xref: /openbmc/linux/fs/btrfs/send.c (revision 84744377)
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 
38 static int g_verbose = 0;
39 
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
41 
42 /*
43  * A fs_path is a helper to dynamically build path names with unknown size.
44  * It reallocates the internal buffer on demand.
45  * It allows fast adding of path elements on the right side (normal path) and
46  * fast adding to the left side (reversed path). A reversed path can also be
47  * unreversed if needed.
48  */
49 struct fs_path {
50 	union {
51 		struct {
52 			char *start;
53 			char *end;
54 			char *prepared;
55 
56 			char *buf;
57 			int buf_len;
58 			unsigned int reversed:1;
59 			unsigned int virtual_mem:1;
60 			char inline_buf[];
61 		};
62 		char pad[PAGE_SIZE];
63 	};
64 };
65 #define FS_PATH_INLINE_SIZE \
66 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
67 
68 
69 /* reused for each extent */
70 struct clone_root {
71 	struct btrfs_root *root;
72 	u64 ino;
73 	u64 offset;
74 
75 	u64 found_refs;
76 };
77 
78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
80 
81 struct send_ctx {
82 	struct file *send_filp;
83 	loff_t send_off;
84 	char *send_buf;
85 	u32 send_size;
86 	u32 send_max_size;
87 	u64 total_send_size;
88 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
89 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
90 
91 	struct btrfs_root *send_root;
92 	struct btrfs_root *parent_root;
93 	struct clone_root *clone_roots;
94 	int clone_roots_cnt;
95 
96 	/* current state of the compare_tree call */
97 	struct btrfs_path *left_path;
98 	struct btrfs_path *right_path;
99 	struct btrfs_key *cmp_key;
100 
101 	/*
102 	 * infos of the currently processed inode. In case of deleted inodes,
103 	 * these are the values from the deleted inode.
104 	 */
105 	u64 cur_ino;
106 	u64 cur_inode_gen;
107 	int cur_inode_new;
108 	int cur_inode_new_gen;
109 	int cur_inode_deleted;
110 	u64 cur_inode_size;
111 	u64 cur_inode_mode;
112 	u64 cur_inode_last_extent;
113 
114 	u64 send_progress;
115 
116 	struct list_head new_refs;
117 	struct list_head deleted_refs;
118 
119 	struct radix_tree_root name_cache;
120 	struct list_head name_cache_list;
121 	int name_cache_size;
122 
123 	char *read_buf;
124 
125 	/*
126 	 * We process inodes by their increasing order, so if before an
127 	 * incremental send we reverse the parent/child relationship of
128 	 * directories such that a directory with a lower inode number was
129 	 * the parent of a directory with a higher inode number, and the one
130 	 * becoming the new parent got renamed too, we can't rename/move the
131 	 * directory with lower inode number when we finish processing it - we
132 	 * must process the directory with higher inode number first, then
133 	 * rename/move it and then rename/move the directory with lower inode
134 	 * number. Example follows.
135 	 *
136 	 * Tree state when the first send was performed:
137 	 *
138 	 * .
139 	 * |-- a                   (ino 257)
140 	 *     |-- b               (ino 258)
141 	 *         |
142 	 *         |
143 	 *         |-- c           (ino 259)
144 	 *         |   |-- d       (ino 260)
145 	 *         |
146 	 *         |-- c2          (ino 261)
147 	 *
148 	 * Tree state when the second (incremental) send is performed:
149 	 *
150 	 * .
151 	 * |-- a                   (ino 257)
152 	 *     |-- b               (ino 258)
153 	 *         |-- c2          (ino 261)
154 	 *             |-- d2      (ino 260)
155 	 *                 |-- cc  (ino 259)
156 	 *
157 	 * The sequence of steps that lead to the second state was:
158 	 *
159 	 * mv /a/b/c/d /a/b/c2/d2
160 	 * mv /a/b/c /a/b/c2/d2/cc
161 	 *
162 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
163 	 * before we move "d", which has higher inode number.
164 	 *
165 	 * So we just memorize which move/rename operations must be performed
166 	 * later when their respective parent is processed and moved/renamed.
167 	 */
168 
169 	/* Indexed by parent directory inode number. */
170 	struct rb_root pending_dir_moves;
171 
172 	/*
173 	 * Reverse index, indexed by the inode number of a directory that
174 	 * is waiting for the move/rename of its immediate parent before its
175 	 * own move/rename can be performed.
176 	 */
177 	struct rb_root waiting_dir_moves;
178 };
179 
180 struct pending_dir_move {
181 	struct rb_node node;
182 	struct list_head list;
183 	u64 parent_ino;
184 	u64 ino;
185 	u64 gen;
186 	struct list_head update_refs;
187 };
188 
189 struct waiting_dir_move {
190 	struct rb_node node;
191 	u64 ino;
192 };
193 
194 struct name_cache_entry {
195 	struct list_head list;
196 	/*
197 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
198 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
199 	 * more then one inum would fall into the same entry, we use radix_list
200 	 * to store the additional entries. radix_list is also used to store
201 	 * entries where two entries have the same inum but different
202 	 * generations.
203 	 */
204 	struct list_head radix_list;
205 	u64 ino;
206 	u64 gen;
207 	u64 parent_ino;
208 	u64 parent_gen;
209 	int ret;
210 	int need_later_update;
211 	int name_len;
212 	char name[];
213 };
214 
215 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
216 
217 static int need_send_hole(struct send_ctx *sctx)
218 {
219 	return (sctx->parent_root && !sctx->cur_inode_new &&
220 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
221 		S_ISREG(sctx->cur_inode_mode));
222 }
223 
224 static void fs_path_reset(struct fs_path *p)
225 {
226 	if (p->reversed) {
227 		p->start = p->buf + p->buf_len - 1;
228 		p->end = p->start;
229 		*p->start = 0;
230 	} else {
231 		p->start = p->buf;
232 		p->end = p->start;
233 		*p->start = 0;
234 	}
235 }
236 
237 static struct fs_path *fs_path_alloc(void)
238 {
239 	struct fs_path *p;
240 
241 	p = kmalloc(sizeof(*p), GFP_NOFS);
242 	if (!p)
243 		return NULL;
244 	p->reversed = 0;
245 	p->virtual_mem = 0;
246 	p->buf = p->inline_buf;
247 	p->buf_len = FS_PATH_INLINE_SIZE;
248 	fs_path_reset(p);
249 	return p;
250 }
251 
252 static struct fs_path *fs_path_alloc_reversed(void)
253 {
254 	struct fs_path *p;
255 
256 	p = fs_path_alloc();
257 	if (!p)
258 		return NULL;
259 	p->reversed = 1;
260 	fs_path_reset(p);
261 	return p;
262 }
263 
264 static void fs_path_free(struct fs_path *p)
265 {
266 	if (!p)
267 		return;
268 	if (p->buf != p->inline_buf) {
269 		if (p->virtual_mem)
270 			vfree(p->buf);
271 		else
272 			kfree(p->buf);
273 	}
274 	kfree(p);
275 }
276 
277 static int fs_path_len(struct fs_path *p)
278 {
279 	return p->end - p->start;
280 }
281 
282 static int fs_path_ensure_buf(struct fs_path *p, int len)
283 {
284 	char *tmp_buf;
285 	int path_len;
286 	int old_buf_len;
287 
288 	len++;
289 
290 	if (p->buf_len >= len)
291 		return 0;
292 
293 	path_len = p->end - p->start;
294 	old_buf_len = p->buf_len;
295 	len = PAGE_ALIGN(len);
296 
297 	if (p->buf == p->inline_buf) {
298 		tmp_buf = kmalloc(len, GFP_NOFS | __GFP_NOWARN);
299 		if (!tmp_buf) {
300 			tmp_buf = vmalloc(len);
301 			if (!tmp_buf)
302 				return -ENOMEM;
303 			p->virtual_mem = 1;
304 		}
305 		memcpy(tmp_buf, p->buf, p->buf_len);
306 		p->buf = tmp_buf;
307 		p->buf_len = len;
308 	} else {
309 		if (p->virtual_mem) {
310 			tmp_buf = vmalloc(len);
311 			if (!tmp_buf)
312 				return -ENOMEM;
313 			memcpy(tmp_buf, p->buf, p->buf_len);
314 			vfree(p->buf);
315 		} else {
316 			tmp_buf = krealloc(p->buf, len, GFP_NOFS);
317 			if (!tmp_buf) {
318 				tmp_buf = vmalloc(len);
319 				if (!tmp_buf)
320 					return -ENOMEM;
321 				memcpy(tmp_buf, p->buf, p->buf_len);
322 				kfree(p->buf);
323 				p->virtual_mem = 1;
324 			}
325 		}
326 		p->buf = tmp_buf;
327 		p->buf_len = len;
328 	}
329 	if (p->reversed) {
330 		tmp_buf = p->buf + old_buf_len - path_len - 1;
331 		p->end = p->buf + p->buf_len - 1;
332 		p->start = p->end - path_len;
333 		memmove(p->start, tmp_buf, path_len + 1);
334 	} else {
335 		p->start = p->buf;
336 		p->end = p->start + path_len;
337 	}
338 	return 0;
339 }
340 
341 static int fs_path_prepare_for_add(struct fs_path *p, int name_len)
342 {
343 	int ret;
344 	int new_len;
345 
346 	new_len = p->end - p->start + name_len;
347 	if (p->start != p->end)
348 		new_len++;
349 	ret = fs_path_ensure_buf(p, new_len);
350 	if (ret < 0)
351 		goto out;
352 
353 	if (p->reversed) {
354 		if (p->start != p->end)
355 			*--p->start = '/';
356 		p->start -= name_len;
357 		p->prepared = p->start;
358 	} else {
359 		if (p->start != p->end)
360 			*p->end++ = '/';
361 		p->prepared = p->end;
362 		p->end += name_len;
363 		*p->end = 0;
364 	}
365 
366 out:
367 	return ret;
368 }
369 
370 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
371 {
372 	int ret;
373 
374 	ret = fs_path_prepare_for_add(p, name_len);
375 	if (ret < 0)
376 		goto out;
377 	memcpy(p->prepared, name, name_len);
378 	p->prepared = NULL;
379 
380 out:
381 	return ret;
382 }
383 
384 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
385 {
386 	int ret;
387 
388 	ret = fs_path_prepare_for_add(p, p2->end - p2->start);
389 	if (ret < 0)
390 		goto out;
391 	memcpy(p->prepared, p2->start, p2->end - p2->start);
392 	p->prepared = NULL;
393 
394 out:
395 	return ret;
396 }
397 
398 static int fs_path_add_from_extent_buffer(struct fs_path *p,
399 					  struct extent_buffer *eb,
400 					  unsigned long off, int len)
401 {
402 	int ret;
403 
404 	ret = fs_path_prepare_for_add(p, len);
405 	if (ret < 0)
406 		goto out;
407 
408 	read_extent_buffer(eb, p->prepared, off, len);
409 	p->prepared = NULL;
410 
411 out:
412 	return ret;
413 }
414 
415 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
416 {
417 	int ret;
418 
419 	p->reversed = from->reversed;
420 	fs_path_reset(p);
421 
422 	ret = fs_path_add_path(p, from);
423 
424 	return ret;
425 }
426 
427 
428 static void fs_path_unreverse(struct fs_path *p)
429 {
430 	char *tmp;
431 	int len;
432 
433 	if (!p->reversed)
434 		return;
435 
436 	tmp = p->start;
437 	len = p->end - p->start;
438 	p->start = p->buf;
439 	p->end = p->start + len;
440 	memmove(p->start, tmp, len + 1);
441 	p->reversed = 0;
442 }
443 
444 static struct btrfs_path *alloc_path_for_send(void)
445 {
446 	struct btrfs_path *path;
447 
448 	path = btrfs_alloc_path();
449 	if (!path)
450 		return NULL;
451 	path->search_commit_root = 1;
452 	path->skip_locking = 1;
453 	return path;
454 }
455 
456 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
457 {
458 	int ret;
459 	mm_segment_t old_fs;
460 	u32 pos = 0;
461 
462 	old_fs = get_fs();
463 	set_fs(KERNEL_DS);
464 
465 	while (pos < len) {
466 		ret = vfs_write(filp, (char *)buf + pos, len - pos, off);
467 		/* TODO handle that correctly */
468 		/*if (ret == -ERESTARTSYS) {
469 			continue;
470 		}*/
471 		if (ret < 0)
472 			goto out;
473 		if (ret == 0) {
474 			ret = -EIO;
475 			goto out;
476 		}
477 		pos += ret;
478 	}
479 
480 	ret = 0;
481 
482 out:
483 	set_fs(old_fs);
484 	return ret;
485 }
486 
487 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
488 {
489 	struct btrfs_tlv_header *hdr;
490 	int total_len = sizeof(*hdr) + len;
491 	int left = sctx->send_max_size - sctx->send_size;
492 
493 	if (unlikely(left < total_len))
494 		return -EOVERFLOW;
495 
496 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
497 	hdr->tlv_type = cpu_to_le16(attr);
498 	hdr->tlv_len = cpu_to_le16(len);
499 	memcpy(hdr + 1, data, len);
500 	sctx->send_size += total_len;
501 
502 	return 0;
503 }
504 
505 #define TLV_PUT_DEFINE_INT(bits) \
506 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
507 			u##bits attr, u##bits value)			\
508 	{								\
509 		__le##bits __tmp = cpu_to_le##bits(value);		\
510 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
511 	}
512 
513 TLV_PUT_DEFINE_INT(64)
514 
515 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
516 			  const char *str, int len)
517 {
518 	if (len == -1)
519 		len = strlen(str);
520 	return tlv_put(sctx, attr, str, len);
521 }
522 
523 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
524 			const u8 *uuid)
525 {
526 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
527 }
528 
529 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
530 				  struct extent_buffer *eb,
531 				  struct btrfs_timespec *ts)
532 {
533 	struct btrfs_timespec bts;
534 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
535 	return tlv_put(sctx, attr, &bts, sizeof(bts));
536 }
537 
538 
539 #define TLV_PUT(sctx, attrtype, attrlen, data) \
540 	do { \
541 		ret = tlv_put(sctx, attrtype, attrlen, data); \
542 		if (ret < 0) \
543 			goto tlv_put_failure; \
544 	} while (0)
545 
546 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
547 	do { \
548 		ret = tlv_put_u##bits(sctx, attrtype, value); \
549 		if (ret < 0) \
550 			goto tlv_put_failure; \
551 	} while (0)
552 
553 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
554 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
555 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
556 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
557 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
558 	do { \
559 		ret = tlv_put_string(sctx, attrtype, str, len); \
560 		if (ret < 0) \
561 			goto tlv_put_failure; \
562 	} while (0)
563 #define TLV_PUT_PATH(sctx, attrtype, p) \
564 	do { \
565 		ret = tlv_put_string(sctx, attrtype, p->start, \
566 			p->end - p->start); \
567 		if (ret < 0) \
568 			goto tlv_put_failure; \
569 	} while(0)
570 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
571 	do { \
572 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
573 		if (ret < 0) \
574 			goto tlv_put_failure; \
575 	} while (0)
576 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
577 	do { \
578 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
579 		if (ret < 0) \
580 			goto tlv_put_failure; \
581 	} while (0)
582 
583 static int send_header(struct send_ctx *sctx)
584 {
585 	struct btrfs_stream_header hdr;
586 
587 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
588 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
589 
590 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
591 					&sctx->send_off);
592 }
593 
594 /*
595  * For each command/item we want to send to userspace, we call this function.
596  */
597 static int begin_cmd(struct send_ctx *sctx, int cmd)
598 {
599 	struct btrfs_cmd_header *hdr;
600 
601 	if (WARN_ON(!sctx->send_buf))
602 		return -EINVAL;
603 
604 	BUG_ON(sctx->send_size);
605 
606 	sctx->send_size += sizeof(*hdr);
607 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
608 	hdr->cmd = cpu_to_le16(cmd);
609 
610 	return 0;
611 }
612 
613 static int send_cmd(struct send_ctx *sctx)
614 {
615 	int ret;
616 	struct btrfs_cmd_header *hdr;
617 	u32 crc;
618 
619 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
620 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
621 	hdr->crc = 0;
622 
623 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
624 	hdr->crc = cpu_to_le32(crc);
625 
626 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
627 					&sctx->send_off);
628 
629 	sctx->total_send_size += sctx->send_size;
630 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
631 	sctx->send_size = 0;
632 
633 	return ret;
634 }
635 
636 /*
637  * Sends a move instruction to user space
638  */
639 static int send_rename(struct send_ctx *sctx,
640 		     struct fs_path *from, struct fs_path *to)
641 {
642 	int ret;
643 
644 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
645 
646 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
647 	if (ret < 0)
648 		goto out;
649 
650 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
651 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
652 
653 	ret = send_cmd(sctx);
654 
655 tlv_put_failure:
656 out:
657 	return ret;
658 }
659 
660 /*
661  * Sends a link instruction to user space
662  */
663 static int send_link(struct send_ctx *sctx,
664 		     struct fs_path *path, struct fs_path *lnk)
665 {
666 	int ret;
667 
668 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
669 
670 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
671 	if (ret < 0)
672 		goto out;
673 
674 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
675 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
676 
677 	ret = send_cmd(sctx);
678 
679 tlv_put_failure:
680 out:
681 	return ret;
682 }
683 
684 /*
685  * Sends an unlink instruction to user space
686  */
687 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
688 {
689 	int ret;
690 
691 verbose_printk("btrfs: send_unlink %s\n", path->start);
692 
693 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
694 	if (ret < 0)
695 		goto out;
696 
697 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
698 
699 	ret = send_cmd(sctx);
700 
701 tlv_put_failure:
702 out:
703 	return ret;
704 }
705 
706 /*
707  * Sends a rmdir instruction to user space
708  */
709 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
710 {
711 	int ret;
712 
713 verbose_printk("btrfs: send_rmdir %s\n", path->start);
714 
715 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
716 	if (ret < 0)
717 		goto out;
718 
719 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
720 
721 	ret = send_cmd(sctx);
722 
723 tlv_put_failure:
724 out:
725 	return ret;
726 }
727 
728 /*
729  * Helper function to retrieve some fields from an inode item.
730  */
731 static int get_inode_info(struct btrfs_root *root,
732 			  u64 ino, u64 *size, u64 *gen,
733 			  u64 *mode, u64 *uid, u64 *gid,
734 			  u64 *rdev)
735 {
736 	int ret;
737 	struct btrfs_inode_item *ii;
738 	struct btrfs_key key;
739 	struct btrfs_path *path;
740 
741 	path = alloc_path_for_send();
742 	if (!path)
743 		return -ENOMEM;
744 
745 	key.objectid = ino;
746 	key.type = BTRFS_INODE_ITEM_KEY;
747 	key.offset = 0;
748 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
749 	if (ret < 0)
750 		goto out;
751 	if (ret) {
752 		ret = -ENOENT;
753 		goto out;
754 	}
755 
756 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
757 			struct btrfs_inode_item);
758 	if (size)
759 		*size = btrfs_inode_size(path->nodes[0], ii);
760 	if (gen)
761 		*gen = btrfs_inode_generation(path->nodes[0], ii);
762 	if (mode)
763 		*mode = btrfs_inode_mode(path->nodes[0], ii);
764 	if (uid)
765 		*uid = btrfs_inode_uid(path->nodes[0], ii);
766 	if (gid)
767 		*gid = btrfs_inode_gid(path->nodes[0], ii);
768 	if (rdev)
769 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
770 
771 out:
772 	btrfs_free_path(path);
773 	return ret;
774 }
775 
776 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
777 				   struct fs_path *p,
778 				   void *ctx);
779 
780 /*
781  * Helper function to iterate the entries in ONE btrfs_inode_ref or
782  * btrfs_inode_extref.
783  * The iterate callback may return a non zero value to stop iteration. This can
784  * be a negative value for error codes or 1 to simply stop it.
785  *
786  * path must point to the INODE_REF or INODE_EXTREF when called.
