * Our current directory inode may not yet be renamed/moved because some
3305 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3306 	 * such ancestor exists and make sure our own rename/move happens after
3307 	 * that ancestor is processed.
3308 	 */
3309 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3310 		if (is_waiting_for_move(sctx, ino)) {
3311 			ret = 1;
3312 			break;
3313 		}
3314 
3315 		fs_path_reset(path_before);
3316 		fs_path_reset(path_after);
3317 
3318 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3319 				    NULL, path_after);
3320 		if (ret < 0)
3321 			goto out;
3322 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3323 				    NULL, path_before);
3324 		if (ret < 0 && ret != -ENOENT) {
3325 			goto out;
3326 		} else if (ret == -ENOENT) {
3327 			ret = 0;
3328 			break;
3329 		}
3330 
3331 		len1 = fs_path_len(path_before);
3332 		len2 = fs_path_len(path_after);
3333 		if (ino > sctx->cur_ino &&
3334 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3335 		     memcmp(path_before->start, path_after->start, len1))) {
3336 			ret = 1;
3337 			break;
3338 		}
3339 		ino = parent_ino_after;
3340 	}
3341 
3342 out:
3343 	fs_path_free(path_before);
3344 	fs_path_free(path_after);
3345 
3346 	if (ret == 1) {
3347 		ret = add_pending_dir_move(sctx,
3348 					   sctx->cur_ino,
3349 					   sctx->cur_inode_gen,
3350 					   ino,
3351 					   &sctx->new_refs,
3352 					   &sctx->deleted_refs);
3353 		if (!ret)
3354 			ret = 1;
3355 	}
3356 
3357 	return ret;
3358 }
3359 
3360 /*
3361  * This does all the move/link/unlink/rmdir magic.
3362  */
3363 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3364 {
3365 	int ret = 0;
3366 	struct recorded_ref *cur;
3367 	struct recorded_ref *cur2;
3368 	struct list_head check_dirs;
3369 	struct fs_path *valid_path = NULL;
3370 	u64 ow_inode = 0;
3371 	u64 ow_gen;
3372 	int did_overwrite = 0;
3373 	int is_orphan = 0;
3374 	u64 last_dir_ino_rm = 0;
3375 
3376 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3377 
3378 	/*
3379 	 * This should never happen as the root dir always has the same ref
3380 	 * which is always '..'
3381 	 */
3382 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3383 	INIT_LIST_HEAD(&check_dirs);
3384 
3385 	valid_path = fs_path_alloc();
3386 	if (!valid_path) {
3387 		ret = -ENOMEM;
3388 		goto out;
3389 	}
3390 
3391 	/*
3392 	 * First, check if the first ref of the current inode was overwritten
3393 	 * before. If yes, we know that the current inode was already orphanized
3394 	 * and thus use the orphan name. If not, we can use get_cur_path to
3395 	 * get the path of the first ref as it would like while receiving at
3396 	 * this point in time.
3397 	 * New inodes are always orphan at the beginning, so force to use the
3398 	 * orphan name in this case.
3399 	 * The first ref is stored in valid_path and will be updated if it
3400 	 * gets moved around.
3401 	 */
3402 	if (!sctx->cur_inode_new) {
3403 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3404 				sctx->cur_inode_gen);
3405 		if (ret < 0)
3406 			goto out;
3407 		if (ret)
3408 			did_overwrite = 1;
3409 	}
3410 	if (sctx->cur_inode_new || did_overwrite) {
3411 		ret = gen_unique_name(sctx, sctx->cur_ino,
3412 				sctx->cur_inode_gen, valid_path);
3413 		if (ret < 0)
3414 			goto out;
3415 		is_orphan = 1;
3416 	} else {
3417 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3418 				valid_path);
3419 		if (ret < 0)
3420 			goto out;
3421 	}
3422 
3423 	list_for_each_entry(cur, &sctx->new_refs, list) {
3424 		/*
3425 		 * We may have refs where the parent directory does not exist
3426 		 * yet. This happens if the parent directories inum is higher
3427 		 * the the current inum. To handle this case, we create the
3428 		 * parent directory out of order. But we need to check if this
3429 		 * did already happen before due to other refs in the same dir.
3430 		 */
3431 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3432 		if (ret < 0)
3433 			goto out;
3434 		if (ret == inode_state_will_create) {
3435 			ret = 0;
3436 			/*
3437 			 * First check if any of the current inodes refs did
3438 			 * already create the dir.
3439 			 */
3440 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3441 				if (cur == cur2)
3442 					break;
3443 				if (cur2->dir == cur->dir) {
3444 					ret = 1;
3445 					break;
3446 				}
3447 			}
3448 
3449 			/*
3450 			 * If that did not happen, check if a previous inode
3451 			 * did already create the dir.
3452 			 */
3453 			if (!ret)
3454 				ret = did_create_dir(sctx, cur->dir);
3455 			if (ret < 0)
3456 				goto out;
3457 			if (!ret) {
3458 				ret = send_create_inode(sctx, cur->dir);
3459 				if (ret < 0)
3460 					goto out;
3461 			}
3462 		}
3463 
3464 		/*
3465 		 * Check if this new ref would overwrite the first ref of
3466 		 * another unprocessed inode. If yes, orphanize the
3467 		 * overwritten inode. If we find an overwritten ref that is
3468 		 * not the first ref, simply unlink it.
3469 		 */
3470 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3471 				cur->name, cur->name_len,
3472 				&ow_inode, &ow_gen);
3473 		if (ret < 0)
3474 			goto out;
3475 		if (ret) {
3476 			ret = is_first_ref(sctx->parent_root,
3477 					   ow_inode, cur->dir, cur->name,
3478 					   cur->name_len);
3479 			if (ret < 0)
3480 				goto out;
3481 			if (ret) {
3482 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3483 						cur->full_path);
3484 				if (ret < 0)
3485 					goto out;
3486 			} else {
3487 				ret = send_unlink(sctx, cur->full_path);
3488 				if (ret < 0)
3489 					goto out;
3490 			}
3491 		}
3492 
3493 		/*
3494 		 * link/move the ref to the new place. If we have an orphan
3495 		 * inode, move it and update valid_path. If not, link or move
3496 		 * it depending on the inode mode.
3497 		 */
3498 		if (is_orphan) {
3499 			ret = send_rename(sctx, valid_path, cur->full_path);
3500 			if (ret < 0)
3501 				goto out;
3502 			is_orphan = 0;
3503 			ret = fs_path_copy(valid_path, cur->full_path);
3504 			if (ret < 0)
3505 				goto out;
3506 		} else {
3507 			if (S_ISDIR(sctx->cur_inode_mode)) {
3508 				/*
3509 				 * Dirs can't be linked, so move it. For moved
3510 				 * dirs, we always have one new and one deleted
3511 				 * ref. The deleted ref is ignored later.
3512 				 */
3513 				ret = wait_for_parent_move(sctx, cur);
3514 				if (ret < 0)
3515 					goto out;
3516 				if (ret) {
3517 					*pending_move = 1;
3518 				} else {
3519 					ret = send_rename(sctx, valid_path,
3520 							  cur->full_path);
3521 					if (!ret)
3522 						ret = fs_path_copy(valid_path,
3523 							       cur->full_path);
3524 				}
3525 				if (ret < 0)
3526 					goto out;
3527 			} else {
3528 				ret = send_link(sctx, cur->full_path,
3529 						valid_path);
3530 				if (ret < 0)
3531 					goto out;
3532 			}
3533 		}
3534 		ret = dup_ref(cur, &check_dirs);
3535 		if (ret < 0)
3536 			goto out;
3537 	}
3538 
3539 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3540 		/*
3541 		 * Check if we can already rmdir the directory. If not,
3542 		 * orphanize it. For every dir item inside that gets deleted
3543 		 * later, we do this check again and rmdir it then if possible.
3544 		 * See the use of check_dirs for more details.
3545 		 */
3546 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3547 				sctx->cur_ino);
3548 		if (ret < 0)
3549 			goto out;
3550 		if (ret) {
3551 			ret = send_rmdir(sctx, valid_path);
3552 			if (ret < 0)
3553 				goto out;
3554 		} else if (!is_orphan) {
3555 			ret = orphanize_inode(sctx, sctx->cur_ino,
3556 					sctx->cur_inode_gen, valid_path);
3557 			if (ret < 0)
3558 				goto out;
3559 			is_orphan = 1;
3560 		}
3561 
3562 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3563 			ret = dup_ref(cur, &check_dirs);
3564 			if (ret < 0)
3565 				goto out;
3566 		}
3567 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
3568 		   !list_empty(&sctx->deleted_refs)) {
3569 		/*
3570 		 * We have a moved dir. Add the old parent to check_dirs
3571 		 */
3572 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3573 				list);
3574 		ret = dup_ref(cur, &check_dirs);
3575 		if (ret < 0)
3576 			goto out;
3577 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
3578 		/*
3579 		 * We have a non dir inode. Go through all deleted refs and
3580 		 * unlink them if they were not already overwritten by other
3581 		 * inodes.
3582 		 */
3583 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3584 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3585 					sctx->cur_ino, sctx->cur_inode_gen,
3586 					cur->name, cur->name_len);
3587 			if (ret < 0)
3588 				goto out;
3589 			if (!ret) {
3590 				ret = send_unlink(sctx, cur->full_path);
3591 				if (ret < 0)
3592 					goto out;
3593 			}
3594 			ret = dup_ref(cur, &check_dirs);
3595 			if (ret < 0)
3596 				goto out;
3597 		}
3598 		/*
3599 		 * If the inode is still orphan, unlink the orphan. This may
3600 		 * happen when a previous inode did overwrite the first ref
3601 		 * of this inode and no new refs were added for the current
3602 		 * inode. Unlinking does not mean that the inode is deleted in
3603 		 * all cases. There may still be links to this inode in other
3604 		 * places.
