xref: /openbmc/linux/fs/btrfs/send.c (revision 861e10be)
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/crc32c.h>
28 #include <linux/vmalloc.h>
29 
30 #include "send.h"
31 #include "backref.h"
32 #include "locking.h"
33 #include "disk-io.h"
34 #include "btrfs_inode.h"
35 #include "transaction.h"
36 
37 static int g_verbose = 0;
38 
39 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
40 
41 /*
42  * A fs_path is a helper to dynamically build path names with unknown size.
43  * It reallocates the internal buffer on demand.
44  * It allows fast adding of path elements on the right side (normal path) and
45  * fast adding to the left side (reversed path). A reversed path can also be
46  * unreversed if needed.
47  */
48 struct fs_path {
49 	union {
50 		struct {
51 			char *start;
52 			char *end;
53 			char *prepared;
54 
55 			char *buf;
56 			int buf_len;
57 			int reversed:1;
58 			int virtual_mem:1;
59 			char inline_buf[];
60 		};
61 		char pad[PAGE_SIZE];
62 	};
63 };
64 #define FS_PATH_INLINE_SIZE \
65 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
66 
67 
68 /* reused for each extent */
69 struct clone_root {
70 	struct btrfs_root *root;
71 	u64 ino;
72 	u64 offset;
73 
74 	u64 found_refs;
75 };
76 
77 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
78 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
79 
80 struct send_ctx {
81 	struct file *send_filp;
82 	loff_t send_off;
83 	char *send_buf;
84 	u32 send_size;
85 	u32 send_max_size;
86 	u64 total_send_size;
87 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
88 
89 	struct vfsmount *mnt;
90 
91 	struct btrfs_root *send_root;
92 	struct btrfs_root *parent_root;
93 	struct clone_root *clone_roots;
94 	int clone_roots_cnt;
95 
96 	/* current state of the compare_tree call */
97 	struct btrfs_path *left_path;
98 	struct btrfs_path *right_path;
99 	struct btrfs_key *cmp_key;
100 
101 	/*
102 	 * infos of the currently processed inode. In case of deleted inodes,
103 	 * these are the values from the deleted inode.
104 	 */
105 	u64 cur_ino;
106 	u64 cur_inode_gen;
107 	int cur_inode_new;
108 	int cur_inode_new_gen;
109 	int cur_inode_deleted;
110 	u64 cur_inode_size;
111 	u64 cur_inode_mode;
112 
113 	u64 send_progress;
114 
115 	struct list_head new_refs;
116 	struct list_head deleted_refs;
117 
118 	struct radix_tree_root name_cache;
119 	struct list_head name_cache_list;
120 	int name_cache_size;
121 
122 	struct file *cur_inode_filp;
123 	char *read_buf;
124 };
125 
126 struct name_cache_entry {
127 	struct list_head list;
128 	/*
129 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
130 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
131 	 * more then one inum would fall into the same entry, we use radix_list
132 	 * to store the additional entries. radix_list is also used to store
133 	 * entries where two entries have the same inum but different
134 	 * generations.
135 	 */
136 	struct list_head radix_list;
137 	u64 ino;
138 	u64 gen;
139 	u64 parent_ino;
140 	u64 parent_gen;
141 	int ret;
142 	int need_later_update;
143 	int name_len;
144 	char name[];
145 };
146 
147 static void fs_path_reset(struct fs_path *p)
148 {
149 	if (p->reversed) {
150 		p->start = p->buf + p->buf_len - 1;
151 		p->end = p->start;
152 		*p->start = 0;
153 	} else {
154 		p->start = p->buf;
155 		p->end = p->start;
156 		*p->start = 0;
157 	}
158 }
159 
160 static struct fs_path *fs_path_alloc(struct send_ctx *sctx)
161 {
162 	struct fs_path *p;
163 
164 	p = kmalloc(sizeof(*p), GFP_NOFS);
165 	if (!p)
166 		return NULL;
167 	p->reversed = 0;
168 	p->virtual_mem = 0;
169 	p->buf = p->inline_buf;
170 	p->buf_len = FS_PATH_INLINE_SIZE;
171 	fs_path_reset(p);
172 	return p;
173 }
174 
175 static struct fs_path *fs_path_alloc_reversed(struct send_ctx *sctx)
176 {
177 	struct fs_path *p;
178 
179 	p = fs_path_alloc(sctx);
180 	if (!p)
181 		return NULL;
182 	p->reversed = 1;
183 	fs_path_reset(p);
184 	return p;
185 }
186 
187 static void fs_path_free(struct send_ctx *sctx, struct fs_path *p)
188 {
189 	if (!p)
190 		return;
191 	if (p->buf != p->inline_buf) {
192 		if (p->virtual_mem)
193 			vfree(p->buf);
194 		else
195 			kfree(p->buf);
196 	}
197 	kfree(p);
198 }
199 
200 static int fs_path_len(struct fs_path *p)
201 {
202 	return p->end - p->start;
203 }
204 
205 static int fs_path_ensure_buf(struct fs_path *p, int len)
206 {
207 	char *tmp_buf;
208 	int path_len;
209 	int old_buf_len;
210 
211 	len++;
212 
213 	if (p->buf_len >= len)
214 		return 0;
215 
216 	path_len = p->end - p->start;
217 	old_buf_len = p->buf_len;
218 	len = PAGE_ALIGN(len);
219 
220 	if (p->buf == p->inline_buf) {
221 		tmp_buf = kmalloc(len, GFP_NOFS);
222 		if (!tmp_buf) {
223 			tmp_buf = vmalloc(len);
224 			if (!tmp_buf)
225 				return -ENOMEM;
226 			p->virtual_mem = 1;
227 		}
228 		memcpy(tmp_buf, p->buf, p->buf_len);
229 		p->buf = tmp_buf;
230 		p->buf_len = len;
231 	} else {
232 		if (p->virtual_mem) {
233 			tmp_buf = vmalloc(len);
234 			if (!tmp_buf)
235 				return -ENOMEM;
236 			memcpy(tmp_buf, p->buf, p->buf_len);
237 			vfree(p->buf);
238 		} else {
239 			tmp_buf = krealloc(p->buf, len, GFP_NOFS);
240 			if (!tmp_buf) {
241 				tmp_buf = vmalloc(len);
242 				if (!tmp_buf)
243 					return -ENOMEM;
244 				memcpy(tmp_buf, p->buf, p->buf_len);
245 				kfree(p->buf);
246 				p->virtual_mem = 1;
247 			}
248 		}
249 		p->buf = tmp_buf;
250 		p->buf_len = len;
251 	}
252 	if (p->reversed) {
253 		tmp_buf = p->buf + old_buf_len - path_len - 1;
254 		p->end = p->buf + p->buf_len - 1;
255 		p->start = p->end - path_len;
256 		memmove(p->start, tmp_buf, path_len + 1);
257 	} else {
258 		p->start = p->buf;
259 		p->end = p->start + path_len;
260 	}
261 	return 0;
262 }
263 
264 static int fs_path_prepare_for_add(struct fs_path *p, int name_len)
265 {
266 	int ret;
267 	int new_len;
268 
269 	new_len = p->end - p->start + name_len;
270 	if (p->start != p->end)
271 		new_len++;
272 	ret = fs_path_ensure_buf(p, new_len);
273 	if (ret < 0)
274 		goto out;
275 
276 	if (p->reversed) {
277 		if (p->start != p->end)
278 			*--p->start = '/';
279 		p->start -= name_len;
280 		p->prepared = p->start;
281 	} else {
282 		if (p->start != p->end)
283 			*p->end++ = '/';
284 		p->prepared = p->end;
285 		p->end += name_len;
286 		*p->end = 0;
287 	}
288 
289 out:
290 	return ret;
291 }
292 
293 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
294 {
295 	int ret;
296 
297 	ret = fs_path_prepare_for_add(p, name_len);
298 	if (ret < 0)
299 		goto out;
300 	memcpy(p->prepared, name, name_len);
301 	p->prepared = NULL;
302 
303 out:
304 	return ret;
305 }
306 
307 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
308 {
309 	int ret;
310 
311 	ret = fs_path_prepare_for_add(p, p2->end - p2->start);
312 	if (ret < 0)
313 		goto out;
314 	memcpy(p->prepared, p2->start, p2->end - p2->start);
315 	p->prepared = NULL;
316 
317 out:
318 	return ret;
319 }
320 
321 static int fs_path_add_from_extent_buffer(struct fs_path *p,
322 					  struct extent_buffer *eb,
323 					  unsigned long off, int len)
324 {
325 	int ret;
326 
327 	ret = fs_path_prepare_for_add(p, len);
328 	if (ret < 0)
329 		goto out;
330 
331 	read_extent_buffer(eb, p->prepared, off, len);
332 	p->prepared = NULL;
333 
334 out:
335 	return ret;
336 }
337 
338 #if 0
339 static void fs_path_remove(struct fs_path *p)
340 {
341 	BUG_ON(p->reversed);
342 	while (p->start != p->end && *p->end != '/')
343 		p->end--;
344 	*p->end = 0;
345 }
346 #endif
347 
348 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
349 {
350 	int ret;
351 
352 	p->reversed = from->reversed;
353 	fs_path_reset(p);
354 
355 	ret = fs_path_add_path(p, from);
356 
357 	return ret;
358 }
359 
360 
361 static void fs_path_unreverse(struct fs_path *p)
362 {
363 	char *tmp;
364 	int len;
365 
366 	if (!p->reversed)
367 		return;
368 
369 	tmp = p->start;
370 	len = p->end - p->start;
371 	p->start = p->buf;
372 	p->end = p->start + len;
373 	memmove(p->start, tmp, len + 1);
374 	p->reversed = 0;
375 }
376 
377 static struct btrfs_path *alloc_path_for_send(void)
378 {
379 	struct btrfs_path *path;
380 
381 	path = btrfs_alloc_path();
382 	if (!path)
383 		return NULL;
384 	path->search_commit_root = 1;
385 	path->skip_locking = 1;
386 	return path;
387 }
388 
389 int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
390 {
391 	int ret;
392 	mm_segment_t old_fs;
393 	u32 pos = 0;
394 
395 	old_fs = get_fs();
396 	set_fs(KERNEL_DS);
397 
398 	while (pos < len) {
399 		ret = vfs_write(filp, (char *)buf + pos, len - pos, off);
400 		/* TODO handle that correctly */
401 		/*if (ret == -ERESTARTSYS) {
402 			continue;
403 		}*/
404 		if (ret < 0)
405 			goto out;
406 		if (ret == 0) {
407 			ret = -EIO;
408 			goto out;
409 		}
410 		pos += ret;
411 	}
412 
413 	ret = 0;
414 
415 out:
416 	set_fs(old_fs);
417 	return ret;
418 }
419 
420 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
421 {
422 	struct btrfs_tlv_header *hdr;
423 	int total_len = sizeof(*hdr) + len;
424 	int left = sctx->send_max_size - sctx->send_size;
425 
426 	if (unlikely(left < total_len))
427 		return -EOVERFLOW;
428 
429 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
430 	hdr->tlv_type = cpu_to_le16(attr);
431 	hdr->tlv_len = cpu_to_le16(len);
432 	memcpy(hdr + 1, data, len);
433 	sctx->send_size += total_len;
434 
435 	return 0;
436 }
437 
438 #if 0
439 static int tlv_put_u8(struct send_ctx *sctx, u16 attr, u8 value)
440 {
441 	return tlv_put(sctx, attr, &value, sizeof(value));
442 }
443 
444 static int tlv_put_u16(struct send_ctx *sctx, u16 attr, u16 value)
445 {
446 	__le16 tmp = cpu_to_le16(value);
447 	return tlv_put(sctx, attr, &tmp, sizeof(tmp));
448 }
449 
450 static int tlv_put_u32(struct send_ctx *sctx, u16 attr, u32 value)
451 {
452 	__le32 tmp = cpu_to_le32(value);
453 	return tlv_put(sctx, attr, &tmp, sizeof(tmp));
454 }
455 #endif
456 
457 static int tlv_put_u64(struct send_ctx *sctx, u16 attr, u64 value)
458 {
459 	__le64 tmp = cpu_to_le64(value);
460 	return tlv_put(sctx, attr, &tmp, sizeof(tmp));
461 }
462 
463 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
464 			  const char *str, int len)
465 {
466 	if (len == -1)
467 		len = strlen(str);
468 	return tlv_put(sctx, attr, str, len);
469 }
470 
471 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
472 			const u8 *uuid)
473 {
474 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
475 }
476 
477 #if 0
478 static int tlv_put_timespec(struct send_ctx *sctx, u16 attr,
479 			    struct timespec *ts)
480 {
481 	struct btrfs_timespec bts;
482 	bts.sec = cpu_to_le64(ts->tv_sec);
483 	bts.nsec = cpu_to_le32(ts->tv_nsec);
484 	return tlv_put(sctx, attr, &bts, sizeof(bts));
485 }
486 #endif
487 
488 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
489 				  struct extent_buffer *eb,
490 				  struct btrfs_timespec *ts)
491 {
492 	struct btrfs_timespec bts;
493 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
494 	return tlv_put(sctx, attr, &bts, sizeof(bts));
495 }
496 
497 
498 #define TLV_PUT(sctx, attrtype, attrlen, data) \
499 	do { \
500 		ret = tlv_put(sctx, attrtype, attrlen, data); \
501 		if (ret < 0) \
502 			goto tlv_put_failure; \
503 	} while (0)
504 
505 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
506 	do { \
507 		ret = tlv_put_u##bits(sctx, attrtype, value); \
508 		if (ret < 0) \
509 			goto tlv_put_failure; \
510 	} while (0)
511 
512 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
513 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
514 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
515 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
516 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
517 	do { \
518 		ret = tlv_put_string(sctx, attrtype, str, len); \
519 		if (ret < 0) \
520 			goto tlv_put_failure; \
521 	} while (0)
522 #define TLV_PUT_PATH(sctx, attrtype, p) \
523 	do { \
524 		ret = tlv_put_string(sctx, attrtype, p->start, \
525 			p->end - p->start); \
526 		if (ret < 0) \
527 			goto tlv_put_failure; \
528 	} while(0)
529 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
530 	do { \
531 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
532 		if (ret < 0) \
533 			goto tlv_put_failure; \
534 	} while (0)
535 #define TLV_PUT_TIMESPEC(sctx, attrtype, ts) \
536 	do { \
537 		ret = tlv_put_timespec(sctx, attrtype, ts); \
538 		if (ret < 0) \
539 			goto tlv_put_failure; \
540 	} while (0)
541 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
542 	do { \
543 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
544 		if (ret < 0) \
545 			goto tlv_put_failure; \
546 	} while (0)
547 
548 static int send_header(struct send_ctx *sctx)
549 {
550 	struct btrfs_stream_header hdr;
551 
552 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
553 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
554 
555 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
556 					&sctx->send_off);
557 }
558 
559 /*
560  * For each command/item we want to send to userspace, we call this function.
561  */
562 static int begin_cmd(struct send_ctx *sctx, int cmd)
563 {
564 	struct btrfs_cmd_header *hdr;
565 
566 	if (!sctx->send_buf) {
567 		WARN_ON(1);
568 		return -EINVAL;
569 	}
570 
571 	BUG_ON(sctx->send_size);
572 
573 	sctx->send_size += sizeof(*hdr);
574 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
575 	hdr->cmd = cpu_to_le16(cmd);
576 
577 	return 0;
578 }
579 
580 static int send_cmd(struct send_ctx *sctx)
581 {
582 	int ret;
583 	struct btrfs_cmd_header *hdr;
584 	u32 crc;
585 
586 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
587 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
588 	hdr->crc = 0;
589 
590 	crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
591 	hdr->crc = cpu_to_le32(crc);
592 
593 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
594 					&sctx->send_off);
595 
596 	sctx->total_send_size += sctx->send_size;
597 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
598 	sctx->send_size = 0;
599 
600 	return ret;
601 }
602 
603 /*
604  * Sends a move instruction to user space
605  */
606 static int send_rename(struct send_ctx *sctx,
607 		     struct fs_path *from, struct fs_path *to)
608 {
609 	int ret;
610 
611 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
612 
613 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
614 	if (ret < 0)
615 		goto out;
616 
617 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
618 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
619 
620 	ret = send_cmd(sctx);
621 
622 tlv_put_failure:
623 out:
624 	return ret;
625 }
626 
627 /*
628  * Sends a link instruction to user space
629  */
630 static int send_link(struct send_ctx *sctx,
631 		     struct fs_path *path, struct fs_path *lnk)
632 {
633 	int ret;
634 
635 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
636 
637 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
638 	if (ret < 0)
639 		goto out;
640 
641 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
642 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
643 
644 	ret = send_cmd(sctx);
645 
646 tlv_put_failure:
647 out:
648 	return ret;
649 }
650 
651 /*
652  * Sends an unlink instruction to user space
653  */
654 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
655 {
656 	int ret;
657 
658 verbose_printk("btrfs: send_unlink %s\n", path->start);
659 
660 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
661 	if (ret < 0)
662 		goto out;
663 
664 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
665 
666 	ret = send_cmd(sctx);
667 
668 tlv_put_failure:
669 out:
670 	return ret;
671 }
672 
673 /*
674  * Sends a rmdir instruction to user space
675  */
676 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
677 {
678 	int ret;
679 
680 verbose_printk("btrfs: send_rmdir %s\n", path->start);
681 
682 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
683 	if (ret < 0)
684 		goto out;
685 
686 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
687 
688 	ret = send_cmd(sctx);
689 
690 tlv_put_failure:
691 out:
692 	return ret;
693 }
694 
695 /*
696  * Helper function to retrieve some fields from an inode item.
