xref: /openbmc/linux/fs/btrfs/send.c (revision 7f877908)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 
19 #include "send.h"
20 #include "backref.h"
21 #include "locking.h"
22 #include "disk-io.h"
23 #include "btrfs_inode.h"
24 #include "transaction.h"
25 #include "compression.h"
26 
27 /*
28  * Maximum number of references an extent can have in order for us to attempt to
29  * issue clone operations instead of write operations. This currently exists to
30  * avoid hitting limitations of the backreference walking code (taking a lot of
31  * time and using too much memory for extents with large number of references).
32  */
33 #define SEND_MAX_EXTENT_REFS	64
34 
35 /*
36  * A fs_path is a helper to dynamically build path names with unknown size.
37  * It reallocates the internal buffer on demand.
38  * It allows fast adding of path elements on the right side (normal path) and
39  * fast adding to the left side (reversed path). A reversed path can also be
40  * unreversed if needed.
41  */
42 struct fs_path {
43 	union {
44 		struct {
45 			char *start;
46 			char *end;
47 
48 			char *buf;
49 			unsigned short buf_len:15;
50 			unsigned short reversed:1;
51 			char inline_buf[];
52 		};
53 		/*
54 		 * Average path length does not exceed 200 bytes, we'll have
55 		 * better packing in the slab and higher chance to satisfy
56 		 * a allocation later during send.
57 		 */
58 		char pad[256];
59 	};
60 };
61 #define FS_PATH_INLINE_SIZE \
62 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
63 
64 
65 /* reused for each extent */
66 struct clone_root {
67 	struct btrfs_root *root;
68 	u64 ino;
69 	u64 offset;
70 
71 	u64 found_refs;
72 };
73 
74 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
75 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
76 
77 struct send_ctx {
78 	struct file *send_filp;
79 	loff_t send_off;
80 	char *send_buf;
81 	u32 send_size;
82 	u32 send_max_size;
83 	u64 total_send_size;
84 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
85 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
86 
87 	struct btrfs_root *send_root;
88 	struct btrfs_root *parent_root;
89 	struct clone_root *clone_roots;
90 	int clone_roots_cnt;
91 
92 	/* current state of the compare_tree call */
93 	struct btrfs_path *left_path;
94 	struct btrfs_path *right_path;
95 	struct btrfs_key *cmp_key;
96 
97 	/*
98 	 * infos of the currently processed inode. In case of deleted inodes,
99 	 * these are the values from the deleted inode.
100 	 */
101 	u64 cur_ino;
102 	u64 cur_inode_gen;
103 	int cur_inode_new;
104 	int cur_inode_new_gen;
105 	int cur_inode_deleted;
106 	u64 cur_inode_size;
107 	u64 cur_inode_mode;
108 	u64 cur_inode_rdev;
109 	u64 cur_inode_last_extent;
110 	u64 cur_inode_next_write_offset;
111 	bool ignore_cur_inode;
112 
113 	u64 send_progress;
114 
115 	struct list_head new_refs;
116 	struct list_head deleted_refs;
117 
118 	struct radix_tree_root name_cache;
119 	struct list_head name_cache_list;
120 	int name_cache_size;
121 
122 	struct file_ra_state ra;
123 
124 	char *read_buf;
125 
126 	/*
127 	 * We process inodes by their increasing order, so if before an
128 	 * incremental send we reverse the parent/child relationship of
129 	 * directories such that a directory with a lower inode number was
130 	 * the parent of a directory with a higher inode number, and the one
131 	 * becoming the new parent got renamed too, we can't rename/move the
132 	 * directory with lower inode number when we finish processing it - we
133 	 * must process the directory with higher inode number first, then
134 	 * rename/move it and then rename/move the directory with lower inode
135 	 * number. Example follows.
136 	 *
137 	 * Tree state when the first send was performed:
138 	 *
139 	 * .
140 	 * |-- a                   (ino 257)
141 	 *     |-- b               (ino 258)
142 	 *         |
143 	 *         |
144 	 *         |-- c           (ino 259)
145 	 *         |   |-- d       (ino 260)
146 	 *         |
147 	 *         |-- c2          (ino 261)
148 	 *
149 	 * Tree state when the second (incremental) send is performed:
150 	 *
151 	 * .
152 	 * |-- a                   (ino 257)
153 	 *     |-- b               (ino 258)
154 	 *         |-- c2          (ino 261)
155 	 *             |-- d2      (ino 260)
156 	 *                 |-- cc  (ino 259)
157 	 *
158 	 * The sequence of steps that lead to the second state was:
159 	 *
160 	 * mv /a/b/c/d /a/b/c2/d2
161 	 * mv /a/b/c /a/b/c2/d2/cc
162 	 *
163 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
164 	 * before we move "d", which has higher inode number.
165 	 *
166 	 * So we just memorize which move/rename operations must be performed
167 	 * later when their respective parent is processed and moved/renamed.
168 	 */
169 
170 	/* Indexed by parent directory inode number. */
171 	struct rb_root pending_dir_moves;
172 
173 	/*
174 	 * Reverse index, indexed by the inode number of a directory that
175 	 * is waiting for the move/rename of its immediate parent before its
176 	 * own move/rename can be performed.
177 	 */
178 	struct rb_root waiting_dir_moves;
179 
180 	/*
181 	 * A directory that is going to be rm'ed might have a child directory
182 	 * which is in the pending directory moves index above. In this case,
183 	 * the directory can only be removed after the move/rename of its child
184 	 * is performed. Example:
185 	 *
186 	 * Parent snapshot:
187 	 *
188 	 * .                        (ino 256)
189 	 * |-- a/                   (ino 257)
190 	 *     |-- b/               (ino 258)
191 	 *         |-- c/           (ino 259)
192 	 *         |   |-- x/       (ino 260)
193 	 *         |
194 	 *         |-- y/           (ino 261)
195 	 *
196 	 * Send snapshot:
197 	 *
198 	 * .                        (ino 256)
199 	 * |-- a/                   (ino 257)
200 	 *     |-- b/               (ino 258)
201 	 *         |-- YY/          (ino 261)
202 	 *              |-- x/      (ino 260)
203 	 *
204 	 * Sequence of steps that lead to the send snapshot:
205 	 * rm -f /a/b/c/foo.txt
206 	 * mv /a/b/y /a/b/YY
207 	 * mv /a/b/c/x /a/b/YY
208 	 * rmdir /a/b/c
209 	 *
210 	 * When the child is processed, its move/rename is delayed until its
211 	 * parent is processed (as explained above), but all other operations
212 	 * like update utimes, chown, chgrp, etc, are performed and the paths
213 	 * that it uses for those operations must use the orphanized name of
214 	 * its parent (the directory we're going to rm later), so we need to
215 	 * memorize that name.
216 	 *
217 	 * Indexed by the inode number of the directory to be deleted.
218 	 */
219 	struct rb_root orphan_dirs;
220 };
221 
222 struct pending_dir_move {
223 	struct rb_node node;
224 	struct list_head list;
225 	u64 parent_ino;
226 	u64 ino;
227 	u64 gen;
228 	struct list_head update_refs;
229 };
230 
231 struct waiting_dir_move {
232 	struct rb_node node;
233 	u64 ino;
234 	/*
235 	 * There might be some directory that could not be removed because it
236 	 * was waiting for this directory inode to be moved first. Therefore
237 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
238 	 */
239 	u64 rmdir_ino;
240 	bool orphanized;
241 };
242 
243 struct orphan_dir_info {
244 	struct rb_node node;
245 	u64 ino;
246 	u64 gen;
247 	u64 last_dir_index_offset;
248 };
249 
250 struct name_cache_entry {
251 	struct list_head list;
252 	/*
253 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
254 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
255 	 * more then one inum would fall into the same entry, we use radix_list
256 	 * to store the additional entries. radix_list is also used to store
257 	 * entries where two entries have the same inum but different
258 	 * generations.
259 	 */
260 	struct list_head radix_list;
261 	u64 ino;
262 	u64 gen;
263 	u64 parent_ino;
264 	u64 parent_gen;
265 	int ret;
266 	int need_later_update;
267 	int name_len;
268 	char name[];
269 };
270 
271 #define ADVANCE							1
272 #define ADVANCE_ONLY_NEXT					-1
273 
274 enum btrfs_compare_tree_result {
275 	BTRFS_COMPARE_TREE_NEW,
276 	BTRFS_COMPARE_TREE_DELETED,
277 	BTRFS_COMPARE_TREE_CHANGED,
278 	BTRFS_COMPARE_TREE_SAME,
279 };
280 typedef int (*btrfs_changed_cb_t)(struct btrfs_path *left_path,
281 				  struct btrfs_path *right_path,
282 				  struct btrfs_key *key,
283 				  enum btrfs_compare_tree_result result,
284 				  void *ctx);
285 
286 __cold
287 static void inconsistent_snapshot_error(struct send_ctx *sctx,
288 					enum btrfs_compare_tree_result result,
289 					const char *what)
290 {
291 	const char *result_string;
292 
293 	switch (result) {
294 	case BTRFS_COMPARE_TREE_NEW:
295 		result_string = "new";
296 		break;
297 	case BTRFS_COMPARE_TREE_DELETED:
298 		result_string = "deleted";
299 		break;
300 	case BTRFS_COMPARE_TREE_CHANGED:
301 		result_string = "updated";
302 		break;
303 	case BTRFS_COMPARE_TREE_SAME:
304 		ASSERT(0);
305 		result_string = "unchanged";
306 		break;
307 	default:
308 		ASSERT(0);
309 		result_string = "unexpected";
310 	}
311 
312 	btrfs_err(sctx->send_root->fs_info,
313 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
314 		  result_string, what, sctx->cmp_key->objectid,
315 		  sctx->send_root->root_key.objectid,
316 		  (sctx->parent_root ?
317 		   sctx->parent_root->root_key.objectid : 0));
318 }
319 
320 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
321 
322 static struct waiting_dir_move *
323 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
324 
325 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
326 
327 static int need_send_hole(struct send_ctx *sctx)
328 {
329 	return (sctx->parent_root && !sctx->cur_inode_new &&
330 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
331 		S_ISREG(sctx->cur_inode_mode));
332 }
333 
334 static void fs_path_reset(struct fs_path *p)
335 {
336 	if (p->reversed) {
337 		p->start = p->buf + p->buf_len - 1;
338 		p->end = p->start;
339 		*p->start = 0;
340 	} else {
341 		p->start = p->buf;
342 		p->end = p->start;
343 		*p->start = 0;
344 	}
345 }
346 
347 static struct fs_path *fs_path_alloc(void)
348 {
349 	struct fs_path *p;
350 
351 	p = kmalloc(sizeof(*p), GFP_KERNEL);
352 	if (!p)
353 		return NULL;
354 	p->reversed = 0;
355 	p->buf = p->inline_buf;
356 	p->buf_len = FS_PATH_INLINE_SIZE;
357 	fs_path_reset(p);
358 	return p;
359 }
360 
361 static struct fs_path *fs_path_alloc_reversed(void)
362 {
363 	struct fs_path *p;
364 
365 	p = fs_path_alloc();
366 	if (!p)
367 		return NULL;
368 	p->reversed = 1;
369 	fs_path_reset(p);
370 	return p;
371 }
372 
373 static void fs_path_free(struct fs_path *p)
374 {
375 	if (!p)
376 		return;
377 	if (p->buf != p->inline_buf)
378 		kfree(p->buf);
379 	kfree(p);
380 }
381 
382 static int fs_path_len(struct fs_path *p)
383 {
384 	return p->end - p->start;
385 }
386 
387 static int fs_path_ensure_buf(struct fs_path *p, int len)
388 {
389 	char *tmp_buf;
390 	int path_len;
391 	int old_buf_len;
392 
393 	len++;
394 
395 	if (p->buf_len >= len)
396 		return 0;
397 
398 	if (len > PATH_MAX) {
399 		WARN_ON(1);
400 		return -ENOMEM;
401 	}
402 
403 	path_len = p->end - p->start;
404 	old_buf_len = p->buf_len;
405 
406 	/*
407 	 * First time the inline_buf does not suffice
408 	 */
409 	if (p->buf == p->inline_buf) {
410 		tmp_buf = kmalloc(len, GFP_KERNEL);
411 		if (tmp_buf)
412 			memcpy(tmp_buf, p->buf, old_buf_len);
413 	} else {
414 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
415 	}
416 	if (!tmp_buf)
417 		return -ENOMEM;
418 	p->buf = tmp_buf;
419 	/*
420 	 * The real size of the buffer is bigger, this will let the fast path
421 	 * happen most of the time
422 	 */
423 	p->buf_len = ksize(p->buf);
424 
425 	if (p->reversed) {
426 		tmp_buf = p->buf + old_buf_len - path_len - 1;
427 		p->end = p->buf + p->buf_len - 1;
428 		p->start = p->end - path_len;
429 		memmove(p->start, tmp_buf, path_len + 1);
430 	} else {
431 		p->start = p->buf;
432 		p->end = p->start + path_len;
433 	}
434 	return 0;
435 }
436 
437 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
438 				   char **prepared)
439 {
440 	int ret;
441 	int new_len;
442 
443 	new_len = p->end - p->start + name_len;
444 	if (p->start != p->end)
445 		new_len++;
446 	ret = fs_path_ensure_buf(p, new_len);
447 	if (ret < 0)
448 		goto out;
449 
450 	if (p->reversed) {
451 		if (p->start != p->end)
452 			*--p->start = '/';
453 		p->start -= name_len;
454 		*prepared = p->start;
455 	} else {
456 		if (p->start != p->end)
457 			*p->end++ = '/';
458 		*prepared = p->end;
459 		p->end += name_len;
460 		*p->end = 0;
461 	}
462 
463 out:
464 	return ret;
465 }
466 
467 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
468 {
469 	int ret;
470 	char *prepared;
471 
472 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
473 	if (ret < 0)
474 		goto out;
475 	memcpy(prepared, name, name_len);
476 
477 out:
478 	return ret;
479 }
480 
481 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
482 {
483 	int ret;
484 	char *prepared;
485 
486 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
487 	if (ret < 0)
488 		goto out;
489 	memcpy(prepared, p2->start, p2->end - p2->start);
490 
491 out:
492 	return ret;
493 }
494 
495 static int fs_path_add_from_extent_buffer(struct fs_path *p,
496 					  struct extent_buffer *eb,
497 					  unsigned long off, int len)
498 {
499 	int ret;
500 	char *prepared;
501 
502 	ret = fs_path_prepare_for_add(p, len, &prepared);
503 	if (ret < 0)
504 		goto out;
505 
506 	read_extent_buffer(eb, prepared, off, len);
507 
508 out:
509 	return ret;
510 }
511 
512 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
513 {
514 	int ret;
515 
516 	p->reversed = from->reversed;
517 	fs_path_reset(p);
518 
519 	ret = fs_path_add_path(p, from);
520 
521 	return ret;
522 }
523 
524 
525 static void fs_path_unreverse(struct fs_path *p)
526 {
527 	char *tmp;
528 	int len;
529 
530 	if (!p->reversed)
531 		return;
532 
533 	tmp = p->start;
534 	len = p->end - p->start;
535 	p->start = p->buf;
536 	p->end = p->start + len;
537 	memmove(p->start, tmp, len + 1);
538 	p->reversed = 0;
539 }
540 
541 static struct btrfs_path *alloc_path_for_send(void)
542 {
543 	struct btrfs_path *path;
544 
545 	path = btrfs_alloc_path();
546 	if (!path)
547 		return NULL;
548 	path->search_commit_root = 1;
549 	path->skip_locking = 1;
550 	path->need_commit_sem = 1;
551 	return path;
552 }
553 
554 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
555 {
556 	int ret;
557 	u32 pos = 0;
558 
559 	while (pos < len) {
560 		ret = kernel_write(filp, buf + pos, len - pos, off);
561 		/* TODO handle that correctly */
562 		/*if (ret == -ERESTARTSYS) {
563 			continue;
564 		}*/
565 		if (ret < 0)
566 			return ret;
567 		if (ret == 0) {
568 			return -EIO;
569 		}
570 		pos += ret;
571 	}
572 
573 	return 0;
574 }
575 
576 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
577 {
578 	struct btrfs_tlv_header *hdr;
579 	int total_len = sizeof(*hdr) + len;
580 	int left = sctx->send_max_size - sctx->send_size;
581 
582 	if (unlikely(left < total_len))
583 		return -EOVERFLOW;
584 
585 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
586 	hdr->tlv_type = cpu_to_le16(attr);
587 	hdr->tlv_len = cpu_to_le16(len);
588 	memcpy(hdr + 1, data, len);
589 	sctx->send_size += total_len;
590 
591 	return 0;
592 }
593 
594 #define TLV_PUT_DEFINE_INT(bits) \
595 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
596 			u##bits attr, u##bits value)			\
597 	{								\
598 		__le##bits __tmp = cpu_to_le##bits(value);		\
599 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
600 	}
601 
602 TLV_PUT_DEFINE_INT(64)
603 
604 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
605 			  const char *str, int len)
606 {
607 	if (len == -1)
608 		len = strlen(str);
609 	return tlv_put(sctx, attr, str, len);
610 }
611 
612 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
613 			const u8 *uuid)
614 {
615 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
616 }
617 
618 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
619 				  struct extent_buffer *eb,
620 				  struct btrfs_timespec *ts)
621 {
622 	struct btrfs_timespec bts;
623 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
624 	return tlv_put(sctx, attr, &bts, sizeof(bts));
625 }
626 
627 
628 #define TLV_PUT(sctx, attrtype, data, attrlen) \
629 	do { \
630 		ret = tlv_put(sctx, attrtype, data, attrlen); \
631 		if (ret < 0) \
632 			goto tlv_put_failure; \
633 	} while (0)
634 
635 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
636 	do { \
637 		ret = tlv_put_u##bits(sctx, attrtype, value); \
638 		if (ret < 0) \
639 			goto tlv_put_failure; \
640 	} while (0)
641 
642 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
643 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
644 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
645 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
646 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
647 	do { \
648 		ret = tlv_put_string(sctx, attrtype, str, len); \
649 		if (ret < 0) \
650 			goto tlv_put_failure; \
651 	} while (0)
652 #define TLV_PUT_PATH(sctx, attrtype, p) \
653 	do { \
654 		ret = tlv_put_string(sctx, attrtype, p->start, \
655 			p->end - p->start); \
656 		if (ret < 0) \
657 			goto tlv_put_failure; \
658 	} while(0)
659 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
660 	do { \
661 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
662 		if (ret < 0) \
663 			goto tlv_put_failure; \
664 	} while (0)
665 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
666 	do { \
667 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
668 		if (ret < 0) \
669 			goto tlv_put_failure; \
670 	} while (0)
671 
672 static int send_header(struct send_ctx *sctx)
673 {
674 	struct btrfs_stream_header hdr;
675 
676 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
677 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
678 
679 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
680 					&sctx->send_off);
681 }
682 
683 /*
684  * For each command/item we want to send to userspace, we call this function.