787  */
788 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
789 			     struct btrfs_key *found_key, int resolve,
790 			     iterate_inode_ref_t iterate, void *ctx)
791 {
792 	struct extent_buffer *eb = path->nodes[0];
793 	struct btrfs_item *item;
794 	struct btrfs_inode_ref *iref;
795 	struct btrfs_inode_extref *extref;
796 	struct btrfs_path *tmp_path;
797 	struct fs_path *p;
798 	u32 cur = 0;
799 	u32 total;
800 	int slot = path->slots[0];
801 	u32 name_len;
802 	char *start;
803 	int ret = 0;
804 	int num = 0;
805 	int index;
806 	u64 dir;
807 	unsigned long name_off;
808 	unsigned long elem_size;
809 	unsigned long ptr;
810 
811 	p = fs_path_alloc_reversed();
812 	if (!p)
813 		return -ENOMEM;
814 
815 	tmp_path = alloc_path_for_send();
816 	if (!tmp_path) {
817 		fs_path_free(p);
818 		return -ENOMEM;
819 	}
820 
821 
822 	if (found_key->type == BTRFS_INODE_REF_KEY) {
823 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
824 						    struct btrfs_inode_ref);
825 		item = btrfs_item_nr(slot);
826 		total = btrfs_item_size(eb, item);
827 		elem_size = sizeof(*iref);
828 	} else {
829 		ptr = btrfs_item_ptr_offset(eb, slot);
830 		total = btrfs_item_size_nr(eb, slot);
831 		elem_size = sizeof(*extref);
832 	}
833 
834 	while (cur < total) {
835 		fs_path_reset(p);
836 
837 		if (found_key->type == BTRFS_INODE_REF_KEY) {
838 			iref = (struct btrfs_inode_ref *)(ptr + cur);
839 			name_len = btrfs_inode_ref_name_len(eb, iref);
840 			name_off = (unsigned long)(iref + 1);
841 			index = btrfs_inode_ref_index(eb, iref);
842 			dir = found_key->offset;
843 		} else {
844 			extref = (struct btrfs_inode_extref *)(ptr + cur);
845 			name_len = btrfs_inode_extref_name_len(eb, extref);
846 			name_off = (unsigned long)&extref->name;
847 			index = btrfs_inode_extref_index(eb, extref);
848 			dir = btrfs_inode_extref_parent(eb, extref);
849 		}
850 
851 		if (resolve) {
852 			start = btrfs_ref_to_path(root, tmp_path, name_len,
853 						  name_off, eb, dir,
854 						  p->buf, p->buf_len);
855 			if (IS_ERR(start)) {
856 				ret = PTR_ERR(start);
857 				goto out;
858 			}
859 			if (start < p->buf) {
860 				/* overflow , try again with larger buffer */
861 				ret = fs_path_ensure_buf(p,
862 						p->buf_len + p->buf - start);
863 				if (ret < 0)
864 					goto out;
865 				start = btrfs_ref_to_path(root, tmp_path,
866 							  name_len, name_off,
867 							  eb, dir,
868 							  p->buf, p->buf_len);
869 				if (IS_ERR(start)) {
870 					ret = PTR_ERR(start);
871 					goto out;
872 				}
873 				BUG_ON(start < p->buf);
874 			}
875 			p->start = start;
876 		} else {
877 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
878 							     name_len);
879 			if (ret < 0)
880 				goto out;
881 		}
882 
883 		cur += elem_size + name_len;
884 		ret = iterate(num, dir, index, p, ctx);
885 		if (ret)
886 			goto out;
887 		num++;
888 	}
889 
890 out:
891 	btrfs_free_path(tmp_path);
892 	fs_path_free(p);
893 	return ret;
894 }
895 
896 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
897 				  const char *name, int name_len,
898 				  const char *data, int data_len,
899 				  u8 type, void *ctx);
900 
901 /*
902  * Helper function to iterate the entries in ONE btrfs_dir_item.
903  * The iterate callback may return a non zero value to stop iteration. This can
904  * be a negative value for error codes or 1 to simply stop it.
905  *
906  * path must point to the dir item when called.
907  */
908 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
909 			    struct btrfs_key *found_key,
910 			    iterate_dir_item_t iterate, void *ctx)
911 {
912 	int ret = 0;
913 	struct extent_buffer *eb;
914 	struct btrfs_item *item;
915 	struct btrfs_dir_item *di;
916 	struct btrfs_key di_key;
917 	char *buf = NULL;
918 	char *buf2 = NULL;
919 	int buf_len;
920 	int buf_virtual = 0;
921 	u32 name_len;
922 	u32 data_len;
923 	u32 cur;
924 	u32 len;
925 	u32 total;
926 	int slot;
927 	int num;
928 	u8 type;
929 
930 	buf_len = PAGE_SIZE;
931 	buf = kmalloc(buf_len, GFP_NOFS);
932 	if (!buf) {
933 		ret = -ENOMEM;
934 		goto out;
935 	}
936 
937 	eb = path->nodes[0];
938 	slot = path->slots[0];
939 	item = btrfs_item_nr(slot);
940 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
941 	cur = 0;
942 	len = 0;
943 	total = btrfs_item_size(eb, item);
944 
945 	num = 0;
946 	while (cur < total) {
947 		name_len = btrfs_dir_name_len(eb, di);
948 		data_len = btrfs_dir_data_len(eb, di);
949 		type = btrfs_dir_type(eb, di);
950 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
951 
952 		if (name_len + data_len > buf_len) {
953 			buf_len = PAGE_ALIGN(name_len + data_len);
954 			if (buf_virtual) {
955 				buf2 = vmalloc(buf_len);
956 				if (!buf2) {
957 					ret = -ENOMEM;
958 					goto out;
959 				}
960 				vfree(buf);
961 			} else {
962 				buf2 = krealloc(buf, buf_len, GFP_NOFS);
963 				if (!buf2) {
964 					buf2 = vmalloc(buf_len);
965 					if (!buf2) {
966 						ret = -ENOMEM;
967 						goto out;
968 					}
969 					kfree(buf);
970 					buf_virtual = 1;
971 				}
972 			}
973 
974 			buf = buf2;
975 			buf2 = NULL;
976 		}
977 
978 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
979 				name_len + data_len);
980 
981 		len = sizeof(*di) + name_len + data_len;
982 		di = (struct btrfs_dir_item *)((char *)di + len);
983 		cur += len;
984 
985 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
986 				data_len, type, ctx);
987 		if (ret < 0)
988 			goto out;
989 		if (ret) {
990 			ret = 0;
991 			goto out;
992 		}
993 
994 		num++;
995 	}
996 
997 out:
998 	if (buf_virtual)
999 		vfree(buf);
1000 	else
1001 		kfree(buf);
1002 	return ret;
1003 }
1004 
1005 static int __copy_first_ref(int num, u64 dir, int index,
1006 			    struct fs_path *p, void *ctx)
1007 {
1008 	int ret;
1009 	struct fs_path *pt = ctx;
1010 
1011 	ret = fs_path_copy(pt, p);
1012 	if (ret < 0)
1013 		return ret;
1014 
1015 	/* we want the first only */
1016 	return 1;
1017 }
1018 
1019 /*
1020  * Retrieve the first path of an inode. If an inode has more then one
1021  * ref/hardlink, this is ignored.
1022  */
1023 static int get_inode_path(struct btrfs_root *root,
1024 			  u64 ino, struct fs_path *path)
1025 {
1026 	int ret;
1027 	struct btrfs_key key, found_key;
1028 	struct btrfs_path *p;
1029 
1030 	p = alloc_path_for_send();
1031 	if (!p)
1032 		return -ENOMEM;
1033 
1034 	fs_path_reset(path);
1035 
1036 	key.objectid = ino;
1037 	key.type = BTRFS_INODE_REF_KEY;
1038 	key.offset = 0;
1039 
1040 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1041 	if (ret < 0)
1042 		goto out;
1043 	if (ret) {
1044 		ret = 1;
1045 		goto out;
1046 	}
1047 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1048 	if (found_key.objectid != ino ||
1049 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1050 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1051 		ret = -ENOENT;
1052 		goto out;
1053 	}
1054 
1055 	ret = iterate_inode_ref(root, p, &found_key, 1,
1056 				__copy_first_ref, path);
1057 	if (ret < 0)
1058 		goto out;
1059 	ret = 0;
1060 
1061 out:
1062 	btrfs_free_path(p);
1063 	return ret;
1064 }
1065 
1066 struct backref_ctx {
1067 	struct send_ctx *sctx;
1068 
1069 	/* number of total found references */
1070 	u64 found;
1071 
1072 	/*
1073 	 * used for clones found in send_root. clones found behind cur_objectid
1074 	 * and cur_offset are not considered as allowed clones.
1075 	 */
1076 	u64 cur_objectid;
1077 	u64 cur_offset;
1078 
1079 	/* may be truncated in case it's the last extent in a file */
1080 	u64 extent_len;
1081 
1082 	/* Just to check for bugs in backref resolving */
1083 	int found_itself;
1084 };
1085 
1086 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1087 {
1088 	u64 root = (u64)(uintptr_t)key;
1089 	struct clone_root *cr = (struct clone_root *)elt;
1090 
1091 	if (root < cr->root->objectid)
1092 		return -1;
1093 	if (root > cr->root->objectid)
1094 		return 1;
1095 	return 0;
1096 }
1097 
1098 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1099 {
1100 	struct clone_root *cr1 = (struct clone_root *)e1;
1101 	struct clone_root *cr2 = (struct clone_root *)e2;
1102 
1103 	if (cr1->root->objectid < cr2->root->objectid)
1104 		return -1;
1105 	if (cr1->root->objectid > cr2->root->objectid)
1106 		return 1;
1107 	return 0;
1108 }
1109 
1110 /*
1111  * Called for every backref that is found for the current extent.
1112  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1113  */
1114 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1115 {
1116 	struct backref_ctx *bctx = ctx_;
1117 	struct clone_root *found;
1118 	int ret;
1119 	u64 i_size;
1120 
1121 	/* First check if the root is in the list of accepted clone sources */
1122 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1123 			bctx->sctx->clone_roots_cnt,
1124 			sizeof(struct clone_root),
1125 			__clone_root_cmp_bsearch);
1126 	if (!found)
1127 		return 0;
1128 
1129 	if (found->root == bctx->sctx->send_root &&
1130 	    ino == bctx->cur_objectid &&
1131 	    offset == bctx->cur_offset) {
1132 		bctx->found_itself = 1;
1133 	}
1134 
1135 	/*
1136 	 * There are inodes that have extents that lie behind its i_size. Don't
1137 	 * accept clones from these extents.
1138 	 */
1139 	ret = get_inode_info(found->root, ino, &i_size, NULL, NULL, NULL, NULL,
1140 			NULL);
1141 	if (ret < 0)
1142 		return ret;
1143 
1144 	if (offset + bctx->extent_len > i_size)
1145 		return 0;
1146 
1147 	/*
1148 	 * Make sure we don't consider clones from send_root that are
1149 	 * behind the current inode/offset.
1150 	 */
1151 	if (found->root == bctx->sctx->send_root) {
1152 		/*
1153 		 * TODO for the moment we don't accept clones from the inode
1154 		 * that is currently send. We may change this when
1155 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1156 		 * file.
1157 		 */
1158 		if (ino >= bctx->cur_objectid)
1159 			return 0;
1160 #if 0
1161 		if (ino > bctx->cur_objectid)
1162 			return 0;
1163 		if (offset + bctx->extent_len > bctx->cur_offset)
1164 			return 0;
1165 #endif
1166 	}
1167 
1168 	bctx->found++;
1169 	found->found_refs++;
1170 	if (ino < found->ino) {
1171 		found->ino = ino;
1172 		found->offset = offset;
1173 	} else if (found->ino == ino) {
1174 		/*
1175 		 * same extent found more then once in the same file.
1176 		 */
1177 		if (found->offset > offset + bctx->extent_len)
1178 			found->offset = offset;
1179 	}
1180 
1181 	return 0;
1182 }
1183 
1184 /*
1185  * Given an inode, offset and extent item, it finds a good clone for a clone
1186  * instruction. Returns -ENOENT when none could be found. The function makes
1187  * sure that the returned clone is usable at the point where sending is at the
1188  * moment. This means, that no clones are accepted which lie behind the current
1189  * inode+offset.
1190  *
1191  * path must point to the extent item when called.
1192  */
1193 static int find_extent_clone(struct send_ctx *sctx,
1194 			     struct btrfs_path *path,
1195 			     u64 ino, u64 data_offset,
1196 			     u64 ino_size,
1197 			     struct clone_root **found)
1198 {
1199 	int ret;
1200 	int extent_type;
1201 	u64 logical;
1202 	u64 disk_byte;
1203 	u64 num_bytes;
1204 	u64 extent_item_pos;
1205 	u64 flags = 0;
1206 	struct btrfs_file_extent_item *fi;
1207 	struct extent_buffer *eb = path->nodes[0];
1208 	struct backref_ctx *backref_ctx = NULL;
1209 	struct clone_root *cur_clone_root;
1210 	struct btrfs_key found_key;
1211 	struct btrfs_path *tmp_path;
1212 	int compressed;
1213 	u32 i;
1214 
1215 	tmp_path = alloc_path_for_send();
1216 	if (!tmp_path)
1217 		return -ENOMEM;
1218 
1219 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1220 	if (!backref_ctx) {
1221 		ret = -ENOMEM;
1222 		goto out;
1223 	}
1224 
1225 	if (data_offset >= ino_size) {
1226 		/*
1227 		 * There may be extents that lie behind the file's size.
1228 		 * I at least had this in combination with snapshotting while
1229 		 * writing large files.
1230 		 */
1231 		ret = 0;
1232 		goto out;
1233 	}
1234 
1235 	fi = btrfs_item_ptr(eb, path->slots[0],
1236 			struct btrfs_file_extent_item);
1237 	extent_type = btrfs_file_extent_type(eb, fi);
1238 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1239 		ret = -ENOENT;
1240 		goto out;
1241 	}
1242 	compressed = btrfs_file_extent_compression(eb, fi);
1243 
1244 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1245 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1246 	if (disk_byte == 0) {
1247 		ret = -ENOENT;
1248 		goto out;
1249 	}
1250 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1251 
1252 	ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1253 				  &found_key, &flags);
1254 	btrfs_release_path(tmp_path);
1255 
1256 	if (ret < 0)
1257 		goto out;
1258 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1259 		ret = -EIO;
1260 		goto out;
1261 	}
1262 
1263 	/*
1264 	 * Setup the clone roots.
1265 	 */
1266 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1267 		cur_clone_root = sctx->clone_roots + i;
1268 		cur_clone_root->ino = (u64)-1;
1269 		cur_clone_root->offset = 0;
1270 		cur_clone_root->found_refs = 0;
1271 	}
1272 
1273 	backref_ctx->sctx = sctx;
1274 	backref_ctx->found = 0;
1275 	backref_ctx->cur_objectid = ino;
1276 	backref_ctx->cur_offset = data_offset;
1277 	backref_ctx->found_itself = 0;
1278 	backref_ctx->extent_len = num_bytes;
1279 
1280 	/*
1281 	 * The last extent of a file may be too large due to page alignment.
1282 	 * We need to adjust extent_len in this case so that the checks in
1283 	 * __iterate_backrefs work.
1284 	 */
1285 	if (data_offset + num_bytes >= ino_size)
1286 		backref_ctx->extent_len = ino_size - data_offset;
1287 
1288 	/*
1289 	 * Now collect all backrefs.
1290 	 */
1291 	if (compressed == BTRFS_COMPRESS_NONE)
1292 		extent_item_pos = logical - found_key.objectid;
1293 	else
1294 		extent_item_pos = 0;
1295 
1296 	extent_item_pos = logical - found_key.objectid;
1297 	ret = iterate_extent_inodes(sctx->send_root->fs_info,
1298 					found_key.objectid, extent_item_pos, 1,
1299 					__iterate_backrefs, backref_ctx);
1300 
1301 	if (ret < 0)
1302 		goto out;
1303 
1304 	if (!backref_ctx->found_itself) {
1305 		/* found a bug in backref code? */
1306 		ret = -EIO;
1307 		btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1308 				"send_root. inode=%llu, offset=%llu, "
1309 				"disk_byte=%llu found extent=%llu\n",
1310 				ino, data_offset, disk_byte, found_key.objectid);
1311 		goto out;
1312 	}
1313 
1314 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1315 		"ino=%llu, "
1316 		"num_bytes=%llu, logical=%llu\n",
1317 		data_offset, ino, num_bytes, logical);
1318 
1319 	if (!backref_ctx->found)
1320 		verbose_printk("btrfs:    no clones found\n");
1321 
1322 	cur_clone_root = NULL;
1323 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1324 		if (sctx->clone_roots[i].found_refs) {
1325 			if (!cur_clone_root)
1326 				cur_clone_root = sctx->clone_roots + i;
1327 			else if (sctx->clone_roots[i].root == sctx->send_root)
1328 				/* prefer clones from send_root over others */
1329 				cur_clone_root = sctx->clone_roots + i;
1330 		}
1331 
1332 	}
1333 
1334 	if (cur_clone_root) {
1335 		*found = cur_clone_root;
1336 		ret = 0;
1337 	} else {
1338 		ret = -ENOENT;
1339 	}
1340 
1341 out:
1342 	btrfs_free_path(tmp_path);
1343 	kfree(backref_ctx);
1344 	return ret;
1345 }
1346 
1347 static int read_symlink(struct btrfs_root *root,
1348 			u64 ino,
1349 			struct fs_path *dest)
1350 {
1351 	int ret;
1352 	struct btrfs_path *path;
1353 	struct btrfs_key key;
1354 	struct btrfs_file_extent_item *ei;
1355 	u8 type;
1356 	u8 compression;
1357 	unsigned long off;
1358 	int len;
1359 
1360 	path = alloc_path_for_send();
1361 	if (!path)
1362 		return -ENOMEM;
1363 
1364 	key.objectid = ino;
1365 	key.type = BTRFS_EXTENT_DATA_KEY;
1366 	key.offset = 0;
1367 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1368 	if (ret < 0)
1369 		goto out;
1370 	BUG_ON(ret);
1371 
1372 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1373 			struct btrfs_file_extent_item);
1374 	type = btrfs_file_extent_type(path->nodes[0], ei);
1375 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1376 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1377 	BUG_ON(compression);
1378 
1379 	off = btrfs_file_extent_inline_start(ei);
1380 	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1381 
1382 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1383 
1384 out:
1385 	btrfs_free_path(path);
1386 	return ret;
1387 }
1388 
1389 /*
1390  * Helper function to generate a file name that is unique in the root of
1391  * send_root and parent_root. This is used to generate names for orphan inodes.