697  */
698 static int get_inode_info(struct btrfs_root *root,
699 			  u64 ino, u64 *size, u64 *gen,
700 			  u64 *mode, u64 *uid, u64 *gid,
701 			  u64 *rdev)
702 {
703 	int ret;
704 	struct btrfs_inode_item *ii;
705 	struct btrfs_key key;
706 	struct btrfs_path *path;
707 
708 	path = alloc_path_for_send();
709 	if (!path)
710 		return -ENOMEM;
711 
712 	key.objectid = ino;
713 	key.type = BTRFS_INODE_ITEM_KEY;
714 	key.offset = 0;
715 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
716 	if (ret < 0)
717 		goto out;
718 	if (ret) {
719 		ret = -ENOENT;
720 		goto out;
721 	}
722 
723 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
724 			struct btrfs_inode_item);
725 	if (size)
726 		*size = btrfs_inode_size(path->nodes[0], ii);
727 	if (gen)
728 		*gen = btrfs_inode_generation(path->nodes[0], ii);
729 	if (mode)
730 		*mode = btrfs_inode_mode(path->nodes[0], ii);
731 	if (uid)
732 		*uid = btrfs_inode_uid(path->nodes[0], ii);
733 	if (gid)
734 		*gid = btrfs_inode_gid(path->nodes[0], ii);
735 	if (rdev)
736 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
737 
738 out:
739 	btrfs_free_path(path);
740 	return ret;
741 }
742 
743 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
744 				   struct fs_path *p,
745 				   void *ctx);
746 
747 /*
748  * Helper function to iterate the entries in ONE btrfs_inode_ref or
749  * btrfs_inode_extref.
750  * The iterate callback may return a non zero value to stop iteration. This can
751  * be a negative value for error codes or 1 to simply stop it.
752  *
753  * path must point to the INODE_REF or INODE_EXTREF when called.
754  */
755 static int iterate_inode_ref(struct send_ctx *sctx,
756 			     struct btrfs_root *root, struct btrfs_path *path,
757 			     struct btrfs_key *found_key, int resolve,
758 			     iterate_inode_ref_t iterate, void *ctx)
759 {
760 	struct extent_buffer *eb = path->nodes[0];
761 	struct btrfs_item *item;
762 	struct btrfs_inode_ref *iref;
763 	struct btrfs_inode_extref *extref;
764 	struct btrfs_path *tmp_path;
765 	struct fs_path *p;
766 	u32 cur = 0;
767 	u32 total;
768 	int slot = path->slots[0];
769 	u32 name_len;
770 	char *start;
771 	int ret = 0;
772 	int num = 0;
773 	int index;
774 	u64 dir;
775 	unsigned long name_off;
776 	unsigned long elem_size;
777 	unsigned long ptr;
778 
779 	p = fs_path_alloc_reversed(sctx);
780 	if (!p)
781 		return -ENOMEM;
782 
783 	tmp_path = alloc_path_for_send();
784 	if (!tmp_path) {
785 		fs_path_free(sctx, p);
786 		return -ENOMEM;
787 	}
788 
789 
790 	if (found_key->type == BTRFS_INODE_REF_KEY) {
791 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
792 						    struct btrfs_inode_ref);
793 		item = btrfs_item_nr(eb, slot);
794 		total = btrfs_item_size(eb, item);
795 		elem_size = sizeof(*iref);
796 	} else {
797 		ptr = btrfs_item_ptr_offset(eb, slot);
798 		total = btrfs_item_size_nr(eb, slot);
799 		elem_size = sizeof(*extref);
800 	}
801 
802 	while (cur < total) {
803 		fs_path_reset(p);
804 
805 		if (found_key->type == BTRFS_INODE_REF_KEY) {
806 			iref = (struct btrfs_inode_ref *)(ptr + cur);
807 			name_len = btrfs_inode_ref_name_len(eb, iref);
808 			name_off = (unsigned long)(iref + 1);
809 			index = btrfs_inode_ref_index(eb, iref);
810 			dir = found_key->offset;
811 		} else {
812 			extref = (struct btrfs_inode_extref *)(ptr + cur);
813 			name_len = btrfs_inode_extref_name_len(eb, extref);
814 			name_off = (unsigned long)&extref->name;
815 			index = btrfs_inode_extref_index(eb, extref);
816 			dir = btrfs_inode_extref_parent(eb, extref);
817 		}
818 
819 		if (resolve) {
820 			start = btrfs_ref_to_path(root, tmp_path, name_len,
821 						  name_off, eb, dir,
822 						  p->buf, p->buf_len);
823 			if (IS_ERR(start)) {
824 				ret = PTR_ERR(start);
825 				goto out;
826 			}
827 			if (start < p->buf) {
828 				/* overflow , try again with larger buffer */
829 				ret = fs_path_ensure_buf(p,
830 						p->buf_len + p->buf - start);
831 				if (ret < 0)
832 					goto out;
833 				start = btrfs_ref_to_path(root, tmp_path,
834 							  name_len, name_off,
835 							  eb, dir,
836 							  p->buf, p->buf_len);
837 				if (IS_ERR(start)) {
838 					ret = PTR_ERR(start);
839 					goto out;
840 				}
841 				BUG_ON(start < p->buf);
842 			}
843 			p->start = start;
844 		} else {
845 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
846 							     name_len);
847 			if (ret < 0)
848 				goto out;
849 		}
850 
851 		cur += elem_size + name_len;
852 		ret = iterate(num, dir, index, p, ctx);
853 		if (ret)
854 			goto out;
855 		num++;
856 	}
857 
858 out:
859 	btrfs_free_path(tmp_path);
860 	fs_path_free(sctx, p);
861 	return ret;
862 }
863 
864 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
865 				  const char *name, int name_len,
866 				  const char *data, int data_len,
867 				  u8 type, void *ctx);
868 
869 /*
870  * Helper function to iterate the entries in ONE btrfs_dir_item.
871  * The iterate callback may return a non zero value to stop iteration. This can
872  * be a negative value for error codes or 1 to simply stop it.
873  *
874  * path must point to the dir item when called.
875  */
876 static int iterate_dir_item(struct send_ctx *sctx,
877 			    struct btrfs_root *root, struct btrfs_path *path,
878 			    struct btrfs_key *found_key,
879 			    iterate_dir_item_t iterate, void *ctx)
880 {
881 	int ret = 0;
882 	struct extent_buffer *eb;
883 	struct btrfs_item *item;
884 	struct btrfs_dir_item *di;
885 	struct btrfs_key di_key;
886 	char *buf = NULL;
887 	char *buf2 = NULL;
888 	int buf_len;
889 	int buf_virtual = 0;
890 	u32 name_len;
891 	u32 data_len;
892 	u32 cur;
893 	u32 len;
894 	u32 total;
895 	int slot;
896 	int num;
897 	u8 type;
898 
899 	buf_len = PAGE_SIZE;
900 	buf = kmalloc(buf_len, GFP_NOFS);
901 	if (!buf) {
902 		ret = -ENOMEM;
903 		goto out;
904 	}
905 
906 	eb = path->nodes[0];
907 	slot = path->slots[0];
908 	item = btrfs_item_nr(eb, slot);
909 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
910 	cur = 0;
911 	len = 0;
912 	total = btrfs_item_size(eb, item);
913 
914 	num = 0;
915 	while (cur < total) {
916 		name_len = btrfs_dir_name_len(eb, di);
917 		data_len = btrfs_dir_data_len(eb, di);
918 		type = btrfs_dir_type(eb, di);
919 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
920 
921 		if (name_len + data_len > buf_len) {
922 			buf_len = PAGE_ALIGN(name_len + data_len);
923 			if (buf_virtual) {
924 				buf2 = vmalloc(buf_len);
925 				if (!buf2) {
926 					ret = -ENOMEM;
927 					goto out;
928 				}
929 				vfree(buf);
930 			} else {
931 				buf2 = krealloc(buf, buf_len, GFP_NOFS);
932 				if (!buf2) {
933 					buf2 = vmalloc(buf_len);
934 					if (!buf2) {
935 						ret = -ENOMEM;
936 						goto out;
937 					}
938 					kfree(buf);
939 					buf_virtual = 1;
940 				}
941 			}
942 
943 			buf = buf2;
944 			buf2 = NULL;
945 		}
946 
947 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
948 				name_len + data_len);
949 
950 		len = sizeof(*di) + name_len + data_len;
951 		di = (struct btrfs_dir_item *)((char *)di + len);
952 		cur += len;
953 
954 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
955 				data_len, type, ctx);
956 		if (ret < 0)
957 			goto out;
958 		if (ret) {
959 			ret = 0;
960 			goto out;
961 		}
962 
963 		num++;
964 	}
965 
966 out:
967 	if (buf_virtual)
968 		vfree(buf);
969 	else
970 		kfree(buf);
971 	return ret;
972 }
973 
974 static int __copy_first_ref(int num, u64 dir, int index,
975 			    struct fs_path *p, void *ctx)
976 {
977 	int ret;
978 	struct fs_path *pt = ctx;
979 
980 	ret = fs_path_copy(pt, p);
981 	if (ret < 0)
982 		return ret;
983 
984 	/* we want the first only */
985 	return 1;
986 }
987 
988 /*
989  * Retrieve the first path of an inode. If an inode has more then one
990  * ref/hardlink, this is ignored.
991  */
992 static int get_inode_path(struct send_ctx *sctx, struct btrfs_root *root,
993 			  u64 ino, struct fs_path *path)
994 {
995 	int ret;
996 	struct btrfs_key key, found_key;
997 	struct btrfs_path *p;
998 
999 	p = alloc_path_for_send();
1000 	if (!p)
1001 		return -ENOMEM;
1002 
1003 	fs_path_reset(path);
1004 
1005 	key.objectid = ino;
1006 	key.type = BTRFS_INODE_REF_KEY;
1007 	key.offset = 0;
1008 
1009 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1010 	if (ret < 0)
1011 		goto out;
1012 	if (ret) {
1013 		ret = 1;
1014 		goto out;
1015 	}
1016 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1017 	if (found_key.objectid != ino ||
1018 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1019 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1020 		ret = -ENOENT;
1021 		goto out;
1022 	}
1023 
1024 	ret = iterate_inode_ref(sctx, root, p, &found_key, 1,
1025 			__copy_first_ref, path);
1026 	if (ret < 0)
1027 		goto out;
1028 	ret = 0;
1029 
1030 out:
1031 	btrfs_free_path(p);
1032 	return ret;
1033 }
1034 
1035 struct backref_ctx {
1036 	struct send_ctx *sctx;
1037 
1038 	/* number of total found references */
1039 	u64 found;
1040 
1041 	/*
1042 	 * used for clones found in send_root. clones found behind cur_objectid
1043 	 * and cur_offset are not considered as allowed clones.
1044 	 */
1045 	u64 cur_objectid;
1046 	u64 cur_offset;
1047 
1048 	/* may be truncated in case it's the last extent in a file */
1049 	u64 extent_len;
1050 
1051 	/* Just to check for bugs in backref resolving */
1052 	int found_itself;
1053 };
1054 
1055 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1056 {
1057 	u64 root = (u64)(uintptr_t)key;
1058 	struct clone_root *cr = (struct clone_root *)elt;
1059 
1060 	if (root < cr->root->objectid)
1061 		return -1;
1062 	if (root > cr->root->objectid)
1063 		return 1;
1064 	return 0;
1065 }
1066 
1067 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1068 {
1069 	struct clone_root *cr1 = (struct clone_root *)e1;
1070 	struct clone_root *cr2 = (struct clone_root *)e2;
1071 
1072 	if (cr1->root->objectid < cr2->root->objectid)
1073 		return -1;
1074 	if (cr1->root->objectid > cr2->root->objectid)
1075 		return 1;
1076 	return 0;
1077 }
1078 
1079 /*
1080  * Called for every backref that is found for the current extent.
1081  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1082  */
1083 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1084 {
1085 	struct backref_ctx *bctx = ctx_;
1086 	struct clone_root *found;
1087 	int ret;
1088 	u64 i_size;
1089 
1090 	/* First check if the root is in the list of accepted clone sources */
1091 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1092 			bctx->sctx->clone_roots_cnt,
1093 			sizeof(struct clone_root),
1094 			__clone_root_cmp_bsearch);
1095 	if (!found)
1096 		return 0;
1097 
1098 	if (found->root == bctx->sctx->send_root &&
1099 	    ino == bctx->cur_objectid &&
1100 	    offset == bctx->cur_offset) {
1101 		bctx->found_itself = 1;
1102 	}
1103 
1104 	/*
1105 	 * There are inodes that have extents that lie behind its i_size. Don't
1106 	 * accept clones from these extents.
1107 	 */
1108 	ret = get_inode_info(found->root, ino, &i_size, NULL, NULL, NULL, NULL,
1109 			NULL);
1110 	if (ret < 0)
1111 		return ret;
1112 
1113 	if (offset + bctx->extent_len > i_size)
1114 		return 0;
1115 
1116 	/*
1117 	 * Make sure we don't consider clones from send_root that are
1118 	 * behind the current inode/offset.
1119 	 */
1120 	if (found->root == bctx->sctx->send_root) {
1121 		/*
1122 		 * TODO for the moment we don't accept clones from the inode
1123 		 * that is currently send. We may change this when
1124 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1125 		 * file.
1126 		 */
1127 		if (ino >= bctx->cur_objectid)
1128 			return 0;
1129 #if 0
1130 		if (ino > bctx->cur_objectid)
1131 			return 0;
1132 		if (offset + bctx->extent_len > bctx->cur_offset)
1133 			return 0;
1134 #endif
1135 	}
1136 
1137 	bctx->found++;
1138 	found->found_refs++;
1139 	if (ino < found->ino) {
1140 		found->ino = ino;
1141 		found->offset = offset;
1142 	} else if (found->ino == ino) {
1143 		/*
1144 		 * same extent found more then once in the same file.
1145 		 */
1146 		if (found->offset > offset + bctx->extent_len)
1147 			found->offset = offset;
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 /*
1154  * Given an inode, offset and extent item, it finds a good clone for a clone
1155  * instruction. Returns -ENOENT when none could be found. The function makes
1156  * sure that the returned clone is usable at the point where sending is at the
1157  * moment. This means, that no clones are accepted which lie behind the current
1158  * inode+offset.
1159  *
1160  * path must point to the extent item when called.
1161  */
1162 static int find_extent_clone(struct send_ctx *sctx,
1163 			     struct btrfs_path *path,
1164 			     u64 ino, u64 data_offset,
1165 			     u64 ino_size,
1166 			     struct clone_root **found)
1167 {
1168 	int ret;
1169 	int extent_type;
1170 	u64 logical;
1171 	u64 disk_byte;
1172 	u64 num_bytes;
1173 	u64 extent_item_pos;
1174 	u64 flags = 0;
1175 	struct btrfs_file_extent_item *fi;
1176 	struct extent_buffer *eb = path->nodes[0];
1177 	struct backref_ctx *backref_ctx = NULL;
1178 	struct clone_root *cur_clone_root;
1179 	struct btrfs_key found_key;
1180 	struct btrfs_path *tmp_path;
1181 	int compressed;
1182 	u32 i;
1183 
1184 	tmp_path = alloc_path_for_send();
1185 	if (!tmp_path)
1186 		return -ENOMEM;
1187 
1188 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1189 	if (!backref_ctx) {
1190 		ret = -ENOMEM;
1191 		goto out;
1192 	}
1193 
1194 	if (data_offset >= ino_size) {
1195 		/*
1196 		 * There may be extents that lie behind the file's size.
1197 		 * I at least had this in combination with snapshotting while
1198 		 * writing large files.
1199 		 */
1200 		ret = 0;
1201 		goto out;
1202 	}
1203 
1204 	fi = btrfs_item_ptr(eb, path->slots[0],
1205 			struct btrfs_file_extent_item);
1206 	extent_type = btrfs_file_extent_type(eb, fi);
1207 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1208 		ret = -ENOENT;
1209 		goto out;
1210 	}
1211 	compressed = btrfs_file_extent_compression(eb, fi);
1212 
1213 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1214 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1215 	if (disk_byte == 0) {
1216 		ret = -ENOENT;
1217 		goto out;
1218 	}
1219 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1220 
1221 	ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1222 				  &found_key, &flags);
1223 	btrfs_release_path(tmp_path);
1224 
1225 	if (ret < 0)
1226 		goto out;
1227 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1228 		ret = -EIO;
1229 		goto out;
1230 	}
1231 
1232 	/*
1233 	 * Setup the clone roots.
1234 	 */
1235 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1236 		cur_clone_root = sctx->clone_roots + i;
1237 		cur_clone_root->ino = (u64)-1;
1238 		cur_clone_root->offset = 0;
1239 		cur_clone_root->found_refs = 0;
1240 	}
1241 
1242 	backref_ctx->sctx = sctx;
1243 	backref_ctx->found = 0;
1244 	backref_ctx->cur_objectid = ino;
1245 	backref_ctx->cur_offset = data_offset;
1246 	backref_ctx->found_itself = 0;
1247 	backref_ctx->extent_len = num_bytes;
1248 
1249 	/*
1250 	 * The last extent of a file may be too large due to page alignment.
1251 	 * We need to adjust extent_len in this case so that the checks in
1252 	 * __iterate_backrefs work.
1253 	 */
1254 	if (data_offset + num_bytes >= ino_size)
1255 		backref_ctx->extent_len = ino_size - data_offset;
1256 
1257 	/*
1258 	 * Now collect all backrefs.