685  */
686 static int begin_cmd(struct send_ctx *sctx, int cmd)
687 {
688 	struct btrfs_cmd_header *hdr;
689 
690 	if (WARN_ON(!sctx->send_buf))
691 		return -EINVAL;
692 
693 	BUG_ON(sctx->send_size);
694 
695 	sctx->send_size += sizeof(*hdr);
696 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
697 	hdr->cmd = cpu_to_le16(cmd);
698 
699 	return 0;
700 }
701 
702 static int send_cmd(struct send_ctx *sctx)
703 {
704 	int ret;
705 	struct btrfs_cmd_header *hdr;
706 	u32 crc;
707 
708 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
709 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
710 	hdr->crc = 0;
711 
712 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
713 	hdr->crc = cpu_to_le32(crc);
714 
715 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
716 					&sctx->send_off);
717 
718 	sctx->total_send_size += sctx->send_size;
719 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
720 	sctx->send_size = 0;
721 
722 	return ret;
723 }
724 
725 /*
726  * Sends a move instruction to user space
727  */
728 static int send_rename(struct send_ctx *sctx,
729 		     struct fs_path *from, struct fs_path *to)
730 {
731 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
732 	int ret;
733 
734 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
735 
736 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
737 	if (ret < 0)
738 		goto out;
739 
740 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
741 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
742 
743 	ret = send_cmd(sctx);
744 
745 tlv_put_failure:
746 out:
747 	return ret;
748 }
749 
750 /*
751  * Sends a link instruction to user space
752  */
753 static int send_link(struct send_ctx *sctx,
754 		     struct fs_path *path, struct fs_path *lnk)
755 {
756 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
757 	int ret;
758 
759 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
760 
761 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
762 	if (ret < 0)
763 		goto out;
764 
765 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
766 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
767 
768 	ret = send_cmd(sctx);
769 
770 tlv_put_failure:
771 out:
772 	return ret;
773 }
774 
775 /*
776  * Sends an unlink instruction to user space
777  */
778 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
779 {
780 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
781 	int ret;
782 
783 	btrfs_debug(fs_info, "send_unlink %s", path->start);
784 
785 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
786 	if (ret < 0)
787 		goto out;
788 
789 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
790 
791 	ret = send_cmd(sctx);
792 
793 tlv_put_failure:
794 out:
795 	return ret;
796 }
797 
798 /*
799  * Sends a rmdir instruction to user space
800  */
801 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
802 {
803 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
804 	int ret;
805 
806 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
807 
808 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
809 	if (ret < 0)
810 		goto out;
811 
812 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
813 
814 	ret = send_cmd(sctx);
815 
816 tlv_put_failure:
817 out:
818 	return ret;
819 }
820 
821 /*
822  * Helper function to retrieve some fields from an inode item.
823  */
824 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
825 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
826 			  u64 *gid, u64 *rdev)
827 {
828 	int ret;
829 	struct btrfs_inode_item *ii;
830 	struct btrfs_key key;
831 
832 	key.objectid = ino;
833 	key.type = BTRFS_INODE_ITEM_KEY;
834 	key.offset = 0;
835 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
836 	if (ret) {
837 		if (ret > 0)
838 			ret = -ENOENT;
839 		return ret;
840 	}
841 
842 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
843 			struct btrfs_inode_item);
844 	if (size)
845 		*size = btrfs_inode_size(path->nodes[0], ii);
846 	if (gen)
847 		*gen = btrfs_inode_generation(path->nodes[0], ii);
848 	if (mode)
849 		*mode = btrfs_inode_mode(path->nodes[0], ii);
850 	if (uid)
851 		*uid = btrfs_inode_uid(path->nodes[0], ii);
852 	if (gid)
853 		*gid = btrfs_inode_gid(path->nodes[0], ii);
854 	if (rdev)
855 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
856 
857 	return ret;
858 }
859 
860 static int get_inode_info(struct btrfs_root *root,
861 			  u64 ino, u64 *size, u64 *gen,
862 			  u64 *mode, u64 *uid, u64 *gid,
863 			  u64 *rdev)
864 {
865 	struct btrfs_path *path;
866 	int ret;
867 
868 	path = alloc_path_for_send();
869 	if (!path)
870 		return -ENOMEM;
871 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
872 			       rdev);
873 	btrfs_free_path(path);
874 	return ret;
875 }
876 
877 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
878 				   struct fs_path *p,
879 				   void *ctx);
880 
881 /*
882  * Helper function to iterate the entries in ONE btrfs_inode_ref or
883  * btrfs_inode_extref.
884  * The iterate callback may return a non zero value to stop iteration. This can
885  * be a negative value for error codes or 1 to simply stop it.
886  *
887  * path must point to the INODE_REF or INODE_EXTREF when called.
888  */
889 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
890 			     struct btrfs_key *found_key, int resolve,
891 			     iterate_inode_ref_t iterate, void *ctx)
892 {
893 	struct extent_buffer *eb = path->nodes[0];
894 	struct btrfs_item *item;
895 	struct btrfs_inode_ref *iref;
896 	struct btrfs_inode_extref *extref;
897 	struct btrfs_path *tmp_path;
898 	struct fs_path *p;
899 	u32 cur = 0;
900 	u32 total;
901 	int slot = path->slots[0];
902 	u32 name_len;
903 	char *start;
904 	int ret = 0;
905 	int num = 0;
906 	int index;
907 	u64 dir;
908 	unsigned long name_off;
909 	unsigned long elem_size;
910 	unsigned long ptr;
911 
912 	p = fs_path_alloc_reversed();
913 	if (!p)
914 		return -ENOMEM;
915 
916 	tmp_path = alloc_path_for_send();
917 	if (!tmp_path) {
918 		fs_path_free(p);
919 		return -ENOMEM;
920 	}
921 
922 
923 	if (found_key->type == BTRFS_INODE_REF_KEY) {
924 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
925 						    struct btrfs_inode_ref);
926 		item = btrfs_item_nr(slot);
927 		total = btrfs_item_size(eb, item);
928 		elem_size = sizeof(*iref);
929 	} else {
930 		ptr = btrfs_item_ptr_offset(eb, slot);
931 		total = btrfs_item_size_nr(eb, slot);
932 		elem_size = sizeof(*extref);
933 	}
934 
935 	while (cur < total) {
936 		fs_path_reset(p);
937 
938 		if (found_key->type == BTRFS_INODE_REF_KEY) {
939 			iref = (struct btrfs_inode_ref *)(ptr + cur);
940 			name_len = btrfs_inode_ref_name_len(eb, iref);
941 			name_off = (unsigned long)(iref + 1);
942 			index = btrfs_inode_ref_index(eb, iref);
943 			dir = found_key->offset;
944 		} else {
945 			extref = (struct btrfs_inode_extref *)(ptr + cur);
946 			name_len = btrfs_inode_extref_name_len(eb, extref);
947 			name_off = (unsigned long)&extref->name;
948 			index = btrfs_inode_extref_index(eb, extref);
949 			dir = btrfs_inode_extref_parent(eb, extref);
950 		}
951 
952 		if (resolve) {
953 			start = btrfs_ref_to_path(root, tmp_path, name_len,
954 						  name_off, eb, dir,
955 						  p->buf, p->buf_len);
956 			if (IS_ERR(start)) {
957 				ret = PTR_ERR(start);
958 				goto out;
959 			}
960 			if (start < p->buf) {
961 				/* overflow , try again with larger buffer */
962 				ret = fs_path_ensure_buf(p,
963 						p->buf_len + p->buf - start);
964 				if (ret < 0)
965 					goto out;
966 				start = btrfs_ref_to_path(root, tmp_path,
967 							  name_len, name_off,
968 							  eb, dir,
969 							  p->buf, p->buf_len);
970 				if (IS_ERR(start)) {
971 					ret = PTR_ERR(start);
972 					goto out;
973 				}
974 				BUG_ON(start < p->buf);
975 			}
976 			p->start = start;
977 		} else {
978 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
979 							     name_len);
980 			if (ret < 0)
981 				goto out;
982 		}
983 
984 		cur += elem_size + name_len;
985 		ret = iterate(num, dir, index, p, ctx);
986 		if (ret)
987 			goto out;
988 		num++;
989 	}
990 
991 out:
992 	btrfs_free_path(tmp_path);
993 	fs_path_free(p);
994 	return ret;
995 }
996 
997 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
998 				  const char *name, int name_len,
999 				  const char *data, int data_len,
1000 				  u8 type, void *ctx);
1001 
1002 /*
1003  * Helper function to iterate the entries in ONE btrfs_dir_item.
1004  * The iterate callback may return a non zero value to stop iteration. This can
1005  * be a negative value for error codes or 1 to simply stop it.
1006  *
1007  * path must point to the dir item when called.
1008  */
1009 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1010 			    iterate_dir_item_t iterate, void *ctx)
1011 {
1012 	int ret = 0;
1013 	struct extent_buffer *eb;
1014 	struct btrfs_item *item;
1015 	struct btrfs_dir_item *di;
1016 	struct btrfs_key di_key;
1017 	char *buf = NULL;
1018 	int buf_len;
1019 	u32 name_len;
1020 	u32 data_len;
1021 	u32 cur;
1022 	u32 len;
1023 	u32 total;
1024 	int slot;
1025 	int num;
1026 	u8 type;
1027 
1028 	/*
1029 	 * Start with a small buffer (1 page). If later we end up needing more
1030 	 * space, which can happen for xattrs on a fs with a leaf size greater
1031 	 * then the page size, attempt to increase the buffer. Typically xattr
1032 	 * values are small.
1033 	 */
1034 	buf_len = PATH_MAX;
1035 	buf = kmalloc(buf_len, GFP_KERNEL);
1036 	if (!buf) {
1037 		ret = -ENOMEM;
1038 		goto out;
1039 	}
1040 
1041 	eb = path->nodes[0];
1042 	slot = path->slots[0];
1043 	item = btrfs_item_nr(slot);
1044 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1045 	cur = 0;
1046 	len = 0;
1047 	total = btrfs_item_size(eb, item);
1048 
1049 	num = 0;
1050 	while (cur < total) {
1051 		name_len = btrfs_dir_name_len(eb, di);
1052 		data_len = btrfs_dir_data_len(eb, di);
1053 		type = btrfs_dir_type(eb, di);
1054 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1055 
1056 		if (type == BTRFS_FT_XATTR) {
1057 			if (name_len > XATTR_NAME_MAX) {
1058 				ret = -ENAMETOOLONG;
1059 				goto out;
1060 			}
1061 			if (name_len + data_len >
1062 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1063 				ret = -E2BIG;
1064 				goto out;
1065 			}
1066 		} else {
1067 			/*
1068 			 * Path too long
1069 			 */
1070 			if (name_len + data_len > PATH_MAX) {
1071 				ret = -ENAMETOOLONG;
1072 				goto out;
1073 			}
1074 		}
1075 
1076 		if (name_len + data_len > buf_len) {
1077 			buf_len = name_len + data_len;
1078 			if (is_vmalloc_addr(buf)) {
1079 				vfree(buf);
1080 				buf = NULL;
1081 			} else {
1082 				char *tmp = krealloc(buf, buf_len,
1083 						GFP_KERNEL | __GFP_NOWARN);
1084 
1085 				if (!tmp)
1086 					kfree(buf);
1087 				buf = tmp;
1088 			}
1089 			if (!buf) {
1090 				buf = kvmalloc(buf_len, GFP_KERNEL);
1091 				if (!buf) {
1092 					ret = -ENOMEM;
1093 					goto out;
1094 				}
1095 			}
1096 		}
1097 
1098 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1099 				name_len + data_len);
1100 
1101 		len = sizeof(*di) + name_len + data_len;
1102 		di = (struct btrfs_dir_item *)((char *)di + len);
1103 		cur += len;
1104 
1105 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1106 				data_len, type, ctx);
1107 		if (ret < 0)
1108 			goto out;
1109 		if (ret) {
1110 			ret = 0;
1111 			goto out;
1112 		}
1113 
1114 		num++;
1115 	}
1116 
1117 out:
1118 	kvfree(buf);
1119 	return ret;
1120 }
1121 
1122 static int __copy_first_ref(int num, u64 dir, int index,
1123 			    struct fs_path *p, void *ctx)
1124 {
1125 	int ret;
1126 	struct fs_path *pt = ctx;
1127 
1128 	ret = fs_path_copy(pt, p);
1129 	if (ret < 0)
1130 		return ret;
1131 
1132 	/* we want the first only */
1133 	return 1;
1134 }
1135 
1136 /*
1137  * Retrieve the first path of an inode. If an inode has more then one
1138  * ref/hardlink, this is ignored.
