1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/fs.h> 8 #include <linux/file.h> 9 #include <linux/sort.h> 10 #include <linux/mount.h> 11 #include <linux/xattr.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/radix-tree.h> 14 #include <linux/vmalloc.h> 15 #include <linux/string.h> 16 #include <linux/compat.h> 17 #include <linux/crc32c.h> 18 19 #include "send.h" 20 #include "backref.h" 21 #include "locking.h" 22 #include "disk-io.h" 23 #include "btrfs_inode.h" 24 #include "transaction.h" 25 #include "compression.h" 26 #include "xattr.h" 27 28 /* 29 * Maximum number of references an extent can have in order for us to attempt to 30 * issue clone operations instead of write operations. This currently exists to 31 * avoid hitting limitations of the backreference walking code (taking a lot of 32 * time and using too much memory for extents with large number of references). 33 */ 34 #define SEND_MAX_EXTENT_REFS 64 35 36 /* 37 * A fs_path is a helper to dynamically build path names with unknown size. 38 * It reallocates the internal buffer on demand. 39 * It allows fast adding of path elements on the right side (normal path) and 40 * fast adding to the left side (reversed path). A reversed path can also be 41 * unreversed if needed. 42 */ 43 struct fs_path { 44 union { 45 struct { 46 char *start; 47 char *end; 48 49 char *buf; 50 unsigned short buf_len:15; 51 unsigned short reversed:1; 52 char inline_buf[]; 53 }; 54 /* 55 * Average path length does not exceed 200 bytes, we'll have 56 * better packing in the slab and higher chance to satisfy 57 * a allocation later during send. 58 */ 59 char pad[256]; 60 }; 61 }; 62 #define FS_PATH_INLINE_SIZE \ 63 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 64 65 66 /* reused for each extent */ 67 struct clone_root { 68 struct btrfs_root *root; 69 u64 ino; 70 u64 offset; 71 72 u64 found_refs; 73 }; 74 75 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 76 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 77 78 struct send_ctx { 79 struct file *send_filp; 80 loff_t send_off; 81 char *send_buf; 82 u32 send_size; 83 u32 send_max_size; 84 u64 total_send_size; 85 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 86 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 87 88 struct btrfs_root *send_root; 89 struct btrfs_root *parent_root; 90 struct clone_root *clone_roots; 91 int clone_roots_cnt; 92 93 /* current state of the compare_tree call */ 94 struct btrfs_path *left_path; 95 struct btrfs_path *right_path; 96 struct btrfs_key *cmp_key; 97 98 /* 99 * infos of the currently processed inode. In case of deleted inodes, 100 * these are the values from the deleted inode. 101 */ 102 u64 cur_ino; 103 u64 cur_inode_gen; 104 int cur_inode_new; 105 int cur_inode_new_gen; 106 int cur_inode_deleted; 107 u64 cur_inode_size; 108 u64 cur_inode_mode; 109 u64 cur_inode_rdev; 110 u64 cur_inode_last_extent; 111 u64 cur_inode_next_write_offset; 112 bool ignore_cur_inode; 113 114 u64 send_progress; 115 116 struct list_head new_refs; 117 struct list_head deleted_refs; 118 119 struct radix_tree_root name_cache; 120 struct list_head name_cache_list; 121 int name_cache_size; 122 123 struct file_ra_state ra; 124 125 /* 126 * We process inodes by their increasing order, so if before an 127 * incremental send we reverse the parent/child relationship of 128 * directories such that a directory with a lower inode number was 129 * the parent of a directory with a higher inode number, and the one 130 * becoming the new parent got renamed too, we can't rename/move the 131 * directory with lower inode number when we finish processing it - we 132 * must process the directory with higher inode number first, then 133 * rename/move it and then rename/move the directory with lower inode 134 * number. Example follows. 135 * 136 * Tree state when the first send was performed: 137 * 138 * . 139 * |-- a (ino 257) 140 * |-- b (ino 258) 141 * | 142 * | 143 * |-- c (ino 259) 144 * | |-- d (ino 260) 145 * | 146 * |-- c2 (ino 261) 147 * 148 * Tree state when the second (incremental) send is performed: 149 * 150 * . 151 * |-- a (ino 257) 152 * |-- b (ino 258) 153 * |-- c2 (ino 261) 154 * |-- d2 (ino 260) 155 * |-- cc (ino 259) 156 * 157 * The sequence of steps that lead to the second state was: 158 * 159 * mv /a/b/c/d /a/b/c2/d2 160 * mv /a/b/c /a/b/c2/d2/cc 161 * 162 * "c" has lower inode number, but we can't move it (2nd mv operation) 163 * before we move "d", which has higher inode number. 164 * 165 * So we just memorize which move/rename operations must be performed 166 * later when their respective parent is processed and moved/renamed. 167 */ 168 169 /* Indexed by parent directory inode number. */ 170 struct rb_root pending_dir_moves; 171 172 /* 173 * Reverse index, indexed by the inode number of a directory that 174 * is waiting for the move/rename of its immediate parent before its 175 * own move/rename can be performed. 176 */ 177 struct rb_root waiting_dir_moves; 178 179 /* 180 * A directory that is going to be rm'ed might have a child directory 181 * which is in the pending directory moves index above. In this case, 182 * the directory can only be removed after the move/rename of its child 183 * is performed. Example: 184 * 185 * Parent snapshot: 186 * 187 * . (ino 256) 188 * |-- a/ (ino 257) 189 * |-- b/ (ino 258) 190 * |-- c/ (ino 259) 191 * | |-- x/ (ino 260) 192 * | 193 * |-- y/ (ino 261) 194 * 195 * Send snapshot: 196 * 197 * . (ino 256) 198 * |-- a/ (ino 257) 199 * |-- b/ (ino 258) 200 * |-- YY/ (ino 261) 201 * |-- x/ (ino 260) 202 * 203 * Sequence of steps that lead to the send snapshot: 204 * rm -f /a/b/c/foo.txt 205 * mv /a/b/y /a/b/YY 206 * mv /a/b/c/x /a/b/YY 207 * rmdir /a/b/c 208 * 209 * When the child is processed, its move/rename is delayed until its 210 * parent is processed (as explained above), but all other operations 211 * like update utimes, chown, chgrp, etc, are performed and the paths 212 * that it uses for those operations must use the orphanized name of 213 * its parent (the directory we're going to rm later), so we need to 214 * memorize that name. 215 * 216 * Indexed by the inode number of the directory to be deleted. 217 */ 218 struct rb_root orphan_dirs; 219 }; 220 221 struct pending_dir_move { 222 struct rb_node node; 223 struct list_head list; 224 u64 parent_ino; 225 u64 ino; 226 u64 gen; 227 struct list_head update_refs; 228 }; 229 230 struct waiting_dir_move { 231 struct rb_node node; 232 u64 ino; 233 /* 234 * There might be some directory that could not be removed because it 235 * was waiting for this directory inode to be moved first. Therefore 236 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 237 */ 238 u64 rmdir_ino; 239 bool orphanized; 240 }; 241 242 struct orphan_dir_info { 243 struct rb_node node; 244 u64 ino; 245 u64 gen; 246 u64 last_dir_index_offset; 247 }; 248 249 struct name_cache_entry { 250 struct list_head list; 251 /* 252 * radix_tree has only 32bit entries but we need to handle 64bit inums. 253 * We use the lower 32bit of the 64bit inum to store it in the tree. If 254 * more then one inum would fall into the same entry, we use radix_list 255 * to store the additional entries. radix_list is also used to store 256 * entries where two entries have the same inum but different 257 * generations. 258 */ 259 struct list_head radix_list; 260 u64 ino; 261 u64 gen; 262 u64 parent_ino; 263 u64 parent_gen; 264 int ret; 265 int need_later_update; 266 int name_len; 267 char name[]; 268 }; 269 270 #define ADVANCE 1 271 #define ADVANCE_ONLY_NEXT -1 272 273 enum btrfs_compare_tree_result { 274 BTRFS_COMPARE_TREE_NEW, 275 BTRFS_COMPARE_TREE_DELETED, 276 BTRFS_COMPARE_TREE_CHANGED, 277 BTRFS_COMPARE_TREE_SAME, 278 }; 279 280 __cold 281 static void inconsistent_snapshot_error(struct send_ctx *sctx, 282 enum btrfs_compare_tree_result result, 283 const char *what) 284 { 285 const char *result_string; 286 287 switch (result) { 288 case BTRFS_COMPARE_TREE_NEW: 289 result_string = "new"; 290 break; 291 case BTRFS_COMPARE_TREE_DELETED: 292 result_string = "deleted"; 293 break; 294 case BTRFS_COMPARE_TREE_CHANGED: 295 result_string = "updated"; 296 break; 297 case BTRFS_COMPARE_TREE_SAME: 298 ASSERT(0); 299 result_string = "unchanged"; 300 break; 301 default: 302 ASSERT(0); 303 result_string = "unexpected"; 304 } 305 306 btrfs_err(sctx->send_root->fs_info, 307 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 308 result_string, what, sctx->cmp_key->objectid, 309 sctx->send_root->root_key.objectid, 310 (sctx->parent_root ? 311 sctx->parent_root->root_key.objectid : 0)); 312 } 313 314 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 315 316 static struct waiting_dir_move * 317 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 318 319 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino); 320 321 static int need_send_hole(struct send_ctx *sctx) 322 { 323 return (sctx->parent_root && !sctx->cur_inode_new && 324 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 325 S_ISREG(sctx->cur_inode_mode)); 326 } 327 328 static void fs_path_reset(struct fs_path *p) 329 { 330 if (p->reversed) { 331 p->start = p->buf + p->buf_len - 1; 332 p->end = p->start; 333 *p->start = 0; 334 } else { 335 p->start = p->buf; 336 p->end = p->start; 337 *p->start = 0; 338 } 339 } 340 341 static struct fs_path *fs_path_alloc(void) 342 { 343 struct fs_path *p; 344 345 p = kmalloc(sizeof(*p), GFP_KERNEL); 346 if (!p) 347 return NULL; 348 p->reversed = 0; 349 p->buf = p->inline_buf; 350 p->buf_len = FS_PATH_INLINE_SIZE; 351 fs_path_reset(p); 352 return p; 353 } 354 355 static struct fs_path *fs_path_alloc_reversed(void) 356 { 357 struct fs_path *p; 358 359 p = fs_path_alloc(); 360 if (!p) 361 return NULL; 362 p->reversed = 1; 363 fs_path_reset(p); 364 return p; 365 } 366 367 static void fs_path_free(struct fs_path *p) 368 { 369 if (!p) 370 return; 371 if (p->buf != p->inline_buf) 372 kfree(p->buf); 373 kfree(p); 374 } 375 376 static int fs_path_len(struct fs_path *p) 377 { 378 return p->end - p->start; 379 } 380 381 static int fs_path_ensure_buf(struct fs_path *p, int len) 382 { 383 char *tmp_buf; 384 int path_len; 385 int old_buf_len; 386 387 len++; 388 389 if (p->buf_len >= len) 390 return 0; 391 392 if (len > PATH_MAX) { 393 WARN_ON(1); 394 return -ENOMEM; 395 } 396 397 path_len = p->end - p->start; 398 old_buf_len = p->buf_len; 399 400 /* 401 * First time the inline_buf does not suffice 402 */ 403 if (p->buf == p->inline_buf) { 404 tmp_buf = kmalloc(len, GFP_KERNEL); 405 if (tmp_buf) 406 memcpy(tmp_buf, p->buf, old_buf_len); 407 } else { 408 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 409 } 410 if (!tmp_buf) 411 return -ENOMEM; 412 p->buf = tmp_buf; 413 /* 414 * The real size of the buffer is bigger, this will let the fast path 415 * happen most of the time 416 */ 417 p->buf_len = ksize(p->buf); 418 419 if (p->reversed) { 420 tmp_buf = p->buf + old_buf_len - path_len - 1; 421 p->end = p->buf + p->buf_len - 1; 422 p->start = p->end - path_len; 423 memmove(p->start, tmp_buf, path_len + 1); 424 } else { 425 p->start = p->buf; 426 p->end = p->start + path_len; 427 } 428 return 0; 429 } 430 431 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 432 char **prepared) 433 { 434 int ret; 435 int new_len; 436 437 new_len = p->end - p->start + name_len; 438 if (p->start != p->end) 439 new_len++; 440 ret = fs_path_ensure_buf(p, new_len); 441 if (ret < 0) 442 goto out; 443 444 if (p->reversed) { 445 if (p->start != p->end) 446 *--p->start = '/'; 447 p->start -= name_len; 448 *prepared = p->start; 449 } else { 450 if (p->start != p->end) 451 *p->end++ = '/'; 452 *prepared = p->end; 453 p->end += name_len; 454 *p->end = 0; 455 } 456 457 out: 458 return ret; 459 } 460 461 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 462 { 463 int ret; 464 char *prepared; 465 466 ret = fs_path_prepare_for_add(p, name_len, &prepared); 467 if (ret < 0) 468 goto out; 469 memcpy(prepared, name, name_len); 470 471 out: 472 return ret; 473 } 474 475 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 476 { 477 int ret; 478 char *prepared; 479 480 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 481 if (ret < 0) 482 goto out; 483 memcpy(prepared, p2->start, p2->end - p2->start); 484 485 out: 486 return ret; 487 } 488 489 static int fs_path_add_from_extent_buffer(struct fs_path *p, 490 struct extent_buffer *eb, 491 unsigned long off, int len) 492 { 493 int ret; 494 char *prepared; 495 496 ret = fs_path_prepare_for_add(p, len, &prepared); 497 if (ret < 0) 498 goto out; 499 500 read_extent_buffer(eb, prepared, off, len); 501 502 out: 503 return ret; 504 } 505 506 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 507 { 508 int ret; 509 510 p->reversed = from->reversed; 511 fs_path_reset(p); 512 513 ret = fs_path_add_path(p, from); 514 515 return ret; 516 } 517 518 519 static void fs_path_unreverse(struct fs_path *p) 520 { 521 char *tmp; 522 int len; 523 524 if (!p->reversed) 525 return; 526 527 tmp = p->start; 528 len = p->end - p->start; 529 p->start = p->buf; 530 p->end = p->start + len; 531 memmove(p->start, tmp, len + 1); 532 p->reversed = 0; 533 } 534 535 static struct btrfs_path *alloc_path_for_send(void) 536 { 537 struct btrfs_path *path; 538 539 path = btrfs_alloc_path(); 540 if (!path) 541 return NULL; 542 path->search_commit_root = 1; 543 path->skip_locking = 1; 544 path->need_commit_sem = 1; 545 return path; 546 } 547 548 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 549 { 550 int ret; 551 u32 pos = 0; 552 553 while (pos < len) { 554 ret = kernel_write(filp, buf + pos, len - pos, off); 555 /* TODO handle that correctly */ 556 /*if (ret == -ERESTARTSYS) { 557 continue; 558 }*/ 559 if (ret < 0) 560 return ret; 561 if (ret == 0) { 562 return -EIO; 563 } 564 pos += ret; 565 } 566 567 return 0; 568 } 569 570 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 571 { 572 struct btrfs_tlv_header *hdr; 573 int total_len = sizeof(*hdr) + len; 574 int left = sctx->send_max_size - sctx->send_size; 575 576 if (unlikely(left < total_len)) 577 return -EOVERFLOW; 578 579 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 580 put_unaligned_le16(attr, &hdr->tlv_type); 581 put_unaligned_le16(len, &hdr->tlv_len); 582 memcpy(hdr + 1, data, len); 583 sctx->send_size += total_len; 584 585 return 0; 586 } 587 588 #define TLV_PUT_DEFINE_INT(bits) \ 589 static int tlv_put_u##bits(struct send_ctx *sctx, \ 590 u##bits attr, u##bits value) \ 591 { \ 592 __le##bits __tmp = cpu_to_le##bits(value); \ 593 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 594 } 595 596 TLV_PUT_DEFINE_INT(64) 597 598 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 599 const char *str, int len) 600 { 601 if (len == -1) 602 len = strlen(str); 603 return tlv_put(sctx, attr, str, len); 604 } 605 606 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 607 const u8 *uuid) 608 { 609 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 610 } 611 612 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 613 struct extent_buffer *eb, 614 struct btrfs_timespec *ts) 615 { 616 struct btrfs_timespec bts; 617 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 618 return tlv_put(sctx, attr, &bts, sizeof(bts)); 619 } 620 621 622 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 623 do { \ 624 ret = tlv_put(sctx, attrtype, data, attrlen); \ 625 if (ret < 0) \ 626 goto tlv_put_failure; \ 627 } while (0) 628 629 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 630 do { \ 631 ret = tlv_put_u##bits(sctx, attrtype, value); \ 632 if (ret < 0) \ 633 goto tlv_put_failure; \ 634 } while (0) 635 636 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 637 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 638 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 639 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 640 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 641 do { \ 642 ret = tlv_put_string(sctx, attrtype, str, len); \ 643 if (ret < 0) \ 644 goto tlv_put_failure; \ 645 } while (0) 646 #define TLV_PUT_PATH(sctx, attrtype, p) \ 647 do { \ 648 ret = tlv_put_string(sctx, attrtype, p->start, \ 649 p->end - p->start); \ 650 if (ret < 0) \ 651 goto tlv_put_failure; \ 652 } while(0) 653 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 654 do { \ 655 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 656 if (ret < 0) \ 657 goto tlv_put_failure; \ 658 } while (0) 659 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 660 do { \ 661 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 662 if (ret < 0) \ 663 goto tlv_put_failure; \ 664 } while (0) 665 666 static int send_header(struct send_ctx *sctx) 667 { 668 struct btrfs_stream_header hdr; 669 670 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 671 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 672 673 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 674 &sctx->send_off); 675 } 676 677 /* 678 * For each command/item we want to send to userspace, we call this function. 679 */ 680 static int begin_cmd(struct send_ctx *sctx, int cmd) 681 { 682 struct btrfs_cmd_header *hdr; 683 684 if (WARN_ON(!sctx->send_buf)) 685 return -EINVAL; 686 687 BUG_ON(sctx->send_size); 688 689 sctx->send_size += sizeof(*hdr); 690 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 691 put_unaligned_le16(cmd, &hdr->cmd); 692 693 return 0; 694 } 695 696 static int send_cmd(struct send_ctx *sctx) 697 { 698 int ret; 699 struct btrfs_cmd_header *hdr; 700 u32 crc; 701 702 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 703 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 704 put_unaligned_le32(0, &hdr->crc); 705 706 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 707 put_unaligned_le32(crc, &hdr->crc); 708 709 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 710 &sctx->send_off); 711 712 sctx->total_send_size += sctx->send_size; 713 sctx->cmd_send_size[get_unaligned_le16(&hdr->cmd)] += sctx->send_size; 714 sctx->send_size = 0; 715 716 return ret; 717 } 718 719 /* 720 * Sends a move instruction to user space 721 */ 722 static int send_rename(struct send_ctx *sctx, 723 struct fs_path *from, struct fs_path *to) 724 { 725 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 726 int ret; 727 728 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 729 730 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 731 if (ret < 0) 732 goto out; 733 734 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 735 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 736 737 ret = send_cmd(sctx); 738 739 tlv_put_failure: 740 out: 741 return ret; 742 } 743 744 /* 745 * Sends a link instruction to user space 746 */ 747 static int send_link(struct send_ctx *sctx, 748 struct fs_path *path, struct fs_path *lnk) 749 { 750 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 751 int ret; 752 753 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 754 755 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 756 if (ret < 0) 757 goto out; 758 759 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 760 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 761 762 ret = send_cmd(sctx); 763 764 tlv_put_failure: 765 out: 766 return ret; 767 } 768 769 /* 770 * Sends an unlink instruction to user space 771 */ 772 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 773 { 774 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 775 int ret; 776 777 btrfs_debug(fs_info, "send_unlink %s", path->start); 778 779 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 780 if (ret < 0) 781 goto out; 782 783 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 784 785 ret = send_cmd(sctx); 786 787 tlv_put_failure: 788 out: 789 return ret; 790 } 791 792 /* 793 * Sends a rmdir instruction to user space 794 */ 795 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 796 { 797 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 798 int ret; 799 800 btrfs_debug(fs_info, "send_rmdir %s", path->start); 801 802 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 803 if (ret < 0) 804 goto out; 805 806 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 807 808 ret = send_cmd(sctx); 809 810 tlv_put_failure: 811 out: 812 return ret; 813 } 814 815 /* 816 * Helper function to retrieve some fields from an inode item. 817 */ 818 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 819 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 820 u64 *gid, u64 *rdev) 821 { 822 int ret; 823 struct btrfs_inode_item *ii; 824 struct btrfs_key key; 825 826 key.objectid = ino; 827 key.type = BTRFS_INODE_ITEM_KEY; 828 key.offset = 0; 829 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 830 if (ret) { 831 if (ret > 0) 832 ret = -ENOENT; 833 return ret; 834 } 835 836 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 837 struct btrfs_inode_item); 838 if (size) 839 *size = btrfs_inode_size(path->nodes[0], ii); 840 if (gen) 841 *gen = btrfs_inode_generation(path->nodes[0], ii); 842 if (mode) 843 *mode = btrfs_inode_mode(path->nodes[0], ii); 844 if (uid) 845 *uid = btrfs_inode_uid(path->nodes[0], ii); 846 if (gid) 847 *gid = btrfs_inode_gid(path->nodes[0], ii); 848 if (rdev) 849 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 850 851 return ret; 852 } 853 854 static int get_inode_info(struct btrfs_root *root, 855 u64 ino, u64 *size, u64 *gen, 856 u64 *mode, u64 *uid, u64 *gid, 857 u64 *rdev) 858 { 859 struct btrfs_path *path; 860 int ret; 861 862 path = alloc_path_for_send(); 863 if (!path) 864 return -ENOMEM; 865 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 866 rdev); 867 btrfs_free_path(path); 868 return ret; 869 } 870 871 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 872 struct fs_path *p, 873 void *ctx); 874 875 /* 876 * Helper function to iterate the entries in ONE btrfs_inode_ref or 877 * btrfs_inode_extref. 878 * The iterate callback may return a non zero value to stop iteration. This can 879 * be a negative value for error codes or 1 to simply stop it. 880 * 881 * path must point to the INODE_REF or INODE_EXTREF when called. 882 */ 883 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 884 struct btrfs_key *found_key, int resolve, 885 iterate_inode_ref_t iterate, void *ctx) 886 { 887 struct extent_buffer *eb = path->nodes[0]; 888 struct btrfs_item *item; 889 struct btrfs_inode_ref *iref; 890 struct btrfs_inode_extref *extref; 891 struct btrfs_path *tmp_path; 892 struct fs_path *p; 893 u32 cur = 0; 894 u32 total; 895 int slot = path->slots[0]; 896 u32 name_len; 897 char *start; 898 int ret = 0; 899 int num = 0; 900 int index; 901 u64 dir; 902 unsigned long name_off; 903 unsigned long elem_size; 904 unsigned long ptr; 905 906 p = fs_path_alloc_reversed(); 907 if (!p) 908 return -ENOMEM; 909 910 tmp_path = alloc_path_for_send(); 911 if (!tmp_path) { 912 fs_path_free(p); 913 return -ENOMEM; 914 } 915 916 917 if (found_key->type == BTRFS_INODE_REF_KEY) { 918 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 919 struct btrfs_inode_ref); 920 item = btrfs_item_nr(slot); 921 total = btrfs_item_size(eb, item); 922 elem_size = sizeof(*iref); 923 } else { 924 ptr = btrfs_item_ptr_offset(eb, slot); 925 total = btrfs_item_size_nr(eb, slot); 926 elem_size = sizeof(*extref); 927 } 928 929 while (cur < total) { 930 fs_path_reset(p); 931 932 if (found_key->type == BTRFS_INODE_REF_KEY) { 933 iref = (struct btrfs_inode_ref *)(ptr + cur); 934 name_len = btrfs_inode_ref_name_len(eb, iref); 935 name_off = (unsigned long)(iref + 1); 936 index = btrfs_inode_ref_index(eb, iref); 937 dir = found_key->offset; 938 } else { 939 extref = (struct btrfs_inode_extref *)(ptr + cur); 940 name_len = btrfs_inode_extref_name_len(eb, extref); 941 name_off = (unsigned long)&extref->name; 942 index = btrfs_inode_extref_index(eb, extref); 943 dir = btrfs_inode_extref_parent(eb, extref); 944 } 945 946 if (resolve) { 947 start = btrfs_ref_to_path(root, tmp_path, name_len, 948 name_off, eb, dir, 949 p->buf, p->buf_len); 950 if (IS_ERR(start)) { 951 ret = PTR_ERR(start); 952 goto out; 953 } 954 if (start < p->buf) { 955 /* overflow , try again with larger buffer */ 956 ret = fs_path_ensure_buf(p, 957 p->buf_len + p->buf - start); 958 if (ret < 0) 959 goto out; 960 start = btrfs_ref_to_path(root, tmp_path, 961 name_len, name_off, 962 eb, dir, 963 p->buf, p->buf_len); 964 if (IS_ERR(start)) { 965 ret = PTR_ERR(start); 966 goto out; 967 } 968 BUG_ON(start < p->buf); 969 } 970 p->start = start; 971 } else { 972 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 973 name_len); 974 if (ret < 0) 975 goto out; 976 } 977 978 cur += elem_size + name_len; 979 ret = iterate(num, dir, index, p, ctx); 980 if (ret) 981 goto out; 982 num++; 983 } 984 985 out: 986 btrfs_free_path(tmp_path); 987 fs_path_free(p); 988 return ret; 989 } 990 991 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 992 const char *name, int name_len, 993 const char *data, int data_len, 994 u8 type, void *ctx); 995 996 /* 997 * Helper function to iterate the entries in ONE btrfs_dir_item. 998 * The iterate callback may return a non zero value to stop iteration. This can 999 * be a negative value for error codes or 1 to simply stop it. 1000 * 1001 * path must point to the dir item when called. 