1259 	 */
1260 	if (compressed == BTRFS_COMPRESS_NONE)
1261 		extent_item_pos = logical - found_key.objectid;
1262 	else
1263 		extent_item_pos = 0;
1264 
1265 	extent_item_pos = logical - found_key.objectid;
1266 	ret = iterate_extent_inodes(sctx->send_root->fs_info,
1267 					found_key.objectid, extent_item_pos, 1,
1268 					__iterate_backrefs, backref_ctx);
1269 
1270 	if (ret < 0)
1271 		goto out;
1272 
1273 	if (!backref_ctx->found_itself) {
1274 		/* found a bug in backref code? */
1275 		ret = -EIO;
1276 		printk(KERN_ERR "btrfs: ERROR did not find backref in "
1277 				"send_root. inode=%llu, offset=%llu, "
1278 				"disk_byte=%llu found extent=%llu\n",
1279 				ino, data_offset, disk_byte, found_key.objectid);
1280 		goto out;
1281 	}
1282 
1283 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1284 		"ino=%llu, "
1285 		"num_bytes=%llu, logical=%llu\n",
1286 		data_offset, ino, num_bytes, logical);
1287 
1288 	if (!backref_ctx->found)
1289 		verbose_printk("btrfs:    no clones found\n");
1290 
1291 	cur_clone_root = NULL;
1292 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1293 		if (sctx->clone_roots[i].found_refs) {
1294 			if (!cur_clone_root)
1295 				cur_clone_root = sctx->clone_roots + i;
1296 			else if (sctx->clone_roots[i].root == sctx->send_root)
1297 				/* prefer clones from send_root over others */
1298 				cur_clone_root = sctx->clone_roots + i;
1299 		}
1300 
1301 	}
1302 
1303 	if (cur_clone_root) {
1304 		*found = cur_clone_root;
1305 		ret = 0;
1306 	} else {
1307 		ret = -ENOENT;
1308 	}
1309 
1310 out:
1311 	btrfs_free_path(tmp_path);
1312 	kfree(backref_ctx);
1313 	return ret;
1314 }
1315 
1316 static int read_symlink(struct send_ctx *sctx,
1317 			struct btrfs_root *root,
1318 			u64 ino,
1319 			struct fs_path *dest)
1320 {
1321 	int ret;
1322 	struct btrfs_path *path;
1323 	struct btrfs_key key;
1324 	struct btrfs_file_extent_item *ei;
1325 	u8 type;
1326 	u8 compression;
1327 	unsigned long off;
1328 	int len;
1329 
1330 	path = alloc_path_for_send();
1331 	if (!path)
1332 		return -ENOMEM;
1333 
1334 	key.objectid = ino;
1335 	key.type = BTRFS_EXTENT_DATA_KEY;
1336 	key.offset = 0;
1337 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1338 	if (ret < 0)
1339 		goto out;
1340 	BUG_ON(ret);
1341 
1342 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1343 			struct btrfs_file_extent_item);
1344 	type = btrfs_file_extent_type(path->nodes[0], ei);
1345 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1346 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1347 	BUG_ON(compression);
1348 
1349 	off = btrfs_file_extent_inline_start(ei);
1350 	len = btrfs_file_extent_inline_len(path->nodes[0], ei);
1351 
1352 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1353 
1354 out:
1355 	btrfs_free_path(path);
1356 	return ret;
1357 }
1358 
1359 /*
1360  * Helper function to generate a file name that is unique in the root of
1361  * send_root and parent_root. This is used to generate names for orphan inodes.
1362  */
1363 static int gen_unique_name(struct send_ctx *sctx,
1364 			   u64 ino, u64 gen,
1365 			   struct fs_path *dest)
1366 {
1367 	int ret = 0;
1368 	struct btrfs_path *path;
1369 	struct btrfs_dir_item *di;
1370 	char tmp[64];
1371 	int len;
1372 	u64 idx = 0;
1373 
1374 	path = alloc_path_for_send();
1375 	if (!path)
1376 		return -ENOMEM;
1377 
1378 	while (1) {
1379 		len = snprintf(tmp, sizeof(tmp) - 1, "o%llu-%llu-%llu",
1380 				ino, gen, idx);
1381 		if (len >= sizeof(tmp)) {
1382 			/* should really not happen */
1383 			ret = -EOVERFLOW;
1384 			goto out;
1385 		}
1386 
1387 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1388 				path, BTRFS_FIRST_FREE_OBJECTID,
1389 				tmp, strlen(tmp), 0);
1390 		btrfs_release_path(path);
1391 		if (IS_ERR(di)) {
1392 			ret = PTR_ERR(di);
1393 			goto out;
1394 		}
1395 		if (di) {
1396 			/* not unique, try again */
1397 			idx++;
1398 			continue;
1399 		}
1400 
1401 		if (!sctx->parent_root) {
1402 			/* unique */
1403 			ret = 0;
1404 			break;
1405 		}
1406 
1407 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1408 				path, BTRFS_FIRST_FREE_OBJECTID,
1409 				tmp, strlen(tmp), 0);
1410 		btrfs_release_path(path);
1411 		if (IS_ERR(di)) {
1412 			ret = PTR_ERR(di);
1413 			goto out;
1414 		}
1415 		if (di) {
1416 			/* not unique, try again */
1417 			idx++;
1418 			continue;
1419 		}
1420 		/* unique */
1421 		break;
1422 	}
1423 
1424 	ret = fs_path_add(dest, tmp, strlen(tmp));
1425 
1426 out:
1427 	btrfs_free_path(path);
1428 	return ret;
1429 }
1430 
1431 enum inode_state {
1432 	inode_state_no_change,
1433 	inode_state_will_create,
1434 	inode_state_did_create,
1435 	inode_state_will_delete,
1436 	inode_state_did_delete,
1437 };
1438 
1439 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1440 {
1441 	int ret;
1442 	int left_ret;
1443 	int right_ret;
1444 	u64 left_gen;
1445 	u64 right_gen;
1446 
1447 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1448 			NULL, NULL);
1449 	if (ret < 0 && ret != -ENOENT)
1450 		goto out;
1451 	left_ret = ret;
1452 
1453 	if (!sctx->parent_root) {
1454 		right_ret = -ENOENT;
1455 	} else {
1456 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1457 				NULL, NULL, NULL, NULL);
1458 		if (ret < 0 && ret != -ENOENT)
1459 			goto out;
1460 		right_ret = ret;
1461 	}
1462 
1463 	if (!left_ret && !right_ret) {
1464 		if (left_gen == gen && right_gen == gen) {
1465 			ret = inode_state_no_change;
1466 		} else if (left_gen == gen) {
1467 			if (ino < sctx->send_progress)
1468 				ret = inode_state_did_create;
1469 			else
1470 				ret = inode_state_will_create;
1471 		} else if (right_gen == gen) {
1472 			if (ino < sctx->send_progress)
1473 				ret = inode_state_did_delete;
1474 			else
1475 				ret = inode_state_will_delete;
1476 		} else  {
1477 			ret = -ENOENT;
1478 		}
1479 	} else if (!left_ret) {
1480 		if (left_gen == gen) {
1481 			if (ino < sctx->send_progress)
1482 				ret = inode_state_did_create;
1483 			else
1484 				ret = inode_state_will_create;
1485 		} else {
1486 			ret = -ENOENT;
1487 		}
1488 	} else if (!right_ret) {
1489 		if (right_gen == gen) {
1490 			if (ino < sctx->send_progress)
1491 				ret = inode_state_did_delete;
1492 			else
1493 				ret = inode_state_will_delete;
1494 		} else {
1495 			ret = -ENOENT;
1496 		}
1497 	} else {
1498 		ret = -ENOENT;
1499 	}
1500 
1501 out:
1502 	return ret;
1503 }
1504 
1505 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1506 {
1507 	int ret;
1508 
1509 	ret = get_cur_inode_state(sctx, ino, gen);
1510 	if (ret < 0)
1511 		goto out;
1512 
1513 	if (ret == inode_state_no_change ||
1514 	    ret == inode_state_did_create ||
1515 	    ret == inode_state_will_delete)
1516 		ret = 1;
1517 	else
1518 		ret = 0;
1519 
1520 out:
1521 	return ret;
1522 }
1523 
1524 /*
1525  * Helper function to lookup a dir item in a dir.
1526  */
1527 static int lookup_dir_item_inode(struct btrfs_root *root,
1528 				 u64 dir, const char *name, int name_len,
1529 				 u64 *found_inode,
1530 				 u8 *found_type)
1531 {
1532 	int ret = 0;
1533 	struct btrfs_dir_item *di;
1534 	struct btrfs_key key;
1535 	struct btrfs_path *path;
1536 
1537 	path = alloc_path_for_send();
1538 	if (!path)
1539 		return -ENOMEM;
1540 
1541 	di = btrfs_lookup_dir_item(NULL, root, path,
1542 			dir, name, name_len, 0);
1543 	if (!di) {
1544 		ret = -ENOENT;
1545 		goto out;
1546 	}
1547 	if (IS_ERR(di)) {
1548 		ret = PTR_ERR(di);
1549 		goto out;
1550 	}
1551 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1552 	*found_inode = key.objectid;
1553 	*found_type = btrfs_dir_type(path->nodes[0], di);
1554 
1555 out:
1556 	btrfs_free_path(path);
1557 	return ret;
1558 }
1559 
1560 /*
1561  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1562  * generation of the parent dir and the name of the dir entry.
1563  */
1564 static int get_first_ref(struct send_ctx *sctx,
1565 			 struct btrfs_root *root, u64 ino,
1566 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1567 {
1568 	int ret;
1569 	struct btrfs_key key;
1570 	struct btrfs_key found_key;
1571 	struct btrfs_path *path;
1572 	int len;
1573 	u64 parent_dir;
1574 
1575 	path = alloc_path_for_send();
1576 	if (!path)
1577 		return -ENOMEM;
1578 
1579 	key.objectid = ino;
1580 	key.type = BTRFS_INODE_REF_KEY;
1581 	key.offset = 0;
1582 
1583 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1584 	if (ret < 0)
1585 		goto out;
1586 	if (!ret)
1587 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1588 				path->slots[0]);
1589 	if (ret || found_key.objectid != ino ||
1590 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1591 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1592 		ret = -ENOENT;
1593 		goto out;
1594 	}
1595 
1596 	if (key.type == BTRFS_INODE_REF_KEY) {
1597 		struct btrfs_inode_ref *iref;
1598 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1599 				      struct btrfs_inode_ref);
1600 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1601 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1602 						     (unsigned long)(iref + 1),
1603 						     len);
1604 		parent_dir = found_key.offset;
1605 	} else {
1606 		struct btrfs_inode_extref *extref;
1607 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1608 					struct btrfs_inode_extref);
1609 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1610 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1611 					(unsigned long)&extref->name, len);
1612 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1613 	}
1614 	if (ret < 0)
1615 		goto out;
1616 	btrfs_release_path(path);
1617 
1618 	ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, NULL,
1619 			NULL, NULL);
1620 	if (ret < 0)
1621 		goto out;
1622 
1623 	*dir = parent_dir;
1624 
1625 out:
1626 	btrfs_free_path(path);
1627 	return ret;
1628 }
1629 
1630 static int is_first_ref(struct send_ctx *sctx,
1631 			struct btrfs_root *root,
1632 			u64 ino, u64 dir,
1633 			const char *name, int name_len)
1634 {
1635 	int ret;
1636 	struct fs_path *tmp_name;
1637 	u64 tmp_dir;
1638 	u64 tmp_dir_gen;
1639 
1640 	tmp_name = fs_path_alloc(sctx);
1641 	if (!tmp_name)
1642 		return -ENOMEM;
1643 
1644 	ret = get_first_ref(sctx, root, ino, &tmp_dir, &tmp_dir_gen, tmp_name);
1645 	if (ret < 0)
1646 		goto out;
1647 
1648 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1649 		ret = 0;
1650 		goto out;
1651 	}
1652 
1653 	ret = !memcmp(tmp_name->start, name, name_len);
1654 
1655 out:
1656 	fs_path_free(sctx, tmp_name);
1657 	return ret;
1658 }
1659 
1660 /*
1661  * Used by process_recorded_refs to determine if a new ref would overwrite an
1662  * already existing ref. In case it detects an overwrite, it returns the
1663  * inode/gen in who_ino/who_gen.
1664  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1665  * to make sure later references to the overwritten inode are possible.
1666  * Orphanizing is however only required for the first ref of an inode.
1667  * process_recorded_refs does an additional is_first_ref check to see if
1668  * orphanizing is really required.
1669  */
1670 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1671 			      const char *name, int name_len,
1672 			      u64 *who_ino, u64 *who_gen)
1673 {
1674 	int ret = 0;
1675 	u64 other_inode = 0;
1676 	u8 other_type = 0;
1677 
1678 	if (!sctx->parent_root)
1679 		goto out;
1680 
1681 	ret = is_inode_existent(sctx, dir, dir_gen);
1682 	if (ret <= 0)
1683 		goto out;
1684 
1685 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1686 			&other_inode, &other_type);
1687 	if (ret < 0 && ret != -ENOENT)
1688 		goto out;
1689 	if (ret) {
1690 		ret = 0;
1691 		goto out;
1692 	}
1693 
1694 	/*
1695 	 * Check if the overwritten ref was already processed. If yes, the ref
1696 	 * was already unlinked/moved, so we can safely assume that we will not
1697 	 * overwrite anything at this point in time.
1698 	 */
1699 	if (other_inode > sctx->send_progress) {
1700 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1701 				who_gen, NULL, NULL, NULL, NULL);
1702 		if (ret < 0)
1703 			goto out;
1704 
1705 		ret = 1;
1706 		*who_ino = other_inode;
1707 	} else {
1708 		ret = 0;
1709 	}
1710 
1711 out:
1712 	return ret;
1713 }
1714 
1715 /*
1716  * Checks if the ref was overwritten by an already processed inode. This is
1717  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1718  * thus the orphan name needs be used.
1719  * process_recorded_refs also uses it to avoid unlinking of refs that were
1720  * overwritten.
1721  */
1722 static int did_overwrite_ref(struct send_ctx *sctx,
1723 			    u64 dir, u64 dir_gen,
1724 			    u64 ino, u64 ino_gen,
1725 			    const char *name, int name_len)
1726 {
1727 	int ret = 0;
1728 	u64 gen;
1729 	u64 ow_inode;
1730 	u8 other_type;
1731 
1732 	if (!sctx->parent_root)
1733 		goto out;
1734 
1735 	ret = is_inode_existent(sctx, dir, dir_gen);
1736 	if (ret <= 0)
1737 		goto out;
1738 
1739 	/* check if the ref was overwritten by another ref */
1740 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1741 			&ow_inode, &other_type);
1742 	if (ret < 0 && ret != -ENOENT)
1743 		goto out;
1744 	if (ret) {
1745 		/* was never and will never be overwritten */
1746 		ret = 0;
1747 		goto out;
1748 	}
1749 
1750 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1751 			NULL, NULL);
1752 	if (ret < 0)
1753 		goto out;
1754 
1755 	if (ow_inode == ino && gen == ino_gen) {
1756 		ret = 0;
1757 		goto out;
1758 	}
1759 
1760 	/* we know that it is or will be overwritten. check this now */
1761 	if (ow_inode < sctx->send_progress)
1762 		ret = 1;
1763 	else
1764 		ret = 0;
1765 
1766 out:
1767 	return ret;
1768 }
1769 
1770 /*
1771  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1772  * that got overwritten. This is used by process_recorded_refs to determine
1773  * if it has to use the path as returned by get_cur_path or the orphan name.
1774  */
1775 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1776 {
1777 	int ret = 0;
1778 	struct fs_path *name = NULL;
1779 	u64 dir;
1780 	u64 dir_gen;
1781 
1782 	if (!sctx->parent_root)
1783 		goto out;
1784 
1785 	name = fs_path_alloc(sctx);
1786 	if (!name)
1787 		return -ENOMEM;
1788 
1789 	ret = get_first_ref(sctx, sctx->parent_root, ino, &dir, &dir_gen, name);
1790 	if (ret < 0)
1791 		goto out;
1792 
1793 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1794 			name->start, fs_path_len(name));
1795 
1796 out:
1797 	fs_path_free(sctx, name);
1798 	return ret;
1799 }
1800 
1801 /*
1802  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1803  * so we need to do some special handling in case we have clashes. This function
1804  * takes care of this with the help of name_cache_entry::radix_list.
1805  * In case of error, nce is kfreed.
1806  */
1807 static int name_cache_insert(struct send_ctx *sctx,
1808 			     struct name_cache_entry *nce)
1809 {
1810 	int ret = 0;
1811 	struct list_head *nce_head;
1812 
1813 	nce_head = radix_tree_lookup(&sctx->name_cache,
1814 			(unsigned long)nce->ino);
1815 	if (!nce_head) {
1816 		nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1817 		if (!nce_head) {
1818 			kfree(nce);
1819 			return -ENOMEM;
1820 		}
1821 		INIT_LIST_HEAD(nce_head);
1822 
1823 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1824 		if (ret < 0) {
1825 			kfree(nce_head);
1826 			kfree(nce);
1827 			return ret;
1828 		}
1829 	}
1830 	list_add_tail(&nce->radix_list, nce_head);
1831 	list_add_tail(&nce->list, &sctx->name_cache_list);
1832 	sctx->name_cache_size++;
1833 
1834 	return ret;
1835 }
1836 
1837 static void name_cache_delete(struct send_ctx *sctx,
1838 			      struct name_cache_entry *nce)
1839 {
1840 	struct list_head *nce_head;
1841 
1842 	nce_head = radix_tree_lookup(&sctx->name_cache,
1843 			(unsigned long)nce->ino);
1844 	BUG_ON(!nce_head);
1845 
1846 	list_del(&nce->radix_list);
1847 	list_del(&nce->list);
1848 	sctx->name_cache_size--;
1849 
1850 	if (list_empty(nce_head)) {
1851 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
1852 		kfree(nce_head);
1853 	}
1854 }
1855 
1856 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
1857 						    u64 ino, u64 gen)
1858 {
1859 	struct list_head *nce_head;
1860 	struct name_cache_entry *cur;
1861 
1862 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
1863 	if (!nce_head)
1864 		return NULL;
1865 
1866 	list_for_each_entry(cur, nce_head, radix_list) {
1867 		if (cur->ino == ino && cur->gen == gen)
1868 			return cur;
1869 	}
1870 	return NULL;
1871 }
1872 
1873 /*
1874  * Removes the entry from the list and adds it back to the end. This marks the
1875  * entry as recently used so that name_cache_clean_unused does not remove it.