1139  */
1140 static int get_inode_path(struct btrfs_root *root,
1141 			  u64 ino, struct fs_path *path)
1142 {
1143 	int ret;
1144 	struct btrfs_key key, found_key;
1145 	struct btrfs_path *p;
1146 
1147 	p = alloc_path_for_send();
1148 	if (!p)
1149 		return -ENOMEM;
1150 
1151 	fs_path_reset(path);
1152 
1153 	key.objectid = ino;
1154 	key.type = BTRFS_INODE_REF_KEY;
1155 	key.offset = 0;
1156 
1157 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1158 	if (ret < 0)
1159 		goto out;
1160 	if (ret) {
1161 		ret = 1;
1162 		goto out;
1163 	}
1164 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1165 	if (found_key.objectid != ino ||
1166 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1167 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1168 		ret = -ENOENT;
1169 		goto out;
1170 	}
1171 
1172 	ret = iterate_inode_ref(root, p, &found_key, 1,
1173 				__copy_first_ref, path);
1174 	if (ret < 0)
1175 		goto out;
1176 	ret = 0;
1177 
1178 out:
1179 	btrfs_free_path(p);
1180 	return ret;
1181 }
1182 
1183 struct backref_ctx {
1184 	struct send_ctx *sctx;
1185 
1186 	/* number of total found references */
1187 	u64 found;
1188 
1189 	/*
1190 	 * used for clones found in send_root. clones found behind cur_objectid
1191 	 * and cur_offset are not considered as allowed clones.
1192 	 */
1193 	u64 cur_objectid;
1194 	u64 cur_offset;
1195 
1196 	/* may be truncated in case it's the last extent in a file */
1197 	u64 extent_len;
1198 
1199 	/* data offset in the file extent item */
1200 	u64 data_offset;
1201 
1202 	/* Just to check for bugs in backref resolving */
1203 	int found_itself;
1204 };
1205 
1206 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1207 {
1208 	u64 root = (u64)(uintptr_t)key;
1209 	struct clone_root *cr = (struct clone_root *)elt;
1210 
1211 	if (root < cr->root->root_key.objectid)
1212 		return -1;
1213 	if (root > cr->root->root_key.objectid)
1214 		return 1;
1215 	return 0;
1216 }
1217 
1218 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1219 {
1220 	struct clone_root *cr1 = (struct clone_root *)e1;
1221 	struct clone_root *cr2 = (struct clone_root *)e2;
1222 
1223 	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1224 		return -1;
1225 	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1226 		return 1;
1227 	return 0;
1228 }
1229 
1230 /*
1231  * Called for every backref that is found for the current extent.
1232  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1233  */
1234 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1235 {
1236 	struct backref_ctx *bctx = ctx_;
1237 	struct clone_root *found;
1238 
1239 	/* First check if the root is in the list of accepted clone sources */
1240 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1241 			bctx->sctx->clone_roots_cnt,
1242 			sizeof(struct clone_root),
1243 			__clone_root_cmp_bsearch);
1244 	if (!found)
1245 		return 0;
1246 
1247 	if (found->root == bctx->sctx->send_root &&
1248 	    ino == bctx->cur_objectid &&
1249 	    offset == bctx->cur_offset) {
1250 		bctx->found_itself = 1;
1251 	}
1252 
1253 	/*
1254 	 * Make sure we don't consider clones from send_root that are
1255 	 * behind the current inode/offset.
1256 	 */
1257 	if (found->root == bctx->sctx->send_root) {
1258 		/*
1259 		 * If the source inode was not yet processed we can't issue a
1260 		 * clone operation, as the source extent does not exist yet at
1261 		 * the destination of the stream.
1262 		 */
1263 		if (ino > bctx->cur_objectid)
1264 			return 0;
1265 		/*
1266 		 * We clone from the inode currently being sent as long as the
1267 		 * source extent is already processed, otherwise we could try
1268 		 * to clone from an extent that does not exist yet at the
1269 		 * destination of the stream.
1270 		 */
1271 		if (ino == bctx->cur_objectid &&
1272 		    offset + bctx->extent_len >
1273 		    bctx->sctx->cur_inode_next_write_offset)
1274 			return 0;
1275 	}
1276 
1277 	bctx->found++;
1278 	found->found_refs++;
1279 	if (ino < found->ino) {
1280 		found->ino = ino;
1281 		found->offset = offset;
1282 	} else if (found->ino == ino) {
1283 		/*
1284 		 * same extent found more then once in the same file.
1285 		 */
1286 		if (found->offset > offset + bctx->extent_len)
1287 			found->offset = offset;
1288 	}
1289 
1290 	return 0;
1291 }
1292 
1293 /*
1294  * Given an inode, offset and extent item, it finds a good clone for a clone
1295  * instruction. Returns -ENOENT when none could be found. The function makes
1296  * sure that the returned clone is usable at the point where sending is at the
1297  * moment. This means, that no clones are accepted which lie behind the current
1298  * inode+offset.
1299  *
1300  * path must point to the extent item when called.
1301  */
1302 static int find_extent_clone(struct send_ctx *sctx,
1303 			     struct btrfs_path *path,
1304 			     u64 ino, u64 data_offset,
1305 			     u64 ino_size,
1306 			     struct clone_root **found)
1307 {
1308 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1309 	int ret;
1310 	int extent_type;
1311 	u64 logical;
1312 	u64 disk_byte;
1313 	u64 num_bytes;
1314 	u64 extent_item_pos;
1315 	u64 flags = 0;
1316 	struct btrfs_file_extent_item *fi;
1317 	struct extent_buffer *eb = path->nodes[0];
1318 	struct backref_ctx *backref_ctx = NULL;
1319 	struct clone_root *cur_clone_root;
1320 	struct btrfs_key found_key;
1321 	struct btrfs_path *tmp_path;
1322 	struct btrfs_extent_item *ei;
1323 	int compressed;
1324 	u32 i;
1325 
1326 	tmp_path = alloc_path_for_send();
1327 	if (!tmp_path)
1328 		return -ENOMEM;
1329 
1330 	/* We only use this path under the commit sem */
1331 	tmp_path->need_commit_sem = 0;
1332 
1333 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1334 	if (!backref_ctx) {
1335 		ret = -ENOMEM;
1336 		goto out;
1337 	}
1338 
1339 	if (data_offset >= ino_size) {
1340 		/*
1341 		 * There may be extents that lie behind the file's size.
1342 		 * I at least had this in combination with snapshotting while
1343 		 * writing large files.
1344 		 */
1345 		ret = 0;
1346 		goto out;
1347 	}
1348 
1349 	fi = btrfs_item_ptr(eb, path->slots[0],
1350 			struct btrfs_file_extent_item);
1351 	extent_type = btrfs_file_extent_type(eb, fi);
1352 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1353 		ret = -ENOENT;
1354 		goto out;
1355 	}
1356 	compressed = btrfs_file_extent_compression(eb, fi);
1357 
1358 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1359 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1360 	if (disk_byte == 0) {
1361 		ret = -ENOENT;
1362 		goto out;
1363 	}
1364 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1365 
1366 	down_read(&fs_info->commit_root_sem);
1367 	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1368 				  &found_key, &flags);
1369 	up_read(&fs_info->commit_root_sem);
1370 
1371 	if (ret < 0)
1372 		goto out;
1373 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1374 		ret = -EIO;
1375 		goto out;
1376 	}
1377 
1378 	ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1379 			    struct btrfs_extent_item);
1380 	/*
1381 	 * Backreference walking (iterate_extent_inodes() below) is currently
1382 	 * too expensive when an extent has a large number of references, both
1383 	 * in time spent and used memory. So for now just fallback to write
1384 	 * operations instead of clone operations when an extent has more than
1385 	 * a certain amount of references.
1386 	 */
1387 	if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1388 		ret = -ENOENT;
1389 		goto out;
1390 	}
1391 	btrfs_release_path(tmp_path);
1392 
1393 	/*
1394 	 * Setup the clone roots.
1395 	 */
1396 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1397 		cur_clone_root = sctx->clone_roots + i;
1398 		cur_clone_root->ino = (u64)-1;
1399 		cur_clone_root->offset = 0;
1400 		cur_clone_root->found_refs = 0;
1401 	}
1402 
1403 	backref_ctx->sctx = sctx;
1404 	backref_ctx->found = 0;
1405 	backref_ctx->cur_objectid = ino;
1406 	backref_ctx->cur_offset = data_offset;
1407 	backref_ctx->found_itself = 0;
1408 	backref_ctx->extent_len = num_bytes;
1409 	/*
1410 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1411 	 * offsets that already take into account the data offset, but not for
1412 	 * compressed extents, since the offset is logical and not relative to
1413 	 * the physical extent locations. We must take this into account to
1414 	 * avoid sending clone offsets that go beyond the source file's size,
1415 	 * which would result in the clone ioctl failing with -EINVAL on the
1416 	 * receiving end.
1417 	 */
1418 	if (compressed == BTRFS_COMPRESS_NONE)
1419 		backref_ctx->data_offset = 0;
1420 	else
1421 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1422 
1423 	/*
1424 	 * The last extent of a file may be too large due to page alignment.
1425 	 * We need to adjust extent_len in this case so that the checks in
1426 	 * __iterate_backrefs work.
1427 	 */
1428 	if (data_offset + num_bytes >= ino_size)
1429 		backref_ctx->extent_len = ino_size - data_offset;
1430 
1431 	/*
1432 	 * Now collect all backrefs.
1433 	 */
1434 	if (compressed == BTRFS_COMPRESS_NONE)
1435 		extent_item_pos = logical - found_key.objectid;
1436 	else
1437 		extent_item_pos = 0;
1438 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1439 				    extent_item_pos, 1, __iterate_backrefs,
1440 				    backref_ctx, false);
1441 
1442 	if (ret < 0)
1443 		goto out;
1444 
1445 	if (!backref_ctx->found_itself) {
1446 		/* found a bug in backref code? */
1447 		ret = -EIO;
1448 		btrfs_err(fs_info,
1449 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1450 			  ino, data_offset, disk_byte, found_key.objectid);
1451 		goto out;
1452 	}
1453 
1454 	btrfs_debug(fs_info,
1455 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1456 		    data_offset, ino, num_bytes, logical);
1457 
1458 	if (!backref_ctx->found)
1459 		btrfs_debug(fs_info, "no clones found");
1460 
1461 	cur_clone_root = NULL;
1462 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1463 		if (sctx->clone_roots[i].found_refs) {
1464 			if (!cur_clone_root)
1465 				cur_clone_root = sctx->clone_roots + i;
1466 			else if (sctx->clone_roots[i].root == sctx->send_root)
1467 				/* prefer clones from send_root over others */
1468 				cur_clone_root = sctx->clone_roots + i;
1469 		}
1470 
1471 	}
1472 
1473 	if (cur_clone_root) {
1474 		*found = cur_clone_root;
1475 		ret = 0;
1476 	} else {
1477 		ret = -ENOENT;
1478 	}
1479 
1480 out:
1481 	btrfs_free_path(tmp_path);
1482 	kfree(backref_ctx);
1483 	return ret;
1484 }
1485 
1486 static int read_symlink(struct btrfs_root *root,
1487 			u64 ino,
1488 			struct fs_path *dest)
1489 {
1490 	int ret;
1491 	struct btrfs_path *path;
1492 	struct btrfs_key key;
1493 	struct btrfs_file_extent_item *ei;
1494 	u8 type;
1495 	u8 compression;
1496 	unsigned long off;
1497 	int len;
1498 
1499 	path = alloc_path_for_send();
1500 	if (!path)
1501 		return -ENOMEM;
1502 
1503 	key.objectid = ino;
1504 	key.type = BTRFS_EXTENT_DATA_KEY;
1505 	key.offset = 0;
1506 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1507 	if (ret < 0)
1508 		goto out;
1509 	if (ret) {
1510 		/*
1511 		 * An empty symlink inode. Can happen in rare error paths when
1512 		 * creating a symlink (transaction committed before the inode
1513 		 * eviction handler removed the symlink inode items and a crash
1514 		 * happened in between or the subvol was snapshoted in between).
1515 		 * Print an informative message to dmesg/syslog so that the user
1516 		 * can delete the symlink.
1517 		 */
1518 		btrfs_err(root->fs_info,
1519 			  "Found empty symlink inode %llu at root %llu",
1520 			  ino, root->root_key.objectid);
1521 		ret = -EIO;
1522 		goto out;
1523 	}
1524 
1525 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1526 			struct btrfs_file_extent_item);
1527 	type = btrfs_file_extent_type(path->nodes[0], ei);
1528 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1529 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1530 	BUG_ON(compression);
1531 
1532 	off = btrfs_file_extent_inline_start(ei);
1533 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1534 
1535 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1536 
1537 out:
1538 	btrfs_free_path(path);
1539 	return ret;
1540 }
1541 
1542 /*
1543  * Helper function to generate a file name that is unique in the root of
1544  * send_root and parent_root. This is used to generate names for orphan inodes.
1545  */
1546 static int gen_unique_name(struct send_ctx *sctx,
1547 			   u64 ino, u64 gen,
1548 			   struct fs_path *dest)
1549 {
1550 	int ret = 0;
1551 	struct btrfs_path *path;
1552 	struct btrfs_dir_item *di;
1553 	char tmp[64];
1554 	int len;
1555 	u64 idx = 0;
1556 
1557 	path = alloc_path_for_send();
1558 	if (!path)
1559 		return -ENOMEM;
1560 
1561 	while (1) {
1562 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1563 				ino, gen, idx);
1564 		ASSERT(len < sizeof(tmp));
1565 
1566 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1567 				path, BTRFS_FIRST_FREE_OBJECTID,
1568 				tmp, strlen(tmp), 0);
1569 		btrfs_release_path(path);
1570 		if (IS_ERR(di)) {
1571 			ret = PTR_ERR(di);
1572 			goto out;
1573 		}
1574 		if (di) {
1575 			/* not unique, try again */
1576 			idx++;
1577 			continue;
1578 		}
1579 
1580 		if (!sctx->parent_root) {
1581 			/* unique */
1582 			ret = 0;
1583 			break;
1584 		}
1585 
1586 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1587 				path, BTRFS_FIRST_FREE_OBJECTID,
1588 				tmp, strlen(tmp), 0);
1589 		btrfs_release_path(path);
1590 		if (IS_ERR(di)) {
1591 			ret = PTR_ERR(di);
1592 			goto out;
1593 		}
1594 		if (di) {
1595 			/* not unique, try again */
1596 			idx++;
1597 			continue;
1598 		}
1599 		/* unique */
1600 		break;
1601 	}
1602 
1603 	ret = fs_path_add(dest, tmp, strlen(tmp));
1604 
1605 out:
1606 	btrfs_free_path(path);
1607 	return ret;
1608 }
1609 
1610 enum inode_state {
1611 	inode_state_no_change,
1612 	inode_state_will_create,
1613 	inode_state_did_create,
1614 	inode_state_will_delete,
1615 	inode_state_did_delete,
1616 };
1617 
1618 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1619 {
1620 	int ret;
1621 	int left_ret;
1622 	int right_ret;
1623 	u64 left_gen;
1624 	u64 right_gen;
1625 
1626 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1627 			NULL, NULL);
1628 	if (ret < 0 && ret != -ENOENT)
1629 		goto out;
1630 	left_ret = ret;
1631 
1632 	if (!sctx->parent_root) {
1633 		right_ret = -ENOENT;
1634 	} else {
1635 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1636 				NULL, NULL, NULL, NULL);
1637 		if (ret < 0 && ret != -ENOENT)
1638 			goto out;
1639 		right_ret = ret;
1640 	}
1641 
1642 	if (!left_ret && !right_ret) {
1643 		if (left_gen == gen && right_gen == gen) {
1644 			ret = inode_state_no_change;
1645 		} else if (left_gen == gen) {
1646 			if (ino < sctx->send_progress)
1647 				ret = inode_state_did_create;
1648 			else
1649 				ret = inode_state_will_create;
1650 		} else if (right_gen == gen) {
1651 			if (ino < sctx->send_progress)
1652 				ret = inode_state_did_delete;
1653 			else
1654 				ret = inode_state_will_delete;
1655 		} else  {
1656 			ret = -ENOENT;
1657 		}
1658 	} else if (!left_ret) {
1659 		if (left_gen == gen) {
1660 			if (ino < sctx->send_progress)
1661 				ret = inode_state_did_create;
1662 			else
1663 				ret = inode_state_will_create;
1664 		} else {
1665 			ret = -ENOENT;
1666 		}
1667 	} else if (!right_ret) {
1668 		if (right_gen == gen) {
1669 			if (ino < sctx->send_progress)
1670 				ret = inode_state_did_delete;
1671 			else
1672 				ret = inode_state_will_delete;
1673 		} else {
1674 			ret = -ENOENT;
1675 		}
1676 	} else {
1677 		ret = -ENOENT;
1678 	}
1679 
1680 out:
1681 	return ret;
1682 }
1683 
1684 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1685 {
1686 	int ret;
1687 
1688 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1689 		return 1;
1690 
1691 	ret = get_cur_inode_state(sctx, ino, gen);
1692 	if (ret < 0)
1693 		goto out;
1694 
1695 	if (ret == inode_state_no_change ||
1696 	    ret == inode_state_did_create ||
1697 	    ret == inode_state_will_delete)
1698 		ret = 1;
1699 	else
1700 		ret = 0;
1701 
1702 out:
1703 	return ret;
1704 }
1705 
1706 /*
1707  * Helper function to lookup a dir item in a dir.
