1 /* 2 * Copyright (C) 2012 Alexander Block. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/bsearch.h> 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/sort.h> 23 #include <linux/mount.h> 24 #include <linux/xattr.h> 25 #include <linux/posix_acl_xattr.h> 26 #include <linux/radix-tree.h> 27 #include <linux/vmalloc.h> 28 #include <linux/string.h> 29 30 #include "send.h" 31 #include "backref.h" 32 #include "hash.h" 33 #include "locking.h" 34 #include "disk-io.h" 35 #include "btrfs_inode.h" 36 #include "transaction.h" 37 #include "compression.h" 38 39 /* 40 * A fs_path is a helper to dynamically build path names with unknown size. 41 * It reallocates the internal buffer on demand. 42 * It allows fast adding of path elements on the right side (normal path) and 43 * fast adding to the left side (reversed path). A reversed path can also be 44 * unreversed if needed. 45 */ 46 struct fs_path { 47 union { 48 struct { 49 char *start; 50 char *end; 51 52 char *buf; 53 unsigned short buf_len:15; 54 unsigned short reversed:1; 55 char inline_buf[]; 56 }; 57 /* 58 * Average path length does not exceed 200 bytes, we'll have 59 * better packing in the slab and higher chance to satisfy 60 * a allocation later during send. 61 */ 62 char pad[256]; 63 }; 64 }; 65 #define FS_PATH_INLINE_SIZE \ 66 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 67 68 69 /* reused for each extent */ 70 struct clone_root { 71 struct btrfs_root *root; 72 u64 ino; 73 u64 offset; 74 75 u64 found_refs; 76 }; 77 78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 80 81 struct send_ctx { 82 struct file *send_filp; 83 loff_t send_off; 84 char *send_buf; 85 u32 send_size; 86 u32 send_max_size; 87 u64 total_send_size; 88 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 89 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 90 91 struct btrfs_root *send_root; 92 struct btrfs_root *parent_root; 93 struct clone_root *clone_roots; 94 int clone_roots_cnt; 95 96 /* current state of the compare_tree call */ 97 struct btrfs_path *left_path; 98 struct btrfs_path *right_path; 99 struct btrfs_key *cmp_key; 100 101 /* 102 * infos of the currently processed inode. In case of deleted inodes, 103 * these are the values from the deleted inode. 104 */ 105 u64 cur_ino; 106 u64 cur_inode_gen; 107 int cur_inode_new; 108 int cur_inode_new_gen; 109 int cur_inode_deleted; 110 u64 cur_inode_size; 111 u64 cur_inode_mode; 112 u64 cur_inode_rdev; 113 u64 cur_inode_last_extent; 114 115 u64 send_progress; 116 117 struct list_head new_refs; 118 struct list_head deleted_refs; 119 120 struct radix_tree_root name_cache; 121 struct list_head name_cache_list; 122 int name_cache_size; 123 124 struct file_ra_state ra; 125 126 char *read_buf; 127 128 /* 129 * We process inodes by their increasing order, so if before an 130 * incremental send we reverse the parent/child relationship of 131 * directories such that a directory with a lower inode number was 132 * the parent of a directory with a higher inode number, and the one 133 * becoming the new parent got renamed too, we can't rename/move the 134 * directory with lower inode number when we finish processing it - we 135 * must process the directory with higher inode number first, then 136 * rename/move it and then rename/move the directory with lower inode 137 * number. Example follows. 138 * 139 * Tree state when the first send was performed: 140 * 141 * . 142 * |-- a (ino 257) 143 * |-- b (ino 258) 144 * | 145 * | 146 * |-- c (ino 259) 147 * | |-- d (ino 260) 148 * | 149 * |-- c2 (ino 261) 150 * 151 * Tree state when the second (incremental) send is performed: 152 * 153 * . 154 * |-- a (ino 257) 155 * |-- b (ino 258) 156 * |-- c2 (ino 261) 157 * |-- d2 (ino 260) 158 * |-- cc (ino 259) 159 * 160 * The sequence of steps that lead to the second state was: 161 * 162 * mv /a/b/c/d /a/b/c2/d2 163 * mv /a/b/c /a/b/c2/d2/cc 164 * 165 * "c" has lower inode number, but we can't move it (2nd mv operation) 166 * before we move "d", which has higher inode number. 167 * 168 * So we just memorize which move/rename operations must be performed 169 * later when their respective parent is processed and moved/renamed. 170 */ 171 172 /* Indexed by parent directory inode number. */ 173 struct rb_root pending_dir_moves; 174 175 /* 176 * Reverse index, indexed by the inode number of a directory that 177 * is waiting for the move/rename of its immediate parent before its 178 * own move/rename can be performed. 179 */ 180 struct rb_root waiting_dir_moves; 181 182 /* 183 * A directory that is going to be rm'ed might have a child directory 184 * which is in the pending directory moves index above. In this case, 185 * the directory can only be removed after the move/rename of its child 186 * is performed. Example: 187 * 188 * Parent snapshot: 189 * 190 * . (ino 256) 191 * |-- a/ (ino 257) 192 * |-- b/ (ino 258) 193 * |-- c/ (ino 259) 194 * | |-- x/ (ino 260) 195 * | 196 * |-- y/ (ino 261) 197 * 198 * Send snapshot: 199 * 200 * . (ino 256) 201 * |-- a/ (ino 257) 202 * |-- b/ (ino 258) 203 * |-- YY/ (ino 261) 204 * |-- x/ (ino 260) 205 * 206 * Sequence of steps that lead to the send snapshot: 207 * rm -f /a/b/c/foo.txt 208 * mv /a/b/y /a/b/YY 209 * mv /a/b/c/x /a/b/YY 210 * rmdir /a/b/c 211 * 212 * When the child is processed, its move/rename is delayed until its 213 * parent is processed (as explained above), but all other operations 214 * like update utimes, chown, chgrp, etc, are performed and the paths 215 * that it uses for those operations must use the orphanized name of 216 * its parent (the directory we're going to rm later), so we need to 217 * memorize that name. 218 * 219 * Indexed by the inode number of the directory to be deleted. 220 */ 221 struct rb_root orphan_dirs; 222 }; 223 224 struct pending_dir_move { 225 struct rb_node node; 226 struct list_head list; 227 u64 parent_ino; 228 u64 ino; 229 u64 gen; 230 struct list_head update_refs; 231 }; 232 233 struct waiting_dir_move { 234 struct rb_node node; 235 u64 ino; 236 /* 237 * There might be some directory that could not be removed because it 238 * was waiting for this directory inode to be moved first. Therefore 239 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 240 */ 241 u64 rmdir_ino; 242 bool orphanized; 243 }; 244 245 struct orphan_dir_info { 246 struct rb_node node; 247 u64 ino; 248 u64 gen; 249 }; 250 251 struct name_cache_entry { 252 struct list_head list; 253 /* 254 * radix_tree has only 32bit entries but we need to handle 64bit inums. 255 * We use the lower 32bit of the 64bit inum to store it in the tree. If 256 * more then one inum would fall into the same entry, we use radix_list 257 * to store the additional entries. radix_list is also used to store 258 * entries where two entries have the same inum but different 259 * generations. 260 */ 261 struct list_head radix_list; 262 u64 ino; 263 u64 gen; 264 u64 parent_ino; 265 u64 parent_gen; 266 int ret; 267 int need_later_update; 268 int name_len; 269 char name[]; 270 }; 271 272 static void inconsistent_snapshot_error(struct send_ctx *sctx, 273 enum btrfs_compare_tree_result result, 274 const char *what) 275 { 276 const char *result_string; 277 278 switch (result) { 279 case BTRFS_COMPARE_TREE_NEW: 280 result_string = "new"; 281 break; 282 case BTRFS_COMPARE_TREE_DELETED: 283 result_string = "deleted"; 284 break; 285 case BTRFS_COMPARE_TREE_CHANGED: 286 result_string = "updated"; 287 break; 288 case BTRFS_COMPARE_TREE_SAME: 289 ASSERT(0); 290 result_string = "unchanged"; 291 break; 292 default: 293 ASSERT(0); 294 result_string = "unexpected"; 295 } 296 297 btrfs_err(sctx->send_root->fs_info, 298 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 299 result_string, what, sctx->cmp_key->objectid, 300 sctx->send_root->root_key.objectid, 301 (sctx->parent_root ? 302 sctx->parent_root->root_key.objectid : 0)); 303 } 304 305 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 306 307 static struct waiting_dir_move * 308 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 309 310 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino); 311 312 static int need_send_hole(struct send_ctx *sctx) 313 { 314 return (sctx->parent_root && !sctx->cur_inode_new && 315 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 316 S_ISREG(sctx->cur_inode_mode)); 317 } 318 319 static void fs_path_reset(struct fs_path *p) 320 { 321 if (p->reversed) { 322 p->start = p->buf + p->buf_len - 1; 323 p->end = p->start; 324 *p->start = 0; 325 } else { 326 p->start = p->buf; 327 p->end = p->start; 328 *p->start = 0; 329 } 330 } 331 332 static struct fs_path *fs_path_alloc(void) 333 { 334 struct fs_path *p; 335 336 p = kmalloc(sizeof(*p), GFP_KERNEL); 337 if (!p) 338 return NULL; 339 p->reversed = 0; 340 p->buf = p->inline_buf; 341 p->buf_len = FS_PATH_INLINE_SIZE; 342 fs_path_reset(p); 343 return p; 344 } 345 346 static struct fs_path *fs_path_alloc_reversed(void) 347 { 348 struct fs_path *p; 349 350 p = fs_path_alloc(); 351 if (!p) 352 return NULL; 353 p->reversed = 1; 354 fs_path_reset(p); 355 return p; 356 } 357 358 static void fs_path_free(struct fs_path *p) 359 { 360 if (!p) 361 return; 362 if (p->buf != p->inline_buf) 363 kfree(p->buf); 364 kfree(p); 365 } 366 367 static int fs_path_len(struct fs_path *p) 368 { 369 return p->end - p->start; 370 } 371 372 static int fs_path_ensure_buf(struct fs_path *p, int len) 373 { 374 char *tmp_buf; 375 int path_len; 376 int old_buf_len; 377 378 len++; 379 380 if (p->buf_len >= len) 381 return 0; 382 383 if (len > PATH_MAX) { 384 WARN_ON(1); 385 return -ENOMEM; 386 } 387 388 path_len = p->end - p->start; 389 old_buf_len = p->buf_len; 390 391 /* 392 * First time the inline_buf does not suffice 393 */ 394 if (p->buf == p->inline_buf) { 395 tmp_buf = kmalloc(len, GFP_KERNEL); 396 if (tmp_buf) 397 memcpy(tmp_buf, p->buf, old_buf_len); 398 } else { 399 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 400 } 401 if (!tmp_buf) 402 return -ENOMEM; 403 p->buf = tmp_buf; 404 /* 405 * The real size of the buffer is bigger, this will let the fast path 406 * happen most of the time 407 */ 408 p->buf_len = ksize(p->buf); 409 410 if (p->reversed) { 411 tmp_buf = p->buf + old_buf_len - path_len - 1; 412 p->end = p->buf + p->buf_len - 1; 413 p->start = p->end - path_len; 414 memmove(p->start, tmp_buf, path_len + 1); 415 } else { 416 p->start = p->buf; 417 p->end = p->start + path_len; 418 } 419 return 0; 420 } 421 422 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 423 char **prepared) 424 { 425 int ret; 426 int new_len; 427 428 new_len = p->end - p->start + name_len; 429 if (p->start != p->end) 430 new_len++; 431 ret = fs_path_ensure_buf(p, new_len); 432 if (ret < 0) 433 goto out; 434 435 if (p->reversed) { 436 if (p->start != p->end) 437 *--p->start = '/'; 438 p->start -= name_len; 439 *prepared = p->start; 440 } else { 441 if (p->start != p->end) 442 *p->end++ = '/'; 443 *prepared = p->end; 444 p->end += name_len; 445 *p->end = 0; 446 } 447 448 out: 449 return ret; 450 } 451 452 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 453 { 454 int ret; 455 char *prepared; 456 457 ret = fs_path_prepare_for_add(p, name_len, &prepared); 458 if (ret < 0) 459 goto out; 460 memcpy(prepared, name, name_len); 461 462 out: 463 return ret; 464 } 465 466 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 467 { 468 int ret; 469 char *prepared; 470 471 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 472 if (ret < 0) 473 goto out; 474 memcpy(prepared, p2->start, p2->end - p2->start); 475 476 out: 477 return ret; 478 } 479 480 static int fs_path_add_from_extent_buffer(struct fs_path *p, 481 struct extent_buffer *eb, 482 unsigned long off, int len) 483 { 484 int ret; 485 char *prepared; 486 487 ret = fs_path_prepare_for_add(p, len, &prepared); 488 if (ret < 0) 489 goto out; 490 491 read_extent_buffer(eb, prepared, off, len); 492 493 out: 494 return ret; 495 } 496 497 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 498 { 499 int ret; 500 501 p->reversed = from->reversed; 502 fs_path_reset(p); 503 504 ret = fs_path_add_path(p, from); 505 506 return ret; 507 } 508 509 510 static void fs_path_unreverse(struct fs_path *p) 511 { 512 char *tmp; 513 int len; 514 515 if (!p->reversed) 516 return; 517 518 tmp = p->start; 519 len = p->end - p->start; 520 p->start = p->buf; 521 p->end = p->start + len; 522 memmove(p->start, tmp, len + 1); 523 p->reversed = 0; 524 } 525 526 static struct btrfs_path *alloc_path_for_send(void) 527 { 528 struct btrfs_path *path; 529 530 path = btrfs_alloc_path(); 531 if (!path) 532 return NULL; 533 path->search_commit_root = 1; 534 path->skip_locking = 1; 535 path->need_commit_sem = 1; 536 return path; 537 } 538 539 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 540 { 541 int ret; 542 u32 pos = 0; 543 544 while (pos < len) { 545 ret = kernel_write(filp, buf + pos, len - pos, off); 546 /* TODO handle that correctly */ 547 /*if (ret == -ERESTARTSYS) { 548 continue; 549 }*/ 550 if (ret < 0) 551 return ret; 552 if (ret == 0) { 553 return -EIO; 554 } 555 pos += ret; 556 } 557 558 return 0; 559 } 560 561 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 562 { 563 struct btrfs_tlv_header *hdr; 564 int total_len = sizeof(*hdr) + len; 565 int left = sctx->send_max_size - sctx->send_size; 566 567 if (unlikely(left < total_len)) 568 return -EOVERFLOW; 569 570 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 571 hdr->tlv_type = cpu_to_le16(attr); 572 hdr->tlv_len = cpu_to_le16(len); 573 memcpy(hdr + 1, data, len); 574 sctx->send_size += total_len; 575 576 return 0; 577 } 578 579 #define TLV_PUT_DEFINE_INT(bits) \ 580 static int tlv_put_u##bits(struct send_ctx *sctx, \ 581 u##bits attr, u##bits value) \ 582 { \ 583 __le##bits __tmp = cpu_to_le##bits(value); \ 584 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 585 } 586 587 TLV_PUT_DEFINE_INT(64) 588 589 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 590 const char *str, int len) 591 { 592 if (len == -1) 593 len = strlen(str); 594 return tlv_put(sctx, attr, str, len); 595 } 596 597 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 598 const u8 *uuid) 599 { 600 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 601 } 602 603 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 604 struct extent_buffer *eb, 605 struct btrfs_timespec *ts) 606 { 607 struct btrfs_timespec bts; 608 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 609 return tlv_put(sctx, attr, &bts, sizeof(bts)); 610 } 611 612 613 #define TLV_PUT(sctx, attrtype, attrlen, data) \ 614 do { \ 615 ret = tlv_put(sctx, attrtype, attrlen, data); \ 616 if (ret < 0) \ 617 goto tlv_put_failure; \ 618 } while (0) 619 620 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 621 do { \ 622 ret = tlv_put_u##bits(sctx, attrtype, value); \ 623 if (ret < 0) \ 624 goto tlv_put_failure; \ 625 } while (0) 626 627 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 628 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 629 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 630 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 631 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 632 do { \ 633 ret = tlv_put_string(sctx, attrtype, str, len); \ 634 if (ret < 0) \ 635 goto tlv_put_failure; \ 636 } while (0) 637 #define TLV_PUT_PATH(sctx, attrtype, p) \ 638 do { \ 639 ret = tlv_put_string(sctx, attrtype, p->start, \ 640 p->end - p->start); \ 641 if (ret < 0) \ 642 goto tlv_put_failure; \ 643 } while(0) 644 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 645 do { \ 646 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 647 if (ret < 0) \ 648 goto tlv_put_failure; \ 649 } while (0) 650 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 651 do { \ 652 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 653 if (ret < 0) \ 654 goto tlv_put_failure; \ 655 } while (0) 656 657 static int send_header(struct send_ctx *sctx) 658 { 659 struct btrfs_stream_header hdr; 660 661 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 662 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 663 664 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 665 &sctx->send_off); 666 } 667 668 /* 669 * For each command/item we want to send to userspace, we call this function. 670 */ 671 static int begin_cmd(struct send_ctx *sctx, int cmd) 672 { 673 struct btrfs_cmd_header *hdr; 674 675 if (WARN_ON(!sctx->send_buf)) 676 return -EINVAL; 677 678 BUG_ON(sctx->send_size); 679 680 sctx->send_size += sizeof(*hdr); 681 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 682 hdr->cmd = cpu_to_le16(cmd); 683 684 return 0; 685 } 686 687 static int send_cmd(struct send_ctx *sctx) 688 { 689 int ret; 690 struct btrfs_cmd_header *hdr; 691 u32 crc; 692 693 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 694 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr)); 695 hdr->crc = 0; 696 697 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 698 hdr->crc = cpu_to_le32(crc); 699 700 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 701 &sctx->send_off); 702 703 sctx->total_send_size += sctx->send_size; 704 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size; 705 sctx->send_size = 0; 706 707 return ret; 708 } 709 710 /* 711 * Sends a move instruction to user space 712 */ 713 static int send_rename(struct send_ctx *sctx, 714 struct fs_path *from, struct fs_path *to) 715 { 716 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 717 int ret; 718 719 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 720 721 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 722 if (ret < 0) 723 goto out; 724 725 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 726 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 727 728 ret = send_cmd(sctx); 729 730 tlv_put_failure: 731 out: 732 return ret; 733 } 734 735 /* 736 * Sends a link instruction to user space 737 */ 738 static int send_link(struct send_ctx *sctx, 739 struct fs_path *path, struct fs_path *lnk) 740 { 741 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 742 int ret; 743 744 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 745 746 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 747 if (ret < 0) 748 goto out; 749 750 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 751 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 752 753 ret = send_cmd(sctx); 754 755 tlv_put_failure: 756 out: 757 return ret; 758 } 759 760 /* 761 * Sends an unlink instruction to user space 762 */ 763 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 764 { 765 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 766 int ret; 767 768 btrfs_debug(fs_info, "send_unlink %s", path->start); 769 770 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 771 if (ret < 0) 772 goto out; 773 774 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 775 776 ret = send_cmd(sctx); 777 778 tlv_put_failure: 779 out: 780 return ret; 781 } 782 783 /* 784 * Sends a rmdir instruction to user space 785 */ 786 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 787 { 788 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 789 int ret; 790 791 btrfs_debug(fs_info, "send_rmdir %s", path->start); 792 793 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 794 if (ret < 0) 795 goto out; 796 797 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 798 799 ret = send_cmd(sctx); 800 801 tlv_put_failure: 802 out: 803 return ret; 804 } 805 806 /* 807 * Helper function to retrieve some fields from an inode item. 808 */ 809 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 810 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 811 u64 *gid, u64 *rdev) 812 { 813 int ret; 814 struct btrfs_inode_item *ii; 815 struct btrfs_key key; 816 817 key.objectid = ino; 818 key.type = BTRFS_INODE_ITEM_KEY; 819 key.offset = 0; 820 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 821 if (ret) { 822 if (ret > 0) 823 ret = -ENOENT; 824 return ret; 825 } 826 827 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 828 struct btrfs_inode_item); 829 if (size) 830 *size = btrfs_inode_size(path->nodes[0], ii); 831 if (gen) 832 *gen = btrfs_inode_generation(path->nodes[0], ii); 833 if (mode) 834 *mode = btrfs_inode_mode(path->nodes[0], ii); 835 if (uid) 836 *uid = btrfs_inode_uid(path->nodes[0], ii); 837 if (gid) 838 *gid = btrfs_inode_gid(path->nodes[0], ii); 839 if (rdev) 840 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 841 842 return ret; 843 } 844 845 static int get_inode_info(struct btrfs_root *root, 846 u64 ino, u64 *size, u64 *gen, 847 u64 *mode, u64 *uid, u64 *gid, 848 u64 *rdev) 849 { 850 struct btrfs_path *path; 851 int ret; 852 853 path = alloc_path_for_send(); 854 if (!path) 855 return -ENOMEM; 856 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 857 rdev); 858 btrfs_free_path(path); 859 return ret; 860 } 861 862 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 863 struct fs_path *p, 864 void *ctx); 865 866 /* 867 * Helper function to iterate the entries in ONE btrfs_inode_ref or 868 * btrfs_inode_extref. 869 * The iterate callback may return a non zero value to stop iteration. This can 870 * be a negative value for error codes or 1 to simply stop it. 871 * 872 * path must point to the INODE_REF or INODE_EXTREF when called. 