3605 		 */
3606 		if (is_orphan) {
3607 			ret = send_unlink(sctx, valid_path);
3608 			if (ret < 0)
3609 				goto out;
3610 		}
3611 	}
3612 
3613 	/*
3614 	 * We did collect all parent dirs where cur_inode was once located. We
3615 	 * now go through all these dirs and check if they are pending for
3616 	 * deletion and if it's finally possible to perform the rmdir now.
3617 	 * We also update the inode stats of the parent dirs here.
3618 	 */
3619 	list_for_each_entry(cur, &check_dirs, list) {
3620 		/*
3621 		 * In case we had refs into dirs that were not processed yet,
3622 		 * we don't need to do the utime and rmdir logic for these dirs.
3623 		 * The dir will be processed later.
3624 		 */
3625 		if (cur->dir > sctx->cur_ino)
3626 			continue;
3627 
3628 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3629 		if (ret < 0)
3630 			goto out;
3631 
3632 		if (ret == inode_state_did_create ||
3633 		    ret == inode_state_no_change) {
3634 			/* TODO delayed utimes */
3635 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3636 			if (ret < 0)
3637 				goto out;
3638 		} else if (ret == inode_state_did_delete &&
3639 			   cur->dir != last_dir_ino_rm) {
3640 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3641 					sctx->cur_ino);
3642 			if (ret < 0)
3643 				goto out;
3644 			if (ret) {
3645 				ret = get_cur_path(sctx, cur->dir,
3646 						   cur->dir_gen, valid_path);
3647 				if (ret < 0)
3648 					goto out;
3649 				ret = send_rmdir(sctx, valid_path);
3650 				if (ret < 0)
3651 					goto out;
3652 				last_dir_ino_rm = cur->dir;
3653 			}
3654 		}
3655 	}
3656 
3657 	ret = 0;
3658 
3659 out:
3660 	__free_recorded_refs(&check_dirs);
3661 	free_recorded_refs(sctx);
3662 	fs_path_free(valid_path);
3663 	return ret;
3664 }
3665 
3666 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3667 		      struct fs_path *name, void *ctx, struct list_head *refs)
3668 {
3669 	int ret = 0;
3670 	struct send_ctx *sctx = ctx;
3671 	struct fs_path *p;
3672 	u64 gen;
3673 
3674 	p = fs_path_alloc();
3675 	if (!p)
3676 		return -ENOMEM;
3677 
3678 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3679 			NULL, NULL);
3680 	if (ret < 0)
3681 		goto out;
3682 
3683 	ret = get_cur_path(sctx, dir, gen, p);
3684 	if (ret < 0)
3685 		goto out;
3686 	ret = fs_path_add_path(p, name);
3687 	if (ret < 0)
3688 		goto out;
3689 
3690 	ret = __record_ref(refs, dir, gen, p);
3691 
3692 out:
3693 	if (ret)
3694 		fs_path_free(p);
3695 	return ret;
3696 }
3697 
3698 static int __record_new_ref(int num, u64 dir, int index,
3699 			    struct fs_path *name,
3700 			    void *ctx)
3701 {
3702 	struct send_ctx *sctx = ctx;
3703 	return record_ref(sctx->send_root, num, dir, index, name,
3704 			  ctx, &sctx->new_refs);
3705 }
3706 
3707 
3708 static int __record_deleted_ref(int num, u64 dir, int index,
3709 				struct fs_path *name,
3710 				void *ctx)
3711 {
3712 	struct send_ctx *sctx = ctx;
3713 	return record_ref(sctx->parent_root, num, dir, index, name,
3714 			  ctx, &sctx->deleted_refs);
3715 }
3716 
3717 static int record_new_ref(struct send_ctx *sctx)
3718 {
3719 	int ret;
3720 
3721 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3722 				sctx->cmp_key, 0, __record_new_ref, sctx);
3723 	if (ret < 0)
3724 		goto out;
3725 	ret = 0;
3726 
3727 out:
3728 	return ret;
3729 }
3730 
3731 static int record_deleted_ref(struct send_ctx *sctx)
3732 {
3733 	int ret;
3734 
3735 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3736 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
3737 	if (ret < 0)
3738 		goto out;
3739 	ret = 0;
3740 
3741 out:
3742 	return ret;
3743 }
3744 
3745 struct find_ref_ctx {
3746 	u64 dir;
3747 	u64 dir_gen;
3748 	struct btrfs_root *root;
3749 	struct fs_path *name;
3750 	int found_idx;
3751 };
3752 
3753 static int __find_iref(int num, u64 dir, int index,
3754 		       struct fs_path *name,
3755 		       void *ctx_)
3756 {
3757 	struct find_ref_ctx *ctx = ctx_;
3758 	u64 dir_gen;
3759 	int ret;
3760 
3761 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3762 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3763 		/*
3764 		 * To avoid doing extra lookups we'll only do this if everything
3765 		 * else matches.
3766 		 */
3767 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3768 				     NULL, NULL, NULL);
3769 		if (ret)
3770 			return ret;
3771 		if (dir_gen != ctx->dir_gen)
3772 			return 0;
3773 		ctx->found_idx = num;
3774 		return 1;
3775 	}
3776 	return 0;
3777 }
3778 
3779 static int find_iref(struct btrfs_root *root,
3780 		     struct btrfs_path *path,
3781 		     struct btrfs_key *key,
3782 		     u64 dir, u64 dir_gen, struct fs_path *name)
3783 {
3784 	int ret;
3785 	struct find_ref_ctx ctx;
3786 
3787 	ctx.dir = dir;
3788 	ctx.name = name;
3789 	ctx.dir_gen = dir_gen;
3790 	ctx.found_idx = -1;
3791 	ctx.root = root;
3792 
3793 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3794 	if (ret < 0)
3795 		return ret;
3796 
3797 	if (ctx.found_idx == -1)
3798 		return -ENOENT;
3799 
3800 	return ctx.found_idx;
3801 }
3802 
3803 static int __record_changed_new_ref(int num, u64 dir, int index,
3804 				    struct fs_path *name,
3805 				    void *ctx)
3806 {
3807 	u64 dir_gen;
3808 	int ret;
3809 	struct send_ctx *sctx = ctx;
3810 
3811 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3812 			     NULL, NULL, NULL);
3813 	if (ret)
3814 		return ret;
3815 
3816 	ret = find_iref(sctx->parent_root, sctx->right_path,
3817 			sctx->cmp_key, dir, dir_gen, name);
3818 	if (ret == -ENOENT)
3819 		ret = __record_new_ref(num, dir, index, name, sctx);
3820 	else if (ret > 0)
3821 		ret = 0;
3822 
3823 	return ret;
3824 }
3825 
3826 static int __record_changed_deleted_ref(int num, u64 dir, int index,
3827 					struct fs_path *name,
3828 					void *ctx)
3829 {
3830 	u64 dir_gen;
3831 	int ret;
3832 	struct send_ctx *sctx = ctx;
3833 
3834 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
3835 			     NULL, NULL, NULL);
3836 	if (ret)
3837 		return ret;
3838 
3839 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
3840 			dir, dir_gen, name);
3841 	if (ret == -ENOENT)
3842 		ret = __record_deleted_ref(num, dir, index, name, sctx);
3843 	else if (ret > 0)
3844 		ret = 0;
3845 
3846 	return ret;
3847 }
3848 
3849 static int record_changed_ref(struct send_ctx *sctx)
3850 {
3851 	int ret = 0;
3852 
3853 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3854 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3855 	if (ret < 0)
3856 		goto out;
3857 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3858 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3859 	if (ret < 0)
3860 		goto out;
3861 	ret = 0;
3862 
3863 out:
3864 	return ret;
3865 }
3866 
3867 /*
3868  * Record and process all refs at once. Needed when an inode changes the
3869  * generation number, which means that it was deleted and recreated.
3870  */
3871 static int process_all_refs(struct send_ctx *sctx,
3872 			    enum btrfs_compare_tree_result cmd)
3873 {
3874 	int ret;
3875 	struct btrfs_root *root;
3876 	struct btrfs_path *path;
3877 	struct btrfs_key key;
3878 	struct btrfs_key found_key;
3879 	struct extent_buffer *eb;
3880 	int slot;
3881 	iterate_inode_ref_t cb;
3882 	int pending_move = 0;
3883 
3884 	path = alloc_path_for_send();
3885 	if (!path)
3886 		return -ENOMEM;
3887 
3888 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
3889 		root = sctx->send_root;
3890 		cb = __record_new_ref;
3891 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
3892 		root = sctx->parent_root;
3893 		cb = __record_deleted_ref;
3894 	} else {
3895 		btrfs_err(sctx->send_root->fs_info,
3896 				"Wrong command %d in process_all_refs", cmd);
3897 		ret = -EINVAL;
3898 		goto out;
3899 	}
3900 
3901 	key.objectid = sctx->cmp_key->objectid;
3902 	key.type = BTRFS_INODE_REF_KEY;
3903 	key.offset = 0;
3904 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3905 	if (ret < 0)
3906 		goto out;
3907 
3908 	while (1) {
3909 		eb = path->nodes[0];
3910 		slot = path->slots[0];
3911 		if (slot >= btrfs_header_nritems(eb)) {
3912 			ret = btrfs_next_leaf(root, path);
3913 			if (ret < 0)
3914 				goto out;
3915 			else if (ret > 0)
3916 				break;
3917 			continue;
3918 		}
3919 
3920 		btrfs_item_key_to_cpu(eb, &found_key, slot);
3921 
3922 		if (found_key.objectid != key.objectid ||
3923 		    (found_key.type != BTRFS_INODE_REF_KEY &&
3924 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
3925 			break;
3926 
3927 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
3928 		if (ret < 0)
3929 			goto out;
3930 
3931 		path->slots[0]++;
3932 	}
3933 	btrfs_release_path(path);
3934 
3935 	ret = process_recorded_refs(sctx, &pending_move);
3936 	/* Only applicable to an incremental send. */
3937 	ASSERT(pending_move == 0);
3938 
3939 out:
3940 	btrfs_free_path(path);
3941 	return ret;
3942 }
3943 
3944 static int send_set_xattr(struct send_ctx *sctx,
3945 			  struct fs_path *path,
3946 			  const char *name, int name_len,
3947 			  const char *data, int data_len)
3948 {
3949 	int ret = 0;
3950 
3951 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
3952 	if (ret < 0)
3953 		goto out;
3954 
3955 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3956 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3957 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
3958 
3959 	ret = send_cmd(sctx);
3960 
3961 tlv_put_failure:
3962 out:
3963 	return ret;
3964 }
3965 
3966 static int send_remove_xattr(struct send_ctx *sctx,
3967 			  struct fs_path *path,
3968 			  const char *name, int name_len)
3969 {
3970 	int ret = 0;
3971 
3972 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
3973 	if (ret < 0)
3974 		goto out;
3975 
3976 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3977 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3978 
3979 	ret = send_cmd(sctx);
3980 
3981 tlv_put_failure:
3982 out:
3983 	return ret;
3984 }
3985 
3986 static int __process_new_xattr(int num, struct btrfs_key *di_key,
3987 			       const char *name, int name_len,
3988 			       const char *data, int data_len,
3989 			       u8 type, void *ctx)
3990 {
3991 	int ret;
3992 	struct send_ctx *sctx = ctx;
3993 	struct fs_path *p;
3994 	posix_acl_xattr_header dummy_acl;
3995 
3996 	p = fs_path_alloc();
3997 	if (!p)
3998 		return -ENOMEM;
3999 
4000 	/*
4001 	 * This hack is needed because empty acl's are stored as zero byte
4002 	 * data in xattrs. Problem with that is, that receiving these zero byte
4003 	 * acl's will fail later. To fix this, we send a dummy acl list that
4004 	 * only contains the version number and no entries.