1708  */
1709 static int lookup_dir_item_inode(struct btrfs_root *root,
1710 				 u64 dir, const char *name, int name_len,
1711 				 u64 *found_inode,
1712 				 u8 *found_type)
1713 {
1714 	int ret = 0;
1715 	struct btrfs_dir_item *di;
1716 	struct btrfs_key key;
1717 	struct btrfs_path *path;
1718 
1719 	path = alloc_path_for_send();
1720 	if (!path)
1721 		return -ENOMEM;
1722 
1723 	di = btrfs_lookup_dir_item(NULL, root, path,
1724 			dir, name, name_len, 0);
1725 	if (IS_ERR_OR_NULL(di)) {
1726 		ret = di ? PTR_ERR(di) : -ENOENT;
1727 		goto out;
1728 	}
1729 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1730 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1731 		ret = -ENOENT;
1732 		goto out;
1733 	}
1734 	*found_inode = key.objectid;
1735 	*found_type = btrfs_dir_type(path->nodes[0], di);
1736 
1737 out:
1738 	btrfs_free_path(path);
1739 	return ret;
1740 }
1741 
1742 /*
1743  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1744  * generation of the parent dir and the name of the dir entry.
1745  */
1746 static int get_first_ref(struct btrfs_root *root, u64 ino,
1747 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1748 {
1749 	int ret;
1750 	struct btrfs_key key;
1751 	struct btrfs_key found_key;
1752 	struct btrfs_path *path;
1753 	int len;
1754 	u64 parent_dir;
1755 
1756 	path = alloc_path_for_send();
1757 	if (!path)
1758 		return -ENOMEM;
1759 
1760 	key.objectid = ino;
1761 	key.type = BTRFS_INODE_REF_KEY;
1762 	key.offset = 0;
1763 
1764 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1765 	if (ret < 0)
1766 		goto out;
1767 	if (!ret)
1768 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1769 				path->slots[0]);
1770 	if (ret || found_key.objectid != ino ||
1771 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1772 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1773 		ret = -ENOENT;
1774 		goto out;
1775 	}
1776 
1777 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1778 		struct btrfs_inode_ref *iref;
1779 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1780 				      struct btrfs_inode_ref);
1781 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1782 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1783 						     (unsigned long)(iref + 1),
1784 						     len);
1785 		parent_dir = found_key.offset;
1786 	} else {
1787 		struct btrfs_inode_extref *extref;
1788 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1789 					struct btrfs_inode_extref);
1790 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1791 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1792 					(unsigned long)&extref->name, len);
1793 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1794 	}
1795 	if (ret < 0)
1796 		goto out;
1797 	btrfs_release_path(path);
1798 
1799 	if (dir_gen) {
1800 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1801 				     NULL, NULL, NULL);
1802 		if (ret < 0)
1803 			goto out;
1804 	}
1805 
1806 	*dir = parent_dir;
1807 
1808 out:
1809 	btrfs_free_path(path);
1810 	return ret;
1811 }
1812 
1813 static int is_first_ref(struct btrfs_root *root,
1814 			u64 ino, u64 dir,
1815 			const char *name, int name_len)
1816 {
1817 	int ret;
1818 	struct fs_path *tmp_name;
1819 	u64 tmp_dir;
1820 
1821 	tmp_name = fs_path_alloc();
1822 	if (!tmp_name)
1823 		return -ENOMEM;
1824 
1825 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1826 	if (ret < 0)
1827 		goto out;
1828 
1829 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1830 		ret = 0;
1831 		goto out;
1832 	}
1833 
1834 	ret = !memcmp(tmp_name->start, name, name_len);
1835 
1836 out:
1837 	fs_path_free(tmp_name);
1838 	return ret;
1839 }
1840 
1841 /*
1842  * Used by process_recorded_refs to determine if a new ref would overwrite an
1843  * already existing ref. In case it detects an overwrite, it returns the
1844  * inode/gen in who_ino/who_gen.
1845  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1846  * to make sure later references to the overwritten inode are possible.
1847  * Orphanizing is however only required for the first ref of an inode.
1848  * process_recorded_refs does an additional is_first_ref check to see if
1849  * orphanizing is really required.
1850  */
1851 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1852 			      const char *name, int name_len,
1853 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1854 {
1855 	int ret = 0;
1856 	u64 gen;
1857 	u64 other_inode = 0;
1858 	u8 other_type = 0;
1859 
1860 	if (!sctx->parent_root)
1861 		goto out;
1862 
1863 	ret = is_inode_existent(sctx, dir, dir_gen);
1864 	if (ret <= 0)
1865 		goto out;
1866 
1867 	/*
1868 	 * If we have a parent root we need to verify that the parent dir was
1869 	 * not deleted and then re-created, if it was then we have no overwrite
1870 	 * and we can just unlink this entry.
1871 	 */
1872 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1873 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1874 				     NULL, NULL, NULL);
1875 		if (ret < 0 && ret != -ENOENT)
1876 			goto out;
1877 		if (ret) {
1878 			ret = 0;
1879 			goto out;
1880 		}
1881 		if (gen != dir_gen)
1882 			goto out;
1883 	}
1884 
1885 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1886 			&other_inode, &other_type);
1887 	if (ret < 0 && ret != -ENOENT)
1888 		goto out;
1889 	if (ret) {
1890 		ret = 0;
1891 		goto out;
1892 	}
1893 
1894 	/*
1895 	 * Check if the overwritten ref was already processed. If yes, the ref
1896 	 * was already unlinked/moved, so we can safely assume that we will not
1897 	 * overwrite anything at this point in time.
1898 	 */
1899 	if (other_inode > sctx->send_progress ||
1900 	    is_waiting_for_move(sctx, other_inode)) {
1901 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1902 				who_gen, who_mode, NULL, NULL, NULL);
1903 		if (ret < 0)
1904 			goto out;
1905 
1906 		ret = 1;
1907 		*who_ino = other_inode;
1908 	} else {
1909 		ret = 0;
1910 	}
1911 
1912 out:
1913 	return ret;
1914 }
1915 
1916 /*
1917  * Checks if the ref was overwritten by an already processed inode. This is
1918  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1919  * thus the orphan name needs be used.
1920  * process_recorded_refs also uses it to avoid unlinking of refs that were
1921  * overwritten.
1922  */
1923 static int did_overwrite_ref(struct send_ctx *sctx,
1924 			    u64 dir, u64 dir_gen,
1925 			    u64 ino, u64 ino_gen,
1926 			    const char *name, int name_len)
1927 {
1928 	int ret = 0;
1929 	u64 gen;
1930 	u64 ow_inode;
1931 	u8 other_type;
1932 
1933 	if (!sctx->parent_root)
1934 		goto out;
1935 
1936 	ret = is_inode_existent(sctx, dir, dir_gen);
1937 	if (ret <= 0)
1938 		goto out;
1939 
1940 	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1941 		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1942 				     NULL, NULL, NULL);
1943 		if (ret < 0 && ret != -ENOENT)
1944 			goto out;
1945 		if (ret) {
1946 			ret = 0;
1947 			goto out;
1948 		}
1949 		if (gen != dir_gen)
1950 			goto out;
1951 	}
1952 
1953 	/* check if the ref was overwritten by another ref */
1954 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1955 			&ow_inode, &other_type);
1956 	if (ret < 0 && ret != -ENOENT)
1957 		goto out;
1958 	if (ret) {
1959 		/* was never and will never be overwritten */
1960 		ret = 0;
1961 		goto out;
1962 	}
1963 
1964 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1965 			NULL, NULL);
1966 	if (ret < 0)
1967 		goto out;
1968 
1969 	if (ow_inode == ino && gen == ino_gen) {
1970 		ret = 0;
1971 		goto out;
1972 	}
1973 
1974 	/*
1975 	 * We know that it is or will be overwritten. Check this now.
1976 	 * The current inode being processed might have been the one that caused
1977 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1978 	 * the current inode being processed.
1979 	 */
1980 	if ((ow_inode < sctx->send_progress) ||
1981 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1982 	     gen == sctx->cur_inode_gen))
1983 		ret = 1;
1984 	else
1985 		ret = 0;
1986 
1987 out:
1988 	return ret;
1989 }
1990 
1991 /*
1992  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1993  * that got overwritten. This is used by process_recorded_refs to determine
1994  * if it has to use the path as returned by get_cur_path or the orphan name.
1995  */
1996 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1997 {
1998 	int ret = 0;
1999 	struct fs_path *name = NULL;
2000 	u64 dir;
2001 	u64 dir_gen;
2002 
2003 	if (!sctx->parent_root)
2004 		goto out;
2005 
2006 	name = fs_path_alloc();
2007 	if (!name)
2008 		return -ENOMEM;
2009 
2010 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2011 	if (ret < 0)
2012 		goto out;
2013 
2014 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2015 			name->start, fs_path_len(name));
2016 
2017 out:
2018 	fs_path_free(name);
2019 	return ret;
2020 }
2021 
2022 /*
2023  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2024  * so we need to do some special handling in case we have clashes. This function
2025  * takes care of this with the help of name_cache_entry::radix_list.
2026  * In case of error, nce is kfreed.
2027  */
2028 static int name_cache_insert(struct send_ctx *sctx,
2029 			     struct name_cache_entry *nce)
2030 {
2031 	int ret = 0;
2032 	struct list_head *nce_head;
2033 
2034 	nce_head = radix_tree_lookup(&sctx->name_cache,
2035 			(unsigned long)nce->ino);
2036 	if (!nce_head) {
2037 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2038 		if (!nce_head) {
2039 			kfree(nce);
2040 			return -ENOMEM;
2041 		}
2042 		INIT_LIST_HEAD(nce_head);
2043 
2044 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2045 		if (ret < 0) {
2046 			kfree(nce_head);
2047 			kfree(nce);
2048 			return ret;
2049 		}
2050 	}
2051 	list_add_tail(&nce->radix_list, nce_head);
2052 	list_add_tail(&nce->list, &sctx->name_cache_list);
2053 	sctx->name_cache_size++;
2054 
2055 	return ret;
2056 }
2057 
2058 static void name_cache_delete(struct send_ctx *sctx,
2059 			      struct name_cache_entry *nce)
2060 {
2061 	struct list_head *nce_head;
2062 
2063 	nce_head = radix_tree_lookup(&sctx->name_cache,
2064 			(unsigned long)nce->ino);
2065 	if (!nce_head) {
2066 		btrfs_err(sctx->send_root->fs_info,
2067 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2068 			nce->ino, sctx->name_cache_size);
2069 	}
2070 
2071 	list_del(&nce->radix_list);
2072 	list_del(&nce->list);
2073 	sctx->name_cache_size--;
2074 
2075 	/*
2076 	 * We may not get to the final release of nce_head if the lookup fails
2077 	 */
2078 	if (nce_head && list_empty(nce_head)) {
2079 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2080 		kfree(nce_head);
2081 	}
2082 }
2083 
2084 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2085 						    u64 ino, u64 gen)
2086 {
2087 	struct list_head *nce_head;
2088 	struct name_cache_entry *cur;
2089 
2090 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2091 	if (!nce_head)
2092 		return NULL;
2093 
2094 	list_for_each_entry(cur, nce_head, radix_list) {
2095 		if (cur->ino == ino && cur->gen == gen)
2096 			return cur;
2097 	}
2098 	return NULL;
2099 }
2100 
2101 /*
2102  * Removes the entry from the list and adds it back to the end. This marks the
2103  * entry as recently used so that name_cache_clean_unused does not remove it.
2104  */
2105 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2106 {
2107 	list_del(&nce->list);
2108 	list_add_tail(&nce->list, &sctx->name_cache_list);
2109 }
2110 
2111 /*
2112  * Remove some entries from the beginning of name_cache_list.
2113  */
2114 static void name_cache_clean_unused(struct send_ctx *sctx)
2115 {
2116 	struct name_cache_entry *nce;
2117 
2118 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2119 		return;
2120 
2121 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2122 		nce = list_entry(sctx->name_cache_list.next,
2123 				struct name_cache_entry, list);
2124 		name_cache_delete(sctx, nce);
2125 		kfree(nce);
2126 	}
2127 }
2128 
2129 static void name_cache_free(struct send_ctx *sctx)
2130 {
2131 	struct name_cache_entry *nce;
2132 
2133 	while (!list_empty(&sctx->name_cache_list)) {
2134 		nce = list_entry(sctx->name_cache_list.next,
2135 				struct name_cache_entry, list);
2136 		name_cache_delete(sctx, nce);
2137 		kfree(nce);
2138 	}
2139 }
2140 
2141 /*
2142  * Used by get_cur_path for each ref up to the root.
2143  * Returns 0 if it succeeded.
2144  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2145  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2146  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2147  * Returns <0 in case of error.
2148  */
2149 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2150 				     u64 ino, u64 gen,
2151 				     u64 *parent_ino,
2152 				     u64 *parent_gen,
2153 				     struct fs_path *dest)
2154 {
2155 	int ret;
2156 	int nce_ret;
2157 	struct name_cache_entry *nce = NULL;
2158 
2159 	/*
2160 	 * First check if we already did a call to this function with the same
2161 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2162 	 * return the cached result.
2163 	 */
2164 	nce = name_cache_search(sctx, ino, gen);
2165 	if (nce) {
2166 		if (ino < sctx->send_progress && nce->need_later_update) {
2167 			name_cache_delete(sctx, nce);
2168 			kfree(nce);
2169 			nce = NULL;
2170 		} else {
2171 			name_cache_used(sctx, nce);
2172 			*parent_ino = nce->parent_ino;
2173 			*parent_gen = nce->parent_gen;
2174 			ret = fs_path_add(dest, nce->name, nce->name_len);
2175 			if (ret < 0)
2176 				goto out;
2177 			ret = nce->ret;
2178 			goto out;
2179 		}
2180 	}
2181 
2182 	/*
2183 	 * If the inode is not existent yet, add the orphan name and return 1.
2184 	 * This should only happen for the parent dir that we determine in
2185 	 * __record_new_ref
2186 	 */
2187 	ret = is_inode_existent(sctx, ino, gen);
2188 	if (ret < 0)
2189 		goto out;
2190 
2191 	if (!ret) {
2192 		ret = gen_unique_name(sctx, ino, gen, dest);
2193 		if (ret < 0)
2194 			goto out;
2195 		ret = 1;
2196 		goto out_cache;
2197 	}
2198 
2199 	/*
2200 	 * Depending on whether the inode was already processed or not, use
2201 	 * send_root or parent_root for ref lookup.
2202 	 */
2203 	if (ino < sctx->send_progress)
2204 		ret = get_first_ref(sctx->send_root, ino,
2205 				    parent_ino, parent_gen, dest);
2206 	else
2207 		ret = get_first_ref(sctx->parent_root, ino,
2208 				    parent_ino, parent_gen, dest);
2209 	if (ret < 0)
2210 		goto out;
2211 
2212 	/*
2213 	 * Check if the ref was overwritten by an inode's ref that was processed
2214 	 * earlier. If yes, treat as orphan and return 1.
2215 	 */
2216 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2217 			dest->start, dest->end - dest->start);
2218 	if (ret < 0)
2219 		goto out;
2220 	if (ret) {
2221 		fs_path_reset(dest);
2222 		ret = gen_unique_name(sctx, ino, gen, dest);
2223 		if (ret < 0)
2224 			goto out;
2225 		ret = 1;
2226 	}
2227 
2228 out_cache:
2229 	/*
2230 	 * Store the result of the lookup in the name cache.