1392  */
1393 static int gen_unique_name(struct send_ctx *sctx,
1394 			   u64 ino, u64 gen,
1395 			   struct fs_path *dest)
1396 {
1397 	int ret = 0;
1398 	struct btrfs_path *path;
1399 	struct btrfs_dir_item *di;
1400 	char tmp[64];
1401 	int len;
1402 	u64 idx = 0;
1403 
1404 	path = alloc_path_for_send();
1405 	if (!path)
1406 		return -ENOMEM;
1407 
1408 	while (1) {
1409 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1410 				ino, gen, idx);
1411 		if (len >= sizeof(tmp)) {
1412 			/* should really not happen */
1413 			ret = -EOVERFLOW;
1414 			goto out;
1415 		}
1416 
1417 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1418 				path, BTRFS_FIRST_FREE_OBJECTID,
1419 				tmp, strlen(tmp), 0);
1420 		btrfs_release_path(path);
1421 		if (IS_ERR(di)) {
1422 			ret = PTR_ERR(di);
1423 			goto out;
1424 		}
1425 		if (di) {
1426 			/* not unique, try again */
1427 			idx++;
1428 			continue;
1429 		}
1430 
1431 		if (!sctx->parent_root) {
1432 			/* unique */
1433 			ret = 0;
1434 			break;
1435 		}
1436 
1437 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1438 				path, BTRFS_FIRST_FREE_OBJECTID,
1439 				tmp, strlen(tmp), 0);
1440 		btrfs_release_path(path);
1441 		if (IS_ERR(di)) {
1442 			ret = PTR_ERR(di);
1443 			goto out;
1444 		}
1445 		if (di) {
1446 			/* not unique, try again */
1447 			idx++;
1448 			continue;
1449 		}
1450 		/* unique */
1451 		break;
1452 	}
1453 
1454 	ret = fs_path_add(dest, tmp, strlen(tmp));
1455 
1456 out:
1457 	btrfs_free_path(path);
1458 	return ret;
1459 }
1460 
1461 enum inode_state {
1462 	inode_state_no_change,
1463 	inode_state_will_create,
1464 	inode_state_did_create,
1465 	inode_state_will_delete,
1466 	inode_state_did_delete,
1467 };
1468 
1469 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1470 {
1471 	int ret;
1472 	int left_ret;
1473 	int right_ret;
1474 	u64 left_gen;
1475 	u64 right_gen;
1476 
1477 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1478 			NULL, NULL);
1479 	if (ret < 0 && ret != -ENOENT)
1480 		goto out;
1481 	left_ret = ret;
1482 
1483 	if (!sctx->parent_root) {
1484 		right_ret = -ENOENT;
1485 	} else {
1486 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1487 				NULL, NULL, NULL, NULL);
1488 		if (ret < 0 && ret != -ENOENT)
1489 			goto out;
1490 		right_ret = ret;
1491 	}
1492 
1493 	if (!left_ret && !right_ret) {
1494 		if (left_gen == gen && right_gen == gen) {
1495 			ret = inode_state_no_change;
1496 		} else if (left_gen == gen) {
1497 			if (ino < sctx->send_progress)
1498 				ret = inode_state_did_create;
1499 			else
1500 				ret = inode_state_will_create;
1501 		} else if (right_gen == gen) {
1502 			if (ino < sctx->send_progress)
1503 				ret = inode_state_did_delete;
1504 			else
1505 				ret = inode_state_will_delete;
1506 		} else  {
1507 			ret = -ENOENT;
1508 		}
1509 	} else if (!left_ret) {
1510 		if (left_gen == gen) {
1511 			if (ino < sctx->send_progress)
1512 				ret = inode_state_did_create;
1513 			else
1514 				ret = inode_state_will_create;
1515 		} else {
1516 			ret = -ENOENT;
1517 		}
1518 	} else if (!right_ret) {
1519 		if (right_gen == gen) {
1520 			if (ino < sctx->send_progress)
1521 				ret = inode_state_did_delete;
1522 			else
1523 				ret = inode_state_will_delete;
1524 		} else {
1525 			ret = -ENOENT;
1526 		}
1527 	} else {
1528 		ret = -ENOENT;
1529 	}
1530 
1531 out:
1532 	return ret;
1533 }
1534 
1535 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1536 {
1537 	int ret;
1538 
1539 	ret = get_cur_inode_state(sctx, ino, gen);
1540 	if (ret < 0)
1541 		goto out;
1542 
1543 	if (ret == inode_state_no_change ||
1544 	    ret == inode_state_did_create ||
1545 	    ret == inode_state_will_delete)
1546 		ret = 1;
1547 	else
1548 		ret = 0;
1549 
1550 out:
1551 	return ret;
1552 }
1553 
1554 /*
1555  * Helper function to lookup a dir item in a dir.
1556  */
1557 static int lookup_dir_item_inode(struct btrfs_root *root,
1558 				 u64 dir, const char *name, int name_len,
1559 				 u64 *found_inode,
1560 				 u8 *found_type)
1561 {
1562 	int ret = 0;
1563 	struct btrfs_dir_item *di;
1564 	struct btrfs_key key;
1565 	struct btrfs_path *path;
1566 
1567 	path = alloc_path_for_send();
1568 	if (!path)
1569 		return -ENOMEM;
1570 
1571 	di = btrfs_lookup_dir_item(NULL, root, path,
1572 			dir, name, name_len, 0);
1573 	if (!di) {
1574 		ret = -ENOENT;
1575 		goto out;
1576 	}
1577 	if (IS_ERR(di)) {
1578 		ret = PTR_ERR(di);
1579 		goto out;
1580 	}
1581 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1582 	*found_inode = key.objectid;
1583 	*found_type = btrfs_dir_type(path->nodes[0], di);
1584 
1585 out:
1586 	btrfs_free_path(path);
1587 	return ret;
1588 }
1589 
1590 /*
1591  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1592  * generation of the parent dir and the name of the dir entry.
1593  */
1594 static int get_first_ref(struct btrfs_root *root, u64 ino,
1595 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1596 {
1597 	int ret;
1598 	struct btrfs_key key;
1599 	struct btrfs_key found_key;
1600 	struct btrfs_path *path;
1601 	int len;
1602 	u64 parent_dir;
1603 
1604 	path = alloc_path_for_send();
1605 	if (!path)
1606 		return -ENOMEM;
1607 
1608 	key.objectid = ino;
1609 	key.type = BTRFS_INODE_REF_KEY;
1610 	key.offset = 0;
1611 
1612 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1613 	if (ret < 0)
1614 		goto out;
1615 	if (!ret)
1616 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1617 				path->slots[0]);
1618 	if (ret || found_key.objectid != ino ||
1619 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1620 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1621 		ret = -ENOENT;
1622 		goto out;
1623 	}
1624 
1625 	if (key.type == BTRFS_INODE_REF_KEY) {
1626 		struct btrfs_inode_ref *iref;
1627 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1628 				      struct btrfs_inode_ref);
1629 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1630 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1631 						     (unsigned long)(iref + 1),
1632 						     len);
1633 		parent_dir = found_key.offset;
1634 	} else {
1635 		struct btrfs_inode_extref *extref;
1636 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1637 					struct btrfs_inode_extref);
1638 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1639 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1640 					(unsigned long)&extref->name, len);
1641 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1642 	}
1643 	if (ret < 0)
1644 		goto out;
1645 	btrfs_release_path(path);
1646 
1647 	ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, NULL,
1648 			NULL, NULL);
1649 	if (ret < 0)
1650 		goto out;
1651 
1652 	*dir = parent_dir;
1653 
1654 out:
1655 	btrfs_free_path(path);
1656 	return ret;
1657 }
1658 
1659 static int is_first_ref(struct btrfs_root *root,
1660 			u64 ino, u64 dir,
1661 			const char *name, int name_len)
1662 {
1663 	int ret;
1664 	struct fs_path *tmp_name;
1665 	u64 tmp_dir;
1666 	u64 tmp_dir_gen;
1667 
1668 	tmp_name = fs_path_alloc();
1669 	if (!tmp_name)
1670 		return -ENOMEM;
1671 
1672 	ret = get_first_ref(root, ino, &tmp_dir, &tmp_dir_gen, tmp_name);
1673 	if (ret < 0)
1674 		goto out;
1675 
1676 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1677 		ret = 0;
1678 		goto out;
1679 	}
1680 
1681 	ret = !memcmp(tmp_name->start, name, name_len);
1682 
1683 out:
1684 	fs_path_free(tmp_name);
1685 	return ret;
1686 }
1687 
1688 /*
1689  * Used by process_recorded_refs to determine if a new ref would overwrite an
1690  * already existing ref. In case it detects an overwrite, it returns the
1691  * inode/gen in who_ino/who_gen.
1692  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1693  * to make sure later references to the overwritten inode are possible.
1694  * Orphanizing is however only required for the first ref of an inode.
1695  * process_recorded_refs does an additional is_first_ref check to see if
1696  * orphanizing is really required.
1697  */
1698 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1699 			      const char *name, int name_len,
1700 			      u64 *who_ino, u64 *who_gen)
1701 {
1702 	int ret = 0;
1703 	u64 gen;
1704 	u64 other_inode = 0;
1705 	u8 other_type = 0;
1706 
1707 	if (!sctx->parent_root)
1708 		goto out;
1709 
1710 	ret = is_inode_existent(sctx, dir, dir_gen);
1711 	if (ret <= 0)
1712 		goto out;
1713 
1714 	/*
1715 	 * If we have a parent root we need to verify that the parent dir was
1716 	 * not delted and then re-created, if it was then we have no overwrite
1717 	 * and we can just unlink this entry.
1718 	 */
1719 	if (sctx->parent_root) {
1720 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1721 				     NULL, NULL, NULL);
1722 		if (ret < 0 && ret != -ENOENT)
1723 			goto out;
1724 		if (ret) {
1725 			ret = 0;
1726 			goto out;
1727 		}
1728 		if (gen != dir_gen)
1729 			goto out;
1730 	}
1731 
1732 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1733 			&other_inode, &other_type);
1734 	if (ret < 0 && ret != -ENOENT)
1735 		goto out;
1736 	if (ret) {
1737 		ret = 0;
1738 		goto out;
1739 	}
1740 
1741 	/*
1742 	 * Check if the overwritten ref was already processed. If yes, the ref
1743 	 * was already unlinked/moved, so we can safely assume that we will not
1744 	 * overwrite anything at this point in time.
1745 	 */
1746 	if (other_inode > sctx->send_progress) {
1747 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1748 				who_gen, NULL, NULL, NULL, NULL);
1749 		if (ret < 0)
1750 			goto out;
1751 
1752 		ret = 1;
1753 		*who_ino = other_inode;
1754 	} else {
1755 		ret = 0;
1756 	}
1757 
1758 out:
1759 	return ret;
1760 }
1761 
1762 /*
1763  * Checks if the ref was overwritten by an already processed inode. This is
1764  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1765  * thus the orphan name needs be used.
1766  * process_recorded_refs also uses it to avoid unlinking of refs that were
1767  * overwritten.
1768  */
1769 static int did_overwrite_ref(struct send_ctx *sctx,
1770 			    u64 dir, u64 dir_gen,
1771 			    u64 ino, u64 ino_gen,
1772 			    const char *name, int name_len)
1773 {
1774 	int ret = 0;
1775 	u64 gen;
1776 	u64 ow_inode;
1777 	u8 other_type;
1778 
1779 	if (!sctx->parent_root)
1780 		goto out;
1781 
1782 	ret = is_inode_existent(sctx, dir, dir_gen);
1783 	if (ret <= 0)
1784 		goto out;
1785 
1786 	/* check if the ref was overwritten by another ref */
1787 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1788 			&ow_inode, &other_type);
1789 	if (ret < 0 && ret != -ENOENT)
1790 		goto out;
1791 	if (ret) {
1792 		/* was never and will never be overwritten */
1793 		ret = 0;
1794 		goto out;
1795 	}
1796 
1797 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1798 			NULL, NULL);
1799 	if (ret < 0)
1800 		goto out;
1801 
1802 	if (ow_inode == ino && gen == ino_gen) {
1803 		ret = 0;
1804 		goto out;
1805 	}
1806 
1807 	/* we know that it is or will be overwritten. check this now */
1808 	if (ow_inode < sctx->send_progress)
1809 		ret = 1;
1810 	else
1811 		ret = 0;
1812 
1813 out:
1814 	return ret;
1815 }
1816 
1817 /*
1818  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1819  * that got overwritten. This is used by process_recorded_refs to determine
1820  * if it has to use the path as returned by get_cur_path or the orphan name.
1821  */
1822 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1823 {
1824 	int ret = 0;
1825 	struct fs_path *name = NULL;
1826 	u64 dir;
1827 	u64 dir_gen;
1828 
1829 	if (!sctx->parent_root)
1830 		goto out;
1831 
1832 	name = fs_path_alloc();
1833 	if (!name)
1834 		return -ENOMEM;
1835 
1836 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1837 	if (ret < 0)
1838 		goto out;
1839 
1840 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1841 			name->start, fs_path_len(name));
1842 
1843 out:
1844 	fs_path_free(name);
1845 	return ret;
1846 }
1847 
1848 /*
1849  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1850  * so we need to do some special handling in case we have clashes. This function
1851  * takes care of this with the help of name_cache_entry::radix_list.
1852  * In case of error, nce is kfreed.
1853  */
1854 static int name_cache_insert(struct send_ctx *sctx,
1855 			     struct name_cache_entry *nce)
1856 {
1857 	int ret = 0;
1858 	struct list_head *nce_head;
1859 
1860 	nce_head = radix_tree_lookup(&sctx->name_cache,
1861 			(unsigned long)nce->ino);
1862 	if (!nce_head) {
1863 		nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1864 		if (!nce_head) {
1865 			kfree(nce);
1866 			return -ENOMEM;
1867 		}
1868 		INIT_LIST_HEAD(nce_head);
1869 
1870 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1871 		if (ret < 0) {
1872 			kfree(nce_head);
1873 			kfree(nce);
1874 			return ret;
1875 		}
1876 	}
1877 	list_add_tail(&nce->radix_list, nce_head);
1878 	list_add_tail(&nce->list, &sctx->name_cache_list);
1879 	sctx->name_cache_size++;
1880 
1881 	return ret;
1882 }
1883 
1884 static void name_cache_delete(struct send_ctx *sctx,
1885 			      struct name_cache_entry *nce)
1886 {
1887 	struct list_head *nce_head;
1888 
1889 	nce_head = radix_tree_lookup(&sctx->name_cache,
1890 			(unsigned long)nce->ino);
1891 	BUG_ON(!nce_head);
1892 
1893 	list_del(&nce->radix_list);
1894 	list_del(&nce->list);
1895 	sctx->name_cache_size--;
1896 
1897 	if (list_empty(nce_head)) {
1898 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
1899 		kfree(nce_head);
1900 	}
1901 }
1902 
1903 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
1904 						    u64 ino, u64 gen)
1905 {
1906 	struct list_head *nce_head;
1907 	struct name_cache_entry *cur;
1908 
1909 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
1910 	if (!nce_head)
1911 		return NULL;
1912 
1913 	list_for_each_entry(cur, nce_head, radix_list) {
1914 		if (cur->ino == ino && cur->gen == gen)
1915 			return cur;
1916 	}
1917 	return NULL;
1918 }
1919 
1920 /*
1921  * Removes the entry from the list and adds it back to the end. This marks the
1922  * entry as recently used so that name_cache_clean_unused does not remove it.
1923  */
1924 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
1925 {
1926 	list_del(&nce->list);
1927 	list_add_tail(&nce->list, &sctx->name_cache_list);
1928 }
1929 
1930 /*
1931  * Remove some entries from the beginning of name_cache_list.
1932  */
1933 static void name_cache_clean_unused(struct send_ctx *sctx)
1934 {
1935 	struct name_cache_entry *nce;
1936 
1937 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
1938 		return;
1939 
1940 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
1941 		nce = list_entry(sctx->name_cache_list.next,
1942 				struct name_cache_entry, list);
1943 		name_cache_delete(sctx, nce);
1944 		kfree(nce);
1945 	}
1946 }
1947 
1948 static void name_cache_free(struct send_ctx *sctx)
1949 {
1950 	struct name_cache_entry *nce;
1951 
1952 	while (!list_empty(&sctx->name_cache_list)) {
1953 		nce = list_entry(sctx->name_cache_list.next,
1954 				struct name_cache_entry, list);
1955 		name_cache_delete(sctx, nce);
1956 		kfree(nce);
1957 	}
1958 }
1959 
1960 /*
1961  * Used by get_cur_path for each ref up to the root.
1962  * Returns 0 if it succeeded.
1963  * Returns 1 if the inode is not existent or got overwritten. In that case, the
1964  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
1965  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
1966  * Returns <0 in case of error.
1967  */
1968 static int __get_cur_name_and_parent(struct send_ctx *sctx,
1969 				     u64 ino, u64 gen,
1970 				     int skip_name_cache,
1971 				     u64 *parent_ino,
1972 				     u64 *parent_gen,
1973 				     struct fs_path *dest)
1974 {
1975 	int ret;
1976 	int nce_ret;
1977 	struct btrfs_path *path = NULL;
1978 	struct name_cache_entry *nce = NULL;
1979 
1980 	if (skip_name_cache)
1981 		goto get_ref;
1982 	/*
1983 	 * First check if we already did a call to this function with the same
1984 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
1985 	 * return the cached result.
1986 	 */
1987 	nce = name_cache_search(sctx, ino, gen);
1988 	if (nce) {
1989 		if (ino < sctx->send_progress && nce->need_later_update) {
1990 			name_cache_delete(sctx, nce);
1991 			kfree(nce);
1992 			nce = NULL;
1993 		} else {
1994 			name_cache_used(sctx, nce);
1995 			*parent_ino = nce->parent_ino;
1996 			*parent_gen = nce->parent_gen;
1997 			ret = fs_path_add(dest, nce->name, nce->name_len);
1998 			if (ret < 0)
1999 				goto out;
2000 			ret = nce->ret;
2001 			goto out;
2002 		}
2003 	}
2004 
2005 	path = alloc_path_for_send();
2006 	if (!path)
2007 		return -ENOMEM;
2008 
2009 	/*
2010 	 * If the inode is not existent yet, add the orphan name and return 1.
2011 	 * This should only happen for the parent dir that we determine in
2012 	 * __record_new_ref
2013 	 */
2014 	ret = is_inode_existent(sctx, ino, gen);
2015 	if (ret < 0)
2016 		goto out;
2017 
2018 	if (!ret) {
2019 		ret = gen_unique_name(sctx, ino, gen, dest);
2020 		if (ret < 0)
2021 			goto out;
2022 		ret = 1;
2023 		goto out_cache;
2024 	}
2025 
2026 get_ref:
2027 	/*
2028 	 * Depending on whether the inode was already processed or not, use
2029 	 * send_root or parent_root for ref lookup.
2030 	 */
2031 	if (ino < sctx->send_progress && !skip_name_cache)
2032 		ret = get_first_ref(sctx->send_root, ino,
2033 				    parent_ino, parent_gen, dest);
2034 	else
2035 		ret = get_first_ref(sctx->parent_root, ino,
2036 				    parent_ino, parent_gen, dest);
2037 	if (ret < 0)
2038 		goto out;
2039 
2040 	/*
2041 	 * Check if the ref was overwritten by an inode's ref that was processed
2042 	 * earlier. If yes, treat as orphan and return 1.
2043 	 */
2044 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2045 			dest->start, dest->end - dest->start);
2046 	if (ret < 0)
2047 		goto out;
2048 	if (ret) {
2049 		fs_path_reset(dest);
2050 		ret = gen_unique_name(sctx, ino, gen, dest);
2051 		if (ret < 0)
2052 			goto out;
2053 		ret = 1;
2054 	}
2055 	if (skip_name_cache)
2056 		goto out;
2057 
2058 out_cache:
2059 	/*
2060 	 * Store the result of the lookup in the name cache.
2061 	 */
2062 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2063 	if (!nce) {
2064 		ret = -ENOMEM;
2065 		goto out;
2066 	}
2067 
2068 	nce->ino = ino;
2069 	nce->gen = gen;
2070 	nce->parent_ino = *parent_ino;
2071 	nce->parent_gen = *parent_gen;
2072 	nce->name_len = fs_path_len(dest);
2073 	nce->ret = ret;
2074 	strcpy(nce->name, dest->start);
2075 
2076 	if (ino < sctx->send_progress)
2077 		nce->need_later_update = 0;
2078 	else
2079 		nce->need_later_update = 1;
2080 
2081 	nce_ret = name_cache_insert(sctx, nce);
2082 	if (nce_ret < 0)
2083 		ret = nce_ret;
2084 	name_cache_clean_unused(sctx);
2085 
2086 out:
2087 	btrfs_free_path(path);
2088 	return ret;
2089 }
2090 
2091 /*
2092  * Magic happens here. This function returns the first ref to an inode as it
2093  * would look like while receiving the stream at this point in time.
2094  * We walk the path up to the root. For every inode in between, we check if it
2095  * was already processed/sent. If yes, we continue with the parent as found
2096  * in send_root. If not, we continue with the parent as found in parent_root.
2097  * If we encounter an inode that was deleted at this point in time, we use the
2098  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2099  * that were not created yet and overwritten inodes/refs.
2100  *
2101  * When do we have have orphan inodes:
2102  * 1. When an inode is freshly created and thus no valid refs are available yet
2103  * 2. When a directory lost all it's refs (deleted) but still has dir items
2104  *    inside which were not processed yet (pending for move/delete). If anyone
2105  *    tried to get the path to the dir items, it would get a path inside that
2106  *    orphan directory.
2107  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2108  *    of an unprocessed inode. If in that case the first ref would be
2109  *    overwritten, the overwritten inode gets "orphanized". Later when we
2110  *    process this overwritten inode, it is restored at a new place by moving
2111  *    the orphan inode.
2112  *
2113  * sctx->send_progress tells this function at which point in time receiving
2114  * would be.