4005 	 */
4006 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4007 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4008 		if (data_len == 0) {
4009 			dummy_acl.a_version =
4010 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4011 			data = (char *)&dummy_acl;
4012 			data_len = sizeof(dummy_acl);
4013 		}
4014 	}
4015 
4016 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4017 	if (ret < 0)
4018 		goto out;
4019 
4020 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4021 
4022 out:
4023 	fs_path_free(p);
4024 	return ret;
4025 }
4026 
4027 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4028 				   const char *name, int name_len,
4029 				   const char *data, int data_len,
4030 				   u8 type, void *ctx)
4031 {
4032 	int ret;
4033 	struct send_ctx *sctx = ctx;
4034 	struct fs_path *p;
4035 
4036 	p = fs_path_alloc();
4037 	if (!p)
4038 		return -ENOMEM;
4039 
4040 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4041 	if (ret < 0)
4042 		goto out;
4043 
4044 	ret = send_remove_xattr(sctx, p, name, name_len);
4045 
4046 out:
4047 	fs_path_free(p);
4048 	return ret;
4049 }
4050 
4051 static int process_new_xattr(struct send_ctx *sctx)
4052 {
4053 	int ret = 0;
4054 
4055 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4056 			       sctx->cmp_key, __process_new_xattr, sctx);
4057 
4058 	return ret;
4059 }
4060 
4061 static int process_deleted_xattr(struct send_ctx *sctx)
4062 {
4063 	int ret;
4064 
4065 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4066 			       sctx->cmp_key, __process_deleted_xattr, sctx);
4067 
4068 	return ret;
4069 }
4070 
4071 struct find_xattr_ctx {
4072 	const char *name;
4073 	int name_len;
4074 	int found_idx;
4075 	char *found_data;
4076 	int found_data_len;
4077 };
4078 
4079 static int __find_xattr(int num, struct btrfs_key *di_key,
4080 			const char *name, int name_len,
4081 			const char *data, int data_len,
4082 			u8 type, void *vctx)
4083 {
4084 	struct find_xattr_ctx *ctx = vctx;
4085 
4086 	if (name_len == ctx->name_len &&
4087 	    strncmp(name, ctx->name, name_len) == 0) {
4088 		ctx->found_idx = num;
4089 		ctx->found_data_len = data_len;
4090 		ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
4091 		if (!ctx->found_data)
4092 			return -ENOMEM;
4093 		return 1;
4094 	}
4095 	return 0;
4096 }
4097 
4098 static int find_xattr(struct btrfs_root *root,
4099 		      struct btrfs_path *path,
4100 		      struct btrfs_key *key,
4101 		      const char *name, int name_len,
4102 		      char **data, int *data_len)
4103 {
4104 	int ret;
4105 	struct find_xattr_ctx ctx;
4106 
4107 	ctx.name = name;
4108 	ctx.name_len = name_len;
4109 	ctx.found_idx = -1;
4110 	ctx.found_data = NULL;
4111 	ctx.found_data_len = 0;
4112 
4113 	ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4114 	if (ret < 0)
4115 		return ret;
4116 
4117 	if (ctx.found_idx == -1)
4118 		return -ENOENT;
4119 	if (data) {
4120 		*data = ctx.found_data;
4121 		*data_len = ctx.found_data_len;
4122 	} else {
4123 		kfree(ctx.found_data);
4124 	}
4125 	return ctx.found_idx;
4126 }
4127 
4128 
4129 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4130 				       const char *name, int name_len,
4131 				       const char *data, int data_len,
4132 				       u8 type, void *ctx)
4133 {
4134 	int ret;
4135 	struct send_ctx *sctx = ctx;
4136 	char *found_data = NULL;
4137 	int found_data_len  = 0;
4138 
4139 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4140 			 sctx->cmp_key, name, name_len, &found_data,
4141 			 &found_data_len);
4142 	if (ret == -ENOENT) {
4143 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4144 				data_len, type, ctx);
4145 	} else if (ret >= 0) {
4146 		if (data_len != found_data_len ||
4147 		    memcmp(data, found_data, data_len)) {
4148 			ret = __process_new_xattr(num, di_key, name, name_len,
4149 					data, data_len, type, ctx);
4150 		} else {
4151 			ret = 0;
4152 		}
4153 	}
4154 
4155 	kfree(found_data);
4156 	return ret;
4157 }
4158 
4159 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4160 					   const char *name, int name_len,
4161 					   const char *data, int data_len,
4162 					   u8 type, void *ctx)
4163 {
4164 	int ret;
4165 	struct send_ctx *sctx = ctx;
4166 
4167 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4168 			 name, name_len, NULL, NULL);
4169 	if (ret == -ENOENT)
4170 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4171 				data_len, type, ctx);
4172 	else if (ret >= 0)
4173 		ret = 0;
4174 
4175 	return ret;
4176 }
4177 
4178 static int process_changed_xattr(struct send_ctx *sctx)
4179 {
4180 	int ret = 0;
4181 
4182 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4183 			sctx->cmp_key, __process_changed_new_xattr, sctx);
4184 	if (ret < 0)
4185 		goto out;
4186 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4187 			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4188 
4189 out:
4190 	return ret;
4191 }
4192 
4193 static int process_all_new_xattrs(struct send_ctx *sctx)
4194 {
4195 	int ret;
4196 	struct btrfs_root *root;
4197 	struct btrfs_path *path;
4198 	struct btrfs_key key;
4199 	struct btrfs_key found_key;
4200 	struct extent_buffer *eb;
4201 	int slot;
4202 
4203 	path = alloc_path_for_send();
4204 	if (!path)
4205 		return -ENOMEM;
4206 
4207 	root = sctx->send_root;
4208 
4209 	key.objectid = sctx->cmp_key->objectid;
4210 	key.type = BTRFS_XATTR_ITEM_KEY;
4211 	key.offset = 0;
4212 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4213 	if (ret < 0)
4214 		goto out;
4215 
4216 	while (1) {
4217 		eb = path->nodes[0];
4218 		slot = path->slots[0];
4219 		if (slot >= btrfs_header_nritems(eb)) {
4220 			ret = btrfs_next_leaf(root, path);
4221 			if (ret < 0) {
4222 				goto out;
4223 			} else if (ret > 0) {
4224 				ret = 0;
4225 				break;
4226 			}
4227 			continue;
4228 		}
4229 
4230 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4231 		if (found_key.objectid != key.objectid ||
4232 		    found_key.type != key.type) {
4233 			ret = 0;
4234 			goto out;
4235 		}
4236 
4237 		ret = iterate_dir_item(root, path, &found_key,
4238 				       __process_new_xattr, sctx);
4239 		if (ret < 0)
4240 			goto out;
4241 
4242 		path->slots[0]++;
4243 	}
4244 
4245 out:
4246 	btrfs_free_path(path);
4247 	return ret;
4248 }
4249 
4250 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4251 {
4252 	struct btrfs_root *root = sctx->send_root;
4253 	struct btrfs_fs_info *fs_info = root->fs_info;
4254 	struct inode *inode;
4255 	struct page *page;
4256 	char *addr;
4257 	struct btrfs_key key;
4258 	pgoff_t index = offset >> PAGE_CACHE_SHIFT;
4259 	pgoff_t last_index;
4260 	unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
4261 	ssize_t ret = 0;
4262 
4263 	key.objectid = sctx->cur_ino;
4264 	key.type = BTRFS_INODE_ITEM_KEY;
4265 	key.offset = 0;
4266 
4267 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4268 	if (IS_ERR(inode))
4269 		return PTR_ERR(inode);
4270 
4271 	if (offset + len > i_size_read(inode)) {
4272 		if (offset > i_size_read(inode))
4273 			len = 0;
4274 		else
4275 			len = offset - i_size_read(inode);
4276 	}
4277 	if (len == 0)
4278 		goto out;
4279 
4280 	last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
4281 
4282 	/* initial readahead */
4283 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4284 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4285 	btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4286 		       last_index - index + 1);
4287 
4288 	while (index <= last_index) {
4289 		unsigned cur_len = min_t(unsigned, len,
4290 					 PAGE_CACHE_SIZE - pg_offset);
4291 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4292 		if (!page) {
4293 			ret = -ENOMEM;
4294 			break;
4295 		}
4296 
4297 		if (!PageUptodate(page)) {
4298 			btrfs_readpage(NULL, page);
4299 			lock_page(page);
4300 			if (!PageUptodate(page)) {
4301 				unlock_page(page);
4302 				page_cache_release(page);
4303 				ret = -EIO;
4304 				break;
4305 			}
4306 		}
4307 
4308 		addr = kmap(page);
4309 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4310 		kunmap(page);
4311 		unlock_page(page);
4312 		page_cache_release(page);
4313 		index++;
4314 		pg_offset = 0;
4315 		len -= cur_len;
4316 		ret += cur_len;
4317 	}
4318 out:
4319 	iput(inode);
4320 	return ret;
4321 }
4322 
4323 /*
4324  * Read some bytes from the current inode/file and send a write command to
4325  * user space.