2231 	 */
2232 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2233 	if (!nce) {
2234 		ret = -ENOMEM;
2235 		goto out;
2236 	}
2237 
2238 	nce->ino = ino;
2239 	nce->gen = gen;
2240 	nce->parent_ino = *parent_ino;
2241 	nce->parent_gen = *parent_gen;
2242 	nce->name_len = fs_path_len(dest);
2243 	nce->ret = ret;
2244 	strcpy(nce->name, dest->start);
2245 
2246 	if (ino < sctx->send_progress)
2247 		nce->need_later_update = 0;
2248 	else
2249 		nce->need_later_update = 1;
2250 
2251 	nce_ret = name_cache_insert(sctx, nce);
2252 	if (nce_ret < 0)
2253 		ret = nce_ret;
2254 	name_cache_clean_unused(sctx);
2255 
2256 out:
2257 	return ret;
2258 }
2259 
2260 /*
2261  * Magic happens here. This function returns the first ref to an inode as it
2262  * would look like while receiving the stream at this point in time.
2263  * We walk the path up to the root. For every inode in between, we check if it
2264  * was already processed/sent. If yes, we continue with the parent as found
2265  * in send_root. If not, we continue with the parent as found in parent_root.
2266  * If we encounter an inode that was deleted at this point in time, we use the
2267  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2268  * that were not created yet and overwritten inodes/refs.
2269  *
2270  * When do we have orphan inodes:
2271  * 1. When an inode is freshly created and thus no valid refs are available yet
2272  * 2. When a directory lost all it's refs (deleted) but still has dir items
2273  *    inside which were not processed yet (pending for move/delete). If anyone
2274  *    tried to get the path to the dir items, it would get a path inside that
2275  *    orphan directory.
2276  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2277  *    of an unprocessed inode. If in that case the first ref would be
2278  *    overwritten, the overwritten inode gets "orphanized". Later when we
2279  *    process this overwritten inode, it is restored at a new place by moving
2280  *    the orphan inode.
2281  *
2282  * sctx->send_progress tells this function at which point in time receiving
2283  * would be.
2284  */
2285 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2286 			struct fs_path *dest)
2287 {
2288 	int ret = 0;
2289 	struct fs_path *name = NULL;
2290 	u64 parent_inode = 0;
2291 	u64 parent_gen = 0;
2292 	int stop = 0;
2293 
2294 	name = fs_path_alloc();
2295 	if (!name) {
2296 		ret = -ENOMEM;
2297 		goto out;
2298 	}
2299 
2300 	dest->reversed = 1;
2301 	fs_path_reset(dest);
2302 
2303 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2304 		struct waiting_dir_move *wdm;
2305 
2306 		fs_path_reset(name);
2307 
2308 		if (is_waiting_for_rm(sctx, ino)) {
2309 			ret = gen_unique_name(sctx, ino, gen, name);
2310 			if (ret < 0)
2311 				goto out;
2312 			ret = fs_path_add_path(dest, name);
2313 			break;
2314 		}
2315 
2316 		wdm = get_waiting_dir_move(sctx, ino);
2317 		if (wdm && wdm->orphanized) {
2318 			ret = gen_unique_name(sctx, ino, gen, name);
2319 			stop = 1;
2320 		} else if (wdm) {
2321 			ret = get_first_ref(sctx->parent_root, ino,
2322 					    &parent_inode, &parent_gen, name);
2323 		} else {
2324 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2325 							&parent_inode,
2326 							&parent_gen, name);
2327 			if (ret)
2328 				stop = 1;
2329 		}
2330 
2331 		if (ret < 0)
2332 			goto out;
2333 
2334 		ret = fs_path_add_path(dest, name);
2335 		if (ret < 0)
2336 			goto out;
2337 
2338 		ino = parent_inode;
2339 		gen = parent_gen;
2340 	}
2341 
2342 out:
2343 	fs_path_free(name);
2344 	if (!ret)
2345 		fs_path_unreverse(dest);
2346 	return ret;
2347 }
2348 
2349 /*
2350  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2351  */
2352 static int send_subvol_begin(struct send_ctx *sctx)
2353 {
2354 	int ret;
2355 	struct btrfs_root *send_root = sctx->send_root;
2356 	struct btrfs_root *parent_root = sctx->parent_root;
2357 	struct btrfs_path *path;
2358 	struct btrfs_key key;
2359 	struct btrfs_root_ref *ref;
2360 	struct extent_buffer *leaf;
2361 	char *name = NULL;
2362 	int namelen;
2363 
2364 	path = btrfs_alloc_path();
2365 	if (!path)
2366 		return -ENOMEM;
2367 
2368 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2369 	if (!name) {
2370 		btrfs_free_path(path);
2371 		return -ENOMEM;
2372 	}
2373 
2374 	key.objectid = send_root->root_key.objectid;
2375 	key.type = BTRFS_ROOT_BACKREF_KEY;
2376 	key.offset = 0;
2377 
2378 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2379 				&key, path, 1, 0);
2380 	if (ret < 0)
2381 		goto out;
2382 	if (ret) {
2383 		ret = -ENOENT;
2384 		goto out;
2385 	}
2386 
2387 	leaf = path->nodes[0];
2388 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2389 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2390 	    key.objectid != send_root->root_key.objectid) {
2391 		ret = -ENOENT;
2392 		goto out;
2393 	}
2394 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2395 	namelen = btrfs_root_ref_name_len(leaf, ref);
2396 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2397 	btrfs_release_path(path);
2398 
2399 	if (parent_root) {
2400 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2401 		if (ret < 0)
2402 			goto out;
2403 	} else {
2404 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2405 		if (ret < 0)
2406 			goto out;
2407 	}
2408 
2409 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2410 
2411 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2412 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2413 			    sctx->send_root->root_item.received_uuid);
2414 	else
2415 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2416 			    sctx->send_root->root_item.uuid);
2417 
2418 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2419 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2420 	if (parent_root) {
2421 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2422 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2423 				     parent_root->root_item.received_uuid);
2424 		else
2425 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2426 				     parent_root->root_item.uuid);
2427 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2428 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2429 	}
2430 
2431 	ret = send_cmd(sctx);
2432 
2433 tlv_put_failure:
2434 out:
2435 	btrfs_free_path(path);
2436 	kfree(name);
2437 	return ret;
2438 }
2439 
2440 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2441 {
2442 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2443 	int ret = 0;
2444 	struct fs_path *p;
2445 
2446 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2447 
2448 	p = fs_path_alloc();
2449 	if (!p)
2450 		return -ENOMEM;
2451 
2452 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2453 	if (ret < 0)
2454 		goto out;
2455 
2456 	ret = get_cur_path(sctx, ino, gen, p);
2457 	if (ret < 0)
2458 		goto out;
2459 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2460 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2461 
2462 	ret = send_cmd(sctx);
2463 
2464 tlv_put_failure:
2465 out:
2466 	fs_path_free(p);
2467 	return ret;
2468 }
2469 
2470 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2471 {
2472 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2473 	int ret = 0;
2474 	struct fs_path *p;
2475 
2476 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2477 
2478 	p = fs_path_alloc();
2479 	if (!p)
2480 		return -ENOMEM;
2481 
2482 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2483 	if (ret < 0)
2484 		goto out;
2485 
2486 	ret = get_cur_path(sctx, ino, gen, p);
2487 	if (ret < 0)
2488 		goto out;
2489 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2490 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2491 
2492 	ret = send_cmd(sctx);
2493 
2494 tlv_put_failure:
2495 out:
2496 	fs_path_free(p);
2497 	return ret;
2498 }
2499 
2500 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2501 {
2502 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2503 	int ret = 0;
2504 	struct fs_path *p;
2505 
2506 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2507 		    ino, uid, gid);
2508 
2509 	p = fs_path_alloc();
2510 	if (!p)
2511 		return -ENOMEM;
2512 
2513 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2514 	if (ret < 0)
2515 		goto out;
2516 
2517 	ret = get_cur_path(sctx, ino, gen, p);
2518 	if (ret < 0)
2519 		goto out;
2520 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2521 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2522 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2523 
2524 	ret = send_cmd(sctx);
2525 
2526 tlv_put_failure:
2527 out:
2528 	fs_path_free(p);
2529 	return ret;
2530 }
2531 
2532 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2533 {
2534 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2535 	int ret = 0;
2536 	struct fs_path *p = NULL;
2537 	struct btrfs_inode_item *ii;
2538 	struct btrfs_path *path = NULL;
2539 	struct extent_buffer *eb;
2540 	struct btrfs_key key;
2541 	int slot;
2542 
2543 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2544 
2545 	p = fs_path_alloc();
2546 	if (!p)
2547 		return -ENOMEM;
2548 
2549 	path = alloc_path_for_send();
2550 	if (!path) {
2551 		ret = -ENOMEM;
2552 		goto out;
2553 	}
2554 
2555 	key.objectid = ino;
2556 	key.type = BTRFS_INODE_ITEM_KEY;
2557 	key.offset = 0;
2558 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2559 	if (ret > 0)
2560 		ret = -ENOENT;
2561 	if (ret < 0)
2562 		goto out;
2563 
2564 	eb = path->nodes[0];
2565 	slot = path->slots[0];
2566 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2567 
2568 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2569 	if (ret < 0)
2570 		goto out;
2571 
2572 	ret = get_cur_path(sctx, ino, gen, p);
2573 	if (ret < 0)
2574 		goto out;
2575 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2576 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2577 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2578 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2579 	/* TODO Add otime support when the otime patches get into upstream */
2580 
2581 	ret = send_cmd(sctx);
2582 
2583 tlv_put_failure:
2584 out:
2585 	fs_path_free(p);
2586 	btrfs_free_path(path);
2587 	return ret;
2588 }
2589 
2590 /*
2591  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2592  * a valid path yet because we did not process the refs yet. So, the inode
2593  * is created as orphan.
2594  */
2595 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2596 {
2597 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2598 	int ret = 0;
2599 	struct fs_path *p;
2600 	int cmd;
2601 	u64 gen;
2602 	u64 mode;
2603 	u64 rdev;
2604 
2605 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2606 
2607 	p = fs_path_alloc();
2608 	if (!p)
2609 		return -ENOMEM;
2610 
2611 	if (ino != sctx->cur_ino) {
2612 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2613 				     NULL, NULL, &rdev);
2614 		if (ret < 0)
2615 			goto out;
2616 	} else {
2617 		gen = sctx->cur_inode_gen;
2618 		mode = sctx->cur_inode_mode;
2619 		rdev = sctx->cur_inode_rdev;
2620 	}
2621 
2622 	if (S_ISREG(mode)) {
2623 		cmd = BTRFS_SEND_C_MKFILE;
2624 	} else if (S_ISDIR(mode)) {
2625 		cmd = BTRFS_SEND_C_MKDIR;
2626 	} else if (S_ISLNK(mode)) {
2627 		cmd = BTRFS_SEND_C_SYMLINK;
2628 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2629 		cmd = BTRFS_SEND_C_MKNOD;
2630 	} else if (S_ISFIFO(mode)) {
2631 		cmd = BTRFS_SEND_C_MKFIFO;
2632 	} else if (S_ISSOCK(mode)) {
2633 		cmd = BTRFS_SEND_C_MKSOCK;
2634 	} else {
2635 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2636 				(int)(mode & S_IFMT));
2637 		ret = -EOPNOTSUPP;
2638 		goto out;
2639 	}
2640 
2641 	ret = begin_cmd(sctx, cmd);
2642 	if (ret < 0)
2643 		goto out;
2644 
2645 	ret = gen_unique_name(sctx, ino, gen, p);
2646 	if (ret < 0)
2647 		goto out;
2648 
2649 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2650 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2651 
2652 	if (S_ISLNK(mode)) {
2653 		fs_path_reset(p);
2654 		ret = read_symlink(sctx->send_root, ino, p);
2655 		if (ret < 0)
2656 			goto out;
2657 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2658 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2659 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2660 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2661 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2662 	}
2663 
2664 	ret = send_cmd(sctx);
2665 	if (ret < 0)
2666 		goto out;
2667 
2668 
2669 tlv_put_failure:
2670 out:
2671 	fs_path_free(p);
2672 	return ret;
2673 }
2674 
2675 /*
2676  * We need some special handling for inodes that get processed before the parent
2677  * directory got created. See process_recorded_refs for details.
2678  * This function does the check if we already created the dir out of order.
2679  */
2680 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2681 {
2682 	int ret = 0;
2683 	struct btrfs_path *path = NULL;
2684 	struct btrfs_key key;
2685 	struct btrfs_key found_key;
2686 	struct btrfs_key di_key;
2687 	struct extent_buffer *eb;
2688 	struct btrfs_dir_item *di;
2689 	int slot;
2690 
2691 	path = alloc_path_for_send();
2692 	if (!path) {
2693 		ret = -ENOMEM;
2694 		goto out;
2695 	}
2696 
2697 	key.objectid = dir;
2698 	key.type = BTRFS_DIR_INDEX_KEY;
2699 	key.offset = 0;
2700 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2701 	if (ret < 0)
2702 		goto out;
2703 
2704 	while (1) {
2705 		eb = path->nodes[0];
2706 		slot = path->slots[0];
2707 		if (slot >= btrfs_header_nritems(eb)) {
2708 			ret = btrfs_next_leaf(sctx->send_root, path);
2709 			if (ret < 0) {
2710 				goto out;
2711 			} else if (ret > 0) {
2712 				ret = 0;
2713 				break;
2714 			}
2715 			continue;
2716 		}
2717 
2718 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2719 		if (found_key.objectid != key.objectid ||
2720 		    found_key.type != key.type) {
2721 			ret = 0;
2722 			goto out;
2723 		}
2724 
2725 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2726 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2727 
2728 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2729 		    di_key.objectid < sctx->send_progress) {
2730 			ret = 1;
2731 			goto out;
2732 		}
2733 
2734 		path->slots[0]++;
2735 	}
2736 
2737 out:
2738 	btrfs_free_path(path);
2739 	return ret;
2740 }
2741 
2742 /*
2743  * Only creates the inode if it is:
2744  * 1. Not a directory
2745  * 2. Or a directory which was not created already due to out of order
2746  *    directories. See did_create_dir and process_recorded_refs for details.
2747  */
2748 static int send_create_inode_if_needed(struct send_ctx *sctx)
2749 {
2750 	int ret;
2751 
2752 	if (S_ISDIR(sctx->cur_inode_mode)) {
2753 		ret = did_create_dir(sctx, sctx->cur_ino);
2754 		if (ret < 0)
2755 			goto out;
2756 		if (ret) {
2757 			ret = 0;
2758 			goto out;
2759 		}
2760 	}
2761 
2762 	ret = send_create_inode(sctx, sctx->cur_ino);
2763 	if (ret < 0)
2764 		goto out;
2765 
2766 out:
2767 	return ret;
2768 }
2769 
2770 struct recorded_ref {
2771 	struct list_head list;
2772 	char *name;
2773 	struct fs_path *full_path;
2774 	u64 dir;
2775 	u64 dir_gen;
2776 	int name_len;
2777 };
2778 
2779 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2780 {
2781 	ref->full_path = path;
2782 	ref->name = (char *)kbasename(ref->full_path->start);
2783 	ref->name_len = ref->full_path->end - ref->name;
2784 }
2785 
2786 /*
2787  * We need to process new refs before deleted refs, but compare_tree gives us
2788  * everything mixed. So we first record all refs and later process them.
2789  * This function is a helper to record one ref.