2115  */
2116 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2117 			struct fs_path *dest)
2118 {
2119 	int ret = 0;
2120 	struct fs_path *name = NULL;
2121 	u64 parent_inode = 0;
2122 	u64 parent_gen = 0;
2123 	int stop = 0;
2124 	u64 start_ino = ino;
2125 	u64 start_gen = gen;
2126 	int skip_name_cache = 0;
2127 
2128 	name = fs_path_alloc();
2129 	if (!name) {
2130 		ret = -ENOMEM;
2131 		goto out;
2132 	}
2133 
2134 	if (is_waiting_for_move(sctx, ino))
2135 		skip_name_cache = 1;
2136 
2137 again:
2138 	dest->reversed = 1;
2139 	fs_path_reset(dest);
2140 
2141 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2142 		fs_path_reset(name);
2143 
2144 		ret = __get_cur_name_and_parent(sctx, ino, gen, skip_name_cache,
2145 				&parent_inode, &parent_gen, name);
2146 		if (ret < 0)
2147 			goto out;
2148 		if (ret)
2149 			stop = 1;
2150 
2151 		if (!skip_name_cache &&
2152 		    is_waiting_for_move(sctx, parent_inode)) {
2153 			ino = start_ino;
2154 			gen = start_gen;
2155 			stop = 0;
2156 			skip_name_cache = 1;
2157 			goto again;
2158 		}
2159 
2160 		ret = fs_path_add_path(dest, name);
2161 		if (ret < 0)
2162 			goto out;
2163 
2164 		ino = parent_inode;
2165 		gen = parent_gen;
2166 	}
2167 
2168 out:
2169 	fs_path_free(name);
2170 	if (!ret)
2171 		fs_path_unreverse(dest);
2172 	return ret;
2173 }
2174 
2175 /*
2176  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2177  */
2178 static int send_subvol_begin(struct send_ctx *sctx)
2179 {
2180 	int ret;
2181 	struct btrfs_root *send_root = sctx->send_root;
2182 	struct btrfs_root *parent_root = sctx->parent_root;
2183 	struct btrfs_path *path;
2184 	struct btrfs_key key;
2185 	struct btrfs_root_ref *ref;
2186 	struct extent_buffer *leaf;
2187 	char *name = NULL;
2188 	int namelen;
2189 
2190 	path = btrfs_alloc_path();
2191 	if (!path)
2192 		return -ENOMEM;
2193 
2194 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2195 	if (!name) {
2196 		btrfs_free_path(path);
2197 		return -ENOMEM;
2198 	}
2199 
2200 	key.objectid = send_root->objectid;
2201 	key.type = BTRFS_ROOT_BACKREF_KEY;
2202 	key.offset = 0;
2203 
2204 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2205 				&key, path, 1, 0);
2206 	if (ret < 0)
2207 		goto out;
2208 	if (ret) {
2209 		ret = -ENOENT;
2210 		goto out;
2211 	}
2212 
2213 	leaf = path->nodes[0];
2214 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2215 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2216 	    key.objectid != send_root->objectid) {
2217 		ret = -ENOENT;
2218 		goto out;
2219 	}
2220 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2221 	namelen = btrfs_root_ref_name_len(leaf, ref);
2222 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2223 	btrfs_release_path(path);
2224 
2225 	if (parent_root) {
2226 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2227 		if (ret < 0)
2228 			goto out;
2229 	} else {
2230 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2231 		if (ret < 0)
2232 			goto out;
2233 	}
2234 
2235 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2236 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2237 			sctx->send_root->root_item.uuid);
2238 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2239 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2240 	if (parent_root) {
2241 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2242 				sctx->parent_root->root_item.uuid);
2243 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2244 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2245 	}
2246 
2247 	ret = send_cmd(sctx);
2248 
2249 tlv_put_failure:
2250 out:
2251 	btrfs_free_path(path);
2252 	kfree(name);
2253 	return ret;
2254 }
2255 
2256 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2257 {
2258 	int ret = 0;
2259 	struct fs_path *p;
2260 
2261 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2262 
2263 	p = fs_path_alloc();
2264 	if (!p)
2265 		return -ENOMEM;
2266 
2267 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2268 	if (ret < 0)
2269 		goto out;
2270 
2271 	ret = get_cur_path(sctx, ino, gen, p);
2272 	if (ret < 0)
2273 		goto out;
2274 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2275 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2276 
2277 	ret = send_cmd(sctx);
2278 
2279 tlv_put_failure:
2280 out:
2281 	fs_path_free(p);
2282 	return ret;
2283 }
2284 
2285 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2286 {
2287 	int ret = 0;
2288 	struct fs_path *p;
2289 
2290 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2291 
2292 	p = fs_path_alloc();
2293 	if (!p)
2294 		return -ENOMEM;
2295 
2296 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2297 	if (ret < 0)
2298 		goto out;
2299 
2300 	ret = get_cur_path(sctx, ino, gen, p);
2301 	if (ret < 0)
2302 		goto out;
2303 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2304 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2305 
2306 	ret = send_cmd(sctx);
2307 
2308 tlv_put_failure:
2309 out:
2310 	fs_path_free(p);
2311 	return ret;
2312 }
2313 
2314 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2315 {
2316 	int ret = 0;
2317 	struct fs_path *p;
2318 
2319 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2320 
2321 	p = fs_path_alloc();
2322 	if (!p)
2323 		return -ENOMEM;
2324 
2325 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2326 	if (ret < 0)
2327 		goto out;
2328 
2329 	ret = get_cur_path(sctx, ino, gen, p);
2330 	if (ret < 0)
2331 		goto out;
2332 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2333 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2334 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2335 
2336 	ret = send_cmd(sctx);
2337 
2338 tlv_put_failure:
2339 out:
2340 	fs_path_free(p);
2341 	return ret;
2342 }
2343 
2344 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2345 {
2346 	int ret = 0;
2347 	struct fs_path *p = NULL;
2348 	struct btrfs_inode_item *ii;
2349 	struct btrfs_path *path = NULL;
2350 	struct extent_buffer *eb;
2351 	struct btrfs_key key;
2352 	int slot;
2353 
2354 verbose_printk("btrfs: send_utimes %llu\n", ino);
2355 
2356 	p = fs_path_alloc();
2357 	if (!p)
2358 		return -ENOMEM;
2359 
2360 	path = alloc_path_for_send();
2361 	if (!path) {
2362 		ret = -ENOMEM;
2363 		goto out;
2364 	}
2365 
2366 	key.objectid = ino;
2367 	key.type = BTRFS_INODE_ITEM_KEY;
2368 	key.offset = 0;
2369 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2370 	if (ret < 0)
2371 		goto out;
2372 
2373 	eb = path->nodes[0];
2374 	slot = path->slots[0];
2375 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2376 
2377 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2378 	if (ret < 0)
2379 		goto out;
2380 
2381 	ret = get_cur_path(sctx, ino, gen, p);
2382 	if (ret < 0)
2383 		goto out;
2384 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2385 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb,
2386 			btrfs_inode_atime(ii));
2387 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb,
2388 			btrfs_inode_mtime(ii));
2389 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb,
2390 			btrfs_inode_ctime(ii));
2391 	/* TODO Add otime support when the otime patches get into upstream */
2392 
2393 	ret = send_cmd(sctx);
2394 
2395 tlv_put_failure:
2396 out:
2397 	fs_path_free(p);
2398 	btrfs_free_path(path);
2399 	return ret;
2400 }
2401 
2402 /*
2403  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2404  * a valid path yet because we did not process the refs yet. So, the inode
2405  * is created as orphan.
2406  */
2407 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2408 {
2409 	int ret = 0;
2410 	struct fs_path *p;
2411 	int cmd;
2412 	u64 gen;
2413 	u64 mode;
2414 	u64 rdev;
2415 
2416 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2417 
2418 	p = fs_path_alloc();
2419 	if (!p)
2420 		return -ENOMEM;
2421 
2422 	ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, NULL,
2423 			NULL, &rdev);
2424 	if (ret < 0)
2425 		goto out;
2426 
2427 	if (S_ISREG(mode)) {
2428 		cmd = BTRFS_SEND_C_MKFILE;
2429 	} else if (S_ISDIR(mode)) {
2430 		cmd = BTRFS_SEND_C_MKDIR;
2431 	} else if (S_ISLNK(mode)) {
2432 		cmd = BTRFS_SEND_C_SYMLINK;
2433 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2434 		cmd = BTRFS_SEND_C_MKNOD;
2435 	} else if (S_ISFIFO(mode)) {
2436 		cmd = BTRFS_SEND_C_MKFIFO;
2437 	} else if (S_ISSOCK(mode)) {
2438 		cmd = BTRFS_SEND_C_MKSOCK;
2439 	} else {
2440 		printk(KERN_WARNING "btrfs: unexpected inode type %o",
2441 				(int)(mode & S_IFMT));
2442 		ret = -ENOTSUPP;
2443 		goto out;
2444 	}
2445 
2446 	ret = begin_cmd(sctx, cmd);
2447 	if (ret < 0)
2448 		goto out;
2449 
2450 	ret = gen_unique_name(sctx, ino, gen, p);
2451 	if (ret < 0)
2452 		goto out;
2453 
2454 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2455 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2456 
2457 	if (S_ISLNK(mode)) {
2458 		fs_path_reset(p);
2459 		ret = read_symlink(sctx->send_root, ino, p);
2460 		if (ret < 0)
2461 			goto out;
2462 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2463 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2464 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2465 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2466 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2467 	}
2468 
2469 	ret = send_cmd(sctx);
2470 	if (ret < 0)
2471 		goto out;
2472 
2473 
2474 tlv_put_failure:
2475 out:
2476 	fs_path_free(p);
2477 	return ret;
2478 }
2479 
2480 /*
2481  * We need some special handling for inodes that get processed before the parent
2482  * directory got created. See process_recorded_refs for details.
2483  * This function does the check if we already created the dir out of order.
2484  */
2485 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2486 {
2487 	int ret = 0;
2488 	struct btrfs_path *path = NULL;
2489 	struct btrfs_key key;
2490 	struct btrfs_key found_key;
2491 	struct btrfs_key di_key;
2492 	struct extent_buffer *eb;
2493 	struct btrfs_dir_item *di;
2494 	int slot;
2495 
2496 	path = alloc_path_for_send();
2497 	if (!path) {
2498 		ret = -ENOMEM;
2499 		goto out;
2500 	}
2501 
2502 	key.objectid = dir;
2503 	key.type = BTRFS_DIR_INDEX_KEY;
2504 	key.offset = 0;
2505 	while (1) {
2506 		ret = btrfs_search_slot_for_read(sctx->send_root, &key, path,
2507 				1, 0);
2508 		if (ret < 0)
2509 			goto out;
2510 		if (!ret) {
2511 			eb = path->nodes[0];
2512 			slot = path->slots[0];
2513 			btrfs_item_key_to_cpu(eb, &found_key, slot);
2514 		}
2515 		if (ret || found_key.objectid != key.objectid ||
2516 		    found_key.type != key.type) {
2517 			ret = 0;
2518 			goto out;
2519 		}
2520 
2521 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2522 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2523 
2524 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2525 		    di_key.objectid < sctx->send_progress) {
2526 			ret = 1;
2527 			goto out;
2528 		}
2529 
2530 		key.offset = found_key.offset + 1;
2531 		btrfs_release_path(path);
2532 	}
2533 
2534 out:
2535 	btrfs_free_path(path);
2536 	return ret;
2537 }
2538 
2539 /*
2540  * Only creates the inode if it is:
2541  * 1. Not a directory
2542  * 2. Or a directory which was not created already due to out of order
2543  *    directories. See did_create_dir and process_recorded_refs for details.
2544  */
2545 static int send_create_inode_if_needed(struct send_ctx *sctx)
2546 {
2547 	int ret;
2548 
2549 	if (S_ISDIR(sctx->cur_inode_mode)) {
2550 		ret = did_create_dir(sctx, sctx->cur_ino);
2551 		if (ret < 0)
2552 			goto out;
2553 		if (ret) {
2554 			ret = 0;
2555 			goto out;
2556 		}
2557 	}
2558 
2559 	ret = send_create_inode(sctx, sctx->cur_ino);
2560 	if (ret < 0)
2561 		goto out;
2562 
2563 out:
2564 	return ret;
2565 }
2566 
2567 struct recorded_ref {
2568 	struct list_head list;
2569 	char *dir_path;
2570 	char *name;
2571 	struct fs_path *full_path;
2572 	u64 dir;
2573 	u64 dir_gen;
2574 	int dir_path_len;
2575 	int name_len;
2576 };
2577 
2578 /*
2579  * We need to process new refs before deleted refs, but compare_tree gives us
2580  * everything mixed. So we first record all refs and later process them.
2581  * This function is a helper to record one ref.
2582  */
2583 static int record_ref(struct list_head *head, u64 dir,
2584 		      u64 dir_gen, struct fs_path *path)
2585 {
2586 	struct recorded_ref *ref;
2587 
2588 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
2589 	if (!ref)
2590 		return -ENOMEM;
2591 
2592 	ref->dir = dir;
2593 	ref->dir_gen = dir_gen;
2594 	ref->full_path = path;
2595 
2596 	ref->name = (char *)kbasename(ref->full_path->start);
2597 	ref->name_len = ref->full_path->end - ref->name;
2598 	ref->dir_path = ref->full_path->start;
2599 	if (ref->name == ref->full_path->start)
2600 		ref->dir_path_len = 0;
2601 	else
2602 		ref->dir_path_len = ref->full_path->end -
2603 				ref->full_path->start - 1 - ref->name_len;
2604 
2605 	list_add_tail(&ref->list, head);
2606 	return 0;
2607 }
2608 
2609 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2610 {
2611 	struct recorded_ref *new;
2612 
2613 	new = kmalloc(sizeof(*ref), GFP_NOFS);
2614 	if (!new)
2615 		return -ENOMEM;
2616 
2617 	new->dir = ref->dir;
2618 	new->dir_gen = ref->dir_gen;
2619 	new->full_path = NULL;
2620 	INIT_LIST_HEAD(&new->list);
2621 	list_add_tail(&new->list, list);
2622 	return 0;
2623 }
2624 
2625 static void __free_recorded_refs(struct list_head *head)
2626 {
2627 	struct recorded_ref *cur;
2628 
2629 	while (!list_empty(head)) {
2630 		cur = list_entry(head->next, struct recorded_ref, list);
2631 		fs_path_free(cur->full_path);
2632 		list_del(&cur->list);
2633 		kfree(cur);
2634 	}
2635 }
2636 
2637 static void free_recorded_refs(struct send_ctx *sctx)
2638 {
2639 	__free_recorded_refs(&sctx->new_refs);
2640 	__free_recorded_refs(&sctx->deleted_refs);
2641 }
2642 
2643 /*
2644  * Renames/moves a file/dir to its orphan name. Used when the first
2645  * ref of an unprocessed inode gets overwritten and for all non empty
2646  * directories.
2647  */
2648 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2649 			  struct fs_path *path)
2650 {
2651 	int ret;
2652 	struct fs_path *orphan;
2653 
2654 	orphan = fs_path_alloc();
2655 	if (!orphan)
2656 		return -ENOMEM;
2657 
2658 	ret = gen_unique_name(sctx, ino, gen, orphan);
2659 	if (ret < 0)
2660 		goto out;
2661 
2662 	ret = send_rename(sctx, path, orphan);
2663 
2664 out:
2665 	fs_path_free(orphan);
2666 	return ret;
2667 }
2668 
2669 /*
2670  * Returns 1 if a directory can be removed at this point in time.
2671  * We check this by iterating all dir items and checking if the inode behind
2672  * the dir item was already processed.
2673  */
2674 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 send_progress)
2675 {
2676 	int ret = 0;
2677 	struct btrfs_root *root = sctx->parent_root;
2678 	struct btrfs_path *path;
2679 	struct btrfs_key key;
2680 	struct btrfs_key found_key;
2681 	struct btrfs_key loc;
2682 	struct btrfs_dir_item *di;
2683 
2684 	/*
2685 	 * Don't try to rmdir the top/root subvolume dir.
2686 	 */
2687 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2688 		return 0;
2689 
2690 	path = alloc_path_for_send();
2691 	if (!path)
2692 		return -ENOMEM;
2693 
2694 	key.objectid = dir;
2695 	key.type = BTRFS_DIR_INDEX_KEY;
2696 	key.offset = 0;
2697 
2698 	while (1) {
2699 		ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2700 		if (ret < 0)
2701 			goto out;
2702 		if (!ret) {
2703 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2704 					path->slots[0]);
2705 		}
2706 		if (ret || found_key.objectid != key.objectid ||
2707 		    found_key.type != key.type) {
2708 			break;
2709 		}
2710 
2711 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2712 				struct btrfs_dir_item);
2713 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2714 
2715 		if (loc.objectid > send_progress) {
2716 			ret = 0;
2717 			goto out;
2718 		}
2719 
2720 		btrfs_release_path(path);
2721 		key.offset = found_key.offset + 1;
2722 	}
2723 
2724 	ret = 1;
2725 
2726 out:
2727 	btrfs_free_path(path);
2728 	return ret;
2729 }
2730 
2731 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2732 {
2733 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2734 	struct waiting_dir_move *entry;
2735 
2736 	while (n) {
2737 		entry = rb_entry(n, struct waiting_dir_move, node);
2738 		if (ino < entry->ino)
2739 			n = n->rb_left;
2740 		else if (ino > entry->ino)
2741 			n = n->rb_right;
2742 		else
2743 			return 1;
2744 	}
2745 	return 0;
2746 }
2747 
2748 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2749 {
2750 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2751 	struct rb_node *parent = NULL;
2752 	struct waiting_dir_move *entry, *dm;
2753 
2754 	dm = kmalloc(sizeof(*dm), GFP_NOFS);
2755 	if (!dm)
2756 		return -ENOMEM;
2757 	dm->ino = ino;
2758 
2759 	while (*p) {
2760 		parent = *p;
2761 		entry = rb_entry(parent, struct waiting_dir_move, node);
2762 		if (ino < entry->ino) {
2763 			p = &(*p)->rb_left;
2764 		} else if (ino > entry->ino) {
2765 			p = &(*p)->rb_right;
2766 		} else {
2767 			kfree(dm);
2768 			return -EEXIST;
2769 		}
2770 	}
2771 
2772 	rb_link_node(&dm->node, parent, p);
2773 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2774 	return 0;
2775 }
2776 
2777 static int del_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2778 {
2779 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2780 	struct waiting_dir_move *entry;
2781 
2782 	while (n) {
2783 		entry = rb_entry(n, struct waiting_dir_move, node);
2784 		if (ino < entry->ino) {
2785 			n = n->rb_left;
2786 		} else if (ino > entry->ino) {
2787 			n = n->rb_right;
2788 		} else {
2789 			rb_erase(&entry->node, &sctx->waiting_dir_moves);
2790 			kfree(entry);
2791 			return 0;
2792 		}
2793 	}
2794 	return -ENOENT;
2795 }
2796 
2797 static int add_pending_dir_move(struct send_ctx *sctx, u64 parent_ino)
2798 {
2799 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
2800 	struct rb_node *parent = NULL;
2801 	struct pending_dir_move *entry, *pm;
2802 	struct recorded_ref *cur;
2803 	int exists = 0;
2804 	int ret;
2805 
2806 	pm = kmalloc(sizeof(*pm), GFP_NOFS);
2807 	if (!pm)
2808 		return -ENOMEM;
2809 	pm->parent_ino = parent_ino;
2810 	pm->ino = sctx->cur_ino;
2811 	pm->gen = sctx->cur_inode_gen;
2812 	INIT_LIST_HEAD(&pm->list);
2813 	INIT_LIST_HEAD(&pm->update_refs);
2814 	RB_CLEAR_NODE(&pm->node);
2815 
2816 	while (*p) {
2817 		parent = *p;
2818 		entry = rb_entry(parent, struct pending_dir_move, node);
2819 		if (parent_ino < entry->parent_ino) {
2820 			p = &(*p)->rb_left;
2821 		} else if (parent_ino > entry->parent_ino) {
2822 			p = &(*p)->rb_right;
2823 		} else {
2824 			exists = 1;
2825 			break;
2826 		}
2827 	}
2828 
2829 	list_for_each_entry(cur, &sctx->deleted_refs, list) {
2830 		ret = dup_ref(cur, &pm->update_refs);
2831 		if (ret < 0)
2832 			goto out;
2833 	}
2834 	list_for_each_entry(cur, &sctx->new_refs, list) {
2835 		ret = dup_ref(cur, &pm->update_refs);
2836 		if (ret < 0)
2837 			goto out;
2838 	}
2839 
2840 	ret = add_waiting_dir_move(sctx, pm->ino);
2841 	if (ret)
2842 		goto out;
2843 
2844 	if (exists) {
2845 		list_add_tail(&pm->list, &entry->list);
2846 	} else {
2847 		rb_link_node(&pm->node, parent, p);
2848 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
2849 	}
2850 	ret = 0;
2851 out:
2852 	if (ret) {
2853 		__free_recorded_refs(&pm->update_refs);
2854 		kfree(pm);
2855 	}
2856 	return ret;
2857 }
2858 
2859 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
2860 						      u64 parent_ino)
2861 {
2862 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
2863 	struct pending_dir_move *entry;
2864 
2865 	while (n) {
2866 		entry = rb_entry(n, struct pending_dir_move, node);
2867 		if (parent_ino < entry->parent_ino)
2868 			n = n->rb_left;
2869 		else if (parent_ino > entry->parent_ino)
2870 			n = n->rb_right;
2871 		else
2872 			return entry;
2873 	}
2874 	return NULL;
2875 }
2876 
2877 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
2878 {
2879 	struct fs_path *from_path = NULL;
2880 	struct fs_path *to_path = NULL;
2881 	u64 orig_progress = sctx->send_progress;
2882 	struct recorded_ref *cur;
2883 	int ret;
2884 
2885 	from_path = fs_path_alloc();
2886 	if (!from_path)
2887 		return -ENOMEM;
2888 
2889 	sctx->send_progress = pm->ino;
2890 	ret = get_cur_path(sctx, pm->ino, pm->gen, from_path);
2891 	if (ret < 0)
2892 		goto out;
2893 
2894 	to_path = fs_path_alloc();
2895 	if (!to_path) {
2896 		ret = -ENOMEM;
2897 		goto out;
2898 	}
2899 
2900 	sctx->send_progress = sctx->cur_ino + 1;
2901 	ret = del_waiting_dir_move(sctx, pm->ino);
2902 	ASSERT(ret == 0);
2903 
2904 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
2905 	if (ret < 0)
2906 		goto out;
2907 
2908 	ret = send_rename(sctx, from_path, to_path);
2909 	if (ret < 0)
2910 		goto out;
2911 
2912 	ret = send_utimes(sctx, pm->ino, pm->gen);
2913 	if (ret < 0)
2914 		goto out;
2915 
2916 	/*
2917 	 * After rename/move, need to update the utimes of both new parent(s)
2918 	 * and old parent(s).