4326  */
4327 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4328 {
4329 	int ret = 0;
4330 	struct fs_path *p;
4331 	ssize_t num_read = 0;
4332 
4333 	p = fs_path_alloc();
4334 	if (!p)
4335 		return -ENOMEM;
4336 
4337 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4338 
4339 	num_read = fill_read_buf(sctx, offset, len);
4340 	if (num_read <= 0) {
4341 		if (num_read < 0)
4342 			ret = num_read;
4343 		goto out;
4344 	}
4345 
4346 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4347 	if (ret < 0)
4348 		goto out;
4349 
4350 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4351 	if (ret < 0)
4352 		goto out;
4353 
4354 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4355 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4356 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4357 
4358 	ret = send_cmd(sctx);
4359 
4360 tlv_put_failure:
4361 out:
4362 	fs_path_free(p);
4363 	if (ret < 0)
4364 		return ret;
4365 	return num_read;
4366 }
4367 
4368 /*
4369  * Send a clone command to user space.
4370  */
4371 static int send_clone(struct send_ctx *sctx,
4372 		      u64 offset, u32 len,
4373 		      struct clone_root *clone_root)
4374 {
4375 	int ret = 0;
4376 	struct fs_path *p;
4377 	u64 gen;
4378 
4379 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4380 	       "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4381 		clone_root->root->objectid, clone_root->ino,
4382 		clone_root->offset);
4383 
4384 	p = fs_path_alloc();
4385 	if (!p)
4386 		return -ENOMEM;
4387 
4388 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4389 	if (ret < 0)
4390 		goto out;
4391 
4392 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4393 	if (ret < 0)
4394 		goto out;
4395 
4396 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4397 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4398 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4399 
4400 	if (clone_root->root == sctx->send_root) {
4401 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4402 				&gen, NULL, NULL, NULL, NULL);
4403 		if (ret < 0)
4404 			goto out;
4405 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4406 	} else {
4407 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4408 	}
4409 	if (ret < 0)
4410 		goto out;
4411 
4412 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4413 			clone_root->root->root_item.uuid);
4414 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4415 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4416 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4417 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4418 			clone_root->offset);
4419 
4420 	ret = send_cmd(sctx);
4421 
4422 tlv_put_failure:
4423 out:
4424 	fs_path_free(p);
4425 	return ret;
4426 }
4427 
4428 /*
4429  * Send an update extent command to user space.
4430  */
4431 static int send_update_extent(struct send_ctx *sctx,
4432 			      u64 offset, u32 len)
4433 {
4434 	int ret = 0;
4435 	struct fs_path *p;
4436 
4437 	p = fs_path_alloc();
4438 	if (!p)
4439 		return -ENOMEM;
4440 
4441 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4442 	if (ret < 0)
4443 		goto out;
4444 
4445 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4446 	if (ret < 0)
4447 		goto out;
4448 
4449 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4450 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4451 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4452 
4453 	ret = send_cmd(sctx);
4454 
4455 tlv_put_failure:
4456 out:
4457 	fs_path_free(p);
4458 	return ret;
4459 }
4460 
4461 static int send_hole(struct send_ctx *sctx, u64 end)
4462 {
4463 	struct fs_path *p = NULL;
4464 	u64 offset = sctx->cur_inode_last_extent;
4465 	u64 len;
4466 	int ret = 0;
4467 
4468 	p = fs_path_alloc();
4469 	if (!p)
4470 		return -ENOMEM;
4471 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4472 	if (ret < 0)
4473 		goto tlv_put_failure;
4474 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4475 	while (offset < end) {
4476 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4477 
4478 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4479 		if (ret < 0)
4480 			break;
4481 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4482 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4483 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4484 		ret = send_cmd(sctx);
4485 		if (ret < 0)
4486 			break;
4487 		offset += len;
4488 	}
4489 tlv_put_failure:
4490 	fs_path_free(p);
4491 	return ret;
4492 }
4493 
4494 static int send_write_or_clone(struct send_ctx *sctx,
4495 			       struct btrfs_path *path,
4496 			       struct btrfs_key *key,
4497 			       struct clone_root *clone_root)
4498 {
4499 	int ret = 0;
4500 	struct btrfs_file_extent_item *ei;
4501 	u64 offset = key->offset;
4502 	u64 pos = 0;
4503 	u64 len;
4504 	u32 l;
4505 	u8 type;
4506 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4507 
4508 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4509 			struct btrfs_file_extent_item);
4510 	type = btrfs_file_extent_type(path->nodes[0], ei);
4511 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4512 		len = btrfs_file_extent_inline_len(path->nodes[0],
4513 						   path->slots[0], ei);
4514 		/*
4515 		 * it is possible the inline item won't cover the whole page,
4516 		 * but there may be items after this page.  Make
4517 		 * sure to send the whole thing
4518 		 */
4519 		len = PAGE_CACHE_ALIGN(len);
4520 	} else {
4521 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4522 	}
4523 
4524 	if (offset + len > sctx->cur_inode_size)
4525 		len = sctx->cur_inode_size - offset;
4526 	if (len == 0) {
4527 		ret = 0;
4528 		goto out;
4529 	}
4530 
4531 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
4532 		ret = send_clone(sctx, offset, len, clone_root);
4533 	} else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
4534 		ret = send_update_extent(sctx, offset, len);
4535 	} else {
4536 		while (pos < len) {
4537 			l = len - pos;
4538 			if (l > BTRFS_SEND_READ_SIZE)
4539 				l = BTRFS_SEND_READ_SIZE;
4540 			ret = send_write(sctx, pos + offset, l);
4541 			if (ret < 0)
4542 				goto out;
4543 			if (!ret)
4544 				break;
4545 			pos += ret;
4546 		}
4547 		ret = 0;
4548 	}
4549 out:
4550 	return ret;
4551 }
4552 
4553 static int is_extent_unchanged(struct send_ctx *sctx,
4554 			       struct btrfs_path *left_path,
4555 			       struct btrfs_key *ekey)
4556 {
4557 	int ret = 0;
4558 	struct btrfs_key key;
4559 	struct btrfs_path *path = NULL;
4560 	struct extent_buffer *eb;
4561 	int slot;
4562 	struct btrfs_key found_key;
4563 	struct btrfs_file_extent_item *ei;
4564 	u64 left_disknr;
4565 	u64 right_disknr;
4566 	u64 left_offset;
4567 	u64 right_offset;
4568 	u64 left_offset_fixed;
4569 	u64 left_len;
4570 	u64 right_len;
4571 	u64 left_gen;
4572 	u64 right_gen;
4573 	u8 left_type;
4574 	u8 right_type;
4575 
4576 	path = alloc_path_for_send();
4577 	if (!path)
4578 		return -ENOMEM;
4579 
4580 	eb = left_path->nodes[0];
4581 	slot = left_path->slots[0];
4582 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4583 	left_type = btrfs_file_extent_type(eb, ei);
4584 
4585 	if (left_type != BTRFS_FILE_EXTENT_REG) {
4586 		ret = 0;
4587 		goto out;
4588 	}
4589 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4590 	left_len = btrfs_file_extent_num_bytes(eb, ei);
4591 	left_offset = btrfs_file_extent_offset(eb, ei);
4592 	left_gen = btrfs_file_extent_generation(eb, ei);
4593 
4594 	/*
4595 	 * Following comments will refer to these graphics. L is the left
4596 	 * extents which we are checking at the moment. 1-8 are the right
4597 	 * extents that we iterate.
4598 	 *
4599 	 *       |-----L-----|
4600 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4601 	 *
4602 	 *       |-----L-----|
4603 	 * |--1--|-2b-|...(same as above)
4604 	 *
4605 	 * Alternative situation. Happens on files where extents got split.
4606 	 *       |-----L-----|
4607 	 * |-----------7-----------|-6-|
4608 	 *
4609 	 * Alternative situation. Happens on files which got larger.
4610 	 *       |-----L-----|
4611 	 * |-8-|
4612 	 * Nothing follows after 8.
4613 	 */
4614 
4615 	key.objectid = ekey->objectid;
4616 	key.type = BTRFS_EXTENT_DATA_KEY;
4617 	key.offset = ekey->offset;
4618 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4619 	if (ret < 0)
4620 		goto out;
4621 	if (ret) {
4622 		ret = 0;
4623 		goto out;
4624 	}
4625 
4626 	/*
4627 	 * Handle special case where the right side has no extents at all.
4628 	 */
4629 	eb = path->nodes[0];
4630 	slot = path->slots[0];
4631 	btrfs_item_key_to_cpu(eb, &found_key, slot);
4632 	if (found_key.objectid != key.objectid ||
4633 	    found_key.type != key.type) {
4634 		/* If we're a hole then just pretend nothing changed */
4635 		ret = (left_disknr) ? 0 : 1;
4636 		goto out;
4637 	}
4638 
4639 	/*
4640 	 * We're now on 2a, 2b or 7.
4641 	 */
4642 	key = found_key;
4643 	while (key.offset < ekey->offset + left_len) {
4644 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4645 		right_type = btrfs_file_extent_type(eb, ei);
4646 		if (right_type != BTRFS_FILE_EXTENT_REG) {
4647 			ret = 0;
4648 			goto out;
4649 		}
4650 
4651 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4652 		right_len = btrfs_file_extent_num_bytes(eb, ei);
4653 		right_offset = btrfs_file_extent_offset(eb, ei);
4654 		right_gen = btrfs_file_extent_generation(eb, ei);
4655 
4656 		/*
4657 		 * Are we at extent 8? If yes, we know the extent is changed.