1002 */ 1003 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1004 iterate_dir_item_t iterate, void *ctx) 1005 { 1006 int ret = 0; 1007 struct extent_buffer *eb; 1008 struct btrfs_item *item; 1009 struct btrfs_dir_item *di; 1010 struct btrfs_key di_key; 1011 char *buf = NULL; 1012 int buf_len; 1013 u32 name_len; 1014 u32 data_len; 1015 u32 cur; 1016 u32 len; 1017 u32 total; 1018 int slot; 1019 int num; 1020 u8 type; 1021 1022 /* 1023 * Start with a small buffer (1 page). If later we end up needing more 1024 * space, which can happen for xattrs on a fs with a leaf size greater 1025 * then the page size, attempt to increase the buffer. Typically xattr 1026 * values are small. 1027 */ 1028 buf_len = PATH_MAX; 1029 buf = kmalloc(buf_len, GFP_KERNEL); 1030 if (!buf) { 1031 ret = -ENOMEM; 1032 goto out; 1033 } 1034 1035 eb = path->nodes[0]; 1036 slot = path->slots[0]; 1037 item = btrfs_item_nr(slot); 1038 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1039 cur = 0; 1040 len = 0; 1041 total = btrfs_item_size(eb, item); 1042 1043 num = 0; 1044 while (cur < total) { 1045 name_len = btrfs_dir_name_len(eb, di); 1046 data_len = btrfs_dir_data_len(eb, di); 1047 type = btrfs_dir_type(eb, di); 1048 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1049 1050 if (type == BTRFS_FT_XATTR) { 1051 if (name_len > XATTR_NAME_MAX) { 1052 ret = -ENAMETOOLONG; 1053 goto out; 1054 } 1055 if (name_len + data_len > 1056 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1057 ret = -E2BIG; 1058 goto out; 1059 } 1060 } else { 1061 /* 1062 * Path too long 1063 */ 1064 if (name_len + data_len > PATH_MAX) { 1065 ret = -ENAMETOOLONG; 1066 goto out; 1067 } 1068 } 1069 1070 if (name_len + data_len > buf_len) { 1071 buf_len = name_len + data_len; 1072 if (is_vmalloc_addr(buf)) { 1073 vfree(buf); 1074 buf = NULL; 1075 } else { 1076 char *tmp = krealloc(buf, buf_len, 1077 GFP_KERNEL | __GFP_NOWARN); 1078 1079 if (!tmp) 1080 kfree(buf); 1081 buf = tmp; 1082 } 1083 if (!buf) { 1084 buf = kvmalloc(buf_len, GFP_KERNEL); 1085 if (!buf) { 1086 ret = -ENOMEM; 1087 goto out; 1088 } 1089 } 1090 } 1091 1092 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1093 name_len + data_len); 1094 1095 len = sizeof(*di) + name_len + data_len; 1096 di = (struct btrfs_dir_item *)((char *)di + len); 1097 cur += len; 1098 1099 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1100 data_len, type, ctx); 1101 if (ret < 0) 1102 goto out; 1103 if (ret) { 1104 ret = 0; 1105 goto out; 1106 } 1107 1108 num++; 1109 } 1110 1111 out: 1112 kvfree(buf); 1113 return ret; 1114 } 1115 1116 static int __copy_first_ref(int num, u64 dir, int index, 1117 struct fs_path *p, void *ctx) 1118 { 1119 int ret; 1120 struct fs_path *pt = ctx; 1121 1122 ret = fs_path_copy(pt, p); 1123 if (ret < 0) 1124 return ret; 1125 1126 /* we want the first only */ 1127 return 1; 1128 } 1129 1130 /* 1131 * Retrieve the first path of an inode. If an inode has more then one 1132 * ref/hardlink, this is ignored. 1133 */ 1134 static int get_inode_path(struct btrfs_root *root, 1135 u64 ino, struct fs_path *path) 1136 { 1137 int ret; 1138 struct btrfs_key key, found_key; 1139 struct btrfs_path *p; 1140 1141 p = alloc_path_for_send(); 1142 if (!p) 1143 return -ENOMEM; 1144 1145 fs_path_reset(path); 1146 1147 key.objectid = ino; 1148 key.type = BTRFS_INODE_REF_KEY; 1149 key.offset = 0; 1150 1151 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1152 if (ret < 0) 1153 goto out; 1154 if (ret) { 1155 ret = 1; 1156 goto out; 1157 } 1158 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1159 if (found_key.objectid != ino || 1160 (found_key.type != BTRFS_INODE_REF_KEY && 1161 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1162 ret = -ENOENT; 1163 goto out; 1164 } 1165 1166 ret = iterate_inode_ref(root, p, &found_key, 1, 1167 __copy_first_ref, path); 1168 if (ret < 0) 1169 goto out; 1170 ret = 0; 1171 1172 out: 1173 btrfs_free_path(p); 1174 return ret; 1175 } 1176 1177 struct backref_ctx { 1178 struct send_ctx *sctx; 1179 1180 /* number of total found references */ 1181 u64 found; 1182 1183 /* 1184 * used for clones found in send_root. clones found behind cur_objectid 1185 * and cur_offset are not considered as allowed clones. 1186 */ 1187 u64 cur_objectid; 1188 u64 cur_offset; 1189 1190 /* may be truncated in case it's the last extent in a file */ 1191 u64 extent_len; 1192 1193 /* data offset in the file extent item */ 1194 u64 data_offset; 1195 1196 /* Just to check for bugs in backref resolving */ 1197 int found_itself; 1198 }; 1199 1200 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1201 { 1202 u64 root = (u64)(uintptr_t)key; 1203 struct clone_root *cr = (struct clone_root *)elt; 1204 1205 if (root < cr->root->root_key.objectid) 1206 return -1; 1207 if (root > cr->root->root_key.objectid) 1208 return 1; 1209 return 0; 1210 } 1211 1212 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1213 { 1214 struct clone_root *cr1 = (struct clone_root *)e1; 1215 struct clone_root *cr2 = (struct clone_root *)e2; 1216 1217 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid) 1218 return -1; 1219 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid) 1220 return 1; 1221 return 0; 1222 } 1223 1224 /* 1225 * Called for every backref that is found for the current extent. 1226 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1227 */ 1228 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1229 { 1230 struct backref_ctx *bctx = ctx_; 1231 struct clone_root *found; 1232 1233 /* First check if the root is in the list of accepted clone sources */ 1234 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1235 bctx->sctx->clone_roots_cnt, 1236 sizeof(struct clone_root), 1237 __clone_root_cmp_bsearch); 1238 if (!found) 1239 return 0; 1240 1241 if (found->root == bctx->sctx->send_root && 1242 ino == bctx->cur_objectid && 1243 offset == bctx->cur_offset) { 1244 bctx->found_itself = 1; 1245 } 1246 1247 /* 1248 * Make sure we don't consider clones from send_root that are 1249 * behind the current inode/offset. 1250 */ 1251 if (found->root == bctx->sctx->send_root) { 1252 /* 1253 * If the source inode was not yet processed we can't issue a 1254 * clone operation, as the source extent does not exist yet at 1255 * the destination of the stream. 1256 */ 1257 if (ino > bctx->cur_objectid) 1258 return 0; 1259 /* 1260 * We clone from the inode currently being sent as long as the 1261 * source extent is already processed, otherwise we could try 1262 * to clone from an extent that does not exist yet at the 1263 * destination of the stream. 1264 */ 1265 if (ino == bctx->cur_objectid && 1266 offset + bctx->extent_len > 1267 bctx->sctx->cur_inode_next_write_offset) 1268 return 0; 1269 } 1270 1271 bctx->found++; 1272 found->found_refs++; 1273 if (ino < found->ino) { 1274 found->ino = ino; 1275 found->offset = offset; 1276 } else if (found->ino == ino) { 1277 /* 1278 * same extent found more then once in the same file. 1279 */ 1280 if (found->offset > offset + bctx->extent_len) 1281 found->offset = offset; 1282 } 1283 1284 return 0; 1285 } 1286 1287 /* 1288 * Given an inode, offset and extent item, it finds a good clone for a clone 1289 * instruction. Returns -ENOENT when none could be found. The function makes 1290 * sure that the returned clone is usable at the point where sending is at the 1291 * moment. This means, that no clones are accepted which lie behind the current 1292 * inode+offset. 1293 * 1294 * path must point to the extent item when called. 1295 */ 1296 static int find_extent_clone(struct send_ctx *sctx, 1297 struct btrfs_path *path, 1298 u64 ino, u64 data_offset, 1299 u64 ino_size, 1300 struct clone_root **found) 1301 { 1302 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1303 int ret; 1304 int extent_type; 1305 u64 logical; 1306 u64 disk_byte; 1307 u64 num_bytes; 1308 u64 extent_item_pos; 1309 u64 flags = 0; 1310 struct btrfs_file_extent_item *fi; 1311 struct extent_buffer *eb = path->nodes[0]; 1312 struct backref_ctx *backref_ctx = NULL; 1313 struct clone_root *cur_clone_root; 1314 struct btrfs_key found_key; 1315 struct btrfs_path *tmp_path; 1316 struct btrfs_extent_item *ei; 1317 int compressed; 1318 u32 i; 1319 1320 tmp_path = alloc_path_for_send(); 1321 if (!tmp_path) 1322 return -ENOMEM; 1323 1324 /* We only use this path under the commit sem */ 1325 tmp_path->need_commit_sem = 0; 1326 1327 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL); 1328 if (!backref_ctx) { 1329 ret = -ENOMEM; 1330 goto out; 1331 } 1332 1333 if (data_offset >= ino_size) { 1334 /* 1335 * There may be extents that lie behind the file's size. 1336 * I at least had this in combination with snapshotting while 1337 * writing large files. 1338 */ 1339 ret = 0; 1340 goto out; 1341 } 1342 1343 fi = btrfs_item_ptr(eb, path->slots[0], 1344 struct btrfs_file_extent_item); 1345 extent_type = btrfs_file_extent_type(eb, fi); 1346 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1347 ret = -ENOENT; 1348 goto out; 1349 } 1350 compressed = btrfs_file_extent_compression(eb, fi); 1351 1352 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1353 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1354 if (disk_byte == 0) { 1355 ret = -ENOENT; 1356 goto out; 1357 } 1358 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1359 1360 down_read(&fs_info->commit_root_sem); 1361 ret = extent_from_logical(fs_info, disk_byte, tmp_path, 1362 &found_key, &flags); 1363 up_read(&fs_info->commit_root_sem); 1364 1365 if (ret < 0) 1366 goto out; 1367 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1368 ret = -EIO; 1369 goto out; 1370 } 1371 1372 ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0], 1373 struct btrfs_extent_item); 1374 /* 1375 * Backreference walking (iterate_extent_inodes() below) is currently 1376 * too expensive when an extent has a large number of references, both 1377 * in time spent and used memory. So for now just fallback to write 1378 * operations instead of clone operations when an extent has more than 1379 * a certain amount of references. 1380 */ 1381 if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) { 1382 ret = -ENOENT; 1383 goto out; 1384 } 1385 btrfs_release_path(tmp_path); 1386 1387 /* 1388 * Setup the clone roots. 1389 */ 1390 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1391 cur_clone_root = sctx->clone_roots + i; 1392 cur_clone_root->ino = (u64)-1; 1393 cur_clone_root->offset = 0; 1394 cur_clone_root->found_refs = 0; 1395 } 1396 1397 backref_ctx->sctx = sctx; 1398 backref_ctx->found = 0; 1399 backref_ctx->cur_objectid = ino; 1400 backref_ctx->cur_offset = data_offset; 1401 backref_ctx->found_itself = 0; 1402 backref_ctx->extent_len = num_bytes; 1403 /* 1404 * For non-compressed extents iterate_extent_inodes() gives us extent 1405 * offsets that already take into account the data offset, but not for 1406 * compressed extents, since the offset is logical and not relative to 1407 * the physical extent locations. We must take this into account to 1408 * avoid sending clone offsets that go beyond the source file's size, 1409 * which would result in the clone ioctl failing with -EINVAL on the 1410 * receiving end. 1411 */ 1412 if (compressed == BTRFS_COMPRESS_NONE) 1413 backref_ctx->data_offset = 0; 1414 else 1415 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi); 1416 1417 /* 1418 * The last extent of a file may be too large due to page alignment. 1419 * We need to adjust extent_len in this case so that the checks in 1420 * __iterate_backrefs work. 1421 */ 1422 if (data_offset + num_bytes >= ino_size) 1423 backref_ctx->extent_len = ino_size - data_offset; 1424 1425 /* 1426 * Now collect all backrefs. 1427 */ 1428 if (compressed == BTRFS_COMPRESS_NONE) 1429 extent_item_pos = logical - found_key.objectid; 1430 else 1431 extent_item_pos = 0; 1432 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1433 extent_item_pos, 1, __iterate_backrefs, 1434 backref_ctx, false); 1435 1436 if (ret < 0) 1437 goto out; 1438 1439 if (!backref_ctx->found_itself) { 1440 /* found a bug in backref code? */ 1441 ret = -EIO; 1442 btrfs_err(fs_info, 1443 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu", 1444 ino, data_offset, disk_byte, found_key.objectid); 1445 goto out; 1446 } 1447 1448 btrfs_debug(fs_info, 1449 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1450 data_offset, ino, num_bytes, logical); 1451 1452 if (!backref_ctx->found) 1453 btrfs_debug(fs_info, "no clones found"); 1454 1455 cur_clone_root = NULL; 1456 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1457 if (sctx->clone_roots[i].found_refs) { 1458 if (!cur_clone_root) 1459 cur_clone_root = sctx->clone_roots + i; 1460 else if (sctx->clone_roots[i].root == sctx->send_root) 1461 /* prefer clones from send_root over others */ 1462 cur_clone_root = sctx->clone_roots + i; 1463 } 1464 1465 } 1466 1467 if (cur_clone_root) { 1468 *found = cur_clone_root; 1469 ret = 0; 1470 } else { 1471 ret = -ENOENT; 1472 } 1473 1474 out: 1475 btrfs_free_path(tmp_path); 1476 kfree(backref_ctx); 1477 return ret; 1478 } 1479 1480 static int read_symlink(struct btrfs_root *root, 1481 u64 ino, 1482 struct fs_path *dest) 1483 { 1484 int ret; 1485 struct btrfs_path *path; 1486 struct btrfs_key key; 1487 struct btrfs_file_extent_item *ei; 1488 u8 type; 1489 u8 compression; 1490 unsigned long off; 1491 int len; 1492 1493 path = alloc_path_for_send(); 1494 if (!path) 1495 return -ENOMEM; 1496 1497 key.objectid = ino; 1498 key.type = BTRFS_EXTENT_DATA_KEY; 1499 key.offset = 0; 1500 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1501 if (ret < 0) 1502 goto out; 1503 if (ret) { 1504 /* 1505 * An empty symlink inode. Can happen in rare error paths when 1506 * creating a symlink (transaction committed before the inode 1507 * eviction handler removed the symlink inode items and a crash 1508 * happened in between or the subvol was snapshoted in between). 1509 * Print an informative message to dmesg/syslog so that the user 1510 * can delete the symlink. 1511 */ 1512 btrfs_err(root->fs_info, 1513 "Found empty symlink inode %llu at root %llu", 1514 ino, root->root_key.objectid); 1515 ret = -EIO; 1516 goto out; 1517 } 1518 1519 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1520 struct btrfs_file_extent_item); 1521 type = btrfs_file_extent_type(path->nodes[0], ei); 1522 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1523 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1524 BUG_ON(compression); 1525 1526 off = btrfs_file_extent_inline_start(ei); 1527 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1528 1529 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1530 1531 out: 1532 btrfs_free_path(path); 1533 return ret; 1534 } 1535 1536 /* 1537 * Helper function to generate a file name that is unique in the root of 1538 * send_root and parent_root. This is used to generate names for orphan inodes. 1539 */ 1540 static int gen_unique_name(struct send_ctx *sctx, 1541 u64 ino, u64 gen, 1542 struct fs_path *dest) 1543 { 1544 int ret = 0; 1545 struct btrfs_path *path; 1546 struct btrfs_dir_item *di; 1547 char tmp[64]; 1548 int len; 1549 u64 idx = 0; 1550 1551 path = alloc_path_for_send(); 1552 if (!path) 1553 return -ENOMEM; 1554 1555 while (1) { 1556 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1557 ino, gen, idx); 1558 ASSERT(len < sizeof(tmp)); 1559 1560 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1561 path, BTRFS_FIRST_FREE_OBJECTID, 1562 tmp, strlen(tmp), 0); 1563 btrfs_release_path(path); 1564 if (IS_ERR(di)) { 1565 ret = PTR_ERR(di); 1566 goto out; 1567 } 1568 if (di) { 1569 /* not unique, try again */ 1570 idx++; 1571 continue; 1572 } 1573 1574 if (!sctx->parent_root) { 1575 /* unique */ 1576 ret = 0; 1577 break; 1578 } 1579 1580 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1581 path, BTRFS_FIRST_FREE_OBJECTID, 1582 tmp, strlen(tmp), 0); 1583 btrfs_release_path(path); 1584 if (IS_ERR(di)) { 1585 ret = PTR_ERR(di); 1586 goto out; 1587 } 1588 if (di) { 1589 /* not unique, try again */ 1590 idx++; 1591 continue; 1592 } 1593 /* unique */ 1594 break; 1595 } 1596 1597 ret = fs_path_add(dest, tmp, strlen(tmp)); 1598 1599 out: 1600 btrfs_free_path(path); 1601 return ret; 1602 } 1603 1604 enum inode_state { 1605 inode_state_no_change, 1606 inode_state_will_create, 1607 inode_state_did_create, 1608 inode_state_will_delete, 1609 inode_state_did_delete, 1610 }; 1611 1612 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1613 { 1614 int ret; 1615 int left_ret; 1616 int right_ret; 1617 u64 left_gen; 1618 u64 right_gen; 1619 1620 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1621 NULL, NULL); 1622 if (ret < 0 && ret != -ENOENT) 1623 goto out; 1624 left_ret = ret; 1625 1626 if (!sctx->parent_root) { 1627 right_ret = -ENOENT; 1628 } else { 1629 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1630 NULL, NULL, NULL, NULL); 1631 if (ret < 0 && ret != -ENOENT) 1632 goto out; 1633 right_ret = ret; 1634 } 1635 1636 if (!left_ret && !right_ret) { 1637 if (left_gen == gen && right_gen == gen) { 1638 ret = inode_state_no_change; 1639 } else if (left_gen == gen) { 1640 if (ino < sctx->send_progress) 1641 ret = inode_state_did_create; 1642 else 1643 ret = inode_state_will_create; 1644 } else if (right_gen == gen) { 1645 if (ino < sctx->send_progress) 1646 ret = inode_state_did_delete; 1647 else 1648 ret = inode_state_will_delete; 1649 } else { 1650 ret = -ENOENT; 1651 } 1652 } else if (!left_ret) { 1653 if (left_gen == gen) { 1654 if (ino < sctx->send_progress) 1655 ret = inode_state_did_create; 1656 else 1657 ret = inode_state_will_create; 1658 } else { 1659 ret = -ENOENT; 1660 } 1661 } else if (!right_ret) { 1662 if (right_gen == gen) { 1663 if (ino < sctx->send_progress) 1664 ret = inode_state_did_delete; 1665 else 1666 ret = inode_state_will_delete; 1667 } else { 1668 ret = -ENOENT; 1669 } 1670 } else { 1671 ret = -ENOENT; 1672 } 1673 1674 out: 1675 return ret; 1676 } 1677 1678 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1679 { 1680 int ret; 1681 1682 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1683 return 1; 1684 1685 ret = get_cur_inode_state(sctx, ino, gen); 1686 if (ret < 0) 1687 goto out; 1688 1689 if (ret == inode_state_no_change || 1690 ret == inode_state_did_create || 1691 ret == inode_state_will_delete) 1692 ret = 1; 1693 else 1694 ret = 0; 1695 1696 out: 1697 return ret; 1698 } 1699 1700 /* 1701 * Helper function to lookup a dir item in a dir. 1702 */ 1703 static int lookup_dir_item_inode(struct btrfs_root *root, 1704 u64 dir, const char *name, int name_len, 1705 u64 *found_inode, 1706 u8 *found_type) 1707 { 1708 int ret = 0; 1709 struct btrfs_dir_item *di; 1710 struct btrfs_key key; 1711 struct btrfs_path *path; 1712 1713 path = alloc_path_for_send(); 1714 if (!path) 1715 return -ENOMEM; 1716 1717 di = btrfs_lookup_dir_item(NULL, root, path, 1718 dir, name, name_len, 0); 1719 if (IS_ERR_OR_NULL(di)) { 1720 ret = di ? PTR_ERR(di) : -ENOENT; 1721 goto out; 1722 } 1723 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1724 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1725 ret = -ENOENT; 1726 goto out; 1727 } 1728 *found_inode = key.objectid; 1729 *found_type = btrfs_dir_type(path->nodes[0], di); 1730 1731 out: 1732 btrfs_free_path(path); 1733 return ret; 1734 } 1735 1736 /* 1737 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1738 * generation of the parent dir and the name of the dir entry. 1739 */ 1740 static int get_first_ref(struct btrfs_root *root, u64 ino, 1741 u64 *dir, u64 *dir_gen, struct fs_path *name) 1742 { 1743 int ret; 1744 struct btrfs_key key; 1745 struct btrfs_key found_key; 1746 struct btrfs_path *path; 1747 int len; 1748 u64 parent_dir; 1749 1750 path = alloc_path_for_send(); 1751 if (!path) 1752 return -ENOMEM; 1753 1754 key.objectid = ino; 1755 key.type = BTRFS_INODE_REF_KEY; 1756 key.offset = 0; 1757 1758 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1759 if (ret < 0) 1760 goto out; 1761 if (!ret) 1762 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1763 path->slots[0]); 1764 if (ret || found_key.objectid != ino || 1765 (found_key.type != BTRFS_INODE_REF_KEY && 1766 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1767 ret = -ENOENT; 1768 goto out; 1769 } 1770 1771 if (found_key.type == BTRFS_INODE_REF_KEY) { 1772 struct btrfs_inode_ref *iref; 1773 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1774 struct btrfs_inode_ref); 1775 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1776 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1777 (unsigned long)(iref + 1), 1778 len); 1779 parent_dir = found_key.offset; 1780 } else { 1781 struct btrfs_inode_extref *extref; 1782 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1783 struct btrfs_inode_extref); 1784 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1785 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1786 (unsigned long)&extref->name, len); 1787 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1788 } 1789 if (ret < 0) 1790 goto out; 1791 btrfs_release_path(path); 1792 1793 if (dir_gen) { 1794 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1795 NULL, NULL, NULL); 1796 if (ret < 0) 1797 goto out; 1798 } 1799 1800 *dir = parent_dir; 1801 1802 out: 1803 btrfs_free_path(path); 1804 return ret; 1805 } 1806 1807 static int is_first_ref(struct btrfs_root *root, 1808 u64 ino, u64 dir, 1809 const char *name, int name_len) 1810 { 1811 int ret; 1812 struct fs_path *tmp_name; 1813 u64 tmp_dir; 1814 1815 tmp_name = fs_path_alloc(); 1816 if (!tmp_name) 1817 return -ENOMEM; 1818 1819 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1820 if (ret < 0) 1821 goto out; 1822 1823 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1824 ret = 0; 1825 goto out; 1826 } 1827 1828 ret = !memcmp(tmp_name->start, name, name_len); 1829 1830 out: 1831 fs_path_free(tmp_name); 1832 return ret; 1833 } 1834 1835 /* 1836 * Used by process_recorded_refs to determine if a new ref would overwrite an 1837 * already existing ref. In case it detects an overwrite, it returns the 1838 * inode/gen in who_ino/who_gen. 1839 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1840 * to make sure later references to the overwritten inode are possible. 1841 * Orphanizing is however only required for the first ref of an inode. 1842 * process_recorded_refs does an additional is_first_ref check to see if 1843 * orphanizing is really required. 1844 */ 1845 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1846 const char *name, int name_len, 1847 u64 *who_ino, u64 *who_gen, u64 *who_mode) 1848 { 1849 int ret = 0; 1850 u64 gen; 1851 u64 other_inode = 0; 1852 u8 other_type = 0; 1853 1854 if (!sctx->parent_root) 1855 goto out; 1856 1857 ret = is_inode_existent(sctx, dir, dir_gen); 1858 if (ret <= 0) 1859 goto out; 1860 1861 /* 1862 * If we have a parent root we need to verify that the parent dir was 1863 * not deleted and then re-created, if it was then we have no overwrite 1864 * and we can just unlink this entry. 1865 */ 1866 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) { 1867 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1868 NULL, NULL, NULL); 1869 if (ret < 0 && ret != -ENOENT) 1870 goto out; 1871 if (ret) { 1872 ret = 0; 1873 goto out; 1874 } 1875 if (gen != dir_gen) 1876 goto out; 1877 } 1878 1879 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1880 &other_inode, &other_type); 1881 if (ret < 0 && ret != -ENOENT) 1882 goto out; 1883 if (ret) { 1884 ret = 0; 1885 goto out; 1886 } 1887 1888 /* 1889 * Check if the overwritten ref was already processed. If yes, the ref 1890 * was already unlinked/moved, so we can safely assume that we will not 1891 * overwrite anything at this point in time. 1892 */ 1893 if (other_inode > sctx->send_progress || 1894 is_waiting_for_move(sctx, other_inode)) { 1895 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1896 who_gen, who_mode, NULL, NULL, NULL); 1897 if (ret < 0) 1898 goto out; 1899 1900 ret = 1; 1901 *who_ino = other_inode; 1902 } else { 1903 ret = 0; 1904 } 1905 1906 out: 1907 return ret; 1908 } 1909 1910 /* 1911 * Checks if the ref was overwritten by an already processed inode. This is 1912 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1913 * thus the orphan name needs be used. 1914 * process_recorded_refs also uses it to avoid unlinking of refs that were 1915 * overwritten. 1916 */ 1917 static int did_overwrite_ref(struct send_ctx *sctx, 1918 u64 dir, u64 dir_gen, 1919 u64 ino, u64 ino_gen, 1920 const char *name, int name_len) 1921 { 1922 int ret = 0; 1923 u64 gen; 1924 u64 ow_inode; 1925 u8 other_type; 1926 1927 if (!sctx->parent_root) 1928 goto out; 1929 1930 ret = is_inode_existent(sctx, dir, dir_gen); 1931 if (ret <= 0) 1932 goto out; 1933 1934 if (dir != BTRFS_FIRST_FREE_OBJECTID) { 1935 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, 1936 NULL, NULL, NULL); 1937 if (ret < 0 && ret != -ENOENT) 1938 goto out; 1939 if (ret) { 1940 ret = 0; 1941 goto out; 1942 } 1943 if (gen != dir_gen) 1944 goto out; 1945 } 1946 1947 /* check if the ref was overwritten by another ref */ 1948 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1949 &ow_inode, &other_type); 1950 if (ret < 0 && ret != -ENOENT) 1951 goto out; 1952 if (ret) { 1953 /* was never and will never be overwritten */ 1954 ret = 0; 1955 goto out; 1956 } 1957 1958 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1959 NULL, NULL); 1960 if (ret < 0) 1961 goto out; 1962 1963 if (ow_inode == ino && gen == ino_gen) { 1964 ret = 0; 1965 goto out; 1966 } 1967 1968 /* 1969 * We know that it is or will be overwritten. Check this now. 1970 * The current inode being processed might have been the one that caused 1971 * inode 'ino' to be orphanized, therefore check if ow_inode matches 1972 * the current inode being processed. 