873 */ 874 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 875 struct btrfs_key *found_key, int resolve, 876 iterate_inode_ref_t iterate, void *ctx) 877 { 878 struct extent_buffer *eb = path->nodes[0]; 879 struct btrfs_item *item; 880 struct btrfs_inode_ref *iref; 881 struct btrfs_inode_extref *extref; 882 struct btrfs_path *tmp_path; 883 struct fs_path *p; 884 u32 cur = 0; 885 u32 total; 886 int slot = path->slots[0]; 887 u32 name_len; 888 char *start; 889 int ret = 0; 890 int num = 0; 891 int index; 892 u64 dir; 893 unsigned long name_off; 894 unsigned long elem_size; 895 unsigned long ptr; 896 897 p = fs_path_alloc_reversed(); 898 if (!p) 899 return -ENOMEM; 900 901 tmp_path = alloc_path_for_send(); 902 if (!tmp_path) { 903 fs_path_free(p); 904 return -ENOMEM; 905 } 906 907 908 if (found_key->type == BTRFS_INODE_REF_KEY) { 909 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 910 struct btrfs_inode_ref); 911 item = btrfs_item_nr(slot); 912 total = btrfs_item_size(eb, item); 913 elem_size = sizeof(*iref); 914 } else { 915 ptr = btrfs_item_ptr_offset(eb, slot); 916 total = btrfs_item_size_nr(eb, slot); 917 elem_size = sizeof(*extref); 918 } 919 920 while (cur < total) { 921 fs_path_reset(p); 922 923 if (found_key->type == BTRFS_INODE_REF_KEY) { 924 iref = (struct btrfs_inode_ref *)(ptr + cur); 925 name_len = btrfs_inode_ref_name_len(eb, iref); 926 name_off = (unsigned long)(iref + 1); 927 index = btrfs_inode_ref_index(eb, iref); 928 dir = found_key->offset; 929 } else { 930 extref = (struct btrfs_inode_extref *)(ptr + cur); 931 name_len = btrfs_inode_extref_name_len(eb, extref); 932 name_off = (unsigned long)&extref->name; 933 index = btrfs_inode_extref_index(eb, extref); 934 dir = btrfs_inode_extref_parent(eb, extref); 935 } 936 937 if (resolve) { 938 start = btrfs_ref_to_path(root, tmp_path, name_len, 939 name_off, eb, dir, 940 p->buf, p->buf_len); 941 if (IS_ERR(start)) { 942 ret = PTR_ERR(start); 943 goto out; 944 } 945 if (start < p->buf) { 946 /* overflow , try again with larger buffer */ 947 ret = fs_path_ensure_buf(p, 948 p->buf_len + p->buf - start); 949 if (ret < 0) 950 goto out; 951 start = btrfs_ref_to_path(root, tmp_path, 952 name_len, name_off, 953 eb, dir, 954 p->buf, p->buf_len); 955 if (IS_ERR(start)) { 956 ret = PTR_ERR(start); 957 goto out; 958 } 959 BUG_ON(start < p->buf); 960 } 961 p->start = start; 962 } else { 963 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 964 name_len); 965 if (ret < 0) 966 goto out; 967 } 968 969 cur += elem_size + name_len; 970 ret = iterate(num, dir, index, p, ctx); 971 if (ret) 972 goto out; 973 num++; 974 } 975 976 out: 977 btrfs_free_path(tmp_path); 978 fs_path_free(p); 979 return ret; 980 } 981 982 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 983 const char *name, int name_len, 984 const char *data, int data_len, 985 u8 type, void *ctx); 986 987 /* 988 * Helper function to iterate the entries in ONE btrfs_dir_item. 989 * The iterate callback may return a non zero value to stop iteration. This can 990 * be a negative value for error codes or 1 to simply stop it. 991 * 992 * path must point to the dir item when called. 993 */ 994 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 995 struct btrfs_key *found_key, 996 iterate_dir_item_t iterate, void *ctx) 997 { 998 int ret = 0; 999 struct extent_buffer *eb; 1000 struct btrfs_item *item; 1001 struct btrfs_dir_item *di; 1002 struct btrfs_key di_key; 1003 char *buf = NULL; 1004 int buf_len; 1005 u32 name_len; 1006 u32 data_len; 1007 u32 cur; 1008 u32 len; 1009 u32 total; 1010 int slot; 1011 int num; 1012 u8 type; 1013 1014 /* 1015 * Start with a small buffer (1 page). If later we end up needing more 1016 * space, which can happen for xattrs on a fs with a leaf size greater 1017 * then the page size, attempt to increase the buffer. Typically xattr 1018 * values are small. 1019 */ 1020 buf_len = PATH_MAX; 1021 buf = kmalloc(buf_len, GFP_KERNEL); 1022 if (!buf) { 1023 ret = -ENOMEM; 1024 goto out; 1025 } 1026 1027 eb = path->nodes[0]; 1028 slot = path->slots[0]; 1029 item = btrfs_item_nr(slot); 1030 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1031 cur = 0; 1032 len = 0; 1033 total = btrfs_item_size(eb, item); 1034 1035 num = 0; 1036 while (cur < total) { 1037 name_len = btrfs_dir_name_len(eb, di); 1038 data_len = btrfs_dir_data_len(eb, di); 1039 type = btrfs_dir_type(eb, di); 1040 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1041 1042 if (type == BTRFS_FT_XATTR) { 1043 if (name_len > XATTR_NAME_MAX) { 1044 ret = -ENAMETOOLONG; 1045 goto out; 1046 } 1047 if (name_len + data_len > 1048 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1049 ret = -E2BIG; 1050 goto out; 1051 } 1052 } else { 1053 /* 1054 * Path too long 1055 */ 1056 if (name_len + data_len > PATH_MAX) { 1057 ret = -ENAMETOOLONG; 1058 goto out; 1059 } 1060 } 1061 1062 ret = btrfs_is_name_len_valid(eb, path->slots[0], 1063 (unsigned long)(di + 1), name_len + data_len); 1064 if (!ret) { 1065 ret = -EIO; 1066 goto out; 1067 } 1068 if (name_len + data_len > buf_len) { 1069 buf_len = name_len + data_len; 1070 if (is_vmalloc_addr(buf)) { 1071 vfree(buf); 1072 buf = NULL; 1073 } else { 1074 char *tmp = krealloc(buf, buf_len, 1075 GFP_KERNEL | __GFP_NOWARN); 1076 1077 if (!tmp) 1078 kfree(buf); 1079 buf = tmp; 1080 } 1081 if (!buf) { 1082 buf = kvmalloc(buf_len, GFP_KERNEL); 1083 if (!buf) { 1084 ret = -ENOMEM; 1085 goto out; 1086 } 1087 } 1088 } 1089 1090 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1091 name_len + data_len); 1092 1093 len = sizeof(*di) + name_len + data_len; 1094 di = (struct btrfs_dir_item *)((char *)di + len); 1095 cur += len; 1096 1097 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1098 data_len, type, ctx); 1099 if (ret < 0) 1100 goto out; 1101 if (ret) { 1102 ret = 0; 1103 goto out; 1104 } 1105 1106 num++; 1107 } 1108 1109 out: 1110 kvfree(buf); 1111 return ret; 1112 } 1113 1114 static int __copy_first_ref(int num, u64 dir, int index, 1115 struct fs_path *p, void *ctx) 1116 { 1117 int ret; 1118 struct fs_path *pt = ctx; 1119 1120 ret = fs_path_copy(pt, p); 1121 if (ret < 0) 1122 return ret; 1123 1124 /* we want the first only */ 1125 return 1; 1126 } 1127 1128 /* 1129 * Retrieve the first path of an inode. If an inode has more then one 1130 * ref/hardlink, this is ignored. 1131 */ 1132 static int get_inode_path(struct btrfs_root *root, 1133 u64 ino, struct fs_path *path) 1134 { 1135 int ret; 1136 struct btrfs_key key, found_key; 1137 struct btrfs_path *p; 1138 1139 p = alloc_path_for_send(); 1140 if (!p) 1141 return -ENOMEM; 1142 1143 fs_path_reset(path); 1144 1145 key.objectid = ino; 1146 key.type = BTRFS_INODE_REF_KEY; 1147 key.offset = 0; 1148 1149 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1150 if (ret < 0) 1151 goto out; 1152 if (ret) { 1153 ret = 1; 1154 goto out; 1155 } 1156 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1157 if (found_key.objectid != ino || 1158 (found_key.type != BTRFS_INODE_REF_KEY && 1159 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1160 ret = -ENOENT; 1161 goto out; 1162 } 1163 1164 ret = iterate_inode_ref(root, p, &found_key, 1, 1165 __copy_first_ref, path); 1166 if (ret < 0) 1167 goto out; 1168 ret = 0; 1169 1170 out: 1171 btrfs_free_path(p); 1172 return ret; 1173 } 1174 1175 struct backref_ctx { 1176 struct send_ctx *sctx; 1177 1178 struct btrfs_path *path; 1179 /* number of total found references */ 1180 u64 found; 1181 1182 /* 1183 * used for clones found in send_root. clones found behind cur_objectid 1184 * and cur_offset are not considered as allowed clones. 1185 */ 1186 u64 cur_objectid; 1187 u64 cur_offset; 1188 1189 /* may be truncated in case it's the last extent in a file */ 1190 u64 extent_len; 1191 1192 /* data offset in the file extent item */ 1193 u64 data_offset; 1194 1195 /* Just to check for bugs in backref resolving */ 1196 int found_itself; 1197 }; 1198 1199 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1200 { 1201 u64 root = (u64)(uintptr_t)key; 1202 struct clone_root *cr = (struct clone_root *)elt; 1203 1204 if (root < cr->root->objectid) 1205 return -1; 1206 if (root > cr->root->objectid) 1207 return 1; 1208 return 0; 1209 } 1210 1211 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1212 { 1213 struct clone_root *cr1 = (struct clone_root *)e1; 1214 struct clone_root *cr2 = (struct clone_root *)e2; 1215 1216 if (cr1->root->objectid < cr2->root->objectid) 1217 return -1; 1218 if (cr1->root->objectid > cr2->root->objectid) 1219 return 1; 1220 return 0; 1221 } 1222 1223 /* 1224 * Called for every backref that is found for the current extent. 1225 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1226 */ 1227 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1228 { 1229 struct backref_ctx *bctx = ctx_; 1230 struct clone_root *found; 1231 int ret; 1232 u64 i_size; 1233 1234 /* First check if the root is in the list of accepted clone sources */ 1235 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1236 bctx->sctx->clone_roots_cnt, 1237 sizeof(struct clone_root), 1238 __clone_root_cmp_bsearch); 1239 if (!found) 1240 return 0; 1241 1242 if (found->root == bctx->sctx->send_root && 1243 ino == bctx->cur_objectid && 1244 offset == bctx->cur_offset) { 1245 bctx->found_itself = 1; 1246 } 1247 1248 /* 1249 * There are inodes that have extents that lie behind its i_size. Don't 1250 * accept clones from these extents. 1251 */ 1252 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL, 1253 NULL, NULL, NULL); 1254 btrfs_release_path(bctx->path); 1255 if (ret < 0) 1256 return ret; 1257 1258 if (offset + bctx->data_offset + bctx->extent_len > i_size) 1259 return 0; 1260 1261 /* 1262 * Make sure we don't consider clones from send_root that are 1263 * behind the current inode/offset. 1264 */ 1265 if (found->root == bctx->sctx->send_root) { 1266 /* 1267 * TODO for the moment we don't accept clones from the inode 1268 * that is currently send. We may change this when 1269 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same 1270 * file. 1271 */ 1272 if (ino >= bctx->cur_objectid) 1273 return 0; 1274 #if 0 1275 if (ino > bctx->cur_objectid) 1276 return 0; 1277 if (offset + bctx->extent_len > bctx->cur_offset) 1278 return 0; 1279 #endif 1280 } 1281 1282 bctx->found++; 1283 found->found_refs++; 1284 if (ino < found->ino) { 1285 found->ino = ino; 1286 found->offset = offset; 1287 } else if (found->ino == ino) { 1288 /* 1289 * same extent found more then once in the same file. 1290 */ 1291 if (found->offset > offset + bctx->extent_len) 1292 found->offset = offset; 1293 } 1294 1295 return 0; 1296 } 1297 1298 /* 1299 * Given an inode, offset and extent item, it finds a good clone for a clone 1300 * instruction. Returns -ENOENT when none could be found. The function makes 1301 * sure that the returned clone is usable at the point where sending is at the 1302 * moment. This means, that no clones are accepted which lie behind the current 1303 * inode+offset. 1304 * 1305 * path must point to the extent item when called. 1306 */ 1307 static int find_extent_clone(struct send_ctx *sctx, 1308 struct btrfs_path *path, 1309 u64 ino, u64 data_offset, 1310 u64 ino_size, 1311 struct clone_root **found) 1312 { 1313 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1314 int ret; 1315 int extent_type; 1316 u64 logical; 1317 u64 disk_byte; 1318 u64 num_bytes; 1319 u64 extent_item_pos; 1320 u64 flags = 0; 1321 struct btrfs_file_extent_item *fi; 1322 struct extent_buffer *eb = path->nodes[0]; 1323 struct backref_ctx *backref_ctx = NULL; 1324 struct clone_root *cur_clone_root; 1325 struct btrfs_key found_key; 1326 struct btrfs_path *tmp_path; 1327 int compressed; 1328 u32 i; 1329 1330 tmp_path = alloc_path_for_send(); 1331 if (!tmp_path) 1332 return -ENOMEM; 1333 1334 /* We only use this path under the commit sem */ 1335 tmp_path->need_commit_sem = 0; 1336 1337 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL); 1338 if (!backref_ctx) { 1339 ret = -ENOMEM; 1340 goto out; 1341 } 1342 1343 backref_ctx->path = tmp_path; 1344 1345 if (data_offset >= ino_size) { 1346 /* 1347 * There may be extents that lie behind the file's size. 1348 * I at least had this in combination with snapshotting while 1349 * writing large files. 1350 */ 1351 ret = 0; 1352 goto out; 1353 } 1354 1355 fi = btrfs_item_ptr(eb, path->slots[0], 1356 struct btrfs_file_extent_item); 1357 extent_type = btrfs_file_extent_type(eb, fi); 1358 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1359 ret = -ENOENT; 1360 goto out; 1361 } 1362 compressed = btrfs_file_extent_compression(eb, fi); 1363 1364 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1365 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1366 if (disk_byte == 0) { 1367 ret = -ENOENT; 1368 goto out; 1369 } 1370 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1371 1372 down_read(&fs_info->commit_root_sem); 1373 ret = extent_from_logical(fs_info, disk_byte, tmp_path, 1374 &found_key, &flags); 1375 up_read(&fs_info->commit_root_sem); 1376 btrfs_release_path(tmp_path); 1377 1378 if (ret < 0) 1379 goto out; 1380 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1381 ret = -EIO; 1382 goto out; 1383 } 1384 1385 /* 1386 * Setup the clone roots. 1387 */ 1388 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1389 cur_clone_root = sctx->clone_roots + i; 1390 cur_clone_root->ino = (u64)-1; 1391 cur_clone_root->offset = 0; 1392 cur_clone_root->found_refs = 0; 1393 } 1394 1395 backref_ctx->sctx = sctx; 1396 backref_ctx->found = 0; 1397 backref_ctx->cur_objectid = ino; 1398 backref_ctx->cur_offset = data_offset; 1399 backref_ctx->found_itself = 0; 1400 backref_ctx->extent_len = num_bytes; 1401 /* 1402 * For non-compressed extents iterate_extent_inodes() gives us extent 1403 * offsets that already take into account the data offset, but not for 1404 * compressed extents, since the offset is logical and not relative to 1405 * the physical extent locations. We must take this into account to 1406 * avoid sending clone offsets that go beyond the source file's size, 1407 * which would result in the clone ioctl failing with -EINVAL on the 1408 * receiving end. 1409 */ 1410 if (compressed == BTRFS_COMPRESS_NONE) 1411 backref_ctx->data_offset = 0; 1412 else 1413 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi); 1414 1415 /* 1416 * The last extent of a file may be too large due to page alignment. 1417 * We need to adjust extent_len in this case so that the checks in 1418 * __iterate_backrefs work. 1419 */ 1420 if (data_offset + num_bytes >= ino_size) 1421 backref_ctx->extent_len = ino_size - data_offset; 1422 1423 /* 1424 * Now collect all backrefs. 1425 */ 1426 if (compressed == BTRFS_COMPRESS_NONE) 1427 extent_item_pos = logical - found_key.objectid; 1428 else 1429 extent_item_pos = 0; 1430 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1431 extent_item_pos, 1, __iterate_backrefs, 1432 backref_ctx); 1433 1434 if (ret < 0) 1435 goto out; 1436 1437 if (!backref_ctx->found_itself) { 1438 /* found a bug in backref code? */ 1439 ret = -EIO; 1440 btrfs_err(fs_info, 1441 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu", 1442 ino, data_offset, disk_byte, found_key.objectid); 1443 goto out; 1444 } 1445 1446 btrfs_debug(fs_info, 1447 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1448 data_offset, ino, num_bytes, logical); 1449 1450 if (!backref_ctx->found) 1451 btrfs_debug(fs_info, "no clones found"); 1452 1453 cur_clone_root = NULL; 1454 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1455 if (sctx->clone_roots[i].found_refs) { 1456 if (!cur_clone_root) 1457 cur_clone_root = sctx->clone_roots + i; 1458 else if (sctx->clone_roots[i].root == sctx->send_root) 1459 /* prefer clones from send_root over others */ 1460 cur_clone_root = sctx->clone_roots + i; 1461 } 1462 1463 } 1464 1465 if (cur_clone_root) { 1466 *found = cur_clone_root; 1467 ret = 0; 1468 } else { 1469 ret = -ENOENT; 1470 } 1471 1472 out: 1473 btrfs_free_path(tmp_path); 1474 kfree(backref_ctx); 1475 return ret; 1476 } 1477 1478 static int read_symlink(struct btrfs_root *root, 1479 u64 ino, 1480 struct fs_path *dest) 1481 { 1482 int ret; 1483 struct btrfs_path *path; 1484 struct btrfs_key key; 1485 struct btrfs_file_extent_item *ei; 1486 u8 type; 1487 u8 compression; 1488 unsigned long off; 1489 int len; 1490 1491 path = alloc_path_for_send(); 1492 if (!path) 1493 return -ENOMEM; 1494 1495 key.objectid = ino; 1496 key.type = BTRFS_EXTENT_DATA_KEY; 1497 key.offset = 0; 1498 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1499 if (ret < 0) 1500 goto out; 1501 if (ret) { 1502 /* 1503 * An empty symlink inode. Can happen in rare error paths when 1504 * creating a symlink (transaction committed before the inode 1505 * eviction handler removed the symlink inode items and a crash 1506 * happened in between or the subvol was snapshoted in between). 1507 * Print an informative message to dmesg/syslog so that the user 1508 * can delete the symlink. 1509 */ 1510 btrfs_err(root->fs_info, 1511 "Found empty symlink inode %llu at root %llu", 1512 ino, root->root_key.objectid); 1513 ret = -EIO; 1514 goto out; 1515 } 1516 1517 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1518 struct btrfs_file_extent_item); 1519 type = btrfs_file_extent_type(path->nodes[0], ei); 1520 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1521 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1522 BUG_ON(compression); 1523 1524 off = btrfs_file_extent_inline_start(ei); 1525 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei); 1526 1527 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1528 1529 out: 1530 btrfs_free_path(path); 1531 return ret; 1532 } 1533 1534 /* 1535 * Helper function to generate a file name that is unique in the root of 1536 * send_root and parent_root. This is used to generate names for orphan inodes. 1537 */ 1538 static int gen_unique_name(struct send_ctx *sctx, 1539 u64 ino, u64 gen, 1540 struct fs_path *dest) 1541 { 1542 int ret = 0; 1543 struct btrfs_path *path; 1544 struct btrfs_dir_item *di; 1545 char tmp[64]; 1546 int len; 1547 u64 idx = 0; 1548 1549 path = alloc_path_for_send(); 1550 if (!path) 1551 return -ENOMEM; 1552 1553 while (1) { 1554 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1555 ino, gen, idx); 1556 ASSERT(len < sizeof(tmp)); 1557 1558 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1559 path, BTRFS_FIRST_FREE_OBJECTID, 1560 tmp, strlen(tmp), 0); 1561 btrfs_release_path(path); 1562 if (IS_ERR(di)) { 1563 ret = PTR_ERR(di); 1564 goto out; 1565 } 1566 if (di) { 1567 /* not unique, try again */ 1568 idx++; 1569 continue; 1570 } 1571 1572 if (!sctx->parent_root) { 1573 /* unique */ 1574 ret = 0; 1575 break; 1576 } 1577 1578 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1579 path, BTRFS_FIRST_FREE_OBJECTID, 1580 tmp, strlen(tmp), 0); 1581 btrfs_release_path(path); 1582 if (IS_ERR(di)) { 1583 ret = PTR_ERR(di); 1584 goto out; 1585 } 1586 if (di) { 1587 /* not unique, try again */ 1588 idx++; 1589 continue; 1590 } 1591 /* unique */ 1592 break; 1593 } 1594 1595 ret = fs_path_add(dest, tmp, strlen(tmp)); 1596 1597 out: 1598 btrfs_free_path(path); 1599 return ret; 1600 } 1601 1602 enum inode_state { 1603 inode_state_no_change, 1604 inode_state_will_create, 1605 inode_state_did_create, 1606 inode_state_will_delete, 1607 inode_state_did_delete, 1608 }; 1609 1610 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1611 { 1612 int ret; 1613 int left_ret; 1614 int right_ret; 1615 u64 left_gen; 1616 u64 right_gen; 1617 1618 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1619 NULL, NULL); 1620 if (ret < 0 && ret != -ENOENT) 1621 goto out; 1622 left_ret = ret; 1623 1624 if (!sctx->parent_root) { 1625 right_ret = -ENOENT; 1626 } else { 1627 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1628 NULL, NULL, NULL, NULL); 1629 if (ret < 0 && ret != -ENOENT) 1630 goto out; 1631 right_ret = ret; 1632 } 1633 1634 if (!left_ret && !right_ret) { 1635 if (left_gen == gen && right_gen == gen) { 1636 ret = inode_state_no_change; 1637 } else if (left_gen == gen) { 1638 if (ino < sctx->send_progress) 1639 ret = inode_state_did_create; 1640 else 1641 ret = inode_state_will_create; 1642 } else if (right_gen == gen) { 1643 if (ino < sctx->send_progress) 1644 ret = inode_state_did_delete; 1645 else 1646 ret = inode_state_will_delete; 1647 } else { 1648 ret = -ENOENT; 1649 } 1650 } else if (!left_ret) { 1651 if (left_gen == gen) { 1652 if (ino < sctx->send_progress) 1653 ret = inode_state_did_create; 1654 else 1655 ret = inode_state_will_create; 1656 } else { 1657 ret = -ENOENT; 1658 } 1659 } else if (!right_ret) { 1660 if (right_gen == gen) { 1661 if (ino < sctx->send_progress) 1662 ret = inode_state_did_delete; 1663 else 1664 ret = inode_state_will_delete; 1665 } else { 1666 ret = -ENOENT; 1667 } 1668 } else { 1669 ret = -ENOENT; 1670 } 1671 1672 out: 1673 return ret; 1674 } 1675 1676 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1677 { 1678 int ret; 1679 1680 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1681 return 1; 1682 1683 ret = get_cur_inode_state(sctx, ino, gen); 1684 if (ret < 0) 1685 goto out; 1686 1687 if (ret == inode_state_no_change || 1688 ret == inode_state_did_create || 1689 ret == inode_state_will_delete) 1690 ret = 1; 1691 else 1692 ret = 0; 1693 1694 out: 1695 return ret; 1696 } 1697 1698 /* 1699 * Helper function to lookup a dir item in a dir. 1700 */ 1701 static int lookup_dir_item_inode(struct btrfs_root *root, 1702 u64 dir, const char *name, int name_len, 1703 u64 *found_inode, 1704 u8 *found_type) 1705 { 1706 int ret = 0; 1707 struct btrfs_dir_item *di; 1708 struct btrfs_key key; 1709 struct btrfs_path *path; 1710 1711 path = alloc_path_for_send(); 1712 if (!path) 1713 return -ENOMEM; 1714 1715 di = btrfs_lookup_dir_item(NULL, root, path, 1716 dir, name, name_len, 0); 1717 if (!di) { 1718 ret = -ENOENT; 1719 goto out; 1720 } 1721 if (IS_ERR(di)) { 1722 ret = PTR_ERR(di); 1723 goto out; 1724 } 1725 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1726 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1727 ret = -ENOENT; 1728 goto out; 1729 } 1730 *found_inode = key.objectid; 1731 *found_type = btrfs_dir_type(path->nodes[0], di); 1732 1733 out: 1734 btrfs_free_path(path); 1735 return ret; 1736 } 1737 1738 /* 1739 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1740 * generation of the parent dir and the name of the dir entry. 