1876  */
1877 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
1878 {
1879 	list_del(&nce->list);
1880 	list_add_tail(&nce->list, &sctx->name_cache_list);
1881 }
1882 
1883 /*
1884  * Remove some entries from the beginning of name_cache_list.
1885  */
1886 static void name_cache_clean_unused(struct send_ctx *sctx)
1887 {
1888 	struct name_cache_entry *nce;
1889 
1890 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
1891 		return;
1892 
1893 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
1894 		nce = list_entry(sctx->name_cache_list.next,
1895 				struct name_cache_entry, list);
1896 		name_cache_delete(sctx, nce);
1897 		kfree(nce);
1898 	}
1899 }
1900 
1901 static void name_cache_free(struct send_ctx *sctx)
1902 {
1903 	struct name_cache_entry *nce;
1904 
1905 	while (!list_empty(&sctx->name_cache_list)) {
1906 		nce = list_entry(sctx->name_cache_list.next,
1907 				struct name_cache_entry, list);
1908 		name_cache_delete(sctx, nce);
1909 		kfree(nce);
1910 	}
1911 }
1912 
1913 /*
1914  * Used by get_cur_path for each ref up to the root.
1915  * Returns 0 if it succeeded.
1916  * Returns 1 if the inode is not existent or got overwritten. In that case, the
1917  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
1918  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
1919  * Returns <0 in case of error.
1920  */
1921 static int __get_cur_name_and_parent(struct send_ctx *sctx,
1922 				     u64 ino, u64 gen,
1923 				     u64 *parent_ino,
1924 				     u64 *parent_gen,
1925 				     struct fs_path *dest)
1926 {
1927 	int ret;
1928 	int nce_ret;
1929 	struct btrfs_path *path = NULL;
1930 	struct name_cache_entry *nce = NULL;
1931 
1932 	/*
1933 	 * First check if we already did a call to this function with the same
1934 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
1935 	 * return the cached result.
1936 	 */
1937 	nce = name_cache_search(sctx, ino, gen);
1938 	if (nce) {
1939 		if (ino < sctx->send_progress && nce->need_later_update) {
1940 			name_cache_delete(sctx, nce);
1941 			kfree(nce);
1942 			nce = NULL;
1943 		} else {
1944 			name_cache_used(sctx, nce);
1945 			*parent_ino = nce->parent_ino;
1946 			*parent_gen = nce->parent_gen;
1947 			ret = fs_path_add(dest, nce->name, nce->name_len);
1948 			if (ret < 0)
1949 				goto out;
1950 			ret = nce->ret;
1951 			goto out;
1952 		}
1953 	}
1954 
1955 	path = alloc_path_for_send();
1956 	if (!path)
1957 		return -ENOMEM;
1958 
1959 	/*
1960 	 * If the inode is not existent yet, add the orphan name and return 1.
1961 	 * This should only happen for the parent dir that we determine in
1962 	 * __record_new_ref
1963 	 */
1964 	ret = is_inode_existent(sctx, ino, gen);
1965 	if (ret < 0)
1966 		goto out;
1967 
1968 	if (!ret) {
1969 		ret = gen_unique_name(sctx, ino, gen, dest);
1970 		if (ret < 0)
1971 			goto out;
1972 		ret = 1;
1973 		goto out_cache;
1974 	}
1975 
1976 	/*
1977 	 * Depending on whether the inode was already processed or not, use
1978 	 * send_root or parent_root for ref lookup.
1979 	 */
1980 	if (ino < sctx->send_progress)
1981 		ret = get_first_ref(sctx, sctx->send_root, ino,
1982 				parent_ino, parent_gen, dest);
1983 	else
1984 		ret = get_first_ref(sctx, sctx->parent_root, ino,
1985 				parent_ino, parent_gen, dest);
1986 	if (ret < 0)
1987 		goto out;
1988 
1989 	/*
1990 	 * Check if the ref was overwritten by an inode's ref that was processed
1991 	 * earlier. If yes, treat as orphan and return 1.
1992 	 */
1993 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
1994 			dest->start, dest->end - dest->start);
1995 	if (ret < 0)
1996 		goto out;
1997 	if (ret) {
1998 		fs_path_reset(dest);
1999 		ret = gen_unique_name(sctx, ino, gen, dest);
2000 		if (ret < 0)
2001 			goto out;
2002 		ret = 1;
2003 	}
2004 
2005 out_cache:
2006 	/*
2007 	 * Store the result of the lookup in the name cache.
2008 	 */
2009 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2010 	if (!nce) {
2011 		ret = -ENOMEM;
2012 		goto out;
2013 	}
2014 
2015 	nce->ino = ino;
2016 	nce->gen = gen;
2017 	nce->parent_ino = *parent_ino;
2018 	nce->parent_gen = *parent_gen;
2019 	nce->name_len = fs_path_len(dest);
2020 	nce->ret = ret;
2021 	strcpy(nce->name, dest->start);
2022 
2023 	if (ino < sctx->send_progress)
2024 		nce->need_later_update = 0;
2025 	else
2026 		nce->need_later_update = 1;
2027 
2028 	nce_ret = name_cache_insert(sctx, nce);
2029 	if (nce_ret < 0)
2030 		ret = nce_ret;
2031 	name_cache_clean_unused(sctx);
2032 
2033 out:
2034 	btrfs_free_path(path);
2035 	return ret;
2036 }
2037 
2038 /*
2039  * Magic happens here. This function returns the first ref to an inode as it
2040  * would look like while receiving the stream at this point in time.
2041  * We walk the path up to the root. For every inode in between, we check if it
2042  * was already processed/sent. If yes, we continue with the parent as found
2043  * in send_root. If not, we continue with the parent as found in parent_root.
2044  * If we encounter an inode that was deleted at this point in time, we use the
2045  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2046  * that were not created yet and overwritten inodes/refs.
2047  *
2048  * When do we have have orphan inodes:
2049  * 1. When an inode is freshly created and thus no valid refs are available yet
2050  * 2. When a directory lost all it's refs (deleted) but still has dir items
2051  *    inside which were not processed yet (pending for move/delete). If anyone
2052  *    tried to get the path to the dir items, it would get a path inside that
2053  *    orphan directory.
2054  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2055  *    of an unprocessed inode. If in that case the first ref would be
2056  *    overwritten, the overwritten inode gets "orphanized". Later when we
2057  *    process this overwritten inode, it is restored at a new place by moving
2058  *    the orphan inode.
2059  *
2060  * sctx->send_progress tells this function at which point in time receiving
2061  * would be.
2062  */
2063 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2064 			struct fs_path *dest)
2065 {
2066 	int ret = 0;
2067 	struct fs_path *name = NULL;
2068 	u64 parent_inode = 0;
2069 	u64 parent_gen = 0;
2070 	int stop = 0;
2071 
2072 	name = fs_path_alloc(sctx);
2073 	if (!name) {
2074 		ret = -ENOMEM;
2075 		goto out;
2076 	}
2077 
2078 	dest->reversed = 1;
2079 	fs_path_reset(dest);
2080 
2081 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2082 		fs_path_reset(name);
2083 
2084 		ret = __get_cur_name_and_parent(sctx, ino, gen,
2085 				&parent_inode, &parent_gen, name);
2086 		if (ret < 0)
2087 			goto out;
2088 		if (ret)
2089 			stop = 1;
2090 
2091 		ret = fs_path_add_path(dest, name);
2092 		if (ret < 0)
2093 			goto out;
2094 
2095 		ino = parent_inode;
2096 		gen = parent_gen;
2097 	}
2098 
2099 out:
2100 	fs_path_free(sctx, name);
2101 	if (!ret)
2102 		fs_path_unreverse(dest);
2103 	return ret;
2104 }
2105 
2106 /*
2107  * Called for regular files when sending extents data. Opens a struct file
2108  * to read from the file.
2109  */
2110 static int open_cur_inode_file(struct send_ctx *sctx)
2111 {
2112 	int ret = 0;
2113 	struct btrfs_key key;
2114 	struct path path;
2115 	struct inode *inode;
2116 	struct dentry *dentry;
2117 	struct file *filp;
2118 	int new = 0;
2119 
2120 	if (sctx->cur_inode_filp)
2121 		goto out;
2122 
2123 	key.objectid = sctx->cur_ino;
2124 	key.type = BTRFS_INODE_ITEM_KEY;
2125 	key.offset = 0;
2126 
2127 	inode = btrfs_iget(sctx->send_root->fs_info->sb, &key, sctx->send_root,
2128 			&new);
2129 	if (IS_ERR(inode)) {
2130 		ret = PTR_ERR(inode);
2131 		goto out;
2132 	}
2133 
2134 	dentry = d_obtain_alias(inode);
2135 	inode = NULL;
2136 	if (IS_ERR(dentry)) {
2137 		ret = PTR_ERR(dentry);
2138 		goto out;
2139 	}
2140 
2141 	path.mnt = sctx->mnt;
2142 	path.dentry = dentry;
2143 	filp = dentry_open(&path, O_RDONLY | O_LARGEFILE, current_cred());
2144 	dput(dentry);
2145 	dentry = NULL;
2146 	if (IS_ERR(filp)) {
2147 		ret = PTR_ERR(filp);
2148 		goto out;
2149 	}
2150 	sctx->cur_inode_filp = filp;
2151 
2152 out:
2153 	/*
2154 	 * no xxxput required here as every vfs op
2155 	 * does it by itself on failure
2156 	 */
2157 	return ret;
2158 }
2159 
2160 /*
2161  * Closes the struct file that was created in open_cur_inode_file
2162  */
2163 static int close_cur_inode_file(struct send_ctx *sctx)
2164 {
2165 	int ret = 0;
2166 
2167 	if (!sctx->cur_inode_filp)
2168 		goto out;
2169 
2170 	ret = filp_close(sctx->cur_inode_filp, NULL);
2171 	sctx->cur_inode_filp = NULL;
2172 
2173 out:
2174 	return ret;
2175 }
2176 
2177 /*
2178  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2179  */
2180 static int send_subvol_begin(struct send_ctx *sctx)
2181 {
2182 	int ret;
2183 	struct btrfs_root *send_root = sctx->send_root;
2184 	struct btrfs_root *parent_root = sctx->parent_root;
2185 	struct btrfs_path *path;
2186 	struct btrfs_key key;
2187 	struct btrfs_root_ref *ref;
2188 	struct extent_buffer *leaf;
2189 	char *name = NULL;
2190 	int namelen;
2191 
2192 	path = alloc_path_for_send();
2193 	if (!path)
2194 		return -ENOMEM;
2195 
2196 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2197 	if (!name) {
2198 		btrfs_free_path(path);
2199 		return -ENOMEM;
2200 	}
2201 
2202 	key.objectid = send_root->objectid;
2203 	key.type = BTRFS_ROOT_BACKREF_KEY;
2204 	key.offset = 0;
2205 
2206 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2207 				&key, path, 1, 0);
2208 	if (ret < 0)
2209 		goto out;
2210 	if (ret) {
2211 		ret = -ENOENT;
2212 		goto out;
2213 	}
2214 
2215 	leaf = path->nodes[0];
2216 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2217 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2218 	    key.objectid != send_root->objectid) {
2219 		ret = -ENOENT;
2220 		goto out;
2221 	}
2222 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2223 	namelen = btrfs_root_ref_name_len(leaf, ref);
2224 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2225 	btrfs_release_path(path);
2226 
2227 	if (parent_root) {
2228 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2229 		if (ret < 0)
2230 			goto out;
2231 	} else {
2232 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2233 		if (ret < 0)
2234 			goto out;
2235 	}
2236 
2237 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2238 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2239 			sctx->send_root->root_item.uuid);
2240 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2241 			sctx->send_root->root_item.ctransid);
2242 	if (parent_root) {
2243 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2244 				sctx->parent_root->root_item.uuid);
2245 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2246 				sctx->parent_root->root_item.ctransid);
2247 	}
2248 
2249 	ret = send_cmd(sctx);
2250 
2251 tlv_put_failure:
2252 out:
2253 	btrfs_free_path(path);
2254 	kfree(name);
2255 	return ret;
2256 }
2257 
2258 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2259 {
2260 	int ret = 0;
2261 	struct fs_path *p;
2262 
2263 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2264 
2265 	p = fs_path_alloc(sctx);
2266 	if (!p)
2267 		return -ENOMEM;
2268 
2269 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2270 	if (ret < 0)
2271 		goto out;
2272 
2273 	ret = get_cur_path(sctx, ino, gen, p);
2274 	if (ret < 0)
2275 		goto out;
2276 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2277 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2278 
2279 	ret = send_cmd(sctx);
2280 
2281 tlv_put_failure:
2282 out:
2283 	fs_path_free(sctx, p);
2284 	return ret;
2285 }
2286 
2287 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2288 {
2289 	int ret = 0;
2290 	struct fs_path *p;
2291 
2292 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2293 
2294 	p = fs_path_alloc(sctx);
2295 	if (!p)
2296 		return -ENOMEM;
2297 
2298 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2299 	if (ret < 0)
2300 		goto out;
2301 
2302 	ret = get_cur_path(sctx, ino, gen, p);
2303 	if (ret < 0)
2304 		goto out;
2305 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2306 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2307 
2308 	ret = send_cmd(sctx);
2309 
2310 tlv_put_failure:
2311 out:
2312 	fs_path_free(sctx, p);
2313 	return ret;
2314 }
2315 
2316 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2317 {
2318 	int ret = 0;
2319 	struct fs_path *p;
2320 
2321 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2322 
2323 	p = fs_path_alloc(sctx);
2324 	if (!p)
2325 		return -ENOMEM;
2326 
2327 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2328 	if (ret < 0)
2329 		goto out;
2330 
2331 	ret = get_cur_path(sctx, ino, gen, p);
2332 	if (ret < 0)
2333 		goto out;
2334 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2335 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2336 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2337 
2338 	ret = send_cmd(sctx);
2339 
2340 tlv_put_failure:
2341 out:
2342 	fs_path_free(sctx, p);
2343 	return ret;
2344 }
2345 
2346 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2347 {
2348 	int ret = 0;
2349 	struct fs_path *p = NULL;
2350 	struct btrfs_inode_item *ii;
2351 	struct btrfs_path *path = NULL;
2352 	struct extent_buffer *eb;
2353 	struct btrfs_key key;
2354 	int slot;
2355 
2356 verbose_printk("btrfs: send_utimes %llu\n", ino);
2357 
2358 	p = fs_path_alloc(sctx);
2359 	if (!p)
2360 		return -ENOMEM;
2361 
2362 	path = alloc_path_for_send();
2363 	if (!path) {
2364 		ret = -ENOMEM;
2365 		goto out;
2366 	}
2367 
2368 	key.objectid = ino;
2369 	key.type = BTRFS_INODE_ITEM_KEY;
2370 	key.offset = 0;
2371 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2372 	if (ret < 0)
2373 		goto out;
2374 
2375 	eb = path->nodes[0];
2376 	slot = path->slots[0];
2377 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2378 
2379 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2380 	if (ret < 0)
2381 		goto out;
2382 
2383 	ret = get_cur_path(sctx, ino, gen, p);
2384 	if (ret < 0)
2385 		goto out;
2386 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2387 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb,
2388 			btrfs_inode_atime(ii));
2389 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb,
2390 			btrfs_inode_mtime(ii));
2391 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb,
2392 			btrfs_inode_ctime(ii));
2393 	/* TODO Add otime support when the otime patches get into upstream */
2394 
2395 	ret = send_cmd(sctx);
2396 
2397 tlv_put_failure:
2398 out:
2399 	fs_path_free(sctx, p);
2400 	btrfs_free_path(path);
2401 	return ret;
2402 }
2403 
2404 /*
2405  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2406  * a valid path yet because we did not process the refs yet. So, the inode
2407  * is created as orphan.
2408  */
2409 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2410 {
2411 	int ret = 0;
2412 	struct fs_path *p;
2413 	int cmd;
2414 	u64 gen;
2415 	u64 mode;
2416 	u64 rdev;
2417 
2418 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2419 
2420 	p = fs_path_alloc(sctx);
2421 	if (!p)
2422 		return -ENOMEM;
2423 
2424 	ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, NULL,
2425 			NULL, &rdev);
2426 	if (ret < 0)
2427 		goto out;
2428 
2429 	if (S_ISREG(mode)) {
2430 		cmd = BTRFS_SEND_C_MKFILE;
2431 	} else if (S_ISDIR(mode)) {
2432 		cmd = BTRFS_SEND_C_MKDIR;
2433 	} else if (S_ISLNK(mode)) {
2434 		cmd = BTRFS_SEND_C_SYMLINK;
2435 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2436 		cmd = BTRFS_SEND_C_MKNOD;
2437 	} else if (S_ISFIFO(mode)) {
2438 		cmd = BTRFS_SEND_C_MKFIFO;
2439 	} else if (S_ISSOCK(mode)) {
2440 		cmd = BTRFS_SEND_C_MKSOCK;
2441 	} else {
2442 		printk(KERN_WARNING "btrfs: unexpected inode type %o",
2443 				(int)(mode & S_IFMT));
2444 		ret = -ENOTSUPP;
2445 		goto out;
2446 	}
2447 
2448 	ret = begin_cmd(sctx, cmd);
2449 	if (ret < 0)
2450 		goto out;
2451 
2452 	ret = gen_unique_name(sctx, ino, gen, p);
2453 	if (ret < 0)
2454 		goto out;
2455 
2456 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2457 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2458 
2459 	if (S_ISLNK(mode)) {
2460 		fs_path_reset(p);
2461 		ret = read_symlink(sctx, sctx->send_root, ino, p);
2462 		if (ret < 0)
2463 			goto out;
2464 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2465 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2466 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2467 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2468 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2469 	}
2470 
2471 	ret = send_cmd(sctx);
2472 	if (ret < 0)
2473 		goto out;
2474 
2475 
2476 tlv_put_failure:
2477 out:
2478 	fs_path_free(sctx, p);
2479 	return ret;
2480 }
2481 
2482 /*
2483  * We need some special handling for inodes that get processed before the parent
2484  * directory got created. See process_recorded_refs for details.