1973 */ 1974 if ((ow_inode < sctx->send_progress) || 1975 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 1976 gen == sctx->cur_inode_gen)) 1977 ret = 1; 1978 else 1979 ret = 0; 1980 1981 out: 1982 return ret; 1983 } 1984 1985 /* 1986 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1987 * that got overwritten. This is used by process_recorded_refs to determine 1988 * if it has to use the path as returned by get_cur_path or the orphan name. 1989 */ 1990 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1991 { 1992 int ret = 0; 1993 struct fs_path *name = NULL; 1994 u64 dir; 1995 u64 dir_gen; 1996 1997 if (!sctx->parent_root) 1998 goto out; 1999 2000 name = fs_path_alloc(); 2001 if (!name) 2002 return -ENOMEM; 2003 2004 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2005 if (ret < 0) 2006 goto out; 2007 2008 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2009 name->start, fs_path_len(name)); 2010 2011 out: 2012 fs_path_free(name); 2013 return ret; 2014 } 2015 2016 /* 2017 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 2018 * so we need to do some special handling in case we have clashes. This function 2019 * takes care of this with the help of name_cache_entry::radix_list. 2020 * In case of error, nce is kfreed. 2021 */ 2022 static int name_cache_insert(struct send_ctx *sctx, 2023 struct name_cache_entry *nce) 2024 { 2025 int ret = 0; 2026 struct list_head *nce_head; 2027 2028 nce_head = radix_tree_lookup(&sctx->name_cache, 2029 (unsigned long)nce->ino); 2030 if (!nce_head) { 2031 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 2032 if (!nce_head) { 2033 kfree(nce); 2034 return -ENOMEM; 2035 } 2036 INIT_LIST_HEAD(nce_head); 2037 2038 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 2039 if (ret < 0) { 2040 kfree(nce_head); 2041 kfree(nce); 2042 return ret; 2043 } 2044 } 2045 list_add_tail(&nce->radix_list, nce_head); 2046 list_add_tail(&nce->list, &sctx->name_cache_list); 2047 sctx->name_cache_size++; 2048 2049 return ret; 2050 } 2051 2052 static void name_cache_delete(struct send_ctx *sctx, 2053 struct name_cache_entry *nce) 2054 { 2055 struct list_head *nce_head; 2056 2057 nce_head = radix_tree_lookup(&sctx->name_cache, 2058 (unsigned long)nce->ino); 2059 if (!nce_head) { 2060 btrfs_err(sctx->send_root->fs_info, 2061 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2062 nce->ino, sctx->name_cache_size); 2063 } 2064 2065 list_del(&nce->radix_list); 2066 list_del(&nce->list); 2067 sctx->name_cache_size--; 2068 2069 /* 2070 * We may not get to the final release of nce_head if the lookup fails 2071 */ 2072 if (nce_head && list_empty(nce_head)) { 2073 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2074 kfree(nce_head); 2075 } 2076 } 2077 2078 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2079 u64 ino, u64 gen) 2080 { 2081 struct list_head *nce_head; 2082 struct name_cache_entry *cur; 2083 2084 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2085 if (!nce_head) 2086 return NULL; 2087 2088 list_for_each_entry(cur, nce_head, radix_list) { 2089 if (cur->ino == ino && cur->gen == gen) 2090 return cur; 2091 } 2092 return NULL; 2093 } 2094 2095 /* 2096 * Removes the entry from the list and adds it back to the end. This marks the 2097 * entry as recently used so that name_cache_clean_unused does not remove it. 2098 */ 2099 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 2100 { 2101 list_del(&nce->list); 2102 list_add_tail(&nce->list, &sctx->name_cache_list); 2103 } 2104 2105 /* 2106 * Remove some entries from the beginning of name_cache_list. 2107 */ 2108 static void name_cache_clean_unused(struct send_ctx *sctx) 2109 { 2110 struct name_cache_entry *nce; 2111 2112 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2113 return; 2114 2115 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2116 nce = list_entry(sctx->name_cache_list.next, 2117 struct name_cache_entry, list); 2118 name_cache_delete(sctx, nce); 2119 kfree(nce); 2120 } 2121 } 2122 2123 static void name_cache_free(struct send_ctx *sctx) 2124 { 2125 struct name_cache_entry *nce; 2126 2127 while (!list_empty(&sctx->name_cache_list)) { 2128 nce = list_entry(sctx->name_cache_list.next, 2129 struct name_cache_entry, list); 2130 name_cache_delete(sctx, nce); 2131 kfree(nce); 2132 } 2133 } 2134 2135 /* 2136 * Used by get_cur_path for each ref up to the root. 2137 * Returns 0 if it succeeded. 2138 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2139 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2140 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2141 * Returns <0 in case of error. 2142 */ 2143 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2144 u64 ino, u64 gen, 2145 u64 *parent_ino, 2146 u64 *parent_gen, 2147 struct fs_path *dest) 2148 { 2149 int ret; 2150 int nce_ret; 2151 struct name_cache_entry *nce = NULL; 2152 2153 /* 2154 * First check if we already did a call to this function with the same 2155 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2156 * return the cached result. 2157 */ 2158 nce = name_cache_search(sctx, ino, gen); 2159 if (nce) { 2160 if (ino < sctx->send_progress && nce->need_later_update) { 2161 name_cache_delete(sctx, nce); 2162 kfree(nce); 2163 nce = NULL; 2164 } else { 2165 name_cache_used(sctx, nce); 2166 *parent_ino = nce->parent_ino; 2167 *parent_gen = nce->parent_gen; 2168 ret = fs_path_add(dest, nce->name, nce->name_len); 2169 if (ret < 0) 2170 goto out; 2171 ret = nce->ret; 2172 goto out; 2173 } 2174 } 2175 2176 /* 2177 * If the inode is not existent yet, add the orphan name and return 1. 2178 * This should only happen for the parent dir that we determine in 2179 * __record_new_ref 2180 */ 2181 ret = is_inode_existent(sctx, ino, gen); 2182 if (ret < 0) 2183 goto out; 2184 2185 if (!ret) { 2186 ret = gen_unique_name(sctx, ino, gen, dest); 2187 if (ret < 0) 2188 goto out; 2189 ret = 1; 2190 goto out_cache; 2191 } 2192 2193 /* 2194 * Depending on whether the inode was already processed or not, use 2195 * send_root or parent_root for ref lookup. 2196 */ 2197 if (ino < sctx->send_progress) 2198 ret = get_first_ref(sctx->send_root, ino, 2199 parent_ino, parent_gen, dest); 2200 else 2201 ret = get_first_ref(sctx->parent_root, ino, 2202 parent_ino, parent_gen, dest); 2203 if (ret < 0) 2204 goto out; 2205 2206 /* 2207 * Check if the ref was overwritten by an inode's ref that was processed 2208 * earlier. If yes, treat as orphan and return 1. 2209 */ 2210 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2211 dest->start, dest->end - dest->start); 2212 if (ret < 0) 2213 goto out; 2214 if (ret) { 2215 fs_path_reset(dest); 2216 ret = gen_unique_name(sctx, ino, gen, dest); 2217 if (ret < 0) 2218 goto out; 2219 ret = 1; 2220 } 2221 2222 out_cache: 2223 /* 2224 * Store the result of the lookup in the name cache. 2225 */ 2226 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2227 if (!nce) { 2228 ret = -ENOMEM; 2229 goto out; 2230 } 2231 2232 nce->ino = ino; 2233 nce->gen = gen; 2234 nce->parent_ino = *parent_ino; 2235 nce->parent_gen = *parent_gen; 2236 nce->name_len = fs_path_len(dest); 2237 nce->ret = ret; 2238 strcpy(nce->name, dest->start); 2239 2240 if (ino < sctx->send_progress) 2241 nce->need_later_update = 0; 2242 else 2243 nce->need_later_update = 1; 2244 2245 nce_ret = name_cache_insert(sctx, nce); 2246 if (nce_ret < 0) 2247 ret = nce_ret; 2248 name_cache_clean_unused(sctx); 2249 2250 out: 2251 return ret; 2252 } 2253 2254 /* 2255 * Magic happens here. This function returns the first ref to an inode as it 2256 * would look like while receiving the stream at this point in time. 2257 * We walk the path up to the root. For every inode in between, we check if it 2258 * was already processed/sent. If yes, we continue with the parent as found 2259 * in send_root. If not, we continue with the parent as found in parent_root. 2260 * If we encounter an inode that was deleted at this point in time, we use the 2261 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2262 * that were not created yet and overwritten inodes/refs. 2263 * 2264 * When do we have orphan inodes: 2265 * 1. When an inode is freshly created and thus no valid refs are available yet 2266 * 2. When a directory lost all it's refs (deleted) but still has dir items 2267 * inside which were not processed yet (pending for move/delete). If anyone 2268 * tried to get the path to the dir items, it would get a path inside that 2269 * orphan directory. 2270 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2271 * of an unprocessed inode. If in that case the first ref would be 2272 * overwritten, the overwritten inode gets "orphanized". Later when we 2273 * process this overwritten inode, it is restored at a new place by moving 2274 * the orphan inode. 2275 * 2276 * sctx->send_progress tells this function at which point in time receiving 2277 * would be. 2278 */ 2279 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2280 struct fs_path *dest) 2281 { 2282 int ret = 0; 2283 struct fs_path *name = NULL; 2284 u64 parent_inode = 0; 2285 u64 parent_gen = 0; 2286 int stop = 0; 2287 2288 name = fs_path_alloc(); 2289 if (!name) { 2290 ret = -ENOMEM; 2291 goto out; 2292 } 2293 2294 dest->reversed = 1; 2295 fs_path_reset(dest); 2296 2297 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2298 struct waiting_dir_move *wdm; 2299 2300 fs_path_reset(name); 2301 2302 if (is_waiting_for_rm(sctx, ino)) { 2303 ret = gen_unique_name(sctx, ino, gen, name); 2304 if (ret < 0) 2305 goto out; 2306 ret = fs_path_add_path(dest, name); 2307 break; 2308 } 2309 2310 wdm = get_waiting_dir_move(sctx, ino); 2311 if (wdm && wdm->orphanized) { 2312 ret = gen_unique_name(sctx, ino, gen, name); 2313 stop = 1; 2314 } else if (wdm) { 2315 ret = get_first_ref(sctx->parent_root, ino, 2316 &parent_inode, &parent_gen, name); 2317 } else { 2318 ret = __get_cur_name_and_parent(sctx, ino, gen, 2319 &parent_inode, 2320 &parent_gen, name); 2321 if (ret) 2322 stop = 1; 2323 } 2324 2325 if (ret < 0) 2326 goto out; 2327 2328 ret = fs_path_add_path(dest, name); 2329 if (ret < 0) 2330 goto out; 2331 2332 ino = parent_inode; 2333 gen = parent_gen; 2334 } 2335 2336 out: 2337 fs_path_free(name); 2338 if (!ret) 2339 fs_path_unreverse(dest); 2340 return ret; 2341 } 2342 2343 /* 2344 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2345 */ 2346 static int send_subvol_begin(struct send_ctx *sctx) 2347 { 2348 int ret; 2349 struct btrfs_root *send_root = sctx->send_root; 2350 struct btrfs_root *parent_root = sctx->parent_root; 2351 struct btrfs_path *path; 2352 struct btrfs_key key; 2353 struct btrfs_root_ref *ref; 2354 struct extent_buffer *leaf; 2355 char *name = NULL; 2356 int namelen; 2357 2358 path = btrfs_alloc_path(); 2359 if (!path) 2360 return -ENOMEM; 2361 2362 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2363 if (!name) { 2364 btrfs_free_path(path); 2365 return -ENOMEM; 2366 } 2367 2368 key.objectid = send_root->root_key.objectid; 2369 key.type = BTRFS_ROOT_BACKREF_KEY; 2370 key.offset = 0; 2371 2372 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2373 &key, path, 1, 0); 2374 if (ret < 0) 2375 goto out; 2376 if (ret) { 2377 ret = -ENOENT; 2378 goto out; 2379 } 2380 2381 leaf = path->nodes[0]; 2382 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2383 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2384 key.objectid != send_root->root_key.objectid) { 2385 ret = -ENOENT; 2386 goto out; 2387 } 2388 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2389 namelen = btrfs_root_ref_name_len(leaf, ref); 2390 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2391 btrfs_release_path(path); 2392 2393 if (parent_root) { 2394 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2395 if (ret < 0) 2396 goto out; 2397 } else { 2398 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2399 if (ret < 0) 2400 goto out; 2401 } 2402 2403 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2404 2405 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2406 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2407 sctx->send_root->root_item.received_uuid); 2408 else 2409 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2410 sctx->send_root->root_item.uuid); 2411 2412 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2413 le64_to_cpu(sctx->send_root->root_item.ctransid)); 2414 if (parent_root) { 2415 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2416 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2417 parent_root->root_item.received_uuid); 2418 else 2419 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2420 parent_root->root_item.uuid); 2421 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2422 le64_to_cpu(sctx->parent_root->root_item.ctransid)); 2423 } 2424 2425 ret = send_cmd(sctx); 2426 2427 tlv_put_failure: 2428 out: 2429 btrfs_free_path(path); 2430 kfree(name); 2431 return ret; 2432 } 2433 2434 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2435 { 2436 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2437 int ret = 0; 2438 struct fs_path *p; 2439 2440 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2441 2442 p = fs_path_alloc(); 2443 if (!p) 2444 return -ENOMEM; 2445 2446 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2447 if (ret < 0) 2448 goto out; 2449 2450 ret = get_cur_path(sctx, ino, gen, p); 2451 if (ret < 0) 2452 goto out; 2453 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2454 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2455 2456 ret = send_cmd(sctx); 2457 2458 tlv_put_failure: 2459 out: 2460 fs_path_free(p); 2461 return ret; 2462 } 2463 2464 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2465 { 2466 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2467 int ret = 0; 2468 struct fs_path *p; 2469 2470 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2471 2472 p = fs_path_alloc(); 2473 if (!p) 2474 return -ENOMEM; 2475 2476 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2477 if (ret < 0) 2478 goto out; 2479 2480 ret = get_cur_path(sctx, ino, gen, p); 2481 if (ret < 0) 2482 goto out; 2483 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2484 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2485 2486 ret = send_cmd(sctx); 2487 2488 tlv_put_failure: 2489 out: 2490 fs_path_free(p); 2491 return ret; 2492 } 2493 2494 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2495 { 2496 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2497 int ret = 0; 2498 struct fs_path *p; 2499 2500 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2501 ino, uid, gid); 2502 2503 p = fs_path_alloc(); 2504 if (!p) 2505 return -ENOMEM; 2506 2507 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2508 if (ret < 0) 2509 goto out; 2510 2511 ret = get_cur_path(sctx, ino, gen, p); 2512 if (ret < 0) 2513 goto out; 2514 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2515 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2516 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2517 2518 ret = send_cmd(sctx); 2519 2520 tlv_put_failure: 2521 out: 2522 fs_path_free(p); 2523 return ret; 2524 } 2525 2526 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2527 { 2528 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2529 int ret = 0; 2530 struct fs_path *p = NULL; 2531 struct btrfs_inode_item *ii; 2532 struct btrfs_path *path = NULL; 2533 struct extent_buffer *eb; 2534 struct btrfs_key key; 2535 int slot; 2536 2537 btrfs_debug(fs_info, "send_utimes %llu", ino); 2538 2539 p = fs_path_alloc(); 2540 if (!p) 2541 return -ENOMEM; 2542 2543 path = alloc_path_for_send(); 2544 if (!path) { 2545 ret = -ENOMEM; 2546 goto out; 2547 } 2548 2549 key.objectid = ino; 2550 key.type = BTRFS_INODE_ITEM_KEY; 2551 key.offset = 0; 2552 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2553 if (ret > 0) 2554 ret = -ENOENT; 2555 if (ret < 0) 2556 goto out; 2557 2558 eb = path->nodes[0]; 2559 slot = path->slots[0]; 2560 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2561 2562 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2563 if (ret < 0) 2564 goto out; 2565 2566 ret = get_cur_path(sctx, ino, gen, p); 2567 if (ret < 0) 2568 goto out; 2569 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2570 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2571 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2572 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2573 /* TODO Add otime support when the otime patches get into upstream */ 2574 2575 ret = send_cmd(sctx); 2576 2577 tlv_put_failure: 2578 out: 2579 fs_path_free(p); 2580 btrfs_free_path(path); 2581 return ret; 2582 } 2583 2584 /* 2585 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2586 * a valid path yet because we did not process the refs yet. So, the inode 2587 * is created as orphan. 2588 */ 2589 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2590 { 2591 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2592 int ret = 0; 2593 struct fs_path *p; 2594 int cmd; 2595 u64 gen; 2596 u64 mode; 2597 u64 rdev; 2598 2599 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2600 2601 p = fs_path_alloc(); 2602 if (!p) 2603 return -ENOMEM; 2604 2605 if (ino != sctx->cur_ino) { 2606 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2607 NULL, NULL, &rdev); 2608 if (ret < 0) 2609 goto out; 2610 } else { 2611 gen = sctx->cur_inode_gen; 2612 mode = sctx->cur_inode_mode; 2613 rdev = sctx->cur_inode_rdev; 2614 } 2615 2616 if (S_ISREG(mode)) { 2617 cmd = BTRFS_SEND_C_MKFILE; 2618 } else if (S_ISDIR(mode)) { 2619 cmd = BTRFS_SEND_C_MKDIR; 2620 } else if (S_ISLNK(mode)) { 2621 cmd = BTRFS_SEND_C_SYMLINK; 2622 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2623 cmd = BTRFS_SEND_C_MKNOD; 2624 } else if (S_ISFIFO(mode)) { 2625 cmd = BTRFS_SEND_C_MKFIFO; 2626 } else if (S_ISSOCK(mode)) { 2627 cmd = BTRFS_SEND_C_MKSOCK; 2628 } else { 2629 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2630 (int)(mode & S_IFMT)); 2631 ret = -EOPNOTSUPP; 2632 goto out; 2633 } 2634 2635 ret = begin_cmd(sctx, cmd); 2636 if (ret < 0) 2637 goto out; 2638 2639 ret = gen_unique_name(sctx, ino, gen, p); 2640 if (ret < 0) 2641 goto out; 2642 2643 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2644 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2645 2646 if (S_ISLNK(mode)) { 2647 fs_path_reset(p); 2648 ret = read_symlink(sctx->send_root, ino, p); 2649 if (ret < 0) 2650 goto out; 2651 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2652 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2653 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2654 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2655 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2656 } 2657 2658 ret = send_cmd(sctx); 2659 if (ret < 0) 2660 goto out; 2661 2662 2663 tlv_put_failure: 2664 out: 2665 fs_path_free(p); 2666 return ret; 2667 } 2668 2669 /* 2670 * We need some special handling for inodes that get processed before the parent 2671 * directory got created. See process_recorded_refs for details. 2672 * This function does the check if we already created the dir out of order. 2673 */ 2674 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2675 { 2676 int ret = 0; 2677 struct btrfs_path *path = NULL; 2678 struct btrfs_key key; 2679 struct btrfs_key found_key; 2680 struct btrfs_key di_key; 2681 struct extent_buffer *eb; 2682 struct btrfs_dir_item *di; 2683 int slot; 2684 2685 path = alloc_path_for_send(); 2686 if (!path) { 2687 ret = -ENOMEM; 2688 goto out; 2689 } 2690 2691 key.objectid = dir; 2692 key.type = BTRFS_DIR_INDEX_KEY; 2693 key.offset = 0; 2694 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2695 if (ret < 0) 2696 goto out; 2697 2698 while (1) { 2699 eb = path->nodes[0]; 2700 slot = path->slots[0]; 2701 if (slot >= btrfs_header_nritems(eb)) { 2702 ret = btrfs_next_leaf(sctx->send_root, path); 2703 if (ret < 0) { 2704 goto out; 2705 } else if (ret > 0) { 2706 ret = 0; 2707 break; 2708 } 2709 continue; 2710 } 2711 2712 btrfs_item_key_to_cpu(eb, &found_key, slot); 2713 if (found_key.objectid != key.objectid || 2714 found_key.type != key.type) { 2715 ret = 0; 2716 goto out; 2717 } 2718 2719 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2720 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2721 2722 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2723 di_key.objectid < sctx->send_progress) { 2724 ret = 1; 2725 goto out; 2726 } 2727 2728 path->slots[0]++; 2729 } 2730 2731 out: 2732 btrfs_free_path(path); 2733 return ret; 2734 } 2735 2736 /* 2737 * Only creates the inode if it is: 2738 * 1. Not a directory 2739 * 2. Or a directory which was not created already due to out of order 2740 * directories. See did_create_dir and process_recorded_refs for details. 2741 */ 2742 static int send_create_inode_if_needed(struct send_ctx *sctx) 2743 { 2744 int ret; 2745 2746 if (S_ISDIR(sctx->cur_inode_mode)) { 2747 ret = did_create_dir(sctx, sctx->cur_ino); 2748 if (ret < 0) 2749 goto out; 2750 if (ret) { 2751 ret = 0; 2752 goto out; 2753 } 2754 } 2755 2756 ret = send_create_inode(sctx, sctx->cur_ino); 2757 if (ret < 0) 2758 goto out; 2759 2760 out: 2761 return ret; 2762 } 2763 2764 struct recorded_ref { 2765 struct list_head list; 2766 char *name; 2767 struct fs_path *full_path; 2768 u64 dir; 2769 u64 dir_gen; 2770 int name_len; 2771 }; 2772 2773 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 2774 { 2775 ref->full_path = path; 2776 ref->name = (char *)kbasename(ref->full_path->start); 2777 ref->name_len = ref->full_path->end - ref->name; 2778 } 2779 2780 /* 2781 * We need to process new refs before deleted refs, but compare_tree gives us 2782 * everything mixed. So we first record all refs and later process them. 2783 * This function is a helper to record one ref. 2784 */ 2785 static int __record_ref(struct list_head *head, u64 dir, 2786 u64 dir_gen, struct fs_path *path) 2787 { 2788 struct recorded_ref *ref; 2789 2790 ref = kmalloc(sizeof(*ref), GFP_KERNEL); 2791 if (!ref) 2792 return -ENOMEM; 2793 2794 ref->dir = dir; 2795 ref->dir_gen = dir_gen; 2796 set_ref_path(ref, path); 2797 list_add_tail(&ref->list, head); 2798 return 0; 2799 } 2800 2801 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2802 { 2803 struct recorded_ref *new; 2804 2805 new = kmalloc(sizeof(*ref), GFP_KERNEL); 2806 if (!new) 2807 return -ENOMEM; 2808 2809 new->dir = ref->dir; 2810 new->dir_gen = ref->dir_gen; 2811 new->full_path = NULL; 2812 INIT_LIST_HEAD(&new->list); 2813 list_add_tail(&new->list, list); 2814 return 0; 2815 } 2816 2817 static void __free_recorded_refs(struct list_head *head) 2818 { 2819 struct recorded_ref *cur; 2820 2821 while (!list_empty(head)) { 2822 cur = list_entry(head->next, struct recorded_ref, list); 2823 fs_path_free(cur->full_path); 2824 list_del(&cur->list); 2825 kfree(cur); 2826 } 2827 } 2828 2829 static void free_recorded_refs(struct send_ctx *sctx) 2830 { 2831 __free_recorded_refs(&sctx->new_refs); 2832 __free_recorded_refs(&sctx->deleted_refs); 2833 } 2834 2835 /* 2836 * Renames/moves a file/dir to its orphan name. Used when the first 2837 * ref of an unprocessed inode gets overwritten and for all non empty 2838 * directories. 2839 */ 2840 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2841 struct fs_path *path) 2842 { 2843 int ret; 2844 struct fs_path *orphan; 2845 2846 orphan = fs_path_alloc(); 2847 if (!orphan) 2848 return -ENOMEM; 2849 2850 ret = gen_unique_name(sctx, ino, gen, orphan); 2851 if (ret < 0) 2852 goto out; 2853 2854 ret = send_rename(sctx, path, orphan); 2855 2856 out: 2857 fs_path_free(orphan); 2858 return ret; 2859 } 2860 2861 static struct orphan_dir_info * 2862 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2863 { 2864 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2865 struct rb_node *parent = NULL; 2866 struct orphan_dir_info *entry, *odi; 2867 2868 while (*p) { 2869 parent = *p; 2870 entry = rb_entry(parent, struct orphan_dir_info, node); 2871 if (dir_ino < entry->ino) { 2872 p = &(*p)->rb_left; 2873 } else if (dir_ino > entry->ino) { 2874 p = &(*p)->rb_right; 2875 } else { 2876 return entry; 2877 } 2878 } 2879 2880 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 2881 if (!odi) 2882 return ERR_PTR(-ENOMEM); 2883 odi->ino = dir_ino; 2884 odi->gen = 0; 2885 odi->last_dir_index_offset = 0; 2886 2887 rb_link_node(&odi->node, parent, p); 2888 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2889 return odi; 2890 } 2891 2892 static struct orphan_dir_info * 2893 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2894 { 2895 struct rb_node *n = sctx->orphan_dirs.rb_node; 2896 struct orphan_dir_info *entry; 2897 2898 while (n) { 2899 entry = rb_entry(n, struct orphan_dir_info, node); 2900 if (dir_ino < entry->ino) 2901 n = n->rb_left; 2902 else if (dir_ino > entry->ino) 2903 n = n->rb_right; 2904 else 2905 return entry; 2906 } 2907 return NULL; 2908 } 2909 2910 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino) 2911 { 2912 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino); 2913 2914 return odi != NULL; 2915 } 2916 2917 static void free_orphan_dir_info(struct send_ctx *sctx, 2918 struct orphan_dir_info *odi) 2919 { 2920 if (!odi) 2921 return; 2922 rb_erase(&odi->node, &sctx->orphan_dirs); 2923 kfree(odi); 2924 } 2925 2926 /* 2927 * Returns 1 if a directory can be removed at this point in time. 2928 * We check this by iterating all dir items and checking if the inode behind 2929 * the dir item was already processed. 