2919 	 */
2920 	list_for_each_entry(cur, &pm->update_refs, list) {
2921 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
2922 		if (ret < 0)
2923 			goto out;
2924 	}
2925 
2926 out:
2927 	fs_path_free(from_path);
2928 	fs_path_free(to_path);
2929 	sctx->send_progress = orig_progress;
2930 
2931 	return ret;
2932 }
2933 
2934 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
2935 {
2936 	if (!list_empty(&m->list))
2937 		list_del(&m->list);
2938 	if (!RB_EMPTY_NODE(&m->node))
2939 		rb_erase(&m->node, &sctx->pending_dir_moves);
2940 	__free_recorded_refs(&m->update_refs);
2941 	kfree(m);
2942 }
2943 
2944 static void tail_append_pending_moves(struct pending_dir_move *moves,
2945 				      struct list_head *stack)
2946 {
2947 	if (list_empty(&moves->list)) {
2948 		list_add_tail(&moves->list, stack);
2949 	} else {
2950 		LIST_HEAD(list);
2951 		list_splice_init(&moves->list, &list);
2952 		list_add_tail(&moves->list, stack);
2953 		list_splice_tail(&list, stack);
2954 	}
2955 }
2956 
2957 static int apply_children_dir_moves(struct send_ctx *sctx)
2958 {
2959 	struct pending_dir_move *pm;
2960 	struct list_head stack;
2961 	u64 parent_ino = sctx->cur_ino;
2962 	int ret = 0;
2963 
2964 	pm = get_pending_dir_moves(sctx, parent_ino);
2965 	if (!pm)
2966 		return 0;
2967 
2968 	INIT_LIST_HEAD(&stack);
2969 	tail_append_pending_moves(pm, &stack);
2970 
2971 	while (!list_empty(&stack)) {
2972 		pm = list_first_entry(&stack, struct pending_dir_move, list);
2973 		parent_ino = pm->ino;
2974 		ret = apply_dir_move(sctx, pm);
2975 		free_pending_move(sctx, pm);
2976 		if (ret)
2977 			goto out;
2978 		pm = get_pending_dir_moves(sctx, parent_ino);
2979 		if (pm)
2980 			tail_append_pending_moves(pm, &stack);
2981 	}
2982 	return 0;
2983 
2984 out:
2985 	while (!list_empty(&stack)) {
2986 		pm = list_first_entry(&stack, struct pending_dir_move, list);
2987 		free_pending_move(sctx, pm);
2988 	}
2989 	return ret;
2990 }
2991 
2992 static int wait_for_parent_move(struct send_ctx *sctx,
2993 				struct recorded_ref *parent_ref)
2994 {
2995 	int ret;
2996 	u64 ino = parent_ref->dir;
2997 	u64 parent_ino_before, parent_ino_after;
2998 	u64 new_gen, old_gen;
2999 	struct fs_path *path_before = NULL;
3000 	struct fs_path *path_after = NULL;
3001 	int len1, len2;
3002 
3003 	if (parent_ref->dir <= sctx->cur_ino)
3004 		return 0;
3005 
3006 	if (is_waiting_for_move(sctx, ino))
3007 		return 1;
3008 
3009 	ret = get_inode_info(sctx->parent_root, ino, NULL, &old_gen,
3010 			     NULL, NULL, NULL, NULL);
3011 	if (ret == -ENOENT)
3012 		return 0;
3013 	else if (ret < 0)
3014 		return ret;
3015 
3016 	ret = get_inode_info(sctx->send_root, ino, NULL, &new_gen,
3017 			     NULL, NULL, NULL, NULL);
3018 	if (ret < 0)
3019 		return ret;
3020 
3021 	if (new_gen != old_gen)
3022 		return 0;
3023 
3024 	path_before = fs_path_alloc();
3025 	if (!path_before)
3026 		return -ENOMEM;
3027 
3028 	ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3029 			    NULL, path_before);
3030 	if (ret == -ENOENT) {
3031 		ret = 0;
3032 		goto out;
3033 	} else if (ret < 0) {
3034 		goto out;
3035 	}
3036 
3037 	path_after = fs_path_alloc();
3038 	if (!path_after) {
3039 		ret = -ENOMEM;
3040 		goto out;
3041 	}
3042 
3043 	ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3044 			    NULL, path_after);
3045 	if (ret == -ENOENT) {
3046 		ret = 0;
3047 		goto out;
3048 	} else if (ret < 0) {
3049 		goto out;
3050 	}
3051 
3052 	len1 = fs_path_len(path_before);
3053 	len2 = fs_path_len(path_after);
3054 	if ((parent_ino_before != parent_ino_after) && (len1 != len2 ||
3055 	     memcmp(path_before->start, path_after->start, len1))) {
3056 		ret = 1;
3057 		goto out;
3058 	}
3059 	ret = 0;
3060 
3061 out:
3062 	fs_path_free(path_before);
3063 	fs_path_free(path_after);
3064 
3065 	return ret;
3066 }
3067 
3068 /*
3069  * This does all the move/link/unlink/rmdir magic.
3070  */
3071 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3072 {
3073 	int ret = 0;
3074 	struct recorded_ref *cur;
3075 	struct recorded_ref *cur2;
3076 	struct list_head check_dirs;
3077 	struct fs_path *valid_path = NULL;
3078 	u64 ow_inode = 0;
3079 	u64 ow_gen;
3080 	int did_overwrite = 0;
3081 	int is_orphan = 0;
3082 
3083 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3084 
3085 	/*
3086 	 * This should never happen as the root dir always has the same ref
3087 	 * which is always '..'
3088 	 */
3089 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3090 	INIT_LIST_HEAD(&check_dirs);
3091 
3092 	valid_path = fs_path_alloc();
3093 	if (!valid_path) {
3094 		ret = -ENOMEM;
3095 		goto out;
3096 	}
3097 
3098 	/*
3099 	 * First, check if the first ref of the current inode was overwritten
3100 	 * before. If yes, we know that the current inode was already orphanized
3101 	 * and thus use the orphan name. If not, we can use get_cur_path to
3102 	 * get the path of the first ref as it would like while receiving at
3103 	 * this point in time.
3104 	 * New inodes are always orphan at the beginning, so force to use the
3105 	 * orphan name in this case.
3106 	 * The first ref is stored in valid_path and will be updated if it
3107 	 * gets moved around.
3108 	 */
3109 	if (!sctx->cur_inode_new) {
3110 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3111 				sctx->cur_inode_gen);
3112 		if (ret < 0)
3113 			goto out;
3114 		if (ret)
3115 			did_overwrite = 1;
3116 	}
3117 	if (sctx->cur_inode_new || did_overwrite) {
3118 		ret = gen_unique_name(sctx, sctx->cur_ino,
3119 				sctx->cur_inode_gen, valid_path);
3120 		if (ret < 0)
3121 			goto out;
3122 		is_orphan = 1;
3123 	} else {
3124 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3125 				valid_path);
3126 		if (ret < 0)
3127 			goto out;
3128 	}
3129 
3130 	list_for_each_entry(cur, &sctx->new_refs, list) {
3131 		/*
3132 		 * We may have refs where the parent directory does not exist
3133 		 * yet. This happens if the parent directories inum is higher
3134 		 * the the current inum. To handle this case, we create the
3135 		 * parent directory out of order. But we need to check if this
3136 		 * did already happen before due to other refs in the same dir.
3137 		 */
3138 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3139 		if (ret < 0)
3140 			goto out;
3141 		if (ret == inode_state_will_create) {
3142 			ret = 0;
3143 			/*
3144 			 * First check if any of the current inodes refs did
3145 			 * already create the dir.
3146 			 */
3147 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3148 				if (cur == cur2)
3149 					break;
3150 				if (cur2->dir == cur->dir) {
3151 					ret = 1;
3152 					break;
3153 				}
3154 			}
3155 
3156 			/*
3157 			 * If that did not happen, check if a previous inode
3158 			 * did already create the dir.
3159 			 */
3160 			if (!ret)
3161 				ret = did_create_dir(sctx, cur->dir);
3162 			if (ret < 0)
3163 				goto out;
3164 			if (!ret) {
3165 				ret = send_create_inode(sctx, cur->dir);
3166 				if (ret < 0)
3167 					goto out;
3168 			}
3169 		}
3170 
3171 		/*
3172 		 * Check if this new ref would overwrite the first ref of
3173 		 * another unprocessed inode. If yes, orphanize the
3174 		 * overwritten inode. If we find an overwritten ref that is
3175 		 * not the first ref, simply unlink it.
3176 		 */
3177 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3178 				cur->name, cur->name_len,
3179 				&ow_inode, &ow_gen);
3180 		if (ret < 0)
3181 			goto out;
3182 		if (ret) {
3183 			ret = is_first_ref(sctx->parent_root,
3184 					   ow_inode, cur->dir, cur->name,
3185 					   cur->name_len);
3186 			if (ret < 0)
3187 				goto out;
3188 			if (ret) {
3189 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3190 						cur->full_path);
3191 				if (ret < 0)
3192 					goto out;
3193 			} else {
3194 				ret = send_unlink(sctx, cur->full_path);
3195 				if (ret < 0)
3196 					goto out;
3197 			}
3198 		}
3199 
3200 		/*
3201 		 * link/move the ref to the new place. If we have an orphan
3202 		 * inode, move it and update valid_path. If not, link or move
3203 		 * it depending on the inode mode.
3204 		 */
3205 		if (is_orphan) {
3206 			ret = send_rename(sctx, valid_path, cur->full_path);
3207 			if (ret < 0)
3208 				goto out;
3209 			is_orphan = 0;
3210 			ret = fs_path_copy(valid_path, cur->full_path);
3211 			if (ret < 0)
3212 				goto out;
3213 		} else {
3214 			if (S_ISDIR(sctx->cur_inode_mode)) {
3215 				/*
3216 				 * Dirs can't be linked, so move it. For moved
3217 				 * dirs, we always have one new and one deleted
3218 				 * ref. The deleted ref is ignored later.
3219 				 */
3220 				if (wait_for_parent_move(sctx, cur)) {
3221 					ret = add_pending_dir_move(sctx,
3222 								   cur->dir);
3223 					*pending_move = 1;
3224 				} else {
3225 					ret = send_rename(sctx, valid_path,
3226 							  cur->full_path);
3227 					if (!ret)
3228 						ret = fs_path_copy(valid_path,
3229 							       cur->full_path);
3230 				}
3231 				if (ret < 0)
3232 					goto out;
3233 			} else {
3234 				ret = send_link(sctx, cur->full_path,
3235 						valid_path);
3236 				if (ret < 0)
3237 					goto out;
3238 			}
3239 		}
3240 		ret = dup_ref(cur, &check_dirs);
3241 		if (ret < 0)
3242 			goto out;
3243 	}
3244 
3245 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3246 		/*
3247 		 * Check if we can already rmdir the directory. If not,
3248 		 * orphanize it. For every dir item inside that gets deleted
3249 		 * later, we do this check again and rmdir it then if possible.
3250 		 * See the use of check_dirs for more details.
3251 		 */
3252 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_ino);
3253 		if (ret < 0)
3254 			goto out;
3255 		if (ret) {
3256 			ret = send_rmdir(sctx, valid_path);
3257 			if (ret < 0)
3258 				goto out;
3259 		} else if (!is_orphan) {
3260 			ret = orphanize_inode(sctx, sctx->cur_ino,
3261 					sctx->cur_inode_gen, valid_path);
3262 			if (ret < 0)
3263 				goto out;
3264 			is_orphan = 1;
3265 		}
3266 
3267 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3268 			ret = dup_ref(cur, &check_dirs);
3269 			if (ret < 0)
3270 				goto out;
3271 		}
3272 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
3273 		   !list_empty(&sctx->deleted_refs)) {
3274 		/*
3275 		 * We have a moved dir. Add the old parent to check_dirs
3276 		 */
3277 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3278 				list);
3279 		ret = dup_ref(cur, &check_dirs);
3280 		if (ret < 0)
3281 			goto out;
3282 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
3283 		/*
3284 		 * We have a non dir inode. Go through all deleted refs and
3285 		 * unlink them if they were not already overwritten by other
3286 		 * inodes.
3287 		 */
3288 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3289 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3290 					sctx->cur_ino, sctx->cur_inode_gen,
3291 					cur->name, cur->name_len);
3292 			if (ret < 0)
3293 				goto out;
3294 			if (!ret) {
3295 				ret = send_unlink(sctx, cur->full_path);
3296 				if (ret < 0)
3297 					goto out;
3298 			}
3299 			ret = dup_ref(cur, &check_dirs);
3300 			if (ret < 0)
3301 				goto out;
3302 		}
3303 		/*
3304 		 * If the inode is still orphan, unlink the orphan. This may
3305 		 * happen when a previous inode did overwrite the first ref
3306 		 * of this inode and no new refs were added for the current
3307 		 * inode. Unlinking does not mean that the inode is deleted in
3308 		 * all cases. There may still be links to this inode in other
3309 		 * places.
3310 		 */
3311 		if (is_orphan) {
3312 			ret = send_unlink(sctx, valid_path);
3313 			if (ret < 0)
3314 				goto out;
3315 		}
3316 	}
3317 
3318 	/*
3319 	 * We did collect all parent dirs where cur_inode was once located. We
3320 	 * now go through all these dirs and check if they are pending for
3321 	 * deletion and if it's finally possible to perform the rmdir now.
3322 	 * We also update the inode stats of the parent dirs here.
3323 	 */
3324 	list_for_each_entry(cur, &check_dirs, list) {
3325 		/*
3326 		 * In case we had refs into dirs that were not processed yet,
3327 		 * we don't need to do the utime and rmdir logic for these dirs.
3328 		 * The dir will be processed later.
3329 		 */
3330 		if (cur->dir > sctx->cur_ino)
3331 			continue;
3332 
3333 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3334 		if (ret < 0)
3335 			goto out;
3336 
3337 		if (ret == inode_state_did_create ||
3338 		    ret == inode_state_no_change) {
3339 			/* TODO delayed utimes */
3340 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3341 			if (ret < 0)
3342 				goto out;
3343 		} else if (ret == inode_state_did_delete) {
3344 			ret = can_rmdir(sctx, cur->dir, sctx->cur_ino);
3345 			if (ret < 0)
3346 				goto out;
3347 			if (ret) {
3348 				ret = get_cur_path(sctx, cur->dir,
3349 						   cur->dir_gen, valid_path);
3350 				if (ret < 0)
3351 					goto out;
3352 				ret = send_rmdir(sctx, valid_path);
3353 				if (ret < 0)
3354 					goto out;
3355 			}
3356 		}
3357 	}
3358 
3359 	ret = 0;
3360 
3361 out:
3362 	__free_recorded_refs(&check_dirs);
3363 	free_recorded_refs(sctx);
3364 	fs_path_free(valid_path);
3365 	return ret;
3366 }
3367 
3368 static int __record_new_ref(int num, u64 dir, int index,
3369 			    struct fs_path *name,
3370 			    void *ctx)
3371 {
3372 	int ret = 0;
3373 	struct send_ctx *sctx = ctx;
3374 	struct fs_path *p;
3375 	u64 gen;
3376 
3377 	p = fs_path_alloc();
3378 	if (!p)
3379 		return -ENOMEM;
3380 
3381 	ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, NULL,
3382 			NULL, NULL);
3383 	if (ret < 0)
3384 		goto out;
3385 
3386 	ret = get_cur_path(sctx, dir, gen, p);
3387 	if (ret < 0)
3388 		goto out;
3389 	ret = fs_path_add_path(p, name);
3390 	if (ret < 0)
3391 		goto out;
3392 
3393 	ret = record_ref(&sctx->new_refs, dir, gen, p);
3394 
3395 out:
3396 	if (ret)
3397 		fs_path_free(p);
3398 	return ret;
3399 }
3400 
3401 static int __record_deleted_ref(int num, u64 dir, int index,
3402 				struct fs_path *name,
3403 				void *ctx)
3404 {
3405 	int ret = 0;
3406 	struct send_ctx *sctx = ctx;
3407 	struct fs_path *p;
3408 	u64 gen;
3409 
3410 	p = fs_path_alloc();
3411 	if (!p)
3412 		return -ENOMEM;
3413 
3414 	ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, NULL,
3415 			NULL, NULL);
3416 	if (ret < 0)
3417 		goto out;
3418 
3419 	ret = get_cur_path(sctx, dir, gen, p);
3420 	if (ret < 0)
3421 		goto out;
3422 	ret = fs_path_add_path(p, name);
3423 	if (ret < 0)
3424 		goto out;
3425 
3426 	ret = record_ref(&sctx->deleted_refs, dir, gen, p);
3427 
3428 out:
3429 	if (ret)
3430 		fs_path_free(p);
3431 	return ret;
3432 }
3433 
3434 static int record_new_ref(struct send_ctx *sctx)
3435 {
3436 	int ret;
3437 
3438 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3439 				sctx->cmp_key, 0, __record_new_ref, sctx);
3440 	if (ret < 0)
3441 		goto out;
3442 	ret = 0;
3443 
3444 out:
3445 	return ret;
3446 }
3447 
3448 static int record_deleted_ref(struct send_ctx *sctx)
3449 {
3450 	int ret;
3451 
3452 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3453 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
3454 	if (ret < 0)
3455 		goto out;
3456 	ret = 0;
3457 
3458 out:
3459 	return ret;
3460 }
3461 
3462 struct find_ref_ctx {
3463 	u64 dir;
3464 	u64 dir_gen;
3465 	struct btrfs_root *root;
3466 	struct fs_path *name;
3467 	int found_idx;
3468 };
3469 
3470 static int __find_iref(int num, u64 dir, int index,
3471 		       struct fs_path *name,
3472 		       void *ctx_)
3473 {
3474 	struct find_ref_ctx *ctx = ctx_;
3475 	u64 dir_gen;
3476 	int ret;
3477 
3478 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3479 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3480 		/*
3481 		 * To avoid doing extra lookups we'll only do this if everything
3482 		 * else matches.