2485  * This function does the check if we already created the dir out of order.
2486  */
2487 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2488 {
2489 	int ret = 0;
2490 	struct btrfs_path *path = NULL;
2491 	struct btrfs_key key;
2492 	struct btrfs_key found_key;
2493 	struct btrfs_key di_key;
2494 	struct extent_buffer *eb;
2495 	struct btrfs_dir_item *di;
2496 	int slot;
2497 
2498 	path = alloc_path_for_send();
2499 	if (!path) {
2500 		ret = -ENOMEM;
2501 		goto out;
2502 	}
2503 
2504 	key.objectid = dir;
2505 	key.type = BTRFS_DIR_INDEX_KEY;
2506 	key.offset = 0;
2507 	while (1) {
2508 		ret = btrfs_search_slot_for_read(sctx->send_root, &key, path,
2509 				1, 0);
2510 		if (ret < 0)
2511 			goto out;
2512 		if (!ret) {
2513 			eb = path->nodes[0];
2514 			slot = path->slots[0];
2515 			btrfs_item_key_to_cpu(eb, &found_key, slot);
2516 		}
2517 		if (ret || found_key.objectid != key.objectid ||
2518 		    found_key.type != key.type) {
2519 			ret = 0;
2520 			goto out;
2521 		}
2522 
2523 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2524 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2525 
2526 		if (di_key.objectid < sctx->send_progress) {
2527 			ret = 1;
2528 			goto out;
2529 		}
2530 
2531 		key.offset = found_key.offset + 1;
2532 		btrfs_release_path(path);
2533 	}
2534 
2535 out:
2536 	btrfs_free_path(path);
2537 	return ret;
2538 }
2539 
2540 /*
2541  * Only creates the inode if it is:
2542  * 1. Not a directory
2543  * 2. Or a directory which was not created already due to out of order
2544  *    directories. See did_create_dir and process_recorded_refs for details.
2545  */
2546 static int send_create_inode_if_needed(struct send_ctx *sctx)
2547 {
2548 	int ret;
2549 
2550 	if (S_ISDIR(sctx->cur_inode_mode)) {
2551 		ret = did_create_dir(sctx, sctx->cur_ino);
2552 		if (ret < 0)
2553 			goto out;
2554 		if (ret) {
2555 			ret = 0;
2556 			goto out;
2557 		}
2558 	}
2559 
2560 	ret = send_create_inode(sctx, sctx->cur_ino);
2561 	if (ret < 0)
2562 		goto out;
2563 
2564 out:
2565 	return ret;
2566 }
2567 
2568 struct recorded_ref {
2569 	struct list_head list;
2570 	char *dir_path;
2571 	char *name;
2572 	struct fs_path *full_path;
2573 	u64 dir;
2574 	u64 dir_gen;
2575 	int dir_path_len;
2576 	int name_len;
2577 };
2578 
2579 /*
2580  * We need to process new refs before deleted refs, but compare_tree gives us
2581  * everything mixed. So we first record all refs and later process them.
2582  * This function is a helper to record one ref.
2583  */
2584 static int record_ref(struct list_head *head, u64 dir,
2585 		      u64 dir_gen, struct fs_path *path)
2586 {
2587 	struct recorded_ref *ref;
2588 	char *tmp;
2589 
2590 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
2591 	if (!ref)
2592 		return -ENOMEM;
2593 
2594 	ref->dir = dir;
2595 	ref->dir_gen = dir_gen;
2596 	ref->full_path = path;
2597 
2598 	tmp = strrchr(ref->full_path->start, '/');
2599 	if (!tmp) {
2600 		ref->name_len = ref->full_path->end - ref->full_path->start;
2601 		ref->name = ref->full_path->start;
2602 		ref->dir_path_len = 0;
2603 		ref->dir_path = ref->full_path->start;
2604 	} else {
2605 		tmp++;
2606 		ref->name_len = ref->full_path->end - tmp;
2607 		ref->name = tmp;
2608 		ref->dir_path = ref->full_path->start;
2609 		ref->dir_path_len = ref->full_path->end -
2610 				ref->full_path->start - 1 - ref->name_len;
2611 	}
2612 
2613 	list_add_tail(&ref->list, head);
2614 	return 0;
2615 }
2616 
2617 static void __free_recorded_refs(struct send_ctx *sctx, struct list_head *head)
2618 {
2619 	struct recorded_ref *cur;
2620 
2621 	while (!list_empty(head)) {
2622 		cur = list_entry(head->next, struct recorded_ref, list);
2623 		fs_path_free(sctx, cur->full_path);
2624 		list_del(&cur->list);
2625 		kfree(cur);
2626 	}
2627 }
2628 
2629 static void free_recorded_refs(struct send_ctx *sctx)
2630 {
2631 	__free_recorded_refs(sctx, &sctx->new_refs);
2632 	__free_recorded_refs(sctx, &sctx->deleted_refs);
2633 }
2634 
2635 /*
2636  * Renames/moves a file/dir to its orphan name. Used when the first
2637  * ref of an unprocessed inode gets overwritten and for all non empty
2638  * directories.
2639  */
2640 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2641 			  struct fs_path *path)
2642 {
2643 	int ret;
2644 	struct fs_path *orphan;
2645 
2646 	orphan = fs_path_alloc(sctx);
2647 	if (!orphan)
2648 		return -ENOMEM;
2649 
2650 	ret = gen_unique_name(sctx, ino, gen, orphan);
2651 	if (ret < 0)
2652 		goto out;
2653 
2654 	ret = send_rename(sctx, path, orphan);
2655 
2656 out:
2657 	fs_path_free(sctx, orphan);
2658 	return ret;
2659 }
2660 
2661 /*
2662  * Returns 1 if a directory can be removed at this point in time.
2663  * We check this by iterating all dir items and checking if the inode behind
2664  * the dir item was already processed.
2665  */
2666 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 send_progress)
2667 {
2668 	int ret = 0;
2669 	struct btrfs_root *root = sctx->parent_root;
2670 	struct btrfs_path *path;
2671 	struct btrfs_key key;
2672 	struct btrfs_key found_key;
2673 	struct btrfs_key loc;
2674 	struct btrfs_dir_item *di;
2675 
2676 	/*
2677 	 * Don't try to rmdir the top/root subvolume dir.
2678 	 */
2679 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2680 		return 0;
2681 
2682 	path = alloc_path_for_send();
2683 	if (!path)
2684 		return -ENOMEM;
2685 
2686 	key.objectid = dir;
2687 	key.type = BTRFS_DIR_INDEX_KEY;
2688 	key.offset = 0;
2689 
2690 	while (1) {
2691 		ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2692 		if (ret < 0)
2693 			goto out;
2694 		if (!ret) {
2695 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2696 					path->slots[0]);
2697 		}
2698 		if (ret || found_key.objectid != key.objectid ||
2699 		    found_key.type != key.type) {
2700 			break;
2701 		}
2702 
2703 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2704 				struct btrfs_dir_item);
2705 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2706 
2707 		if (loc.objectid > send_progress) {
2708 			ret = 0;
2709 			goto out;
2710 		}
2711 
2712 		btrfs_release_path(path);
2713 		key.offset = found_key.offset + 1;
2714 	}
2715 
2716 	ret = 1;
2717 
2718 out:
2719 	btrfs_free_path(path);
2720 	return ret;
2721 }
2722 
2723 /*
2724  * This does all the move/link/unlink/rmdir magic.
2725  */
2726 static int process_recorded_refs(struct send_ctx *sctx)
2727 {
2728 	int ret = 0;
2729 	struct recorded_ref *cur;
2730 	struct recorded_ref *cur2;
2731 	struct ulist *check_dirs = NULL;
2732 	struct ulist_iterator uit;
2733 	struct ulist_node *un;
2734 	struct fs_path *valid_path = NULL;
2735 	u64 ow_inode = 0;
2736 	u64 ow_gen;
2737 	int did_overwrite = 0;
2738 	int is_orphan = 0;
2739 
2740 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
2741 
2742 	/*
2743 	 * This should never happen as the root dir always has the same ref
2744 	 * which is always '..'
2745 	 */
2746 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
2747 
2748 	valid_path = fs_path_alloc(sctx);
2749 	if (!valid_path) {
2750 		ret = -ENOMEM;
2751 		goto out;
2752 	}
2753 
2754 	check_dirs = ulist_alloc(GFP_NOFS);
2755 	if (!check_dirs) {
2756 		ret = -ENOMEM;
2757 		goto out;
2758 	}
2759 
2760 	/*
2761 	 * First, check if the first ref of the current inode was overwritten
2762 	 * before. If yes, we know that the current inode was already orphanized
2763 	 * and thus use the orphan name. If not, we can use get_cur_path to
2764 	 * get the path of the first ref as it would like while receiving at
2765 	 * this point in time.
2766 	 * New inodes are always orphan at the beginning, so force to use the
2767 	 * orphan name in this case.
2768 	 * The first ref is stored in valid_path and will be updated if it
2769 	 * gets moved around.
2770 	 */
2771 	if (!sctx->cur_inode_new) {
2772 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
2773 				sctx->cur_inode_gen);
2774 		if (ret < 0)
2775 			goto out;
2776 		if (ret)
2777 			did_overwrite = 1;
2778 	}
2779 	if (sctx->cur_inode_new || did_overwrite) {
2780 		ret = gen_unique_name(sctx, sctx->cur_ino,
2781 				sctx->cur_inode_gen, valid_path);
2782 		if (ret < 0)
2783 			goto out;
2784 		is_orphan = 1;
2785 	} else {
2786 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
2787 				valid_path);
2788 		if (ret < 0)
2789 			goto out;
2790 	}
2791 
2792 	list_for_each_entry(cur, &sctx->new_refs, list) {
2793 		/*
2794 		 * We may have refs where the parent directory does not exist
2795 		 * yet. This happens if the parent directories inum is higher
2796 		 * the the current inum. To handle this case, we create the
2797 		 * parent directory out of order. But we need to check if this
2798 		 * did already happen before due to other refs in the same dir.
2799 		 */
2800 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
2801 		if (ret < 0)
2802 			goto out;
2803 		if (ret == inode_state_will_create) {
2804 			ret = 0;
2805 			/*
2806 			 * First check if any of the current inodes refs did
2807 			 * already create the dir.
2808 			 */
2809 			list_for_each_entry(cur2, &sctx->new_refs, list) {
2810 				if (cur == cur2)
2811 					break;
2812 				if (cur2->dir == cur->dir) {
2813 					ret = 1;
2814 					break;
2815 				}
2816 			}
2817 
2818 			/*
2819 			 * If that did not happen, check if a previous inode
2820 			 * did already create the dir.
2821 			 */
2822 			if (!ret)
2823 				ret = did_create_dir(sctx, cur->dir);
2824 			if (ret < 0)
2825 				goto out;
2826 			if (!ret) {
2827 				ret = send_create_inode(sctx, cur->dir);
2828 				if (ret < 0)
2829 					goto out;
2830 			}
2831 		}
2832 
2833 		/*
2834 		 * Check if this new ref would overwrite the first ref of
2835 		 * another unprocessed inode. If yes, orphanize the
2836 		 * overwritten inode. If we find an overwritten ref that is
2837 		 * not the first ref, simply unlink it.
2838 		 */
2839 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
2840 				cur->name, cur->name_len,
2841 				&ow_inode, &ow_gen);
2842 		if (ret < 0)
2843 			goto out;
2844 		if (ret) {
2845 			ret = is_first_ref(sctx, sctx->parent_root,
2846 					ow_inode, cur->dir, cur->name,
2847 					cur->name_len);
2848 			if (ret < 0)
2849 				goto out;
2850 			if (ret) {
2851 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
2852 						cur->full_path);
2853 				if (ret < 0)
2854 					goto out;
2855 			} else {
2856 				ret = send_unlink(sctx, cur->full_path);
2857 				if (ret < 0)
2858 					goto out;
2859 			}
2860 		}
2861 
2862 		/*
2863 		 * link/move the ref to the new place. If we have an orphan
2864 		 * inode, move it and update valid_path. If not, link or move
2865 		 * it depending on the inode mode.
2866 		 */
2867 		if (is_orphan) {
2868 			ret = send_rename(sctx, valid_path, cur->full_path);
2869 			if (ret < 0)
2870 				goto out;
2871 			is_orphan = 0;
2872 			ret = fs_path_copy(valid_path, cur->full_path);
2873 			if (ret < 0)
2874 				goto out;
2875 		} else {
2876 			if (S_ISDIR(sctx->cur_inode_mode)) {
2877 				/*
2878 				 * Dirs can't be linked, so move it. For moved
2879 				 * dirs, we always have one new and one deleted
2880 				 * ref. The deleted ref is ignored later.
2881 				 */
2882 				ret = send_rename(sctx, valid_path,
2883 						cur->full_path);
2884 				if (ret < 0)
2885 					goto out;
2886 				ret = fs_path_copy(valid_path, cur->full_path);
2887 				if (ret < 0)
2888 					goto out;
2889 			} else {
2890 				ret = send_link(sctx, cur->full_path,
2891 						valid_path);
2892 				if (ret < 0)
2893 					goto out;
2894 			}
2895 		}
2896 		ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2897 				GFP_NOFS);
2898 		if (ret < 0)
2899 			goto out;
2900 	}
2901 
2902 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
2903 		/*
2904 		 * Check if we can already rmdir the directory. If not,
2905 		 * orphanize it. For every dir item inside that gets deleted
2906 		 * later, we do this check again and rmdir it then if possible.
2907 		 * See the use of check_dirs for more details.
2908 		 */
2909 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_ino);
2910 		if (ret < 0)
2911 			goto out;
2912 		if (ret) {
2913 			ret = send_rmdir(sctx, valid_path);
2914 			if (ret < 0)
2915 				goto out;
2916 		} else if (!is_orphan) {
2917 			ret = orphanize_inode(sctx, sctx->cur_ino,
2918 					sctx->cur_inode_gen, valid_path);
2919 			if (ret < 0)
2920 				goto out;
2921 			is_orphan = 1;
2922 		}
2923 
2924 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
2925 			ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2926 					GFP_NOFS);
2927 			if (ret < 0)
2928 				goto out;
2929 		}
2930 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
2931 		   !list_empty(&sctx->deleted_refs)) {
2932 		/*
2933 		 * We have a moved dir. Add the old parent to check_dirs
2934 		 */
2935 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
2936 				list);
2937 		ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2938 				GFP_NOFS);
2939 		if (ret < 0)
2940 			goto out;
2941 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
2942 		/*
2943 		 * We have a non dir inode. Go through all deleted refs and
2944 		 * unlink them if they were not already overwritten by other
2945 		 * inodes.
2946 		 */
2947 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
2948 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
2949 					sctx->cur_ino, sctx->cur_inode_gen,
2950 					cur->name, cur->name_len);
2951 			if (ret < 0)
2952 				goto out;
2953 			if (!ret) {
2954 				ret = send_unlink(sctx, cur->full_path);
2955 				if (ret < 0)
2956 					goto out;
2957 			}
2958 			ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2959 					GFP_NOFS);
2960 			if (ret < 0)
2961 				goto out;
2962 		}
2963 
2964 		/*
2965 		 * If the inode is still orphan, unlink the orphan. This may
2966 		 * happen when a previous inode did overwrite the first ref
2967 		 * of this inode and no new refs were added for the current
2968 		 * inode. Unlinking does not mean that the inode is deleted in
2969 		 * all cases. There may still be links to this inode in other
2970 		 * places.
2971 		 */
2972 		if (is_orphan) {
2973 			ret = send_unlink(sctx, valid_path);
2974 			if (ret < 0)
2975 				goto out;
2976 		}
2977 	}
2978 
2979 	/*
2980 	 * We did collect all parent dirs where cur_inode was once located. We
2981 	 * now go through all these dirs and check if they are pending for
2982 	 * deletion and if it's finally possible to perform the rmdir now.
2983 	 * We also update the inode stats of the parent dirs here.
2984 	 */
2985 	ULIST_ITER_INIT(&uit);
2986 	while ((un = ulist_next(check_dirs, &uit))) {
2987 		/*
2988 		 * In case we had refs into dirs that were not processed yet,
2989 		 * we don't need to do the utime and rmdir logic for these dirs.
2990 		 * The dir will be processed later.