4658 		 * This may only happen on the first iteration.
4659 		 */
4660 		if (found_key.offset + right_len <= ekey->offset) {
4661 			/* If we're a hole just pretend nothing changed */
4662 			ret = (left_disknr) ? 0 : 1;
4663 			goto out;
4664 		}
4665 
4666 		left_offset_fixed = left_offset;
4667 		if (key.offset < ekey->offset) {
4668 			/* Fix the right offset for 2a and 7. */
4669 			right_offset += ekey->offset - key.offset;
4670 		} else {
4671 			/* Fix the left offset for all behind 2a and 2b */
4672 			left_offset_fixed += key.offset - ekey->offset;
4673 		}
4674 
4675 		/*
4676 		 * Check if we have the same extent.
4677 		 */
4678 		if (left_disknr != right_disknr ||
4679 		    left_offset_fixed != right_offset ||
4680 		    left_gen != right_gen) {
4681 			ret = 0;
4682 			goto out;
4683 		}
4684 
4685 		/*
4686 		 * Go to the next extent.
4687 		 */
4688 		ret = btrfs_next_item(sctx->parent_root, path);
4689 		if (ret < 0)
4690 			goto out;
4691 		if (!ret) {
4692 			eb = path->nodes[0];
4693 			slot = path->slots[0];
4694 			btrfs_item_key_to_cpu(eb, &found_key, slot);
4695 		}
4696 		if (ret || found_key.objectid != key.objectid ||
4697 		    found_key.type != key.type) {
4698 			key.offset += right_len;
4699 			break;
4700 		}
4701 		if (found_key.offset != key.offset + right_len) {
4702 			ret = 0;
4703 			goto out;
4704 		}
4705 		key = found_key;
4706 	}
4707 
4708 	/*
4709 	 * We're now behind the left extent (treat as unchanged) or at the end
4710 	 * of the right side (treat as changed).
4711 	 */
4712 	if (key.offset >= ekey->offset + left_len)
4713 		ret = 1;
4714 	else
4715 		ret = 0;
4716 
4717 
4718 out:
4719 	btrfs_free_path(path);
4720 	return ret;
4721 }
4722 
4723 static int get_last_extent(struct send_ctx *sctx, u64 offset)
4724 {
4725 	struct btrfs_path *path;
4726 	struct btrfs_root *root = sctx->send_root;
4727 	struct btrfs_file_extent_item *fi;
4728 	struct btrfs_key key;
4729 	u64 extent_end;
4730 	u8 type;
4731 	int ret;
4732 
4733 	path = alloc_path_for_send();
4734 	if (!path)
4735 		return -ENOMEM;
4736 
4737 	sctx->cur_inode_last_extent = 0;
4738 
4739 	key.objectid = sctx->cur_ino;
4740 	key.type = BTRFS_EXTENT_DATA_KEY;
4741 	key.offset = offset;
4742 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
4743 	if (ret < 0)
4744 		goto out;
4745 	ret = 0;
4746 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4747 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
4748 		goto out;
4749 
4750 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4751 			    struct btrfs_file_extent_item);
4752 	type = btrfs_file_extent_type(path->nodes[0], fi);
4753 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4754 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4755 							path->slots[0], fi);
4756 		extent_end = ALIGN(key.offset + size,
4757 				   sctx->send_root->sectorsize);
4758 	} else {
4759 		extent_end = key.offset +
4760 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
4761 	}
4762 	sctx->cur_inode_last_extent = extent_end;
4763 out:
4764 	btrfs_free_path(path);
4765 	return ret;
4766 }
4767 
4768 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
4769 			   struct btrfs_key *key)
4770 {
4771 	struct btrfs_file_extent_item *fi;
4772 	u64 extent_end;
4773 	u8 type;
4774 	int ret = 0;
4775 
4776 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
4777 		return 0;
4778 
4779 	if (sctx->cur_inode_last_extent == (u64)-1) {
4780 		ret = get_last_extent(sctx, key->offset - 1);
4781 		if (ret)
4782 			return ret;
4783 	}
4784 
4785 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4786 			    struct btrfs_file_extent_item);
4787 	type = btrfs_file_extent_type(path->nodes[0], fi);
4788 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4789 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4790 							path->slots[0], fi);
4791 		extent_end = ALIGN(key->offset + size,
4792 				   sctx->send_root->sectorsize);
4793 	} else {
4794 		extent_end = key->offset +
4795 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
4796 	}
4797 
4798 	if (path->slots[0] == 0 &&
4799 	    sctx->cur_inode_last_extent < key->offset) {
4800 		/*
4801 		 * We might have skipped entire leafs that contained only
4802 		 * file extent items for our current inode. These leafs have
4803 		 * a generation number smaller (older) than the one in the
4804 		 * current leaf and the leaf our last extent came from, and
4805 		 * are located between these 2 leafs.
4806 		 */
4807 		ret = get_last_extent(sctx, key->offset - 1);
4808 		if (ret)
4809 			return ret;
4810 	}
4811 
4812 	if (sctx->cur_inode_last_extent < key->offset)
4813 		ret = send_hole(sctx, key->offset);
4814 	sctx->cur_inode_last_extent = extent_end;
4815 	return ret;
4816 }
4817 
4818 static int process_extent(struct send_ctx *sctx,
4819 			  struct btrfs_path *path,
4820 			  struct btrfs_key *key)
4821 {
4822 	struct clone_root *found_clone = NULL;
4823 	int ret = 0;
4824 
4825 	if (S_ISLNK(sctx->cur_inode_mode))
4826 		return 0;
4827 
4828 	if (sctx->parent_root && !sctx->cur_inode_new) {
4829 		ret = is_extent_unchanged(sctx, path, key);
4830 		if (ret < 0)
4831 			goto out;
4832 		if (ret) {
4833 			ret = 0;
4834 			goto out_hole;
4835 		}
4836 	} else {
4837 		struct btrfs_file_extent_item *ei;
4838 		u8 type;
4839 
4840 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4841 				    struct btrfs_file_extent_item);
4842 		type = btrfs_file_extent_type(path->nodes[0], ei);
4843 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
4844 		    type == BTRFS_FILE_EXTENT_REG) {
4845 			/*
4846 			 * The send spec does not have a prealloc command yet,
4847 			 * so just leave a hole for prealloc'ed extents until
4848 			 * we have enough commands queued up to justify rev'ing
4849 			 * the send spec.
4850 			 */
4851 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
4852 				ret = 0;
4853 				goto out;
4854 			}
4855 
4856 			/* Have a hole, just skip it. */
4857 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
4858 				ret = 0;
4859 				goto out;
4860 			}
4861 		}
4862 	}
4863 
4864 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
4865 			sctx->cur_inode_size, &found_clone);
4866 	if (ret != -ENOENT && ret < 0)
4867 		goto out;
4868 
4869 	ret = send_write_or_clone(sctx, path, key, found_clone);
4870 	if (ret)
4871 		goto out;
4872 out_hole:
4873 	ret = maybe_send_hole(sctx, path, key);
4874 out:
4875 	return ret;
4876 }
4877 
4878 static int process_all_extents(struct send_ctx *sctx)
4879 {
4880 	int ret;
4881 	struct btrfs_root *root;
4882 	struct btrfs_path *path;
4883 	struct btrfs_key key;
4884 	struct btrfs_key found_key;
4885 	struct extent_buffer *eb;
4886 	int slot;
4887 
4888 	root = sctx->send_root;
4889 	path = alloc_path_for_send();
4890 	if (!path)
4891 		return -ENOMEM;
4892 
4893 	key.objectid = sctx->cmp_key->objectid;
4894 	key.type = BTRFS_EXTENT_DATA_KEY;
4895 	key.offset = 0;
4896 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4897 	if (ret < 0)
4898 		goto out;
4899 
4900 	while (1) {
4901 		eb = path->nodes[0];
4902 		slot = path->slots[0];
4903 
4904 		if (slot >= btrfs_header_nritems(eb)) {
4905 			ret = btrfs_next_leaf(root, path);
4906 			if (ret < 0) {
4907 				goto out;
4908 			} else if (ret > 0) {
4909 				ret = 0;
4910 				break;
4911 			}
4912 			continue;
4913 		}
4914 
4915 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4916 
4917 		if (found_key.objectid != key.objectid ||
4918 		    found_key.type != key.type) {
4919 			ret = 0;
4920 			goto out;
4921 		}
4922 
4923 		ret = process_extent(sctx, path, &found_key);
4924 		if (ret < 0)
4925 			goto out;
4926 
4927 		path->slots[0]++;
4928 	}
4929 
4930 out:
4931 	btrfs_free_path(path);
4932 	return ret;
4933 }
4934 
4935 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
4936 					   int *pending_move,
4937 					   int *refs_processed)
4938 {
4939 	int ret = 0;
4940 
4941 	if (sctx->cur_ino == 0)
4942 		goto out;
4943 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
4944 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
4945 		goto out;
4946 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
4947 		goto out;
4948 
4949 	ret = process_recorded_refs(sctx, pending_move);
4950 	if (ret < 0)
4951 		goto out;
4952 
4953 	*refs_processed = 1;
4954 out:
4955 	return ret;
4956 }
4957 
4958 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
4959 {
4960 	int ret = 0;
4961 	u64 left_mode;
4962 	u64 left_uid;
4963 	u64 left_gid;
4964 	u64 right_mode;
4965 	u64 right_uid;
4966 	u64 right_gid;
4967 	int need_chmod = 0;
4968 	int need_chown = 0;
4969 	int pending_move = 0;
4970 	int refs_processed = 0;
4971 
4972 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
4973 					      &refs_processed);
4974 	if (ret < 0)
4975 		goto out;
4976 
4977 	/*
4978 	 * We have processed the refs and thus need to advance send_progress.
4979 	 * Now, calls to get_cur_xxx will take the updated refs of the current
4980 	 * inode into account.