2930 */ 2931 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2932 u64 send_progress) 2933 { 2934 int ret = 0; 2935 struct btrfs_root *root = sctx->parent_root; 2936 struct btrfs_path *path; 2937 struct btrfs_key key; 2938 struct btrfs_key found_key; 2939 struct btrfs_key loc; 2940 struct btrfs_dir_item *di; 2941 struct orphan_dir_info *odi = NULL; 2942 2943 /* 2944 * Don't try to rmdir the top/root subvolume dir. 2945 */ 2946 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2947 return 0; 2948 2949 path = alloc_path_for_send(); 2950 if (!path) 2951 return -ENOMEM; 2952 2953 key.objectid = dir; 2954 key.type = BTRFS_DIR_INDEX_KEY; 2955 key.offset = 0; 2956 2957 odi = get_orphan_dir_info(sctx, dir); 2958 if (odi) 2959 key.offset = odi->last_dir_index_offset; 2960 2961 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2962 if (ret < 0) 2963 goto out; 2964 2965 while (1) { 2966 struct waiting_dir_move *dm; 2967 2968 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2969 ret = btrfs_next_leaf(root, path); 2970 if (ret < 0) 2971 goto out; 2972 else if (ret > 0) 2973 break; 2974 continue; 2975 } 2976 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2977 path->slots[0]); 2978 if (found_key.objectid != key.objectid || 2979 found_key.type != key.type) 2980 break; 2981 2982 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2983 struct btrfs_dir_item); 2984 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2985 2986 dm = get_waiting_dir_move(sctx, loc.objectid); 2987 if (dm) { 2988 odi = add_orphan_dir_info(sctx, dir); 2989 if (IS_ERR(odi)) { 2990 ret = PTR_ERR(odi); 2991 goto out; 2992 } 2993 odi->gen = dir_gen; 2994 odi->last_dir_index_offset = found_key.offset; 2995 dm->rmdir_ino = dir; 2996 ret = 0; 2997 goto out; 2998 } 2999 3000 if (loc.objectid > send_progress) { 3001 odi = add_orphan_dir_info(sctx, dir); 3002 if (IS_ERR(odi)) { 3003 ret = PTR_ERR(odi); 3004 goto out; 3005 } 3006 odi->gen = dir_gen; 3007 odi->last_dir_index_offset = found_key.offset; 3008 ret = 0; 3009 goto out; 3010 } 3011 3012 path->slots[0]++; 3013 } 3014 free_orphan_dir_info(sctx, odi); 3015 3016 ret = 1; 3017 3018 out: 3019 btrfs_free_path(path); 3020 return ret; 3021 } 3022 3023 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3024 { 3025 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3026 3027 return entry != NULL; 3028 } 3029 3030 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3031 { 3032 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3033 struct rb_node *parent = NULL; 3034 struct waiting_dir_move *entry, *dm; 3035 3036 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3037 if (!dm) 3038 return -ENOMEM; 3039 dm->ino = ino; 3040 dm->rmdir_ino = 0; 3041 dm->orphanized = orphanized; 3042 3043 while (*p) { 3044 parent = *p; 3045 entry = rb_entry(parent, struct waiting_dir_move, node); 3046 if (ino < entry->ino) { 3047 p = &(*p)->rb_left; 3048 } else if (ino > entry->ino) { 3049 p = &(*p)->rb_right; 3050 } else { 3051 kfree(dm); 3052 return -EEXIST; 3053 } 3054 } 3055 3056 rb_link_node(&dm->node, parent, p); 3057 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3058 return 0; 3059 } 3060 3061 static struct waiting_dir_move * 3062 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3063 { 3064 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3065 struct waiting_dir_move *entry; 3066 3067 while (n) { 3068 entry = rb_entry(n, struct waiting_dir_move, node); 3069 if (ino < entry->ino) 3070 n = n->rb_left; 3071 else if (ino > entry->ino) 3072 n = n->rb_right; 3073 else 3074 return entry; 3075 } 3076 return NULL; 3077 } 3078 3079 static void free_waiting_dir_move(struct send_ctx *sctx, 3080 struct waiting_dir_move *dm) 3081 { 3082 if (!dm) 3083 return; 3084 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3085 kfree(dm); 3086 } 3087 3088 static int add_pending_dir_move(struct send_ctx *sctx, 3089 u64 ino, 3090 u64 ino_gen, 3091 u64 parent_ino, 3092 struct list_head *new_refs, 3093 struct list_head *deleted_refs, 3094 const bool is_orphan) 3095 { 3096 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3097 struct rb_node *parent = NULL; 3098 struct pending_dir_move *entry = NULL, *pm; 3099 struct recorded_ref *cur; 3100 int exists = 0; 3101 int ret; 3102 3103 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3104 if (!pm) 3105 return -ENOMEM; 3106 pm->parent_ino = parent_ino; 3107 pm->ino = ino; 3108 pm->gen = ino_gen; 3109 INIT_LIST_HEAD(&pm->list); 3110 INIT_LIST_HEAD(&pm->update_refs); 3111 RB_CLEAR_NODE(&pm->node); 3112 3113 while (*p) { 3114 parent = *p; 3115 entry = rb_entry(parent, struct pending_dir_move, node); 3116 if (parent_ino < entry->parent_ino) { 3117 p = &(*p)->rb_left; 3118 } else if (parent_ino > entry->parent_ino) { 3119 p = &(*p)->rb_right; 3120 } else { 3121 exists = 1; 3122 break; 3123 } 3124 } 3125 3126 list_for_each_entry(cur, deleted_refs, list) { 3127 ret = dup_ref(cur, &pm->update_refs); 3128 if (ret < 0) 3129 goto out; 3130 } 3131 list_for_each_entry(cur, new_refs, list) { 3132 ret = dup_ref(cur, &pm->update_refs); 3133 if (ret < 0) 3134 goto out; 3135 } 3136 3137 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3138 if (ret) 3139 goto out; 3140 3141 if (exists) { 3142 list_add_tail(&pm->list, &entry->list); 3143 } else { 3144 rb_link_node(&pm->node, parent, p); 3145 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3146 } 3147 ret = 0; 3148 out: 3149 if (ret) { 3150 __free_recorded_refs(&pm->update_refs); 3151 kfree(pm); 3152 } 3153 return ret; 3154 } 3155 3156 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3157 u64 parent_ino) 3158 { 3159 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3160 struct pending_dir_move *entry; 3161 3162 while (n) { 3163 entry = rb_entry(n, struct pending_dir_move, node); 3164 if (parent_ino < entry->parent_ino) 3165 n = n->rb_left; 3166 else if (parent_ino > entry->parent_ino) 3167 n = n->rb_right; 3168 else 3169 return entry; 3170 } 3171 return NULL; 3172 } 3173 3174 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3175 u64 ino, u64 gen, u64 *ancestor_ino) 3176 { 3177 int ret = 0; 3178 u64 parent_inode = 0; 3179 u64 parent_gen = 0; 3180 u64 start_ino = ino; 3181 3182 *ancestor_ino = 0; 3183 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3184 fs_path_reset(name); 3185 3186 if (is_waiting_for_rm(sctx, ino)) 3187 break; 3188 if (is_waiting_for_move(sctx, ino)) { 3189 if (*ancestor_ino == 0) 3190 *ancestor_ino = ino; 3191 ret = get_first_ref(sctx->parent_root, ino, 3192 &parent_inode, &parent_gen, name); 3193 } else { 3194 ret = __get_cur_name_and_parent(sctx, ino, gen, 3195 &parent_inode, 3196 &parent_gen, name); 3197 if (ret > 0) { 3198 ret = 0; 3199 break; 3200 } 3201 } 3202 if (ret < 0) 3203 break; 3204 if (parent_inode == start_ino) { 3205 ret = 1; 3206 if (*ancestor_ino == 0) 3207 *ancestor_ino = ino; 3208 break; 3209 } 3210 ino = parent_inode; 3211 gen = parent_gen; 3212 } 3213 return ret; 3214 } 3215 3216 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3217 { 3218 struct fs_path *from_path = NULL; 3219 struct fs_path *to_path = NULL; 3220 struct fs_path *name = NULL; 3221 u64 orig_progress = sctx->send_progress; 3222 struct recorded_ref *cur; 3223 u64 parent_ino, parent_gen; 3224 struct waiting_dir_move *dm = NULL; 3225 u64 rmdir_ino = 0; 3226 u64 ancestor; 3227 bool is_orphan; 3228 int ret; 3229 3230 name = fs_path_alloc(); 3231 from_path = fs_path_alloc(); 3232 if (!name || !from_path) { 3233 ret = -ENOMEM; 3234 goto out; 3235 } 3236 3237 dm = get_waiting_dir_move(sctx, pm->ino); 3238 ASSERT(dm); 3239 rmdir_ino = dm->rmdir_ino; 3240 is_orphan = dm->orphanized; 3241 free_waiting_dir_move(sctx, dm); 3242 3243 if (is_orphan) { 3244 ret = gen_unique_name(sctx, pm->ino, 3245 pm->gen, from_path); 3246 } else { 3247 ret = get_first_ref(sctx->parent_root, pm->ino, 3248 &parent_ino, &parent_gen, name); 3249 if (ret < 0) 3250 goto out; 3251 ret = get_cur_path(sctx, parent_ino, parent_gen, 3252 from_path); 3253 if (ret < 0) 3254 goto out; 3255 ret = fs_path_add_path(from_path, name); 3256 } 3257 if (ret < 0) 3258 goto out; 3259 3260 sctx->send_progress = sctx->cur_ino + 1; 3261 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3262 if (ret < 0) 3263 goto out; 3264 if (ret) { 3265 LIST_HEAD(deleted_refs); 3266 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3267 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3268 &pm->update_refs, &deleted_refs, 3269 is_orphan); 3270 if (ret < 0) 3271 goto out; 3272 if (rmdir_ino) { 3273 dm = get_waiting_dir_move(sctx, pm->ino); 3274 ASSERT(dm); 3275 dm->rmdir_ino = rmdir_ino; 3276 } 3277 goto out; 3278 } 3279 fs_path_reset(name); 3280 to_path = name; 3281 name = NULL; 3282 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3283 if (ret < 0) 3284 goto out; 3285 3286 ret = send_rename(sctx, from_path, to_path); 3287 if (ret < 0) 3288 goto out; 3289 3290 if (rmdir_ino) { 3291 struct orphan_dir_info *odi; 3292 u64 gen; 3293 3294 odi = get_orphan_dir_info(sctx, rmdir_ino); 3295 if (!odi) { 3296 /* already deleted */ 3297 goto finish; 3298 } 3299 gen = odi->gen; 3300 3301 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino); 3302 if (ret < 0) 3303 goto out; 3304 if (!ret) 3305 goto finish; 3306 3307 name = fs_path_alloc(); 3308 if (!name) { 3309 ret = -ENOMEM; 3310 goto out; 3311 } 3312 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3313 if (ret < 0) 3314 goto out; 3315 ret = send_rmdir(sctx, name); 3316 if (ret < 0) 3317 goto out; 3318 } 3319 3320 finish: 3321 ret = send_utimes(sctx, pm->ino, pm->gen); 3322 if (ret < 0) 3323 goto out; 3324 3325 /* 3326 * After rename/move, need to update the utimes of both new parent(s) 3327 * and old parent(s). 3328 */ 3329 list_for_each_entry(cur, &pm->update_refs, list) { 3330 /* 3331 * The parent inode might have been deleted in the send snapshot 3332 */ 3333 ret = get_inode_info(sctx->send_root, cur->dir, NULL, 3334 NULL, NULL, NULL, NULL, NULL); 3335 if (ret == -ENOENT) { 3336 ret = 0; 3337 continue; 3338 } 3339 if (ret < 0) 3340 goto out; 3341 3342 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3343 if (ret < 0) 3344 goto out; 3345 } 3346 3347 out: 3348 fs_path_free(name); 3349 fs_path_free(from_path); 3350 fs_path_free(to_path); 3351 sctx->send_progress = orig_progress; 3352 3353 return ret; 3354 } 3355 3356 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3357 { 3358 if (!list_empty(&m->list)) 3359 list_del(&m->list); 3360 if (!RB_EMPTY_NODE(&m->node)) 3361 rb_erase(&m->node, &sctx->pending_dir_moves); 3362 __free_recorded_refs(&m->update_refs); 3363 kfree(m); 3364 } 3365 3366 static void tail_append_pending_moves(struct send_ctx *sctx, 3367 struct pending_dir_move *moves, 3368 struct list_head *stack) 3369 { 3370 if (list_empty(&moves->list)) { 3371 list_add_tail(&moves->list, stack); 3372 } else { 3373 LIST_HEAD(list); 3374 list_splice_init(&moves->list, &list); 3375 list_add_tail(&moves->list, stack); 3376 list_splice_tail(&list, stack); 3377 } 3378 if (!RB_EMPTY_NODE(&moves->node)) { 3379 rb_erase(&moves->node, &sctx->pending_dir_moves); 3380 RB_CLEAR_NODE(&moves->node); 3381 } 3382 } 3383 3384 static int apply_children_dir_moves(struct send_ctx *sctx) 3385 { 3386 struct pending_dir_move *pm; 3387 struct list_head stack; 3388 u64 parent_ino = sctx->cur_ino; 3389 int ret = 0; 3390 3391 pm = get_pending_dir_moves(sctx, parent_ino); 3392 if (!pm) 3393 return 0; 3394 3395 INIT_LIST_HEAD(&stack); 3396 tail_append_pending_moves(sctx, pm, &stack); 3397 3398 while (!list_empty(&stack)) { 3399 pm = list_first_entry(&stack, struct pending_dir_move, list); 3400 parent_ino = pm->ino; 3401 ret = apply_dir_move(sctx, pm); 3402 free_pending_move(sctx, pm); 3403 if (ret) 3404 goto out; 3405 pm = get_pending_dir_moves(sctx, parent_ino); 3406 if (pm) 3407 tail_append_pending_moves(sctx, pm, &stack); 3408 } 3409 return 0; 3410 3411 out: 3412 while (!list_empty(&stack)) { 3413 pm = list_first_entry(&stack, struct pending_dir_move, list); 3414 free_pending_move(sctx, pm); 3415 } 3416 return ret; 3417 } 3418 3419 /* 3420 * We might need to delay a directory rename even when no ancestor directory 3421 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3422 * renamed. This happens when we rename a directory to the old name (the name 3423 * in the parent root) of some other unrelated directory that got its rename 3424 * delayed due to some ancestor with higher number that got renamed. 3425 * 3426 * Example: 3427 * 3428 * Parent snapshot: 3429 * . (ino 256) 3430 * |---- a/ (ino 257) 3431 * | |---- file (ino 260) 3432 * | 3433 * |---- b/ (ino 258) 3434 * |---- c/ (ino 259) 3435 * 3436 * Send snapshot: 3437 * . (ino 256) 3438 * |---- a/ (ino 258) 3439 * |---- x/ (ino 259) 3440 * |---- y/ (ino 257) 3441 * |----- file (ino 260) 3442 * 3443 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3444 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3445 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3446 * must issue is: 3447 * 3448 * 1 - rename 259 from 'c' to 'x' 3449 * 2 - rename 257 from 'a' to 'x/y' 3450 * 3 - rename 258 from 'b' to 'a' 3451 * 3452 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3453 * be done right away and < 0 on error. 3454 */ 3455 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3456 struct recorded_ref *parent_ref, 3457 const bool is_orphan) 3458 { 3459 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3460 struct btrfs_path *path; 3461 struct btrfs_key key; 3462 struct btrfs_key di_key; 3463 struct btrfs_dir_item *di; 3464 u64 left_gen; 3465 u64 right_gen; 3466 int ret = 0; 3467 struct waiting_dir_move *wdm; 3468 3469 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3470 return 0; 3471 3472 path = alloc_path_for_send(); 3473 if (!path) 3474 return -ENOMEM; 3475 3476 key.objectid = parent_ref->dir; 3477 key.type = BTRFS_DIR_ITEM_KEY; 3478 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3479 3480 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3481 if (ret < 0) { 3482 goto out; 3483 } else if (ret > 0) { 3484 ret = 0; 3485 goto out; 3486 } 3487 3488 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3489 parent_ref->name_len); 3490 if (!di) { 3491 ret = 0; 3492 goto out; 3493 } 3494 /* 3495 * di_key.objectid has the number of the inode that has a dentry in the 3496 * parent directory with the same name that sctx->cur_ino is being 3497 * renamed to. We need to check if that inode is in the send root as 3498 * well and if it is currently marked as an inode with a pending rename, 3499 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3500 * that it happens after that other inode is renamed. 3501 */ 3502 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3503 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3504 ret = 0; 3505 goto out; 3506 } 3507 3508 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3509 &left_gen, NULL, NULL, NULL, NULL); 3510 if (ret < 0) 3511 goto out; 3512 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3513 &right_gen, NULL, NULL, NULL, NULL); 3514 if (ret < 0) { 3515 if (ret == -ENOENT) 3516 ret = 0; 3517 goto out; 3518 } 3519 3520 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3521 if (right_gen != left_gen) { 3522 ret = 0; 3523 goto out; 3524 } 3525 3526 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3527 if (wdm && !wdm->orphanized) { 3528 ret = add_pending_dir_move(sctx, 3529 sctx->cur_ino, 3530 sctx->cur_inode_gen, 3531 di_key.objectid, 3532 &sctx->new_refs, 3533 &sctx->deleted_refs, 3534 is_orphan); 3535 if (!ret) 3536 ret = 1; 3537 } 3538 out: 3539 btrfs_free_path(path); 3540 return ret; 3541 } 3542 3543 /* 3544 * Check if inode ino2, or any of its ancestors, is inode ino1. 3545 * Return 1 if true, 0 if false and < 0 on error. 3546 */ 3547 static int check_ino_in_path(struct btrfs_root *root, 3548 const u64 ino1, 3549 const u64 ino1_gen, 3550 const u64 ino2, 3551 const u64 ino2_gen, 3552 struct fs_path *fs_path) 3553 { 3554 u64 ino = ino2; 3555 3556 if (ino1 == ino2) 3557 return ino1_gen == ino2_gen; 3558 3559 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3560 u64 parent; 3561 u64 parent_gen; 3562 int ret; 3563 3564 fs_path_reset(fs_path); 3565 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3566 if (ret < 0) 3567 return ret; 3568 if (parent == ino1) 3569 return parent_gen == ino1_gen; 3570 ino = parent; 3571 } 3572 return 0; 3573 } 3574 3575 /* 3576 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any 3577 * possible path (in case ino2 is not a directory and has multiple hard links). 3578 * Return 1 if true, 0 if false and < 0 on error. 3579 */ 3580 static int is_ancestor(struct btrfs_root *root, 3581 const u64 ino1, 3582 const u64 ino1_gen, 3583 const u64 ino2, 3584 struct fs_path *fs_path) 3585 { 3586 bool free_fs_path = false; 3587 int ret = 0; 3588 struct btrfs_path *path = NULL; 3589 struct btrfs_key key; 3590 3591 if (!fs_path) { 3592 fs_path = fs_path_alloc(); 3593 if (!fs_path) 3594 return -ENOMEM; 3595 free_fs_path = true; 3596 } 3597 3598 path = alloc_path_for_send(); 3599 if (!path) { 3600 ret = -ENOMEM; 3601 goto out; 3602 } 3603 3604 key.objectid = ino2; 3605 key.type = BTRFS_INODE_REF_KEY; 3606 key.offset = 0; 3607 3608 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3609 if (ret < 0) 3610 goto out; 3611 3612 while (true) { 3613 struct extent_buffer *leaf = path->nodes[0]; 3614 int slot = path->slots[0]; 3615 u32 cur_offset = 0; 3616 u32 item_size; 3617 3618 if (slot >= btrfs_header_nritems(leaf)) { 3619 ret = btrfs_next_leaf(root, path); 3620 if (ret < 0) 3621 goto out; 3622 if (ret > 0) 3623 break; 3624 continue; 3625 } 3626 3627 btrfs_item_key_to_cpu(leaf, &key, slot); 3628 if (key.objectid != ino2) 3629 break; 3630 if (key.type != BTRFS_INODE_REF_KEY && 3631 key.type != BTRFS_INODE_EXTREF_KEY) 3632 break; 3633 3634 item_size = btrfs_item_size_nr(leaf, slot); 3635 while (cur_offset < item_size) { 3636 u64 parent; 3637 u64 parent_gen; 3638 3639 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3640 unsigned long ptr; 3641 struct btrfs_inode_extref *extref; 3642 3643 ptr = btrfs_item_ptr_offset(leaf, slot); 3644 extref = (struct btrfs_inode_extref *) 3645 (ptr + cur_offset); 3646 parent = btrfs_inode_extref_parent(leaf, 3647 extref); 3648 cur_offset += sizeof(*extref); 3649 cur_offset += btrfs_inode_extref_name_len(leaf, 3650 extref); 3651 } else { 3652 parent = key.offset; 3653 cur_offset = item_size; 3654 } 3655 3656 ret = get_inode_info(root, parent, NULL, &parent_gen, 3657 NULL, NULL, NULL, NULL); 3658 if (ret < 0) 3659 goto out; 3660 ret = check_ino_in_path(root, ino1, ino1_gen, 3661 parent, parent_gen, fs_path); 3662 if (ret) 3663 goto out; 3664 } 3665 path->slots[0]++; 3666 } 3667 ret = 0; 3668 out: 3669 btrfs_free_path(path); 3670 if (free_fs_path) 3671 fs_path_free(fs_path); 3672 return ret; 3673 } 3674 3675 static int wait_for_parent_move(struct send_ctx *sctx, 3676 struct recorded_ref *parent_ref, 3677 const bool is_orphan) 3678 { 3679 int ret = 0; 3680 u64 ino = parent_ref->dir; 3681 u64 ino_gen = parent_ref->dir_gen; 3682 u64 parent_ino_before, parent_ino_after; 3683 struct fs_path *path_before = NULL; 3684 struct fs_path *path_after = NULL; 3685 int len1, len2; 3686 3687 path_after = fs_path_alloc(); 3688 path_before = fs_path_alloc(); 3689 if (!path_after || !path_before) { 3690 ret = -ENOMEM; 3691 goto out; 3692 } 3693 3694 /* 3695 * Our current directory inode may not yet be renamed/moved because some 3696 * ancestor (immediate or not) has to be renamed/moved first. So find if 3697 * such ancestor exists and make sure our own rename/move happens after 3698 * that ancestor is processed to avoid path build infinite loops (done 3699 * at get_cur_path()). 3700 */ 3701 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3702 u64 parent_ino_after_gen; 3703 3704 if (is_waiting_for_move(sctx, ino)) { 3705 /* 3706 * If the current inode is an ancestor of ino in the 3707 * parent root, we need to delay the rename of the 3708 * current inode, otherwise don't delayed the rename 3709 * because we can end up with a circular dependency 3710 * of renames, resulting in some directories never 3711 * getting the respective rename operations issued in 3712 * the send stream or getting into infinite path build 3713 * loops. 3714 */ 3715 ret = is_ancestor(sctx->parent_root, 3716 sctx->cur_ino, sctx->cur_inode_gen, 3717 ino, path_before); 3718 if (ret) 3719 break; 3720 } 3721 3722 fs_path_reset(path_before); 3723 fs_path_reset(path_after); 3724 3725 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3726 &parent_ino_after_gen, path_after); 3727 if (ret < 0) 3728 goto out; 3729 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3730 NULL, path_before); 3731 if (ret < 0 && ret != -ENOENT) { 3732 goto out; 3733 } else if (ret == -ENOENT) { 3734 ret = 0; 3735 break; 3736 } 3737 3738 len1 = fs_path_len(path_before); 3739 len2 = fs_path_len(path_after); 3740 if (ino > sctx->cur_ino && 3741 (parent_ino_before != parent_ino_after || len1 != len2 || 3742 memcmp(path_before->start, path_after->start, len1))) { 3743 u64 parent_ino_gen; 3744 3745 ret = get_inode_info(sctx->parent_root, ino, NULL, 3746 &parent_ino_gen, NULL, NULL, NULL, 3747 NULL); 3748 if (ret < 0) 3749 goto out; 3750 if (ino_gen == parent_ino_gen) { 3751 ret = 1; 3752 break; 3753 } 3754 } 3755 ino = parent_ino_after; 3756 ino_gen = parent_ino_after_gen; 3757 } 3758 3759 out: 3760 fs_path_free(path_before); 3761 fs_path_free(path_after); 3762 3763 if (ret == 1) { 3764 ret = add_pending_dir_move(sctx, 3765 sctx->cur_ino, 3766 sctx->cur_inode_gen, 3767 ino, 3768 &sctx->new_refs, 3769 &sctx->deleted_refs, 3770 is_orphan); 3771 if (!ret) 3772 ret = 1; 3773 } 3774 3775 return ret; 3776 } 3777 3778 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3779 { 3780 int ret; 3781 struct fs_path *new_path; 3782 3783 /* 3784 * Our reference's name member points to its full_path member string, so 3785 * we use here a new path. 3786 */ 3787 new_path = fs_path_alloc(); 3788 if (!new_path) 3789 return -ENOMEM; 3790 3791 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 3792 if (ret < 0) { 3793 fs_path_free(new_path); 3794 return ret; 3795 } 3796 ret = fs_path_add(new_path, ref->name, ref->name_len); 3797 if (ret < 0) { 3798 fs_path_free(new_path); 3799 return ret; 3800 } 3801 3802 fs_path_free(ref->full_path); 3803 set_ref_path(ref, new_path); 3804 3805 return 0; 3806 } 3807 3808 /* 3809 * When processing the new references for an inode we may orphanize an existing 3810 * directory inode because its old name conflicts with one of the new references 3811 * of the current inode. Later, when processing another new reference of our 3812 * inode, we might need to orphanize another inode, but the path we have in the 3813 * reference reflects the pre-orphanization name of the directory we previously 3814 * orphanized. For example: 3815 * 3816 * parent snapshot looks like: 3817 * 3818 * . (ino 256) 3819 * |----- f1 (ino 257) 3820 * |----- f2 (ino 258) 3821 * |----- d1/ (ino 259) 3822 * |----- d2/ (ino 260) 3823 * 3824 * send snapshot looks like: 3825 * 3826 * . (ino 256) 3827 * |----- d1 (ino 258) 3828 * |----- f2/ (ino 259) 3829 * |----- f2_link/ (ino 260) 3830 * | |----- f1 (ino 257) 3831 * | 3832 * |----- d2 (ino 258) 3833 * 3834 * When processing inode 257 we compute the name for inode 259 as "d1", and we 3835 * cache it in the name cache. Later when we start processing inode 258, when 3836 * collecting all its new references we set a full path of "d1/d2" for its new 3837 * reference with name "d2". When we start processing the new references we 3838 * start by processing the new reference with name "d1", and this results in 3839 * orphanizing inode 259, since its old reference causes a conflict. Then we 3840 * move on the next new reference, with name "d2", and we find out we must 3841 * orphanize inode 260, as its old reference conflicts with ours - but for the 3842 * orphanization we use a source path corresponding to the path we stored in the 3843 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 3844 * receiver fail since the path component "d1/" no longer exists, it was renamed 3845 * to "o259-6-0/" when processing the previous new reference. So in this case we 3846 * must recompute the path in the new reference and use it for the new 3847 * orphanization operation. 3848 */ 3849 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3850 { 3851 char *name; 3852 int ret; 3853 3854 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 3855 if (!name) 3856 return -ENOMEM; 3857 3858 fs_path_reset(ref->full_path); 3859 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 3860 if (ret < 0) 3861 goto out; 3862 3863 ret = fs_path_add(ref->full_path, name, ref->name_len); 3864 if (ret < 0) 3865 goto out; 3866 3867 /* Update the reference's base name pointer. */ 3868 set_ref_path(ref, ref->full_path); 3869 out: 3870 kfree(name); 3871 return ret; 3872 } 3873 3874 /* 3875 * This does all the move/link/unlink/rmdir magic. 