1741 */ 1742 static int get_first_ref(struct btrfs_root *root, u64 ino, 1743 u64 *dir, u64 *dir_gen, struct fs_path *name) 1744 { 1745 int ret; 1746 struct btrfs_key key; 1747 struct btrfs_key found_key; 1748 struct btrfs_path *path; 1749 int len; 1750 u64 parent_dir; 1751 1752 path = alloc_path_for_send(); 1753 if (!path) 1754 return -ENOMEM; 1755 1756 key.objectid = ino; 1757 key.type = BTRFS_INODE_REF_KEY; 1758 key.offset = 0; 1759 1760 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1761 if (ret < 0) 1762 goto out; 1763 if (!ret) 1764 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1765 path->slots[0]); 1766 if (ret || found_key.objectid != ino || 1767 (found_key.type != BTRFS_INODE_REF_KEY && 1768 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1769 ret = -ENOENT; 1770 goto out; 1771 } 1772 1773 if (found_key.type == BTRFS_INODE_REF_KEY) { 1774 struct btrfs_inode_ref *iref; 1775 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1776 struct btrfs_inode_ref); 1777 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1778 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1779 (unsigned long)(iref + 1), 1780 len); 1781 parent_dir = found_key.offset; 1782 } else { 1783 struct btrfs_inode_extref *extref; 1784 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1785 struct btrfs_inode_extref); 1786 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1787 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1788 (unsigned long)&extref->name, len); 1789 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1790 } 1791 if (ret < 0) 1792 goto out; 1793 btrfs_release_path(path); 1794 1795 if (dir_gen) { 1796 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1797 NULL, NULL, NULL); 1798 if (ret < 0) 1799 goto out; 1800 } 1801 1802 *dir = parent_dir; 1803 1804 out: 1805 btrfs_free_path(path); 1806 return ret; 1807 } 1808 1809 static int is_first_ref(struct btrfs_root *root, 1810 u64 ino, u64 dir, 1811 const char *name, int name_len) 1812 { 1813 int ret; 1814 struct fs_path *tmp_name; 1815 u64 tmp_dir; 1816 1817 tmp_name = fs_path_alloc(); 1818 if (!tmp_name) 1819 return -ENOMEM; 1820 1821 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1822 if (ret < 0) 1823 goto out; 1824 1825 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1826 ret = 0; 1827 goto out; 1828 } 1829 1830 ret = !memcmp(tmp_name->start, name, name_len); 1831 1832 out: 1833 fs_path_free(tmp_name); 1834 return ret; 1835 } 1836 1837 /* 1838 * Used by process_recorded_refs to determine if a new ref would overwrite an 1839 * already existing ref. In case it detects an overwrite, it returns the 1840 * inode/gen in who_ino/who_gen. 1841 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1842 * to make sure later references to the overwritten inode are possible. 1843 * Orphanizing is however only required for the first ref of an inode. 1844 * process_recorded_refs does an additional is_first_ref check to see if 1845 * orphanizing is really required. 1846 */ 1847 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1848 const char *name, int name_len, 1849 u64 *who_ino, u64 *who_gen, u64 *who_mode) 1850 { 1851 int ret = 0; 1852 u64 gen; 1853 u64 other_inode = 0; 1854 u8 other_type = 0; 1855 1856 if (!sctx->parent_root) 1857 goto out; 1858 1859 ret = is_inode_existent(sctx, dir, dir_gen); 1860 if (ret <= 0) 1861 goto out; 1862 1863 /* 1864 * If we have a parent root we need to verify that the parent dir was 1865 * not deleted and then re-created, if it was then we have no overwrite 1866 * and we can just unlink this entry. 1867 */ 1868 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) { 1869 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1870 NULL, NULL, NULL); 1871 if (ret < 0 && ret != -ENOENT) 1872 goto out; 1873 if (ret) { 1874 ret = 0; 1875 goto out; 1876 } 1877 if (gen != dir_gen) 1878 goto out; 1879 } 1880 1881 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1882 &other_inode, &other_type); 1883 if (ret < 0 && ret != -ENOENT) 1884 goto out; 1885 if (ret) { 1886 ret = 0; 1887 goto out; 1888 } 1889 1890 /* 1891 * Check if the overwritten ref was already processed. If yes, the ref 1892 * was already unlinked/moved, so we can safely assume that we will not 1893 * overwrite anything at this point in time. 1894 */ 1895 if (other_inode > sctx->send_progress || 1896 is_waiting_for_move(sctx, other_inode)) { 1897 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1898 who_gen, who_mode, NULL, NULL, NULL); 1899 if (ret < 0) 1900 goto out; 1901 1902 ret = 1; 1903 *who_ino = other_inode; 1904 } else { 1905 ret = 0; 1906 } 1907 1908 out: 1909 return ret; 1910 } 1911 1912 /* 1913 * Checks if the ref was overwritten by an already processed inode. This is 1914 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1915 * thus the orphan name needs be used. 1916 * process_recorded_refs also uses it to avoid unlinking of refs that were 1917 * overwritten. 1918 */ 1919 static int did_overwrite_ref(struct send_ctx *sctx, 1920 u64 dir, u64 dir_gen, 1921 u64 ino, u64 ino_gen, 1922 const char *name, int name_len) 1923 { 1924 int ret = 0; 1925 u64 gen; 1926 u64 ow_inode; 1927 u8 other_type; 1928 1929 if (!sctx->parent_root) 1930 goto out; 1931 1932 ret = is_inode_existent(sctx, dir, dir_gen); 1933 if (ret <= 0) 1934 goto out; 1935 1936 if (dir != BTRFS_FIRST_FREE_OBJECTID) { 1937 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, 1938 NULL, NULL, NULL); 1939 if (ret < 0 && ret != -ENOENT) 1940 goto out; 1941 if (ret) { 1942 ret = 0; 1943 goto out; 1944 } 1945 if (gen != dir_gen) 1946 goto out; 1947 } 1948 1949 /* check if the ref was overwritten by another ref */ 1950 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1951 &ow_inode, &other_type); 1952 if (ret < 0 && ret != -ENOENT) 1953 goto out; 1954 if (ret) { 1955 /* was never and will never be overwritten */ 1956 ret = 0; 1957 goto out; 1958 } 1959 1960 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1961 NULL, NULL); 1962 if (ret < 0) 1963 goto out; 1964 1965 if (ow_inode == ino && gen == ino_gen) { 1966 ret = 0; 1967 goto out; 1968 } 1969 1970 /* 1971 * We know that it is or will be overwritten. Check this now. 1972 * The current inode being processed might have been the one that caused 1973 * inode 'ino' to be orphanized, therefore check if ow_inode matches 1974 * the current inode being processed. 1975 */ 1976 if ((ow_inode < sctx->send_progress) || 1977 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 1978 gen == sctx->cur_inode_gen)) 1979 ret = 1; 1980 else 1981 ret = 0; 1982 1983 out: 1984 return ret; 1985 } 1986 1987 /* 1988 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1989 * that got overwritten. This is used by process_recorded_refs to determine 1990 * if it has to use the path as returned by get_cur_path or the orphan name. 1991 */ 1992 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1993 { 1994 int ret = 0; 1995 struct fs_path *name = NULL; 1996 u64 dir; 1997 u64 dir_gen; 1998 1999 if (!sctx->parent_root) 2000 goto out; 2001 2002 name = fs_path_alloc(); 2003 if (!name) 2004 return -ENOMEM; 2005 2006 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2007 if (ret < 0) 2008 goto out; 2009 2010 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2011 name->start, fs_path_len(name)); 2012 2013 out: 2014 fs_path_free(name); 2015 return ret; 2016 } 2017 2018 /* 2019 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 2020 * so we need to do some special handling in case we have clashes. This function 2021 * takes care of this with the help of name_cache_entry::radix_list. 2022 * In case of error, nce is kfreed. 2023 */ 2024 static int name_cache_insert(struct send_ctx *sctx, 2025 struct name_cache_entry *nce) 2026 { 2027 int ret = 0; 2028 struct list_head *nce_head; 2029 2030 nce_head = radix_tree_lookup(&sctx->name_cache, 2031 (unsigned long)nce->ino); 2032 if (!nce_head) { 2033 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 2034 if (!nce_head) { 2035 kfree(nce); 2036 return -ENOMEM; 2037 } 2038 INIT_LIST_HEAD(nce_head); 2039 2040 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 2041 if (ret < 0) { 2042 kfree(nce_head); 2043 kfree(nce); 2044 return ret; 2045 } 2046 } 2047 list_add_tail(&nce->radix_list, nce_head); 2048 list_add_tail(&nce->list, &sctx->name_cache_list); 2049 sctx->name_cache_size++; 2050 2051 return ret; 2052 } 2053 2054 static void name_cache_delete(struct send_ctx *sctx, 2055 struct name_cache_entry *nce) 2056 { 2057 struct list_head *nce_head; 2058 2059 nce_head = radix_tree_lookup(&sctx->name_cache, 2060 (unsigned long)nce->ino); 2061 if (!nce_head) { 2062 btrfs_err(sctx->send_root->fs_info, 2063 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2064 nce->ino, sctx->name_cache_size); 2065 } 2066 2067 list_del(&nce->radix_list); 2068 list_del(&nce->list); 2069 sctx->name_cache_size--; 2070 2071 /* 2072 * We may not get to the final release of nce_head if the lookup fails 2073 */ 2074 if (nce_head && list_empty(nce_head)) { 2075 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2076 kfree(nce_head); 2077 } 2078 } 2079 2080 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2081 u64 ino, u64 gen) 2082 { 2083 struct list_head *nce_head; 2084 struct name_cache_entry *cur; 2085 2086 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2087 if (!nce_head) 2088 return NULL; 2089 2090 list_for_each_entry(cur, nce_head, radix_list) { 2091 if (cur->ino == ino && cur->gen == gen) 2092 return cur; 2093 } 2094 return NULL; 2095 } 2096 2097 /* 2098 * Removes the entry from the list and adds it back to the end. This marks the 2099 * entry as recently used so that name_cache_clean_unused does not remove it. 2100 */ 2101 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 2102 { 2103 list_del(&nce->list); 2104 list_add_tail(&nce->list, &sctx->name_cache_list); 2105 } 2106 2107 /* 2108 * Remove some entries from the beginning of name_cache_list. 2109 */ 2110 static void name_cache_clean_unused(struct send_ctx *sctx) 2111 { 2112 struct name_cache_entry *nce; 2113 2114 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2115 return; 2116 2117 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2118 nce = list_entry(sctx->name_cache_list.next, 2119 struct name_cache_entry, list); 2120 name_cache_delete(sctx, nce); 2121 kfree(nce); 2122 } 2123 } 2124 2125 static void name_cache_free(struct send_ctx *sctx) 2126 { 2127 struct name_cache_entry *nce; 2128 2129 while (!list_empty(&sctx->name_cache_list)) { 2130 nce = list_entry(sctx->name_cache_list.next, 2131 struct name_cache_entry, list); 2132 name_cache_delete(sctx, nce); 2133 kfree(nce); 2134 } 2135 } 2136 2137 /* 2138 * Used by get_cur_path for each ref up to the root. 2139 * Returns 0 if it succeeded. 2140 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2141 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2142 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2143 * Returns <0 in case of error. 2144 */ 2145 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2146 u64 ino, u64 gen, 2147 u64 *parent_ino, 2148 u64 *parent_gen, 2149 struct fs_path *dest) 2150 { 2151 int ret; 2152 int nce_ret; 2153 struct name_cache_entry *nce = NULL; 2154 2155 /* 2156 * First check if we already did a call to this function with the same 2157 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2158 * return the cached result. 2159 */ 2160 nce = name_cache_search(sctx, ino, gen); 2161 if (nce) { 2162 if (ino < sctx->send_progress && nce->need_later_update) { 2163 name_cache_delete(sctx, nce); 2164 kfree(nce); 2165 nce = NULL; 2166 } else { 2167 name_cache_used(sctx, nce); 2168 *parent_ino = nce->parent_ino; 2169 *parent_gen = nce->parent_gen; 2170 ret = fs_path_add(dest, nce->name, nce->name_len); 2171 if (ret < 0) 2172 goto out; 2173 ret = nce->ret; 2174 goto out; 2175 } 2176 } 2177 2178 /* 2179 * If the inode is not existent yet, add the orphan name and return 1. 2180 * This should only happen for the parent dir that we determine in 2181 * __record_new_ref 2182 */ 2183 ret = is_inode_existent(sctx, ino, gen); 2184 if (ret < 0) 2185 goto out; 2186 2187 if (!ret) { 2188 ret = gen_unique_name(sctx, ino, gen, dest); 2189 if (ret < 0) 2190 goto out; 2191 ret = 1; 2192 goto out_cache; 2193 } 2194 2195 /* 2196 * Depending on whether the inode was already processed or not, use 2197 * send_root or parent_root for ref lookup. 2198 */ 2199 if (ino < sctx->send_progress) 2200 ret = get_first_ref(sctx->send_root, ino, 2201 parent_ino, parent_gen, dest); 2202 else 2203 ret = get_first_ref(sctx->parent_root, ino, 2204 parent_ino, parent_gen, dest); 2205 if (ret < 0) 2206 goto out; 2207 2208 /* 2209 * Check if the ref was overwritten by an inode's ref that was processed 2210 * earlier. If yes, treat as orphan and return 1. 2211 */ 2212 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2213 dest->start, dest->end - dest->start); 2214 if (ret < 0) 2215 goto out; 2216 if (ret) { 2217 fs_path_reset(dest); 2218 ret = gen_unique_name(sctx, ino, gen, dest); 2219 if (ret < 0) 2220 goto out; 2221 ret = 1; 2222 } 2223 2224 out_cache: 2225 /* 2226 * Store the result of the lookup in the name cache. 2227 */ 2228 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2229 if (!nce) { 2230 ret = -ENOMEM; 2231 goto out; 2232 } 2233 2234 nce->ino = ino; 2235 nce->gen = gen; 2236 nce->parent_ino = *parent_ino; 2237 nce->parent_gen = *parent_gen; 2238 nce->name_len = fs_path_len(dest); 2239 nce->ret = ret; 2240 strcpy(nce->name, dest->start); 2241 2242 if (ino < sctx->send_progress) 2243 nce->need_later_update = 0; 2244 else 2245 nce->need_later_update = 1; 2246 2247 nce_ret = name_cache_insert(sctx, nce); 2248 if (nce_ret < 0) 2249 ret = nce_ret; 2250 name_cache_clean_unused(sctx); 2251 2252 out: 2253 return ret; 2254 } 2255 2256 /* 2257 * Magic happens here. This function returns the first ref to an inode as it 2258 * would look like while receiving the stream at this point in time. 2259 * We walk the path up to the root. For every inode in between, we check if it 2260 * was already processed/sent. If yes, we continue with the parent as found 2261 * in send_root. If not, we continue with the parent as found in parent_root. 2262 * If we encounter an inode that was deleted at this point in time, we use the 2263 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2264 * that were not created yet and overwritten inodes/refs. 2265 * 2266 * When do we have have orphan inodes: 2267 * 1. When an inode is freshly created and thus no valid refs are available yet 2268 * 2. When a directory lost all it's refs (deleted) but still has dir items 2269 * inside which were not processed yet (pending for move/delete). If anyone 2270 * tried to get the path to the dir items, it would get a path inside that 2271 * orphan directory. 2272 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2273 * of an unprocessed inode. If in that case the first ref would be 2274 * overwritten, the overwritten inode gets "orphanized". Later when we 2275 * process this overwritten inode, it is restored at a new place by moving 2276 * the orphan inode. 2277 * 2278 * sctx->send_progress tells this function at which point in time receiving 2279 * would be. 2280 */ 2281 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2282 struct fs_path *dest) 2283 { 2284 int ret = 0; 2285 struct fs_path *name = NULL; 2286 u64 parent_inode = 0; 2287 u64 parent_gen = 0; 2288 int stop = 0; 2289 2290 name = fs_path_alloc(); 2291 if (!name) { 2292 ret = -ENOMEM; 2293 goto out; 2294 } 2295 2296 dest->reversed = 1; 2297 fs_path_reset(dest); 2298 2299 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2300 struct waiting_dir_move *wdm; 2301 2302 fs_path_reset(name); 2303 2304 if (is_waiting_for_rm(sctx, ino)) { 2305 ret = gen_unique_name(sctx, ino, gen, name); 2306 if (ret < 0) 2307 goto out; 2308 ret = fs_path_add_path(dest, name); 2309 break; 2310 } 2311 2312 wdm = get_waiting_dir_move(sctx, ino); 2313 if (wdm && wdm->orphanized) { 2314 ret = gen_unique_name(sctx, ino, gen, name); 2315 stop = 1; 2316 } else if (wdm) { 2317 ret = get_first_ref(sctx->parent_root, ino, 2318 &parent_inode, &parent_gen, name); 2319 } else { 2320 ret = __get_cur_name_and_parent(sctx, ino, gen, 2321 &parent_inode, 2322 &parent_gen, name); 2323 if (ret) 2324 stop = 1; 2325 } 2326 2327 if (ret < 0) 2328 goto out; 2329 2330 ret = fs_path_add_path(dest, name); 2331 if (ret < 0) 2332 goto out; 2333 2334 ino = parent_inode; 2335 gen = parent_gen; 2336 } 2337 2338 out: 2339 fs_path_free(name); 2340 if (!ret) 2341 fs_path_unreverse(dest); 2342 return ret; 2343 } 2344 2345 /* 2346 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2347 */ 2348 static int send_subvol_begin(struct send_ctx *sctx) 2349 { 2350 int ret; 2351 struct btrfs_root *send_root = sctx->send_root; 2352 struct btrfs_root *parent_root = sctx->parent_root; 2353 struct btrfs_path *path; 2354 struct btrfs_key key; 2355 struct btrfs_root_ref *ref; 2356 struct extent_buffer *leaf; 2357 char *name = NULL; 2358 int namelen; 2359 2360 path = btrfs_alloc_path(); 2361 if (!path) 2362 return -ENOMEM; 2363 2364 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2365 if (!name) { 2366 btrfs_free_path(path); 2367 return -ENOMEM; 2368 } 2369 2370 key.objectid = send_root->objectid; 2371 key.type = BTRFS_ROOT_BACKREF_KEY; 2372 key.offset = 0; 2373 2374 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2375 &key, path, 1, 0); 2376 if (ret < 0) 2377 goto out; 2378 if (ret) { 2379 ret = -ENOENT; 2380 goto out; 2381 } 2382 2383 leaf = path->nodes[0]; 2384 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2385 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2386 key.objectid != send_root->objectid) { 2387 ret = -ENOENT; 2388 goto out; 2389 } 2390 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2391 namelen = btrfs_root_ref_name_len(leaf, ref); 2392 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2393 btrfs_release_path(path); 2394 2395 if (parent_root) { 2396 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2397 if (ret < 0) 2398 goto out; 2399 } else { 2400 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2401 if (ret < 0) 2402 goto out; 2403 } 2404 2405 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2406 2407 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2408 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2409 sctx->send_root->root_item.received_uuid); 2410 else 2411 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2412 sctx->send_root->root_item.uuid); 2413 2414 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2415 le64_to_cpu(sctx->send_root->root_item.ctransid)); 2416 if (parent_root) { 2417 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2418 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2419 parent_root->root_item.received_uuid); 2420 else 2421 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2422 parent_root->root_item.uuid); 2423 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2424 le64_to_cpu(sctx->parent_root->root_item.ctransid)); 2425 } 2426 2427 ret = send_cmd(sctx); 2428 2429 tlv_put_failure: 2430 out: 2431 btrfs_free_path(path); 2432 kfree(name); 2433 return ret; 2434 } 2435 2436 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2437 { 2438 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2439 int ret = 0; 2440 struct fs_path *p; 2441 2442 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2443 2444 p = fs_path_alloc(); 2445 if (!p) 2446 return -ENOMEM; 2447 2448 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2449 if (ret < 0) 2450 goto out; 2451 2452 ret = get_cur_path(sctx, ino, gen, p); 2453 if (ret < 0) 2454 goto out; 2455 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2456 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2457 2458 ret = send_cmd(sctx); 2459 2460 tlv_put_failure: 2461 out: 2462 fs_path_free(p); 2463 return ret; 2464 } 2465 2466 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2467 { 2468 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2469 int ret = 0; 2470 struct fs_path *p; 2471 2472 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2473 2474 p = fs_path_alloc(); 2475 if (!p) 2476 return -ENOMEM; 2477 2478 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2479 if (ret < 0) 2480 goto out; 2481 2482 ret = get_cur_path(sctx, ino, gen, p); 2483 if (ret < 0) 2484 goto out; 2485 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2486 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2487 2488 ret = send_cmd(sctx); 2489 2490 tlv_put_failure: 2491 out: 2492 fs_path_free(p); 2493 return ret; 2494 } 2495 2496 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2497 { 2498 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2499 int ret = 0; 2500 struct fs_path *p; 2501 2502 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2503 ino, uid, gid); 2504 2505 p = fs_path_alloc(); 2506 if (!p) 2507 return -ENOMEM; 2508 2509 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2510 if (ret < 0) 2511 goto out; 2512 2513 ret = get_cur_path(sctx, ino, gen, p); 2514 if (ret < 0) 2515 goto out; 2516 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2517 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2518 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2519 2520 ret = send_cmd(sctx); 2521 2522 tlv_put_failure: 2523 out: 2524 fs_path_free(p); 2525 return ret; 2526 } 2527 2528 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2529 { 2530 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2531 int ret = 0; 2532 struct fs_path *p = NULL; 2533 struct btrfs_inode_item *ii; 2534 struct btrfs_path *path = NULL; 2535 struct extent_buffer *eb; 2536 struct btrfs_key key; 2537 int slot; 2538 2539 btrfs_debug(fs_info, "send_utimes %llu", ino); 2540 2541 p = fs_path_alloc(); 2542 if (!p) 2543 return -ENOMEM; 2544 2545 path = alloc_path_for_send(); 2546 if (!path) { 2547 ret = -ENOMEM; 2548 goto out; 2549 } 2550 2551 key.objectid = ino; 2552 key.type = BTRFS_INODE_ITEM_KEY; 2553 key.offset = 0; 2554 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2555 if (ret > 0) 2556 ret = -ENOENT; 2557 if (ret < 0) 2558 goto out; 2559 2560 eb = path->nodes[0]; 2561 slot = path->slots[0]; 2562 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2563 2564 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2565 if (ret < 0) 2566 goto out; 2567 2568 ret = get_cur_path(sctx, ino, gen, p); 2569 if (ret < 0) 2570 goto out; 2571 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2572 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2573 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2574 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2575 /* TODO Add otime support when the otime patches get into upstream */ 2576 2577 ret = send_cmd(sctx); 2578 2579 tlv_put_failure: 2580 out: 2581 fs_path_free(p); 2582 btrfs_free_path(path); 2583 return ret; 2584 } 2585 2586 /* 2587 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2588 * a valid path yet because we did not process the refs yet. So, the inode 2589 * is created as orphan. 