2790  */
2791 static int __record_ref(struct list_head *head, u64 dir,
2792 		      u64 dir_gen, struct fs_path *path)
2793 {
2794 	struct recorded_ref *ref;
2795 
2796 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2797 	if (!ref)
2798 		return -ENOMEM;
2799 
2800 	ref->dir = dir;
2801 	ref->dir_gen = dir_gen;
2802 	set_ref_path(ref, path);
2803 	list_add_tail(&ref->list, head);
2804 	return 0;
2805 }
2806 
2807 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2808 {
2809 	struct recorded_ref *new;
2810 
2811 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2812 	if (!new)
2813 		return -ENOMEM;
2814 
2815 	new->dir = ref->dir;
2816 	new->dir_gen = ref->dir_gen;
2817 	new->full_path = NULL;
2818 	INIT_LIST_HEAD(&new->list);
2819 	list_add_tail(&new->list, list);
2820 	return 0;
2821 }
2822 
2823 static void __free_recorded_refs(struct list_head *head)
2824 {
2825 	struct recorded_ref *cur;
2826 
2827 	while (!list_empty(head)) {
2828 		cur = list_entry(head->next, struct recorded_ref, list);
2829 		fs_path_free(cur->full_path);
2830 		list_del(&cur->list);
2831 		kfree(cur);
2832 	}
2833 }
2834 
2835 static void free_recorded_refs(struct send_ctx *sctx)
2836 {
2837 	__free_recorded_refs(&sctx->new_refs);
2838 	__free_recorded_refs(&sctx->deleted_refs);
2839 }
2840 
2841 /*
2842  * Renames/moves a file/dir to its orphan name. Used when the first
2843  * ref of an unprocessed inode gets overwritten and for all non empty
2844  * directories.
2845  */
2846 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2847 			  struct fs_path *path)
2848 {
2849 	int ret;
2850 	struct fs_path *orphan;
2851 
2852 	orphan = fs_path_alloc();
2853 	if (!orphan)
2854 		return -ENOMEM;
2855 
2856 	ret = gen_unique_name(sctx, ino, gen, orphan);
2857 	if (ret < 0)
2858 		goto out;
2859 
2860 	ret = send_rename(sctx, path, orphan);
2861 
2862 out:
2863 	fs_path_free(orphan);
2864 	return ret;
2865 }
2866 
2867 static struct orphan_dir_info *
2868 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2869 {
2870 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2871 	struct rb_node *parent = NULL;
2872 	struct orphan_dir_info *entry, *odi;
2873 
2874 	while (*p) {
2875 		parent = *p;
2876 		entry = rb_entry(parent, struct orphan_dir_info, node);
2877 		if (dir_ino < entry->ino) {
2878 			p = &(*p)->rb_left;
2879 		} else if (dir_ino > entry->ino) {
2880 			p = &(*p)->rb_right;
2881 		} else {
2882 			return entry;
2883 		}
2884 	}
2885 
2886 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2887 	if (!odi)
2888 		return ERR_PTR(-ENOMEM);
2889 	odi->ino = dir_ino;
2890 	odi->gen = 0;
2891 	odi->last_dir_index_offset = 0;
2892 
2893 	rb_link_node(&odi->node, parent, p);
2894 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2895 	return odi;
2896 }
2897 
2898 static struct orphan_dir_info *
2899 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2900 {
2901 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2902 	struct orphan_dir_info *entry;
2903 
2904 	while (n) {
2905 		entry = rb_entry(n, struct orphan_dir_info, node);
2906 		if (dir_ino < entry->ino)
2907 			n = n->rb_left;
2908 		else if (dir_ino > entry->ino)
2909 			n = n->rb_right;
2910 		else
2911 			return entry;
2912 	}
2913 	return NULL;
2914 }
2915 
2916 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2917 {
2918 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2919 
2920 	return odi != NULL;
2921 }
2922 
2923 static void free_orphan_dir_info(struct send_ctx *sctx,
2924 				 struct orphan_dir_info *odi)
2925 {
2926 	if (!odi)
2927 		return;
2928 	rb_erase(&odi->node, &sctx->orphan_dirs);
2929 	kfree(odi);
2930 }
2931 
2932 /*
2933  * Returns 1 if a directory can be removed at this point in time.
2934  * We check this by iterating all dir items and checking if the inode behind
2935  * the dir item was already processed.
2936  */
2937 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2938 		     u64 send_progress)
2939 {
2940 	int ret = 0;
2941 	struct btrfs_root *root = sctx->parent_root;
2942 	struct btrfs_path *path;
2943 	struct btrfs_key key;
2944 	struct btrfs_key found_key;
2945 	struct btrfs_key loc;
2946 	struct btrfs_dir_item *di;
2947 	struct orphan_dir_info *odi = NULL;
2948 
2949 	/*
2950 	 * Don't try to rmdir the top/root subvolume dir.
2951 	 */
2952 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2953 		return 0;
2954 
2955 	path = alloc_path_for_send();
2956 	if (!path)
2957 		return -ENOMEM;
2958 
2959 	key.objectid = dir;
2960 	key.type = BTRFS_DIR_INDEX_KEY;
2961 	key.offset = 0;
2962 
2963 	odi = get_orphan_dir_info(sctx, dir);
2964 	if (odi)
2965 		key.offset = odi->last_dir_index_offset;
2966 
2967 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2968 	if (ret < 0)
2969 		goto out;
2970 
2971 	while (1) {
2972 		struct waiting_dir_move *dm;
2973 
2974 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2975 			ret = btrfs_next_leaf(root, path);
2976 			if (ret < 0)
2977 				goto out;
2978 			else if (ret > 0)
2979 				break;
2980 			continue;
2981 		}
2982 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2983 				      path->slots[0]);
2984 		if (found_key.objectid != key.objectid ||
2985 		    found_key.type != key.type)
2986 			break;
2987 
2988 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2989 				struct btrfs_dir_item);
2990 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2991 
2992 		dm = get_waiting_dir_move(sctx, loc.objectid);
2993 		if (dm) {
2994 			odi = add_orphan_dir_info(sctx, dir);
2995 			if (IS_ERR(odi)) {
2996 				ret = PTR_ERR(odi);
2997 				goto out;
2998 			}
2999 			odi->gen = dir_gen;
3000 			odi->last_dir_index_offset = found_key.offset;
3001 			dm->rmdir_ino = dir;
3002 			ret = 0;
3003 			goto out;
3004 		}
3005 
3006 		if (loc.objectid > send_progress) {
3007 			odi = add_orphan_dir_info(sctx, dir);
3008 			if (IS_ERR(odi)) {
3009 				ret = PTR_ERR(odi);
3010 				goto out;
3011 			}
3012 			odi->gen = dir_gen;
3013 			odi->last_dir_index_offset = found_key.offset;
3014 			ret = 0;
3015 			goto out;
3016 		}
3017 
3018 		path->slots[0]++;
3019 	}
3020 	free_orphan_dir_info(sctx, odi);
3021 
3022 	ret = 1;
3023 
3024 out:
3025 	btrfs_free_path(path);
3026 	return ret;
3027 }
3028 
3029 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3030 {
3031 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3032 
3033 	return entry != NULL;
3034 }
3035 
3036 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3037 {
3038 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3039 	struct rb_node *parent = NULL;
3040 	struct waiting_dir_move *entry, *dm;
3041 
3042 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3043 	if (!dm)
3044 		return -ENOMEM;
3045 	dm->ino = ino;
3046 	dm->rmdir_ino = 0;
3047 	dm->orphanized = orphanized;
3048 
3049 	while (*p) {
3050 		parent = *p;
3051 		entry = rb_entry(parent, struct waiting_dir_move, node);
3052 		if (ino < entry->ino) {
3053 			p = &(*p)->rb_left;
3054 		} else if (ino > entry->ino) {
3055 			p = &(*p)->rb_right;
3056 		} else {
3057 			kfree(dm);
3058 			return -EEXIST;
3059 		}
3060 	}
3061 
3062 	rb_link_node(&dm->node, parent, p);
3063 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3064 	return 0;
3065 }
3066 
3067 static struct waiting_dir_move *
3068 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3069 {
3070 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3071 	struct waiting_dir_move *entry;
3072 
3073 	while (n) {
3074 		entry = rb_entry(n, struct waiting_dir_move, node);
3075 		if (ino < entry->ino)
3076 			n = n->rb_left;
3077 		else if (ino > entry->ino)
3078 			n = n->rb_right;
3079 		else
3080 			return entry;
3081 	}
3082 	return NULL;
3083 }
3084 
3085 static void free_waiting_dir_move(struct send_ctx *sctx,
3086 				  struct waiting_dir_move *dm)
3087 {
3088 	if (!dm)
3089 		return;
3090 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3091 	kfree(dm);
3092 }
3093 
3094 static int add_pending_dir_move(struct send_ctx *sctx,
3095 				u64 ino,
3096 				u64 ino_gen,
3097 				u64 parent_ino,
3098 				struct list_head *new_refs,
3099 				struct list_head *deleted_refs,
3100 				const bool is_orphan)
3101 {
3102 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3103 	struct rb_node *parent = NULL;
3104 	struct pending_dir_move *entry = NULL, *pm;
3105 	struct recorded_ref *cur;
3106 	int exists = 0;
3107 	int ret;
3108 
3109 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3110 	if (!pm)
3111 		return -ENOMEM;
3112 	pm->parent_ino = parent_ino;
3113 	pm->ino = ino;
3114 	pm->gen = ino_gen;
3115 	INIT_LIST_HEAD(&pm->list);
3116 	INIT_LIST_HEAD(&pm->update_refs);
3117 	RB_CLEAR_NODE(&pm->node);
3118 
3119 	while (*p) {
3120 		parent = *p;
3121 		entry = rb_entry(parent, struct pending_dir_move, node);
3122 		if (parent_ino < entry->parent_ino) {
3123 			p = &(*p)->rb_left;
3124 		} else if (parent_ino > entry->parent_ino) {
3125 			p = &(*p)->rb_right;
3126 		} else {
3127 			exists = 1;
3128 			break;
3129 		}
3130 	}
3131 
3132 	list_for_each_entry(cur, deleted_refs, list) {
3133 		ret = dup_ref(cur, &pm->update_refs);
3134 		if (ret < 0)
3135 			goto out;
3136 	}
3137 	list_for_each_entry(cur, new_refs, list) {
3138 		ret = dup_ref(cur, &pm->update_refs);
3139 		if (ret < 0)
3140 			goto out;
3141 	}
3142 
3143 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3144 	if (ret)
3145 		goto out;
3146 
3147 	if (exists) {
3148 		list_add_tail(&pm->list, &entry->list);
3149 	} else {
3150 		rb_link_node(&pm->node, parent, p);
3151 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3152 	}
3153 	ret = 0;
3154 out:
3155 	if (ret) {
3156 		__free_recorded_refs(&pm->update_refs);
3157 		kfree(pm);
3158 	}
3159 	return ret;
3160 }
3161 
3162 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3163 						      u64 parent_ino)
3164 {
3165 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3166 	struct pending_dir_move *entry;
3167 
3168 	while (n) {
3169 		entry = rb_entry(n, struct pending_dir_move, node);
3170 		if (parent_ino < entry->parent_ino)
3171 			n = n->rb_left;
3172 		else if (parent_ino > entry->parent_ino)
3173 			n = n->rb_right;
3174 		else
3175 			return entry;
3176 	}
3177 	return NULL;
3178 }
3179 
3180 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3181 		     u64 ino, u64 gen, u64 *ancestor_ino)
3182 {
3183 	int ret = 0;
3184 	u64 parent_inode = 0;
3185 	u64 parent_gen = 0;
3186 	u64 start_ino = ino;
3187 
3188 	*ancestor_ino = 0;
3189 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3190 		fs_path_reset(name);
3191 
3192 		if (is_waiting_for_rm(sctx, ino))
3193 			break;
3194 		if (is_waiting_for_move(sctx, ino)) {
3195 			if (*ancestor_ino == 0)
3196 				*ancestor_ino = ino;
3197 			ret = get_first_ref(sctx->parent_root, ino,
3198 					    &parent_inode, &parent_gen, name);
3199 		} else {
3200 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3201 							&parent_inode,
3202 							&parent_gen, name);
3203 			if (ret > 0) {
3204 				ret = 0;
3205 				break;
3206 			}
3207 		}
3208 		if (ret < 0)
3209 			break;
3210 		if (parent_inode == start_ino) {
3211 			ret = 1;
3212 			if (*ancestor_ino == 0)
3213 				*ancestor_ino = ino;
3214 			break;
3215 		}
3216 		ino = parent_inode;
3217 		gen = parent_gen;
3218 	}
3219 	return ret;
3220 }
3221 
3222 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3223 {
3224 	struct fs_path *from_path = NULL;
3225 	struct fs_path *to_path = NULL;
3226 	struct fs_path *name = NULL;
3227 	u64 orig_progress = sctx->send_progress;
3228 	struct recorded_ref *cur;
3229 	u64 parent_ino, parent_gen;
3230 	struct waiting_dir_move *dm = NULL;
3231 	u64 rmdir_ino = 0;
3232 	u64 ancestor;
3233 	bool is_orphan;
3234 	int ret;
3235 
3236 	name = fs_path_alloc();
3237 	from_path = fs_path_alloc();
3238 	if (!name || !from_path) {
3239 		ret = -ENOMEM;
3240 		goto out;
3241 	}
3242 
3243 	dm = get_waiting_dir_move(sctx, pm->ino);
3244 	ASSERT(dm);
3245 	rmdir_ino = dm->rmdir_ino;
3246 	is_orphan = dm->orphanized;
3247 	free_waiting_dir_move(sctx, dm);
3248 
3249 	if (is_orphan) {
3250 		ret = gen_unique_name(sctx, pm->ino,
3251 				      pm->gen, from_path);
3252 	} else {
3253 		ret = get_first_ref(sctx->parent_root, pm->ino,
3254 				    &parent_ino, &parent_gen, name);
3255 		if (ret < 0)
3256 			goto out;
3257 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3258 				   from_path);
3259 		if (ret < 0)
3260 			goto out;
3261 		ret = fs_path_add_path(from_path, name);
3262 	}
3263 	if (ret < 0)
3264 		goto out;
3265 
3266 	sctx->send_progress = sctx->cur_ino + 1;
3267 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3268 	if (ret < 0)
3269 		goto out;
3270 	if (ret) {
3271 		LIST_HEAD(deleted_refs);
3272 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3273 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3274 					   &pm->update_refs, &deleted_refs,
3275 					   is_orphan);
3276 		if (ret < 0)
3277 			goto out;
3278 		if (rmdir_ino) {
3279 			dm = get_waiting_dir_move(sctx, pm->ino);
3280 			ASSERT(dm);
3281 			dm->rmdir_ino = rmdir_ino;
3282 		}
3283 		goto out;
3284 	}
3285 	fs_path_reset(name);
3286 	to_path = name;
3287 	name = NULL;
3288 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3289 	if (ret < 0)
3290 		goto out;
3291 
3292 	ret = send_rename(sctx, from_path, to_path);
3293 	if (ret < 0)
3294 		goto out;
3295 
3296 	if (rmdir_ino) {
3297 		struct orphan_dir_info *odi;
3298 		u64 gen;
3299 
3300 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3301 		if (!odi) {
3302 			/* already deleted */
3303 			goto finish;
3304 		}
3305 		gen = odi->gen;
3306 
3307 		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3308 		if (ret < 0)
3309 			goto out;
3310 		if (!ret)
3311 			goto finish;
3312 
3313 		name = fs_path_alloc();
3314 		if (!name) {
3315 			ret = -ENOMEM;
3316 			goto out;
3317 		}
3318 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3319 		if (ret < 0)
3320 			goto out;
3321 		ret = send_rmdir(sctx, name);
3322 		if (ret < 0)
3323 			goto out;
3324 	}
3325 
3326 finish:
3327 	ret = send_utimes(sctx, pm->ino, pm->gen);
3328 	if (ret < 0)
3329 		goto out;
3330 
3331 	/*
3332 	 * After rename/move, need to update the utimes of both new parent(s)
3333 	 * and old parent(s).