2991 		 */
2992 		if (un->val > sctx->cur_ino)
2993 			continue;
2994 
2995 		ret = get_cur_inode_state(sctx, un->val, un->aux);
2996 		if (ret < 0)
2997 			goto out;
2998 
2999 		if (ret == inode_state_did_create ||
3000 		    ret == inode_state_no_change) {
3001 			/* TODO delayed utimes */
3002 			ret = send_utimes(sctx, un->val, un->aux);
3003 			if (ret < 0)
3004 				goto out;
3005 		} else if (ret == inode_state_did_delete) {
3006 			ret = can_rmdir(sctx, un->val, sctx->cur_ino);
3007 			if (ret < 0)
3008 				goto out;
3009 			if (ret) {
3010 				ret = get_cur_path(sctx, un->val, un->aux,
3011 						valid_path);
3012 				if (ret < 0)
3013 					goto out;
3014 				ret = send_rmdir(sctx, valid_path);
3015 				if (ret < 0)
3016 					goto out;
3017 			}
3018 		}
3019 	}
3020 
3021 	ret = 0;
3022 
3023 out:
3024 	free_recorded_refs(sctx);
3025 	ulist_free(check_dirs);
3026 	fs_path_free(sctx, valid_path);
3027 	return ret;
3028 }
3029 
3030 static int __record_new_ref(int num, u64 dir, int index,
3031 			    struct fs_path *name,
3032 			    void *ctx)
3033 {
3034 	int ret = 0;
3035 	struct send_ctx *sctx = ctx;
3036 	struct fs_path *p;
3037 	u64 gen;
3038 
3039 	p = fs_path_alloc(sctx);
3040 	if (!p)
3041 		return -ENOMEM;
3042 
3043 	ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, NULL,
3044 			NULL, NULL);
3045 	if (ret < 0)
3046 		goto out;
3047 
3048 	ret = get_cur_path(sctx, dir, gen, p);
3049 	if (ret < 0)
3050 		goto out;
3051 	ret = fs_path_add_path(p, name);
3052 	if (ret < 0)
3053 		goto out;
3054 
3055 	ret = record_ref(&sctx->new_refs, dir, gen, p);
3056 
3057 out:
3058 	if (ret)
3059 		fs_path_free(sctx, p);
3060 	return ret;
3061 }
3062 
3063 static int __record_deleted_ref(int num, u64 dir, int index,
3064 				struct fs_path *name,
3065 				void *ctx)
3066 {
3067 	int ret = 0;
3068 	struct send_ctx *sctx = ctx;
3069 	struct fs_path *p;
3070 	u64 gen;
3071 
3072 	p = fs_path_alloc(sctx);
3073 	if (!p)
3074 		return -ENOMEM;
3075 
3076 	ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, NULL,
3077 			NULL, NULL);
3078 	if (ret < 0)
3079 		goto out;
3080 
3081 	ret = get_cur_path(sctx, dir, gen, p);
3082 	if (ret < 0)
3083 		goto out;
3084 	ret = fs_path_add_path(p, name);
3085 	if (ret < 0)
3086 		goto out;
3087 
3088 	ret = record_ref(&sctx->deleted_refs, dir, gen, p);
3089 
3090 out:
3091 	if (ret)
3092 		fs_path_free(sctx, p);
3093 	return ret;
3094 }
3095 
3096 static int record_new_ref(struct send_ctx *sctx)
3097 {
3098 	int ret;
3099 
3100 	ret = iterate_inode_ref(sctx, sctx->send_root, sctx->left_path,
3101 			sctx->cmp_key, 0, __record_new_ref, sctx);
3102 	if (ret < 0)
3103 		goto out;
3104 	ret = 0;
3105 
3106 out:
3107 	return ret;
3108 }
3109 
3110 static int record_deleted_ref(struct send_ctx *sctx)
3111 {
3112 	int ret;
3113 
3114 	ret = iterate_inode_ref(sctx, sctx->parent_root, sctx->right_path,
3115 			sctx->cmp_key, 0, __record_deleted_ref, sctx);
3116 	if (ret < 0)
3117 		goto out;
3118 	ret = 0;
3119 
3120 out:
3121 	return ret;
3122 }
3123 
3124 struct find_ref_ctx {
3125 	u64 dir;
3126 	struct fs_path *name;
3127 	int found_idx;
3128 };
3129 
3130 static int __find_iref(int num, u64 dir, int index,
3131 		       struct fs_path *name,
3132 		       void *ctx_)
3133 {
3134 	struct find_ref_ctx *ctx = ctx_;
3135 
3136 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3137 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3138 		ctx->found_idx = num;
3139 		return 1;
3140 	}
3141 	return 0;
3142 }
3143 
3144 static int find_iref(struct send_ctx *sctx,
3145 		     struct btrfs_root *root,
3146 		     struct btrfs_path *path,
3147 		     struct btrfs_key *key,
3148 		     u64 dir, struct fs_path *name)
3149 {
3150 	int ret;
3151 	struct find_ref_ctx ctx;
3152 
3153 	ctx.dir = dir;
3154 	ctx.name = name;
3155 	ctx.found_idx = -1;
3156 
3157 	ret = iterate_inode_ref(sctx, root, path, key, 0, __find_iref, &ctx);
3158 	if (ret < 0)
3159 		return ret;
3160 
3161 	if (ctx.found_idx == -1)
3162 		return -ENOENT;
3163 
3164 	return ctx.found_idx;
3165 }
3166 
3167 static int __record_changed_new_ref(int num, u64 dir, int index,
3168 				    struct fs_path *name,
3169 				    void *ctx)
3170 {
3171 	int ret;
3172 	struct send_ctx *sctx = ctx;
3173 
3174 	ret = find_iref(sctx, sctx->parent_root, sctx->right_path,
3175 			sctx->cmp_key, dir, name);
3176 	if (ret == -ENOENT)
3177 		ret = __record_new_ref(num, dir, index, name, sctx);
3178 	else if (ret > 0)
3179 		ret = 0;
3180 
3181 	return ret;
3182 }
3183 
3184 static int __record_changed_deleted_ref(int num, u64 dir, int index,
3185 					struct fs_path *name,
3186 					void *ctx)
3187 {
3188 	int ret;
3189 	struct send_ctx *sctx = ctx;
3190 
3191 	ret = find_iref(sctx, sctx->send_root, sctx->left_path, sctx->cmp_key,
3192 			dir, name);
3193 	if (ret == -ENOENT)
3194 		ret = __record_deleted_ref(num, dir, index, name, sctx);
3195 	else if (ret > 0)
3196 		ret = 0;
3197 
3198 	return ret;
3199 }
3200 
3201 static int record_changed_ref(struct send_ctx *sctx)
3202 {
3203 	int ret = 0;
3204 
3205 	ret = iterate_inode_ref(sctx, sctx->send_root, sctx->left_path,
3206 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3207 	if (ret < 0)
3208 		goto out;
3209 	ret = iterate_inode_ref(sctx, sctx->parent_root, sctx->right_path,
3210 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3211 	if (ret < 0)
3212 		goto out;
3213 	ret = 0;
3214 
3215 out:
3216 	return ret;
3217 }
3218 
3219 /*
3220  * Record and process all refs at once. Needed when an inode changes the
3221  * generation number, which means that it was deleted and recreated.
3222  */
3223 static int process_all_refs(struct send_ctx *sctx,
3224 			    enum btrfs_compare_tree_result cmd)
3225 {
3226 	int ret;
3227 	struct btrfs_root *root;
3228 	struct btrfs_path *path;
3229 	struct btrfs_key key;
3230 	struct btrfs_key found_key;
3231 	struct extent_buffer *eb;
3232 	int slot;
3233 	iterate_inode_ref_t cb;
3234 
3235 	path = alloc_path_for_send();
3236 	if (!path)
3237 		return -ENOMEM;
3238 
3239 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
3240 		root = sctx->send_root;
3241 		cb = __record_new_ref;
3242 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
3243 		root = sctx->parent_root;
3244 		cb = __record_deleted_ref;
3245 	} else {
3246 		BUG();
3247 	}
3248 
3249 	key.objectid = sctx->cmp_key->objectid;
3250 	key.type = BTRFS_INODE_REF_KEY;
3251 	key.offset = 0;
3252 	while (1) {
3253 		ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3254 		if (ret < 0)
3255 			goto out;
3256 		if (ret)
3257 			break;
3258 
3259 		eb = path->nodes[0];
3260 		slot = path->slots[0];
3261 		btrfs_item_key_to_cpu(eb, &found_key, slot);
3262 
3263 		if (found_key.objectid != key.objectid ||
3264 		    (found_key.type != BTRFS_INODE_REF_KEY &&
3265 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
3266 			break;
3267 
3268 		ret = iterate_inode_ref(sctx, root, path, &found_key, 0, cb,
3269 				sctx);
3270 		btrfs_release_path(path);
3271 		if (ret < 0)
3272 			goto out;
3273 
3274 		key.offset = found_key.offset + 1;
3275 	}
3276 	btrfs_release_path(path);
3277 
3278 	ret = process_recorded_refs(sctx);
3279 
3280 out:
3281 	btrfs_free_path(path);
3282 	return ret;
3283 }
3284 
3285 static int send_set_xattr(struct send_ctx *sctx,
3286 			  struct fs_path *path,
3287 			  const char *name, int name_len,
3288 			  const char *data, int data_len)
3289 {
3290 	int ret = 0;
3291 
3292 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
3293 	if (ret < 0)
3294 		goto out;
3295 
3296 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3297 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3298 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
3299 
3300 	ret = send_cmd(sctx);
3301 
3302 tlv_put_failure:
3303 out:
3304 	return ret;
3305 }
3306 
3307 static int send_remove_xattr(struct send_ctx *sctx,
3308 			  struct fs_path *path,
3309 			  const char *name, int name_len)
3310 {
3311 	int ret = 0;
3312 
3313 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
3314 	if (ret < 0)
3315 		goto out;
3316 
3317 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3318 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3319 
3320 	ret = send_cmd(sctx);
3321 
3322 tlv_put_failure:
3323 out:
3324 	return ret;
3325 }
3326 
3327 static int __process_new_xattr(int num, struct btrfs_key *di_key,
3328 			       const char *name, int name_len,
3329 			       const char *data, int data_len,
3330 			       u8 type, void *ctx)
3331 {
3332 	int ret;
3333 	struct send_ctx *sctx = ctx;
3334 	struct fs_path *p;
3335 	posix_acl_xattr_header dummy_acl;
3336 
3337 	p = fs_path_alloc(sctx);
3338 	if (!p)
3339 		return -ENOMEM;
3340 
3341 	/*
3342 	 * This hack is needed because empty acl's are stored as zero byte
3343 	 * data in xattrs. Problem with that is, that receiving these zero byte
3344 	 * acl's will fail later. To fix this, we send a dummy acl list that
3345 	 * only contains the version number and no entries.
3346 	 */
3347 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
3348 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
3349 		if (data_len == 0) {
3350 			dummy_acl.a_version =
3351 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
3352 			data = (char *)&dummy_acl;
3353 			data_len = sizeof(dummy_acl);
3354 		}
3355 	}
3356 
3357 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3358 	if (ret < 0)
3359 		goto out;
3360 
3361 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
3362 
3363 out:
3364 	fs_path_free(sctx, p);
3365 	return ret;
3366 }
3367 
3368 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
3369 				   const char *name, int name_len,
3370 				   const char *data, int data_len,
3371 				   u8 type, void *ctx)
3372 {
3373 	int ret;
3374 	struct send_ctx *sctx = ctx;
3375 	struct fs_path *p;
3376 
3377 	p = fs_path_alloc(sctx);
3378 	if (!p)
3379 		return -ENOMEM;
3380 
3381 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3382 	if (ret < 0)
3383 		goto out;
3384 
3385 	ret = send_remove_xattr(sctx, p, name, name_len);
3386 
3387 out:
3388 	fs_path_free(sctx, p);
3389 	return ret;
3390 }
3391 
3392 static int process_new_xattr(struct send_ctx *sctx)
3393 {
3394 	int ret = 0;
3395 
3396 	ret = iterate_dir_item(sctx, sctx->send_root, sctx->left_path,
3397 			sctx->cmp_key, __process_new_xattr, sctx);
3398 
3399 	return ret;
3400 }
3401 
3402 static int process_deleted_xattr(struct send_ctx *sctx)
3403 {
3404 	int ret;
3405 
3406 	ret = iterate_dir_item(sctx, sctx->parent_root, sctx->right_path,
3407 			sctx->cmp_key, __process_deleted_xattr, sctx);
3408 
3409 	return ret;
3410 }
3411 
3412 struct find_xattr_ctx {
3413 	const char *name;
3414 	int name_len;
3415 	int found_idx;
3416 	char *found_data;
3417 	int found_data_len;
3418 };
3419 
3420 static int __find_xattr(int num, struct btrfs_key *di_key,
3421 			const char *name, int name_len,
3422 			const char *data, int data_len,
3423 			u8 type, void *vctx)
3424 {
3425 	struct find_xattr_ctx *ctx = vctx;
3426 
3427 	if (name_len == ctx->name_len &&
3428 	    strncmp(name, ctx->name, name_len) == 0) {
3429 		ctx->found_idx = num;
3430 		ctx->found_data_len = data_len;
3431 		ctx->found_data = kmalloc(data_len, GFP_NOFS);
3432 		if (!ctx->found_data)
3433 			return -ENOMEM;
3434 		memcpy(ctx->found_data, data, data_len);
3435 		return 1;
3436 	}
3437 	return 0;
3438 }
3439 
3440 static int find_xattr(struct send_ctx *sctx,
3441 		      struct btrfs_root *root,
3442 		      struct btrfs_path *path,
3443 		      struct btrfs_key *key,
3444 		      const char *name, int name_len,
3445 		      char **data, int *data_len)
3446 {
3447 	int ret;
3448 	struct find_xattr_ctx ctx;
3449 
3450 	ctx.name = name;
3451 	ctx.name_len = name_len;
3452 	ctx.found_idx = -1;
3453 	ctx.found_data = NULL;
3454 	ctx.found_data_len = 0;
3455 
3456 	ret = iterate_dir_item(sctx, root, path, key, __find_xattr, &ctx);
3457 	if (ret < 0)
3458 		return ret;
3459 
3460 	if (ctx.found_idx == -1)
3461 		return -ENOENT;
3462 	if (data) {
3463 		*data = ctx.found_data;
3464 		*data_len = ctx.found_data_len;
3465 	} else {
3466 		kfree(ctx.found_data);
3467 	}
3468 	return ctx.found_idx;
3469 }
3470 
3471 
3472 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
3473 				       const char *name, int name_len,
3474 				       const char *data, int data_len,
3475 				       u8 type, void *ctx)
3476 {
3477 	int ret;
3478 	struct send_ctx *sctx = ctx;
3479 	char *found_data = NULL;
3480 	int found_data_len  = 0;
3481 	struct fs_path *p = NULL;
3482 
3483 	ret = find_xattr(sctx, sctx->parent_root, sctx->right_path,
3484 			sctx->cmp_key, name, name_len, &found_data,
3485 			&found_data_len);
3486 	if (ret == -ENOENT) {
3487 		ret = __process_new_xattr(num, di_key, name, name_len, data,
3488 				data_len, type, ctx);
3489 	} else if (ret >= 0) {
3490 		if (data_len != found_data_len ||
3491 		    memcmp(data, found_data, data_len)) {
3492 			ret = __process_new_xattr(num, di_key, name, name_len,
3493 					data, data_len, type, ctx);
3494 		} else {
3495 			ret = 0;
3496 		}
3497 	}
3498 
3499 	kfree(found_data);
3500 	fs_path_free(sctx, p);
3501 	return ret;
3502 }
3503 
3504 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
3505 					   const char *name, int name_len,
3506 					   const char *data, int data_len,
3507 					   u8 type, void *ctx)
3508 {
3509 	int ret;
3510 	struct send_ctx *sctx = ctx;
3511 
3512 	ret = find_xattr(sctx, sctx->send_root, sctx->left_path, sctx->cmp_key,
3513 			name, name_len, NULL, NULL);
3514 	if (ret == -ENOENT)
3515 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
3516 				data_len, type, ctx);
3517 	else if (ret >= 0)
3518 		ret = 0;
3519 
3520 	return ret;
3521 }
3522 
3523 static int process_changed_xattr(struct send_ctx *sctx)
3524 {
3525 	int ret = 0;
3526 
3527 	ret = iterate_dir_item(sctx, sctx->send_root, sctx->left_path,
3528 			sctx->cmp_key, __process_changed_new_xattr, sctx);
3529 	if (ret < 0)
3530 		goto out;
3531 	ret = iterate_dir_item(sctx, sctx->parent_root, sctx->right_path,
3532 			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
3533 
3534 out:
3535 	return ret;
3536 }
3537 
3538 static int process_all_new_xattrs(struct send_ctx *sctx)
3539 {
3540 	int ret;
3541 	struct btrfs_root *root;
3542 	struct btrfs_path *path;
3543 	struct btrfs_key key;
3544 	struct btrfs_key found_key;
3545 	struct extent_buffer *eb;
3546 	int slot;
3547 
3548 	path = alloc_path_for_send();
3549 	if (!path)
3550 		return -ENOMEM;
3551 
3552 	root = sctx->send_root;
3553 
3554 	key.objectid = sctx->cmp_key->objectid;
3555 	key.type = BTRFS_XATTR_ITEM_KEY;
3556 	key.offset = 0;
3557 	while (1) {
3558 		ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3559 		if (ret < 0)
3560 			goto out;
3561 		if (ret) {
3562 			ret = 0;
3563 			goto out;
3564 		}
3565 
3566 		eb = path->nodes[0];
3567 		slot = path->slots[0];
3568 		btrfs_item_key_to_cpu(eb, &found_key, slot);
3569 
3570 		if (found_key.objectid != key.objectid ||
3571 		    found_key.type != key.type) {
3572 			ret = 0;
3573 			goto out;
3574 		}
3575 
3576 		ret = iterate_dir_item(sctx, root, path, &found_key,
3577 				__process_new_xattr, sctx);
3578 		if (ret < 0)
3579 			goto out;
3580 
3581 		btrfs_release_path(path);
3582 		key.offset = found_key.offset + 1;
3583 	}
3584 
3585 out:
3586 	btrfs_free_path(path);
3587 	return ret;
3588 }
3589 
3590 /*
3591  * Read some bytes from the current inode/file and send a write command to
3592  * user space.