3876 */ 3877 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3878 { 3879 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 3880 int ret = 0; 3881 struct recorded_ref *cur; 3882 struct recorded_ref *cur2; 3883 struct list_head check_dirs; 3884 struct fs_path *valid_path = NULL; 3885 u64 ow_inode = 0; 3886 u64 ow_gen; 3887 u64 ow_mode; 3888 int did_overwrite = 0; 3889 int is_orphan = 0; 3890 u64 last_dir_ino_rm = 0; 3891 bool can_rename = true; 3892 bool orphanized_dir = false; 3893 bool orphanized_ancestor = false; 3894 3895 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 3896 3897 /* 3898 * This should never happen as the root dir always has the same ref 3899 * which is always '..' 3900 */ 3901 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3902 INIT_LIST_HEAD(&check_dirs); 3903 3904 valid_path = fs_path_alloc(); 3905 if (!valid_path) { 3906 ret = -ENOMEM; 3907 goto out; 3908 } 3909 3910 /* 3911 * First, check if the first ref of the current inode was overwritten 3912 * before. If yes, we know that the current inode was already orphanized 3913 * and thus use the orphan name. If not, we can use get_cur_path to 3914 * get the path of the first ref as it would like while receiving at 3915 * this point in time. 3916 * New inodes are always orphan at the beginning, so force to use the 3917 * orphan name in this case. 3918 * The first ref is stored in valid_path and will be updated if it 3919 * gets moved around. 3920 */ 3921 if (!sctx->cur_inode_new) { 3922 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3923 sctx->cur_inode_gen); 3924 if (ret < 0) 3925 goto out; 3926 if (ret) 3927 did_overwrite = 1; 3928 } 3929 if (sctx->cur_inode_new || did_overwrite) { 3930 ret = gen_unique_name(sctx, sctx->cur_ino, 3931 sctx->cur_inode_gen, valid_path); 3932 if (ret < 0) 3933 goto out; 3934 is_orphan = 1; 3935 } else { 3936 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3937 valid_path); 3938 if (ret < 0) 3939 goto out; 3940 } 3941 3942 /* 3943 * Before doing any rename and link operations, do a first pass on the 3944 * new references to orphanize any unprocessed inodes that may have a 3945 * reference that conflicts with one of the new references of the current 3946 * inode. This needs to happen first because a new reference may conflict 3947 * with the old reference of a parent directory, so we must make sure 3948 * that the path used for link and rename commands don't use an 3949 * orphanized name when an ancestor was not yet orphanized. 3950 * 3951 * Example: 3952 * 3953 * Parent snapshot: 3954 * 3955 * . (ino 256) 3956 * |----- testdir/ (ino 259) 3957 * | |----- a (ino 257) 3958 * | 3959 * |----- b (ino 258) 3960 * 3961 * Send snapshot: 3962 * 3963 * . (ino 256) 3964 * |----- testdir_2/ (ino 259) 3965 * | |----- a (ino 260) 3966 * | 3967 * |----- testdir (ino 257) 3968 * |----- b (ino 257) 3969 * |----- b2 (ino 258) 3970 * 3971 * Processing the new reference for inode 257 with name "b" may happen 3972 * before processing the new reference with name "testdir". If so, we 3973 * must make sure that by the time we send a link command to create the 3974 * hard link "b", inode 259 was already orphanized, since the generated 3975 * path in "valid_path" already contains the orphanized name for 259. 3976 * We are processing inode 257, so only later when processing 259 we do 3977 * the rename operation to change its temporary (orphanized) name to 3978 * "testdir_2". 3979 */ 3980 list_for_each_entry(cur, &sctx->new_refs, list) { 3981 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3982 if (ret < 0) 3983 goto out; 3984 if (ret == inode_state_will_create) 3985 continue; 3986 3987 /* 3988 * Check if this new ref would overwrite the first ref of another 3989 * unprocessed inode. If yes, orphanize the overwritten inode. 3990 * If we find an overwritten ref that is not the first ref, 3991 * simply unlink it. 3992 */ 3993 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3994 cur->name, cur->name_len, 3995 &ow_inode, &ow_gen, &ow_mode); 3996 if (ret < 0) 3997 goto out; 3998 if (ret) { 3999 ret = is_first_ref(sctx->parent_root, 4000 ow_inode, cur->dir, cur->name, 4001 cur->name_len); 4002 if (ret < 0) 4003 goto out; 4004 if (ret) { 4005 struct name_cache_entry *nce; 4006 struct waiting_dir_move *wdm; 4007 4008 if (orphanized_dir) { 4009 ret = refresh_ref_path(sctx, cur); 4010 if (ret < 0) 4011 goto out; 4012 } 4013 4014 ret = orphanize_inode(sctx, ow_inode, ow_gen, 4015 cur->full_path); 4016 if (ret < 0) 4017 goto out; 4018 if (S_ISDIR(ow_mode)) 4019 orphanized_dir = true; 4020 4021 /* 4022 * If ow_inode has its rename operation delayed 4023 * make sure that its orphanized name is used in 4024 * the source path when performing its rename 4025 * operation. 4026 */ 4027 if (is_waiting_for_move(sctx, ow_inode)) { 4028 wdm = get_waiting_dir_move(sctx, 4029 ow_inode); 4030 ASSERT(wdm); 4031 wdm->orphanized = true; 4032 } 4033 4034 /* 4035 * Make sure we clear our orphanized inode's 4036 * name from the name cache. This is because the 4037 * inode ow_inode might be an ancestor of some 4038 * other inode that will be orphanized as well 4039 * later and has an inode number greater than 4040 * sctx->send_progress. We need to prevent 4041 * future name lookups from using the old name 4042 * and get instead the orphan name. 4043 */ 4044 nce = name_cache_search(sctx, ow_inode, ow_gen); 4045 if (nce) { 4046 name_cache_delete(sctx, nce); 4047 kfree(nce); 4048 } 4049 4050 /* 4051 * ow_inode might currently be an ancestor of 4052 * cur_ino, therefore compute valid_path (the 4053 * current path of cur_ino) again because it 4054 * might contain the pre-orphanization name of 4055 * ow_inode, which is no longer valid. 4056 */ 4057 ret = is_ancestor(sctx->parent_root, 4058 ow_inode, ow_gen, 4059 sctx->cur_ino, NULL); 4060 if (ret > 0) { 4061 orphanized_ancestor = true; 4062 fs_path_reset(valid_path); 4063 ret = get_cur_path(sctx, sctx->cur_ino, 4064 sctx->cur_inode_gen, 4065 valid_path); 4066 } 4067 if (ret < 0) 4068 goto out; 4069 } else { 4070 ret = send_unlink(sctx, cur->full_path); 4071 if (ret < 0) 4072 goto out; 4073 } 4074 } 4075 4076 } 4077 4078 list_for_each_entry(cur, &sctx->new_refs, list) { 4079 /* 4080 * We may have refs where the parent directory does not exist 4081 * yet. This happens if the parent directories inum is higher 4082 * than the current inum. To handle this case, we create the 4083 * parent directory out of order. But we need to check if this 4084 * did already happen before due to other refs in the same dir. 4085 */ 4086 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4087 if (ret < 0) 4088 goto out; 4089 if (ret == inode_state_will_create) { 4090 ret = 0; 4091 /* 4092 * First check if any of the current inodes refs did 4093 * already create the dir. 4094 */ 4095 list_for_each_entry(cur2, &sctx->new_refs, list) { 4096 if (cur == cur2) 4097 break; 4098 if (cur2->dir == cur->dir) { 4099 ret = 1; 4100 break; 4101 } 4102 } 4103 4104 /* 4105 * If that did not happen, check if a previous inode 4106 * did already create the dir. 4107 */ 4108 if (!ret) 4109 ret = did_create_dir(sctx, cur->dir); 4110 if (ret < 0) 4111 goto out; 4112 if (!ret) { 4113 ret = send_create_inode(sctx, cur->dir); 4114 if (ret < 0) 4115 goto out; 4116 } 4117 } 4118 4119 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4120 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4121 if (ret < 0) 4122 goto out; 4123 if (ret == 1) { 4124 can_rename = false; 4125 *pending_move = 1; 4126 } 4127 } 4128 4129 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4130 can_rename) { 4131 ret = wait_for_parent_move(sctx, cur, is_orphan); 4132 if (ret < 0) 4133 goto out; 4134 if (ret == 1) { 4135 can_rename = false; 4136 *pending_move = 1; 4137 } 4138 } 4139 4140 /* 4141 * link/move the ref to the new place. If we have an orphan 4142 * inode, move it and update valid_path. If not, link or move 4143 * it depending on the inode mode. 4144 */ 4145 if (is_orphan && can_rename) { 4146 ret = send_rename(sctx, valid_path, cur->full_path); 4147 if (ret < 0) 4148 goto out; 4149 is_orphan = 0; 4150 ret = fs_path_copy(valid_path, cur->full_path); 4151 if (ret < 0) 4152 goto out; 4153 } else if (can_rename) { 4154 if (S_ISDIR(sctx->cur_inode_mode)) { 4155 /* 4156 * Dirs can't be linked, so move it. For moved 4157 * dirs, we always have one new and one deleted 4158 * ref. The deleted ref is ignored later. 4159 */ 4160 ret = send_rename(sctx, valid_path, 4161 cur->full_path); 4162 if (!ret) 4163 ret = fs_path_copy(valid_path, 4164 cur->full_path); 4165 if (ret < 0) 4166 goto out; 4167 } else { 4168 /* 4169 * We might have previously orphanized an inode 4170 * which is an ancestor of our current inode, 4171 * so our reference's full path, which was 4172 * computed before any such orphanizations, must 4173 * be updated. 4174 */ 4175 if (orphanized_dir) { 4176 ret = update_ref_path(sctx, cur); 4177 if (ret < 0) 4178 goto out; 4179 } 4180 ret = send_link(sctx, cur->full_path, 4181 valid_path); 4182 if (ret < 0) 4183 goto out; 4184 } 4185 } 4186 ret = dup_ref(cur, &check_dirs); 4187 if (ret < 0) 4188 goto out; 4189 } 4190 4191 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4192 /* 4193 * Check if we can already rmdir the directory. If not, 4194 * orphanize it. For every dir item inside that gets deleted 4195 * later, we do this check again and rmdir it then if possible. 4196 * See the use of check_dirs for more details. 4197 */ 4198 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4199 sctx->cur_ino); 4200 if (ret < 0) 4201 goto out; 4202 if (ret) { 4203 ret = send_rmdir(sctx, valid_path); 4204 if (ret < 0) 4205 goto out; 4206 } else if (!is_orphan) { 4207 ret = orphanize_inode(sctx, sctx->cur_ino, 4208 sctx->cur_inode_gen, valid_path); 4209 if (ret < 0) 4210 goto out; 4211 is_orphan = 1; 4212 } 4213 4214 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4215 ret = dup_ref(cur, &check_dirs); 4216 if (ret < 0) 4217 goto out; 4218 } 4219 } else if (S_ISDIR(sctx->cur_inode_mode) && 4220 !list_empty(&sctx->deleted_refs)) { 4221 /* 4222 * We have a moved dir. Add the old parent to check_dirs 4223 */ 4224 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4225 list); 4226 ret = dup_ref(cur, &check_dirs); 4227 if (ret < 0) 4228 goto out; 4229 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4230 /* 4231 * We have a non dir inode. Go through all deleted refs and 4232 * unlink them if they were not already overwritten by other 4233 * inodes. 4234 */ 4235 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4236 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4237 sctx->cur_ino, sctx->cur_inode_gen, 4238 cur->name, cur->name_len); 4239 if (ret < 0) 4240 goto out; 4241 if (!ret) { 4242 /* 4243 * If we orphanized any ancestor before, we need 4244 * to recompute the full path for deleted names, 4245 * since any such path was computed before we 4246 * processed any references and orphanized any 4247 * ancestor inode. 4248 */ 4249 if (orphanized_ancestor) { 4250 ret = update_ref_path(sctx, cur); 4251 if (ret < 0) 4252 goto out; 4253 } 4254 ret = send_unlink(sctx, cur->full_path); 4255 if (ret < 0) 4256 goto out; 4257 } 4258 ret = dup_ref(cur, &check_dirs); 4259 if (ret < 0) 4260 goto out; 4261 } 4262 /* 4263 * If the inode is still orphan, unlink the orphan. This may 4264 * happen when a previous inode did overwrite the first ref 4265 * of this inode and no new refs were added for the current 4266 * inode. Unlinking does not mean that the inode is deleted in 4267 * all cases. There may still be links to this inode in other 4268 * places. 4269 */ 4270 if (is_orphan) { 4271 ret = send_unlink(sctx, valid_path); 4272 if (ret < 0) 4273 goto out; 4274 } 4275 } 4276 4277 /* 4278 * We did collect all parent dirs where cur_inode was once located. We 4279 * now go through all these dirs and check if they are pending for 4280 * deletion and if it's finally possible to perform the rmdir now. 4281 * We also update the inode stats of the parent dirs here. 4282 */ 4283 list_for_each_entry(cur, &check_dirs, list) { 4284 /* 4285 * In case we had refs into dirs that were not processed yet, 4286 * we don't need to do the utime and rmdir logic for these dirs. 4287 * The dir will be processed later. 4288 */ 4289 if (cur->dir > sctx->cur_ino) 4290 continue; 4291 4292 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4293 if (ret < 0) 4294 goto out; 4295 4296 if (ret == inode_state_did_create || 4297 ret == inode_state_no_change) { 4298 /* TODO delayed utimes */ 4299 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 4300 if (ret < 0) 4301 goto out; 4302 } else if (ret == inode_state_did_delete && 4303 cur->dir != last_dir_ino_rm) { 4304 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 4305 sctx->cur_ino); 4306 if (ret < 0) 4307 goto out; 4308 if (ret) { 4309 ret = get_cur_path(sctx, cur->dir, 4310 cur->dir_gen, valid_path); 4311 if (ret < 0) 4312 goto out; 4313 ret = send_rmdir(sctx, valid_path); 4314 if (ret < 0) 4315 goto out; 4316 last_dir_ino_rm = cur->dir; 4317 } 4318 } 4319 } 4320 4321 ret = 0; 4322 4323 out: 4324 __free_recorded_refs(&check_dirs); 4325 free_recorded_refs(sctx); 4326 fs_path_free(valid_path); 4327 return ret; 4328 } 4329 4330 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name, 4331 void *ctx, struct list_head *refs) 4332 { 4333 int ret = 0; 4334 struct send_ctx *sctx = ctx; 4335 struct fs_path *p; 4336 u64 gen; 4337 4338 p = fs_path_alloc(); 4339 if (!p) 4340 return -ENOMEM; 4341 4342 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 4343 NULL, NULL); 4344 if (ret < 0) 4345 goto out; 4346 4347 ret = get_cur_path(sctx, dir, gen, p); 4348 if (ret < 0) 4349 goto out; 4350 ret = fs_path_add_path(p, name); 4351 if (ret < 0) 4352 goto out; 4353 4354 ret = __record_ref(refs, dir, gen, p); 4355 4356 out: 4357 if (ret) 4358 fs_path_free(p); 4359 return ret; 4360 } 4361 4362 static int __record_new_ref(int num, u64 dir, int index, 4363 struct fs_path *name, 4364 void *ctx) 4365 { 4366 struct send_ctx *sctx = ctx; 4367 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs); 4368 } 4369 4370 4371 static int __record_deleted_ref(int num, u64 dir, int index, 4372 struct fs_path *name, 4373 void *ctx) 4374 { 4375 struct send_ctx *sctx = ctx; 4376 return record_ref(sctx->parent_root, dir, name, ctx, 4377 &sctx->deleted_refs); 4378 } 4379 4380 static int record_new_ref(struct send_ctx *sctx) 4381 { 4382 int ret; 4383 4384 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4385 sctx->cmp_key, 0, __record_new_ref, sctx); 4386 if (ret < 0) 4387 goto out; 4388 ret = 0; 4389 4390 out: 4391 return ret; 4392 } 4393 4394 static int record_deleted_ref(struct send_ctx *sctx) 4395 { 4396 int ret; 4397 4398 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4399 sctx->cmp_key, 0, __record_deleted_ref, sctx); 4400 if (ret < 0) 4401 goto out; 4402 ret = 0; 4403 4404 out: 4405 return ret; 4406 } 4407 4408 struct find_ref_ctx { 4409 u64 dir; 4410 u64 dir_gen; 4411 struct btrfs_root *root; 4412 struct fs_path *name; 4413 int found_idx; 4414 }; 4415 4416 static int __find_iref(int num, u64 dir, int index, 4417 struct fs_path *name, 4418 void *ctx_) 4419 { 4420 struct find_ref_ctx *ctx = ctx_; 4421 u64 dir_gen; 4422 int ret; 4423 4424 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 4425 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 4426 /* 4427 * To avoid doing extra lookups we'll only do this if everything 4428 * else matches. 4429 */ 4430 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 4431 NULL, NULL, NULL); 4432 if (ret) 4433 return ret; 4434 if (dir_gen != ctx->dir_gen) 4435 return 0; 4436 ctx->found_idx = num; 4437 return 1; 4438 } 4439 return 0; 4440 } 4441 4442 static int find_iref(struct btrfs_root *root, 4443 struct btrfs_path *path, 4444 struct btrfs_key *key, 4445 u64 dir, u64 dir_gen, struct fs_path *name) 4446 { 4447 int ret; 4448 struct find_ref_ctx ctx; 4449 4450 ctx.dir = dir; 4451 ctx.name = name; 4452 ctx.dir_gen = dir_gen; 4453 ctx.found_idx = -1; 4454 ctx.root = root; 4455 4456 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 4457 if (ret < 0) 4458 return ret; 4459 4460 if (ctx.found_idx == -1) 4461 return -ENOENT; 4462 4463 return ctx.found_idx; 4464 } 4465 4466 static int __record_changed_new_ref(int num, u64 dir, int index, 4467 struct fs_path *name, 4468 void *ctx) 4469 { 4470 u64 dir_gen; 4471 int ret; 4472 struct send_ctx *sctx = ctx; 4473 4474 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 4475 NULL, NULL, NULL); 4476 if (ret) 4477 return ret; 4478 4479 ret = find_iref(sctx->parent_root, sctx->right_path, 4480 sctx->cmp_key, dir, dir_gen, name); 4481 if (ret == -ENOENT) 4482 ret = __record_new_ref(num, dir, index, name, sctx); 4483 else if (ret > 0) 4484 ret = 0; 4485 4486 return ret; 4487 } 4488 4489 static int __record_changed_deleted_ref(int num, u64 dir, int index, 4490 struct fs_path *name, 4491 void *ctx) 4492 { 4493 u64 dir_gen; 4494 int ret; 4495 struct send_ctx *sctx = ctx; 4496 4497 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 4498 NULL, NULL, NULL); 4499 if (ret) 4500 return ret; 4501 4502 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4503 dir, dir_gen, name); 4504 if (ret == -ENOENT) 4505 ret = __record_deleted_ref(num, dir, index, name, sctx); 4506 else if (ret > 0) 4507 ret = 0; 4508 4509 return ret; 4510 } 4511 4512 static int record_changed_ref(struct send_ctx *sctx) 4513 { 4514 int ret = 0; 4515 4516 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4517 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 4518 if (ret < 0) 4519 goto out; 4520 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4521 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 4522 if (ret < 0) 4523 goto out; 4524 ret = 0; 4525 4526 out: 4527 return ret; 4528 } 4529 4530 /* 4531 * Record and process all refs at once. Needed when an inode changes the 4532 * generation number, which means that it was deleted and recreated. 4533 */ 4534 static int process_all_refs(struct send_ctx *sctx, 4535 enum btrfs_compare_tree_result cmd) 4536 { 4537 int ret; 4538 struct btrfs_root *root; 4539 struct btrfs_path *path; 4540 struct btrfs_key key; 4541 struct btrfs_key found_key; 4542 struct extent_buffer *eb; 4543 int slot; 4544 iterate_inode_ref_t cb; 4545 int pending_move = 0; 4546 4547 path = alloc_path_for_send(); 4548 if (!path) 4549 return -ENOMEM; 4550 4551 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4552 root = sctx->send_root; 4553 cb = __record_new_ref; 4554 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4555 root = sctx->parent_root; 4556 cb = __record_deleted_ref; 4557 } else { 4558 btrfs_err(sctx->send_root->fs_info, 4559 "Wrong command %d in process_all_refs", cmd); 4560 ret = -EINVAL; 4561 goto out; 4562 } 4563 4564 key.objectid = sctx->cmp_key->objectid; 4565 key.type = BTRFS_INODE_REF_KEY; 4566 key.offset = 0; 4567 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4568 if (ret < 0) 4569 goto out; 4570 4571 while (1) { 4572 eb = path->nodes[0]; 4573 slot = path->slots[0]; 4574 if (slot >= btrfs_header_nritems(eb)) { 4575 ret = btrfs_next_leaf(root, path); 4576 if (ret < 0) 4577 goto out; 4578 else if (ret > 0) 4579 break; 4580 continue; 4581 } 4582 4583 btrfs_item_key_to_cpu(eb, &found_key, slot); 4584 4585 if (found_key.objectid != key.objectid || 4586 (found_key.type != BTRFS_INODE_REF_KEY && 4587 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4588 break; 4589 4590 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4591 if (ret < 0) 4592 goto out; 4593 4594 path->slots[0]++; 4595 } 4596 btrfs_release_path(path); 4597 4598 /* 4599 * We don't actually care about pending_move as we are simply 4600 * re-creating this inode and will be rename'ing it into place once we 4601 * rename the parent directory. 4602 */ 4603 ret = process_recorded_refs(sctx, &pending_move); 4604 out: 4605 btrfs_free_path(path); 4606 return ret; 4607 } 4608 4609 static int send_set_xattr(struct send_ctx *sctx, 4610 struct fs_path *path, 4611 const char *name, int name_len, 4612 const char *data, int data_len) 4613 { 4614 int ret = 0; 4615 4616 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4617 if (ret < 0) 4618 goto out; 4619 4620 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4621 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4622 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4623 4624 ret = send_cmd(sctx); 4625 4626 tlv_put_failure: 4627 out: 4628 return ret; 4629 } 4630 4631 static int send_remove_xattr(struct send_ctx *sctx, 4632 struct fs_path *path, 4633 const char *name, int name_len) 4634 { 4635 int ret = 0; 4636 4637 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4638 if (ret < 0) 4639 goto out; 4640 4641 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4642 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4643 4644 ret = send_cmd(sctx); 4645 4646 tlv_put_failure: 4647 out: 4648 return ret; 4649 } 4650 4651 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4652 const char *name, int name_len, 4653 const char *data, int data_len, 4654 u8 type, void *ctx) 4655 { 4656 int ret; 4657 struct send_ctx *sctx = ctx; 4658 struct fs_path *p; 4659 struct posix_acl_xattr_header dummy_acl; 4660 4661 /* Capabilities are emitted by finish_inode_if_needed */ 4662 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4663 return 0; 4664 4665 p = fs_path_alloc(); 4666 if (!p) 4667 return -ENOMEM; 4668 4669 /* 4670 * This hack is needed because empty acls are stored as zero byte 4671 * data in xattrs. Problem with that is, that receiving these zero byte 4672 * acls will fail later. To fix this, we send a dummy acl list that 4673 * only contains the version number and no entries. 