4981 	 *
4982 	 * On the other hand, if our current inode is a directory and couldn't
4983 	 * be moved/renamed because its parent was renamed/moved too and it has
4984 	 * a higher inode number, we can only move/rename our current inode
4985 	 * after we moved/renamed its parent. Therefore in this case operate on
4986 	 * the old path (pre move/rename) of our current inode, and the
4987 	 * move/rename will be performed later.
4988 	 */
4989 	if (refs_processed && !pending_move)
4990 		sctx->send_progress = sctx->cur_ino + 1;
4991 
4992 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
4993 		goto out;
4994 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
4995 		goto out;
4996 
4997 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
4998 			&left_mode, &left_uid, &left_gid, NULL);
4999 	if (ret < 0)
5000 		goto out;
5001 
5002 	if (!sctx->parent_root || sctx->cur_inode_new) {
5003 		need_chown = 1;
5004 		if (!S_ISLNK(sctx->cur_inode_mode))
5005 			need_chmod = 1;
5006 	} else {
5007 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5008 				NULL, NULL, &right_mode, &right_uid,
5009 				&right_gid, NULL);
5010 		if (ret < 0)
5011 			goto out;
5012 
5013 		if (left_uid != right_uid || left_gid != right_gid)
5014 			need_chown = 1;
5015 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5016 			need_chmod = 1;
5017 	}
5018 
5019 	if (S_ISREG(sctx->cur_inode_mode)) {
5020 		if (need_send_hole(sctx)) {
5021 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5022 			    sctx->cur_inode_last_extent <
5023 			    sctx->cur_inode_size) {
5024 				ret = get_last_extent(sctx, (u64)-1);
5025 				if (ret)
5026 					goto out;
5027 			}
5028 			if (sctx->cur_inode_last_extent <
5029 			    sctx->cur_inode_size) {
5030 				ret = send_hole(sctx, sctx->cur_inode_size);
5031 				if (ret)
5032 					goto out;
5033 			}
5034 		}
5035 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5036 				sctx->cur_inode_size);
5037 		if (ret < 0)
5038 			goto out;
5039 	}
5040 
5041 	if (need_chown) {
5042 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5043 				left_uid, left_gid);
5044 		if (ret < 0)
5045 			goto out;
5046 	}
5047 	if (need_chmod) {
5048 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5049 				left_mode);
5050 		if (ret < 0)
5051 			goto out;
5052 	}
5053 
5054 	/*
5055 	 * If other directory inodes depended on our current directory
5056 	 * inode's move/rename, now do their move/rename operations.
5057 	 */
5058 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5059 		ret = apply_children_dir_moves(sctx);
5060 		if (ret)
5061 			goto out;
5062 		/*
5063 		 * Need to send that every time, no matter if it actually
5064 		 * changed between the two trees as we have done changes to
5065 		 * the inode before. If our inode is a directory and it's
5066 		 * waiting to be moved/renamed, we will send its utimes when
5067 		 * it's moved/renamed, therefore we don't need to do it here.
5068 		 */
5069 		sctx->send_progress = sctx->cur_ino + 1;
5070 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5071 		if (ret < 0)
5072 			goto out;
5073 	}
5074 
5075 out:
5076 	return ret;
5077 }
5078 
5079 static int changed_inode(struct send_ctx *sctx,
5080 			 enum btrfs_compare_tree_result result)
5081 {
5082 	int ret = 0;
5083 	struct btrfs_key *key = sctx->cmp_key;
5084 	struct btrfs_inode_item *left_ii = NULL;
5085 	struct btrfs_inode_item *right_ii = NULL;
5086 	u64 left_gen = 0;
5087 	u64 right_gen = 0;
5088 
5089 	sctx->cur_ino = key->objectid;
5090 	sctx->cur_inode_new_gen = 0;
5091 	sctx->cur_inode_last_extent = (u64)-1;
5092 
5093 	/*
5094 	 * Set send_progress to current inode. This will tell all get_cur_xxx
5095 	 * functions that the current inode's refs are not updated yet. Later,
5096 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5097 	 */
5098 	sctx->send_progress = sctx->cur_ino;
5099 
5100 	if (result == BTRFS_COMPARE_TREE_NEW ||
5101 	    result == BTRFS_COMPARE_TREE_CHANGED) {
5102 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5103 				sctx->left_path->slots[0],
5104 				struct btrfs_inode_item);
5105 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5106 				left_ii);
5107 	} else {
5108 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5109 				sctx->right_path->slots[0],
5110 				struct btrfs_inode_item);
5111 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5112 				right_ii);
5113 	}
5114 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
5115 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5116 				sctx->right_path->slots[0],
5117 				struct btrfs_inode_item);
5118 
5119 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5120 				right_ii);
5121 
5122 		/*
5123 		 * The cur_ino = root dir case is special here. We can't treat
5124 		 * the inode as deleted+reused because it would generate a
5125 		 * stream that tries to delete/mkdir the root dir.
5126 		 */
5127 		if (left_gen != right_gen &&
5128 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5129 			sctx->cur_inode_new_gen = 1;
5130 	}
5131 
5132 	if (result == BTRFS_COMPARE_TREE_NEW) {
5133 		sctx->cur_inode_gen = left_gen;
5134 		sctx->cur_inode_new = 1;
5135 		sctx->cur_inode_deleted = 0;
5136 		sctx->cur_inode_size = btrfs_inode_size(
5137 				sctx->left_path->nodes[0], left_ii);
5138 		sctx->cur_inode_mode = btrfs_inode_mode(
5139 				sctx->left_path->nodes[0], left_ii);
5140 		sctx->cur_inode_rdev = btrfs_inode_rdev(
5141 				sctx->left_path->nodes[0], left_ii);
5142 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5143 			ret = send_create_inode_if_needed(sctx);
5144 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
5145 		sctx->cur_inode_gen = right_gen;
5146 		sctx->cur_inode_new = 0;
5147 		sctx->cur_inode_deleted = 1;
5148 		sctx->cur_inode_size = btrfs_inode_size(
5149 				sctx->right_path->nodes[0], right_ii);
5150 		sctx->cur_inode_mode = btrfs_inode_mode(
5151 				sctx->right_path->nodes[0], right_ii);
5152 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5153 		/*
5154 		 * We need to do some special handling in case the inode was
5155 		 * reported as changed with a changed generation number. This
5156 		 * means that the original inode was deleted and new inode
5157 		 * reused the same inum. So we have to treat the old inode as
5158 		 * deleted and the new one as new.
5159 		 */
5160 		if (sctx->cur_inode_new_gen) {
5161 			/*
5162 			 * First, process the inode as if it was deleted.
5163 			 */
5164 			sctx->cur_inode_gen = right_gen;
5165 			sctx->cur_inode_new = 0;
5166 			sctx->cur_inode_deleted = 1;
5167 			sctx->cur_inode_size = btrfs_inode_size(
5168 					sctx->right_path->nodes[0], right_ii);
5169 			sctx->cur_inode_mode = btrfs_inode_mode(
5170 					sctx->right_path->nodes[0], right_ii);
5171 			ret = process_all_refs(sctx,
5172 					BTRFS_COMPARE_TREE_DELETED);
5173 			if (ret < 0)
5174 				goto out;
5175 
5176 			/*
5177 			 * Now process the inode as if it was new.
5178 			 */
5179 			sctx->cur_inode_gen = left_gen;
5180 			sctx->cur_inode_new = 1;
5181 			sctx->cur_inode_deleted = 0;
5182 			sctx->cur_inode_size = btrfs_inode_size(
5183 					sctx->left_path->nodes[0], left_ii);
5184 			sctx->cur_inode_mode = btrfs_inode_mode(
5185 					sctx->left_path->nodes[0], left_ii);
5186 			sctx->cur_inode_rdev = btrfs_inode_rdev(
5187 					sctx->left_path->nodes[0], left_ii);
5188 			ret = send_create_inode_if_needed(sctx);
5189 			if (ret < 0)
5190 				goto out;
5191 
5192 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5193 			if (ret < 0)
5194 				goto out;
5195 			/*
5196 			 * Advance send_progress now as we did not get into
5197 			 * process_recorded_refs_if_needed in the new_gen case.
5198 			 */
5199 			sctx->send_progress = sctx->cur_ino + 1;
5200 
5201 			/*
5202 			 * Now process all extents and xattrs of the inode as if
5203 			 * they were all new.
5204 			 */
5205 			ret = process_all_extents(sctx);
5206 			if (ret < 0)
5207 				goto out;
5208 			ret = process_all_new_xattrs(sctx);
5209 			if (ret < 0)
5210 				goto out;
5211 		} else {
5212 			sctx->cur_inode_gen = left_gen;
5213 			sctx->cur_inode_new = 0;
5214 			sctx->cur_inode_new_gen = 0;
5215 			sctx->cur_inode_deleted = 0;
5216 			sctx->cur_inode_size = btrfs_inode_size(
5217 					sctx->left_path->nodes[0], left_ii);
5218 			sctx->cur_inode_mode = btrfs_inode_mode(
5219 					sctx->left_path->nodes[0], left_ii);
5220 		}
5221 	}
5222 
5223 out:
5224 	return ret;
5225 }
5226 
5227 /*
5228  * We have to process new refs before deleted refs, but compare_trees gives us
5229  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5230  * first and later process them in process_recorded_refs.
5231  * For the cur_inode_new_gen case, we skip recording completely because
5232  * changed_inode did already initiate processing of refs. The reason for this is
5233  * that in this case, compare_tree actually compares the refs of 2 different
5234  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5235  * refs of the right tree as deleted and all refs of the left tree as new.