3593  */
3594 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
3595 {
3596 	int ret = 0;
3597 	struct fs_path *p;
3598 	loff_t pos = offset;
3599 	int num_read = 0;
3600 	mm_segment_t old_fs;
3601 
3602 	p = fs_path_alloc(sctx);
3603 	if (!p)
3604 		return -ENOMEM;
3605 
3606 	/*
3607 	 * vfs normally only accepts user space buffers for security reasons.
3608 	 * we only read from the file and also only provide the read_buf buffer
3609 	 * to vfs. As this buffer does not come from a user space call, it's
3610 	 * ok to temporary allow kernel space buffers.
3611 	 */
3612 	old_fs = get_fs();
3613 	set_fs(KERNEL_DS);
3614 
3615 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
3616 
3617 	ret = open_cur_inode_file(sctx);
3618 	if (ret < 0)
3619 		goto out;
3620 
3621 	ret = vfs_read(sctx->cur_inode_filp, sctx->read_buf, len, &pos);
3622 	if (ret < 0)
3623 		goto out;
3624 	num_read = ret;
3625 	if (!num_read)
3626 		goto out;
3627 
3628 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
3629 	if (ret < 0)
3630 		goto out;
3631 
3632 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3633 	if (ret < 0)
3634 		goto out;
3635 
3636 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3637 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
3638 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
3639 
3640 	ret = send_cmd(sctx);
3641 
3642 tlv_put_failure:
3643 out:
3644 	fs_path_free(sctx, p);
3645 	set_fs(old_fs);
3646 	if (ret < 0)
3647 		return ret;
3648 	return num_read;
3649 }
3650 
3651 /*
3652  * Send a clone command to user space.
3653  */
3654 static int send_clone(struct send_ctx *sctx,
3655 		      u64 offset, u32 len,
3656 		      struct clone_root *clone_root)
3657 {
3658 	int ret = 0;
3659 	struct fs_path *p;
3660 	u64 gen;
3661 
3662 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
3663 	       "clone_inode=%llu, clone_offset=%llu\n", offset, len,
3664 		clone_root->root->objectid, clone_root->ino,
3665 		clone_root->offset);
3666 
3667 	p = fs_path_alloc(sctx);
3668 	if (!p)
3669 		return -ENOMEM;
3670 
3671 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
3672 	if (ret < 0)
3673 		goto out;
3674 
3675 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3676 	if (ret < 0)
3677 		goto out;
3678 
3679 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
3680 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
3681 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3682 
3683 	if (clone_root->root == sctx->send_root) {
3684 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
3685 				&gen, NULL, NULL, NULL, NULL);
3686 		if (ret < 0)
3687 			goto out;
3688 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
3689 	} else {
3690 		ret = get_inode_path(sctx, clone_root->root,
3691 				clone_root->ino, p);
3692 	}
3693 	if (ret < 0)
3694 		goto out;
3695 
3696 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
3697 			clone_root->root->root_item.uuid);
3698 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
3699 			clone_root->root->root_item.ctransid);
3700 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
3701 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
3702 			clone_root->offset);
3703 
3704 	ret = send_cmd(sctx);
3705 
3706 tlv_put_failure:
3707 out:
3708 	fs_path_free(sctx, p);
3709 	return ret;
3710 }
3711 
3712 static int send_write_or_clone(struct send_ctx *sctx,
3713 			       struct btrfs_path *path,
3714 			       struct btrfs_key *key,
3715 			       struct clone_root *clone_root)
3716 {
3717 	int ret = 0;
3718 	struct btrfs_file_extent_item *ei;
3719 	u64 offset = key->offset;
3720 	u64 pos = 0;
3721 	u64 len;
3722 	u32 l;
3723 	u8 type;
3724 
3725 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3726 			struct btrfs_file_extent_item);
3727 	type = btrfs_file_extent_type(path->nodes[0], ei);
3728 	if (type == BTRFS_FILE_EXTENT_INLINE) {
3729 		len = btrfs_file_extent_inline_len(path->nodes[0], ei);
3730 		/*
3731 		 * it is possible the inline item won't cover the whole page,
3732 		 * but there may be items after this page.  Make
3733 		 * sure to send the whole thing
3734 		 */
3735 		len = PAGE_CACHE_ALIGN(len);
3736 	} else {
3737 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3738 	}
3739 
3740 	if (offset + len > sctx->cur_inode_size)
3741 		len = sctx->cur_inode_size - offset;
3742 	if (len == 0) {
3743 		ret = 0;
3744 		goto out;
3745 	}
3746 
3747 	if (!clone_root) {
3748 		while (pos < len) {
3749 			l = len - pos;
3750 			if (l > BTRFS_SEND_READ_SIZE)
3751 				l = BTRFS_SEND_READ_SIZE;
3752 			ret = send_write(sctx, pos + offset, l);
3753 			if (ret < 0)
3754 				goto out;
3755 			if (!ret)
3756 				break;
3757 			pos += ret;
3758 		}
3759 		ret = 0;
3760 	} else {
3761 		ret = send_clone(sctx, offset, len, clone_root);
3762 	}
3763 
3764 out:
3765 	return ret;
3766 }
3767 
3768 static int is_extent_unchanged(struct send_ctx *sctx,
3769 			       struct btrfs_path *left_path,
3770 			       struct btrfs_key *ekey)
3771 {
3772 	int ret = 0;
3773 	struct btrfs_key key;
3774 	struct btrfs_path *path = NULL;
3775 	struct extent_buffer *eb;
3776 	int slot;
3777 	struct btrfs_key found_key;
3778 	struct btrfs_file_extent_item *ei;
3779 	u64 left_disknr;
3780 	u64 right_disknr;
3781 	u64 left_offset;
3782 	u64 right_offset;
3783 	u64 left_offset_fixed;
3784 	u64 left_len;
3785 	u64 right_len;
3786 	u64 left_gen;
3787 	u64 right_gen;
3788 	u8 left_type;
3789 	u8 right_type;
3790 
3791 	path = alloc_path_for_send();
3792 	if (!path)
3793 		return -ENOMEM;
3794 
3795 	eb = left_path->nodes[0];
3796 	slot = left_path->slots[0];
3797 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
3798 	left_type = btrfs_file_extent_type(eb, ei);
3799 
3800 	if (left_type != BTRFS_FILE_EXTENT_REG) {
3801 		ret = 0;
3802 		goto out;
3803 	}
3804 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
3805 	left_len = btrfs_file_extent_num_bytes(eb, ei);
3806 	left_offset = btrfs_file_extent_offset(eb, ei);
3807 	left_gen = btrfs_file_extent_generation(eb, ei);
3808 
3809 	/*
3810 	 * Following comments will refer to these graphics. L is the left
3811 	 * extents which we are checking at the moment. 1-8 are the right
3812 	 * extents that we iterate.
3813 	 *
3814 	 *       |-----L-----|
3815 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
3816 	 *
3817 	 *       |-----L-----|
3818 	 * |--1--|-2b-|...(same as above)
3819 	 *
3820 	 * Alternative situation. Happens on files where extents got split.
3821 	 *       |-----L-----|
3822 	 * |-----------7-----------|-6-|
3823 	 *
3824 	 * Alternative situation. Happens on files which got larger.
3825 	 *       |-----L-----|
3826 	 * |-8-|
3827 	 * Nothing follows after 8.
3828 	 */
3829 
3830 	key.objectid = ekey->objectid;
3831 	key.type = BTRFS_EXTENT_DATA_KEY;
3832 	key.offset = ekey->offset;
3833 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
3834 	if (ret < 0)
3835 		goto out;
3836 	if (ret) {
3837 		ret = 0;
3838 		goto out;
3839 	}
3840 
3841 	/*
3842 	 * Handle special case where the right side has no extents at all.
3843 	 */
3844 	eb = path->nodes[0];
3845 	slot = path->slots[0];
3846 	btrfs_item_key_to_cpu(eb, &found_key, slot);
3847 	if (found_key.objectid != key.objectid ||
3848 	    found_key.type != key.type) {
3849 		ret = 0;
3850 		goto out;
3851 	}
3852 
3853 	/*
3854 	 * We're now on 2a, 2b or 7.
3855 	 */
3856 	key = found_key;
3857 	while (key.offset < ekey->offset + left_len) {
3858 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
3859 		right_type = btrfs_file_extent_type(eb, ei);
3860 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
3861 		right_len = btrfs_file_extent_num_bytes(eb, ei);
3862 		right_offset = btrfs_file_extent_offset(eb, ei);
3863 		right_gen = btrfs_file_extent_generation(eb, ei);
3864 
3865 		if (right_type != BTRFS_FILE_EXTENT_REG) {
3866 			ret = 0;
3867 			goto out;
3868 		}
3869 
3870 		/*
3871 		 * Are we at extent 8? If yes, we know the extent is changed.
3872 		 * This may only happen on the first iteration.
3873 		 */
3874 		if (found_key.offset + right_len <= ekey->offset) {
3875 			ret = 0;
3876 			goto out;
3877 		}
3878 
3879 		left_offset_fixed = left_offset;
3880 		if (key.offset < ekey->offset) {
3881 			/* Fix the right offset for 2a and 7. */
3882 			right_offset += ekey->offset - key.offset;
3883 		} else {
3884 			/* Fix the left offset for all behind 2a and 2b */
3885 			left_offset_fixed += key.offset - ekey->offset;
3886 		}
3887 
3888 		/*
3889 		 * Check if we have the same extent.
3890 		 */
3891 		if (left_disknr != right_disknr ||
3892 		    left_offset_fixed != right_offset ||
3893 		    left_gen != right_gen) {
3894 			ret = 0;
3895 			goto out;
3896 		}
3897 
3898 		/*
3899 		 * Go to the next extent.
3900 		 */
3901 		ret = btrfs_next_item(sctx->parent_root, path);
3902 		if (ret < 0)
3903 			goto out;
3904 		if (!ret) {
3905 			eb = path->nodes[0];
3906 			slot = path->slots[0];
3907 			btrfs_item_key_to_cpu(eb, &found_key, slot);
3908 		}
3909 		if (ret || found_key.objectid != key.objectid ||
3910 		    found_key.type != key.type) {
3911 			key.offset += right_len;
3912 			break;
3913 		} else {
3914 			if (found_key.offset != key.offset + right_len) {
3915 				/* Should really not happen */
3916 				ret = -EIO;
3917 				goto out;
3918 			}
3919 		}
3920 		key = found_key;
3921 	}
3922 
3923 	/*
3924 	 * We're now behind the left extent (treat as unchanged) or at the end
3925 	 * of the right side (treat as changed).
3926 	 */
3927 	if (key.offset >= ekey->offset + left_len)
3928 		ret = 1;
3929 	else
3930 		ret = 0;
3931 
3932 
3933 out:
3934 	btrfs_free_path(path);
3935 	return ret;
3936 }
3937 
3938 static int process_extent(struct send_ctx *sctx,
3939 			  struct btrfs_path *path,
3940 			  struct btrfs_key *key)
3941 {
3942 	int ret = 0;
3943 	struct clone_root *found_clone = NULL;
3944 
3945 	if (S_ISLNK(sctx->cur_inode_mode))
3946 		return 0;
3947 
3948 	if (sctx->parent_root && !sctx->cur_inode_new) {
3949 		ret = is_extent_unchanged(sctx, path, key);
3950 		if (ret < 0)
3951 			goto out;
3952 		if (ret) {
3953 			ret = 0;
3954 			goto out;
3955 		}
3956 	}
3957 
3958 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
3959 			sctx->cur_inode_size, &found_clone);
3960 	if (ret != -ENOENT && ret < 0)
3961 		goto out;
3962 
3963 	ret = send_write_or_clone(sctx, path, key, found_clone);
3964 
3965 out:
3966 	return ret;
3967 }
3968 
3969 static int process_all_extents(struct send_ctx *sctx)
3970 {
3971 	int ret;
3972 	struct btrfs_root *root;
3973 	struct btrfs_path *path;
3974 	struct btrfs_key key;
3975 	struct btrfs_key found_key;
3976 	struct extent_buffer *eb;
3977 	int slot;
3978 
3979 	root = sctx->send_root;
3980 	path = alloc_path_for_send();
3981 	if (!path)
3982 		return -ENOMEM;
3983 
3984 	key.objectid = sctx->cmp_key->objectid;
3985 	key.type = BTRFS_EXTENT_DATA_KEY;
3986 	key.offset = 0;
3987 	while (1) {
3988 		ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3989 		if (ret < 0)
3990 			goto out;
3991 		if (ret) {
3992 			ret = 0;
3993 			goto out;
3994 		}
3995 
3996 		eb = path->nodes[0];
3997 		slot = path->slots[0];
3998 		btrfs_item_key_to_cpu(eb, &found_key, slot);
3999 
4000 		if (found_key.objectid != key.objectid ||
4001 		    found_key.type != key.type) {
4002 			ret = 0;
4003 			goto out;
4004 		}
4005 
4006 		ret = process_extent(sctx, path, &found_key);
4007 		if (ret < 0)
4008 			goto out;
4009 
4010 		btrfs_release_path(path);
4011 		key.offset = found_key.offset + 1;
4012 	}
4013 
4014 out:
4015 	btrfs_free_path(path);
4016 	return ret;
4017 }
4018 
4019 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end)
4020 {
4021 	int ret = 0;
4022 
4023 	if (sctx->cur_ino == 0)
4024 		goto out;
4025 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
4026 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
4027 		goto out;
4028 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
4029 		goto out;
4030 
4031 	ret = process_recorded_refs(sctx);
4032 	if (ret < 0)
4033 		goto out;
4034 
4035 	/*
4036 	 * We have processed the refs and thus need to advance send_progress.
4037 	 * Now, calls to get_cur_xxx will take the updated refs of the current
4038 	 * inode into account.
4039 	 */
4040 	sctx->send_progress = sctx->cur_ino + 1;
4041 
4042 out:
4043 	return ret;
4044 }
4045 
4046 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
4047 {
4048 	int ret = 0;
4049 	u64 left_mode;
4050 	u64 left_uid;
4051 	u64 left_gid;
4052 	u64 right_mode;
4053 	u64 right_uid;
4054 	u64 right_gid;
4055 	int need_chmod = 0;
4056 	int need_chown = 0;
4057 
4058 	ret = process_recorded_refs_if_needed(sctx, at_end);
4059 	if (ret < 0)
4060 		goto out;
4061 
4062 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
4063 		goto out;
4064 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
4065 		goto out;
4066 
4067 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
4068 			&left_mode, &left_uid, &left_gid, NULL);
4069 	if (ret < 0)
4070 		goto out;
4071 
4072 	if (!sctx->parent_root || sctx->cur_inode_new) {
4073 		need_chown = 1;
4074 		if (!S_ISLNK(sctx->cur_inode_mode))
4075 			need_chmod = 1;
4076 	} else {
4077 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
4078 				NULL, NULL, &right_mode, &right_uid,
4079 				&right_gid, NULL);
4080 		if (ret < 0)
4081 			goto out;
4082 
4083 		if (left_uid != right_uid || left_gid != right_gid)
4084 			need_chown = 1;
4085 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
4086 			need_chmod = 1;
4087 	}
4088 
4089 	if (S_ISREG(sctx->cur_inode_mode)) {
4090 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4091 				sctx->cur_inode_size);
4092 		if (ret < 0)
4093 			goto out;
4094 	}
4095 
4096 	if (need_chown) {
4097 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4098 				left_uid, left_gid);
4099 		if (ret < 0)
4100 			goto out;
4101 	}
4102 	if (need_chmod) {
4103 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4104 				left_mode);
4105 		if (ret < 0)
4106 			goto out;
4107 	}
4108 
4109 	/*
4110 	 * Need to send that every time, no matter if it actually changed
4111 	 * between the two trees as we have done changes to the inode before.
4112 	 */
4113 	ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4114 	if (ret < 0)
4115 		goto out;
4116 
4117 out:
4118 	return ret;
4119 }
4120 
4121 static int changed_inode(struct send_ctx *sctx,
4122 			 enum btrfs_compare_tree_result result)
4123 {
4124 	int ret = 0;
4125 	struct btrfs_key *key = sctx->cmp_key;
4126 	struct btrfs_inode_item *left_ii = NULL;
4127 	struct btrfs_inode_item *right_ii = NULL;
4128 	u64 left_gen = 0;
4129 	u64 right_gen = 0;
4130 
4131 	ret = close_cur_inode_file(sctx);
4132 	if (ret < 0)
4133 		goto out;
4134 
4135 	sctx->cur_ino = key->objectid;
4136 	sctx->cur_inode_new_gen = 0;
4137 
4138 	/*
4139 	 * Set send_progress to current inode. This will tell all get_cur_xxx
4140 	 * functions that the current inode's refs are not updated yet. Later,
4141 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
4142 	 */
4143 	sctx->send_progress = sctx->cur_ino;
4144 
4145 	if (result == BTRFS_COMPARE_TREE_NEW ||
4146 	    result == BTRFS_COMPARE_TREE_CHANGED) {
4147 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
4148 				sctx->left_path->slots[0],
4149 				struct btrfs_inode_item);
4150 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
4151 				left_ii);
4152 	} else {
4153 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4154 				sctx->right_path->slots[0],
4155 				struct btrfs_inode_item);
4156 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4157 				right_ii);
4158 	}
4159 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
4160 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4161 				sctx->right_path->slots[0],
4162 				struct btrfs_inode_item);
4163 
4164 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4165 				right_ii);
4166 
4167 		/*
4168 		 * The cur_ino = root dir case is special here. We can't treat
4169 		 * the inode as deleted+reused because it would generate a
4170 		 * stream that tries to delete/mkdir the root dir.