4674 */ 4675 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4676 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4677 if (data_len == 0) { 4678 dummy_acl.a_version = 4679 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4680 data = (char *)&dummy_acl; 4681 data_len = sizeof(dummy_acl); 4682 } 4683 } 4684 4685 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4686 if (ret < 0) 4687 goto out; 4688 4689 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4690 4691 out: 4692 fs_path_free(p); 4693 return ret; 4694 } 4695 4696 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4697 const char *name, int name_len, 4698 const char *data, int data_len, 4699 u8 type, void *ctx) 4700 { 4701 int ret; 4702 struct send_ctx *sctx = ctx; 4703 struct fs_path *p; 4704 4705 p = fs_path_alloc(); 4706 if (!p) 4707 return -ENOMEM; 4708 4709 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4710 if (ret < 0) 4711 goto out; 4712 4713 ret = send_remove_xattr(sctx, p, name, name_len); 4714 4715 out: 4716 fs_path_free(p); 4717 return ret; 4718 } 4719 4720 static int process_new_xattr(struct send_ctx *sctx) 4721 { 4722 int ret = 0; 4723 4724 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4725 __process_new_xattr, sctx); 4726 4727 return ret; 4728 } 4729 4730 static int process_deleted_xattr(struct send_ctx *sctx) 4731 { 4732 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4733 __process_deleted_xattr, sctx); 4734 } 4735 4736 struct find_xattr_ctx { 4737 const char *name; 4738 int name_len; 4739 int found_idx; 4740 char *found_data; 4741 int found_data_len; 4742 }; 4743 4744 static int __find_xattr(int num, struct btrfs_key *di_key, 4745 const char *name, int name_len, 4746 const char *data, int data_len, 4747 u8 type, void *vctx) 4748 { 4749 struct find_xattr_ctx *ctx = vctx; 4750 4751 if (name_len == ctx->name_len && 4752 strncmp(name, ctx->name, name_len) == 0) { 4753 ctx->found_idx = num; 4754 ctx->found_data_len = data_len; 4755 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4756 if (!ctx->found_data) 4757 return -ENOMEM; 4758 return 1; 4759 } 4760 return 0; 4761 } 4762 4763 static int find_xattr(struct btrfs_root *root, 4764 struct btrfs_path *path, 4765 struct btrfs_key *key, 4766 const char *name, int name_len, 4767 char **data, int *data_len) 4768 { 4769 int ret; 4770 struct find_xattr_ctx ctx; 4771 4772 ctx.name = name; 4773 ctx.name_len = name_len; 4774 ctx.found_idx = -1; 4775 ctx.found_data = NULL; 4776 ctx.found_data_len = 0; 4777 4778 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 4779 if (ret < 0) 4780 return ret; 4781 4782 if (ctx.found_idx == -1) 4783 return -ENOENT; 4784 if (data) { 4785 *data = ctx.found_data; 4786 *data_len = ctx.found_data_len; 4787 } else { 4788 kfree(ctx.found_data); 4789 } 4790 return ctx.found_idx; 4791 } 4792 4793 4794 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4795 const char *name, int name_len, 4796 const char *data, int data_len, 4797 u8 type, void *ctx) 4798 { 4799 int ret; 4800 struct send_ctx *sctx = ctx; 4801 char *found_data = NULL; 4802 int found_data_len = 0; 4803 4804 ret = find_xattr(sctx->parent_root, sctx->right_path, 4805 sctx->cmp_key, name, name_len, &found_data, 4806 &found_data_len); 4807 if (ret == -ENOENT) { 4808 ret = __process_new_xattr(num, di_key, name, name_len, data, 4809 data_len, type, ctx); 4810 } else if (ret >= 0) { 4811 if (data_len != found_data_len || 4812 memcmp(data, found_data, data_len)) { 4813 ret = __process_new_xattr(num, di_key, name, name_len, 4814 data, data_len, type, ctx); 4815 } else { 4816 ret = 0; 4817 } 4818 } 4819 4820 kfree(found_data); 4821 return ret; 4822 } 4823 4824 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4825 const char *name, int name_len, 4826 const char *data, int data_len, 4827 u8 type, void *ctx) 4828 { 4829 int ret; 4830 struct send_ctx *sctx = ctx; 4831 4832 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4833 name, name_len, NULL, NULL); 4834 if (ret == -ENOENT) 4835 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4836 data_len, type, ctx); 4837 else if (ret >= 0) 4838 ret = 0; 4839 4840 return ret; 4841 } 4842 4843 static int process_changed_xattr(struct send_ctx *sctx) 4844 { 4845 int ret = 0; 4846 4847 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4848 __process_changed_new_xattr, sctx); 4849 if (ret < 0) 4850 goto out; 4851 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4852 __process_changed_deleted_xattr, sctx); 4853 4854 out: 4855 return ret; 4856 } 4857 4858 static int process_all_new_xattrs(struct send_ctx *sctx) 4859 { 4860 int ret; 4861 struct btrfs_root *root; 4862 struct btrfs_path *path; 4863 struct btrfs_key key; 4864 struct btrfs_key found_key; 4865 struct extent_buffer *eb; 4866 int slot; 4867 4868 path = alloc_path_for_send(); 4869 if (!path) 4870 return -ENOMEM; 4871 4872 root = sctx->send_root; 4873 4874 key.objectid = sctx->cmp_key->objectid; 4875 key.type = BTRFS_XATTR_ITEM_KEY; 4876 key.offset = 0; 4877 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4878 if (ret < 0) 4879 goto out; 4880 4881 while (1) { 4882 eb = path->nodes[0]; 4883 slot = path->slots[0]; 4884 if (slot >= btrfs_header_nritems(eb)) { 4885 ret = btrfs_next_leaf(root, path); 4886 if (ret < 0) { 4887 goto out; 4888 } else if (ret > 0) { 4889 ret = 0; 4890 break; 4891 } 4892 continue; 4893 } 4894 4895 btrfs_item_key_to_cpu(eb, &found_key, slot); 4896 if (found_key.objectid != key.objectid || 4897 found_key.type != key.type) { 4898 ret = 0; 4899 goto out; 4900 } 4901 4902 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 4903 if (ret < 0) 4904 goto out; 4905 4906 path->slots[0]++; 4907 } 4908 4909 out: 4910 btrfs_free_path(path); 4911 return ret; 4912 } 4913 4914 static inline u64 max_send_read_size(const struct send_ctx *sctx) 4915 { 4916 return sctx->send_max_size - SZ_16K; 4917 } 4918 4919 static int put_data_header(struct send_ctx *sctx, u32 len) 4920 { 4921 struct btrfs_tlv_header *hdr; 4922 4923 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) 4924 return -EOVERFLOW; 4925 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 4926 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 4927 put_unaligned_le16(len, &hdr->tlv_len); 4928 sctx->send_size += sizeof(*hdr); 4929 return 0; 4930 } 4931 4932 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 4933 { 4934 struct btrfs_root *root = sctx->send_root; 4935 struct btrfs_fs_info *fs_info = root->fs_info; 4936 struct inode *inode; 4937 struct page *page; 4938 char *addr; 4939 pgoff_t index = offset >> PAGE_SHIFT; 4940 pgoff_t last_index; 4941 unsigned pg_offset = offset_in_page(offset); 4942 int ret; 4943 4944 ret = put_data_header(sctx, len); 4945 if (ret) 4946 return ret; 4947 4948 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root); 4949 if (IS_ERR(inode)) 4950 return PTR_ERR(inode); 4951 4952 last_index = (offset + len - 1) >> PAGE_SHIFT; 4953 4954 /* initial readahead */ 4955 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 4956 file_ra_state_init(&sctx->ra, inode->i_mapping); 4957 4958 while (index <= last_index) { 4959 unsigned cur_len = min_t(unsigned, len, 4960 PAGE_SIZE - pg_offset); 4961 4962 page = find_lock_page(inode->i_mapping, index); 4963 if (!page) { 4964 page_cache_sync_readahead(inode->i_mapping, &sctx->ra, 4965 NULL, index, last_index + 1 - index); 4966 4967 page = find_or_create_page(inode->i_mapping, index, 4968 GFP_KERNEL); 4969 if (!page) { 4970 ret = -ENOMEM; 4971 break; 4972 } 4973 } 4974 4975 if (PageReadahead(page)) { 4976 page_cache_async_readahead(inode->i_mapping, &sctx->ra, 4977 NULL, page, index, last_index + 1 - index); 4978 } 4979 4980 if (!PageUptodate(page)) { 4981 btrfs_readpage(NULL, page); 4982 lock_page(page); 4983 if (!PageUptodate(page)) { 4984 unlock_page(page); 4985 put_page(page); 4986 ret = -EIO; 4987 break; 4988 } 4989 } 4990 4991 addr = kmap(page); 4992 memcpy(sctx->send_buf + sctx->send_size, addr + pg_offset, 4993 cur_len); 4994 kunmap(page); 4995 unlock_page(page); 4996 put_page(page); 4997 index++; 4998 pg_offset = 0; 4999 len -= cur_len; 5000 sctx->send_size += cur_len; 5001 } 5002 iput(inode); 5003 return ret; 5004 } 5005 5006 /* 5007 * Read some bytes from the current inode/file and send a write command to 5008 * user space. 5009 */ 5010 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 5011 { 5012 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5013 int ret = 0; 5014 struct fs_path *p; 5015 5016 p = fs_path_alloc(); 5017 if (!p) 5018 return -ENOMEM; 5019 5020 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 5021 5022 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5023 if (ret < 0) 5024 goto out; 5025 5026 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5027 if (ret < 0) 5028 goto out; 5029 5030 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5031 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5032 ret = put_file_data(sctx, offset, len); 5033 if (ret < 0) 5034 goto out; 5035 5036 ret = send_cmd(sctx); 5037 5038 tlv_put_failure: 5039 out: 5040 fs_path_free(p); 5041 return ret; 5042 } 5043 5044 /* 5045 * Send a clone command to user space. 5046 */ 5047 static int send_clone(struct send_ctx *sctx, 5048 u64 offset, u32 len, 5049 struct clone_root *clone_root) 5050 { 5051 int ret = 0; 5052 struct fs_path *p; 5053 u64 gen; 5054 5055 btrfs_debug(sctx->send_root->fs_info, 5056 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 5057 offset, len, clone_root->root->root_key.objectid, 5058 clone_root->ino, clone_root->offset); 5059 5060 p = fs_path_alloc(); 5061 if (!p) 5062 return -ENOMEM; 5063 5064 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5065 if (ret < 0) 5066 goto out; 5067 5068 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5069 if (ret < 0) 5070 goto out; 5071 5072 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5073 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5074 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5075 5076 if (clone_root->root == sctx->send_root) { 5077 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 5078 &gen, NULL, NULL, NULL, NULL); 5079 if (ret < 0) 5080 goto out; 5081 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5082 } else { 5083 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5084 } 5085 if (ret < 0) 5086 goto out; 5087 5088 /* 5089 * If the parent we're using has a received_uuid set then use that as 5090 * our clone source as that is what we will look for when doing a 5091 * receive. 5092 * 5093 * This covers the case that we create a snapshot off of a received 5094 * subvolume and then use that as the parent and try to receive on a 5095 * different host. 5096 */ 5097 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5098 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5099 clone_root->root->root_item.received_uuid); 5100 else 5101 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5102 clone_root->root->root_item.uuid); 5103 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5104 le64_to_cpu(clone_root->root->root_item.ctransid)); 5105 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5106 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5107 clone_root->offset); 5108 5109 ret = send_cmd(sctx); 5110 5111 tlv_put_failure: 5112 out: 5113 fs_path_free(p); 5114 return ret; 5115 } 5116 5117 /* 5118 * Send an update extent command to user space. 5119 */ 5120 static int send_update_extent(struct send_ctx *sctx, 5121 u64 offset, u32 len) 5122 { 5123 int ret = 0; 5124 struct fs_path *p; 5125 5126 p = fs_path_alloc(); 5127 if (!p) 5128 return -ENOMEM; 5129 5130 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5131 if (ret < 0) 5132 goto out; 5133 5134 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5135 if (ret < 0) 5136 goto out; 5137 5138 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5139 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5140 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5141 5142 ret = send_cmd(sctx); 5143 5144 tlv_put_failure: 5145 out: 5146 fs_path_free(p); 5147 return ret; 5148 } 5149 5150 static int send_hole(struct send_ctx *sctx, u64 end) 5151 { 5152 struct fs_path *p = NULL; 5153 u64 read_size = max_send_read_size(sctx); 5154 u64 offset = sctx->cur_inode_last_extent; 5155 int ret = 0; 5156 5157 /* 5158 * A hole that starts at EOF or beyond it. Since we do not yet support 5159 * fallocate (for extent preallocation and hole punching), sending a 5160 * write of zeroes starting at EOF or beyond would later require issuing 5161 * a truncate operation which would undo the write and achieve nothing. 5162 */ 5163 if (offset >= sctx->cur_inode_size) 5164 return 0; 5165 5166 /* 5167 * Don't go beyond the inode's i_size due to prealloc extents that start 5168 * after the i_size. 5169 */ 5170 end = min_t(u64, end, sctx->cur_inode_size); 5171 5172 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5173 return send_update_extent(sctx, offset, end - offset); 5174 5175 p = fs_path_alloc(); 5176 if (!p) 5177 return -ENOMEM; 5178 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5179 if (ret < 0) 5180 goto tlv_put_failure; 5181 while (offset < end) { 5182 u64 len = min(end - offset, read_size); 5183 5184 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5185 if (ret < 0) 5186 break; 5187 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5188 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5189 ret = put_data_header(sctx, len); 5190 if (ret < 0) 5191 break; 5192 memset(sctx->send_buf + sctx->send_size, 0, len); 5193 sctx->send_size += len; 5194 ret = send_cmd(sctx); 5195 if (ret < 0) 5196 break; 5197 offset += len; 5198 } 5199 sctx->cur_inode_next_write_offset = offset; 5200 tlv_put_failure: 5201 fs_path_free(p); 5202 return ret; 5203 } 5204 5205 static int send_extent_data(struct send_ctx *sctx, 5206 const u64 offset, 5207 const u64 len) 5208 { 5209 u64 read_size = max_send_read_size(sctx); 5210 u64 sent = 0; 5211 5212 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5213 return send_update_extent(sctx, offset, len); 5214 5215 while (sent < len) { 5216 u64 size = min(len - sent, read_size); 5217 int ret; 5218 5219 ret = send_write(sctx, offset + sent, size); 5220 if (ret < 0) 5221 return ret; 5222 sent += size; 5223 } 5224 return 0; 5225 } 5226 5227 /* 5228 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5229 * found, call send_set_xattr function to emit it. 5230 * 5231 * Return 0 if there isn't a capability, or when the capability was emitted 5232 * successfully, or < 0 if an error occurred. 5233 */ 5234 static int send_capabilities(struct send_ctx *sctx) 5235 { 5236 struct fs_path *fspath = NULL; 5237 struct btrfs_path *path; 5238 struct btrfs_dir_item *di; 5239 struct extent_buffer *leaf; 5240 unsigned long data_ptr; 5241 char *buf = NULL; 5242 int buf_len; 5243 int ret = 0; 5244 5245 path = alloc_path_for_send(); 5246 if (!path) 5247 return -ENOMEM; 5248 5249 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5250 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5251 if (!di) { 5252 /* There is no xattr for this inode */ 5253 goto out; 5254 } else if (IS_ERR(di)) { 5255 ret = PTR_ERR(di); 5256 goto out; 5257 } 5258 5259 leaf = path->nodes[0]; 5260 buf_len = btrfs_dir_data_len(leaf, di); 5261 5262 fspath = fs_path_alloc(); 5263 buf = kmalloc(buf_len, GFP_KERNEL); 5264 if (!fspath || !buf) { 5265 ret = -ENOMEM; 5266 goto out; 5267 } 5268 5269 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5270 if (ret < 0) 5271 goto out; 5272 5273 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5274 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5275 5276 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS, 5277 strlen(XATTR_NAME_CAPS), buf, buf_len); 5278 out: 5279 kfree(buf); 5280 fs_path_free(fspath); 5281 btrfs_free_path(path); 5282 return ret; 5283 } 5284 5285 static int clone_range(struct send_ctx *sctx, 5286 struct clone_root *clone_root, 5287 const u64 disk_byte, 5288 u64 data_offset, 5289 u64 offset, 5290 u64 len) 5291 { 5292 struct btrfs_path *path; 5293 struct btrfs_key key; 5294 int ret; 5295 u64 clone_src_i_size = 0; 5296 5297 /* 5298 * Prevent cloning from a zero offset with a length matching the sector 5299 * size because in some scenarios this will make the receiver fail. 5300 * 5301 * For example, if in the source filesystem the extent at offset 0 5302 * has a length of sectorsize and it was written using direct IO, then 5303 * it can never be an inline extent (even if compression is enabled). 5304 * Then this extent can be cloned in the original filesystem to a non 5305 * zero file offset, but it may not be possible to clone in the 5306 * destination filesystem because it can be inlined due to compression 5307 * on the destination filesystem (as the receiver's write operations are 5308 * always done using buffered IO). The same happens when the original 5309 * filesystem does not have compression enabled but the destination 5310 * filesystem has. 5311 */ 5312 if (clone_root->offset == 0 && 5313 len == sctx->send_root->fs_info->sectorsize) 5314 return send_extent_data(sctx, offset, len); 5315 5316 path = alloc_path_for_send(); 5317 if (!path) 5318 return -ENOMEM; 5319 5320 /* 5321 * There are inodes that have extents that lie behind its i_size. Don't 5322 * accept clones from these extents. 5323 */ 5324 ret = __get_inode_info(clone_root->root, path, clone_root->ino, 5325 &clone_src_i_size, NULL, NULL, NULL, NULL, NULL); 5326 btrfs_release_path(path); 5327 if (ret < 0) 5328 goto out; 5329 5330 /* 5331 * We can't send a clone operation for the entire range if we find 5332 * extent items in the respective range in the source file that 5333 * refer to different extents or if we find holes. 5334 * So check for that and do a mix of clone and regular write/copy 5335 * operations if needed. 5336 * 5337 * Example: 5338 * 5339 * mkfs.btrfs -f /dev/sda 5340 * mount /dev/sda /mnt 5341 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5342 * cp --reflink=always /mnt/foo /mnt/bar 5343 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5344 * btrfs subvolume snapshot -r /mnt /mnt/snap 5345 * 5346 * If when we send the snapshot and we are processing file bar (which 5347 * has a higher inode number than foo) we blindly send a clone operation 5348 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5349 * a file bar that matches the content of file foo - iow, doesn't match 5350 * the content from bar in the original filesystem. 5351 */ 5352 key.objectid = clone_root->ino; 5353 key.type = BTRFS_EXTENT_DATA_KEY; 5354 key.offset = clone_root->offset; 5355 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5356 if (ret < 0) 5357 goto out; 5358 if (ret > 0 && path->slots[0] > 0) { 5359 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5360 if (key.objectid == clone_root->ino && 5361 key.type == BTRFS_EXTENT_DATA_KEY) 5362 path->slots[0]--; 5363 } 5364 5365 while (true) { 5366 struct extent_buffer *leaf = path->nodes[0]; 5367 int slot = path->slots[0]; 5368 struct btrfs_file_extent_item *ei; 5369 u8 type; 5370 u64 ext_len; 5371 u64 clone_len; 5372 u64 clone_data_offset; 5373 5374 if (slot >= btrfs_header_nritems(leaf)) { 5375 ret = btrfs_next_leaf(clone_root->root, path); 5376 if (ret < 0) 5377 goto out; 5378 else if (ret > 0) 5379 break; 5380 continue; 5381 } 5382 5383 btrfs_item_key_to_cpu(leaf, &key, slot); 5384 5385 /* 5386 * We might have an implicit trailing hole (NO_HOLES feature 5387 * enabled). We deal with it after leaving this loop. 5388 */ 5389 if (key.objectid != clone_root->ino || 5390 key.type != BTRFS_EXTENT_DATA_KEY) 5391 break; 5392 5393 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5394 type = btrfs_file_extent_type(leaf, ei); 5395 if (type == BTRFS_FILE_EXTENT_INLINE) { 5396 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5397 ext_len = PAGE_ALIGN(ext_len); 5398 } else { 5399 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5400 } 5401 5402 if (key.offset + ext_len <= clone_root->offset) 5403 goto next; 5404 5405 if (key.offset > clone_root->offset) { 5406 /* Implicit hole, NO_HOLES feature enabled. */ 5407 u64 hole_len = key.offset - clone_root->offset; 5408 5409 if (hole_len > len) 5410 hole_len = len; 5411 ret = send_extent_data(sctx, offset, hole_len); 5412 if (ret < 0) 5413 goto out; 5414 5415 len -= hole_len; 5416 if (len == 0) 5417 break; 5418 offset += hole_len; 5419 clone_root->offset += hole_len; 5420 data_offset += hole_len; 5421 } 5422 5423 if (key.offset >= clone_root->offset + len) 5424 break; 5425 5426 if (key.offset >= clone_src_i_size) 5427 break; 5428 5429 if (key.offset + ext_len > clone_src_i_size) 5430 ext_len = clone_src_i_size - key.offset; 5431 5432 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 5433 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 5434 clone_root->offset = key.offset; 5435 if (clone_data_offset < data_offset && 5436 clone_data_offset + ext_len > data_offset) { 5437 u64 extent_offset; 5438 5439 extent_offset = data_offset - clone_data_offset; 5440 ext_len -= extent_offset; 5441 clone_data_offset += extent_offset; 5442 clone_root->offset += extent_offset; 5443 } 5444 } 5445 5446 clone_len = min_t(u64, ext_len, len); 5447 5448 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5449 clone_data_offset == data_offset) { 5450 const u64 src_end = clone_root->offset + clone_len; 5451 const u64 sectorsize = SZ_64K; 5452 5453 /* 5454 * We can't clone the last block, when its size is not 5455 * sector size aligned, into the middle of a file. If we 5456 * do so, the receiver will get a failure (-EINVAL) when 5457 * trying to clone or will silently corrupt the data in 5458 * the destination file if it's on a kernel without the 5459 * fix introduced by commit ac765f83f1397646 5460 * ("Btrfs: fix data corruption due to cloning of eof 5461 * block). 5462 * 5463 * So issue a clone of the aligned down range plus a 5464 * regular write for the eof block, if we hit that case. 5465 * 5466 * Also, we use the maximum possible sector size, 64K, 5467 * because we don't know what's the sector size of the 5468 * filesystem that receives the stream, so we have to 5469 * assume the largest possible sector size. 5470 */ 5471 if (src_end == clone_src_i_size && 5472 !IS_ALIGNED(src_end, sectorsize) && 5473 offset + clone_len < sctx->cur_inode_size) { 5474 u64 slen; 5475 5476 slen = ALIGN_DOWN(src_end - clone_root->offset, 5477 sectorsize); 5478 if (slen > 0) { 5479 ret = send_clone(sctx, offset, slen, 5480 clone_root); 5481 if (ret < 0) 5482 goto out; 5483 } 5484 ret = send_extent_data(sctx, offset + slen, 5485 clone_len - slen); 5486 } else { 5487 ret = send_clone(sctx, offset, clone_len, 5488 clone_root); 5489 } 5490 } else { 5491 ret = send_extent_data(sctx, offset, clone_len); 5492 } 5493 5494 if (ret < 0) 5495 goto out; 5496 5497 len -= clone_len; 5498 if (len == 0) 5499 break; 5500 offset += clone_len; 5501 clone_root->offset += clone_len; 5502 data_offset += clone_len; 5503 next: 5504 path->slots[0]++; 5505 } 5506 5507 if (len > 0) 5508 ret = send_extent_data(sctx, offset, len); 5509 else 5510 ret = 0; 5511 out: 5512 btrfs_free_path(path); 5513 return ret; 5514 } 5515 5516 static int send_write_or_clone(struct send_ctx *sctx, 5517 struct btrfs_path *path, 5518 struct btrfs_key *key, 5519 struct clone_root *clone_root) 5520 { 5521 int ret = 0; 5522 u64 offset = key->offset; 5523 u64 end; 5524 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 5525 5526 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 5527 if (offset >= end) 5528 return 0; 5529 5530 if (clone_root && IS_ALIGNED(end, bs)) { 5531 struct btrfs_file_extent_item *ei; 5532 u64 disk_byte; 5533 u64 data_offset; 5534 5535 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5536 struct btrfs_file_extent_item); 5537 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 5538 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 5539 ret = clone_range(sctx, clone_root, disk_byte, data_offset, 5540 offset, end - offset); 5541 } else { 5542 ret = send_extent_data(sctx, offset, end - offset); 5543 } 5544 sctx->cur_inode_next_write_offset = end; 5545 return ret; 5546 } 5547 5548 static int is_extent_unchanged(struct send_ctx *sctx, 5549 struct btrfs_path *left_path, 5550 struct btrfs_key *ekey) 5551 { 5552 int ret = 0; 5553 struct btrfs_key key; 5554 struct btrfs_path *path = NULL; 5555 struct extent_buffer *eb; 5556 int slot; 5557 struct btrfs_key found_key; 5558 struct btrfs_file_extent_item *ei; 5559 u64 left_disknr; 5560 u64 right_disknr; 5561 u64 left_offset; 5562 u64 right_offset; 5563 u64 left_offset_fixed; 5564 u64 left_len; 5565 u64 right_len; 5566 u64 left_gen; 5567 u64 right_gen; 5568 u8 left_type; 5569 u8 right_type; 5570 5571 path = alloc_path_for_send(); 5572 if (!path) 5573 return -ENOMEM; 5574 5575 eb = left_path->nodes[0]; 5576 slot = left_path->slots[0]; 5577 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5578 left_type = btrfs_file_extent_type(eb, ei); 5579 5580 if (left_type != BTRFS_FILE_EXTENT_REG) { 5581 ret = 0; 5582 goto out; 5583 } 5584 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5585 left_len = btrfs_file_extent_num_bytes(eb, ei); 5586 left_offset = btrfs_file_extent_offset(eb, ei); 5587 left_gen = btrfs_file_extent_generation(eb, ei); 5588 5589 /* 5590 * Following comments will refer to these graphics. L is the left 5591 * extents which we are checking at the moment. 1-8 are the right 5592 * extents that we iterate. 5593 * 5594 * |-----L-----| 5595 * |-1-|-2a-|-3-|-4-|-5-|-6-| 5596 * 5597 * |-----L-----| 5598 * |--1--|-2b-|...(same as above) 5599 * 5600 * Alternative situation. Happens on files where extents got split. 5601 * |-----L-----| 5602 * |-----------7-----------|-6-| 5603 * 5604 * Alternative situation. Happens on files which got larger. 5605 * |-----L-----| 5606 * |-8-| 5607 * Nothing follows after 8. 5608 */ 5609 5610 key.objectid = ekey->objectid; 5611 key.type = BTRFS_EXTENT_DATA_KEY; 5612 key.offset = ekey->offset; 5613 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 5614 if (ret < 0) 5615 goto out; 5616 if (ret) { 5617 ret = 0; 5618 goto out; 5619 } 5620 5621 /* 5622 * Handle special case where the right side has no extents at all. 5623 */ 5624 eb = path->nodes[0]; 5625 slot = path->slots[0]; 5626 btrfs_item_key_to_cpu(eb, &found_key, slot); 5627 if (found_key.objectid != key.objectid || 5628 found_key.type != key.type) { 5629 /* If we're a hole then just pretend nothing changed */ 5630 ret = (left_disknr) ? 0 : 1; 5631 goto out; 5632 } 5633 5634 /* 5635 * We're now on 2a, 2b or 7. 5636 */ 5637 key = found_key; 5638 while (key.offset < ekey->offset + left_len) { 5639 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5640 right_type = btrfs_file_extent_type(eb, ei); 5641 if (right_type != BTRFS_FILE_EXTENT_REG && 5642 right_type != BTRFS_FILE_EXTENT_INLINE) { 5643 ret = 0; 5644 goto out; 5645 } 5646 5647 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5648 right_len = btrfs_file_extent_ram_bytes(eb, ei); 5649 right_len = PAGE_ALIGN(right_len); 5650 } else { 5651 right_len = btrfs_file_extent_num_bytes(eb, ei); 5652 } 5653 5654 /* 5655 * Are we at extent 8? If yes, we know the extent is changed. 5656 * This may only happen on the first iteration. 5657 */ 5658 if (found_key.offset + right_len <= ekey->offset) { 5659 /* If we're a hole just pretend nothing changed */ 5660 ret = (left_disknr) ? 0 : 1; 5661 goto out; 5662 } 5663 5664 /* 5665 * We just wanted to see if when we have an inline extent, what 5666 * follows it is a regular extent (wanted to check the above 5667 * condition for inline extents too). This should normally not 5668 * happen but it's possible for example when we have an inline 5669 * compressed extent representing data with a size matching 5670 * the page size (currently the same as sector size). 5671 */ 5672 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5673 ret = 0; 5674 goto out; 5675 } 5676 5677 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5678 right_offset = btrfs_file_extent_offset(eb, ei); 5679 right_gen = btrfs_file_extent_generation(eb, ei); 5680 5681 left_offset_fixed = left_offset; 5682 if (key.offset < ekey->offset) { 5683 /* Fix the right offset for 2a and 7. */ 5684 right_offset += ekey->offset - key.offset; 5685 } else { 5686 /* Fix the left offset for all behind 2a and 2b */ 5687 left_offset_fixed += key.offset - ekey->offset; 5688 } 5689 5690 /* 5691 * Check if we have the same extent. 5692 */ 5693 if (left_disknr != right_disknr || 5694 left_offset_fixed != right_offset || 5695 left_gen != right_gen) { 5696 ret = 0; 5697 goto out; 5698 } 5699 5700 /* 5701 * Go to the next extent. 5702 */ 5703 ret = btrfs_next_item(sctx->parent_root, path); 5704 if (ret < 0) 5705 goto out; 5706 if (!ret) { 5707 eb = path->nodes[0]; 5708 slot = path->slots[0]; 5709 btrfs_item_key_to_cpu(eb, &found_key, slot); 5710 } 5711 if (ret || found_key.objectid != key.objectid || 5712 found_key.type != key.type) { 5713 key.offset += right_len; 5714 break; 5715 } 5716 if (found_key.offset != key.offset + right_len) { 5717 ret = 0; 5718 goto out; 5719 } 5720 key = found_key; 5721 } 5722 5723 /* 5724 * We're now behind the left extent (treat as unchanged) or at the end 5725 * of the right side (treat as changed). 