5236  */
5237 static int changed_ref(struct send_ctx *sctx,
5238 		       enum btrfs_compare_tree_result result)
5239 {
5240 	int ret = 0;
5241 
5242 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5243 
5244 	if (!sctx->cur_inode_new_gen &&
5245 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5246 		if (result == BTRFS_COMPARE_TREE_NEW)
5247 			ret = record_new_ref(sctx);
5248 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5249 			ret = record_deleted_ref(sctx);
5250 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5251 			ret = record_changed_ref(sctx);
5252 	}
5253 
5254 	return ret;
5255 }
5256 
5257 /*
5258  * Process new/deleted/changed xattrs. We skip processing in the
5259  * cur_inode_new_gen case because changed_inode did already initiate processing
5260  * of xattrs. The reason is the same as in changed_ref
5261  */
5262 static int changed_xattr(struct send_ctx *sctx,
5263 			 enum btrfs_compare_tree_result result)
5264 {
5265 	int ret = 0;
5266 
5267 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5268 
5269 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5270 		if (result == BTRFS_COMPARE_TREE_NEW)
5271 			ret = process_new_xattr(sctx);
5272 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5273 			ret = process_deleted_xattr(sctx);
5274 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5275 			ret = process_changed_xattr(sctx);
5276 	}
5277 
5278 	return ret;
5279 }
5280 
5281 /*
5282  * Process new/deleted/changed extents. We skip processing in the
5283  * cur_inode_new_gen case because changed_inode did already initiate processing
5284  * of extents. The reason is the same as in changed_ref
5285  */
5286 static int changed_extent(struct send_ctx *sctx,
5287 			  enum btrfs_compare_tree_result result)
5288 {
5289 	int ret = 0;
5290 
5291 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5292 
5293 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5294 		if (result != BTRFS_COMPARE_TREE_DELETED)
5295 			ret = process_extent(sctx, sctx->left_path,
5296 					sctx->cmp_key);
5297 	}
5298 
5299 	return ret;
5300 }
5301 
5302 static int dir_changed(struct send_ctx *sctx, u64 dir)
5303 {
5304 	u64 orig_gen, new_gen;
5305 	int ret;
5306 
5307 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5308 			     NULL, NULL);
5309 	if (ret)
5310 		return ret;
5311 
5312 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5313 			     NULL, NULL, NULL);
5314 	if (ret)
5315 		return ret;
5316 
5317 	return (orig_gen != new_gen) ? 1 : 0;
5318 }
5319 
5320 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5321 			struct btrfs_key *key)
5322 {
5323 	struct btrfs_inode_extref *extref;
5324 	struct extent_buffer *leaf;
5325 	u64 dirid = 0, last_dirid = 0;
5326 	unsigned long ptr;
5327 	u32 item_size;
5328 	u32 cur_offset = 0;
5329 	int ref_name_len;
5330 	int ret = 0;
5331 
5332 	/* Easy case, just check this one dirid */
5333 	if (key->type == BTRFS_INODE_REF_KEY) {
5334 		dirid = key->offset;
5335 
5336 		ret = dir_changed(sctx, dirid);
5337 		goto out;
5338 	}
5339 
5340 	leaf = path->nodes[0];
5341 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5342 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5343 	while (cur_offset < item_size) {
5344 		extref = (struct btrfs_inode_extref *)(ptr +
5345 						       cur_offset);
5346 		dirid = btrfs_inode_extref_parent(leaf, extref);
5347 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5348 		cur_offset += ref_name_len + sizeof(*extref);
5349 		if (dirid == last_dirid)
5350 			continue;
5351 		ret = dir_changed(sctx, dirid);
5352 		if (ret)
5353 			break;
5354 		last_dirid = dirid;
5355 	}
5356 out:
5357 	return ret;
5358 }
5359 
5360 /*
5361  * Updates compare related fields in sctx and simply forwards to the actual
5362  * changed_xxx functions.
5363  */
5364 static int changed_cb(struct btrfs_root *left_root,
5365 		      struct btrfs_root *right_root,
5366 		      struct btrfs_path *left_path,
5367 		      struct btrfs_path *right_path,
5368 		      struct btrfs_key *key,
5369 		      enum btrfs_compare_tree_result result,
5370 		      void *ctx)
5371 {
5372 	int ret = 0;
5373 	struct send_ctx *sctx = ctx;
5374 
5375 	if (result == BTRFS_COMPARE_TREE_SAME) {
5376 		if (key->type == BTRFS_INODE_REF_KEY ||
5377 		    key->type == BTRFS_INODE_EXTREF_KEY) {
5378 			ret = compare_refs(sctx, left_path, key);
5379 			if (!ret)
5380 				return 0;
5381 			if (ret < 0)
5382 				return ret;
5383 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5384 			return maybe_send_hole(sctx, left_path, key);
5385 		} else {
5386 			return 0;
5387 		}
5388 		result = BTRFS_COMPARE_TREE_CHANGED;
5389 		ret = 0;
5390 	}
5391 
5392 	sctx->left_path = left_path;
5393 	sctx->right_path = right_path;
5394 	sctx->cmp_key = key;
5395 
5396 	ret = finish_inode_if_needed(sctx, 0);
5397 	if (ret < 0)
5398 		goto out;
5399 
5400 	/* Ignore non-FS objects */
5401 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5402 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5403 		goto out;
5404 
5405 	if (key->type == BTRFS_INODE_ITEM_KEY)
5406 		ret = changed_inode(sctx, result);
5407 	else if (key->type == BTRFS_INODE_REF_KEY ||
5408 		 key->type == BTRFS_INODE_EXTREF_KEY)
5409 		ret = changed_ref(sctx, result);
5410 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
5411 		ret = changed_xattr(sctx, result);
5412 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
5413 		ret = changed_extent(sctx, result);
5414 
5415 out:
5416 	return ret;
5417 }
5418 
5419 static int full_send_tree(struct send_ctx *sctx)
5420 {
5421 	int ret;
5422 	struct btrfs_root *send_root = sctx->send_root;
5423 	struct btrfs_key key;
5424 	struct btrfs_key found_key;
5425 	struct btrfs_path *path;
5426 	struct extent_buffer *eb;
5427 	int slot;
5428 
5429 	path = alloc_path_for_send();
5430 	if (!path)
5431 		return -ENOMEM;
5432 
5433 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5434 	key.type = BTRFS_INODE_ITEM_KEY;
5435 	key.offset = 0;
5436 
5437 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5438 	if (ret < 0)
5439 		goto out;
5440 	if (ret)
5441 		goto out_finish;
5442 
5443 	while (1) {
5444 		eb = path->nodes[0];
5445 		slot = path->slots[0];
5446 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5447 
5448 		ret = changed_cb(send_root, NULL, path, NULL,
5449 				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5450 		if (ret < 0)
5451 			goto out;
5452 
5453 		key.objectid = found_key.objectid;
5454 		key.type = found_key.type;
5455 		key.offset = found_key.offset + 1;
5456 
5457 		ret = btrfs_next_item(send_root, path);
5458 		if (ret < 0)
5459 			goto out;
5460 		if (ret) {
5461 			ret  = 0;
5462 			break;
5463 		}
5464 	}
5465 
5466 out_finish:
5467 	ret = finish_inode_if_needed(sctx, 1);
5468 
5469 out:
5470 	btrfs_free_path(path);
5471 	return ret;
5472 }
5473 
5474 static int send_subvol(struct send_ctx *sctx)
5475 {
5476 	int ret;
5477 
5478 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5479 		ret = send_header(sctx);
5480 		if (ret < 0)
5481 			goto out;
5482 	}
5483 
5484 	ret = send_subvol_begin(sctx);
5485 	if (ret < 0)
5486 		goto out;
5487 
5488 	if (sctx->parent_root) {
5489 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5490 				changed_cb, sctx);
5491 		if (ret < 0)
5492 			goto out;
5493 		ret = finish_inode_if_needed(sctx, 1);
5494 		if (ret < 0)
5495 			goto out;
5496 	} else {
5497 		ret = full_send_tree(sctx);
5498 		if (ret < 0)
5499 			goto out;
5500 	}
5501 
5502 out:
5503 	free_recorded_refs(sctx);
5504 	return ret;
5505 }
5506 
5507 /*
5508  * If orphan cleanup did remove any orphans from a root, it means the tree
5509  * was modified and therefore the commit root is not the same as the current
5510  * root anymore. This is a problem, because send uses the commit root and
5511  * therefore can see inode items that don't exist in the current root anymore,
5512  * and for example make calls to btrfs_iget, which will do tree lookups based
5513  * on the current root and not on the commit root. Those lookups will fail,
5514  * returning a -ESTALE error, and making send fail with that error. So make
5515  * sure a send does not see any orphans we have just removed, and that it will
5516  * see the same inodes regardless of whether a transaction commit happened
5517  * before it started (meaning that the commit root will be the same as the
5518  * current root) or not.
5519  */
5520 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
5521 {
5522 	int i;
5523 	struct btrfs_trans_handle *trans = NULL;
5524 
5525 again:
5526 	if (sctx->parent_root &&
5527 	    sctx->parent_root->node != sctx->parent_root->commit_root)
5528 		goto commit_trans;
5529 
5530 	for (i = 0; i < sctx->clone_roots_cnt; i++)
5531 		if (sctx->clone_roots[i].root->node !=
5532 		    sctx->clone_roots[i].root->commit_root)
5533 			goto commit_trans;
5534 
5535 	if (trans)
5536 		return btrfs_end_transaction(trans, sctx->send_root);
5537 
5538 	return 0;
5539 
5540 commit_trans:
5541 	/* Use any root, all fs roots will get their commit roots updated. */
5542 	if (!trans) {
5543 		trans = btrfs_join_transaction(sctx->send_root);
5544 		if (IS_ERR(trans))
5545 			return PTR_ERR(trans);
5546 		goto again;
5547 	}
5548 
5549 	return btrfs_commit_transaction(trans, sctx->send_root);
5550 }
5551 
5552 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5553 {
5554 	spin_lock(&root->root_item_lock);
5555 	root->send_in_progress--;
5556 	/*
5557 	 * Not much left to do, we don't know why it's unbalanced and
5558 	 * can't blindly reset it to 0.