3483 		 */
3484 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3485 				     NULL, NULL, NULL);
3486 		if (ret)
3487 			return ret;
3488 		if (dir_gen != ctx->dir_gen)
3489 			return 0;
3490 		ctx->found_idx = num;
3491 		return 1;
3492 	}
3493 	return 0;
3494 }
3495 
3496 static int find_iref(struct btrfs_root *root,
3497 		     struct btrfs_path *path,
3498 		     struct btrfs_key *key,
3499 		     u64 dir, u64 dir_gen, struct fs_path *name)
3500 {
3501 	int ret;
3502 	struct find_ref_ctx ctx;
3503 
3504 	ctx.dir = dir;
3505 	ctx.name = name;
3506 	ctx.dir_gen = dir_gen;
3507 	ctx.found_idx = -1;
3508 	ctx.root = root;
3509 
3510 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3511 	if (ret < 0)
3512 		return ret;
3513 
3514 	if (ctx.found_idx == -1)
3515 		return -ENOENT;
3516 
3517 	return ctx.found_idx;
3518 }
3519 
3520 static int __record_changed_new_ref(int num, u64 dir, int index,
3521 				    struct fs_path *name,
3522 				    void *ctx)
3523 {
3524 	u64 dir_gen;
3525 	int ret;
3526 	struct send_ctx *sctx = ctx;
3527 
3528 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3529 			     NULL, NULL, NULL);
3530 	if (ret)
3531 		return ret;
3532 
3533 	ret = find_iref(sctx->parent_root, sctx->right_path,
3534 			sctx->cmp_key, dir, dir_gen, name);
3535 	if (ret == -ENOENT)
3536 		ret = __record_new_ref(num, dir, index, name, sctx);
3537 	else if (ret > 0)
3538 		ret = 0;
3539 
3540 	return ret;
3541 }
3542 
3543 static int __record_changed_deleted_ref(int num, u64 dir, int index,
3544 					struct fs_path *name,
3545 					void *ctx)
3546 {
3547 	u64 dir_gen;
3548 	int ret;
3549 	struct send_ctx *sctx = ctx;
3550 
3551 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
3552 			     NULL, NULL, NULL);
3553 	if (ret)
3554 		return ret;
3555 
3556 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
3557 			dir, dir_gen, name);
3558 	if (ret == -ENOENT)
3559 		ret = __record_deleted_ref(num, dir, index, name, sctx);
3560 	else if (ret > 0)
3561 		ret = 0;
3562 
3563 	return ret;
3564 }
3565 
3566 static int record_changed_ref(struct send_ctx *sctx)
3567 {
3568 	int ret = 0;
3569 
3570 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3571 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3572 	if (ret < 0)
3573 		goto out;
3574 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3575 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3576 	if (ret < 0)
3577 		goto out;
3578 	ret = 0;
3579 
3580 out:
3581 	return ret;
3582 }
3583 
3584 /*
3585  * Record and process all refs at once. Needed when an inode changes the
3586  * generation number, which means that it was deleted and recreated.
3587  */
3588 static int process_all_refs(struct send_ctx *sctx,
3589 			    enum btrfs_compare_tree_result cmd)
3590 {
3591 	int ret;
3592 	struct btrfs_root *root;
3593 	struct btrfs_path *path;
3594 	struct btrfs_key key;
3595 	struct btrfs_key found_key;
3596 	struct extent_buffer *eb;
3597 	int slot;
3598 	iterate_inode_ref_t cb;
3599 	int pending_move = 0;
3600 
3601 	path = alloc_path_for_send();
3602 	if (!path)
3603 		return -ENOMEM;
3604 
3605 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
3606 		root = sctx->send_root;
3607 		cb = __record_new_ref;
3608 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
3609 		root = sctx->parent_root;
3610 		cb = __record_deleted_ref;
3611 	} else {
3612 		BUG();
3613 	}
3614 
3615 	key.objectid = sctx->cmp_key->objectid;
3616 	key.type = BTRFS_INODE_REF_KEY;
3617 	key.offset = 0;
3618 	while (1) {
3619 		ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3620 		if (ret < 0)
3621 			goto out;
3622 		if (ret)
3623 			break;
3624 
3625 		eb = path->nodes[0];
3626 		slot = path->slots[0];
3627 		btrfs_item_key_to_cpu(eb, &found_key, slot);
3628 
3629 		if (found_key.objectid != key.objectid ||
3630 		    (found_key.type != BTRFS_INODE_REF_KEY &&
3631 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
3632 			break;
3633 
3634 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
3635 		btrfs_release_path(path);
3636 		if (ret < 0)
3637 			goto out;
3638 
3639 		key.offset = found_key.offset + 1;
3640 	}
3641 	btrfs_release_path(path);
3642 
3643 	ret = process_recorded_refs(sctx, &pending_move);
3644 	/* Only applicable to an incremental send. */
3645 	ASSERT(pending_move == 0);
3646 
3647 out:
3648 	btrfs_free_path(path);
3649 	return ret;
3650 }
3651 
3652 static int send_set_xattr(struct send_ctx *sctx,
3653 			  struct fs_path *path,
3654 			  const char *name, int name_len,
3655 			  const char *data, int data_len)
3656 {
3657 	int ret = 0;
3658 
3659 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
3660 	if (ret < 0)
3661 		goto out;
3662 
3663 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3664 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3665 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
3666 
3667 	ret = send_cmd(sctx);
3668 
3669 tlv_put_failure:
3670 out:
3671 	return ret;
3672 }
3673 
3674 static int send_remove_xattr(struct send_ctx *sctx,
3675 			  struct fs_path *path,
3676 			  const char *name, int name_len)
3677 {
3678 	int ret = 0;
3679 
3680 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
3681 	if (ret < 0)
3682 		goto out;
3683 
3684 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3685 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3686 
3687 	ret = send_cmd(sctx);
3688 
3689 tlv_put_failure:
3690 out:
3691 	return ret;
3692 }
3693 
3694 static int __process_new_xattr(int num, struct btrfs_key *di_key,
3695 			       const char *name, int name_len,
3696 			       const char *data, int data_len,
3697 			       u8 type, void *ctx)
3698 {
3699 	int ret;
3700 	struct send_ctx *sctx = ctx;
3701 	struct fs_path *p;
3702 	posix_acl_xattr_header dummy_acl;
3703 
3704 	p = fs_path_alloc();
3705 	if (!p)
3706 		return -ENOMEM;
3707 
3708 	/*
3709 	 * This hack is needed because empty acl's are stored as zero byte
3710 	 * data in xattrs. Problem with that is, that receiving these zero byte
3711 	 * acl's will fail later. To fix this, we send a dummy acl list that
3712 	 * only contains the version number and no entries.
3713 	 */
3714 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
3715 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
3716 		if (data_len == 0) {
3717 			dummy_acl.a_version =
3718 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
3719 			data = (char *)&dummy_acl;
3720 			data_len = sizeof(dummy_acl);
3721 		}
3722 	}
3723 
3724 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3725 	if (ret < 0)
3726 		goto out;
3727 
3728 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
3729 
3730 out:
3731 	fs_path_free(p);
3732 	return ret;
3733 }
3734 
3735 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
3736 				   const char *name, int name_len,
3737 				   const char *data, int data_len,
3738 				   u8 type, void *ctx)
3739 {
3740 	int ret;
3741 	struct send_ctx *sctx = ctx;
3742 	struct fs_path *p;
3743 
3744 	p = fs_path_alloc();
3745 	if (!p)
3746 		return -ENOMEM;
3747 
3748 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3749 	if (ret < 0)
3750 		goto out;
3751 
3752 	ret = send_remove_xattr(sctx, p, name, name_len);
3753 
3754 out:
3755 	fs_path_free(p);
3756 	return ret;
3757 }
3758 
3759 static int process_new_xattr(struct send_ctx *sctx)
3760 {
3761 	int ret = 0;
3762 
3763 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
3764 			       sctx->cmp_key, __process_new_xattr, sctx);
3765 
3766 	return ret;
3767 }
3768 
3769 static int process_deleted_xattr(struct send_ctx *sctx)
3770 {
3771 	int ret;
3772 
3773 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
3774 			       sctx->cmp_key, __process_deleted_xattr, sctx);
3775 
3776 	return ret;
3777 }
3778 
3779 struct find_xattr_ctx {
3780 	const char *name;
3781 	int name_len;
3782 	int found_idx;
3783 	char *found_data;
3784 	int found_data_len;
3785 };
3786 
3787 static int __find_xattr(int num, struct btrfs_key *di_key,
3788 			const char *name, int name_len,
3789 			const char *data, int data_len,
3790 			u8 type, void *vctx)
3791 {
3792 	struct find_xattr_ctx *ctx = vctx;
3793 
3794 	if (name_len == ctx->name_len &&
3795 	    strncmp(name, ctx->name, name_len) == 0) {
3796 		ctx->found_idx = num;
3797 		ctx->found_data_len = data_len;
3798 		ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
3799 		if (!ctx->found_data)
3800 			return -ENOMEM;
3801 		return 1;
3802 	}
3803 	return 0;
3804 }
3805 
3806 static int find_xattr(struct btrfs_root *root,
3807 		      struct btrfs_path *path,
3808 		      struct btrfs_key *key,
3809 		      const char *name, int name_len,
3810 		      char **data, int *data_len)
3811 {
3812 	int ret;
3813 	struct find_xattr_ctx ctx;
3814 
3815 	ctx.name = name;
3816 	ctx.name_len = name_len;
3817 	ctx.found_idx = -1;
3818 	ctx.found_data = NULL;
3819 	ctx.found_data_len = 0;
3820 
3821 	ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
3822 	if (ret < 0)
3823 		return ret;
3824 
3825 	if (ctx.found_idx == -1)
3826 		return -ENOENT;
3827 	if (data) {
3828 		*data = ctx.found_data;
3829 		*data_len = ctx.found_data_len;
3830 	} else {
3831 		kfree(ctx.found_data);
3832 	}
3833 	return ctx.found_idx;
3834 }
3835 
3836 
3837 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
3838 				       const char *name, int name_len,
3839 				       const char *data, int data_len,
3840 				       u8 type, void *ctx)
3841 {
3842 	int ret;
3843 	struct send_ctx *sctx = ctx;
3844 	char *found_data = NULL;
3845 	int found_data_len  = 0;
3846 
3847 	ret = find_xattr(sctx->parent_root, sctx->right_path,
3848 			 sctx->cmp_key, name, name_len, &found_data,
3849 			 &found_data_len);
3850 	if (ret == -ENOENT) {
3851 		ret = __process_new_xattr(num, di_key, name, name_len, data,
3852 				data_len, type, ctx);
3853 	} else if (ret >= 0) {
3854 		if (data_len != found_data_len ||
3855 		    memcmp(data, found_data, data_len)) {
3856 			ret = __process_new_xattr(num, di_key, name, name_len,
3857 					data, data_len, type, ctx);
3858 		} else {
3859 			ret = 0;
3860 		}
3861 	}
3862 
3863 	kfree(found_data);
3864 	return ret;
3865 }
3866 
3867 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
3868 					   const char *name, int name_len,
3869 					   const char *data, int data_len,
3870 					   u8 type, void *ctx)
3871 {
3872 	int ret;
3873 	struct send_ctx *sctx = ctx;
3874 
3875 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
3876 			 name, name_len, NULL, NULL);
3877 	if (ret == -ENOENT)
3878 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
3879 				data_len, type, ctx);
3880 	else if (ret >= 0)
3881 		ret = 0;
3882 
3883 	return ret;
3884 }
3885 
3886 static int process_changed_xattr(struct send_ctx *sctx)
3887 {
3888 	int ret = 0;
3889 
3890 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
3891 			sctx->cmp_key, __process_changed_new_xattr, sctx);
3892 	if (ret < 0)
3893 		goto out;
3894 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
3895 			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
3896 
3897 out:
3898 	return ret;
3899 }
3900 
3901 static int process_all_new_xattrs(struct send_ctx *sctx)
3902 {
3903 	int ret;
3904 	struct btrfs_root *root;
3905 	struct btrfs_path *path;
3906 	struct btrfs_key key;
3907 	struct btrfs_key found_key;
3908 	struct extent_buffer *eb;
3909 	int slot;
3910 
3911 	path = alloc_path_for_send();
3912 	if (!path)
3913 		return -ENOMEM;
3914 
3915 	root = sctx->send_root;
3916 
3917 	key.objectid = sctx->cmp_key->objectid;
3918 	key.type = BTRFS_XATTR_ITEM_KEY;
3919 	key.offset = 0;
3920 	while (1) {
3921 		ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3922 		if (ret < 0)
3923 			goto out;
3924 		if (ret) {
3925 			ret = 0;
3926 			goto out;
3927 		}
3928 
3929 		eb = path->nodes[0];
3930 		slot = path->slots[0];
3931 		btrfs_item_key_to_cpu(eb, &found_key, slot);
3932 
3933 		if (found_key.objectid != key.objectid ||
3934 		    found_key.type != key.type) {
3935 			ret = 0;
3936 			goto out;
3937 		}
3938 
3939 		ret = iterate_dir_item(root, path, &found_key,
3940 				       __process_new_xattr, sctx);
3941 		if (ret < 0)
3942 			goto out;
3943 
3944 		btrfs_release_path(path);
3945 		key.offset = found_key.offset + 1;
3946 	}
3947 
3948 out:
3949 	btrfs_free_path(path);
3950 	return ret;
3951 }
3952 
3953 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
3954 {
3955 	struct btrfs_root *root = sctx->send_root;
3956 	struct btrfs_fs_info *fs_info = root->fs_info;
3957 	struct inode *inode;
3958 	struct page *page;
3959 	char *addr;
3960 	struct btrfs_key key;
3961 	pgoff_t index = offset >> PAGE_CACHE_SHIFT;
3962 	pgoff_t last_index;
3963 	unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
3964 	ssize_t ret = 0;
3965 
3966 	key.objectid = sctx->cur_ino;
3967 	key.type = BTRFS_INODE_ITEM_KEY;
3968 	key.offset = 0;
3969 
3970 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3971 	if (IS_ERR(inode))
3972 		return PTR_ERR(inode);
3973 
3974 	if (offset + len > i_size_read(inode)) {
3975 		if (offset > i_size_read(inode))
3976 			len = 0;
3977 		else
3978 			len = offset - i_size_read(inode);
3979 	}
3980 	if (len == 0)
3981 		goto out;
3982 
3983 	last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
3984 	while (index <= last_index) {
3985 		unsigned cur_len = min_t(unsigned, len,
3986 					 PAGE_CACHE_SIZE - pg_offset);
3987 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3988 		if (!page) {
3989 			ret = -ENOMEM;
3990 			break;
3991 		}
3992 
3993 		if (!PageUptodate(page)) {
3994 			btrfs_readpage(NULL, page);
3995 			lock_page(page);
3996 			if (!PageUptodate(page)) {
3997 				unlock_page(page);
3998 				page_cache_release(page);
3999 				ret = -EIO;
4000 				break;
4001 			}
4002 		}
4003 
4004 		addr = kmap(page);
4005 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4006 		kunmap(page);
4007 		unlock_page(page);
4008 		page_cache_release(page);
4009 		index++;
4010 		pg_offset = 0;
4011 		len -= cur_len;
4012 		ret += cur_len;
4013 	}
4014 out:
4015 	iput(inode);
4016 	return ret;
4017 }
4018 
4019 /*
4020  * Read some bytes from the current inode/file and send a write command to
4021  * user space.
4022  */
4023 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4024 {
4025 	int ret = 0;
4026 	struct fs_path *p;
4027 	ssize_t num_read = 0;
4028 
4029 	p = fs_path_alloc();
4030 	if (!p)
4031 		return -ENOMEM;
4032 
4033 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4034 
4035 	num_read = fill_read_buf(sctx, offset, len);
4036 	if (num_read <= 0) {
4037 		if (num_read < 0)
4038 			ret = num_read;
4039 		goto out;
4040 	}
4041 
4042 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4043 	if (ret < 0)
4044 		goto out;
4045 
4046 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4047 	if (ret < 0)
4048 		goto out;
4049 
4050 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4051 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4052 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4053 
4054 	ret = send_cmd(sctx);
4055 
4056 tlv_put_failure:
4057 out:
4058 	fs_path_free(p);
4059 	if (ret < 0)
4060 		return ret;
4061 	return num_read;
4062 }
4063 
4064 /*
4065  * Send a clone command to user space.
4066  */
4067 static int send_clone(struct send_ctx *sctx,
4068 		      u64 offset, u32 len,
4069 		      struct clone_root *clone_root)
4070 {
4071 	int ret = 0;
4072 	struct fs_path *p;
4073 	u64 gen;
4074 
4075 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4076 	       "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4077 		clone_root->root->objectid, clone_root->ino,
4078 		clone_root->offset);
4079 
4080 	p = fs_path_alloc();
4081 	if (!p)
4082 		return -ENOMEM;
4083 
4084 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4085 	if (ret < 0)
4086 		goto out;
4087 
4088 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4089 	if (ret < 0)
4090 		goto out;
4091 
4092 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4093 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4094 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4095 
4096 	if (clone_root->root == sctx->send_root) {
4097 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4098 				&gen, NULL, NULL, NULL, NULL);
4099 		if (ret < 0)
4100 			goto out;
4101 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4102 	} else {
4103 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4104 	}
4105 	if (ret < 0)
4106 		goto out;
4107 
4108 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4109 			clone_root->root->root_item.uuid);
4110 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4111 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4112 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4113 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4114 			clone_root->offset);
4115 
4116 	ret = send_cmd(sctx);
4117 
4118 tlv_put_failure:
4119 out:
4120 	fs_path_free(p);
4121 	return ret;
4122 }
4123 
4124 /*
4125  * Send an update extent command to user space.
4126  */
4127 static int send_update_extent(struct send_ctx *sctx,
4128 			      u64 offset, u32 len)
4129 {
4130 	int ret = 0;
4131 	struct fs_path *p;
4132 
4133 	p = fs_path_alloc();
4134 	if (!p)
4135 		return -ENOMEM;
4136 
4137 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4138 	if (ret < 0)
4139 		goto out;
4140 
4141 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4142 	if (ret < 0)
4143 		goto out;
4144 
4145 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4146 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4147 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4148 
4149 	ret = send_cmd(sctx);
4150 
4151 tlv_put_failure:
4152 out:
4153 	fs_path_free(p);
4154 	return ret;
4155 }
4156 
4157 static int send_hole(struct send_ctx *sctx, u64 end)
4158 {
4159 	struct fs_path *p = NULL;
4160 	u64 offset = sctx->cur_inode_last_extent;
4161 	u64 len;
4162 	int ret = 0;
4163 
4164 	p = fs_path_alloc();
4165 	if (!p)
4166 		return -ENOMEM;
4167 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4168 	while (offset < end) {
4169 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4170 
4171 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4172 		if (ret < 0)
4173 			break;
4174 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4175 		if (ret < 0)
4176 			break;
4177 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4178 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4179 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4180 		ret = send_cmd(sctx);
4181 		if (ret < 0)
4182 			break;
4183 		offset += len;
4184 	}
4185 tlv_put_failure:
4186 	fs_path_free(p);
4187 	return ret;
4188 }
4189 
4190 static int send_write_or_clone(struct send_ctx *sctx,
4191 			       struct btrfs_path *path,
4192 			       struct btrfs_key *key,
4193 			       struct clone_root *clone_root)
4194 {
4195 	int ret = 0;
4196 	struct btrfs_file_extent_item *ei;
4197 	u64 offset = key->offset;
4198 	u64 pos = 0;
4199 	u64 len;
4200 	u32 l;
4201 	u8 type;
4202 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4203 
4204 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4205 			struct btrfs_file_extent_item);
4206 	type = btrfs_file_extent_type(path->nodes[0], ei);
4207 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4208 		len = btrfs_file_extent_inline_len(path->nodes[0],
4209 						   path->slots[0], ei);
4210 		/*
4211 		 * it is possible the inline item won't cover the whole page,
4212 		 * but there may be items after this page.  Make
4213 		 * sure to send the whole thing
4214 		 */
4215 		len = PAGE_CACHE_ALIGN(len);
4216 	} else {
4217 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4218 	}
4219 
4220 	if (offset + len > sctx->cur_inode_size)
4221 		len = sctx->cur_inode_size - offset;
4222 	if (len == 0) {
4223 		ret = 0;
4224 		goto out;
4225 	}
4226 
4227 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
4228 		ret = send_clone(sctx, offset, len, clone_root);
4229 	} else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
4230 		ret = send_update_extent(sctx, offset, len);
4231 	} else {
4232 		while (pos < len) {
4233 			l = len - pos;
4234 			if (l > BTRFS_SEND_READ_SIZE)
4235 				l = BTRFS_SEND_READ_SIZE;
4236 			ret = send_write(sctx, pos + offset, l);
4237 			if (ret < 0)
4238 				goto out;
4239 			if (!ret)
4240 				break;
4241 			pos += ret;
4242 		}
4243 		ret = 0;
4244 	}
4245 out:
4246 	return ret;
4247 }
4248 
4249 static int is_extent_unchanged(struct send_ctx *sctx,
4250 			       struct btrfs_path *left_path,
4251 			       struct btrfs_key *ekey)
4252 {
4253 	int ret = 0;
4254 	struct btrfs_key key;
4255 	struct btrfs_path *path = NULL;
4256 	struct extent_buffer *eb;
4257 	int slot;
4258 	struct btrfs_key found_key;
4259 	struct btrfs_file_extent_item *ei;
4260 	u64 left_disknr;
4261 	u64 right_disknr;
4262 	u64 left_offset;
4263 	u64 right_offset;
4264 	u64 left_offset_fixed;
4265 	u64 left_len;
4266 	u64 right_len;
4267 	u64 left_gen;
4268 	u64 right_gen;
4269 	u8 left_type;
4270 	u8 right_type;
4271 
4272 	path = alloc_path_for_send();
4273 	if (!path)
4274 		return -ENOMEM;
4275 
4276 	eb = left_path->nodes[0];
4277 	slot = left_path->slots[0];
4278 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4279 	left_type = btrfs_file_extent_type(eb, ei);
4280 
4281 	if (left_type != BTRFS_FILE_EXTENT_REG) {
4282 		ret = 0;
4283 		goto out;
4284 	}
4285 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4286 	left_len = btrfs_file_extent_num_bytes(eb, ei);
4287 	left_offset = btrfs_file_extent_offset(eb, ei);
4288 	left_gen = btrfs_file_extent_generation(eb, ei);
4289 
4290 	/*
4291 	 * Following comments will refer to these graphics. L is the left
4292 	 * extents which we are checking at the moment. 1-8 are the right
4293 	 * extents that we iterate.