5726 */ 5727 if (key.offset >= ekey->offset + left_len) 5728 ret = 1; 5729 else 5730 ret = 0; 5731 5732 5733 out: 5734 btrfs_free_path(path); 5735 return ret; 5736 } 5737 5738 static int get_last_extent(struct send_ctx *sctx, u64 offset) 5739 { 5740 struct btrfs_path *path; 5741 struct btrfs_root *root = sctx->send_root; 5742 struct btrfs_key key; 5743 int ret; 5744 5745 path = alloc_path_for_send(); 5746 if (!path) 5747 return -ENOMEM; 5748 5749 sctx->cur_inode_last_extent = 0; 5750 5751 key.objectid = sctx->cur_ino; 5752 key.type = BTRFS_EXTENT_DATA_KEY; 5753 key.offset = offset; 5754 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 5755 if (ret < 0) 5756 goto out; 5757 ret = 0; 5758 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 5759 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 5760 goto out; 5761 5762 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 5763 out: 5764 btrfs_free_path(path); 5765 return ret; 5766 } 5767 5768 static int range_is_hole_in_parent(struct send_ctx *sctx, 5769 const u64 start, 5770 const u64 end) 5771 { 5772 struct btrfs_path *path; 5773 struct btrfs_key key; 5774 struct btrfs_root *root = sctx->parent_root; 5775 u64 search_start = start; 5776 int ret; 5777 5778 path = alloc_path_for_send(); 5779 if (!path) 5780 return -ENOMEM; 5781 5782 key.objectid = sctx->cur_ino; 5783 key.type = BTRFS_EXTENT_DATA_KEY; 5784 key.offset = search_start; 5785 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5786 if (ret < 0) 5787 goto out; 5788 if (ret > 0 && path->slots[0] > 0) 5789 path->slots[0]--; 5790 5791 while (search_start < end) { 5792 struct extent_buffer *leaf = path->nodes[0]; 5793 int slot = path->slots[0]; 5794 struct btrfs_file_extent_item *fi; 5795 u64 extent_end; 5796 5797 if (slot >= btrfs_header_nritems(leaf)) { 5798 ret = btrfs_next_leaf(root, path); 5799 if (ret < 0) 5800 goto out; 5801 else if (ret > 0) 5802 break; 5803 continue; 5804 } 5805 5806 btrfs_item_key_to_cpu(leaf, &key, slot); 5807 if (key.objectid < sctx->cur_ino || 5808 key.type < BTRFS_EXTENT_DATA_KEY) 5809 goto next; 5810 if (key.objectid > sctx->cur_ino || 5811 key.type > BTRFS_EXTENT_DATA_KEY || 5812 key.offset >= end) 5813 break; 5814 5815 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5816 extent_end = btrfs_file_extent_end(path); 5817 if (extent_end <= start) 5818 goto next; 5819 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 5820 search_start = extent_end; 5821 goto next; 5822 } 5823 ret = 0; 5824 goto out; 5825 next: 5826 path->slots[0]++; 5827 } 5828 ret = 1; 5829 out: 5830 btrfs_free_path(path); 5831 return ret; 5832 } 5833 5834 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 5835 struct btrfs_key *key) 5836 { 5837 int ret = 0; 5838 5839 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 5840 return 0; 5841 5842 if (sctx->cur_inode_last_extent == (u64)-1) { 5843 ret = get_last_extent(sctx, key->offset - 1); 5844 if (ret) 5845 return ret; 5846 } 5847 5848 if (path->slots[0] == 0 && 5849 sctx->cur_inode_last_extent < key->offset) { 5850 /* 5851 * We might have skipped entire leafs that contained only 5852 * file extent items for our current inode. These leafs have 5853 * a generation number smaller (older) than the one in the 5854 * current leaf and the leaf our last extent came from, and 5855 * are located between these 2 leafs. 5856 */ 5857 ret = get_last_extent(sctx, key->offset - 1); 5858 if (ret) 5859 return ret; 5860 } 5861 5862 if (sctx->cur_inode_last_extent < key->offset) { 5863 ret = range_is_hole_in_parent(sctx, 5864 sctx->cur_inode_last_extent, 5865 key->offset); 5866 if (ret < 0) 5867 return ret; 5868 else if (ret == 0) 5869 ret = send_hole(sctx, key->offset); 5870 else 5871 ret = 0; 5872 } 5873 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 5874 return ret; 5875 } 5876 5877 static int process_extent(struct send_ctx *sctx, 5878 struct btrfs_path *path, 5879 struct btrfs_key *key) 5880 { 5881 struct clone_root *found_clone = NULL; 5882 int ret = 0; 5883 5884 if (S_ISLNK(sctx->cur_inode_mode)) 5885 return 0; 5886 5887 if (sctx->parent_root && !sctx->cur_inode_new) { 5888 ret = is_extent_unchanged(sctx, path, key); 5889 if (ret < 0) 5890 goto out; 5891 if (ret) { 5892 ret = 0; 5893 goto out_hole; 5894 } 5895 } else { 5896 struct btrfs_file_extent_item *ei; 5897 u8 type; 5898 5899 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5900 struct btrfs_file_extent_item); 5901 type = btrfs_file_extent_type(path->nodes[0], ei); 5902 if (type == BTRFS_FILE_EXTENT_PREALLOC || 5903 type == BTRFS_FILE_EXTENT_REG) { 5904 /* 5905 * The send spec does not have a prealloc command yet, 5906 * so just leave a hole for prealloc'ed extents until 5907 * we have enough commands queued up to justify rev'ing 5908 * the send spec. 5909 */ 5910 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 5911 ret = 0; 5912 goto out; 5913 } 5914 5915 /* Have a hole, just skip it. */ 5916 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 5917 ret = 0; 5918 goto out; 5919 } 5920 } 5921 } 5922 5923 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 5924 sctx->cur_inode_size, &found_clone); 5925 if (ret != -ENOENT && ret < 0) 5926 goto out; 5927 5928 ret = send_write_or_clone(sctx, path, key, found_clone); 5929 if (ret) 5930 goto out; 5931 out_hole: 5932 ret = maybe_send_hole(sctx, path, key); 5933 out: 5934 return ret; 5935 } 5936 5937 static int process_all_extents(struct send_ctx *sctx) 5938 { 5939 int ret; 5940 struct btrfs_root *root; 5941 struct btrfs_path *path; 5942 struct btrfs_key key; 5943 struct btrfs_key found_key; 5944 struct extent_buffer *eb; 5945 int slot; 5946 5947 root = sctx->send_root; 5948 path = alloc_path_for_send(); 5949 if (!path) 5950 return -ENOMEM; 5951 5952 key.objectid = sctx->cmp_key->objectid; 5953 key.type = BTRFS_EXTENT_DATA_KEY; 5954 key.offset = 0; 5955 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5956 if (ret < 0) 5957 goto out; 5958 5959 while (1) { 5960 eb = path->nodes[0]; 5961 slot = path->slots[0]; 5962 5963 if (slot >= btrfs_header_nritems(eb)) { 5964 ret = btrfs_next_leaf(root, path); 5965 if (ret < 0) { 5966 goto out; 5967 } else if (ret > 0) { 5968 ret = 0; 5969 break; 5970 } 5971 continue; 5972 } 5973 5974 btrfs_item_key_to_cpu(eb, &found_key, slot); 5975 5976 if (found_key.objectid != key.objectid || 5977 found_key.type != key.type) { 5978 ret = 0; 5979 goto out; 5980 } 5981 5982 ret = process_extent(sctx, path, &found_key); 5983 if (ret < 0) 5984 goto out; 5985 5986 path->slots[0]++; 5987 } 5988 5989 out: 5990 btrfs_free_path(path); 5991 return ret; 5992 } 5993 5994 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 5995 int *pending_move, 5996 int *refs_processed) 5997 { 5998 int ret = 0; 5999 6000 if (sctx->cur_ino == 0) 6001 goto out; 6002 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 6003 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 6004 goto out; 6005 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 6006 goto out; 6007 6008 ret = process_recorded_refs(sctx, pending_move); 6009 if (ret < 0) 6010 goto out; 6011 6012 *refs_processed = 1; 6013 out: 6014 return ret; 6015 } 6016 6017 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 6018 { 6019 int ret = 0; 6020 u64 left_mode; 6021 u64 left_uid; 6022 u64 left_gid; 6023 u64 right_mode; 6024 u64 right_uid; 6025 u64 right_gid; 6026 int need_chmod = 0; 6027 int need_chown = 0; 6028 int need_truncate = 1; 6029 int pending_move = 0; 6030 int refs_processed = 0; 6031 6032 if (sctx->ignore_cur_inode) 6033 return 0; 6034 6035 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 6036 &refs_processed); 6037 if (ret < 0) 6038 goto out; 6039 6040 /* 6041 * We have processed the refs and thus need to advance send_progress. 6042 * Now, calls to get_cur_xxx will take the updated refs of the current 6043 * inode into account. 6044 * 6045 * On the other hand, if our current inode is a directory and couldn't 6046 * be moved/renamed because its parent was renamed/moved too and it has 6047 * a higher inode number, we can only move/rename our current inode 6048 * after we moved/renamed its parent. Therefore in this case operate on 6049 * the old path (pre move/rename) of our current inode, and the 6050 * move/rename will be performed later. 6051 */ 6052 if (refs_processed && !pending_move) 6053 sctx->send_progress = sctx->cur_ino + 1; 6054 6055 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 6056 goto out; 6057 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 6058 goto out; 6059 6060 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 6061 &left_mode, &left_uid, &left_gid, NULL); 6062 if (ret < 0) 6063 goto out; 6064 6065 if (!sctx->parent_root || sctx->cur_inode_new) { 6066 need_chown = 1; 6067 if (!S_ISLNK(sctx->cur_inode_mode)) 6068 need_chmod = 1; 6069 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 6070 need_truncate = 0; 6071 } else { 6072 u64 old_size; 6073 6074 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 6075 &old_size, NULL, &right_mode, &right_uid, 6076 &right_gid, NULL); 6077 if (ret < 0) 6078 goto out; 6079 6080 if (left_uid != right_uid || left_gid != right_gid) 6081 need_chown = 1; 6082 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 6083 need_chmod = 1; 6084 if ((old_size == sctx->cur_inode_size) || 6085 (sctx->cur_inode_size > old_size && 6086 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 6087 need_truncate = 0; 6088 } 6089 6090 if (S_ISREG(sctx->cur_inode_mode)) { 6091 if (need_send_hole(sctx)) { 6092 if (sctx->cur_inode_last_extent == (u64)-1 || 6093 sctx->cur_inode_last_extent < 6094 sctx->cur_inode_size) { 6095 ret = get_last_extent(sctx, (u64)-1); 6096 if (ret) 6097 goto out; 6098 } 6099 if (sctx->cur_inode_last_extent < 6100 sctx->cur_inode_size) { 6101 ret = send_hole(sctx, sctx->cur_inode_size); 6102 if (ret) 6103 goto out; 6104 } 6105 } 6106 if (need_truncate) { 6107 ret = send_truncate(sctx, sctx->cur_ino, 6108 sctx->cur_inode_gen, 6109 sctx->cur_inode_size); 6110 if (ret < 0) 6111 goto out; 6112 } 6113 } 6114 6115 if (need_chown) { 6116 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6117 left_uid, left_gid); 6118 if (ret < 0) 6119 goto out; 6120 } 6121 if (need_chmod) { 6122 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6123 left_mode); 6124 if (ret < 0) 6125 goto out; 6126 } 6127 6128 ret = send_capabilities(sctx); 6129 if (ret < 0) 6130 goto out; 6131 6132 /* 6133 * If other directory inodes depended on our current directory 6134 * inode's move/rename, now do their move/rename operations. 6135 */ 6136 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6137 ret = apply_children_dir_moves(sctx); 6138 if (ret) 6139 goto out; 6140 /* 6141 * Need to send that every time, no matter if it actually 6142 * changed between the two trees as we have done changes to 6143 * the inode before. If our inode is a directory and it's 6144 * waiting to be moved/renamed, we will send its utimes when 6145 * it's moved/renamed, therefore we don't need to do it here. 6146 */ 6147 sctx->send_progress = sctx->cur_ino + 1; 6148 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6149 if (ret < 0) 6150 goto out; 6151 } 6152 6153 out: 6154 return ret; 6155 } 6156 6157 struct parent_paths_ctx { 6158 struct list_head *refs; 6159 struct send_ctx *sctx; 6160 }; 6161 6162 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name, 6163 void *ctx) 6164 { 6165 struct parent_paths_ctx *ppctx = ctx; 6166 6167 return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx, 6168 ppctx->refs); 6169 } 6170 6171 /* 6172 * Issue unlink operations for all paths of the current inode found in the 6173 * parent snapshot. 6174 */ 6175 static int btrfs_unlink_all_paths(struct send_ctx *sctx) 6176 { 6177 LIST_HEAD(deleted_refs); 6178 struct btrfs_path *path; 6179 struct btrfs_key key; 6180 struct parent_paths_ctx ctx; 6181 int ret; 6182 6183 path = alloc_path_for_send(); 6184 if (!path) 6185 return -ENOMEM; 6186 6187 key.objectid = sctx->cur_ino; 6188 key.type = BTRFS_INODE_REF_KEY; 6189 key.offset = 0; 6190 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 6191 if (ret < 0) 6192 goto out; 6193 6194 ctx.refs = &deleted_refs; 6195 ctx.sctx = sctx; 6196 6197 while (true) { 6198 struct extent_buffer *eb = path->nodes[0]; 6199 int slot = path->slots[0]; 6200 6201 if (slot >= btrfs_header_nritems(eb)) { 6202 ret = btrfs_next_leaf(sctx->parent_root, path); 6203 if (ret < 0) 6204 goto out; 6205 else if (ret > 0) 6206 break; 6207 continue; 6208 } 6209 6210 btrfs_item_key_to_cpu(eb, &key, slot); 6211 if (key.objectid != sctx->cur_ino) 6212 break; 6213 if (key.type != BTRFS_INODE_REF_KEY && 6214 key.type != BTRFS_INODE_EXTREF_KEY) 6215 break; 6216 6217 ret = iterate_inode_ref(sctx->parent_root, path, &key, 1, 6218 record_parent_ref, &ctx); 6219 if (ret < 0) 6220 goto out; 6221 6222 path->slots[0]++; 6223 } 6224 6225 while (!list_empty(&deleted_refs)) { 6226 struct recorded_ref *ref; 6227 6228 ref = list_first_entry(&deleted_refs, struct recorded_ref, list); 6229 ret = send_unlink(sctx, ref->full_path); 6230 if (ret < 0) 6231 goto out; 6232 fs_path_free(ref->full_path); 6233 list_del(&ref->list); 6234 kfree(ref); 6235 } 6236 ret = 0; 6237 out: 6238 btrfs_free_path(path); 6239 if (ret) 6240 __free_recorded_refs(&deleted_refs); 6241 return ret; 6242 } 6243 6244 static int changed_inode(struct send_ctx *sctx, 6245 enum btrfs_compare_tree_result result) 6246 { 6247 int ret = 0; 6248 struct btrfs_key *key = sctx->cmp_key; 6249 struct btrfs_inode_item *left_ii = NULL; 6250 struct btrfs_inode_item *right_ii = NULL; 6251 u64 left_gen = 0; 6252 u64 right_gen = 0; 6253 6254 sctx->cur_ino = key->objectid; 6255 sctx->cur_inode_new_gen = 0; 6256 sctx->cur_inode_last_extent = (u64)-1; 6257 sctx->cur_inode_next_write_offset = 0; 6258 sctx->ignore_cur_inode = false; 6259 6260 /* 6261 * Set send_progress to current inode. This will tell all get_cur_xxx 6262 * functions that the current inode's refs are not updated yet. Later, 6263 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6264 */ 6265 sctx->send_progress = sctx->cur_ino; 6266 6267 if (result == BTRFS_COMPARE_TREE_NEW || 6268 result == BTRFS_COMPARE_TREE_CHANGED) { 6269 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6270 sctx->left_path->slots[0], 6271 struct btrfs_inode_item); 6272 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6273 left_ii); 6274 } else { 6275 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6276 sctx->right_path->slots[0], 6277 struct btrfs_inode_item); 6278 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6279 right_ii); 6280 } 6281 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6282 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6283 sctx->right_path->slots[0], 6284 struct btrfs_inode_item); 6285 6286 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6287 right_ii); 6288 6289 /* 6290 * The cur_ino = root dir case is special here. We can't treat 6291 * the inode as deleted+reused because it would generate a 6292 * stream that tries to delete/mkdir the root dir. 6293 */ 6294 if (left_gen != right_gen && 6295 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6296 sctx->cur_inode_new_gen = 1; 6297 } 6298 6299 /* 6300 * Normally we do not find inodes with a link count of zero (orphans) 6301 * because the most common case is to create a snapshot and use it 6302 * for a send operation. However other less common use cases involve 6303 * using a subvolume and send it after turning it to RO mode just 6304 * after deleting all hard links of a file while holding an open 6305 * file descriptor against it or turning a RO snapshot into RW mode, 6306 * keep an open file descriptor against a file, delete it and then 6307 * turn the snapshot back to RO mode before using it for a send 6308 * operation. So if we find such cases, ignore the inode and all its 6309 * items completely if it's a new inode, or if it's a changed inode 6310 * make sure all its previous paths (from the parent snapshot) are all 6311 * unlinked and all other the inode items are ignored. 6312 */ 6313 if (result == BTRFS_COMPARE_TREE_NEW || 6314 result == BTRFS_COMPARE_TREE_CHANGED) { 6315 u32 nlinks; 6316 6317 nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6318 if (nlinks == 0) { 6319 sctx->ignore_cur_inode = true; 6320 if (result == BTRFS_COMPARE_TREE_CHANGED) 6321 ret = btrfs_unlink_all_paths(sctx); 6322 goto out; 6323 } 6324 } 6325 6326 if (result == BTRFS_COMPARE_TREE_NEW) { 6327 sctx->cur_inode_gen = left_gen; 6328 sctx->cur_inode_new = 1; 6329 sctx->cur_inode_deleted = 0; 6330 sctx->cur_inode_size = btrfs_inode_size( 6331 sctx->left_path->nodes[0], left_ii); 6332 sctx->cur_inode_mode = btrfs_inode_mode( 6333 sctx->left_path->nodes[0], left_ii); 6334 sctx->cur_inode_rdev = btrfs_inode_rdev( 6335 sctx->left_path->nodes[0], left_ii); 6336 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6337 ret = send_create_inode_if_needed(sctx); 6338 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6339 sctx->cur_inode_gen = right_gen; 6340 sctx->cur_inode_new = 0; 6341 sctx->cur_inode_deleted = 1; 6342 sctx->cur_inode_size = btrfs_inode_size( 6343 sctx->right_path->nodes[0], right_ii); 6344 sctx->cur_inode_mode = btrfs_inode_mode( 6345 sctx->right_path->nodes[0], right_ii); 6346 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6347 /* 6348 * We need to do some special handling in case the inode was 6349 * reported as changed with a changed generation number. This 6350 * means that the original inode was deleted and new inode 6351 * reused the same inum. So we have to treat the old inode as 6352 * deleted and the new one as new. 6353 */ 6354 if (sctx->cur_inode_new_gen) { 6355 /* 6356 * First, process the inode as if it was deleted. 6357 */ 6358 sctx->cur_inode_gen = right_gen; 6359 sctx->cur_inode_new = 0; 6360 sctx->cur_inode_deleted = 1; 6361 sctx->cur_inode_size = btrfs_inode_size( 6362 sctx->right_path->nodes[0], right_ii); 6363 sctx->cur_inode_mode = btrfs_inode_mode( 6364 sctx->right_path->nodes[0], right_ii); 6365 ret = process_all_refs(sctx, 6366 BTRFS_COMPARE_TREE_DELETED); 6367 if (ret < 0) 6368 goto out; 6369 6370 /* 6371 * Now process the inode as if it was new. 6372 */ 6373 sctx->cur_inode_gen = left_gen; 6374 sctx->cur_inode_new = 1; 6375 sctx->cur_inode_deleted = 0; 6376 sctx->cur_inode_size = btrfs_inode_size( 6377 sctx->left_path->nodes[0], left_ii); 6378 sctx->cur_inode_mode = btrfs_inode_mode( 6379 sctx->left_path->nodes[0], left_ii); 6380 sctx->cur_inode_rdev = btrfs_inode_rdev( 6381 sctx->left_path->nodes[0], left_ii); 6382 ret = send_create_inode_if_needed(sctx); 6383 if (ret < 0) 6384 goto out; 6385 6386 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 6387 if (ret < 0) 6388 goto out; 6389 /* 6390 * Advance send_progress now as we did not get into 6391 * process_recorded_refs_if_needed in the new_gen case. 6392 */ 6393 sctx->send_progress = sctx->cur_ino + 1; 6394 6395 /* 6396 * Now process all extents and xattrs of the inode as if 6397 * they were all new. 6398 */ 6399 ret = process_all_extents(sctx); 6400 if (ret < 0) 6401 goto out; 6402 ret = process_all_new_xattrs(sctx); 6403 if (ret < 0) 6404 goto out; 6405 } else { 6406 sctx->cur_inode_gen = left_gen; 6407 sctx->cur_inode_new = 0; 6408 sctx->cur_inode_new_gen = 0; 6409 sctx->cur_inode_deleted = 0; 6410 sctx->cur_inode_size = btrfs_inode_size( 6411 sctx->left_path->nodes[0], left_ii); 6412 sctx->cur_inode_mode = btrfs_inode_mode( 6413 sctx->left_path->nodes[0], left_ii); 6414 } 6415 } 6416 6417 out: 6418 return ret; 6419 } 6420 6421 /* 6422 * We have to process new refs before deleted refs, but compare_trees gives us 6423 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 6424 * first and later process them in process_recorded_refs. 6425 * For the cur_inode_new_gen case, we skip recording completely because 6426 * changed_inode did already initiate processing of refs. The reason for this is 6427 * that in this case, compare_tree actually compares the refs of 2 different 6428 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 6429 * refs of the right tree as deleted and all refs of the left tree as new. 6430 */ 6431 static int changed_ref(struct send_ctx *sctx, 6432 enum btrfs_compare_tree_result result) 6433 { 6434 int ret = 0; 6435 6436 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6437 inconsistent_snapshot_error(sctx, result, "reference"); 6438 return -EIO; 6439 } 6440 6441 if (!sctx->cur_inode_new_gen && 6442 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 6443 if (result == BTRFS_COMPARE_TREE_NEW) 6444 ret = record_new_ref(sctx); 6445 else if (result == BTRFS_COMPARE_TREE_DELETED) 6446 ret = record_deleted_ref(sctx); 6447 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6448 ret = record_changed_ref(sctx); 6449 } 6450 6451 return ret; 6452 } 6453 6454 /* 6455 * Process new/deleted/changed xattrs. We skip processing in the 6456 * cur_inode_new_gen case because changed_inode did already initiate processing 6457 * of xattrs. The reason is the same as in changed_ref 6458 */ 6459 static int changed_xattr(struct send_ctx *sctx, 6460 enum btrfs_compare_tree_result result) 6461 { 6462 int ret = 0; 6463 6464 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6465 inconsistent_snapshot_error(sctx, result, "xattr"); 6466 return -EIO; 6467 } 6468 6469 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6470 if (result == BTRFS_COMPARE_TREE_NEW) 6471 ret = process_new_xattr(sctx); 6472 else if (result == BTRFS_COMPARE_TREE_DELETED) 6473 ret = process_deleted_xattr(sctx); 6474 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6475 ret = process_changed_xattr(sctx); 6476 } 6477 6478 return ret; 6479 } 6480 6481 /* 6482 * Process new/deleted/changed extents. We skip processing in the 6483 * cur_inode_new_gen case because changed_inode did already initiate processing 6484 * of extents. The reason is the same as in changed_ref 6485 */ 6486 static int changed_extent(struct send_ctx *sctx, 6487 enum btrfs_compare_tree_result result) 6488 { 6489 int ret = 0; 6490 6491 /* 6492 * We have found an extent item that changed without the inode item 6493 * having changed. This can happen either after relocation (where the 6494 * disk_bytenr of an extent item is replaced at 6495 * relocation.c:replace_file_extents()) or after deduplication into a 6496 * file in both the parent and send snapshots (where an extent item can 6497 * get modified or replaced with a new one). Note that deduplication 6498 * updates the inode item, but it only changes the iversion (sequence 6499 * field in the inode item) of the inode, so if a file is deduplicated 6500 * the same amount of times in both the parent and send snapshots, its 6501 * iversion becames the same in both snapshots, whence the inode item is 6502 * the same on both snapshots. 6503 */ 6504 if (sctx->cur_ino != sctx->cmp_key->objectid) 6505 return 0; 6506 6507 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6508 if (result != BTRFS_COMPARE_TREE_DELETED) 6509 ret = process_extent(sctx, sctx->left_path, 6510 sctx->cmp_key); 6511 } 6512 6513 return ret; 6514 } 6515 6516 static int dir_changed(struct send_ctx *sctx, u64 dir) 6517 { 6518 u64 orig_gen, new_gen; 6519 int ret; 6520 6521 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 6522 NULL, NULL); 6523 if (ret) 6524 return ret; 6525 6526 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 6527 NULL, NULL, NULL); 6528 if (ret) 6529 return ret; 6530 6531 return (orig_gen != new_gen) ? 1 : 0; 6532 } 6533 6534 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 6535 struct btrfs_key *key) 6536 { 6537 struct btrfs_inode_extref *extref; 6538 struct extent_buffer *leaf; 6539 u64 dirid = 0, last_dirid = 0; 6540 unsigned long ptr; 6541 u32 item_size; 6542 u32 cur_offset = 0; 6543 int ref_name_len; 6544 int ret = 0; 6545 6546 /* Easy case, just check this one dirid */ 6547 if (key->type == BTRFS_INODE_REF_KEY) { 6548 dirid = key->offset; 6549 6550 ret = dir_changed(sctx, dirid); 6551 goto out; 6552 } 6553 6554 leaf = path->nodes[0]; 6555 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 6556 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 6557 while (cur_offset < item_size) { 6558 extref = (struct btrfs_inode_extref *)(ptr + 6559 cur_offset); 6560 dirid = btrfs_inode_extref_parent(leaf, extref); 6561 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 6562 cur_offset += ref_name_len + sizeof(*extref); 6563 if (dirid == last_dirid) 6564 continue; 6565 ret = dir_changed(sctx, dirid); 6566 if (ret) 6567 break; 6568 last_dirid = dirid; 6569 } 6570 out: 6571 return ret; 6572 } 6573 6574 /* 6575 * Updates compare related fields in sctx and simply forwards to the actual 6576 * changed_xxx functions. 