5559 	 */
5560 	if (root->send_in_progress < 0)
5561 		btrfs_err(root->fs_info,
5562 			"send_in_progres unbalanced %d root %llu",
5563 			root->send_in_progress, root->root_key.objectid);
5564 	spin_unlock(&root->root_item_lock);
5565 }
5566 
5567 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5568 {
5569 	int ret = 0;
5570 	struct btrfs_root *send_root;
5571 	struct btrfs_root *clone_root;
5572 	struct btrfs_fs_info *fs_info;
5573 	struct btrfs_ioctl_send_args *arg = NULL;
5574 	struct btrfs_key key;
5575 	struct send_ctx *sctx = NULL;
5576 	u32 i;
5577 	u64 *clone_sources_tmp = NULL;
5578 	int clone_sources_to_rollback = 0;
5579 	int sort_clone_roots = 0;
5580 	int index;
5581 
5582 	if (!capable(CAP_SYS_ADMIN))
5583 		return -EPERM;
5584 
5585 	send_root = BTRFS_I(file_inode(mnt_file))->root;
5586 	fs_info = send_root->fs_info;
5587 
5588 	/*
5589 	 * The subvolume must remain read-only during send, protect against
5590 	 * making it RW. This also protects against deletion.
5591 	 */
5592 	spin_lock(&send_root->root_item_lock);
5593 	send_root->send_in_progress++;
5594 	spin_unlock(&send_root->root_item_lock);
5595 
5596 	/*
5597 	 * This is done when we lookup the root, it should already be complete
5598 	 * by the time we get here.
5599 	 */
5600 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5601 
5602 	/*
5603 	 * Userspace tools do the checks and warn the user if it's
5604 	 * not RO.
5605 	 */
5606 	if (!btrfs_root_readonly(send_root)) {
5607 		ret = -EPERM;
5608 		goto out;
5609 	}
5610 
5611 	arg = memdup_user(arg_, sizeof(*arg));
5612 	if (IS_ERR(arg)) {
5613 		ret = PTR_ERR(arg);
5614 		arg = NULL;
5615 		goto out;
5616 	}
5617 
5618 	if (!access_ok(VERIFY_READ, arg->clone_sources,
5619 			sizeof(*arg->clone_sources) *
5620 			arg->clone_sources_count)) {
5621 		ret = -EFAULT;
5622 		goto out;
5623 	}
5624 
5625 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5626 		ret = -EINVAL;
5627 		goto out;
5628 	}
5629 
5630 	sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5631 	if (!sctx) {
5632 		ret = -ENOMEM;
5633 		goto out;
5634 	}
5635 
5636 	INIT_LIST_HEAD(&sctx->new_refs);
5637 	INIT_LIST_HEAD(&sctx->deleted_refs);
5638 	INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5639 	INIT_LIST_HEAD(&sctx->name_cache_list);
5640 
5641 	sctx->flags = arg->flags;
5642 
5643 	sctx->send_filp = fget(arg->send_fd);
5644 	if (!sctx->send_filp) {
5645 		ret = -EBADF;
5646 		goto out;
5647 	}
5648 
5649 	sctx->send_root = send_root;
5650 	/*
5651 	 * Unlikely but possible, if the subvolume is marked for deletion but
5652 	 * is slow to remove the directory entry, send can still be started
5653 	 */
5654 	if (btrfs_root_dead(sctx->send_root)) {
5655 		ret = -EPERM;
5656 		goto out;
5657 	}
5658 
5659 	sctx->clone_roots_cnt = arg->clone_sources_count;
5660 
5661 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
5662 	sctx->send_buf = vmalloc(sctx->send_max_size);
5663 	if (!sctx->send_buf) {
5664 		ret = -ENOMEM;
5665 		goto out;
5666 	}
5667 
5668 	sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
5669 	if (!sctx->read_buf) {
5670 		ret = -ENOMEM;
5671 		goto out;
5672 	}
5673 
5674 	sctx->pending_dir_moves = RB_ROOT;
5675 	sctx->waiting_dir_moves = RB_ROOT;
5676 	sctx->orphan_dirs = RB_ROOT;
5677 
5678 	sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
5679 			(arg->clone_sources_count + 1));
5680 	if (!sctx->clone_roots) {
5681 		ret = -ENOMEM;
5682 		goto out;
5683 	}
5684 
5685 	if (arg->clone_sources_count) {
5686 		clone_sources_tmp = vmalloc(arg->clone_sources_count *
5687 				sizeof(*arg->clone_sources));
5688 		if (!clone_sources_tmp) {
5689 			ret = -ENOMEM;
5690 			goto out;
5691 		}
5692 
5693 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
5694 				arg->clone_sources_count *
5695 				sizeof(*arg->clone_sources));
5696 		if (ret) {
5697 			ret = -EFAULT;
5698 			goto out;
5699 		}
5700 
5701 		for (i = 0; i < arg->clone_sources_count; i++) {
5702 			key.objectid = clone_sources_tmp[i];
5703 			key.type = BTRFS_ROOT_ITEM_KEY;
5704 			key.offset = (u64)-1;
5705 
5706 			index = srcu_read_lock(&fs_info->subvol_srcu);
5707 
5708 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
5709 			if (IS_ERR(clone_root)) {
5710 				srcu_read_unlock(&fs_info->subvol_srcu, index);
5711 				ret = PTR_ERR(clone_root);
5712 				goto out;
5713 			}
5714 			clone_sources_to_rollback = i + 1;
5715 			spin_lock(&clone_root->root_item_lock);
5716 			clone_root->send_in_progress++;
5717 			if (!btrfs_root_readonly(clone_root)) {
5718 				spin_unlock(&clone_root->root_item_lock);
5719 				srcu_read_unlock(&fs_info->subvol_srcu, index);
5720 				ret = -EPERM;
5721 				goto out;
5722 			}
5723 			spin_unlock(&clone_root->root_item_lock);
5724 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5725 
5726 			sctx->clone_roots[i].root = clone_root;
5727 		}
5728 		vfree(clone_sources_tmp);
5729 		clone_sources_tmp = NULL;
5730 	}
5731 
5732 	if (arg->parent_root) {
5733 		key.objectid = arg->parent_root;
5734 		key.type = BTRFS_ROOT_ITEM_KEY;
5735 		key.offset = (u64)-1;
5736 
5737 		index = srcu_read_lock(&fs_info->subvol_srcu);
5738 
5739 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
5740 		if (IS_ERR(sctx->parent_root)) {
5741 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5742 			ret = PTR_ERR(sctx->parent_root);
5743 			goto out;
5744 		}
5745 
5746 		spin_lock(&sctx->parent_root->root_item_lock);
5747 		sctx->parent_root->send_in_progress++;
5748 		if (!btrfs_root_readonly(sctx->parent_root) ||
5749 				btrfs_root_dead(sctx->parent_root)) {
5750 			spin_unlock(&sctx->parent_root->root_item_lock);
5751 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5752 			ret = -EPERM;
5753 			goto out;
5754 		}
5755 		spin_unlock(&sctx->parent_root->root_item_lock);
5756 
5757 		srcu_read_unlock(&fs_info->subvol_srcu, index);
5758 	}
5759 
5760 	/*
5761 	 * Clones from send_root are allowed, but only if the clone source
5762 	 * is behind the current send position. This is checked while searching
5763 	 * for possible clone sources.
5764 	 */
5765 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
5766 
5767 	/* We do a bsearch later */
5768 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
5769 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
5770 			NULL);
5771 	sort_clone_roots = 1;
5772 
5773 	ret = ensure_commit_roots_uptodate(sctx);
5774 	if (ret)
5775 		goto out;
5776 
5777 	current->journal_info = BTRFS_SEND_TRANS_STUB;
5778 	ret = send_subvol(sctx);
5779 	current->journal_info = NULL;
5780 	if (ret < 0)
5781 		goto out;
5782 
5783 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
5784 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
5785 		if (ret < 0)
5786 			goto out;
5787 		ret = send_cmd(sctx);
5788 		if (ret < 0)
5789 			goto out;
5790 	}
5791 
5792 out:
5793 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
5794 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
5795 		struct rb_node *n;
5796 		struct pending_dir_move *pm;
5797 
5798 		n = rb_first(&sctx->pending_dir_moves);
5799 		pm = rb_entry(n, struct pending_dir_move, node);
5800 		while (!list_empty(&pm->list)) {
5801 			struct pending_dir_move *pm2;
5802 
5803 			pm2 = list_first_entry(&pm->list,
5804 					       struct pending_dir_move, list);
5805 			free_pending_move(sctx, pm2);
5806 		}
5807 		free_pending_move(sctx, pm);
5808 	}
5809 
5810 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
5811 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
5812 		struct rb_node *n;
5813 		struct waiting_dir_move *dm;
5814 
5815 		n = rb_first(&sctx->waiting_dir_moves);
5816 		dm = rb_entry(n, struct waiting_dir_move, node);
5817 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
5818 		kfree(dm);
5819 	}
5820 
5821 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
5822 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
5823 		struct rb_node *n;
5824 		struct orphan_dir_info *odi;
5825 
5826 		n = rb_first(&sctx->orphan_dirs);
5827 		odi = rb_entry(n, struct orphan_dir_info, node);
5828 		free_orphan_dir_info(sctx, odi);
5829 	}
5830 
5831 	if (sort_clone_roots) {
5832 		for (i = 0; i < sctx->clone_roots_cnt; i++)
5833 			btrfs_root_dec_send_in_progress(
5834 					sctx->clone_roots[i].root);
5835 	} else {
5836 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
5837 			btrfs_root_dec_send_in_progress(
5838 					sctx->clone_roots[i].root);
5839 
5840 		btrfs_root_dec_send_in_progress(send_root);
5841 	}
5842 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
5843 		btrfs_root_dec_send_in_progress(sctx->parent_root);
5844 
5845 	kfree(arg);
5846 	vfree(clone_sources_tmp);
5847 
5848 	if (sctx) {
5849 		if (sctx->send_filp)
5850 			fput(sctx->send_filp);
5851 
5852 		vfree(sctx->clone_roots);
5853 		vfree(sctx->send_buf);
5854 		vfree(sctx->read_buf);
5855 
5856 		name_cache_free(sctx);
5857 
5858 		kfree(sctx);
5859 	}
5860 
5861 	return ret;
5862 }
5863