2590 */ 2591 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2592 { 2593 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2594 int ret = 0; 2595 struct fs_path *p; 2596 int cmd; 2597 u64 gen; 2598 u64 mode; 2599 u64 rdev; 2600 2601 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2602 2603 p = fs_path_alloc(); 2604 if (!p) 2605 return -ENOMEM; 2606 2607 if (ino != sctx->cur_ino) { 2608 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2609 NULL, NULL, &rdev); 2610 if (ret < 0) 2611 goto out; 2612 } else { 2613 gen = sctx->cur_inode_gen; 2614 mode = sctx->cur_inode_mode; 2615 rdev = sctx->cur_inode_rdev; 2616 } 2617 2618 if (S_ISREG(mode)) { 2619 cmd = BTRFS_SEND_C_MKFILE; 2620 } else if (S_ISDIR(mode)) { 2621 cmd = BTRFS_SEND_C_MKDIR; 2622 } else if (S_ISLNK(mode)) { 2623 cmd = BTRFS_SEND_C_SYMLINK; 2624 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2625 cmd = BTRFS_SEND_C_MKNOD; 2626 } else if (S_ISFIFO(mode)) { 2627 cmd = BTRFS_SEND_C_MKFIFO; 2628 } else if (S_ISSOCK(mode)) { 2629 cmd = BTRFS_SEND_C_MKSOCK; 2630 } else { 2631 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2632 (int)(mode & S_IFMT)); 2633 ret = -EOPNOTSUPP; 2634 goto out; 2635 } 2636 2637 ret = begin_cmd(sctx, cmd); 2638 if (ret < 0) 2639 goto out; 2640 2641 ret = gen_unique_name(sctx, ino, gen, p); 2642 if (ret < 0) 2643 goto out; 2644 2645 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2646 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2647 2648 if (S_ISLNK(mode)) { 2649 fs_path_reset(p); 2650 ret = read_symlink(sctx->send_root, ino, p); 2651 if (ret < 0) 2652 goto out; 2653 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2654 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2655 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2656 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2657 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2658 } 2659 2660 ret = send_cmd(sctx); 2661 if (ret < 0) 2662 goto out; 2663 2664 2665 tlv_put_failure: 2666 out: 2667 fs_path_free(p); 2668 return ret; 2669 } 2670 2671 /* 2672 * We need some special handling for inodes that get processed before the parent 2673 * directory got created. See process_recorded_refs for details. 2674 * This function does the check if we already created the dir out of order. 2675 */ 2676 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2677 { 2678 int ret = 0; 2679 struct btrfs_path *path = NULL; 2680 struct btrfs_key key; 2681 struct btrfs_key found_key; 2682 struct btrfs_key di_key; 2683 struct extent_buffer *eb; 2684 struct btrfs_dir_item *di; 2685 int slot; 2686 2687 path = alloc_path_for_send(); 2688 if (!path) { 2689 ret = -ENOMEM; 2690 goto out; 2691 } 2692 2693 key.objectid = dir; 2694 key.type = BTRFS_DIR_INDEX_KEY; 2695 key.offset = 0; 2696 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2697 if (ret < 0) 2698 goto out; 2699 2700 while (1) { 2701 eb = path->nodes[0]; 2702 slot = path->slots[0]; 2703 if (slot >= btrfs_header_nritems(eb)) { 2704 ret = btrfs_next_leaf(sctx->send_root, path); 2705 if (ret < 0) { 2706 goto out; 2707 } else if (ret > 0) { 2708 ret = 0; 2709 break; 2710 } 2711 continue; 2712 } 2713 2714 btrfs_item_key_to_cpu(eb, &found_key, slot); 2715 if (found_key.objectid != key.objectid || 2716 found_key.type != key.type) { 2717 ret = 0; 2718 goto out; 2719 } 2720 2721 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2722 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2723 2724 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2725 di_key.objectid < sctx->send_progress) { 2726 ret = 1; 2727 goto out; 2728 } 2729 2730 path->slots[0]++; 2731 } 2732 2733 out: 2734 btrfs_free_path(path); 2735 return ret; 2736 } 2737 2738 /* 2739 * Only creates the inode if it is: 2740 * 1. Not a directory 2741 * 2. Or a directory which was not created already due to out of order 2742 * directories. See did_create_dir and process_recorded_refs for details. 2743 */ 2744 static int send_create_inode_if_needed(struct send_ctx *sctx) 2745 { 2746 int ret; 2747 2748 if (S_ISDIR(sctx->cur_inode_mode)) { 2749 ret = did_create_dir(sctx, sctx->cur_ino); 2750 if (ret < 0) 2751 goto out; 2752 if (ret) { 2753 ret = 0; 2754 goto out; 2755 } 2756 } 2757 2758 ret = send_create_inode(sctx, sctx->cur_ino); 2759 if (ret < 0) 2760 goto out; 2761 2762 out: 2763 return ret; 2764 } 2765 2766 struct recorded_ref { 2767 struct list_head list; 2768 char *name; 2769 struct fs_path *full_path; 2770 u64 dir; 2771 u64 dir_gen; 2772 int name_len; 2773 }; 2774 2775 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 2776 { 2777 ref->full_path = path; 2778 ref->name = (char *)kbasename(ref->full_path->start); 2779 ref->name_len = ref->full_path->end - ref->name; 2780 } 2781 2782 /* 2783 * We need to process new refs before deleted refs, but compare_tree gives us 2784 * everything mixed. So we first record all refs and later process them. 2785 * This function is a helper to record one ref. 2786 */ 2787 static int __record_ref(struct list_head *head, u64 dir, 2788 u64 dir_gen, struct fs_path *path) 2789 { 2790 struct recorded_ref *ref; 2791 2792 ref = kmalloc(sizeof(*ref), GFP_KERNEL); 2793 if (!ref) 2794 return -ENOMEM; 2795 2796 ref->dir = dir; 2797 ref->dir_gen = dir_gen; 2798 set_ref_path(ref, path); 2799 list_add_tail(&ref->list, head); 2800 return 0; 2801 } 2802 2803 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2804 { 2805 struct recorded_ref *new; 2806 2807 new = kmalloc(sizeof(*ref), GFP_KERNEL); 2808 if (!new) 2809 return -ENOMEM; 2810 2811 new->dir = ref->dir; 2812 new->dir_gen = ref->dir_gen; 2813 new->full_path = NULL; 2814 INIT_LIST_HEAD(&new->list); 2815 list_add_tail(&new->list, list); 2816 return 0; 2817 } 2818 2819 static void __free_recorded_refs(struct list_head *head) 2820 { 2821 struct recorded_ref *cur; 2822 2823 while (!list_empty(head)) { 2824 cur = list_entry(head->next, struct recorded_ref, list); 2825 fs_path_free(cur->full_path); 2826 list_del(&cur->list); 2827 kfree(cur); 2828 } 2829 } 2830 2831 static void free_recorded_refs(struct send_ctx *sctx) 2832 { 2833 __free_recorded_refs(&sctx->new_refs); 2834 __free_recorded_refs(&sctx->deleted_refs); 2835 } 2836 2837 /* 2838 * Renames/moves a file/dir to its orphan name. Used when the first 2839 * ref of an unprocessed inode gets overwritten and for all non empty 2840 * directories. 2841 */ 2842 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2843 struct fs_path *path) 2844 { 2845 int ret; 2846 struct fs_path *orphan; 2847 2848 orphan = fs_path_alloc(); 2849 if (!orphan) 2850 return -ENOMEM; 2851 2852 ret = gen_unique_name(sctx, ino, gen, orphan); 2853 if (ret < 0) 2854 goto out; 2855 2856 ret = send_rename(sctx, path, orphan); 2857 2858 out: 2859 fs_path_free(orphan); 2860 return ret; 2861 } 2862 2863 static struct orphan_dir_info * 2864 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2865 { 2866 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2867 struct rb_node *parent = NULL; 2868 struct orphan_dir_info *entry, *odi; 2869 2870 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 2871 if (!odi) 2872 return ERR_PTR(-ENOMEM); 2873 odi->ino = dir_ino; 2874 odi->gen = 0; 2875 2876 while (*p) { 2877 parent = *p; 2878 entry = rb_entry(parent, struct orphan_dir_info, node); 2879 if (dir_ino < entry->ino) { 2880 p = &(*p)->rb_left; 2881 } else if (dir_ino > entry->ino) { 2882 p = &(*p)->rb_right; 2883 } else { 2884 kfree(odi); 2885 return entry; 2886 } 2887 } 2888 2889 rb_link_node(&odi->node, parent, p); 2890 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2891 return odi; 2892 } 2893 2894 static struct orphan_dir_info * 2895 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2896 { 2897 struct rb_node *n = sctx->orphan_dirs.rb_node; 2898 struct orphan_dir_info *entry; 2899 2900 while (n) { 2901 entry = rb_entry(n, struct orphan_dir_info, node); 2902 if (dir_ino < entry->ino) 2903 n = n->rb_left; 2904 else if (dir_ino > entry->ino) 2905 n = n->rb_right; 2906 else 2907 return entry; 2908 } 2909 return NULL; 2910 } 2911 2912 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino) 2913 { 2914 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino); 2915 2916 return odi != NULL; 2917 } 2918 2919 static void free_orphan_dir_info(struct send_ctx *sctx, 2920 struct orphan_dir_info *odi) 2921 { 2922 if (!odi) 2923 return; 2924 rb_erase(&odi->node, &sctx->orphan_dirs); 2925 kfree(odi); 2926 } 2927 2928 /* 2929 * Returns 1 if a directory can be removed at this point in time. 2930 * We check this by iterating all dir items and checking if the inode behind 2931 * the dir item was already processed. 2932 */ 2933 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2934 u64 send_progress) 2935 { 2936 int ret = 0; 2937 struct btrfs_root *root = sctx->parent_root; 2938 struct btrfs_path *path; 2939 struct btrfs_key key; 2940 struct btrfs_key found_key; 2941 struct btrfs_key loc; 2942 struct btrfs_dir_item *di; 2943 2944 /* 2945 * Don't try to rmdir the top/root subvolume dir. 2946 */ 2947 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2948 return 0; 2949 2950 path = alloc_path_for_send(); 2951 if (!path) 2952 return -ENOMEM; 2953 2954 key.objectid = dir; 2955 key.type = BTRFS_DIR_INDEX_KEY; 2956 key.offset = 0; 2957 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2958 if (ret < 0) 2959 goto out; 2960 2961 while (1) { 2962 struct waiting_dir_move *dm; 2963 2964 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2965 ret = btrfs_next_leaf(root, path); 2966 if (ret < 0) 2967 goto out; 2968 else if (ret > 0) 2969 break; 2970 continue; 2971 } 2972 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2973 path->slots[0]); 2974 if (found_key.objectid != key.objectid || 2975 found_key.type != key.type) 2976 break; 2977 2978 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2979 struct btrfs_dir_item); 2980 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2981 2982 dm = get_waiting_dir_move(sctx, loc.objectid); 2983 if (dm) { 2984 struct orphan_dir_info *odi; 2985 2986 odi = add_orphan_dir_info(sctx, dir); 2987 if (IS_ERR(odi)) { 2988 ret = PTR_ERR(odi); 2989 goto out; 2990 } 2991 odi->gen = dir_gen; 2992 dm->rmdir_ino = dir; 2993 ret = 0; 2994 goto out; 2995 } 2996 2997 if (loc.objectid > send_progress) { 2998 struct orphan_dir_info *odi; 2999 3000 odi = get_orphan_dir_info(sctx, dir); 3001 free_orphan_dir_info(sctx, odi); 3002 ret = 0; 3003 goto out; 3004 } 3005 3006 path->slots[0]++; 3007 } 3008 3009 ret = 1; 3010 3011 out: 3012 btrfs_free_path(path); 3013 return ret; 3014 } 3015 3016 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3017 { 3018 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3019 3020 return entry != NULL; 3021 } 3022 3023 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3024 { 3025 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3026 struct rb_node *parent = NULL; 3027 struct waiting_dir_move *entry, *dm; 3028 3029 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3030 if (!dm) 3031 return -ENOMEM; 3032 dm->ino = ino; 3033 dm->rmdir_ino = 0; 3034 dm->orphanized = orphanized; 3035 3036 while (*p) { 3037 parent = *p; 3038 entry = rb_entry(parent, struct waiting_dir_move, node); 3039 if (ino < entry->ino) { 3040 p = &(*p)->rb_left; 3041 } else if (ino > entry->ino) { 3042 p = &(*p)->rb_right; 3043 } else { 3044 kfree(dm); 3045 return -EEXIST; 3046 } 3047 } 3048 3049 rb_link_node(&dm->node, parent, p); 3050 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3051 return 0; 3052 } 3053 3054 static struct waiting_dir_move * 3055 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3056 { 3057 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3058 struct waiting_dir_move *entry; 3059 3060 while (n) { 3061 entry = rb_entry(n, struct waiting_dir_move, node); 3062 if (ino < entry->ino) 3063 n = n->rb_left; 3064 else if (ino > entry->ino) 3065 n = n->rb_right; 3066 else 3067 return entry; 3068 } 3069 return NULL; 3070 } 3071 3072 static void free_waiting_dir_move(struct send_ctx *sctx, 3073 struct waiting_dir_move *dm) 3074 { 3075 if (!dm) 3076 return; 3077 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3078 kfree(dm); 3079 } 3080 3081 static int add_pending_dir_move(struct send_ctx *sctx, 3082 u64 ino, 3083 u64 ino_gen, 3084 u64 parent_ino, 3085 struct list_head *new_refs, 3086 struct list_head *deleted_refs, 3087 const bool is_orphan) 3088 { 3089 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3090 struct rb_node *parent = NULL; 3091 struct pending_dir_move *entry = NULL, *pm; 3092 struct recorded_ref *cur; 3093 int exists = 0; 3094 int ret; 3095 3096 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3097 if (!pm) 3098 return -ENOMEM; 3099 pm->parent_ino = parent_ino; 3100 pm->ino = ino; 3101 pm->gen = ino_gen; 3102 INIT_LIST_HEAD(&pm->list); 3103 INIT_LIST_HEAD(&pm->update_refs); 3104 RB_CLEAR_NODE(&pm->node); 3105 3106 while (*p) { 3107 parent = *p; 3108 entry = rb_entry(parent, struct pending_dir_move, node); 3109 if (parent_ino < entry->parent_ino) { 3110 p = &(*p)->rb_left; 3111 } else if (parent_ino > entry->parent_ino) { 3112 p = &(*p)->rb_right; 3113 } else { 3114 exists = 1; 3115 break; 3116 } 3117 } 3118 3119 list_for_each_entry(cur, deleted_refs, list) { 3120 ret = dup_ref(cur, &pm->update_refs); 3121 if (ret < 0) 3122 goto out; 3123 } 3124 list_for_each_entry(cur, new_refs, list) { 3125 ret = dup_ref(cur, &pm->update_refs); 3126 if (ret < 0) 3127 goto out; 3128 } 3129 3130 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3131 if (ret) 3132 goto out; 3133 3134 if (exists) { 3135 list_add_tail(&pm->list, &entry->list); 3136 } else { 3137 rb_link_node(&pm->node, parent, p); 3138 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3139 } 3140 ret = 0; 3141 out: 3142 if (ret) { 3143 __free_recorded_refs(&pm->update_refs); 3144 kfree(pm); 3145 } 3146 return ret; 3147 } 3148 3149 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3150 u64 parent_ino) 3151 { 3152 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3153 struct pending_dir_move *entry; 3154 3155 while (n) { 3156 entry = rb_entry(n, struct pending_dir_move, node); 3157 if (parent_ino < entry->parent_ino) 3158 n = n->rb_left; 3159 else if (parent_ino > entry->parent_ino) 3160 n = n->rb_right; 3161 else 3162 return entry; 3163 } 3164 return NULL; 3165 } 3166 3167 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3168 u64 ino, u64 gen, u64 *ancestor_ino) 3169 { 3170 int ret = 0; 3171 u64 parent_inode = 0; 3172 u64 parent_gen = 0; 3173 u64 start_ino = ino; 3174 3175 *ancestor_ino = 0; 3176 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3177 fs_path_reset(name); 3178 3179 if (is_waiting_for_rm(sctx, ino)) 3180 break; 3181 if (is_waiting_for_move(sctx, ino)) { 3182 if (*ancestor_ino == 0) 3183 *ancestor_ino = ino; 3184 ret = get_first_ref(sctx->parent_root, ino, 3185 &parent_inode, &parent_gen, name); 3186 } else { 3187 ret = __get_cur_name_and_parent(sctx, ino, gen, 3188 &parent_inode, 3189 &parent_gen, name); 3190 if (ret > 0) { 3191 ret = 0; 3192 break; 3193 } 3194 } 3195 if (ret < 0) 3196 break; 3197 if (parent_inode == start_ino) { 3198 ret = 1; 3199 if (*ancestor_ino == 0) 3200 *ancestor_ino = ino; 3201 break; 3202 } 3203 ino = parent_inode; 3204 gen = parent_gen; 3205 } 3206 return ret; 3207 } 3208 3209 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3210 { 3211 struct fs_path *from_path = NULL; 3212 struct fs_path *to_path = NULL; 3213 struct fs_path *name = NULL; 3214 u64 orig_progress = sctx->send_progress; 3215 struct recorded_ref *cur; 3216 u64 parent_ino, parent_gen; 3217 struct waiting_dir_move *dm = NULL; 3218 u64 rmdir_ino = 0; 3219 u64 ancestor; 3220 bool is_orphan; 3221 int ret; 3222 3223 name = fs_path_alloc(); 3224 from_path = fs_path_alloc(); 3225 if (!name || !from_path) { 3226 ret = -ENOMEM; 3227 goto out; 3228 } 3229 3230 dm = get_waiting_dir_move(sctx, pm->ino); 3231 ASSERT(dm); 3232 rmdir_ino = dm->rmdir_ino; 3233 is_orphan = dm->orphanized; 3234 free_waiting_dir_move(sctx, dm); 3235 3236 if (is_orphan) { 3237 ret = gen_unique_name(sctx, pm->ino, 3238 pm->gen, from_path); 3239 } else { 3240 ret = get_first_ref(sctx->parent_root, pm->ino, 3241 &parent_ino, &parent_gen, name); 3242 if (ret < 0) 3243 goto out; 3244 ret = get_cur_path(sctx, parent_ino, parent_gen, 3245 from_path); 3246 if (ret < 0) 3247 goto out; 3248 ret = fs_path_add_path(from_path, name); 3249 } 3250 if (ret < 0) 3251 goto out; 3252 3253 sctx->send_progress = sctx->cur_ino + 1; 3254 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3255 if (ret < 0) 3256 goto out; 3257 if (ret) { 3258 LIST_HEAD(deleted_refs); 3259 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3260 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3261 &pm->update_refs, &deleted_refs, 3262 is_orphan); 3263 if (ret < 0) 3264 goto out; 3265 if (rmdir_ino) { 3266 dm = get_waiting_dir_move(sctx, pm->ino); 3267 ASSERT(dm); 3268 dm->rmdir_ino = rmdir_ino; 3269 } 3270 goto out; 3271 } 3272 fs_path_reset(name); 3273 to_path = name; 3274 name = NULL; 3275 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3276 if (ret < 0) 3277 goto out; 3278 3279 ret = send_rename(sctx, from_path, to_path); 3280 if (ret < 0) 3281 goto out; 3282 3283 if (rmdir_ino) { 3284 struct orphan_dir_info *odi; 3285 3286 odi = get_orphan_dir_info(sctx, rmdir_ino); 3287 if (!odi) { 3288 /* already deleted */ 3289 goto finish; 3290 } 3291 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino); 3292 if (ret < 0) 3293 goto out; 3294 if (!ret) 3295 goto finish; 3296 3297 name = fs_path_alloc(); 3298 if (!name) { 3299 ret = -ENOMEM; 3300 goto out; 3301 } 3302 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name); 3303 if (ret < 0) 3304 goto out; 3305 ret = send_rmdir(sctx, name); 3306 if (ret < 0) 3307 goto out; 3308 free_orphan_dir_info(sctx, odi); 3309 } 3310 3311 finish: 3312 ret = send_utimes(sctx, pm->ino, pm->gen); 3313 if (ret < 0) 3314 goto out; 3315 3316 /* 3317 * After rename/move, need to update the utimes of both new parent(s) 3318 * and old parent(s). 3319 */ 3320 list_for_each_entry(cur, &pm->update_refs, list) { 3321 /* 3322 * The parent inode might have been deleted in the send snapshot 3323 */ 3324 ret = get_inode_info(sctx->send_root, cur->dir, NULL, 3325 NULL, NULL, NULL, NULL, NULL); 3326 if (ret == -ENOENT) { 3327 ret = 0; 3328 continue; 3329 } 3330 if (ret < 0) 3331 goto out; 3332 3333 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3334 if (ret < 0) 3335 goto out; 3336 } 3337 3338 out: 3339 fs_path_free(name); 3340 fs_path_free(from_path); 3341 fs_path_free(to_path); 3342 sctx->send_progress = orig_progress; 3343 3344 return ret; 3345 } 3346 3347 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3348 { 3349 if (!list_empty(&m->list)) 3350 list_del(&m->list); 3351 if (!RB_EMPTY_NODE(&m->node)) 3352 rb_erase(&m->node, &sctx->pending_dir_moves); 3353 __free_recorded_refs(&m->update_refs); 3354 kfree(m); 3355 } 3356 3357 static void tail_append_pending_moves(struct pending_dir_move *moves, 3358 struct list_head *stack) 3359 { 3360 if (list_empty(&moves->list)) { 3361 list_add_tail(&moves->list, stack); 3362 } else { 3363 LIST_HEAD(list); 3364 list_splice_init(&moves->list, &list); 3365 list_add_tail(&moves->list, stack); 3366 list_splice_tail(&list, stack); 3367 } 3368 } 3369 3370 static int apply_children_dir_moves(struct send_ctx *sctx) 3371 { 3372 struct pending_dir_move *pm; 3373 struct list_head stack; 3374 u64 parent_ino = sctx->cur_ino; 3375 int ret = 0; 3376 3377 pm = get_pending_dir_moves(sctx, parent_ino); 3378 if (!pm) 3379 return 0; 3380 3381 INIT_LIST_HEAD(&stack); 3382 tail_append_pending_moves(pm, &stack); 3383 3384 while (!list_empty(&stack)) { 3385 pm = list_first_entry(&stack, struct pending_dir_move, list); 3386 parent_ino = pm->ino; 3387 ret = apply_dir_move(sctx, pm); 3388 free_pending_move(sctx, pm); 3389 if (ret) 3390 goto out; 3391 pm = get_pending_dir_moves(sctx, parent_ino); 3392 if (pm) 3393 tail_append_pending_moves(pm, &stack); 3394 } 3395 return 0; 3396 3397 out: 3398 while (!list_empty(&stack)) { 3399 pm = list_first_entry(&stack, struct pending_dir_move, list); 3400 free_pending_move(sctx, pm); 3401 } 3402 return ret; 3403 } 3404 3405 /* 3406 * We might need to delay a directory rename even when no ancestor directory 3407 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3408 * renamed. This happens when we rename a directory to the old name (the name 3409 * in the parent root) of some other unrelated directory that got its rename 3410 * delayed due to some ancestor with higher number that got renamed. 3411 * 3412 * Example: 3413 * 3414 * Parent snapshot: 3415 * . (ino 256) 3416 * |---- a/ (ino 257) 3417 * | |---- file (ino 260) 3418 * | 3419 * |---- b/ (ino 258) 3420 * |---- c/ (ino 259) 3421 * 3422 * Send snapshot: 3423 * . (ino 256) 3424 * |---- a/ (ino 258) 3425 * |---- x/ (ino 259) 3426 * |---- y/ (ino 257) 3427 * |----- file (ino 260) 3428 * 3429 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3430 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3431 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3432 * must issue is: 3433 * 3434 * 1 - rename 259 from 'c' to 'x' 3435 * 2 - rename 257 from 'a' to 'x/y' 3436 * 3 - rename 258 from 'b' to 'a' 3437 * 3438 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3439 * be done right away and < 0 on error. 3440 */ 3441 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3442 struct recorded_ref *parent_ref, 3443 const bool is_orphan) 3444 { 3445 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3446 struct btrfs_path *path; 3447 struct btrfs_key key; 3448 struct btrfs_key di_key; 3449 struct btrfs_dir_item *di; 3450 u64 left_gen; 3451 u64 right_gen; 3452 int ret = 0; 3453 struct waiting_dir_move *wdm; 3454 3455 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3456 return 0; 3457 3458 path = alloc_path_for_send(); 3459 if (!path) 3460 return -ENOMEM; 3461 3462 key.objectid = parent_ref->dir; 3463 key.type = BTRFS_DIR_ITEM_KEY; 3464 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3465 3466 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3467 if (ret < 0) { 3468 goto out; 3469 } else if (ret > 0) { 3470 ret = 0; 3471 goto out; 3472 } 3473 3474 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3475 parent_ref->name_len); 3476 if (!di) { 3477 ret = 0; 3478 goto out; 3479 } 3480 /* 3481 * di_key.objectid has the number of the inode that has a dentry in the 3482 * parent directory with the same name that sctx->cur_ino is being 3483 * renamed to. We need to check if that inode is in the send root as 3484 * well and if it is currently marked as an inode with a pending rename, 3485 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3486 * that it happens after that other inode is renamed. 