4294 	 *
4295 	 *       |-----L-----|
4296 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4297 	 *
4298 	 *       |-----L-----|
4299 	 * |--1--|-2b-|...(same as above)
4300 	 *
4301 	 * Alternative situation. Happens on files where extents got split.
4302 	 *       |-----L-----|
4303 	 * |-----------7-----------|-6-|
4304 	 *
4305 	 * Alternative situation. Happens on files which got larger.
4306 	 *       |-----L-----|
4307 	 * |-8-|
4308 	 * Nothing follows after 8.
4309 	 */
4310 
4311 	key.objectid = ekey->objectid;
4312 	key.type = BTRFS_EXTENT_DATA_KEY;
4313 	key.offset = ekey->offset;
4314 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4315 	if (ret < 0)
4316 		goto out;
4317 	if (ret) {
4318 		ret = 0;
4319 		goto out;
4320 	}
4321 
4322 	/*
4323 	 * Handle special case where the right side has no extents at all.
4324 	 */
4325 	eb = path->nodes[0];
4326 	slot = path->slots[0];
4327 	btrfs_item_key_to_cpu(eb, &found_key, slot);
4328 	if (found_key.objectid != key.objectid ||
4329 	    found_key.type != key.type) {
4330 		/* If we're a hole then just pretend nothing changed */
4331 		ret = (left_disknr) ? 0 : 1;
4332 		goto out;
4333 	}
4334 
4335 	/*
4336 	 * We're now on 2a, 2b or 7.
4337 	 */
4338 	key = found_key;
4339 	while (key.offset < ekey->offset + left_len) {
4340 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4341 		right_type = btrfs_file_extent_type(eb, ei);
4342 		if (right_type != BTRFS_FILE_EXTENT_REG) {
4343 			ret = 0;
4344 			goto out;
4345 		}
4346 
4347 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4348 		right_len = btrfs_file_extent_num_bytes(eb, ei);
4349 		right_offset = btrfs_file_extent_offset(eb, ei);
4350 		right_gen = btrfs_file_extent_generation(eb, ei);
4351 
4352 		/*
4353 		 * Are we at extent 8? If yes, we know the extent is changed.
4354 		 * This may only happen on the first iteration.
4355 		 */
4356 		if (found_key.offset + right_len <= ekey->offset) {
4357 			/* If we're a hole just pretend nothing changed */
4358 			ret = (left_disknr) ? 0 : 1;
4359 			goto out;
4360 		}
4361 
4362 		left_offset_fixed = left_offset;
4363 		if (key.offset < ekey->offset) {
4364 			/* Fix the right offset for 2a and 7. */
4365 			right_offset += ekey->offset - key.offset;
4366 		} else {
4367 			/* Fix the left offset for all behind 2a and 2b */
4368 			left_offset_fixed += key.offset - ekey->offset;
4369 		}
4370 
4371 		/*
4372 		 * Check if we have the same extent.
4373 		 */
4374 		if (left_disknr != right_disknr ||
4375 		    left_offset_fixed != right_offset ||
4376 		    left_gen != right_gen) {
4377 			ret = 0;
4378 			goto out;
4379 		}
4380 
4381 		/*
4382 		 * Go to the next extent.
4383 		 */
4384 		ret = btrfs_next_item(sctx->parent_root, path);
4385 		if (ret < 0)
4386 			goto out;
4387 		if (!ret) {
4388 			eb = path->nodes[0];
4389 			slot = path->slots[0];
4390 			btrfs_item_key_to_cpu(eb, &found_key, slot);
4391 		}
4392 		if (ret || found_key.objectid != key.objectid ||
4393 		    found_key.type != key.type) {
4394 			key.offset += right_len;
4395 			break;
4396 		}
4397 		if (found_key.offset != key.offset + right_len) {
4398 			ret = 0;
4399 			goto out;
4400 		}
4401 		key = found_key;
4402 	}
4403 
4404 	/*
4405 	 * We're now behind the left extent (treat as unchanged) or at the end
4406 	 * of the right side (treat as changed).
4407 	 */
4408 	if (key.offset >= ekey->offset + left_len)
4409 		ret = 1;
4410 	else
4411 		ret = 0;
4412 
4413 
4414 out:
4415 	btrfs_free_path(path);
4416 	return ret;
4417 }
4418 
4419 static int get_last_extent(struct send_ctx *sctx, u64 offset)
4420 {
4421 	struct btrfs_path *path;
4422 	struct btrfs_root *root = sctx->send_root;
4423 	struct btrfs_file_extent_item *fi;
4424 	struct btrfs_key key;
4425 	u64 extent_end;
4426 	u8 type;
4427 	int ret;
4428 
4429 	path = alloc_path_for_send();
4430 	if (!path)
4431 		return -ENOMEM;
4432 
4433 	sctx->cur_inode_last_extent = 0;
4434 
4435 	key.objectid = sctx->cur_ino;
4436 	key.type = BTRFS_EXTENT_DATA_KEY;
4437 	key.offset = offset;
4438 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
4439 	if (ret < 0)
4440 		goto out;
4441 	ret = 0;
4442 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4443 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
4444 		goto out;
4445 
4446 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4447 			    struct btrfs_file_extent_item);
4448 	type = btrfs_file_extent_type(path->nodes[0], fi);
4449 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4450 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4451 							path->slots[0], fi);
4452 		extent_end = ALIGN(key.offset + size,
4453 				   sctx->send_root->sectorsize);
4454 	} else {
4455 		extent_end = key.offset +
4456 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
4457 	}
4458 	sctx->cur_inode_last_extent = extent_end;
4459 out:
4460 	btrfs_free_path(path);
4461 	return ret;
4462 }
4463 
4464 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
4465 			   struct btrfs_key *key)
4466 {
4467 	struct btrfs_file_extent_item *fi;
4468 	u64 extent_end;
4469 	u8 type;
4470 	int ret = 0;
4471 
4472 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
4473 		return 0;
4474 
4475 	if (sctx->cur_inode_last_extent == (u64)-1) {
4476 		ret = get_last_extent(sctx, key->offset - 1);
4477 		if (ret)
4478 			return ret;
4479 	}
4480 
4481 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4482 			    struct btrfs_file_extent_item);
4483 	type = btrfs_file_extent_type(path->nodes[0], fi);
4484 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4485 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4486 							path->slots[0], fi);
4487 		extent_end = ALIGN(key->offset + size,
4488 				   sctx->send_root->sectorsize);
4489 	} else {
4490 		extent_end = key->offset +
4491 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
4492 	}
4493 
4494 	if (path->slots[0] == 0 &&
4495 	    sctx->cur_inode_last_extent < key->offset) {
4496 		/*
4497 		 * We might have skipped entire leafs that contained only
4498 		 * file extent items for our current inode. These leafs have
4499 		 * a generation number smaller (older) than the one in the
4500 		 * current leaf and the leaf our last extent came from, and
4501 		 * are located between these 2 leafs.
4502 		 */
4503 		ret = get_last_extent(sctx, key->offset - 1);
4504 		if (ret)
4505 			return ret;
4506 	}
4507 
4508 	if (sctx->cur_inode_last_extent < key->offset)
4509 		ret = send_hole(sctx, key->offset);
4510 	sctx->cur_inode_last_extent = extent_end;
4511 	return ret;
4512 }
4513 
4514 static int process_extent(struct send_ctx *sctx,
4515 			  struct btrfs_path *path,
4516 			  struct btrfs_key *key)
4517 {
4518 	struct clone_root *found_clone = NULL;
4519 	int ret = 0;
4520 
4521 	if (S_ISLNK(sctx->cur_inode_mode))
4522 		return 0;
4523 
4524 	if (sctx->parent_root && !sctx->cur_inode_new) {
4525 		ret = is_extent_unchanged(sctx, path, key);
4526 		if (ret < 0)
4527 			goto out;
4528 		if (ret) {
4529 			ret = 0;
4530 			goto out_hole;
4531 		}
4532 	} else {
4533 		struct btrfs_file_extent_item *ei;
4534 		u8 type;
4535 
4536 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4537 				    struct btrfs_file_extent_item);
4538 		type = btrfs_file_extent_type(path->nodes[0], ei);
4539 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
4540 		    type == BTRFS_FILE_EXTENT_REG) {
4541 			/*
4542 			 * The send spec does not have a prealloc command yet,
4543 			 * so just leave a hole for prealloc'ed extents until
4544 			 * we have enough commands queued up to justify rev'ing
4545 			 * the send spec.
4546 			 */
4547 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
4548 				ret = 0;
4549 				goto out;
4550 			}
4551 
4552 			/* Have a hole, just skip it. */
4553 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
4554 				ret = 0;
4555 				goto out;
4556 			}
4557 		}
4558 	}
4559 
4560 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
4561 			sctx->cur_inode_size, &found_clone);
4562 	if (ret != -ENOENT && ret < 0)
4563 		goto out;
4564 
4565 	ret = send_write_or_clone(sctx, path, key, found_clone);
4566 	if (ret)
4567 		goto out;
4568 out_hole:
4569 	ret = maybe_send_hole(sctx, path, key);
4570 out:
4571 	return ret;
4572 }
4573 
4574 static int process_all_extents(struct send_ctx *sctx)
4575 {
4576 	int ret;
4577 	struct btrfs_root *root;
4578 	struct btrfs_path *path;
4579 	struct btrfs_key key;
4580 	struct btrfs_key found_key;
4581 	struct extent_buffer *eb;
4582 	int slot;
4583 
4584 	root = sctx->send_root;
4585 	path = alloc_path_for_send();
4586 	if (!path)
4587 		return -ENOMEM;
4588 
4589 	key.objectid = sctx->cmp_key->objectid;
4590 	key.type = BTRFS_EXTENT_DATA_KEY;
4591 	key.offset = 0;
4592 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4593 	if (ret < 0)
4594 		goto out;
4595 
4596 	while (1) {
4597 		eb = path->nodes[0];
4598 		slot = path->slots[0];
4599 
4600 		if (slot >= btrfs_header_nritems(eb)) {
4601 			ret = btrfs_next_leaf(root, path);
4602 			if (ret < 0) {
4603 				goto out;
4604 			} else if (ret > 0) {
4605 				ret = 0;
4606 				break;
4607 			}
4608 			continue;
4609 		}
4610 
4611 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4612 
4613 		if (found_key.objectid != key.objectid ||
4614 		    found_key.type != key.type) {
4615 			ret = 0;
4616 			goto out;
4617 		}
4618 
4619 		ret = process_extent(sctx, path, &found_key);
4620 		if (ret < 0)
4621 			goto out;
4622 
4623 		path->slots[0]++;
4624 	}
4625 
4626 out:
4627 	btrfs_free_path(path);
4628 	return ret;
4629 }
4630 
4631 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
4632 					   int *pending_move,
4633 					   int *refs_processed)
4634 {
4635 	int ret = 0;
4636 
4637 	if (sctx->cur_ino == 0)
4638 		goto out;
4639 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
4640 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
4641 		goto out;
4642 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
4643 		goto out;
4644 
4645 	ret = process_recorded_refs(sctx, pending_move);
4646 	if (ret < 0)
4647 		goto out;
4648 
4649 	*refs_processed = 1;
4650 out:
4651 	return ret;
4652 }
4653 
4654 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
4655 {
4656 	int ret = 0;
4657 	u64 left_mode;
4658 	u64 left_uid;
4659 	u64 left_gid;
4660 	u64 right_mode;
4661 	u64 right_uid;
4662 	u64 right_gid;
4663 	int need_chmod = 0;
4664 	int need_chown = 0;
4665 	int pending_move = 0;
4666 	int refs_processed = 0;
4667 
4668 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
4669 					      &refs_processed);
4670 	if (ret < 0)
4671 		goto out;
4672 
4673 	/*
4674 	 * We have processed the refs and thus need to advance send_progress.
4675 	 * Now, calls to get_cur_xxx will take the updated refs of the current
4676 	 * inode into account.
4677 	 *
4678 	 * On the other hand, if our current inode is a directory and couldn't
4679 	 * be moved/renamed because its parent was renamed/moved too and it has
4680 	 * a higher inode number, we can only move/rename our current inode
4681 	 * after we moved/renamed its parent. Therefore in this case operate on
4682 	 * the old path (pre move/rename) of our current inode, and the
4683 	 * move/rename will be performed later.
4684 	 */
4685 	if (refs_processed && !pending_move)
4686 		sctx->send_progress = sctx->cur_ino + 1;
4687 
4688 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
4689 		goto out;
4690 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
4691 		goto out;
4692 
4693 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
4694 			&left_mode, &left_uid, &left_gid, NULL);
4695 	if (ret < 0)
4696 		goto out;
4697 
4698 	if (!sctx->parent_root || sctx->cur_inode_new) {
4699 		need_chown = 1;
4700 		if (!S_ISLNK(sctx->cur_inode_mode))
4701 			need_chmod = 1;
4702 	} else {
4703 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
4704 				NULL, NULL, &right_mode, &right_uid,
4705 				&right_gid, NULL);
4706 		if (ret < 0)
4707 			goto out;
4708 
4709 		if (left_uid != right_uid || left_gid != right_gid)
4710 			need_chown = 1;
4711 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
4712 			need_chmod = 1;
4713 	}
4714 
4715 	if (S_ISREG(sctx->cur_inode_mode)) {
4716 		if (need_send_hole(sctx)) {
4717 			if (sctx->cur_inode_last_extent == (u64)-1) {
4718 				ret = get_last_extent(sctx, (u64)-1);
4719 				if (ret)
4720 					goto out;
4721 			}
4722 			if (sctx->cur_inode_last_extent <
4723 			    sctx->cur_inode_size) {
4724 				ret = send_hole(sctx, sctx->cur_inode_size);
4725 				if (ret)
4726 					goto out;
4727 			}
4728 		}
4729 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4730 				sctx->cur_inode_size);
4731 		if (ret < 0)
4732 			goto out;
4733 	}
4734 
4735 	if (need_chown) {
4736 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4737 				left_uid, left_gid);
4738 		if (ret < 0)
4739 			goto out;
4740 	}
4741 	if (need_chmod) {
4742 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4743 				left_mode);
4744 		if (ret < 0)
4745 			goto out;
4746 	}
4747 
4748 	/*
4749 	 * If other directory inodes depended on our current directory
4750 	 * inode's move/rename, now do their move/rename operations.
4751 	 */
4752 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
4753 		ret = apply_children_dir_moves(sctx);
4754 		if (ret)
4755 			goto out;
4756 	}
4757 
4758 	/*
4759 	 * Need to send that every time, no matter if it actually
4760 	 * changed between the two trees as we have done changes to
4761 	 * the inode before.
4762 	 */
4763 	sctx->send_progress = sctx->cur_ino + 1;
4764 	ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4765 	if (ret < 0)
4766 		goto out;
4767 
4768 out:
4769 	return ret;
4770 }
4771 
4772 static int changed_inode(struct send_ctx *sctx,
4773 			 enum btrfs_compare_tree_result result)
4774 {
4775 	int ret = 0;
4776 	struct btrfs_key *key = sctx->cmp_key;
4777 	struct btrfs_inode_item *left_ii = NULL;
4778 	struct btrfs_inode_item *right_ii = NULL;
4779 	u64 left_gen = 0;
4780 	u64 right_gen = 0;
4781 
4782 	sctx->cur_ino = key->objectid;
4783 	sctx->cur_inode_new_gen = 0;
4784 	sctx->cur_inode_last_extent = (u64)-1;
4785 
4786 	/*
4787 	 * Set send_progress to current inode. This will tell all get_cur_xxx
4788 	 * functions that the current inode's refs are not updated yet. Later,
4789 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
4790 	 */
4791 	sctx->send_progress = sctx->cur_ino;
4792 
4793 	if (result == BTRFS_COMPARE_TREE_NEW ||
4794 	    result == BTRFS_COMPARE_TREE_CHANGED) {
4795 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
4796 				sctx->left_path->slots[0],
4797 				struct btrfs_inode_item);
4798 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
4799 				left_ii);
4800 	} else {
4801 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4802 				sctx->right_path->slots[0],
4803 				struct btrfs_inode_item);
4804 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4805 				right_ii);
4806 	}
4807 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
4808 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4809 				sctx->right_path->slots[0],
4810 				struct btrfs_inode_item);
4811 
4812 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4813 				right_ii);
4814 
4815 		/*
4816 		 * The cur_ino = root dir case is special here. We can't treat
4817 		 * the inode as deleted+reused because it would generate a
4818 		 * stream that tries to delete/mkdir the root dir.
4819 		 */
4820 		if (left_gen != right_gen &&
4821 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
4822 			sctx->cur_inode_new_gen = 1;
4823 	}
4824 
4825 	if (result == BTRFS_COMPARE_TREE_NEW) {
4826 		sctx->cur_inode_gen = left_gen;
4827 		sctx->cur_inode_new = 1;
4828 		sctx->cur_inode_deleted = 0;
4829 		sctx->cur_inode_size = btrfs_inode_size(
4830 				sctx->left_path->nodes[0], left_ii);
4831 		sctx->cur_inode_mode = btrfs_inode_mode(
4832 				sctx->left_path->nodes[0], left_ii);
4833 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
4834 			ret = send_create_inode_if_needed(sctx);
4835 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
4836 		sctx->cur_inode_gen = right_gen;
4837 		sctx->cur_inode_new = 0;
4838 		sctx->cur_inode_deleted = 1;
4839 		sctx->cur_inode_size = btrfs_inode_size(
4840 				sctx->right_path->nodes[0], right_ii);
4841 		sctx->cur_inode_mode = btrfs_inode_mode(
4842 				sctx->right_path->nodes[0], right_ii);
4843 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
4844 		/*
4845 		 * We need to do some special handling in case the inode was
4846 		 * reported as changed with a changed generation number. This
4847 		 * means that the original inode was deleted and new inode
4848 		 * reused the same inum. So we have to treat the old inode as
4849 		 * deleted and the new one as new.
4850 		 */
4851 		if (sctx->cur_inode_new_gen) {
4852 			/*
4853 			 * First, process the inode as if it was deleted.
4854 			 */
4855 			sctx->cur_inode_gen = right_gen;
4856 			sctx->cur_inode_new = 0;
4857 			sctx->cur_inode_deleted = 1;
4858 			sctx->cur_inode_size = btrfs_inode_size(
4859 					sctx->right_path->nodes[0], right_ii);
4860 			sctx->cur_inode_mode = btrfs_inode_mode(
4861 					sctx->right_path->nodes[0], right_ii);
4862 			ret = process_all_refs(sctx,
4863 					BTRFS_COMPARE_TREE_DELETED);
4864 			if (ret < 0)
4865 				goto out;
4866 
4867 			/*
4868 			 * Now process the inode as if it was new.