4171 		 */
4172 		if (left_gen != right_gen &&
4173 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
4174 			sctx->cur_inode_new_gen = 1;
4175 	}
4176 
4177 	if (result == BTRFS_COMPARE_TREE_NEW) {
4178 		sctx->cur_inode_gen = left_gen;
4179 		sctx->cur_inode_new = 1;
4180 		sctx->cur_inode_deleted = 0;
4181 		sctx->cur_inode_size = btrfs_inode_size(
4182 				sctx->left_path->nodes[0], left_ii);
4183 		sctx->cur_inode_mode = btrfs_inode_mode(
4184 				sctx->left_path->nodes[0], left_ii);
4185 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
4186 			ret = send_create_inode_if_needed(sctx);
4187 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
4188 		sctx->cur_inode_gen = right_gen;
4189 		sctx->cur_inode_new = 0;
4190 		sctx->cur_inode_deleted = 1;
4191 		sctx->cur_inode_size = btrfs_inode_size(
4192 				sctx->right_path->nodes[0], right_ii);
4193 		sctx->cur_inode_mode = btrfs_inode_mode(
4194 				sctx->right_path->nodes[0], right_ii);
4195 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
4196 		/*
4197 		 * We need to do some special handling in case the inode was
4198 		 * reported as changed with a changed generation number. This
4199 		 * means that the original inode was deleted and new inode
4200 		 * reused the same inum. So we have to treat the old inode as
4201 		 * deleted and the new one as new.
4202 		 */
4203 		if (sctx->cur_inode_new_gen) {
4204 			/*
4205 			 * First, process the inode as if it was deleted.
4206 			 */
4207 			sctx->cur_inode_gen = right_gen;
4208 			sctx->cur_inode_new = 0;
4209 			sctx->cur_inode_deleted = 1;
4210 			sctx->cur_inode_size = btrfs_inode_size(
4211 					sctx->right_path->nodes[0], right_ii);
4212 			sctx->cur_inode_mode = btrfs_inode_mode(
4213 					sctx->right_path->nodes[0], right_ii);
4214 			ret = process_all_refs(sctx,
4215 					BTRFS_COMPARE_TREE_DELETED);
4216 			if (ret < 0)
4217 				goto out;
4218 
4219 			/*
4220 			 * Now process the inode as if it was new.
4221 			 */
4222 			sctx->cur_inode_gen = left_gen;
4223 			sctx->cur_inode_new = 1;
4224 			sctx->cur_inode_deleted = 0;
4225 			sctx->cur_inode_size = btrfs_inode_size(
4226 					sctx->left_path->nodes[0], left_ii);
4227 			sctx->cur_inode_mode = btrfs_inode_mode(
4228 					sctx->left_path->nodes[0], left_ii);
4229 			ret = send_create_inode_if_needed(sctx);
4230 			if (ret < 0)
4231 				goto out;
4232 
4233 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
4234 			if (ret < 0)
4235 				goto out;
4236 			/*
4237 			 * Advance send_progress now as we did not get into
4238 			 * process_recorded_refs_if_needed in the new_gen case.
4239 			 */
4240 			sctx->send_progress = sctx->cur_ino + 1;
4241 
4242 			/*
4243 			 * Now process all extents and xattrs of the inode as if
4244 			 * they were all new.
4245 			 */
4246 			ret = process_all_extents(sctx);
4247 			if (ret < 0)
4248 				goto out;
4249 			ret = process_all_new_xattrs(sctx);
4250 			if (ret < 0)
4251 				goto out;
4252 		} else {
4253 			sctx->cur_inode_gen = left_gen;
4254 			sctx->cur_inode_new = 0;
4255 			sctx->cur_inode_new_gen = 0;
4256 			sctx->cur_inode_deleted = 0;
4257 			sctx->cur_inode_size = btrfs_inode_size(
4258 					sctx->left_path->nodes[0], left_ii);
4259 			sctx->cur_inode_mode = btrfs_inode_mode(
4260 					sctx->left_path->nodes[0], left_ii);
4261 		}
4262 	}
4263 
4264 out:
4265 	return ret;
4266 }
4267 
4268 /*
4269  * We have to process new refs before deleted refs, but compare_trees gives us
4270  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
4271  * first and later process them in process_recorded_refs.
4272  * For the cur_inode_new_gen case, we skip recording completely because
4273  * changed_inode did already initiate processing of refs. The reason for this is
4274  * that in this case, compare_tree actually compares the refs of 2 different
4275  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
4276  * refs of the right tree as deleted and all refs of the left tree as new.
4277  */
4278 static int changed_ref(struct send_ctx *sctx,
4279 		       enum btrfs_compare_tree_result result)
4280 {
4281 	int ret = 0;
4282 
4283 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4284 
4285 	if (!sctx->cur_inode_new_gen &&
4286 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
4287 		if (result == BTRFS_COMPARE_TREE_NEW)
4288 			ret = record_new_ref(sctx);
4289 		else if (result == BTRFS_COMPARE_TREE_DELETED)
4290 			ret = record_deleted_ref(sctx);
4291 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
4292 			ret = record_changed_ref(sctx);
4293 	}
4294 
4295 	return ret;
4296 }
4297 
4298 /*
4299  * Process new/deleted/changed xattrs. We skip processing in the
4300  * cur_inode_new_gen case because changed_inode did already initiate processing
4301  * of xattrs. The reason is the same as in changed_ref
4302  */
4303 static int changed_xattr(struct send_ctx *sctx,
4304 			 enum btrfs_compare_tree_result result)
4305 {
4306 	int ret = 0;
4307 
4308 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4309 
4310 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4311 		if (result == BTRFS_COMPARE_TREE_NEW)
4312 			ret = process_new_xattr(sctx);
4313 		else if (result == BTRFS_COMPARE_TREE_DELETED)
4314 			ret = process_deleted_xattr(sctx);
4315 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
4316 			ret = process_changed_xattr(sctx);
4317 	}
4318 
4319 	return ret;
4320 }
4321 
4322 /*
4323  * Process new/deleted/changed extents. We skip processing in the
4324  * cur_inode_new_gen case because changed_inode did already initiate processing
4325  * of extents. The reason is the same as in changed_ref
4326  */
4327 static int changed_extent(struct send_ctx *sctx,
4328 			  enum btrfs_compare_tree_result result)
4329 {
4330 	int ret = 0;
4331 
4332 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4333 
4334 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4335 		if (result != BTRFS_COMPARE_TREE_DELETED)
4336 			ret = process_extent(sctx, sctx->left_path,
4337 					sctx->cmp_key);
4338 	}
4339 
4340 	return ret;
4341 }
4342 
4343 /*
4344  * Updates compare related fields in sctx and simply forwards to the actual
4345  * changed_xxx functions.
4346  */
4347 static int changed_cb(struct btrfs_root *left_root,
4348 		      struct btrfs_root *right_root,
4349 		      struct btrfs_path *left_path,
4350 		      struct btrfs_path *right_path,
4351 		      struct btrfs_key *key,
4352 		      enum btrfs_compare_tree_result result,
4353 		      void *ctx)
4354 {
4355 	int ret = 0;
4356 	struct send_ctx *sctx = ctx;
4357 
4358 	sctx->left_path = left_path;
4359 	sctx->right_path = right_path;
4360 	sctx->cmp_key = key;
4361 
4362 	ret = finish_inode_if_needed(sctx, 0);
4363 	if (ret < 0)
4364 		goto out;
4365 
4366 	/* Ignore non-FS objects */
4367 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
4368 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
4369 		goto out;
4370 
4371 	if (key->type == BTRFS_INODE_ITEM_KEY)
4372 		ret = changed_inode(sctx, result);
4373 	else if (key->type == BTRFS_INODE_REF_KEY ||
4374 		 key->type == BTRFS_INODE_EXTREF_KEY)
4375 		ret = changed_ref(sctx, result);
4376 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
4377 		ret = changed_xattr(sctx, result);
4378 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
4379 		ret = changed_extent(sctx, result);
4380 
4381 out:
4382 	return ret;
4383 }
4384 
4385 static int full_send_tree(struct send_ctx *sctx)
4386 {
4387 	int ret;
4388 	struct btrfs_trans_handle *trans = NULL;
4389 	struct btrfs_root *send_root = sctx->send_root;
4390 	struct btrfs_key key;
4391 	struct btrfs_key found_key;
4392 	struct btrfs_path *path;
4393 	struct extent_buffer *eb;
4394 	int slot;
4395 	u64 start_ctransid;
4396 	u64 ctransid;
4397 
4398 	path = alloc_path_for_send();
4399 	if (!path)
4400 		return -ENOMEM;
4401 
4402 	spin_lock(&send_root->root_item_lock);
4403 	start_ctransid = btrfs_root_ctransid(&send_root->root_item);
4404 	spin_unlock(&send_root->root_item_lock);
4405 
4406 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
4407 	key.type = BTRFS_INODE_ITEM_KEY;
4408 	key.offset = 0;
4409 
4410 join_trans:
4411 	/*
4412 	 * We need to make sure the transaction does not get committed
4413 	 * while we do anything on commit roots. Join a transaction to prevent
4414 	 * this.
4415 	 */
4416 	trans = btrfs_join_transaction(send_root);
4417 	if (IS_ERR(trans)) {
4418 		ret = PTR_ERR(trans);
4419 		trans = NULL;
4420 		goto out;
4421 	}
4422 
4423 	/*
4424 	 * Make sure the tree has not changed after re-joining. We detect this
4425 	 * by comparing start_ctransid and ctransid. They should always match.
4426 	 */
4427 	spin_lock(&send_root->root_item_lock);
4428 	ctransid = btrfs_root_ctransid(&send_root->root_item);
4429 	spin_unlock(&send_root->root_item_lock);
4430 
4431 	if (ctransid != start_ctransid) {
4432 		WARN(1, KERN_WARNING "btrfs: the root that you're trying to "
4433 				     "send was modified in between. This is "
4434 				     "probably a bug.\n");
4435 		ret = -EIO;
4436 		goto out;
4437 	}
4438 
4439 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
4440 	if (ret < 0)
4441 		goto out;
4442 	if (ret)
4443 		goto out_finish;
4444 
4445 	while (1) {
4446 		/*
4447 		 * When someone want to commit while we iterate, end the
4448 		 * joined transaction and rejoin.
4449 		 */
4450 		if (btrfs_should_end_transaction(trans, send_root)) {
4451 			ret = btrfs_end_transaction(trans, send_root);
4452 			trans = NULL;
4453 			if (ret < 0)
4454 				goto out;
4455 			btrfs_release_path(path);
4456 			goto join_trans;
4457 		}
4458 
4459 		eb = path->nodes[0];
4460 		slot = path->slots[0];
4461 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4462 
4463 		ret = changed_cb(send_root, NULL, path, NULL,
4464 				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
4465 		if (ret < 0)
4466 			goto out;
4467 
4468 		key.objectid = found_key.objectid;
4469 		key.type = found_key.type;
4470 		key.offset = found_key.offset + 1;
4471 
4472 		ret = btrfs_next_item(send_root, path);
4473 		if (ret < 0)
4474 			goto out;
4475 		if (ret) {
4476 			ret  = 0;
4477 			break;
4478 		}
4479 	}
4480 
4481 out_finish:
4482 	ret = finish_inode_if_needed(sctx, 1);
4483 
4484 out:
4485 	btrfs_free_path(path);
4486 	if (trans) {
4487 		if (!ret)
4488 			ret = btrfs_end_transaction(trans, send_root);
4489 		else
4490 			btrfs_end_transaction(trans, send_root);
4491 	}
4492 	return ret;
4493 }
4494 
4495 static int send_subvol(struct send_ctx *sctx)
4496 {
4497 	int ret;
4498 
4499 	ret = send_header(sctx);
4500 	if (ret < 0)
4501 		goto out;
4502 
4503 	ret = send_subvol_begin(sctx);
4504 	if (ret < 0)
4505 		goto out;
4506 
4507 	if (sctx->parent_root) {
4508 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
4509 				changed_cb, sctx);
4510 		if (ret < 0)
4511 			goto out;
4512 		ret = finish_inode_if_needed(sctx, 1);
4513 		if (ret < 0)
4514 			goto out;
4515 	} else {
4516 		ret = full_send_tree(sctx);
4517 		if (ret < 0)
4518 			goto out;
4519 	}
4520 
4521 out:
4522 	if (!ret)
4523 		ret = close_cur_inode_file(sctx);
4524 	else
4525 		close_cur_inode_file(sctx);
4526 
4527 	free_recorded_refs(sctx);
4528 	return ret;
4529 }
4530 
4531 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
4532 {
4533 	int ret = 0;
4534 	struct btrfs_root *send_root;
4535 	struct btrfs_root *clone_root;
4536 	struct btrfs_fs_info *fs_info;
4537 	struct btrfs_ioctl_send_args *arg = NULL;
4538 	struct btrfs_key key;
4539 	struct file *filp = NULL;
4540 	struct send_ctx *sctx = NULL;
4541 	u32 i;
4542 	u64 *clone_sources_tmp = NULL;
4543 
4544 	if (!capable(CAP_SYS_ADMIN))
4545 		return -EPERM;
4546 
4547 	send_root = BTRFS_I(fdentry(mnt_file)->d_inode)->root;
4548 	fs_info = send_root->fs_info;
4549 
4550 	arg = memdup_user(arg_, sizeof(*arg));
4551 	if (IS_ERR(arg)) {
4552 		ret = PTR_ERR(arg);
4553 		arg = NULL;
4554 		goto out;
4555 	}
4556 
4557 	if (!access_ok(VERIFY_READ, arg->clone_sources,
4558 			sizeof(*arg->clone_sources *
4559 			arg->clone_sources_count))) {
4560 		ret = -EFAULT;
4561 		goto out;
4562 	}
4563 
4564 	sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
4565 	if (!sctx) {
4566 		ret = -ENOMEM;
4567 		goto out;
4568 	}
4569 
4570 	INIT_LIST_HEAD(&sctx->new_refs);
4571 	INIT_LIST_HEAD(&sctx->deleted_refs);
4572 	INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
4573 	INIT_LIST_HEAD(&sctx->name_cache_list);
4574 
4575 	sctx->send_filp = fget(arg->send_fd);
4576 	if (IS_ERR(sctx->send_filp)) {
4577 		ret = PTR_ERR(sctx->send_filp);
4578 		goto out;
4579 	}
4580 
4581 	sctx->mnt = mnt_file->f_path.mnt;
4582 
4583 	sctx->send_root = send_root;
4584 	sctx->clone_roots_cnt = arg->clone_sources_count;
4585 
4586 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
4587 	sctx->send_buf = vmalloc(sctx->send_max_size);
4588 	if (!sctx->send_buf) {
4589 		ret = -ENOMEM;
4590 		goto out;
4591 	}
4592 
4593 	sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
4594 	if (!sctx->read_buf) {
4595 		ret = -ENOMEM;
4596 		goto out;
4597 	}
4598 
4599 	sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
4600 			(arg->clone_sources_count + 1));
4601 	if (!sctx->clone_roots) {
4602 		ret = -ENOMEM;
4603 		goto out;
4604 	}
4605 
4606 	if (arg->clone_sources_count) {
4607 		clone_sources_tmp = vmalloc(arg->clone_sources_count *
4608 				sizeof(*arg->clone_sources));
4609 		if (!clone_sources_tmp) {
4610 			ret = -ENOMEM;
4611 			goto out;
4612 		}
4613 
4614 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
4615 				arg->clone_sources_count *
4616 				sizeof(*arg->clone_sources));
4617 		if (ret) {
4618 			ret = -EFAULT;
4619 			goto out;
4620 		}
4621 
4622 		for (i = 0; i < arg->clone_sources_count; i++) {
4623 			key.objectid = clone_sources_tmp[i];
4624 			key.type = BTRFS_ROOT_ITEM_KEY;
4625 			key.offset = (u64)-1;
4626 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
4627 			if (!clone_root) {
4628 				ret = -EINVAL;
4629 				goto out;
4630 			}
4631 			if (IS_ERR(clone_root)) {
4632 				ret = PTR_ERR(clone_root);
4633 				goto out;
4634 			}
4635 			sctx->clone_roots[i].root = clone_root;
4636 		}
4637 		vfree(clone_sources_tmp);
4638 		clone_sources_tmp = NULL;
4639 	}
4640 
4641 	if (arg->parent_root) {
4642 		key.objectid = arg->parent_root;
4643 		key.type = BTRFS_ROOT_ITEM_KEY;
4644 		key.offset = (u64)-1;
4645 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
4646 		if (!sctx->parent_root) {
4647 			ret = -EINVAL;
4648 			goto out;
4649 		}
4650 	}
4651 
4652 	/*
4653 	 * Clones from send_root are allowed, but only if the clone source
4654 	 * is behind the current send position. This is checked while searching
4655 	 * for possible clone sources.
4656 	 */
4657 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
4658 
4659 	/* We do a bsearch later */
4660 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
4661 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
4662 			NULL);
4663 
4664 	ret = send_subvol(sctx);
4665 	if (ret < 0)
4666 		goto out;
4667 
4668 	ret = begin_cmd(sctx, BTRFS_SEND_C_END);
4669 	if (ret < 0)
4670 		goto out;
4671 	ret = send_cmd(sctx);
4672 	if (ret < 0)
4673 		goto out;
4674 
4675 out:
4676 	if (filp)
4677 		fput(filp);
4678 	kfree(arg);
4679 	vfree(clone_sources_tmp);
4680 
4681 	if (sctx) {
4682 		if (sctx->send_filp)
4683 			fput(sctx->send_filp);
4684 
4685 		vfree(sctx->clone_roots);
4686 		vfree(sctx->send_buf);
4687 		vfree(sctx->read_buf);
4688 
4689 		name_cache_free(sctx);
4690 
4691 		kfree(sctx);
4692 	}
4693 
4694 	return ret;
4695 }
4696