3334 	 */
3335 	list_for_each_entry(cur, &pm->update_refs, list) {
3336 		/*
3337 		 * The parent inode might have been deleted in the send snapshot
3338 		 */
3339 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3340 				     NULL, NULL, NULL, NULL, NULL);
3341 		if (ret == -ENOENT) {
3342 			ret = 0;
3343 			continue;
3344 		}
3345 		if (ret < 0)
3346 			goto out;
3347 
3348 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3349 		if (ret < 0)
3350 			goto out;
3351 	}
3352 
3353 out:
3354 	fs_path_free(name);
3355 	fs_path_free(from_path);
3356 	fs_path_free(to_path);
3357 	sctx->send_progress = orig_progress;
3358 
3359 	return ret;
3360 }
3361 
3362 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3363 {
3364 	if (!list_empty(&m->list))
3365 		list_del(&m->list);
3366 	if (!RB_EMPTY_NODE(&m->node))
3367 		rb_erase(&m->node, &sctx->pending_dir_moves);
3368 	__free_recorded_refs(&m->update_refs);
3369 	kfree(m);
3370 }
3371 
3372 static void tail_append_pending_moves(struct send_ctx *sctx,
3373 				      struct pending_dir_move *moves,
3374 				      struct list_head *stack)
3375 {
3376 	if (list_empty(&moves->list)) {
3377 		list_add_tail(&moves->list, stack);
3378 	} else {
3379 		LIST_HEAD(list);
3380 		list_splice_init(&moves->list, &list);
3381 		list_add_tail(&moves->list, stack);
3382 		list_splice_tail(&list, stack);
3383 	}
3384 	if (!RB_EMPTY_NODE(&moves->node)) {
3385 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3386 		RB_CLEAR_NODE(&moves->node);
3387 	}
3388 }
3389 
3390 static int apply_children_dir_moves(struct send_ctx *sctx)
3391 {
3392 	struct pending_dir_move *pm;
3393 	struct list_head stack;
3394 	u64 parent_ino = sctx->cur_ino;
3395 	int ret = 0;
3396 
3397 	pm = get_pending_dir_moves(sctx, parent_ino);
3398 	if (!pm)
3399 		return 0;
3400 
3401 	INIT_LIST_HEAD(&stack);
3402 	tail_append_pending_moves(sctx, pm, &stack);
3403 
3404 	while (!list_empty(&stack)) {
3405 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3406 		parent_ino = pm->ino;
3407 		ret = apply_dir_move(sctx, pm);
3408 		free_pending_move(sctx, pm);
3409 		if (ret)
3410 			goto out;
3411 		pm = get_pending_dir_moves(sctx, parent_ino);
3412 		if (pm)
3413 			tail_append_pending_moves(sctx, pm, &stack);
3414 	}
3415 	return 0;
3416 
3417 out:
3418 	while (!list_empty(&stack)) {
3419 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3420 		free_pending_move(sctx, pm);
3421 	}
3422 	return ret;
3423 }
3424 
3425 /*
3426  * We might need to delay a directory rename even when no ancestor directory
3427  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3428  * renamed. This happens when we rename a directory to the old name (the name
3429  * in the parent root) of some other unrelated directory that got its rename
3430  * delayed due to some ancestor with higher number that got renamed.
3431  *
3432  * Example:
3433  *
3434  * Parent snapshot:
3435  * .                                       (ino 256)
3436  * |---- a/                                (ino 257)
3437  * |     |---- file                        (ino 260)
3438  * |
3439  * |---- b/                                (ino 258)
3440  * |---- c/                                (ino 259)
3441  *
3442  * Send snapshot:
3443  * .                                       (ino 256)
3444  * |---- a/                                (ino 258)
3445  * |---- x/                                (ino 259)
3446  *       |---- y/                          (ino 257)
3447  *             |----- file                 (ino 260)
3448  *
3449  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3450  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3451  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3452  * must issue is:
3453  *
3454  * 1 - rename 259 from 'c' to 'x'
3455  * 2 - rename 257 from 'a' to 'x/y'
3456  * 3 - rename 258 from 'b' to 'a'
3457  *
3458  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3459  * be done right away and < 0 on error.
3460  */
3461 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3462 				  struct recorded_ref *parent_ref,
3463 				  const bool is_orphan)
3464 {
3465 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3466 	struct btrfs_path *path;
3467 	struct btrfs_key key;
3468 	struct btrfs_key di_key;
3469 	struct btrfs_dir_item *di;
3470 	u64 left_gen;
3471 	u64 right_gen;
3472 	int ret = 0;
3473 	struct waiting_dir_move *wdm;
3474 
3475 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3476 		return 0;
3477 
3478 	path = alloc_path_for_send();
3479 	if (!path)
3480 		return -ENOMEM;
3481 
3482 	key.objectid = parent_ref->dir;
3483 	key.type = BTRFS_DIR_ITEM_KEY;
3484 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3485 
3486 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3487 	if (ret < 0) {
3488 		goto out;
3489 	} else if (ret > 0) {
3490 		ret = 0;
3491 		goto out;
3492 	}
3493 
3494 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3495 				       parent_ref->name_len);
3496 	if (!di) {
3497 		ret = 0;
3498 		goto out;
3499 	}
3500 	/*
3501 	 * di_key.objectid has the number of the inode that has a dentry in the
3502 	 * parent directory with the same name that sctx->cur_ino is being
3503 	 * renamed to. We need to check if that inode is in the send root as
3504 	 * well and if it is currently marked as an inode with a pending rename,
3505 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3506 	 * that it happens after that other inode is renamed.
3507 	 */
3508 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3509 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3510 		ret = 0;
3511 		goto out;
3512 	}
3513 
3514 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3515 			     &left_gen, NULL, NULL, NULL, NULL);
3516 	if (ret < 0)
3517 		goto out;
3518 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3519 			     &right_gen, NULL, NULL, NULL, NULL);
3520 	if (ret < 0) {
3521 		if (ret == -ENOENT)
3522 			ret = 0;
3523 		goto out;
3524 	}
3525 
3526 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3527 	if (right_gen != left_gen) {
3528 		ret = 0;
3529 		goto out;
3530 	}
3531 
3532 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3533 	if (wdm && !wdm->orphanized) {
3534 		ret = add_pending_dir_move(sctx,
3535 					   sctx->cur_ino,
3536 					   sctx->cur_inode_gen,
3537 					   di_key.objectid,
3538 					   &sctx->new_refs,
3539 					   &sctx->deleted_refs,
3540 					   is_orphan);
3541 		if (!ret)
3542 			ret = 1;
3543 	}
3544 out:
3545 	btrfs_free_path(path);
3546 	return ret;
3547 }
3548 
3549 /*
3550  * Check if inode ino2, or any of its ancestors, is inode ino1.
3551  * Return 1 if true, 0 if false and < 0 on error.
3552  */
3553 static int check_ino_in_path(struct btrfs_root *root,
3554 			     const u64 ino1,
3555 			     const u64 ino1_gen,
3556 			     const u64 ino2,
3557 			     const u64 ino2_gen,
3558 			     struct fs_path *fs_path)
3559 {
3560 	u64 ino = ino2;
3561 
3562 	if (ino1 == ino2)
3563 		return ino1_gen == ino2_gen;
3564 
3565 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3566 		u64 parent;
3567 		u64 parent_gen;
3568 		int ret;
3569 
3570 		fs_path_reset(fs_path);
3571 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3572 		if (ret < 0)
3573 			return ret;
3574 		if (parent == ino1)
3575 			return parent_gen == ino1_gen;
3576 		ino = parent;
3577 	}
3578 	return 0;
3579 }
3580 
3581 /*
3582  * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3583  * possible path (in case ino2 is not a directory and has multiple hard links).
3584  * Return 1 if true, 0 if false and < 0 on error.
3585  */
3586 static int is_ancestor(struct btrfs_root *root,
3587 		       const u64 ino1,
3588 		       const u64 ino1_gen,
3589 		       const u64 ino2,
3590 		       struct fs_path *fs_path)
3591 {
3592 	bool free_fs_path = false;
3593 	int ret = 0;
3594 	struct btrfs_path *path = NULL;
3595 	struct btrfs_key key;
3596 
3597 	if (!fs_path) {
3598 		fs_path = fs_path_alloc();
3599 		if (!fs_path)
3600 			return -ENOMEM;
3601 		free_fs_path = true;
3602 	}
3603 
3604 	path = alloc_path_for_send();
3605 	if (!path) {
3606 		ret = -ENOMEM;
3607 		goto out;
3608 	}
3609 
3610 	key.objectid = ino2;
3611 	key.type = BTRFS_INODE_REF_KEY;
3612 	key.offset = 0;
3613 
3614 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3615 	if (ret < 0)
3616 		goto out;
3617 
3618 	while (true) {
3619 		struct extent_buffer *leaf = path->nodes[0];
3620 		int slot = path->slots[0];
3621 		u32 cur_offset = 0;
3622 		u32 item_size;
3623 
3624 		if (slot >= btrfs_header_nritems(leaf)) {
3625 			ret = btrfs_next_leaf(root, path);
3626 			if (ret < 0)
3627 				goto out;
3628 			if (ret > 0)
3629 				break;
3630 			continue;
3631 		}
3632 
3633 		btrfs_item_key_to_cpu(leaf, &key, slot);
3634 		if (key.objectid != ino2)
3635 			break;
3636 		if (key.type != BTRFS_INODE_REF_KEY &&
3637 		    key.type != BTRFS_INODE_EXTREF_KEY)
3638 			break;
3639 
3640 		item_size = btrfs_item_size_nr(leaf, slot);
3641 		while (cur_offset < item_size) {
3642 			u64 parent;
3643 			u64 parent_gen;
3644 
3645 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3646 				unsigned long ptr;
3647 				struct btrfs_inode_extref *extref;
3648 
3649 				ptr = btrfs_item_ptr_offset(leaf, slot);
3650 				extref = (struct btrfs_inode_extref *)
3651 					(ptr + cur_offset);
3652 				parent = btrfs_inode_extref_parent(leaf,
3653 								   extref);
3654 				cur_offset += sizeof(*extref);
3655 				cur_offset += btrfs_inode_extref_name_len(leaf,
3656 								  extref);
3657 			} else {
3658 				parent = key.offset;
3659 				cur_offset = item_size;
3660 			}
3661 
3662 			ret = get_inode_info(root, parent, NULL, &parent_gen,
3663 					     NULL, NULL, NULL, NULL);
3664 			if (ret < 0)
3665 				goto out;
3666 			ret = check_ino_in_path(root, ino1, ino1_gen,
3667 						parent, parent_gen, fs_path);
3668 			if (ret)
3669 				goto out;
3670 		}
3671 		path->slots[0]++;
3672 	}
3673 	ret = 0;
3674  out:
3675 	btrfs_free_path(path);
3676 	if (free_fs_path)
3677 		fs_path_free(fs_path);
3678 	return ret;
3679 }
3680 
3681 static int wait_for_parent_move(struct send_ctx *sctx,
3682 				struct recorded_ref *parent_ref,
3683 				const bool is_orphan)
3684 {
3685 	int ret = 0;
3686 	u64 ino = parent_ref->dir;
3687 	u64 ino_gen = parent_ref->dir_gen;
3688 	u64 parent_ino_before, parent_ino_after;
3689 	struct fs_path *path_before = NULL;
3690 	struct fs_path *path_after = NULL;
3691 	int len1, len2;
3692 
3693 	path_after = fs_path_alloc();
3694 	path_before = fs_path_alloc();
3695 	if (!path_after || !path_before) {
3696 		ret = -ENOMEM;
3697 		goto out;
3698 	}
3699 
3700 	/*
3701 	 * Our current directory inode may not yet be renamed/moved because some
3702 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3703 	 * such ancestor exists and make sure our own rename/move happens after
3704 	 * that ancestor is processed to avoid path build infinite loops (done
3705 	 * at get_cur_path()).
3706 	 */
3707 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3708 		u64 parent_ino_after_gen;
3709 
3710 		if (is_waiting_for_move(sctx, ino)) {
3711 			/*
3712 			 * If the current inode is an ancestor of ino in the
3713 			 * parent root, we need to delay the rename of the
3714 			 * current inode, otherwise don't delayed the rename
3715 			 * because we can end up with a circular dependency
3716 			 * of renames, resulting in some directories never
3717 			 * getting the respective rename operations issued in
3718 			 * the send stream or getting into infinite path build
3719 			 * loops.
3720 			 */
3721 			ret = is_ancestor(sctx->parent_root,
3722 					  sctx->cur_ino, sctx->cur_inode_gen,
3723 					  ino, path_before);
3724 			if (ret)
3725 				break;
3726 		}
3727 
3728 		fs_path_reset(path_before);
3729 		fs_path_reset(path_after);
3730 
3731 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3732 				    &parent_ino_after_gen, path_after);
3733 		if (ret < 0)
3734 			goto out;
3735 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3736 				    NULL, path_before);
3737 		if (ret < 0 && ret != -ENOENT) {
3738 			goto out;
3739 		} else if (ret == -ENOENT) {
3740 			ret = 0;
3741 			break;
3742 		}
3743 
3744 		len1 = fs_path_len(path_before);
3745 		len2 = fs_path_len(path_after);
3746 		if (ino > sctx->cur_ino &&
3747 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3748 		     memcmp(path_before->start, path_after->start, len1))) {
3749 			u64 parent_ino_gen;
3750 
3751 			ret = get_inode_info(sctx->parent_root, ino, NULL,
3752 					     &parent_ino_gen, NULL, NULL, NULL,
3753 					     NULL);
3754 			if (ret < 0)
3755 				goto out;
3756 			if (ino_gen == parent_ino_gen) {
3757 				ret = 1;
3758 				break;
3759 			}
3760 		}
3761 		ino = parent_ino_after;
3762 		ino_gen = parent_ino_after_gen;
3763 	}
3764 
3765 out:
3766 	fs_path_free(path_before);
3767 	fs_path_free(path_after);
3768 
3769 	if (ret == 1) {
3770 		ret = add_pending_dir_move(sctx,
3771 					   sctx->cur_ino,
3772 					   sctx->cur_inode_gen,
3773 					   ino,
3774 					   &sctx->new_refs,
3775 					   &sctx->deleted_refs,
3776 					   is_orphan);
3777 		if (!ret)
3778 			ret = 1;
3779 	}
3780 
3781 	return ret;
3782 }
3783 
3784 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3785 {
3786 	int ret;
3787 	struct fs_path *new_path;
3788 
3789 	/*
3790 	 * Our reference's name member points to its full_path member string, so
3791 	 * we use here a new path.
3792 	 */
3793 	new_path = fs_path_alloc();
3794 	if (!new_path)
3795 		return -ENOMEM;
3796 
3797 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3798 	if (ret < 0) {
3799 		fs_path_free(new_path);
3800 		return ret;
3801 	}
3802 	ret = fs_path_add(new_path, ref->name, ref->name_len);
3803 	if (ret < 0) {
3804 		fs_path_free(new_path);
3805 		return ret;
3806 	}
3807 
3808 	fs_path_free(ref->full_path);
3809 	set_ref_path(ref, new_path);
3810 
3811 	return 0;
3812 }
3813 
3814 /*
3815  * This does all the move/link/unlink/rmdir magic.
3816  */
3817 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3818 {
3819 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3820 	int ret = 0;
3821 	struct recorded_ref *cur;
3822 	struct recorded_ref *cur2;
3823 	struct list_head check_dirs;
3824 	struct fs_path *valid_path = NULL;
3825 	u64 ow_inode = 0;
3826 	u64 ow_gen;
3827 	u64 ow_mode;
3828 	int did_overwrite = 0;
3829 	int is_orphan = 0;
3830 	u64 last_dir_ino_rm = 0;
3831 	bool can_rename = true;
3832 	bool orphanized_dir = false;
3833 	bool orphanized_ancestor = false;
3834 
3835 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3836 
3837 	/*
3838 	 * This should never happen as the root dir always has the same ref
3839 	 * which is always '..'
3840 	 */
3841 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3842 	INIT_LIST_HEAD(&check_dirs);
3843 
3844 	valid_path = fs_path_alloc();
3845 	if (!valid_path) {
3846 		ret = -ENOMEM;
3847 		goto out;
3848 	}
3849 
3850 	/*
3851 	 * First, check if the first ref of the current inode was overwritten
3852 	 * before. If yes, we know that the current inode was already orphanized
3853 	 * and thus use the orphan name. If not, we can use get_cur_path to
3854 	 * get the path of the first ref as it would like while receiving at
3855 	 * this point in time.
3856 	 * New inodes are always orphan at the beginning, so force to use the
3857 	 * orphan name in this case.
3858 	 * The first ref is stored in valid_path and will be updated if it
3859 	 * gets moved around.