6577 */ 6578 static int changed_cb(struct btrfs_path *left_path, 6579 struct btrfs_path *right_path, 6580 struct btrfs_key *key, 6581 enum btrfs_compare_tree_result result, 6582 void *ctx) 6583 { 6584 int ret = 0; 6585 struct send_ctx *sctx = ctx; 6586 6587 if (result == BTRFS_COMPARE_TREE_SAME) { 6588 if (key->type == BTRFS_INODE_REF_KEY || 6589 key->type == BTRFS_INODE_EXTREF_KEY) { 6590 ret = compare_refs(sctx, left_path, key); 6591 if (!ret) 6592 return 0; 6593 if (ret < 0) 6594 return ret; 6595 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 6596 return maybe_send_hole(sctx, left_path, key); 6597 } else { 6598 return 0; 6599 } 6600 result = BTRFS_COMPARE_TREE_CHANGED; 6601 ret = 0; 6602 } 6603 6604 sctx->left_path = left_path; 6605 sctx->right_path = right_path; 6606 sctx->cmp_key = key; 6607 6608 ret = finish_inode_if_needed(sctx, 0); 6609 if (ret < 0) 6610 goto out; 6611 6612 /* Ignore non-FS objects */ 6613 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 6614 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 6615 goto out; 6616 6617 if (key->type == BTRFS_INODE_ITEM_KEY) { 6618 ret = changed_inode(sctx, result); 6619 } else if (!sctx->ignore_cur_inode) { 6620 if (key->type == BTRFS_INODE_REF_KEY || 6621 key->type == BTRFS_INODE_EXTREF_KEY) 6622 ret = changed_ref(sctx, result); 6623 else if (key->type == BTRFS_XATTR_ITEM_KEY) 6624 ret = changed_xattr(sctx, result); 6625 else if (key->type == BTRFS_EXTENT_DATA_KEY) 6626 ret = changed_extent(sctx, result); 6627 } 6628 6629 out: 6630 return ret; 6631 } 6632 6633 static int full_send_tree(struct send_ctx *sctx) 6634 { 6635 int ret; 6636 struct btrfs_root *send_root = sctx->send_root; 6637 struct btrfs_key key; 6638 struct btrfs_path *path; 6639 struct extent_buffer *eb; 6640 int slot; 6641 6642 path = alloc_path_for_send(); 6643 if (!path) 6644 return -ENOMEM; 6645 6646 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 6647 key.type = BTRFS_INODE_ITEM_KEY; 6648 key.offset = 0; 6649 6650 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 6651 if (ret < 0) 6652 goto out; 6653 if (ret) 6654 goto out_finish; 6655 6656 while (1) { 6657 eb = path->nodes[0]; 6658 slot = path->slots[0]; 6659 btrfs_item_key_to_cpu(eb, &key, slot); 6660 6661 ret = changed_cb(path, NULL, &key, 6662 BTRFS_COMPARE_TREE_NEW, sctx); 6663 if (ret < 0) 6664 goto out; 6665 6666 ret = btrfs_next_item(send_root, path); 6667 if (ret < 0) 6668 goto out; 6669 if (ret) { 6670 ret = 0; 6671 break; 6672 } 6673 } 6674 6675 out_finish: 6676 ret = finish_inode_if_needed(sctx, 1); 6677 6678 out: 6679 btrfs_free_path(path); 6680 return ret; 6681 } 6682 6683 static int tree_move_down(struct btrfs_path *path, int *level) 6684 { 6685 struct extent_buffer *eb; 6686 6687 BUG_ON(*level == 0); 6688 eb = btrfs_read_node_slot(path->nodes[*level], path->slots[*level]); 6689 if (IS_ERR(eb)) 6690 return PTR_ERR(eb); 6691 6692 path->nodes[*level - 1] = eb; 6693 path->slots[*level - 1] = 0; 6694 (*level)--; 6695 return 0; 6696 } 6697 6698 static int tree_move_next_or_upnext(struct btrfs_path *path, 6699 int *level, int root_level) 6700 { 6701 int ret = 0; 6702 int nritems; 6703 nritems = btrfs_header_nritems(path->nodes[*level]); 6704 6705 path->slots[*level]++; 6706 6707 while (path->slots[*level] >= nritems) { 6708 if (*level == root_level) 6709 return -1; 6710 6711 /* move upnext */ 6712 path->slots[*level] = 0; 6713 free_extent_buffer(path->nodes[*level]); 6714 path->nodes[*level] = NULL; 6715 (*level)++; 6716 path->slots[*level]++; 6717 6718 nritems = btrfs_header_nritems(path->nodes[*level]); 6719 ret = 1; 6720 } 6721 return ret; 6722 } 6723 6724 /* 6725 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 6726 * or down. 6727 */ 6728 static int tree_advance(struct btrfs_path *path, 6729 int *level, int root_level, 6730 int allow_down, 6731 struct btrfs_key *key) 6732 { 6733 int ret; 6734 6735 if (*level == 0 || !allow_down) { 6736 ret = tree_move_next_or_upnext(path, level, root_level); 6737 } else { 6738 ret = tree_move_down(path, level); 6739 } 6740 if (ret >= 0) { 6741 if (*level == 0) 6742 btrfs_item_key_to_cpu(path->nodes[*level], key, 6743 path->slots[*level]); 6744 else 6745 btrfs_node_key_to_cpu(path->nodes[*level], key, 6746 path->slots[*level]); 6747 } 6748 return ret; 6749 } 6750 6751 static int tree_compare_item(struct btrfs_path *left_path, 6752 struct btrfs_path *right_path, 6753 char *tmp_buf) 6754 { 6755 int cmp; 6756 int len1, len2; 6757 unsigned long off1, off2; 6758 6759 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 6760 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 6761 if (len1 != len2) 6762 return 1; 6763 6764 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 6765 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 6766 right_path->slots[0]); 6767 6768 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 6769 6770 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 6771 if (cmp) 6772 return 1; 6773 return 0; 6774 } 6775 6776 /* 6777 * This function compares two trees and calls the provided callback for 6778 * every changed/new/deleted item it finds. 6779 * If shared tree blocks are encountered, whole subtrees are skipped, making 6780 * the compare pretty fast on snapshotted subvolumes. 6781 * 6782 * This currently works on commit roots only. As commit roots are read only, 6783 * we don't do any locking. The commit roots are protected with transactions. 6784 * Transactions are ended and rejoined when a commit is tried in between. 6785 * 6786 * This function checks for modifications done to the trees while comparing. 6787 * If it detects a change, it aborts immediately. 6788 */ 6789 static int btrfs_compare_trees(struct btrfs_root *left_root, 6790 struct btrfs_root *right_root, void *ctx) 6791 { 6792 struct btrfs_fs_info *fs_info = left_root->fs_info; 6793 int ret; 6794 int cmp; 6795 struct btrfs_path *left_path = NULL; 6796 struct btrfs_path *right_path = NULL; 6797 struct btrfs_key left_key; 6798 struct btrfs_key right_key; 6799 char *tmp_buf = NULL; 6800 int left_root_level; 6801 int right_root_level; 6802 int left_level; 6803 int right_level; 6804 int left_end_reached; 6805 int right_end_reached; 6806 int advance_left; 6807 int advance_right; 6808 u64 left_blockptr; 6809 u64 right_blockptr; 6810 u64 left_gen; 6811 u64 right_gen; 6812 6813 left_path = btrfs_alloc_path(); 6814 if (!left_path) { 6815 ret = -ENOMEM; 6816 goto out; 6817 } 6818 right_path = btrfs_alloc_path(); 6819 if (!right_path) { 6820 ret = -ENOMEM; 6821 goto out; 6822 } 6823 6824 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 6825 if (!tmp_buf) { 6826 ret = -ENOMEM; 6827 goto out; 6828 } 6829 6830 left_path->search_commit_root = 1; 6831 left_path->skip_locking = 1; 6832 right_path->search_commit_root = 1; 6833 right_path->skip_locking = 1; 6834 6835 /* 6836 * Strategy: Go to the first items of both trees. Then do 6837 * 6838 * If both trees are at level 0 6839 * Compare keys of current items 6840 * If left < right treat left item as new, advance left tree 6841 * and repeat 6842 * If left > right treat right item as deleted, advance right tree 6843 * and repeat 6844 * If left == right do deep compare of items, treat as changed if 6845 * needed, advance both trees and repeat 6846 * If both trees are at the same level but not at level 0 6847 * Compare keys of current nodes/leafs 6848 * If left < right advance left tree and repeat 6849 * If left > right advance right tree and repeat 6850 * If left == right compare blockptrs of the next nodes/leafs 6851 * If they match advance both trees but stay at the same level 6852 * and repeat 6853 * If they don't match advance both trees while allowing to go 6854 * deeper and repeat 6855 * If tree levels are different 6856 * Advance the tree that needs it and repeat 6857 * 6858 * Advancing a tree means: 6859 * If we are at level 0, try to go to the next slot. If that's not 6860 * possible, go one level up and repeat. Stop when we found a level 6861 * where we could go to the next slot. We may at this point be on a 6862 * node or a leaf. 6863 * 6864 * If we are not at level 0 and not on shared tree blocks, go one 6865 * level deeper. 6866 * 6867 * If we are not at level 0 and on shared tree blocks, go one slot to 6868 * the right if possible or go up and right. 6869 */ 6870 6871 down_read(&fs_info->commit_root_sem); 6872 left_level = btrfs_header_level(left_root->commit_root); 6873 left_root_level = left_level; 6874 left_path->nodes[left_level] = 6875 btrfs_clone_extent_buffer(left_root->commit_root); 6876 if (!left_path->nodes[left_level]) { 6877 up_read(&fs_info->commit_root_sem); 6878 ret = -ENOMEM; 6879 goto out; 6880 } 6881 6882 right_level = btrfs_header_level(right_root->commit_root); 6883 right_root_level = right_level; 6884 right_path->nodes[right_level] = 6885 btrfs_clone_extent_buffer(right_root->commit_root); 6886 if (!right_path->nodes[right_level]) { 6887 up_read(&fs_info->commit_root_sem); 6888 ret = -ENOMEM; 6889 goto out; 6890 } 6891 up_read(&fs_info->commit_root_sem); 6892 6893 if (left_level == 0) 6894 btrfs_item_key_to_cpu(left_path->nodes[left_level], 6895 &left_key, left_path->slots[left_level]); 6896 else 6897 btrfs_node_key_to_cpu(left_path->nodes[left_level], 6898 &left_key, left_path->slots[left_level]); 6899 if (right_level == 0) 6900 btrfs_item_key_to_cpu(right_path->nodes[right_level], 6901 &right_key, right_path->slots[right_level]); 6902 else 6903 btrfs_node_key_to_cpu(right_path->nodes[right_level], 6904 &right_key, right_path->slots[right_level]); 6905 6906 left_end_reached = right_end_reached = 0; 6907 advance_left = advance_right = 0; 6908 6909 while (1) { 6910 cond_resched(); 6911 if (advance_left && !left_end_reached) { 6912 ret = tree_advance(left_path, &left_level, 6913 left_root_level, 6914 advance_left != ADVANCE_ONLY_NEXT, 6915 &left_key); 6916 if (ret == -1) 6917 left_end_reached = ADVANCE; 6918 else if (ret < 0) 6919 goto out; 6920 advance_left = 0; 6921 } 6922 if (advance_right && !right_end_reached) { 6923 ret = tree_advance(right_path, &right_level, 6924 right_root_level, 6925 advance_right != ADVANCE_ONLY_NEXT, 6926 &right_key); 6927 if (ret == -1) 6928 right_end_reached = ADVANCE; 6929 else if (ret < 0) 6930 goto out; 6931 advance_right = 0; 6932 } 6933 6934 if (left_end_reached && right_end_reached) { 6935 ret = 0; 6936 goto out; 6937 } else if (left_end_reached) { 6938 if (right_level == 0) { 6939 ret = changed_cb(left_path, right_path, 6940 &right_key, 6941 BTRFS_COMPARE_TREE_DELETED, 6942 ctx); 6943 if (ret < 0) 6944 goto out; 6945 } 6946 advance_right = ADVANCE; 6947 continue; 6948 } else if (right_end_reached) { 6949 if (left_level == 0) { 6950 ret = changed_cb(left_path, right_path, 6951 &left_key, 6952 BTRFS_COMPARE_TREE_NEW, 6953 ctx); 6954 if (ret < 0) 6955 goto out; 6956 } 6957 advance_left = ADVANCE; 6958 continue; 6959 } 6960 6961 if (left_level == 0 && right_level == 0) { 6962 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 6963 if (cmp < 0) { 6964 ret = changed_cb(left_path, right_path, 6965 &left_key, 6966 BTRFS_COMPARE_TREE_NEW, 6967 ctx); 6968 if (ret < 0) 6969 goto out; 6970 advance_left = ADVANCE; 6971 } else if (cmp > 0) { 6972 ret = changed_cb(left_path, right_path, 6973 &right_key, 6974 BTRFS_COMPARE_TREE_DELETED, 6975 ctx); 6976 if (ret < 0) 6977 goto out; 6978 advance_right = ADVANCE; 6979 } else { 6980 enum btrfs_compare_tree_result result; 6981 6982 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 6983 ret = tree_compare_item(left_path, right_path, 6984 tmp_buf); 6985 if (ret) 6986 result = BTRFS_COMPARE_TREE_CHANGED; 6987 else 6988 result = BTRFS_COMPARE_TREE_SAME; 6989 ret = changed_cb(left_path, right_path, 6990 &left_key, result, ctx); 6991 if (ret < 0) 6992 goto out; 6993 advance_left = ADVANCE; 6994 advance_right = ADVANCE; 6995 } 6996 } else if (left_level == right_level) { 6997 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 6998 if (cmp < 0) { 6999 advance_left = ADVANCE; 7000 } else if (cmp > 0) { 7001 advance_right = ADVANCE; 7002 } else { 7003 left_blockptr = btrfs_node_blockptr( 7004 left_path->nodes[left_level], 7005 left_path->slots[left_level]); 7006 right_blockptr = btrfs_node_blockptr( 7007 right_path->nodes[right_level], 7008 right_path->slots[right_level]); 7009 left_gen = btrfs_node_ptr_generation( 7010 left_path->nodes[left_level], 7011 left_path->slots[left_level]); 7012 right_gen = btrfs_node_ptr_generation( 7013 right_path->nodes[right_level], 7014 right_path->slots[right_level]); 7015 if (left_blockptr == right_blockptr && 7016 left_gen == right_gen) { 7017 /* 7018 * As we're on a shared block, don't 7019 * allow to go deeper. 7020 */ 7021 advance_left = ADVANCE_ONLY_NEXT; 7022 advance_right = ADVANCE_ONLY_NEXT; 7023 } else { 7024 advance_left = ADVANCE; 7025 advance_right = ADVANCE; 7026 } 7027 } 7028 } else if (left_level < right_level) { 7029 advance_right = ADVANCE; 7030 } else { 7031 advance_left = ADVANCE; 7032 } 7033 } 7034 7035 out: 7036 btrfs_free_path(left_path); 7037 btrfs_free_path(right_path); 7038 kvfree(tmp_buf); 7039 return ret; 7040 } 7041 7042 static int send_subvol(struct send_ctx *sctx) 7043 { 7044 int ret; 7045 7046 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 7047 ret = send_header(sctx); 7048 if (ret < 0) 7049 goto out; 7050 } 7051 7052 ret = send_subvol_begin(sctx); 7053 if (ret < 0) 7054 goto out; 7055 7056 if (sctx->parent_root) { 7057 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); 7058 if (ret < 0) 7059 goto out; 7060 ret = finish_inode_if_needed(sctx, 1); 7061 if (ret < 0) 7062 goto out; 7063 } else { 7064 ret = full_send_tree(sctx); 7065 if (ret < 0) 7066 goto out; 7067 } 7068 7069 out: 7070 free_recorded_refs(sctx); 7071 return ret; 7072 } 7073 7074 /* 7075 * If orphan cleanup did remove any orphans from a root, it means the tree 7076 * was modified and therefore the commit root is not the same as the current 7077 * root anymore. This is a problem, because send uses the commit root and 7078 * therefore can see inode items that don't exist in the current root anymore, 7079 * and for example make calls to btrfs_iget, which will do tree lookups based 7080 * on the current root and not on the commit root. Those lookups will fail, 7081 * returning a -ESTALE error, and making send fail with that error. So make 7082 * sure a send does not see any orphans we have just removed, and that it will 7083 * see the same inodes regardless of whether a transaction commit happened 7084 * before it started (meaning that the commit root will be the same as the 7085 * current root) or not. 7086 */ 7087 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 7088 { 7089 int i; 7090 struct btrfs_trans_handle *trans = NULL; 7091 7092 again: 7093 if (sctx->parent_root && 7094 sctx->parent_root->node != sctx->parent_root->commit_root) 7095 goto commit_trans; 7096 7097 for (i = 0; i < sctx->clone_roots_cnt; i++) 7098 if (sctx->clone_roots[i].root->node != 7099 sctx->clone_roots[i].root->commit_root) 7100 goto commit_trans; 7101 7102 if (trans) 7103 return btrfs_end_transaction(trans); 7104 7105 return 0; 7106 7107 commit_trans: 7108 /* Use any root, all fs roots will get their commit roots updated. */ 7109 if (!trans) { 7110 trans = btrfs_join_transaction(sctx->send_root); 7111 if (IS_ERR(trans)) 7112 return PTR_ERR(trans); 7113 goto again; 7114 } 7115 7116 return btrfs_commit_transaction(trans); 7117 } 7118 7119 /* 7120 * Make sure any existing dellaloc is flushed for any root used by a send 7121 * operation so that we do not miss any data and we do not race with writeback 7122 * finishing and changing a tree while send is using the tree. This could 7123 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 7124 * a send operation then uses the subvolume. 7125 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 7126 */ 7127 static int flush_delalloc_roots(struct send_ctx *sctx) 7128 { 7129 struct btrfs_root *root = sctx->parent_root; 7130 int ret; 7131 int i; 7132 7133 if (root) { 7134 ret = btrfs_start_delalloc_snapshot(root); 7135 if (ret) 7136 return ret; 7137 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 7138 } 7139 7140 for (i = 0; i < sctx->clone_roots_cnt; i++) { 7141 root = sctx->clone_roots[i].root; 7142 ret = btrfs_start_delalloc_snapshot(root); 7143 if (ret) 7144 return ret; 7145 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 7146 } 7147 7148 return 0; 7149 } 7150 7151 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 7152 { 7153 spin_lock(&root->root_item_lock); 7154 root->send_in_progress--; 7155 /* 7156 * Not much left to do, we don't know why it's unbalanced and 7157 * can't blindly reset it to 0. 7158 */ 7159 if (root->send_in_progress < 0) 7160 btrfs_err(root->fs_info, 7161 "send_in_progress unbalanced %d root %llu", 7162 root->send_in_progress, root->root_key.objectid); 7163 spin_unlock(&root->root_item_lock); 7164 } 7165 7166 static void dedupe_in_progress_warn(const struct btrfs_root *root) 7167 { 7168 btrfs_warn_rl(root->fs_info, 7169 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 7170 root->root_key.objectid, root->dedupe_in_progress); 7171 } 7172 7173 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg) 7174 { 7175 int ret = 0; 7176 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root; 7177 struct btrfs_fs_info *fs_info = send_root->fs_info; 7178 struct btrfs_root *clone_root; 7179 struct send_ctx *sctx = NULL; 7180 u32 i; 7181 u64 *clone_sources_tmp = NULL; 7182 int clone_sources_to_rollback = 0; 7183 size_t alloc_size; 7184 int sort_clone_roots = 0; 7185 7186 if (!capable(CAP_SYS_ADMIN)) 7187 return -EPERM; 7188 7189 /* 7190 * The subvolume must remain read-only during send, protect against 7191 * making it RW. This also protects against deletion. 7192 */ 7193 spin_lock(&send_root->root_item_lock); 7194 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) { 7195 dedupe_in_progress_warn(send_root); 7196 spin_unlock(&send_root->root_item_lock); 7197 return -EAGAIN; 7198 } 7199 send_root->send_in_progress++; 7200 spin_unlock(&send_root->root_item_lock); 7201 7202 /* 7203 * Userspace tools do the checks and warn the user if it's 7204 * not RO. 7205 */ 7206 if (!btrfs_root_readonly(send_root)) { 7207 ret = -EPERM; 7208 goto out; 7209 } 7210 7211 /* 7212 * Check that we don't overflow at later allocations, we request 7213 * clone_sources_count + 1 items, and compare to unsigned long inside 7214 * access_ok. 7215 */ 7216 if (arg->clone_sources_count > 7217 ULONG_MAX / sizeof(struct clone_root) - 1) { 7218 ret = -EINVAL; 7219 goto out; 7220 } 7221 7222 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 7223 ret = -EINVAL; 7224 goto out; 7225 } 7226 7227 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 7228 if (!sctx) { 7229 ret = -ENOMEM; 7230 goto out; 7231 } 7232 7233 INIT_LIST_HEAD(&sctx->new_refs); 7234 INIT_LIST_HEAD(&sctx->deleted_refs); 7235 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL); 7236 INIT_LIST_HEAD(&sctx->name_cache_list); 7237 7238 sctx->flags = arg->flags; 7239 7240 sctx->send_filp = fget(arg->send_fd); 7241 if (!sctx->send_filp) { 7242 ret = -EBADF; 7243 goto out; 7244 } 7245 7246 sctx->send_root = send_root; 7247 /* 7248 * Unlikely but possible, if the subvolume is marked for deletion but 7249 * is slow to remove the directory entry, send can still be started 7250 */ 7251 if (btrfs_root_dead(sctx->send_root)) { 7252 ret = -EPERM; 7253 goto out; 7254 } 7255 7256 sctx->clone_roots_cnt = arg->clone_sources_count; 7257 7258 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 7259 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 7260 if (!sctx->send_buf) { 7261 ret = -ENOMEM; 7262 goto out; 7263 } 7264 7265 sctx->pending_dir_moves = RB_ROOT; 7266 sctx->waiting_dir_moves = RB_ROOT; 7267 sctx->orphan_dirs = RB_ROOT; 7268 7269 sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots), 7270 arg->clone_sources_count + 1, 7271 GFP_KERNEL); 7272 if (!sctx->clone_roots) { 7273 ret = -ENOMEM; 7274 goto out; 7275 } 7276 7277 alloc_size = array_size(sizeof(*arg->clone_sources), 7278 arg->clone_sources_count); 7279 7280 if (arg->clone_sources_count) { 7281 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 7282 if (!clone_sources_tmp) { 7283 ret = -ENOMEM; 7284 goto out; 7285 } 7286 7287 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 7288 alloc_size); 7289 if (ret) { 7290 ret = -EFAULT; 7291 goto out; 7292 } 7293 7294 for (i = 0; i < arg->clone_sources_count; i++) { 7295 clone_root = btrfs_get_fs_root(fs_info, 7296 clone_sources_tmp[i], true); 7297 if (IS_ERR(clone_root)) { 7298 ret = PTR_ERR(clone_root); 7299 goto out; 7300 } 7301 spin_lock(&clone_root->root_item_lock); 7302 if (!btrfs_root_readonly(clone_root) || 7303 btrfs_root_dead(clone_root)) { 7304 spin_unlock(&clone_root->root_item_lock); 7305 btrfs_put_root(clone_root); 7306 ret = -EPERM; 7307 goto out; 7308 } 7309 if (clone_root->dedupe_in_progress) { 7310 dedupe_in_progress_warn(clone_root); 7311 spin_unlock(&clone_root->root_item_lock); 7312 btrfs_put_root(clone_root); 7313 ret = -EAGAIN; 7314 goto out; 7315 } 7316 clone_root->send_in_progress++; 7317 spin_unlock(&clone_root->root_item_lock); 7318 7319 sctx->clone_roots[i].root = clone_root; 7320 clone_sources_to_rollback = i + 1; 7321 } 7322 kvfree(clone_sources_tmp); 7323 clone_sources_tmp = NULL; 7324 } 7325 7326 if (arg->parent_root) { 7327 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, 7328 true); 7329 if (IS_ERR(sctx->parent_root)) { 7330 ret = PTR_ERR(sctx->parent_root); 7331 goto out; 7332 } 7333 7334 spin_lock(&sctx->parent_root->root_item_lock); 7335 sctx->parent_root->send_in_progress++; 7336 if (!btrfs_root_readonly(sctx->parent_root) || 7337 btrfs_root_dead(sctx->parent_root)) { 7338 spin_unlock(&sctx->parent_root->root_item_lock); 7339 ret = -EPERM; 7340 goto out; 7341 } 7342 if (sctx->parent_root->dedupe_in_progress) { 7343 dedupe_in_progress_warn(sctx->parent_root); 7344 spin_unlock(&sctx->parent_root->root_item_lock); 7345 ret = -EAGAIN; 7346 goto out; 7347 } 7348 spin_unlock(&sctx->parent_root->root_item_lock); 7349 } 7350 7351 /* 7352 * Clones from send_root are allowed, but only if the clone source 7353 * is behind the current send position. This is checked while searching 7354 * for possible clone sources. 7355 */ 7356 sctx->clone_roots[sctx->clone_roots_cnt++].root = 7357 btrfs_grab_root(sctx->send_root); 7358 7359 /* We do a bsearch later */ 7360 sort(sctx->clone_roots, sctx->clone_roots_cnt, 7361 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 7362 NULL); 7363 sort_clone_roots = 1; 7364 7365 ret = flush_delalloc_roots(sctx); 7366 if (ret) 7367 goto out; 7368 7369 ret = ensure_commit_roots_uptodate(sctx); 7370 if (ret) 7371 goto out; 7372 7373 mutex_lock(&fs_info->balance_mutex); 7374 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 7375 mutex_unlock(&fs_info->balance_mutex); 7376 btrfs_warn_rl(fs_info, 7377 "cannot run send because a balance operation is in progress"); 7378 ret = -EAGAIN; 7379 goto out; 7380 } 7381 fs_info->send_in_progress++; 7382 mutex_unlock(&fs_info->balance_mutex); 7383 7384 current->journal_info = BTRFS_SEND_TRANS_STUB; 7385 ret = send_subvol(sctx); 7386 current->journal_info = NULL; 7387 mutex_lock(&fs_info->balance_mutex); 7388 fs_info->send_in_progress--; 7389 mutex_unlock(&fs_info->balance_mutex); 7390 if (ret < 0) 7391 goto out; 7392 7393 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 7394 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 7395 if (ret < 0) 7396 goto out; 7397 ret = send_cmd(sctx); 7398 if (ret < 0) 7399 goto out; 7400 } 7401 7402 out: 7403 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 7404 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 7405 struct rb_node *n; 7406 struct pending_dir_move *pm; 7407 7408 n = rb_first(&sctx->pending_dir_moves); 7409 pm = rb_entry(n, struct pending_dir_move, node); 7410 while (!list_empty(&pm->list)) { 7411 struct pending_dir_move *pm2; 7412 7413 pm2 = list_first_entry(&pm->list, 7414 struct pending_dir_move, list); 7415 free_pending_move(sctx, pm2); 7416 } 7417 free_pending_move(sctx, pm); 7418 } 7419 7420 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 7421 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 7422 struct rb_node *n; 7423 struct waiting_dir_move *dm; 7424 7425 n = rb_first(&sctx->waiting_dir_moves); 7426 dm = rb_entry(n, struct waiting_dir_move, node); 7427 rb_erase(&dm->node, &sctx->waiting_dir_moves); 7428 kfree(dm); 7429 } 7430 7431 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 7432 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 7433 struct rb_node *n; 7434 struct orphan_dir_info *odi; 7435 7436 n = rb_first(&sctx->orphan_dirs); 7437 odi = rb_entry(n, struct orphan_dir_info, node); 7438 free_orphan_dir_info(sctx, odi); 7439 } 7440 7441 if (sort_clone_roots) { 7442 for (i = 0; i < sctx->clone_roots_cnt; i++) { 7443 btrfs_root_dec_send_in_progress( 7444 sctx->clone_roots[i].root); 7445 btrfs_put_root(sctx->clone_roots[i].root); 7446 } 7447 } else { 7448 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 7449 btrfs_root_dec_send_in_progress( 7450 sctx->clone_roots[i].root); 7451 btrfs_put_root(sctx->clone_roots[i].root); 7452 } 7453 7454 btrfs_root_dec_send_in_progress(send_root); 7455 } 7456 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 7457 btrfs_root_dec_send_in_progress(sctx->parent_root); 7458 btrfs_put_root(sctx->parent_root); 7459 } 7460 7461 kvfree(clone_sources_tmp); 7462 7463 if (sctx) { 7464 if (sctx->send_filp) 7465 fput(sctx->send_filp); 7466 7467 kvfree(sctx->clone_roots); 7468 kvfree(sctx->send_buf); 7469 7470 name_cache_free(sctx); 7471 7472 kfree(sctx); 7473 } 7474 7475 return ret; 7476 } 7477