4869 			 */
4870 			sctx->cur_inode_gen = left_gen;
4871 			sctx->cur_inode_new = 1;
4872 			sctx->cur_inode_deleted = 0;
4873 			sctx->cur_inode_size = btrfs_inode_size(
4874 					sctx->left_path->nodes[0], left_ii);
4875 			sctx->cur_inode_mode = btrfs_inode_mode(
4876 					sctx->left_path->nodes[0], left_ii);
4877 			ret = send_create_inode_if_needed(sctx);
4878 			if (ret < 0)
4879 				goto out;
4880 
4881 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
4882 			if (ret < 0)
4883 				goto out;
4884 			/*
4885 			 * Advance send_progress now as we did not get into
4886 			 * process_recorded_refs_if_needed in the new_gen case.
4887 			 */
4888 			sctx->send_progress = sctx->cur_ino + 1;
4889 
4890 			/*
4891 			 * Now process all extents and xattrs of the inode as if
4892 			 * they were all new.
4893 			 */
4894 			ret = process_all_extents(sctx);
4895 			if (ret < 0)
4896 				goto out;
4897 			ret = process_all_new_xattrs(sctx);
4898 			if (ret < 0)
4899 				goto out;
4900 		} else {
4901 			sctx->cur_inode_gen = left_gen;
4902 			sctx->cur_inode_new = 0;
4903 			sctx->cur_inode_new_gen = 0;
4904 			sctx->cur_inode_deleted = 0;
4905 			sctx->cur_inode_size = btrfs_inode_size(
4906 					sctx->left_path->nodes[0], left_ii);
4907 			sctx->cur_inode_mode = btrfs_inode_mode(
4908 					sctx->left_path->nodes[0], left_ii);
4909 		}
4910 	}
4911 
4912 out:
4913 	return ret;
4914 }
4915 
4916 /*
4917  * We have to process new refs before deleted refs, but compare_trees gives us
4918  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
4919  * first and later process them in process_recorded_refs.
4920  * For the cur_inode_new_gen case, we skip recording completely because
4921  * changed_inode did already initiate processing of refs. The reason for this is
4922  * that in this case, compare_tree actually compares the refs of 2 different
4923  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
4924  * refs of the right tree as deleted and all refs of the left tree as new.
4925  */
4926 static int changed_ref(struct send_ctx *sctx,
4927 		       enum btrfs_compare_tree_result result)
4928 {
4929 	int ret = 0;
4930 
4931 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4932 
4933 	if (!sctx->cur_inode_new_gen &&
4934 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
4935 		if (result == BTRFS_COMPARE_TREE_NEW)
4936 			ret = record_new_ref(sctx);
4937 		else if (result == BTRFS_COMPARE_TREE_DELETED)
4938 			ret = record_deleted_ref(sctx);
4939 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
4940 			ret = record_changed_ref(sctx);
4941 	}
4942 
4943 	return ret;
4944 }
4945 
4946 /*
4947  * Process new/deleted/changed xattrs. We skip processing in the
4948  * cur_inode_new_gen case because changed_inode did already initiate processing
4949  * of xattrs. The reason is the same as in changed_ref
4950  */
4951 static int changed_xattr(struct send_ctx *sctx,
4952 			 enum btrfs_compare_tree_result result)
4953 {
4954 	int ret = 0;
4955 
4956 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4957 
4958 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4959 		if (result == BTRFS_COMPARE_TREE_NEW)
4960 			ret = process_new_xattr(sctx);
4961 		else if (result == BTRFS_COMPARE_TREE_DELETED)
4962 			ret = process_deleted_xattr(sctx);
4963 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
4964 			ret = process_changed_xattr(sctx);
4965 	}
4966 
4967 	return ret;
4968 }
4969 
4970 /*
4971  * Process new/deleted/changed extents. We skip processing in the
4972  * cur_inode_new_gen case because changed_inode did already initiate processing
4973  * of extents. The reason is the same as in changed_ref
4974  */
4975 static int changed_extent(struct send_ctx *sctx,
4976 			  enum btrfs_compare_tree_result result)
4977 {
4978 	int ret = 0;
4979 
4980 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4981 
4982 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4983 		if (result != BTRFS_COMPARE_TREE_DELETED)
4984 			ret = process_extent(sctx, sctx->left_path,
4985 					sctx->cmp_key);
4986 	}
4987 
4988 	return ret;
4989 }
4990 
4991 static int dir_changed(struct send_ctx *sctx, u64 dir)
4992 {
4993 	u64 orig_gen, new_gen;
4994 	int ret;
4995 
4996 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
4997 			     NULL, NULL);
4998 	if (ret)
4999 		return ret;
5000 
5001 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5002 			     NULL, NULL, NULL);
5003 	if (ret)
5004 		return ret;
5005 
5006 	return (orig_gen != new_gen) ? 1 : 0;
5007 }
5008 
5009 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5010 			struct btrfs_key *key)
5011 {
5012 	struct btrfs_inode_extref *extref;
5013 	struct extent_buffer *leaf;
5014 	u64 dirid = 0, last_dirid = 0;
5015 	unsigned long ptr;
5016 	u32 item_size;
5017 	u32 cur_offset = 0;
5018 	int ref_name_len;
5019 	int ret = 0;
5020 
5021 	/* Easy case, just check this one dirid */
5022 	if (key->type == BTRFS_INODE_REF_KEY) {
5023 		dirid = key->offset;
5024 
5025 		ret = dir_changed(sctx, dirid);
5026 		goto out;
5027 	}
5028 
5029 	leaf = path->nodes[0];
5030 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5031 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5032 	while (cur_offset < item_size) {
5033 		extref = (struct btrfs_inode_extref *)(ptr +
5034 						       cur_offset);
5035 		dirid = btrfs_inode_extref_parent(leaf, extref);
5036 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5037 		cur_offset += ref_name_len + sizeof(*extref);
5038 		if (dirid == last_dirid)
5039 			continue;
5040 		ret = dir_changed(sctx, dirid);
5041 		if (ret)
5042 			break;
5043 		last_dirid = dirid;
5044 	}
5045 out:
5046 	return ret;
5047 }
5048 
5049 /*
5050  * Updates compare related fields in sctx and simply forwards to the actual
5051  * changed_xxx functions.
5052  */
5053 static int changed_cb(struct btrfs_root *left_root,
5054 		      struct btrfs_root *right_root,
5055 		      struct btrfs_path *left_path,
5056 		      struct btrfs_path *right_path,
5057 		      struct btrfs_key *key,
5058 		      enum btrfs_compare_tree_result result,
5059 		      void *ctx)
5060 {
5061 	int ret = 0;
5062 	struct send_ctx *sctx = ctx;
5063 
5064 	if (result == BTRFS_COMPARE_TREE_SAME) {
5065 		if (key->type == BTRFS_INODE_REF_KEY ||
5066 		    key->type == BTRFS_INODE_EXTREF_KEY) {
5067 			ret = compare_refs(sctx, left_path, key);
5068 			if (!ret)
5069 				return 0;
5070 			if (ret < 0)
5071 				return ret;
5072 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5073 			return maybe_send_hole(sctx, left_path, key);
5074 		} else {
5075 			return 0;
5076 		}
5077 		result = BTRFS_COMPARE_TREE_CHANGED;
5078 		ret = 0;
5079 	}
5080 
5081 	sctx->left_path = left_path;
5082 	sctx->right_path = right_path;
5083 	sctx->cmp_key = key;
5084 
5085 	ret = finish_inode_if_needed(sctx, 0);
5086 	if (ret < 0)
5087 		goto out;
5088 
5089 	/* Ignore non-FS objects */
5090 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5091 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5092 		goto out;
5093 
5094 	if (key->type == BTRFS_INODE_ITEM_KEY)
5095 		ret = changed_inode(sctx, result);
5096 	else if (key->type == BTRFS_INODE_REF_KEY ||
5097 		 key->type == BTRFS_INODE_EXTREF_KEY)
5098 		ret = changed_ref(sctx, result);
5099 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
5100 		ret = changed_xattr(sctx, result);
5101 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
5102 		ret = changed_extent(sctx, result);
5103 
5104 out:
5105 	return ret;
5106 }
5107 
5108 static int full_send_tree(struct send_ctx *sctx)
5109 {
5110 	int ret;
5111 	struct btrfs_root *send_root = sctx->send_root;
5112 	struct btrfs_key key;
5113 	struct btrfs_key found_key;
5114 	struct btrfs_path *path;
5115 	struct extent_buffer *eb;
5116 	int slot;
5117 	u64 start_ctransid;
5118 	u64 ctransid;
5119 
5120 	path = alloc_path_for_send();
5121 	if (!path)
5122 		return -ENOMEM;
5123 
5124 	spin_lock(&send_root->root_item_lock);
5125 	start_ctransid = btrfs_root_ctransid(&send_root->root_item);
5126 	spin_unlock(&send_root->root_item_lock);
5127 
5128 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5129 	key.type = BTRFS_INODE_ITEM_KEY;
5130 	key.offset = 0;
5131 
5132 	/*
5133 	 * Make sure the tree has not changed after re-joining. We detect this
5134 	 * by comparing start_ctransid and ctransid. They should always match.
5135 	 */
5136 	spin_lock(&send_root->root_item_lock);
5137 	ctransid = btrfs_root_ctransid(&send_root->root_item);
5138 	spin_unlock(&send_root->root_item_lock);
5139 
5140 	if (ctransid != start_ctransid) {
5141 		WARN(1, KERN_WARNING "BTRFS: the root that you're trying to "
5142 				     "send was modified in between. This is "
5143 				     "probably a bug.\n");
5144 		ret = -EIO;
5145 		goto out;
5146 	}
5147 
5148 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5149 	if (ret < 0)
5150 		goto out;
5151 	if (ret)
5152 		goto out_finish;
5153 
5154 	while (1) {
5155 		eb = path->nodes[0];
5156 		slot = path->slots[0];
5157 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5158 
5159 		ret = changed_cb(send_root, NULL, path, NULL,
5160 				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5161 		if (ret < 0)
5162 			goto out;
5163 
5164 		key.objectid = found_key.objectid;
5165 		key.type = found_key.type;
5166 		key.offset = found_key.offset + 1;
5167 
5168 		ret = btrfs_next_item(send_root, path);
5169 		if (ret < 0)
5170 			goto out;
5171 		if (ret) {
5172 			ret  = 0;
5173 			break;
5174 		}
5175 	}
5176 
5177 out_finish:
5178 	ret = finish_inode_if_needed(sctx, 1);
5179 
5180 out:
5181 	btrfs_free_path(path);
5182 	return ret;
5183 }
5184 
5185 static int send_subvol(struct send_ctx *sctx)
5186 {
5187 	int ret;
5188 
5189 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5190 		ret = send_header(sctx);
5191 		if (ret < 0)
5192 			goto out;
5193 	}
5194 
5195 	ret = send_subvol_begin(sctx);
5196 	if (ret < 0)
5197 		goto out;
5198 
5199 	if (sctx->parent_root) {
5200 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5201 				changed_cb, sctx);
5202 		if (ret < 0)
5203 			goto out;
5204 		ret = finish_inode_if_needed(sctx, 1);
5205 		if (ret < 0)
5206 			goto out;
5207 	} else {
5208 		ret = full_send_tree(sctx);
5209 		if (ret < 0)
5210 			goto out;
5211 	}
5212 
5213 out:
5214 	free_recorded_refs(sctx);
5215 	return ret;
5216 }
5217 
5218 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5219 {
5220 	spin_lock(&root->root_item_lock);
5221 	root->send_in_progress--;
5222 	/*
5223 	 * Not much left to do, we don't know why it's unbalanced and
5224 	 * can't blindly reset it to 0.
5225 	 */
5226 	if (root->send_in_progress < 0)
5227 		btrfs_err(root->fs_info,
5228 			"send_in_progres unbalanced %d root %llu\n",
5229 			root->send_in_progress, root->root_key.objectid);
5230 	spin_unlock(&root->root_item_lock);
5231 }
5232 
5233 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5234 {
5235 	int ret = 0;
5236 	struct btrfs_root *send_root;
5237 	struct btrfs_root *clone_root;
5238 	struct btrfs_fs_info *fs_info;
5239 	struct btrfs_ioctl_send_args *arg = NULL;
5240 	struct btrfs_key key;
5241 	struct send_ctx *sctx = NULL;
5242 	u32 i;
5243 	u64 *clone_sources_tmp = NULL;
5244 	int clone_sources_to_rollback = 0;
5245 	int sort_clone_roots = 0;
5246 	int index;
5247 
5248 	if (!capable(CAP_SYS_ADMIN))
5249 		return -EPERM;
5250 
5251 	send_root = BTRFS_I(file_inode(mnt_file))->root;
5252 	fs_info = send_root->fs_info;
5253 
5254 	/*
5255 	 * The subvolume must remain read-only during send, protect against
5256 	 * making it RW.
5257 	 */
5258 	spin_lock(&send_root->root_item_lock);
5259 	send_root->send_in_progress++;
5260 	spin_unlock(&send_root->root_item_lock);
5261 
5262 	/*
5263 	 * This is done when we lookup the root, it should already be complete
5264 	 * by the time we get here.
5265 	 */
5266 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5267 
5268 	/*
5269 	 * Userspace tools do the checks and warn the user if it's
5270 	 * not RO.
5271 	 */
5272 	if (!btrfs_root_readonly(send_root)) {
5273 		ret = -EPERM;
5274 		goto out;
5275 	}
5276 
5277 	arg = memdup_user(arg_, sizeof(*arg));
5278 	if (IS_ERR(arg)) {
5279 		ret = PTR_ERR(arg);
5280 		arg = NULL;
5281 		goto out;
5282 	}
5283 
5284 	if (!access_ok(VERIFY_READ, arg->clone_sources,
5285 			sizeof(*arg->clone_sources) *
5286 			arg->clone_sources_count)) {
5287 		ret = -EFAULT;
5288 		goto out;
5289 	}
5290 
5291 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5292 		ret = -EINVAL;
5293 		goto out;
5294 	}
5295 
5296 	sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5297 	if (!sctx) {
5298 		ret = -ENOMEM;
5299 		goto out;
5300 	}
5301 
5302 	INIT_LIST_HEAD(&sctx->new_refs);
5303 	INIT_LIST_HEAD(&sctx->deleted_refs);
5304 	INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5305 	INIT_LIST_HEAD(&sctx->name_cache_list);
5306 
5307 	sctx->flags = arg->flags;
5308 
5309 	sctx->send_filp = fget(arg->send_fd);
5310 	if (!sctx->send_filp) {
5311 		ret = -EBADF;
5312 		goto out;
5313 	}
5314 
5315 	sctx->send_root = send_root;
5316 	sctx->clone_roots_cnt = arg->clone_sources_count;
5317 
5318 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
5319 	sctx->send_buf = vmalloc(sctx->send_max_size);
5320 	if (!sctx->send_buf) {
5321 		ret = -ENOMEM;
5322 		goto out;
5323 	}
5324 
5325 	sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
5326 	if (!sctx->read_buf) {
5327 		ret = -ENOMEM;
5328 		goto out;
5329 	}
5330 
5331 	sctx->pending_dir_moves = RB_ROOT;
5332 	sctx->waiting_dir_moves = RB_ROOT;
5333 
5334 	sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
5335 			(arg->clone_sources_count + 1));
5336 	if (!sctx->clone_roots) {
5337 		ret = -ENOMEM;
5338 		goto out;
5339 	}
5340 
5341 	if (arg->clone_sources_count) {
5342 		clone_sources_tmp = vmalloc(arg->clone_sources_count *
5343 				sizeof(*arg->clone_sources));
5344 		if (!clone_sources_tmp) {
5345 			ret = -ENOMEM;
5346 			goto out;
5347 		}
5348 
5349 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
5350 				arg->clone_sources_count *
5351 				sizeof(*arg->clone_sources));
5352 		if (ret) {
5353 			ret = -EFAULT;
5354 			goto out;
5355 		}
5356 
5357 		for (i = 0; i < arg->clone_sources_count; i++) {
5358 			key.objectid = clone_sources_tmp[i];
5359 			key.type = BTRFS_ROOT_ITEM_KEY;
5360 			key.offset = (u64)-1;
5361 
5362 			index = srcu_read_lock(&fs_info->subvol_srcu);
5363 
5364 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
5365 			if (IS_ERR(clone_root)) {
5366 				srcu_read_unlock(&fs_info->subvol_srcu, index);
5367 				ret = PTR_ERR(clone_root);
5368 				goto out;
5369 			}
5370 			clone_sources_to_rollback = i + 1;
5371 			spin_lock(&clone_root->root_item_lock);
5372 			clone_root->send_in_progress++;
5373 			if (!btrfs_root_readonly(clone_root)) {
5374 				spin_unlock(&clone_root->root_item_lock);
5375 				srcu_read_unlock(&fs_info->subvol_srcu, index);
5376 				ret = -EPERM;
5377 				goto out;
5378 			}
5379 			spin_unlock(&clone_root->root_item_lock);
5380 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5381 
5382 			sctx->clone_roots[i].root = clone_root;
5383 		}
5384 		vfree(clone_sources_tmp);
5385 		clone_sources_tmp = NULL;
5386 	}
5387 
5388 	if (arg->parent_root) {
5389 		key.objectid = arg->parent_root;
5390 		key.type = BTRFS_ROOT_ITEM_KEY;
5391 		key.offset = (u64)-1;
5392 
5393 		index = srcu_read_lock(&fs_info->subvol_srcu);
5394 
5395 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
5396 		if (IS_ERR(sctx->parent_root)) {
5397 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5398 			ret = PTR_ERR(sctx->parent_root);
5399 			goto out;
5400 		}
5401 
5402 		spin_lock(&sctx->parent_root->root_item_lock);
5403 		sctx->parent_root->send_in_progress++;
5404 		if (!btrfs_root_readonly(sctx->parent_root)) {
5405 			spin_unlock(&sctx->parent_root->root_item_lock);
5406 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5407 			ret = -EPERM;
5408 			goto out;
5409 		}
5410 		spin_unlock(&sctx->parent_root->root_item_lock);
5411 
5412 		srcu_read_unlock(&fs_info->subvol_srcu, index);
5413 	}
5414 
5415 	/*
5416 	 * Clones from send_root are allowed, but only if the clone source
5417 	 * is behind the current send position. This is checked while searching
5418 	 * for possible clone sources.
5419 	 */
5420 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
5421 
5422 	/* We do a bsearch later */
5423 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
5424 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
5425 			NULL);
5426 	sort_clone_roots = 1;
5427 
5428 	ret = send_subvol(sctx);
5429 	if (ret < 0)
5430 		goto out;
5431 
5432 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
5433 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
5434 		if (ret < 0)
5435 			goto out;
5436 		ret = send_cmd(sctx);
5437 		if (ret < 0)
5438 			goto out;
5439 	}
5440 
5441 out:
5442 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
5443 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
5444 		struct rb_node *n;
5445 		struct pending_dir_move *pm;
5446 
5447 		n = rb_first(&sctx->pending_dir_moves);
5448 		pm = rb_entry(n, struct pending_dir_move, node);
5449 		while (!list_empty(&pm->list)) {
5450 			struct pending_dir_move *pm2;
5451 
5452 			pm2 = list_first_entry(&pm->list,
5453 					       struct pending_dir_move, list);
5454 			free_pending_move(sctx, pm2);
5455 		}
5456 		free_pending_move(sctx, pm);
5457 	}
5458 
5459 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
5460 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
5461 		struct rb_node *n;
5462 		struct waiting_dir_move *dm;
5463 
5464 		n = rb_first(&sctx->waiting_dir_moves);
5465 		dm = rb_entry(n, struct waiting_dir_move, node);
5466 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
5467 		kfree(dm);
5468 	}
5469 
5470 	if (sort_clone_roots) {
5471 		for (i = 0; i < sctx->clone_roots_cnt; i++)
5472 			btrfs_root_dec_send_in_progress(
5473 					sctx->clone_roots[i].root);
5474 	} else {
5475 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
5476 			btrfs_root_dec_send_in_progress(
5477 					sctx->clone_roots[i].root);
5478 
5479 		btrfs_root_dec_send_in_progress(send_root);
5480 	}
5481 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
5482 		btrfs_root_dec_send_in_progress(sctx->parent_root);
5483 
5484 	kfree(arg);
5485 	vfree(clone_sources_tmp);
5486 
5487 	if (sctx) {
5488 		if (sctx->send_filp)
5489 			fput(sctx->send_filp);
5490 
5491 		vfree(sctx->clone_roots);
5492 		vfree(sctx->send_buf);
5493 		vfree(sctx->read_buf);
5494 
5495 		name_cache_free(sctx);
5496 
5497 		kfree(sctx);
5498 	}
5499 
5500 	return ret;
5501 }
5502