3487 */ 3488 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3489 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3490 ret = 0; 3491 goto out; 3492 } 3493 3494 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3495 &left_gen, NULL, NULL, NULL, NULL); 3496 if (ret < 0) 3497 goto out; 3498 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3499 &right_gen, NULL, NULL, NULL, NULL); 3500 if (ret < 0) { 3501 if (ret == -ENOENT) 3502 ret = 0; 3503 goto out; 3504 } 3505 3506 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3507 if (right_gen != left_gen) { 3508 ret = 0; 3509 goto out; 3510 } 3511 3512 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3513 if (wdm && !wdm->orphanized) { 3514 ret = add_pending_dir_move(sctx, 3515 sctx->cur_ino, 3516 sctx->cur_inode_gen, 3517 di_key.objectid, 3518 &sctx->new_refs, 3519 &sctx->deleted_refs, 3520 is_orphan); 3521 if (!ret) 3522 ret = 1; 3523 } 3524 out: 3525 btrfs_free_path(path); 3526 return ret; 3527 } 3528 3529 /* 3530 * Check if ino ino1 is an ancestor of inode ino2 in the given root. 3531 * Return 1 if true, 0 if false and < 0 on error. 3532 */ 3533 static int is_ancestor(struct btrfs_root *root, 3534 const u64 ino1, 3535 const u64 ino1_gen, 3536 const u64 ino2, 3537 struct fs_path *fs_path) 3538 { 3539 u64 ino = ino2; 3540 bool free_path = false; 3541 int ret = 0; 3542 3543 if (!fs_path) { 3544 fs_path = fs_path_alloc(); 3545 if (!fs_path) 3546 return -ENOMEM; 3547 free_path = true; 3548 } 3549 3550 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3551 u64 parent; 3552 u64 parent_gen; 3553 3554 fs_path_reset(fs_path); 3555 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3556 if (ret < 0) { 3557 if (ret == -ENOENT && ino == ino2) 3558 ret = 0; 3559 goto out; 3560 } 3561 if (parent == ino1) { 3562 ret = parent_gen == ino1_gen ? 1 : 0; 3563 goto out; 3564 } 3565 ino = parent; 3566 } 3567 out: 3568 if (free_path) 3569 fs_path_free(fs_path); 3570 return ret; 3571 } 3572 3573 static int wait_for_parent_move(struct send_ctx *sctx, 3574 struct recorded_ref *parent_ref, 3575 const bool is_orphan) 3576 { 3577 int ret = 0; 3578 u64 ino = parent_ref->dir; 3579 u64 ino_gen = parent_ref->dir_gen; 3580 u64 parent_ino_before, parent_ino_after; 3581 struct fs_path *path_before = NULL; 3582 struct fs_path *path_after = NULL; 3583 int len1, len2; 3584 3585 path_after = fs_path_alloc(); 3586 path_before = fs_path_alloc(); 3587 if (!path_after || !path_before) { 3588 ret = -ENOMEM; 3589 goto out; 3590 } 3591 3592 /* 3593 * Our current directory inode may not yet be renamed/moved because some 3594 * ancestor (immediate or not) has to be renamed/moved first. So find if 3595 * such ancestor exists and make sure our own rename/move happens after 3596 * that ancestor is processed to avoid path build infinite loops (done 3597 * at get_cur_path()). 3598 */ 3599 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3600 u64 parent_ino_after_gen; 3601 3602 if (is_waiting_for_move(sctx, ino)) { 3603 /* 3604 * If the current inode is an ancestor of ino in the 3605 * parent root, we need to delay the rename of the 3606 * current inode, otherwise don't delayed the rename 3607 * because we can end up with a circular dependency 3608 * of renames, resulting in some directories never 3609 * getting the respective rename operations issued in 3610 * the send stream or getting into infinite path build 3611 * loops. 3612 */ 3613 ret = is_ancestor(sctx->parent_root, 3614 sctx->cur_ino, sctx->cur_inode_gen, 3615 ino, path_before); 3616 if (ret) 3617 break; 3618 } 3619 3620 fs_path_reset(path_before); 3621 fs_path_reset(path_after); 3622 3623 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3624 &parent_ino_after_gen, path_after); 3625 if (ret < 0) 3626 goto out; 3627 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3628 NULL, path_before); 3629 if (ret < 0 && ret != -ENOENT) { 3630 goto out; 3631 } else if (ret == -ENOENT) { 3632 ret = 0; 3633 break; 3634 } 3635 3636 len1 = fs_path_len(path_before); 3637 len2 = fs_path_len(path_after); 3638 if (ino > sctx->cur_ino && 3639 (parent_ino_before != parent_ino_after || len1 != len2 || 3640 memcmp(path_before->start, path_after->start, len1))) { 3641 u64 parent_ino_gen; 3642 3643 ret = get_inode_info(sctx->parent_root, ino, NULL, 3644 &parent_ino_gen, NULL, NULL, NULL, 3645 NULL); 3646 if (ret < 0) 3647 goto out; 3648 if (ino_gen == parent_ino_gen) { 3649 ret = 1; 3650 break; 3651 } 3652 } 3653 ino = parent_ino_after; 3654 ino_gen = parent_ino_after_gen; 3655 } 3656 3657 out: 3658 fs_path_free(path_before); 3659 fs_path_free(path_after); 3660 3661 if (ret == 1) { 3662 ret = add_pending_dir_move(sctx, 3663 sctx->cur_ino, 3664 sctx->cur_inode_gen, 3665 ino, 3666 &sctx->new_refs, 3667 &sctx->deleted_refs, 3668 is_orphan); 3669 if (!ret) 3670 ret = 1; 3671 } 3672 3673 return ret; 3674 } 3675 3676 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3677 { 3678 int ret; 3679 struct fs_path *new_path; 3680 3681 /* 3682 * Our reference's name member points to its full_path member string, so 3683 * we use here a new path. 3684 */ 3685 new_path = fs_path_alloc(); 3686 if (!new_path) 3687 return -ENOMEM; 3688 3689 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 3690 if (ret < 0) { 3691 fs_path_free(new_path); 3692 return ret; 3693 } 3694 ret = fs_path_add(new_path, ref->name, ref->name_len); 3695 if (ret < 0) { 3696 fs_path_free(new_path); 3697 return ret; 3698 } 3699 3700 fs_path_free(ref->full_path); 3701 set_ref_path(ref, new_path); 3702 3703 return 0; 3704 } 3705 3706 /* 3707 * This does all the move/link/unlink/rmdir magic. 3708 */ 3709 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3710 { 3711 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 3712 int ret = 0; 3713 struct recorded_ref *cur; 3714 struct recorded_ref *cur2; 3715 struct list_head check_dirs; 3716 struct fs_path *valid_path = NULL; 3717 u64 ow_inode = 0; 3718 u64 ow_gen; 3719 u64 ow_mode; 3720 int did_overwrite = 0; 3721 int is_orphan = 0; 3722 u64 last_dir_ino_rm = 0; 3723 bool can_rename = true; 3724 bool orphanized_dir = false; 3725 bool orphanized_ancestor = false; 3726 3727 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 3728 3729 /* 3730 * This should never happen as the root dir always has the same ref 3731 * which is always '..' 3732 */ 3733 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3734 INIT_LIST_HEAD(&check_dirs); 3735 3736 valid_path = fs_path_alloc(); 3737 if (!valid_path) { 3738 ret = -ENOMEM; 3739 goto out; 3740 } 3741 3742 /* 3743 * First, check if the first ref of the current inode was overwritten 3744 * before. If yes, we know that the current inode was already orphanized 3745 * and thus use the orphan name. If not, we can use get_cur_path to 3746 * get the path of the first ref as it would like while receiving at 3747 * this point in time. 3748 * New inodes are always orphan at the beginning, so force to use the 3749 * orphan name in this case. 3750 * The first ref is stored in valid_path and will be updated if it 3751 * gets moved around. 3752 */ 3753 if (!sctx->cur_inode_new) { 3754 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3755 sctx->cur_inode_gen); 3756 if (ret < 0) 3757 goto out; 3758 if (ret) 3759 did_overwrite = 1; 3760 } 3761 if (sctx->cur_inode_new || did_overwrite) { 3762 ret = gen_unique_name(sctx, sctx->cur_ino, 3763 sctx->cur_inode_gen, valid_path); 3764 if (ret < 0) 3765 goto out; 3766 is_orphan = 1; 3767 } else { 3768 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3769 valid_path); 3770 if (ret < 0) 3771 goto out; 3772 } 3773 3774 list_for_each_entry(cur, &sctx->new_refs, list) { 3775 /* 3776 * We may have refs where the parent directory does not exist 3777 * yet. This happens if the parent directories inum is higher 3778 * the the current inum. To handle this case, we create the 3779 * parent directory out of order. But we need to check if this 3780 * did already happen before due to other refs in the same dir. 3781 */ 3782 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3783 if (ret < 0) 3784 goto out; 3785 if (ret == inode_state_will_create) { 3786 ret = 0; 3787 /* 3788 * First check if any of the current inodes refs did 3789 * already create the dir. 3790 */ 3791 list_for_each_entry(cur2, &sctx->new_refs, list) { 3792 if (cur == cur2) 3793 break; 3794 if (cur2->dir == cur->dir) { 3795 ret = 1; 3796 break; 3797 } 3798 } 3799 3800 /* 3801 * If that did not happen, check if a previous inode 3802 * did already create the dir. 3803 */ 3804 if (!ret) 3805 ret = did_create_dir(sctx, cur->dir); 3806 if (ret < 0) 3807 goto out; 3808 if (!ret) { 3809 ret = send_create_inode(sctx, cur->dir); 3810 if (ret < 0) 3811 goto out; 3812 } 3813 } 3814 3815 /* 3816 * Check if this new ref would overwrite the first ref of 3817 * another unprocessed inode. If yes, orphanize the 3818 * overwritten inode. If we find an overwritten ref that is 3819 * not the first ref, simply unlink it. 3820 */ 3821 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3822 cur->name, cur->name_len, 3823 &ow_inode, &ow_gen, &ow_mode); 3824 if (ret < 0) 3825 goto out; 3826 if (ret) { 3827 ret = is_first_ref(sctx->parent_root, 3828 ow_inode, cur->dir, cur->name, 3829 cur->name_len); 3830 if (ret < 0) 3831 goto out; 3832 if (ret) { 3833 struct name_cache_entry *nce; 3834 struct waiting_dir_move *wdm; 3835 3836 ret = orphanize_inode(sctx, ow_inode, ow_gen, 3837 cur->full_path); 3838 if (ret < 0) 3839 goto out; 3840 if (S_ISDIR(ow_mode)) 3841 orphanized_dir = true; 3842 3843 /* 3844 * If ow_inode has its rename operation delayed 3845 * make sure that its orphanized name is used in 3846 * the source path when performing its rename 3847 * operation. 3848 */ 3849 if (is_waiting_for_move(sctx, ow_inode)) { 3850 wdm = get_waiting_dir_move(sctx, 3851 ow_inode); 3852 ASSERT(wdm); 3853 wdm->orphanized = true; 3854 } 3855 3856 /* 3857 * Make sure we clear our orphanized inode's 3858 * name from the name cache. This is because the 3859 * inode ow_inode might be an ancestor of some 3860 * other inode that will be orphanized as well 3861 * later and has an inode number greater than 3862 * sctx->send_progress. We need to prevent 3863 * future name lookups from using the old name 3864 * and get instead the orphan name. 3865 */ 3866 nce = name_cache_search(sctx, ow_inode, ow_gen); 3867 if (nce) { 3868 name_cache_delete(sctx, nce); 3869 kfree(nce); 3870 } 3871 3872 /* 3873 * ow_inode might currently be an ancestor of 3874 * cur_ino, therefore compute valid_path (the 3875 * current path of cur_ino) again because it 3876 * might contain the pre-orphanization name of 3877 * ow_inode, which is no longer valid. 3878 */ 3879 ret = is_ancestor(sctx->parent_root, 3880 ow_inode, ow_gen, 3881 sctx->cur_ino, NULL); 3882 if (ret > 0) { 3883 orphanized_ancestor = true; 3884 fs_path_reset(valid_path); 3885 ret = get_cur_path(sctx, sctx->cur_ino, 3886 sctx->cur_inode_gen, 3887 valid_path); 3888 } 3889 if (ret < 0) 3890 goto out; 3891 } else { 3892 ret = send_unlink(sctx, cur->full_path); 3893 if (ret < 0) 3894 goto out; 3895 } 3896 } 3897 3898 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 3899 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 3900 if (ret < 0) 3901 goto out; 3902 if (ret == 1) { 3903 can_rename = false; 3904 *pending_move = 1; 3905 } 3906 } 3907 3908 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 3909 can_rename) { 3910 ret = wait_for_parent_move(sctx, cur, is_orphan); 3911 if (ret < 0) 3912 goto out; 3913 if (ret == 1) { 3914 can_rename = false; 3915 *pending_move = 1; 3916 } 3917 } 3918 3919 /* 3920 * link/move the ref to the new place. If we have an orphan 3921 * inode, move it and update valid_path. If not, link or move 3922 * it depending on the inode mode. 3923 */ 3924 if (is_orphan && can_rename) { 3925 ret = send_rename(sctx, valid_path, cur->full_path); 3926 if (ret < 0) 3927 goto out; 3928 is_orphan = 0; 3929 ret = fs_path_copy(valid_path, cur->full_path); 3930 if (ret < 0) 3931 goto out; 3932 } else if (can_rename) { 3933 if (S_ISDIR(sctx->cur_inode_mode)) { 3934 /* 3935 * Dirs can't be linked, so move it. For moved 3936 * dirs, we always have one new and one deleted 3937 * ref. The deleted ref is ignored later. 3938 */ 3939 ret = send_rename(sctx, valid_path, 3940 cur->full_path); 3941 if (!ret) 3942 ret = fs_path_copy(valid_path, 3943 cur->full_path); 3944 if (ret < 0) 3945 goto out; 3946 } else { 3947 /* 3948 * We might have previously orphanized an inode 3949 * which is an ancestor of our current inode, 3950 * so our reference's full path, which was 3951 * computed before any such orphanizations, must 3952 * be updated. 3953 */ 3954 if (orphanized_dir) { 3955 ret = update_ref_path(sctx, cur); 3956 if (ret < 0) 3957 goto out; 3958 } 3959 ret = send_link(sctx, cur->full_path, 3960 valid_path); 3961 if (ret < 0) 3962 goto out; 3963 } 3964 } 3965 ret = dup_ref(cur, &check_dirs); 3966 if (ret < 0) 3967 goto out; 3968 } 3969 3970 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 3971 /* 3972 * Check if we can already rmdir the directory. If not, 3973 * orphanize it. For every dir item inside that gets deleted 3974 * later, we do this check again and rmdir it then if possible. 3975 * See the use of check_dirs for more details. 3976 */ 3977 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3978 sctx->cur_ino); 3979 if (ret < 0) 3980 goto out; 3981 if (ret) { 3982 ret = send_rmdir(sctx, valid_path); 3983 if (ret < 0) 3984 goto out; 3985 } else if (!is_orphan) { 3986 ret = orphanize_inode(sctx, sctx->cur_ino, 3987 sctx->cur_inode_gen, valid_path); 3988 if (ret < 0) 3989 goto out; 3990 is_orphan = 1; 3991 } 3992 3993 list_for_each_entry(cur, &sctx->deleted_refs, list) { 3994 ret = dup_ref(cur, &check_dirs); 3995 if (ret < 0) 3996 goto out; 3997 } 3998 } else if (S_ISDIR(sctx->cur_inode_mode) && 3999 !list_empty(&sctx->deleted_refs)) { 4000 /* 4001 * We have a moved dir. Add the old parent to check_dirs 4002 */ 4003 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4004 list); 4005 ret = dup_ref(cur, &check_dirs); 4006 if (ret < 0) 4007 goto out; 4008 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4009 /* 4010 * We have a non dir inode. Go through all deleted refs and 4011 * unlink them if they were not already overwritten by other 4012 * inodes. 4013 */ 4014 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4015 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4016 sctx->cur_ino, sctx->cur_inode_gen, 4017 cur->name, cur->name_len); 4018 if (ret < 0) 4019 goto out; 4020 if (!ret) { 4021 /* 4022 * If we orphanized any ancestor before, we need 4023 * to recompute the full path for deleted names, 4024 * since any such path was computed before we 4025 * processed any references and orphanized any 4026 * ancestor inode. 4027 */ 4028 if (orphanized_ancestor) { 4029 ret = update_ref_path(sctx, cur); 4030 if (ret < 0) 4031 goto out; 4032 } 4033 ret = send_unlink(sctx, cur->full_path); 4034 if (ret < 0) 4035 goto out; 4036 } 4037 ret = dup_ref(cur, &check_dirs); 4038 if (ret < 0) 4039 goto out; 4040 } 4041 /* 4042 * If the inode is still orphan, unlink the orphan. This may 4043 * happen when a previous inode did overwrite the first ref 4044 * of this inode and no new refs were added for the current 4045 * inode. Unlinking does not mean that the inode is deleted in 4046 * all cases. There may still be links to this inode in other 4047 * places. 4048 */ 4049 if (is_orphan) { 4050 ret = send_unlink(sctx, valid_path); 4051 if (ret < 0) 4052 goto out; 4053 } 4054 } 4055 4056 /* 4057 * We did collect all parent dirs where cur_inode was once located. We 4058 * now go through all these dirs and check if they are pending for 4059 * deletion and if it's finally possible to perform the rmdir now. 4060 * We also update the inode stats of the parent dirs here. 4061 */ 4062 list_for_each_entry(cur, &check_dirs, list) { 4063 /* 4064 * In case we had refs into dirs that were not processed yet, 4065 * we don't need to do the utime and rmdir logic for these dirs. 4066 * The dir will be processed later. 4067 */ 4068 if (cur->dir > sctx->cur_ino) 4069 continue; 4070 4071 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4072 if (ret < 0) 4073 goto out; 4074 4075 if (ret == inode_state_did_create || 4076 ret == inode_state_no_change) { 4077 /* TODO delayed utimes */ 4078 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 4079 if (ret < 0) 4080 goto out; 4081 } else if (ret == inode_state_did_delete && 4082 cur->dir != last_dir_ino_rm) { 4083 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 4084 sctx->cur_ino); 4085 if (ret < 0) 4086 goto out; 4087 if (ret) { 4088 ret = get_cur_path(sctx, cur->dir, 4089 cur->dir_gen, valid_path); 4090 if (ret < 0) 4091 goto out; 4092 ret = send_rmdir(sctx, valid_path); 4093 if (ret < 0) 4094 goto out; 4095 last_dir_ino_rm = cur->dir; 4096 } 4097 } 4098 } 4099 4100 ret = 0; 4101 4102 out: 4103 __free_recorded_refs(&check_dirs); 4104 free_recorded_refs(sctx); 4105 fs_path_free(valid_path); 4106 return ret; 4107 } 4108 4109 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index, 4110 struct fs_path *name, void *ctx, struct list_head *refs) 4111 { 4112 int ret = 0; 4113 struct send_ctx *sctx = ctx; 4114 struct fs_path *p; 4115 u64 gen; 4116 4117 p = fs_path_alloc(); 4118 if (!p) 4119 return -ENOMEM; 4120 4121 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 4122 NULL, NULL); 4123 if (ret < 0) 4124 goto out; 4125 4126 ret = get_cur_path(sctx, dir, gen, p); 4127 if (ret < 0) 4128 goto out; 4129 ret = fs_path_add_path(p, name); 4130 if (ret < 0) 4131 goto out; 4132 4133 ret = __record_ref(refs, dir, gen, p); 4134 4135 out: 4136 if (ret) 4137 fs_path_free(p); 4138 return ret; 4139 } 4140 4141 static int __record_new_ref(int num, u64 dir, int index, 4142 struct fs_path *name, 4143 void *ctx) 4144 { 4145 struct send_ctx *sctx = ctx; 4146 return record_ref(sctx->send_root, num, dir, index, name, 4147 ctx, &sctx->new_refs); 4148 } 4149 4150 4151 static int __record_deleted_ref(int num, u64 dir, int index, 4152 struct fs_path *name, 4153 void *ctx) 4154 { 4155 struct send_ctx *sctx = ctx; 4156 return record_ref(sctx->parent_root, num, dir, index, name, 4157 ctx, &sctx->deleted_refs); 4158 } 4159 4160 static int record_new_ref(struct send_ctx *sctx) 4161 { 4162 int ret; 4163 4164 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4165 sctx->cmp_key, 0, __record_new_ref, sctx); 4166 if (ret < 0) 4167 goto out; 4168 ret = 0; 4169 4170 out: 4171 return ret; 4172 } 4173 4174 static int record_deleted_ref(struct send_ctx *sctx) 4175 { 4176 int ret; 4177 4178 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4179 sctx->cmp_key, 0, __record_deleted_ref, sctx); 4180 if (ret < 0) 4181 goto out; 4182 ret = 0; 4183 4184 out: 4185 return ret; 4186 } 4187 4188 struct find_ref_ctx { 4189 u64 dir; 4190 u64 dir_gen; 4191 struct btrfs_root *root; 4192 struct fs_path *name; 4193 int found_idx; 4194 }; 4195 4196 static int __find_iref(int num, u64 dir, int index, 4197 struct fs_path *name, 4198 void *ctx_) 4199 { 4200 struct find_ref_ctx *ctx = ctx_; 4201 u64 dir_gen; 4202 int ret; 4203 4204 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 4205 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 4206 /* 4207 * To avoid doing extra lookups we'll only do this if everything 4208 * else matches. 4209 */ 4210 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 4211 NULL, NULL, NULL); 4212 if (ret) 4213 return ret; 4214 if (dir_gen != ctx->dir_gen) 4215 return 0; 4216 ctx->found_idx = num; 4217 return 1; 4218 } 4219 return 0; 4220 } 4221 4222 static int find_iref(struct btrfs_root *root, 4223 struct btrfs_path *path, 4224 struct btrfs_key *key, 4225 u64 dir, u64 dir_gen, struct fs_path *name) 4226 { 4227 int ret; 4228 struct find_ref_ctx ctx; 4229 4230 ctx.dir = dir; 4231 ctx.name = name; 4232 ctx.dir_gen = dir_gen; 4233 ctx.found_idx = -1; 4234 ctx.root = root; 4235 4236 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 4237 if (ret < 0) 4238 return ret; 4239 4240 if (ctx.found_idx == -1) 4241 return -ENOENT; 4242 4243 return ctx.found_idx; 4244 } 4245 4246 static int __record_changed_new_ref(int num, u64 dir, int index, 4247 struct fs_path *name, 4248 void *ctx) 4249 { 4250 u64 dir_gen; 4251 int ret; 4252 struct send_ctx *sctx = ctx; 4253 4254 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 4255 NULL, NULL, NULL); 4256 if (ret) 4257 return ret; 4258 4259 ret = find_iref(sctx->parent_root, sctx->right_path, 4260 sctx->cmp_key, dir, dir_gen, name); 4261 if (ret == -ENOENT) 4262 ret = __record_new_ref(num, dir, index, name, sctx); 4263 else if (ret > 0) 4264 ret = 0; 4265 4266 return ret; 4267 } 4268 4269 static int __record_changed_deleted_ref(int num, u64 dir, int index, 4270 struct fs_path *name, 4271 void *ctx) 4272 { 4273 u64 dir_gen; 4274 int ret; 4275 struct send_ctx *sctx = ctx; 4276 4277 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 4278 NULL, NULL, NULL); 4279 if (ret) 4280 return ret; 4281 4282 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4283 dir, dir_gen, name); 4284 if (ret == -ENOENT) 4285 ret = __record_deleted_ref(num, dir, index, name, sctx); 4286 else if (ret > 0) 4287 ret = 0; 4288 4289 return ret; 4290 } 4291 4292 static int record_changed_ref(struct send_ctx *sctx) 4293 { 4294 int ret = 0; 4295 4296 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4297 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 4298 if (ret < 0) 4299 goto out; 4300 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4301 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 4302 if (ret < 0) 4303 goto out; 4304 ret = 0; 4305 4306 out: 4307 return ret; 4308 } 4309 4310 /* 4311 * Record and process all refs at once. Needed when an inode changes the 4312 * generation number, which means that it was deleted and recreated. 4313 */ 4314 static int process_all_refs(struct send_ctx *sctx, 4315 enum btrfs_compare_tree_result cmd) 4316 { 4317 int ret; 4318 struct btrfs_root *root; 4319 struct btrfs_path *path; 4320 struct btrfs_key key; 4321 struct btrfs_key found_key; 4322 struct extent_buffer *eb; 4323 int slot; 4324 iterate_inode_ref_t cb; 4325 int pending_move = 0; 4326 4327 path = alloc_path_for_send(); 4328 if (!path) 4329 return -ENOMEM; 4330 4331 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4332 root = sctx->send_root; 4333 cb = __record_new_ref; 4334 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4335 root = sctx->parent_root; 4336 cb = __record_deleted_ref; 4337 } else { 4338 btrfs_err(sctx->send_root->fs_info, 4339 "Wrong command %d in process_all_refs", cmd); 4340 ret = -EINVAL; 4341 goto out; 4342 } 4343 4344 key.objectid = sctx->cmp_key->objectid; 4345 key.type = BTRFS_INODE_REF_KEY; 4346 key.offset = 0; 4347 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4348 if (ret < 0) 4349 goto out; 4350 4351 while (1) { 4352 eb = path->nodes[0]; 4353 slot = path->slots[0]; 4354 if (slot >= btrfs_header_nritems(eb)) { 4355 ret = btrfs_next_leaf(root, path); 4356 if (ret < 0) 4357 goto out; 4358 else if (ret > 0) 4359 break; 4360 continue; 4361 } 4362 4363 btrfs_item_key_to_cpu(eb, &found_key, slot); 4364 4365 if (found_key.objectid != key.objectid || 4366 (found_key.type != BTRFS_INODE_REF_KEY && 4367 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4368 break; 4369 4370 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4371 if (ret < 0) 4372 goto out; 4373 4374 path->slots[0]++; 4375 } 4376 btrfs_release_path(path); 4377 4378 /* 4379 * We don't actually care about pending_move as we are simply 4380 * re-creating this inode and will be rename'ing it into place once we 4381 * rename the parent directory. 4382 */ 4383 ret = process_recorded_refs(sctx, &pending_move); 4384 out: 4385 btrfs_free_path(path); 4386 return ret; 4387 } 4388 4389 static int send_set_xattr(struct send_ctx *sctx, 4390 struct fs_path *path, 4391 const char *name, int name_len, 4392 const char *data, int data_len) 4393 { 4394 int ret = 0; 4395 4396 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4397 if (ret < 0) 4398 goto out; 4399 4400 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4401 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4402 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4403 4404 ret = send_cmd(sctx); 4405 4406 tlv_put_failure: 4407 out: 4408 return ret; 4409 } 4410 4411 static int send_remove_xattr(struct send_ctx *sctx, 4412 struct fs_path *path, 4413 const char *name, int name_len) 4414 { 4415 int ret = 0; 4416 4417 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4418 if (ret < 0) 4419 goto out; 4420 4421 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4422 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4423 4424 ret = send_cmd(sctx); 4425 4426 tlv_put_failure: 4427 out: 4428 return ret; 4429 } 4430 4431 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4432 const char *name, int name_len, 4433 const char *data, int data_len, 4434 u8 type, void *ctx) 4435 { 4436 int ret; 4437 struct send_ctx *sctx = ctx; 4438 struct fs_path *p; 4439 struct posix_acl_xattr_header dummy_acl; 4440 4441 p = fs_path_alloc(); 4442 if (!p) 4443 return -ENOMEM; 4444 4445 /* 4446 * This hack is needed because empty acls are stored as zero byte 4447 * data in xattrs. Problem with that is, that receiving these zero byte 4448 * acls will fail later. To fix this, we send a dummy acl list that 4449 * only contains the version number and no entries. 4450 */ 4451 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4452 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4453 if (data_len == 0) { 4454 dummy_acl.a_version = 4455 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4456 data = (char *)&dummy_acl; 4457 data_len = sizeof(dummy_acl); 4458 } 4459 } 4460 4461 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4462 if (ret < 0) 4463 goto out; 4464 4465 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4466 4467 out: 4468 fs_path_free(p); 4469 return ret; 4470 } 4471 4472 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4473 const char *name, int name_len, 4474 const char *data, int data_len, 4475 u8 type, void *ctx) 4476 { 4477 int ret; 4478 struct send_ctx *sctx = ctx; 4479 struct fs_path *p; 4480 4481 p = fs_path_alloc(); 4482 if (!p) 4483 return -ENOMEM; 4484 4485 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4486 if (ret < 0) 4487 goto out; 4488 4489 ret = send_remove_xattr(sctx, p, name, name_len); 4490 4491 out: 4492 fs_path_free(p); 4493 return ret; 4494 } 4495 4496 static int process_new_xattr(struct send_ctx *sctx) 4497 { 4498 int ret = 0; 4499 4500 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4501 sctx->cmp_key, __process_new_xattr, sctx); 4502 4503 return ret; 4504 } 4505 4506 static int process_deleted_xattr(struct send_ctx *sctx) 4507 { 4508 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4509 sctx->cmp_key, __process_deleted_xattr, sctx); 4510 } 4511 4512 struct find_xattr_ctx { 4513 const char *name; 4514 int name_len; 4515 int found_idx; 4516 char *found_data; 4517 int found_data_len; 4518 }; 4519 4520 static int __find_xattr(int num, struct btrfs_key *di_key, 4521 const char *name, int name_len, 4522 const char *data, int data_len, 4523 u8 type, void *vctx) 4524 { 4525 struct find_xattr_ctx *ctx = vctx; 4526 4527 if (name_len == ctx->name_len && 4528 strncmp(name, ctx->name, name_len) == 0) { 4529 ctx->found_idx = num; 4530 ctx->found_data_len = data_len; 4531 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4532 if (!ctx->found_data) 4533 return -ENOMEM; 4534 return 1; 4535 } 4536 return 0; 4537 } 4538 4539 static int find_xattr(struct btrfs_root *root, 4540 struct btrfs_path *path, 4541 struct btrfs_key *key, 4542 const char *name, int name_len, 4543 char **data, int *data_len) 4544 { 4545 int ret; 4546 struct find_xattr_ctx ctx; 4547 4548 ctx.name = name; 4549 ctx.name_len = name_len; 4550 ctx.found_idx = -1; 4551 ctx.found_data = NULL; 4552 ctx.found_data_len = 0; 4553 4554 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx); 4555 if (ret < 0) 4556 return ret; 4557 4558 if (ctx.found_idx == -1) 4559 return -ENOENT; 4560 if (data) { 4561 *data = ctx.found_data; 4562 *data_len = ctx.found_data_len; 4563 } else { 4564 kfree(ctx.found_data); 4565 } 4566 return ctx.found_idx; 4567 } 4568 4569 4570 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4571 const char *name, int name_len, 4572 const char *data, int data_len, 4573 u8 type, void *ctx) 4574 { 4575 int ret; 4576 struct send_ctx *sctx = ctx; 4577 char *found_data = NULL; 4578 int found_data_len = 0; 4579 4580 ret = find_xattr(sctx->parent_root, sctx->right_path, 4581 sctx->cmp_key, name, name_len, &found_data, 4582 &found_data_len); 4583 if (ret == -ENOENT) { 4584 ret = __process_new_xattr(num, di_key, name, name_len, data, 4585 data_len, type, ctx); 4586 } else if (ret >= 0) { 4587 if (data_len != found_data_len || 4588 memcmp(data, found_data, data_len)) { 4589 ret = __process_new_xattr(num, di_key, name, name_len, 4590 data, data_len, type, ctx); 4591 } else { 4592 ret = 0; 4593 } 4594 } 4595 4596 kfree(found_data); 4597 return ret; 4598 } 4599 4600 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4601 const char *name, int name_len, 4602 const char *data, int data_len, 4603 u8 type, void *ctx) 4604 { 4605 int ret; 4606 struct send_ctx *sctx = ctx; 4607 4608 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4609 name, name_len, NULL, NULL); 4610 if (ret == -ENOENT) 4611 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4612 data_len, type, ctx); 4613 else if (ret >= 0) 4614 ret = 0; 4615 4616 return ret; 4617 } 4618 4619 static int process_changed_xattr(struct send_ctx *sctx) 4620 { 4621 int ret = 0; 4622 4623 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4624 sctx->cmp_key, __process_changed_new_xattr, sctx); 4625 if (ret < 0) 4626 goto out; 4627 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4628 sctx->cmp_key, __process_changed_deleted_xattr, sctx); 4629 4630 out: 4631 return ret; 4632 } 4633 4634 static int process_all_new_xattrs(struct send_ctx *sctx) 4635 { 4636 int ret; 4637 struct btrfs_root *root; 4638 struct btrfs_path *path; 4639 struct btrfs_key key; 4640 struct btrfs_key found_key; 4641 struct extent_buffer *eb; 4642 int slot; 4643 4644 path = alloc_path_for_send(); 4645 if (!path) 4646 return -ENOMEM; 4647 4648 root = sctx->send_root; 4649 4650 key.objectid = sctx->cmp_key->objectid; 4651 key.type = BTRFS_XATTR_ITEM_KEY; 4652 key.offset = 0; 4653 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4654 if (ret < 0) 4655 goto out; 4656 4657 while (1) { 4658 eb = path->nodes[0]; 4659 slot = path->slots[0]; 4660 if (slot >= btrfs_header_nritems(eb)) { 4661 ret = btrfs_next_leaf(root, path); 4662 if (ret < 0) { 4663 goto out; 4664 } else if (ret > 0) { 4665 ret = 0; 4666 break; 4667 } 4668 continue; 4669 } 4670 4671 btrfs_item_key_to_cpu(eb, &found_key, slot); 4672 if (found_key.objectid != key.objectid || 4673 found_key.type != key.type) { 4674 ret = 0; 4675 goto out; 4676 } 4677 4678 ret = iterate_dir_item(root, path, &found_key, 4679 __process_new_xattr, sctx); 4680 if (ret < 0) 4681 goto out; 4682 4683 path->slots[0]++; 4684 } 4685 4686 out: 4687 btrfs_free_path(path); 4688 return ret; 4689 } 4690 4691 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len) 4692 { 4693 struct btrfs_root *root = sctx->send_root; 4694 struct btrfs_fs_info *fs_info = root->fs_info; 4695 struct inode *inode; 4696 struct page *page; 4697 char *addr; 4698 struct btrfs_key key; 4699 pgoff_t index = offset >> PAGE_SHIFT; 4700 pgoff_t last_index; 4701 unsigned pg_offset = offset & ~PAGE_MASK; 4702 ssize_t ret = 0; 4703 4704 key.objectid = sctx->cur_ino; 4705 key.type = BTRFS_INODE_ITEM_KEY; 4706 key.offset = 0; 4707 4708 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4709 if (IS_ERR(inode)) 4710 return PTR_ERR(inode); 4711 4712 if (offset + len > i_size_read(inode)) { 4713 if (offset > i_size_read(inode)) 4714 len = 0; 4715 else 4716 len = offset - i_size_read(inode); 4717 } 4718 if (len == 0) 4719 goto out; 4720 4721 last_index = (offset + len - 1) >> PAGE_SHIFT; 4722 4723 /* initial readahead */ 4724 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 4725 file_ra_state_init(&sctx->ra, inode->i_mapping); 4726 page_cache_sync_readahead(inode->i_mapping, &sctx->ra, NULL, index, 4727 last_index - index + 1); 4728 4729 while (index <= last_index) { 4730 unsigned cur_len = min_t(unsigned, len, 4731 PAGE_SIZE - pg_offset); 4732 page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL); 4733 if (!page) { 4734 ret = -ENOMEM; 4735 break; 4736 } 4737 4738 if (!PageUptodate(page)) { 4739 btrfs_readpage(NULL, page); 4740 lock_page(page); 4741 if (!PageUptodate(page)) { 4742 unlock_page(page); 4743 put_page(page); 4744 ret = -EIO; 4745 break; 4746 } 4747 } 4748 4749 addr = kmap(page); 4750 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len); 4751 kunmap(page); 4752 unlock_page(page); 4753 put_page(page); 4754 index++; 4755 pg_offset = 0; 4756 len -= cur_len; 4757 ret += cur_len; 4758 } 4759 out: 4760 iput(inode); 4761 return ret; 4762 } 4763 4764 /* 4765 * Read some bytes from the current inode/file and send a write command to 4766 * user space. 4767 */ 4768 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 4769 { 4770 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4771 int ret = 0; 4772 struct fs_path *p; 4773 ssize_t num_read = 0; 4774 4775 p = fs_path_alloc(); 4776 if (!p) 4777 return -ENOMEM; 4778 4779 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 4780 4781 num_read = fill_read_buf(sctx, offset, len); 4782 if (num_read <= 0) { 4783 if (num_read < 0) 4784 ret = num_read; 4785 goto out; 4786 } 4787 4788 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4789 if (ret < 0) 4790 goto out; 4791 4792 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4793 if (ret < 0) 4794 goto out; 4795 4796 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4797 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4798 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read); 4799 4800 ret = send_cmd(sctx); 4801 4802 tlv_put_failure: 4803 out: 4804 fs_path_free(p); 4805 if (ret < 0) 4806 return ret; 4807 return num_read; 4808 } 4809 4810 /* 4811 * Send a clone command to user space. 4812 */ 4813 static int send_clone(struct send_ctx *sctx, 4814 u64 offset, u32 len, 4815 struct clone_root *clone_root) 4816 { 4817 int ret = 0; 4818 struct fs_path *p; 4819 u64 gen; 4820 4821 btrfs_debug(sctx->send_root->fs_info, 4822 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 4823 offset, len, clone_root->root->objectid, clone_root->ino, 4824 clone_root->offset); 4825 4826 p = fs_path_alloc(); 4827 if (!p) 4828 return -ENOMEM; 4829 4830 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 4831 if (ret < 0) 4832 goto out; 4833 4834 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4835 if (ret < 0) 4836 goto out; 4837 4838 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4839 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 4840 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4841 4842 if (clone_root->root == sctx->send_root) { 4843 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 4844 &gen, NULL, NULL, NULL, NULL); 4845 if (ret < 0) 4846 goto out; 4847 ret = get_cur_path(sctx, clone_root->ino, gen, p); 4848 } else { 4849 ret = get_inode_path(clone_root->root, clone_root->ino, p); 4850 } 4851 if (ret < 0) 4852 goto out; 4853 4854 /* 4855 * If the parent we're using has a received_uuid set then use that as 4856 * our clone source as that is what we will look for when doing a 4857 * receive. 4858 * 4859 * This covers the case that we create a snapshot off of a received 4860 * subvolume and then use that as the parent and try to receive on a 4861 * different host. 4862 */ 4863 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 4864 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4865 clone_root->root->root_item.received_uuid); 4866 else 4867 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4868 clone_root->root->root_item.uuid); 4869 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 4870 le64_to_cpu(clone_root->root->root_item.ctransid)); 4871 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 4872 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 4873 clone_root->offset); 4874 4875 ret = send_cmd(sctx); 4876 4877 tlv_put_failure: 4878 out: 4879 fs_path_free(p); 4880 return ret; 4881 } 4882 4883 /* 4884 * Send an update extent command to user space. 4885 */ 4886 static int send_update_extent(struct send_ctx *sctx, 4887 u64 offset, u32 len) 4888 { 4889 int ret = 0; 4890 struct fs_path *p; 4891 4892 p = fs_path_alloc(); 4893 if (!p) 4894 return -ENOMEM; 4895 4896 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 4897 if (ret < 0) 4898 goto out; 4899 4900 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4901 if (ret < 0) 4902 goto out; 4903 4904 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4905 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4906 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 4907 4908 ret = send_cmd(sctx); 4909 4910 tlv_put_failure: 4911 out: 4912 fs_path_free(p); 4913 return ret; 4914 } 4915 4916 static int send_hole(struct send_ctx *sctx, u64 end) 4917 { 4918 struct fs_path *p = NULL; 4919 u64 offset = sctx->cur_inode_last_extent; 4920 u64 len; 4921 int ret = 0; 4922 4923 p = fs_path_alloc(); 4924 if (!p) 4925 return -ENOMEM; 4926 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4927 if (ret < 0) 4928 goto tlv_put_failure; 4929 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE); 4930 while (offset < end) { 4931 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE); 4932 4933 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4934 if (ret < 0) 4935 break; 4936 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4937 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4938 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len); 4939 ret = send_cmd(sctx); 4940 if (ret < 0) 4941 break; 4942 offset += len; 4943 } 4944 tlv_put_failure: 4945 fs_path_free(p); 4946 return ret; 4947 } 4948 4949 static int send_extent_data(struct send_ctx *sctx, 4950 const u64 offset, 4951 const u64 len) 4952 { 4953 u64 sent = 0; 4954 4955 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 4956 return send_update_extent(sctx, offset, len); 4957 4958 while (sent < len) { 4959 u64 size = len - sent; 4960 int ret; 4961 4962 if (size > BTRFS_SEND_READ_SIZE) 4963 size = BTRFS_SEND_READ_SIZE; 4964 ret = send_write(sctx, offset + sent, size); 4965 if (ret < 0) 4966 return ret; 4967 if (!ret) 4968 break; 4969 sent += ret; 4970 } 4971 return 0; 4972 } 4973 4974 static int clone_range(struct send_ctx *sctx, 4975 struct clone_root *clone_root, 4976 const u64 disk_byte, 4977 u64 data_offset, 4978 u64 offset, 4979 u64 len) 4980 { 4981 struct btrfs_path *path; 4982 struct btrfs_key key; 4983 int ret; 4984 4985 /* 4986 * Prevent cloning from a zero offset with a length matching the sector 4987 * size because in some scenarios this will make the receiver fail. 4988 * 4989 * For example, if in the source filesystem the extent at offset 0 4990 * has a length of sectorsize and it was written using direct IO, then 4991 * it can never be an inline extent (even if compression is enabled). 4992 * Then this extent can be cloned in the original filesystem to a non 4993 * zero file offset, but it may not be possible to clone in the 4994 * destination filesystem because it can be inlined due to compression 4995 * on the destination filesystem (as the receiver's write operations are 4996 * always done using buffered IO). The same happens when the original 4997 * filesystem does not have compression enabled but the destination 4998 * filesystem has. 4999 */ 5000 if (clone_root->offset == 0 && 5001 len == sctx->send_root->fs_info->sectorsize) 5002 return send_extent_data(sctx, offset, len); 5003 5004 path = alloc_path_for_send(); 5005 if (!path) 5006 return -ENOMEM; 5007 5008 /* 5009 * We can't send a clone operation for the entire range if we find 5010 * extent items in the respective range in the source file that 5011 * refer to different extents or if we find holes. 5012 * So check for that and do a mix of clone and regular write/copy 5013 * operations if needed. 5014 * 5015 * Example: 5016 * 5017 * mkfs.btrfs -f /dev/sda 5018 * mount /dev/sda /mnt 5019 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5020 * cp --reflink=always /mnt/foo /mnt/bar 5021 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5022 * btrfs subvolume snapshot -r /mnt /mnt/snap 5023 * 5024 * If when we send the snapshot and we are processing file bar (which 5025 * has a higher inode number than foo) we blindly send a clone operation 5026 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5027 * a file bar that matches the content of file foo - iow, doesn't match 5028 * the content from bar in the original filesystem. 5029 */ 5030 key.objectid = clone_root->ino; 5031 key.type = BTRFS_EXTENT_DATA_KEY; 5032 key.offset = clone_root->offset; 5033 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5034 if (ret < 0) 5035 goto out; 5036 if (ret > 0 && path->slots[0] > 0) { 5037 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5038 if (key.objectid == clone_root->ino && 5039 key.type == BTRFS_EXTENT_DATA_KEY) 5040 path->slots[0]--; 5041 } 5042 5043 while (true) { 5044 struct extent_buffer *leaf = path->nodes[0]; 5045 int slot = path->slots[0]; 5046 struct btrfs_file_extent_item *ei; 5047 u8 type; 5048 u64 ext_len; 5049 u64 clone_len; 5050 5051 if (slot >= btrfs_header_nritems(leaf)) { 5052 ret = btrfs_next_leaf(clone_root->root, path); 5053 if (ret < 0) 5054 goto out; 5055 else if (ret > 0) 5056 break; 5057 continue; 5058 } 5059 5060 btrfs_item_key_to_cpu(leaf, &key, slot); 5061 5062 /* 5063 * We might have an implicit trailing hole (NO_HOLES feature 5064 * enabled). We deal with it after leaving this loop. 5065 */ 5066 if (key.objectid != clone_root->ino || 5067 key.type != BTRFS_EXTENT_DATA_KEY) 5068 break; 5069 5070 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5071 type = btrfs_file_extent_type(leaf, ei); 5072 if (type == BTRFS_FILE_EXTENT_INLINE) { 5073 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei); 5074 ext_len = PAGE_ALIGN(ext_len); 5075 } else { 5076 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5077 } 5078 5079 if (key.offset + ext_len <= clone_root->offset) 5080 goto next; 5081 5082 if (key.offset > clone_root->offset) { 5083 /* Implicit hole, NO_HOLES feature enabled. */ 5084 u64 hole_len = key.offset - clone_root->offset; 5085 5086 if (hole_len > len) 5087 hole_len = len; 5088 ret = send_extent_data(sctx, offset, hole_len); 5089 if (ret < 0) 5090 goto out; 5091 5092 len -= hole_len; 5093 if (len == 0) 5094 break; 5095 offset += hole_len; 5096 clone_root->offset += hole_len; 5097 data_offset += hole_len; 5098 } 5099 5100 if (key.offset >= clone_root->offset + len) 5101 break; 5102 5103 clone_len = min_t(u64, ext_len, len); 5104 5105 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5106 btrfs_file_extent_offset(leaf, ei) == data_offset) 5107 ret = send_clone(sctx, offset, clone_len, clone_root); 5108 else 5109 ret = send_extent_data(sctx, offset, clone_len); 5110 5111 if (ret < 0) 5112 goto out; 5113 5114 len -= clone_len; 5115 if (len == 0) 5116 break; 5117 offset += clone_len; 5118 clone_root->offset += clone_len; 5119 data_offset += clone_len; 5120 next: 5121 path->slots[0]++; 5122 } 5123 5124 if (len > 0) 5125 ret = send_extent_data(sctx, offset, len); 5126 else 5127 ret = 0; 5128 out: 5129 btrfs_free_path(path); 5130 return ret; 5131 } 5132 5133 static int send_write_or_clone(struct send_ctx *sctx, 5134 struct btrfs_path *path, 5135 struct btrfs_key *key, 5136 struct clone_root *clone_root) 5137 { 5138 int ret = 0; 5139 struct btrfs_file_extent_item *ei; 5140 u64 offset = key->offset; 5141 u64 len; 5142 u8 type; 5143 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 5144 5145 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5146 struct btrfs_file_extent_item); 5147 type = btrfs_file_extent_type(path->nodes[0], ei); 5148 if (type == BTRFS_FILE_EXTENT_INLINE) { 5149 len = btrfs_file_extent_inline_len(path->nodes[0], 5150 path->slots[0], ei); 5151 /* 5152 * it is possible the inline item won't cover the whole page, 5153 * but there may be items after this page. Make 5154 * sure to send the whole thing 5155 */ 5156 len = PAGE_ALIGN(len); 5157 } else { 5158 len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 5159 } 5160 5161 if (offset + len > sctx->cur_inode_size) 5162 len = sctx->cur_inode_size - offset; 5163 if (len == 0) { 5164 ret = 0; 5165 goto out; 5166 } 5167 5168 if (clone_root && IS_ALIGNED(offset + len, bs)) { 5169 u64 disk_byte; 5170 u64 data_offset; 5171 5172 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 5173 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 5174 ret = clone_range(sctx, clone_root, disk_byte, data_offset, 5175 offset, len); 5176 } else { 5177 ret = send_extent_data(sctx, offset, len); 5178 } 5179 out: 5180 return ret; 5181 } 5182 5183 static int is_extent_unchanged(struct send_ctx *sctx, 5184 struct btrfs_path *left_path, 5185 struct btrfs_key *ekey) 5186 { 5187 int ret = 0; 5188 struct btrfs_key key; 5189 struct btrfs_path *path = NULL; 5190 struct extent_buffer *eb; 5191 int slot; 5192 struct btrfs_key found_key; 5193 struct btrfs_file_extent_item *ei; 5194 u64 left_disknr; 5195 u64 right_disknr; 5196 u64 left_offset; 5197 u64 right_offset; 5198 u64 left_offset_fixed; 5199 u64 left_len; 5200 u64 right_len; 5201 u64 left_gen; 5202 u64 right_gen; 5203 u8 left_type; 5204 u8 right_type; 5205 5206 path = alloc_path_for_send(); 5207 if (!path) 5208 return -ENOMEM; 5209 5210 eb = left_path->nodes[0]; 5211 slot = left_path->slots[0]; 5212 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5213 left_type = btrfs_file_extent_type(eb, ei); 5214 5215 if (left_type != BTRFS_FILE_EXTENT_REG) { 5216 ret = 0; 5217 goto out; 5218 } 5219 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5220 left_len = btrfs_file_extent_num_bytes(eb, ei); 5221 left_offset = btrfs_file_extent_offset(eb, ei); 5222 left_gen = btrfs_file_extent_generation(eb, ei); 5223 5224 /* 5225 * Following comments will refer to these graphics. L is the left 5226 * extents which we are checking at the moment. 1-8 are the right 5227 * extents that we iterate. 5228 * 5229 * |-----L-----| 5230 * |-1-|-2a-|-3-|-4-|-5-|-6-| 5231 * 5232 * |-----L-----| 5233 * |--1--|-2b-|...(same as above) 5234 * 5235 * Alternative situation. Happens on files where extents got split. 5236 * |-----L-----| 5237 * |-----------7-----------|-6-| 5238 * 5239 * Alternative situation. Happens on files which got larger. 5240 * |-----L-----| 5241 * |-8-| 5242 * Nothing follows after 8. 5243 */ 5244 5245 key.objectid = ekey->objectid; 5246 key.type = BTRFS_EXTENT_DATA_KEY; 5247 key.offset = ekey->offset; 5248 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 5249 if (ret < 0) 5250 goto out; 5251 if (ret) { 5252 ret = 0; 5253 goto out; 5254 } 5255 5256 /* 5257 * Handle special case where the right side has no extents at all. 5258 */ 5259 eb = path->nodes[0]; 5260 slot = path->slots[0]; 5261 btrfs_item_key_to_cpu(eb, &found_key, slot); 5262 if (found_key.objectid != key.objectid || 5263 found_key.type != key.type) { 5264 /* If we're a hole then just pretend nothing changed */ 5265 ret = (left_disknr) ? 0 : 1; 5266 goto out; 5267 } 5268 5269 /* 5270 * We're now on 2a, 2b or 7. 5271 */ 5272 key = found_key; 5273 while (key.offset < ekey->offset + left_len) { 5274 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5275 right_type = btrfs_file_extent_type(eb, ei); 5276 if (right_type != BTRFS_FILE_EXTENT_REG && 5277 right_type != BTRFS_FILE_EXTENT_INLINE) { 5278 ret = 0; 5279 goto out; 5280 } 5281 5282 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5283 right_len = btrfs_file_extent_inline_len(eb, slot, ei); 5284 right_len = PAGE_ALIGN(right_len); 5285 } else { 5286 right_len = btrfs_file_extent_num_bytes(eb, ei); 5287 } 5288 5289 /* 5290 * Are we at extent 8? If yes, we know the extent is changed. 5291 * This may only happen on the first iteration. 5292 */ 5293 if (found_key.offset + right_len <= ekey->offset) { 5294 /* If we're a hole just pretend nothing changed */ 5295 ret = (left_disknr) ? 0 : 1; 5296 goto out; 5297 } 5298 5299 /* 5300 * We just wanted to see if when we have an inline extent, what 5301 * follows it is a regular extent (wanted to check the above 5302 * condition for inline extents too). This should normally not 5303 * happen but it's possible for example when we have an inline 5304 * compressed extent representing data with a size matching 5305 * the page size (currently the same as sector size). 5306 */ 5307 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5308 ret = 0; 5309 goto out; 5310 } 5311 5312 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5313 right_offset = btrfs_file_extent_offset(eb, ei); 5314 right_gen = btrfs_file_extent_generation(eb, ei); 5315 5316 left_offset_fixed = left_offset; 5317 if (key.offset < ekey->offset) { 5318 /* Fix the right offset for 2a and 7. */ 5319 right_offset += ekey->offset - key.offset; 5320 } else { 5321 /* Fix the left offset for all behind 2a and 2b */ 5322 left_offset_fixed += key.offset - ekey->offset; 5323 } 5324 5325 /* 5326 * Check if we have the same extent. 5327 */ 5328 if (left_disknr != right_disknr || 5329 left_offset_fixed != right_offset || 5330 left_gen != right_gen) { 5331 ret = 0; 5332 goto out; 5333 } 5334 5335 /* 5336 * Go to the next extent. 5337 */ 5338 ret = btrfs_next_item(sctx->parent_root, path); 5339 if (ret < 0) 5340 goto out; 5341 if (!ret) { 5342 eb = path->nodes[0]; 5343 slot = path->slots[0]; 5344 btrfs_item_key_to_cpu(eb, &found_key, slot); 5345 } 5346 if (ret || found_key.objectid != key.objectid || 5347 found_key.type != key.type) { 5348 key.offset += right_len; 5349 break; 5350 } 5351 if (found_key.offset != key.offset + right_len) { 5352 ret = 0; 5353 goto out; 5354 } 5355 key = found_key; 5356 } 5357 5358 /* 5359 * We're now behind the left extent (treat as unchanged) or at the end 5360 * of the right side (treat as changed). 5361 */ 5362 if (key.offset >= ekey->offset + left_len) 5363 ret = 1; 5364 else 5365 ret = 0; 5366 5367 5368 out: 5369 btrfs_free_path(path); 5370 return ret; 5371 } 5372 5373 static int get_last_extent(struct send_ctx *sctx, u64 offset) 5374 { 5375 struct btrfs_path *path; 5376 struct btrfs_root *root = sctx->send_root; 5377 struct btrfs_file_extent_item *fi; 5378 struct btrfs_key key; 5379 u64 extent_end; 5380 u8 type; 5381 int ret; 5382 5383 path = alloc_path_for_send(); 5384 if (!path) 5385 return -ENOMEM; 5386 5387 sctx->cur_inode_last_extent = 0; 5388 5389 key.objectid = sctx->cur_ino; 5390 key.type = BTRFS_EXTENT_DATA_KEY; 5391 key.offset = offset; 5392 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 5393 if (ret < 0) 5394 goto out; 5395 ret = 0; 5396 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 5397 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 5398 goto out; 5399 5400 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 5401 struct btrfs_file_extent_item); 5402 type = btrfs_file_extent_type(path->nodes[0], fi); 5403 if (type == BTRFS_FILE_EXTENT_INLINE) { 5404 u64 size = btrfs_file_extent_inline_len(path->nodes[0], 5405 path->slots[0], fi); 5406 extent_end = ALIGN(key.offset + size, 5407 sctx->send_root->fs_info->sectorsize); 5408 } else { 5409 extent_end = key.offset + 5410 btrfs_file_extent_num_bytes(path->nodes[0], fi); 5411 } 5412 sctx->cur_inode_last_extent = extent_end; 5413 out: 5414 btrfs_free_path(path); 5415 return ret; 5416 } 5417 5418 static int range_is_hole_in_parent(struct send_ctx *sctx, 5419 const u64 start, 5420 const u64 end) 5421 { 5422 struct btrfs_path *path; 5423 struct btrfs_key key; 5424 struct btrfs_root *root = sctx->parent_root; 5425 u64 search_start = start; 5426 int ret; 5427 5428 path = alloc_path_for_send(); 5429 if (!path) 5430 return -ENOMEM; 5431 5432 key.objectid = sctx->cur_ino; 5433 key.type = BTRFS_EXTENT_DATA_KEY; 5434 key.offset = search_start; 5435 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5436 if (ret < 0) 5437 goto out; 5438 if (ret > 0 && path->slots[0] > 0) 5439 path->slots[0]--; 5440 5441 while (search_start < end) { 5442 struct extent_buffer *leaf = path->nodes[0]; 5443 int slot = path->slots[0]; 5444 struct btrfs_file_extent_item *fi; 5445 u64 extent_end; 5446 5447 if (slot >= btrfs_header_nritems(leaf)) { 5448 ret = btrfs_next_leaf(root, path); 5449 if (ret < 0) 5450 goto out; 5451 else if (ret > 0) 5452 break; 5453 continue; 5454 } 5455 5456 btrfs_item_key_to_cpu(leaf, &key, slot); 5457 if (key.objectid < sctx->cur_ino || 5458 key.type < BTRFS_EXTENT_DATA_KEY) 5459 goto next; 5460 if (key.objectid > sctx->cur_ino || 5461 key.type > BTRFS_EXTENT_DATA_KEY || 5462 key.offset >= end) 5463 break; 5464 5465 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5466 if (btrfs_file_extent_type(leaf, fi) == 5467 BTRFS_FILE_EXTENT_INLINE) { 5468 u64 size = btrfs_file_extent_inline_len(leaf, slot, fi); 5469 5470 extent_end = ALIGN(key.offset + size, 5471 root->fs_info->sectorsize); 5472 } else { 5473 extent_end = key.offset + 5474 btrfs_file_extent_num_bytes(leaf, fi); 5475 } 5476 if (extent_end <= start) 5477 goto next; 5478 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 5479 search_start = extent_end; 5480 goto next; 5481 } 5482 ret = 0; 5483 goto out; 5484 next: 5485 path->slots[0]++; 5486 } 5487 ret = 1; 5488 out: 5489 btrfs_free_path(path); 5490 return ret; 5491 } 5492 5493 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 5494 struct btrfs_key *key) 5495 { 5496 struct btrfs_file_extent_item *fi; 5497 u64 extent_end; 5498 u8 type; 5499 int ret = 0; 5500 5501 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 5502 return 0; 5503 5504 if (sctx->cur_inode_last_extent == (u64)-1) { 5505 ret = get_last_extent(sctx, key->offset - 1); 5506 if (ret) 5507 return ret; 5508 } 5509 5510 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 5511 struct btrfs_file_extent_item); 5512 type = btrfs_file_extent_type(path->nodes[0], fi); 5513 if (type == BTRFS_FILE_EXTENT_INLINE) { 5514 u64 size = btrfs_file_extent_inline_len(path->nodes[0], 5515 path->slots[0], fi); 5516 extent_end = ALIGN(key->offset + size, 5517 sctx->send_root->fs_info->sectorsize); 5518 } else { 5519 extent_end = key->offset + 5520 btrfs_file_extent_num_bytes(path->nodes[0], fi); 5521 } 5522 5523 if (path->slots[0] == 0 && 5524 sctx->cur_inode_last_extent < key->offset) { 5525 /* 5526 * We might have skipped entire leafs that contained only 5527 * file extent items for our current inode. These leafs have 5528 * a generation number smaller (older) than the one in the 5529 * current leaf and the leaf our last extent came from, and 5530 * are located between these 2 leafs. 5531 */ 5532 ret = get_last_extent(sctx, key->offset - 1); 5533 if (ret) 5534 return ret; 5535 } 5536 5537 if (sctx->cur_inode_last_extent < key->offset) { 5538 ret = range_is_hole_in_parent(sctx, 5539 sctx->cur_inode_last_extent, 5540 key->offset); 5541 if (ret < 0) 5542 return ret; 5543 else if (ret == 0) 5544 ret = send_hole(sctx, key->offset); 5545 else 5546 ret = 0; 5547 } 5548 sctx->cur_inode_last_extent = extent_end; 5549 return ret; 5550 } 5551 5552 static int process_extent(struct send_ctx *sctx, 5553 struct btrfs_path *path, 5554 struct btrfs_key *key) 5555 { 5556 struct clone_root *found_clone = NULL; 5557 int ret = 0; 5558 5559 if (S_ISLNK(sctx->cur_inode_mode)) 5560 return 0; 5561 5562 if (sctx->parent_root && !sctx->cur_inode_new) { 5563 ret = is_extent_unchanged(sctx, path, key); 5564 if (ret < 0) 5565 goto out; 5566 if (ret) { 5567 ret = 0; 5568 goto out_hole; 5569 } 5570 } else { 5571 struct btrfs_file_extent_item *ei; 5572 u8 type; 5573 5574 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5575 struct btrfs_file_extent_item); 5576 type = btrfs_file_extent_type(path->nodes[0], ei); 5577 if (type == BTRFS_FILE_EXTENT_PREALLOC || 5578 type == BTRFS_FILE_EXTENT_REG) { 5579 /* 5580 * The send spec does not have a prealloc command yet, 5581 * so just leave a hole for prealloc'ed extents until 5582 * we have enough commands queued up to justify rev'ing 5583 * the send spec. 5584 */ 5585 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 5586 ret = 0; 5587 goto out; 5588 } 5589 5590 /* Have a hole, just skip it. */ 5591 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 5592 ret = 0; 5593 goto out; 5594 } 5595 } 5596 } 5597 5598 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 5599 sctx->cur_inode_size, &found_clone); 5600 if (ret != -ENOENT && ret < 0) 5601 goto out; 5602 5603 ret = send_write_or_clone(sctx, path, key, found_clone); 5604 if (ret) 5605 goto out; 5606 out_hole: 5607 ret = maybe_send_hole(sctx, path, key); 5608 out: 5609 return ret; 5610 } 5611 5612 static int process_all_extents(struct send_ctx *sctx) 5613 { 5614 int ret; 5615 struct btrfs_root *root; 5616 struct btrfs_path *path; 5617 struct btrfs_key key; 5618 struct btrfs_key found_key; 5619 struct extent_buffer *eb; 5620 int slot; 5621 5622 root = sctx->send_root; 5623 path = alloc_path_for_send(); 5624 if (!path) 5625 return -ENOMEM; 5626 5627 key.objectid = sctx->cmp_key->objectid; 5628 key.type = BTRFS_EXTENT_DATA_KEY; 5629 key.offset = 0; 5630 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5631 if (ret < 0) 5632 goto out; 5633 5634 while (1) { 5635 eb = path->nodes[0]; 5636 slot = path->slots[0]; 5637 5638 if (slot >= btrfs_header_nritems(eb)) { 5639 ret = btrfs_next_leaf(root, path); 5640 if (ret < 0) { 5641 goto out; 5642 } else if (ret > 0) { 5643 ret = 0; 5644 break; 5645 } 5646 continue; 5647 } 5648 5649 btrfs_item_key_to_cpu(eb, &found_key, slot); 5650 5651 if (found_key.objectid != key.objectid || 5652 found_key.type != key.type) { 5653 ret = 0; 5654 goto out; 5655 } 5656 5657 ret = process_extent(sctx, path, &found_key); 5658 if (ret < 0) 5659 goto out; 5660 5661 path->slots[0]++; 5662 } 5663 5664 out: 5665 btrfs_free_path(path); 5666 return ret; 5667 } 5668 5669 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 5670 int *pending_move, 5671 int *refs_processed) 5672 { 5673 int ret = 0; 5674 5675 if (sctx->cur_ino == 0) 5676 goto out; 5677 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 5678 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 5679 goto out; 5680 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 5681 goto out; 5682 5683 ret = process_recorded_refs(sctx, pending_move); 5684 if (ret < 0) 5685 goto out; 5686 5687 *refs_processed = 1; 5688 out: 5689 return ret; 5690 } 5691 5692 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 5693 { 5694 int ret = 0; 5695 u64 left_mode; 5696 u64 left_uid; 5697 u64 left_gid; 5698 u64 right_mode; 5699 u64 right_uid; 5700 u64 right_gid; 5701 int need_chmod = 0; 5702 int need_chown = 0; 5703 int pending_move = 0; 5704 int refs_processed = 0; 5705 5706 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 5707 &refs_processed); 5708 if (ret < 0) 5709 goto out; 5710 5711 /* 5712 * We have processed the refs and thus need to advance send_progress. 5713 * Now, calls to get_cur_xxx will take the updated refs of the current 5714 * inode into account. 5715 * 5716 * On the other hand, if our current inode is a directory and couldn't 5717 * be moved/renamed because its parent was renamed/moved too and it has 5718 * a higher inode number, we can only move/rename our current inode 5719 * after we moved/renamed its parent. Therefore in this case operate on 5720 * the old path (pre move/rename) of our current inode, and the 5721 * move/rename will be performed later. 5722 */ 5723 if (refs_processed && !pending_move) 5724 sctx->send_progress = sctx->cur_ino + 1; 5725 5726 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 5727 goto out; 5728 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 5729 goto out; 5730 5731 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 5732 &left_mode, &left_uid, &left_gid, NULL); 5733 if (ret < 0) 5734 goto out; 5735 5736 if (!sctx->parent_root || sctx->cur_inode_new) { 5737 need_chown = 1; 5738 if (!S_ISLNK(sctx->cur_inode_mode)) 5739 need_chmod = 1; 5740 } else { 5741 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 5742 NULL, NULL, &right_mode, &right_uid, 5743 &right_gid, NULL); 5744 if (ret < 0) 5745 goto out; 5746 5747 if (left_uid != right_uid || left_gid != right_gid) 5748 need_chown = 1; 5749 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 5750 need_chmod = 1; 5751 } 5752 5753 if (S_ISREG(sctx->cur_inode_mode)) { 5754 if (need_send_hole(sctx)) { 5755 if (sctx->cur_inode_last_extent == (u64)-1 || 5756 sctx->cur_inode_last_extent < 5757 sctx->cur_inode_size) { 5758 ret = get_last_extent(sctx, (u64)-1); 5759 if (ret) 5760 goto out; 5761 } 5762 if (sctx->cur_inode_last_extent < 5763 sctx->cur_inode_size) { 5764 ret = send_hole(sctx, sctx->cur_inode_size); 5765 if (ret) 5766 goto out; 5767 } 5768 } 5769 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5770 sctx->cur_inode_size); 5771 if (ret < 0) 5772 goto out; 5773 } 5774 5775 if (need_chown) { 5776 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5777 left_uid, left_gid); 5778 if (ret < 0) 5779 goto out; 5780 } 5781 if (need_chmod) { 5782 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5783 left_mode); 5784 if (ret < 0) 5785 goto out; 5786 } 5787 5788 /* 5789 * If other directory inodes depended on our current directory 5790 * inode's move/rename, now do their move/rename operations. 5791 */ 5792 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 5793 ret = apply_children_dir_moves(sctx); 5794 if (ret) 5795 goto out; 5796 /* 5797 * Need to send that every time, no matter if it actually 5798 * changed between the two trees as we have done changes to 5799 * the inode before. If our inode is a directory and it's 5800 * waiting to be moved/renamed, we will send its utimes when 5801 * it's moved/renamed, therefore we don't need to do it here. 5802 */ 5803 sctx->send_progress = sctx->cur_ino + 1; 5804 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 5805 if (ret < 0) 5806 goto out; 5807 } 5808 5809 out: 5810 return ret; 5811 } 5812 5813 static int changed_inode(struct send_ctx *sctx, 5814 enum btrfs_compare_tree_result result) 5815 { 5816 int ret = 0; 5817 struct btrfs_key *key = sctx->cmp_key; 5818 struct btrfs_inode_item *left_ii = NULL; 5819 struct btrfs_inode_item *right_ii = NULL; 5820 u64 left_gen = 0; 5821 u64 right_gen = 0; 5822 5823 sctx->cur_ino = key->objectid; 5824 sctx->cur_inode_new_gen = 0; 5825 sctx->cur_inode_last_extent = (u64)-1; 5826 5827 /* 5828 * Set send_progress to current inode. This will tell all get_cur_xxx 5829 * functions that the current inode's refs are not updated yet. Later, 5830 * when process_recorded_refs is finished, it is set to cur_ino + 1. 5831 */ 5832 sctx->send_progress = sctx->cur_ino; 5833 5834 if (result == BTRFS_COMPARE_TREE_NEW || 5835 result == BTRFS_COMPARE_TREE_CHANGED) { 5836 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 5837 sctx->left_path->slots[0], 5838 struct btrfs_inode_item); 5839 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 5840 left_ii); 5841 } else { 5842 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 5843 sctx->right_path->slots[0], 5844 struct btrfs_inode_item); 5845 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 5846 right_ii); 5847 } 5848 if (result == BTRFS_COMPARE_TREE_CHANGED) { 5849 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 5850 sctx->right_path->slots[0], 5851 struct btrfs_inode_item); 5852 5853 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 5854 right_ii); 5855 5856 /* 5857 * The cur_ino = root dir case is special here. We can't treat 5858 * the inode as deleted+reused because it would generate a 5859 * stream that tries to delete/mkdir the root dir. 5860 */ 5861 if (left_gen != right_gen && 5862 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 5863 sctx->cur_inode_new_gen = 1; 5864 } 5865 5866 if (result == BTRFS_COMPARE_TREE_NEW) { 5867 sctx->cur_inode_gen = left_gen; 5868 sctx->cur_inode_new = 1; 5869 sctx->cur_inode_deleted = 0; 5870 sctx->cur_inode_size = btrfs_inode_size( 5871 sctx->left_path->nodes[0], left_ii); 5872 sctx->cur_inode_mode = btrfs_inode_mode( 5873 sctx->left_path->nodes[0], left_ii); 5874 sctx->cur_inode_rdev = btrfs_inode_rdev( 5875 sctx->left_path->nodes[0], left_ii); 5876 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 5877 ret = send_create_inode_if_needed(sctx); 5878 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 5879 sctx->cur_inode_gen = right_gen; 5880 sctx->cur_inode_new = 0; 5881 sctx->cur_inode_deleted = 1; 5882 sctx->cur_inode_size = btrfs_inode_size( 5883 sctx->right_path->nodes[0], right_ii); 5884 sctx->cur_inode_mode = btrfs_inode_mode( 5885 sctx->right_path->nodes[0], right_ii); 5886 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 5887 /* 5888 * We need to do some special handling in case the inode was 5889 * reported as changed with a changed generation number. This 5890 * means that the original inode was deleted and new inode 5891 * reused the same inum. So we have to treat the old inode as 5892 * deleted and the new one as new. 5893 */ 5894 if (sctx->cur_inode_new_gen) { 5895 /* 5896 * First, process the inode as if it was deleted. 5897 */ 5898 sctx->cur_inode_gen = right_gen; 5899 sctx->cur_inode_new = 0; 5900 sctx->cur_inode_deleted = 1; 5901 sctx->cur_inode_size = btrfs_inode_size( 5902 sctx->right_path->nodes[0], right_ii); 5903 sctx->cur_inode_mode = btrfs_inode_mode( 5904 sctx->right_path->nodes[0], right_ii); 5905 ret = process_all_refs(sctx, 5906 BTRFS_COMPARE_TREE_DELETED); 5907 if (ret < 0) 5908 goto out; 5909 5910 /* 5911 * Now process the inode as if it was new. 5912 */ 5913 sctx->cur_inode_gen = left_gen; 5914 sctx->cur_inode_new = 1; 5915 sctx->cur_inode_deleted = 0; 5916 sctx->cur_inode_size = btrfs_inode_size( 5917 sctx->left_path->nodes[0], left_ii); 5918 sctx->cur_inode_mode = btrfs_inode_mode( 5919 sctx->left_path->nodes[0], left_ii); 5920 sctx->cur_inode_rdev = btrfs_inode_rdev( 5921 sctx->left_path->nodes[0], left_ii); 5922 ret = send_create_inode_if_needed(sctx); 5923 if (ret < 0) 5924 goto out; 5925 5926 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 5927 if (ret < 0) 5928 goto out; 5929 /* 5930 * Advance send_progress now as we did not get into 5931 * process_recorded_refs_if_needed in the new_gen case. 5932 */ 5933 sctx->send_progress = sctx->cur_ino + 1; 5934 5935 /* 5936 * Now process all extents and xattrs of the inode as if 5937 * they were all new. 5938 */ 5939 ret = process_all_extents(sctx); 5940 if (ret < 0) 5941 goto out; 5942 ret = process_all_new_xattrs(sctx); 5943 if (ret < 0) 5944 goto out; 5945 } else { 5946 sctx->cur_inode_gen = left_gen; 5947 sctx->cur_inode_new = 0; 5948 sctx->cur_inode_new_gen = 0; 5949 sctx->cur_inode_deleted = 0; 5950 sctx->cur_inode_size = btrfs_inode_size( 5951 sctx->left_path->nodes[0], left_ii); 5952 sctx->cur_inode_mode = btrfs_inode_mode( 5953 sctx->left_path->nodes[0], left_ii); 5954 } 5955 } 5956 5957 out: 5958 return ret; 5959 } 5960 5961 /* 5962 * We have to process new refs before deleted refs, but compare_trees gives us 5963 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 5964 * first and later process them in process_recorded_refs. 5965 * For the cur_inode_new_gen case, we skip recording completely because 5966 * changed_inode did already initiate processing of refs. The reason for this is 5967 * that in this case, compare_tree actually compares the refs of 2 different 5968 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 5969 * refs of the right tree as deleted and all refs of the left tree as new. 5970 */ 5971 static int changed_ref(struct send_ctx *sctx, 5972 enum btrfs_compare_tree_result result) 5973 { 5974 int ret = 0; 5975 5976 if (sctx->cur_ino != sctx->cmp_key->objectid) { 5977 inconsistent_snapshot_error(sctx, result, "reference"); 5978 return -EIO; 5979 } 5980 5981 if (!sctx->cur_inode_new_gen && 5982 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 5983 if (result == BTRFS_COMPARE_TREE_NEW) 5984 ret = record_new_ref(sctx); 5985 else if (result == BTRFS_COMPARE_TREE_DELETED) 5986 ret = record_deleted_ref(sctx); 5987 else if (result == BTRFS_COMPARE_TREE_CHANGED) 5988 ret = record_changed_ref(sctx); 5989 } 5990 5991 return ret; 5992 } 5993 5994 /* 5995 * Process new/deleted/changed xattrs. We skip processing in the 5996 * cur_inode_new_gen case because changed_inode did already initiate processing 5997 * of xattrs. The reason is the same as in changed_ref 5998 */ 5999 static int changed_xattr(struct send_ctx *sctx, 6000 enum btrfs_compare_tree_result result) 6001 { 6002 int ret = 0; 6003 6004 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6005 inconsistent_snapshot_error(sctx, result, "xattr"); 6006 return -EIO; 6007 } 6008 6009 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6010 if (result == BTRFS_COMPARE_TREE_NEW) 6011 ret = process_new_xattr(sctx); 6012 else if (result == BTRFS_COMPARE_TREE_DELETED) 6013 ret = process_deleted_xattr(sctx); 6014 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6015 ret = process_changed_xattr(sctx); 6016 } 6017 6018 return ret; 6019 } 6020 6021 /* 6022 * Process new/deleted/changed extents. We skip processing in the 6023 * cur_inode_new_gen case because changed_inode did already initiate processing 6024 * of extents. The reason is the same as in changed_ref 6025 */ 6026 static int changed_extent(struct send_ctx *sctx, 6027 enum btrfs_compare_tree_result result) 6028 { 6029 int ret = 0; 6030 6031 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6032 6033 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6034 struct extent_buffer *leaf_l; 6035 struct extent_buffer *leaf_r; 6036 struct btrfs_file_extent_item *ei_l; 6037 struct btrfs_file_extent_item *ei_r; 6038 6039 leaf_l = sctx->left_path->nodes[0]; 6040 leaf_r = sctx->right_path->nodes[0]; 6041 ei_l = btrfs_item_ptr(leaf_l, 6042 sctx->left_path->slots[0], 6043 struct btrfs_file_extent_item); 6044 ei_r = btrfs_item_ptr(leaf_r, 6045 sctx->right_path->slots[0], 6046 struct btrfs_file_extent_item); 6047 6048 /* 6049 * We may have found an extent item that has changed 6050 * only its disk_bytenr field and the corresponding 6051 * inode item was not updated. This case happens due to 6052 * very specific timings during relocation when a leaf 6053 * that contains file extent items is COWed while 6054 * relocation is ongoing and its in the stage where it 6055 * updates data pointers. So when this happens we can 6056 * safely ignore it since we know it's the same extent, 6057 * but just at different logical and physical locations 6058 * (when an extent is fully replaced with a new one, we 6059 * know the generation number must have changed too, 6060 * since snapshot creation implies committing the current 6061 * transaction, and the inode item must have been updated 6062 * as well). 6063 * This replacement of the disk_bytenr happens at 6064 * relocation.c:replace_file_extents() through 6065 * relocation.c:btrfs_reloc_cow_block(). 6066 */ 6067 if (btrfs_file_extent_generation(leaf_l, ei_l) == 6068 btrfs_file_extent_generation(leaf_r, ei_r) && 6069 btrfs_file_extent_ram_bytes(leaf_l, ei_l) == 6070 btrfs_file_extent_ram_bytes(leaf_r, ei_r) && 6071 btrfs_file_extent_compression(leaf_l, ei_l) == 6072 btrfs_file_extent_compression(leaf_r, ei_r) && 6073 btrfs_file_extent_encryption(leaf_l, ei_l) == 6074 btrfs_file_extent_encryption(leaf_r, ei_r) && 6075 btrfs_file_extent_other_encoding(leaf_l, ei_l) == 6076 btrfs_file_extent_other_encoding(leaf_r, ei_r) && 6077 btrfs_file_extent_type(leaf_l, ei_l) == 6078 btrfs_file_extent_type(leaf_r, ei_r) && 6079 btrfs_file_extent_disk_bytenr(leaf_l, ei_l) != 6080 btrfs_file_extent_disk_bytenr(leaf_r, ei_r) && 6081 btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) == 6082 btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) && 6083 btrfs_file_extent_offset(leaf_l, ei_l) == 6084 btrfs_file_extent_offset(leaf_r, ei_r) && 6085 btrfs_file_extent_num_bytes(leaf_l, ei_l) == 6086 btrfs_file_extent_num_bytes(leaf_r, ei_r)) 6087 return 0; 6088 } 6089 6090 inconsistent_snapshot_error(sctx, result, "extent"); 6091 return -EIO; 6092 } 6093 6094 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6095 if (result != BTRFS_COMPARE_TREE_DELETED) 6096 ret = process_extent(sctx, sctx->left_path, 6097 sctx->cmp_key); 6098 } 6099 6100 return ret; 6101 } 6102 6103 static int dir_changed(struct send_ctx *sctx, u64 dir) 6104 { 6105 u64 orig_gen, new_gen; 6106 int ret; 6107 6108 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 6109 NULL, NULL); 6110 if (ret) 6111 return ret; 6112 6113 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 6114 NULL, NULL, NULL); 6115 if (ret) 6116 return ret; 6117 6118 return (orig_gen != new_gen) ? 1 : 0; 6119 } 6120 6121 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 6122 struct btrfs_key *key) 6123 { 6124 struct btrfs_inode_extref *extref; 6125 struct extent_buffer *leaf; 6126 u64 dirid = 0, last_dirid = 0; 6127 unsigned long ptr; 6128 u32 item_size; 6129 u32 cur_offset = 0; 6130 int ref_name_len; 6131 int ret = 0; 6132 6133 /* Easy case, just check this one dirid */ 6134 if (key->type == BTRFS_INODE_REF_KEY) { 6135 dirid = key->offset; 6136 6137 ret = dir_changed(sctx, dirid); 6138 goto out; 6139 } 6140 6141 leaf = path->nodes[0]; 6142 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 6143 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 6144 while (cur_offset < item_size) { 6145 extref = (struct btrfs_inode_extref *)(ptr + 6146 cur_offset); 6147 dirid = btrfs_inode_extref_parent(leaf, extref); 6148 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 6149 cur_offset += ref_name_len + sizeof(*extref); 6150 if (dirid == last_dirid) 6151 continue; 6152 ret = dir_changed(sctx, dirid); 6153 if (ret) 6154 break; 6155 last_dirid = dirid; 6156 } 6157 out: 6158 return ret; 6159 } 6160 6161 /* 6162 * Updates compare related fields in sctx and simply forwards to the actual 6163 * changed_xxx functions. 6164 */ 6165 static int changed_cb(struct btrfs_root *left_root, 6166 struct btrfs_root *right_root, 6167 struct btrfs_path *left_path, 6168 struct btrfs_path *right_path, 6169 struct btrfs_key *key, 6170 enum btrfs_compare_tree_result result, 6171 void *ctx) 6172 { 6173 int ret = 0; 6174 struct send_ctx *sctx = ctx; 6175 6176 if (result == BTRFS_COMPARE_TREE_SAME) { 6177 if (key->type == BTRFS_INODE_REF_KEY || 6178 key->type == BTRFS_INODE_EXTREF_KEY) { 6179 ret = compare_refs(sctx, left_path, key); 6180 if (!ret) 6181 return 0; 6182 if (ret < 0) 6183 return ret; 6184 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 6185 return maybe_send_hole(sctx, left_path, key); 6186 } else { 6187 return 0; 6188 } 6189 result = BTRFS_COMPARE_TREE_CHANGED; 6190 ret = 0; 6191 } 6192 6193 sctx->left_path = left_path; 6194 sctx->right_path = right_path; 6195 sctx->cmp_key = key; 6196 6197 ret = finish_inode_if_needed(sctx, 0); 6198 if (ret < 0) 6199 goto out; 6200 6201 /* Ignore non-FS objects */ 6202 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 6203 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 6204 goto out; 6205 6206 if (key->type == BTRFS_INODE_ITEM_KEY) 6207 ret = changed_inode(sctx, result); 6208 else if (key->type == BTRFS_INODE_REF_KEY || 6209 key->type == BTRFS_INODE_EXTREF_KEY) 6210 ret = changed_ref(sctx, result); 6211 else if (key->type == BTRFS_XATTR_ITEM_KEY) 6212 ret = changed_xattr(sctx, result); 6213 else if (key->type == BTRFS_EXTENT_DATA_KEY) 6214 ret = changed_extent(sctx, result); 6215 6216 out: 6217 return ret; 6218 } 6219 6220 static int full_send_tree(struct send_ctx *sctx) 6221 { 6222 int ret; 6223 struct btrfs_root *send_root = sctx->send_root; 6224 struct btrfs_key key; 6225 struct btrfs_key found_key; 6226 struct btrfs_path *path; 6227 struct extent_buffer *eb; 6228 int slot; 6229 6230 path = alloc_path_for_send(); 6231 if (!path) 6232 return -ENOMEM; 6233 6234 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 6235 key.type = BTRFS_INODE_ITEM_KEY; 6236 key.offset = 0; 6237 6238 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 6239 if (ret < 0) 6240 goto out; 6241 if (ret) 6242 goto out_finish; 6243 6244 while (1) { 6245 eb = path->nodes[0]; 6246 slot = path->slots[0]; 6247 btrfs_item_key_to_cpu(eb, &found_key, slot); 6248 6249 ret = changed_cb(send_root, NULL, path, NULL, 6250 &found_key, BTRFS_COMPARE_TREE_NEW, sctx); 6251 if (ret < 0) 6252 goto out; 6253 6254 key.objectid = found_key.objectid; 6255 key.type = found_key.type; 6256 key.offset = found_key.offset + 1; 6257 6258 ret = btrfs_next_item(send_root, path); 6259 if (ret < 0) 6260 goto out; 6261 if (ret) { 6262 ret = 0; 6263 break; 6264 } 6265 } 6266 6267 out_finish: 6268 ret = finish_inode_if_needed(sctx, 1); 6269 6270 out: 6271 btrfs_free_path(path); 6272 return ret; 6273 } 6274 6275 static int send_subvol(struct send_ctx *sctx) 6276 { 6277 int ret; 6278 6279 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 6280 ret = send_header(sctx); 6281 if (ret < 0) 6282 goto out; 6283 } 6284 6285 ret = send_subvol_begin(sctx); 6286 if (ret < 0) 6287 goto out; 6288 6289 if (sctx->parent_root) { 6290 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, 6291 changed_cb, sctx); 6292 if (ret < 0) 6293 goto out; 6294 ret = finish_inode_if_needed(sctx, 1); 6295 if (ret < 0) 6296 goto out; 6297 } else { 6298 ret = full_send_tree(sctx); 6299 if (ret < 0) 6300 goto out; 6301 } 6302 6303 out: 6304 free_recorded_refs(sctx); 6305 return ret; 6306 } 6307 6308 /* 6309 * If orphan cleanup did remove any orphans from a root, it means the tree 6310 * was modified and therefore the commit root is not the same as the current 6311 * root anymore. This is a problem, because send uses the commit root and 6312 * therefore can see inode items that don't exist in the current root anymore, 6313 * and for example make calls to btrfs_iget, which will do tree lookups based 6314 * on the current root and not on the commit root. Those lookups will fail, 6315 * returning a -ESTALE error, and making send fail with that error. So make 6316 * sure a send does not see any orphans we have just removed, and that it will 6317 * see the same inodes regardless of whether a transaction commit happened 6318 * before it started (meaning that the commit root will be the same as the 6319 * current root) or not. 6320 */ 6321 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 6322 { 6323 int i; 6324 struct btrfs_trans_handle *trans = NULL; 6325 6326 again: 6327 if (sctx->parent_root && 6328 sctx->parent_root->node != sctx->parent_root->commit_root) 6329 goto commit_trans; 6330 6331 for (i = 0; i < sctx->clone_roots_cnt; i++) 6332 if (sctx->clone_roots[i].root->node != 6333 sctx->clone_roots[i].root->commit_root) 6334 goto commit_trans; 6335 6336 if (trans) 6337 return btrfs_end_transaction(trans); 6338 6339 return 0; 6340 6341 commit_trans: 6342 /* Use any root, all fs roots will get their commit roots updated. */ 6343 if (!trans) { 6344 trans = btrfs_join_transaction(sctx->send_root); 6345 if (IS_ERR(trans)) 6346 return PTR_ERR(trans); 6347 goto again; 6348 } 6349 6350 return btrfs_commit_transaction(trans); 6351 } 6352 6353 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 6354 { 6355 spin_lock(&root->root_item_lock); 6356 root->send_in_progress--; 6357 /* 6358 * Not much left to do, we don't know why it's unbalanced and 6359 * can't blindly reset it to 0. 6360 */ 6361 if (root->send_in_progress < 0) 6362 btrfs_err(root->fs_info, 6363 "send_in_progres unbalanced %d root %llu", 6364 root->send_in_progress, root->root_key.objectid); 6365 spin_unlock(&root->root_item_lock); 6366 } 6367 6368 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_) 6369 { 6370 int ret = 0; 6371 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root; 6372 struct btrfs_fs_info *fs_info = send_root->fs_info; 6373 struct btrfs_root *clone_root; 6374 struct btrfs_ioctl_send_args *arg = NULL; 6375 struct btrfs_key key; 6376 struct send_ctx *sctx = NULL; 6377 u32 i; 6378 u64 *clone_sources_tmp = NULL; 6379 int clone_sources_to_rollback = 0; 6380 unsigned alloc_size; 6381 int sort_clone_roots = 0; 6382 int index; 6383 6384 if (!capable(CAP_SYS_ADMIN)) 6385 return -EPERM; 6386 6387 /* 6388 * The subvolume must remain read-only during send, protect against 6389 * making it RW. This also protects against deletion. 6390 */ 6391 spin_lock(&send_root->root_item_lock); 6392 send_root->send_in_progress++; 6393 spin_unlock(&send_root->root_item_lock); 6394 6395 /* 6396 * This is done when we lookup the root, it should already be complete 6397 * by the time we get here. 6398 */ 6399 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE); 6400 6401 /* 6402 * Userspace tools do the checks and warn the user if it's 6403 * not RO. 6404 */ 6405 if (!btrfs_root_readonly(send_root)) { 6406 ret = -EPERM; 6407 goto out; 6408 } 6409 6410 arg = memdup_user(arg_, sizeof(*arg)); 6411 if (IS_ERR(arg)) { 6412 ret = PTR_ERR(arg); 6413 arg = NULL; 6414 goto out; 6415 } 6416 6417 /* 6418 * Check that we don't overflow at later allocations, we request 6419 * clone_sources_count + 1 items, and compare to unsigned long inside 6420 * access_ok. 6421 */ 6422 if (arg->clone_sources_count > 6423 ULONG_MAX / sizeof(struct clone_root) - 1) { 6424 ret = -EINVAL; 6425 goto out; 6426 } 6427 6428 if (!access_ok(VERIFY_READ, arg->clone_sources, 6429 sizeof(*arg->clone_sources) * 6430 arg->clone_sources_count)) { 6431 ret = -EFAULT; 6432 goto out; 6433 } 6434 6435 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 6436 ret = -EINVAL; 6437 goto out; 6438 } 6439 6440 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 6441 if (!sctx) { 6442 ret = -ENOMEM; 6443 goto out; 6444 } 6445 6446 INIT_LIST_HEAD(&sctx->new_refs); 6447 INIT_LIST_HEAD(&sctx->deleted_refs); 6448 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL); 6449 INIT_LIST_HEAD(&sctx->name_cache_list); 6450 6451 sctx->flags = arg->flags; 6452 6453 sctx->send_filp = fget(arg->send_fd); 6454 if (!sctx->send_filp) { 6455 ret = -EBADF; 6456 goto out; 6457 } 6458 6459 sctx->send_root = send_root; 6460 /* 6461 * Unlikely but possible, if the subvolume is marked for deletion but 6462 * is slow to remove the directory entry, send can still be started 6463 */ 6464 if (btrfs_root_dead(sctx->send_root)) { 6465 ret = -EPERM; 6466 goto out; 6467 } 6468 6469 sctx->clone_roots_cnt = arg->clone_sources_count; 6470 6471 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 6472 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 6473 if (!sctx->send_buf) { 6474 ret = -ENOMEM; 6475 goto out; 6476 } 6477 6478 sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL); 6479 if (!sctx->read_buf) { 6480 ret = -ENOMEM; 6481 goto out; 6482 } 6483 6484 sctx->pending_dir_moves = RB_ROOT; 6485 sctx->waiting_dir_moves = RB_ROOT; 6486 sctx->orphan_dirs = RB_ROOT; 6487 6488 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1); 6489 6490 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL); 6491 if (!sctx->clone_roots) { 6492 ret = -ENOMEM; 6493 goto out; 6494 } 6495 6496 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources); 6497 6498 if (arg->clone_sources_count) { 6499 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 6500 if (!clone_sources_tmp) { 6501 ret = -ENOMEM; 6502 goto out; 6503 } 6504 6505 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 6506 alloc_size); 6507 if (ret) { 6508 ret = -EFAULT; 6509 goto out; 6510 } 6511 6512 for (i = 0; i < arg->clone_sources_count; i++) { 6513 key.objectid = clone_sources_tmp[i]; 6514 key.type = BTRFS_ROOT_ITEM_KEY; 6515 key.offset = (u64)-1; 6516 6517 index = srcu_read_lock(&fs_info->subvol_srcu); 6518 6519 clone_root = btrfs_read_fs_root_no_name(fs_info, &key); 6520 if (IS_ERR(clone_root)) { 6521 srcu_read_unlock(&fs_info->subvol_srcu, index); 6522 ret = PTR_ERR(clone_root); 6523 goto out; 6524 } 6525 spin_lock(&clone_root->root_item_lock); 6526 if (!btrfs_root_readonly(clone_root) || 6527 btrfs_root_dead(clone_root)) { 6528 spin_unlock(&clone_root->root_item_lock); 6529 srcu_read_unlock(&fs_info->subvol_srcu, index); 6530 ret = -EPERM; 6531 goto out; 6532 } 6533 clone_root->send_in_progress++; 6534 spin_unlock(&clone_root->root_item_lock); 6535 srcu_read_unlock(&fs_info->subvol_srcu, index); 6536 6537 sctx->clone_roots[i].root = clone_root; 6538 clone_sources_to_rollback = i + 1; 6539 } 6540 kvfree(clone_sources_tmp); 6541 clone_sources_tmp = NULL; 6542 } 6543 6544 if (arg->parent_root) { 6545 key.objectid = arg->parent_root; 6546 key.type = BTRFS_ROOT_ITEM_KEY; 6547 key.offset = (u64)-1; 6548 6549 index = srcu_read_lock(&fs_info->subvol_srcu); 6550 6551 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key); 6552 if (IS_ERR(sctx->parent_root)) { 6553 srcu_read_unlock(&fs_info->subvol_srcu, index); 6554 ret = PTR_ERR(sctx->parent_root); 6555 goto out; 6556 } 6557 6558 spin_lock(&sctx->parent_root->root_item_lock); 6559 sctx->parent_root->send_in_progress++; 6560 if (!btrfs_root_readonly(sctx->parent_root) || 6561 btrfs_root_dead(sctx->parent_root)) { 6562 spin_unlock(&sctx->parent_root->root_item_lock); 6563 srcu_read_unlock(&fs_info->subvol_srcu, index); 6564 ret = -EPERM; 6565 goto out; 6566 } 6567 spin_unlock(&sctx->parent_root->root_item_lock); 6568 6569 srcu_read_unlock(&fs_info->subvol_srcu, index); 6570 } 6571 6572 /* 6573 * Clones from send_root are allowed, but only if the clone source 6574 * is behind the current send position. This is checked while searching 6575 * for possible clone sources. 6576 */ 6577 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root; 6578 6579 /* We do a bsearch later */ 6580 sort(sctx->clone_roots, sctx->clone_roots_cnt, 6581 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 6582 NULL); 6583 sort_clone_roots = 1; 6584 6585 ret = ensure_commit_roots_uptodate(sctx); 6586 if (ret) 6587 goto out; 6588 6589 current->journal_info = BTRFS_SEND_TRANS_STUB; 6590 ret = send_subvol(sctx); 6591 current->journal_info = NULL; 6592 if (ret < 0) 6593 goto out; 6594 6595 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 6596 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 6597 if (ret < 0) 6598 goto out; 6599 ret = send_cmd(sctx); 6600 if (ret < 0) 6601 goto out; 6602 } 6603 6604 out: 6605 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 6606 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 6607 struct rb_node *n; 6608 struct pending_dir_move *pm; 6609 6610 n = rb_first(&sctx->pending_dir_moves); 6611 pm = rb_entry(n, struct pending_dir_move, node); 6612 while (!list_empty(&pm->list)) { 6613 struct pending_dir_move *pm2; 6614 6615 pm2 = list_first_entry(&pm->list, 6616 struct pending_dir_move, list); 6617 free_pending_move(sctx, pm2); 6618 } 6619 free_pending_move(sctx, pm); 6620 } 6621 6622 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 6623 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 6624 struct rb_node *n; 6625 struct waiting_dir_move *dm; 6626 6627 n = rb_first(&sctx->waiting_dir_moves); 6628 dm = rb_entry(n, struct waiting_dir_move, node); 6629 rb_erase(&dm->node, &sctx->waiting_dir_moves); 6630 kfree(dm); 6631 } 6632 6633 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 6634 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 6635 struct rb_node *n; 6636 struct orphan_dir_info *odi; 6637 6638 n = rb_first(&sctx->orphan_dirs); 6639 odi = rb_entry(n, struct orphan_dir_info, node); 6640 free_orphan_dir_info(sctx, odi); 6641 } 6642 6643 if (sort_clone_roots) { 6644 for (i = 0; i < sctx->clone_roots_cnt; i++) 6645 btrfs_root_dec_send_in_progress( 6646 sctx->clone_roots[i].root); 6647 } else { 6648 for (i = 0; sctx && i < clone_sources_to_rollback; i++) 6649 btrfs_root_dec_send_in_progress( 6650 sctx->clone_roots[i].root); 6651 6652 btrfs_root_dec_send_in_progress(send_root); 6653 } 6654 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) 6655 btrfs_root_dec_send_in_progress(sctx->parent_root); 6656 6657 kfree(arg); 6658 kvfree(clone_sources_tmp); 6659 6660 if (sctx) { 6661 if (sctx->send_filp) 6662 fput(sctx->send_filp); 6663 6664 kvfree(sctx->clone_roots); 6665 kvfree(sctx->send_buf); 6666 kvfree(sctx->read_buf); 6667 6668 name_cache_free(sctx); 6669 6670 kfree(sctx); 6671 } 6672 6673 return ret; 6674 } 6675