3860 	 */
3861 	if (!sctx->cur_inode_new) {
3862 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3863 				sctx->cur_inode_gen);
3864 		if (ret < 0)
3865 			goto out;
3866 		if (ret)
3867 			did_overwrite = 1;
3868 	}
3869 	if (sctx->cur_inode_new || did_overwrite) {
3870 		ret = gen_unique_name(sctx, sctx->cur_ino,
3871 				sctx->cur_inode_gen, valid_path);
3872 		if (ret < 0)
3873 			goto out;
3874 		is_orphan = 1;
3875 	} else {
3876 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3877 				valid_path);
3878 		if (ret < 0)
3879 			goto out;
3880 	}
3881 
3882 	list_for_each_entry(cur, &sctx->new_refs, list) {
3883 		/*
3884 		 * We may have refs where the parent directory does not exist
3885 		 * yet. This happens if the parent directories inum is higher
3886 		 * than the current inum. To handle this case, we create the
3887 		 * parent directory out of order. But we need to check if this
3888 		 * did already happen before due to other refs in the same dir.
3889 		 */
3890 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3891 		if (ret < 0)
3892 			goto out;
3893 		if (ret == inode_state_will_create) {
3894 			ret = 0;
3895 			/*
3896 			 * First check if any of the current inodes refs did
3897 			 * already create the dir.
3898 			 */
3899 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3900 				if (cur == cur2)
3901 					break;
3902 				if (cur2->dir == cur->dir) {
3903 					ret = 1;
3904 					break;
3905 				}
3906 			}
3907 
3908 			/*
3909 			 * If that did not happen, check if a previous inode
3910 			 * did already create the dir.
3911 			 */
3912 			if (!ret)
3913 				ret = did_create_dir(sctx, cur->dir);
3914 			if (ret < 0)
3915 				goto out;
3916 			if (!ret) {
3917 				ret = send_create_inode(sctx, cur->dir);
3918 				if (ret < 0)
3919 					goto out;
3920 			}
3921 		}
3922 
3923 		/*
3924 		 * Check if this new ref would overwrite the first ref of
3925 		 * another unprocessed inode. If yes, orphanize the
3926 		 * overwritten inode. If we find an overwritten ref that is
3927 		 * not the first ref, simply unlink it.
3928 		 */
3929 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3930 				cur->name, cur->name_len,
3931 				&ow_inode, &ow_gen, &ow_mode);
3932 		if (ret < 0)
3933 			goto out;
3934 		if (ret) {
3935 			ret = is_first_ref(sctx->parent_root,
3936 					   ow_inode, cur->dir, cur->name,
3937 					   cur->name_len);
3938 			if (ret < 0)
3939 				goto out;
3940 			if (ret) {
3941 				struct name_cache_entry *nce;
3942 				struct waiting_dir_move *wdm;
3943 
3944 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3945 						cur->full_path);
3946 				if (ret < 0)
3947 					goto out;
3948 				if (S_ISDIR(ow_mode))
3949 					orphanized_dir = true;
3950 
3951 				/*
3952 				 * If ow_inode has its rename operation delayed
3953 				 * make sure that its orphanized name is used in
3954 				 * the source path when performing its rename
3955 				 * operation.
3956 				 */
3957 				if (is_waiting_for_move(sctx, ow_inode)) {
3958 					wdm = get_waiting_dir_move(sctx,
3959 								   ow_inode);
3960 					ASSERT(wdm);
3961 					wdm->orphanized = true;
3962 				}
3963 
3964 				/*
3965 				 * Make sure we clear our orphanized inode's
3966 				 * name from the name cache. This is because the
3967 				 * inode ow_inode might be an ancestor of some
3968 				 * other inode that will be orphanized as well
3969 				 * later and has an inode number greater than
3970 				 * sctx->send_progress. We need to prevent
3971 				 * future name lookups from using the old name
3972 				 * and get instead the orphan name.
3973 				 */
3974 				nce = name_cache_search(sctx, ow_inode, ow_gen);
3975 				if (nce) {
3976 					name_cache_delete(sctx, nce);
3977 					kfree(nce);
3978 				}
3979 
3980 				/*
3981 				 * ow_inode might currently be an ancestor of
3982 				 * cur_ino, therefore compute valid_path (the
3983 				 * current path of cur_ino) again because it
3984 				 * might contain the pre-orphanization name of
3985 				 * ow_inode, which is no longer valid.
3986 				 */
3987 				ret = is_ancestor(sctx->parent_root,
3988 						  ow_inode, ow_gen,
3989 						  sctx->cur_ino, NULL);
3990 				if (ret > 0) {
3991 					orphanized_ancestor = true;
3992 					fs_path_reset(valid_path);
3993 					ret = get_cur_path(sctx, sctx->cur_ino,
3994 							   sctx->cur_inode_gen,
3995 							   valid_path);
3996 				}
3997 				if (ret < 0)
3998 					goto out;
3999 			} else {
4000 				ret = send_unlink(sctx, cur->full_path);
4001 				if (ret < 0)
4002 					goto out;
4003 			}
4004 		}
4005 
4006 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4007 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4008 			if (ret < 0)
4009 				goto out;
4010 			if (ret == 1) {
4011 				can_rename = false;
4012 				*pending_move = 1;
4013 			}
4014 		}
4015 
4016 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4017 		    can_rename) {
4018 			ret = wait_for_parent_move(sctx, cur, is_orphan);
4019 			if (ret < 0)
4020 				goto out;
4021 			if (ret == 1) {
4022 				can_rename = false;
4023 				*pending_move = 1;
4024 			}
4025 		}
4026 
4027 		/*
4028 		 * link/move the ref to the new place. If we have an orphan
4029 		 * inode, move it and update valid_path. If not, link or move
4030 		 * it depending on the inode mode.
4031 		 */
4032 		if (is_orphan && can_rename) {
4033 			ret = send_rename(sctx, valid_path, cur->full_path);
4034 			if (ret < 0)
4035 				goto out;
4036 			is_orphan = 0;
4037 			ret = fs_path_copy(valid_path, cur->full_path);
4038 			if (ret < 0)
4039 				goto out;
4040 		} else if (can_rename) {
4041 			if (S_ISDIR(sctx->cur_inode_mode)) {
4042 				/*
4043 				 * Dirs can't be linked, so move it. For moved
4044 				 * dirs, we always have one new and one deleted
4045 				 * ref. The deleted ref is ignored later.
4046 				 */
4047 				ret = send_rename(sctx, valid_path,
4048 						  cur->full_path);
4049 				if (!ret)
4050 					ret = fs_path_copy(valid_path,
4051 							   cur->full_path);
4052 				if (ret < 0)
4053 					goto out;
4054 			} else {
4055 				/*
4056 				 * We might have previously orphanized an inode
4057 				 * which is an ancestor of our current inode,
4058 				 * so our reference's full path, which was
4059 				 * computed before any such orphanizations, must
4060 				 * be updated.
4061 				 */
4062 				if (orphanized_dir) {
4063 					ret = update_ref_path(sctx, cur);
4064 					if (ret < 0)
4065 						goto out;
4066 				}
4067 				ret = send_link(sctx, cur->full_path,
4068 						valid_path);
4069 				if (ret < 0)
4070 					goto out;
4071 			}
4072 		}
4073 		ret = dup_ref(cur, &check_dirs);
4074 		if (ret < 0)
4075 			goto out;
4076 	}
4077 
4078 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4079 		/*
4080 		 * Check if we can already rmdir the directory. If not,
4081 		 * orphanize it. For every dir item inside that gets deleted
4082 		 * later, we do this check again and rmdir it then if possible.
4083 		 * See the use of check_dirs for more details.
4084 		 */
4085 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4086 				sctx->cur_ino);
4087 		if (ret < 0)
4088 			goto out;
4089 		if (ret) {
4090 			ret = send_rmdir(sctx, valid_path);
4091 			if (ret < 0)
4092 				goto out;
4093 		} else if (!is_orphan) {
4094 			ret = orphanize_inode(sctx, sctx->cur_ino,
4095 					sctx->cur_inode_gen, valid_path);
4096 			if (ret < 0)
4097 				goto out;
4098 			is_orphan = 1;
4099 		}
4100 
4101 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4102 			ret = dup_ref(cur, &check_dirs);
4103 			if (ret < 0)
4104 				goto out;
4105 		}
4106 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4107 		   !list_empty(&sctx->deleted_refs)) {
4108 		/*
4109 		 * We have a moved dir. Add the old parent to check_dirs
4110 		 */
4111 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4112 				list);
4113 		ret = dup_ref(cur, &check_dirs);
4114 		if (ret < 0)
4115 			goto out;
4116 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4117 		/*
4118 		 * We have a non dir inode. Go through all deleted refs and
4119 		 * unlink them if they were not already overwritten by other
4120 		 * inodes.
4121 		 */
4122 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4123 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4124 					sctx->cur_ino, sctx->cur_inode_gen,
4125 					cur->name, cur->name_len);
4126 			if (ret < 0)
4127 				goto out;
4128 			if (!ret) {
4129 				/*
4130 				 * If we orphanized any ancestor before, we need
4131 				 * to recompute the full path for deleted names,
4132 				 * since any such path was computed before we
4133 				 * processed any references and orphanized any
4134 				 * ancestor inode.
4135 				 */
4136 				if (orphanized_ancestor) {
4137 					ret = update_ref_path(sctx, cur);
4138 					if (ret < 0)
4139 						goto out;
4140 				}
4141 				ret = send_unlink(sctx, cur->full_path);
4142 				if (ret < 0)
4143 					goto out;
4144 			}
4145 			ret = dup_ref(cur, &check_dirs);
4146 			if (ret < 0)
4147 				goto out;
4148 		}
4149 		/*
4150 		 * If the inode is still orphan, unlink the orphan. This may
4151 		 * happen when a previous inode did overwrite the first ref
4152 		 * of this inode and no new refs were added for the current
4153 		 * inode. Unlinking does not mean that the inode is deleted in
4154 		 * all cases. There may still be links to this inode in other
4155 		 * places.
4156 		 */
4157 		if (is_orphan) {
4158 			ret = send_unlink(sctx, valid_path);
4159 			if (ret < 0)
4160 				goto out;
4161 		}
4162 	}
4163 
4164 	/*
4165 	 * We did collect all parent dirs where cur_inode was once located. We
4166 	 * now go through all these dirs and check if they are pending for
4167 	 * deletion and if it's finally possible to perform the rmdir now.
4168 	 * We also update the inode stats of the parent dirs here.
4169 	 */
4170 	list_for_each_entry(cur, &check_dirs, list) {
4171 		/*
4172 		 * In case we had refs into dirs that were not processed yet,
4173 		 * we don't need to do the utime and rmdir logic for these dirs.
4174 		 * The dir will be processed later.
4175 		 */
4176 		if (cur->dir > sctx->cur_ino)
4177 			continue;
4178 
4179 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4180 		if (ret < 0)
4181 			goto out;
4182 
4183 		if (ret == inode_state_did_create ||
4184 		    ret == inode_state_no_change) {
4185 			/* TODO delayed utimes */
4186 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4187 			if (ret < 0)
4188 				goto out;
4189 		} else if (ret == inode_state_did_delete &&
4190 			   cur->dir != last_dir_ino_rm) {
4191 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4192 					sctx->cur_ino);
4193 			if (ret < 0)
4194 				goto out;
4195 			if (ret) {
4196 				ret = get_cur_path(sctx, cur->dir,
4197 						   cur->dir_gen, valid_path);
4198 				if (ret < 0)
4199 					goto out;
4200 				ret = send_rmdir(sctx, valid_path);
4201 				if (ret < 0)
4202 					goto out;
4203 				last_dir_ino_rm = cur->dir;
4204 			}
4205 		}
4206 	}
4207 
4208 	ret = 0;
4209 
4210 out:
4211 	__free_recorded_refs(&check_dirs);
4212 	free_recorded_refs(sctx);
4213 	fs_path_free(valid_path);
4214 	return ret;
4215 }
4216 
4217 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4218 		      void *ctx, struct list_head *refs)
4219 {
4220 	int ret = 0;
4221 	struct send_ctx *sctx = ctx;
4222 	struct fs_path *p;
4223 	u64 gen;
4224 
4225 	p = fs_path_alloc();
4226 	if (!p)
4227 		return -ENOMEM;
4228 
4229 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4230 			NULL, NULL);
4231 	if (ret < 0)
4232 		goto out;
4233 
4234 	ret = get_cur_path(sctx, dir, gen, p);
4235 	if (ret < 0)
4236 		goto out;
4237 	ret = fs_path_add_path(p, name);
4238 	if (ret < 0)
4239 		goto out;
4240 
4241 	ret = __record_ref(refs, dir, gen, p);
4242 
4243 out:
4244 	if (ret)
4245 		fs_path_free(p);
4246 	return ret;
4247 }
4248 
4249 static int __record_new_ref(int num, u64 dir, int index,
4250 			    struct fs_path *name,
4251 			    void *ctx)
4252 {
4253 	struct send_ctx *sctx = ctx;
4254 	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4255 }
4256 
4257 
4258 static int __record_deleted_ref(int num, u64 dir, int index,
4259 				struct fs_path *name,
4260 				void *ctx)
4261 {
4262 	struct send_ctx *sctx = ctx;
4263 	return record_ref(sctx->parent_root, dir, name, ctx,
4264 			  &sctx->deleted_refs);
4265 }
4266 
4267 static int record_new_ref(struct send_ctx *sctx)
4268 {
4269 	int ret;
4270 
4271 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4272 				sctx->cmp_key, 0, __record_new_ref, sctx);
4273 	if (ret < 0)
4274 		goto out;
4275 	ret = 0;
4276 
4277 out:
4278 	return ret;
4279 }
4280 
4281 static int record_deleted_ref(struct send_ctx *sctx)
4282 {
4283 	int ret;
4284 
4285 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4286 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4287 	if (ret < 0)
4288 		goto out;
4289 	ret = 0;
4290 
4291 out:
4292 	return ret;
4293 }
4294 
4295 struct find_ref_ctx {
4296 	u64 dir;
4297 	u64 dir_gen;
4298 	struct btrfs_root *root;
4299 	struct fs_path *name;
4300 	int found_idx;
4301 };
4302 
4303 static int __find_iref(int num, u64 dir, int index,
4304 		       struct fs_path *name,
4305 		       void *ctx_)
4306 {
4307 	struct find_ref_ctx *ctx = ctx_;
4308 	u64 dir_gen;
4309 	int ret;
4310 
4311 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4312 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4313 		/*
4314 		 * To avoid doing extra lookups we'll only do this if everything
4315 		 * else matches.
4316 		 */
4317 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4318 				     NULL, NULL, NULL);
4319 		if (ret)
4320 			return ret;
4321 		if (dir_gen != ctx->dir_gen)
4322 			return 0;
4323 		ctx->found_idx = num;
4324 		return 1;
4325 	}
4326 	return 0;
4327 }
4328 
4329 static int find_iref(struct btrfs_root *root,
4330 		     struct btrfs_path *path,
4331 		     struct btrfs_key *key,
4332 		     u64 dir, u64 dir_gen, struct fs_path *name)
4333 {
4334 	int ret;
4335 	struct find_ref_ctx ctx;
4336 
4337 	ctx.dir = dir;
4338 	ctx.name = name;
4339 	ctx.dir_gen = dir_gen;
4340 	ctx.found_idx = -1;
4341 	ctx.root = root;
4342 
4343 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4344 	if (ret < 0)
4345 		return ret;
4346 
4347 	if (ctx.found_idx == -1)
4348 		return -ENOENT;
4349 
4350 	return ctx.found_idx;
4351 }
4352 
4353 static int __record_changed_new_ref(int num, u64 dir, int index,
4354 				    struct fs_path *name,
4355 				    void *ctx)
4356 {
4357 	u64 dir_gen;
4358 	int ret;
4359 	struct send_ctx *sctx = ctx;
4360 
4361 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4362 			     NULL, NULL, NULL);
4363 	if (ret)
4364 		return ret;
4365 
4366 	ret = find_iref(sctx->parent_root, sctx->right_path,
4367 			sctx->cmp_key, dir, dir_gen, name);
4368 	if (ret == -ENOENT)
4369 		ret = __record_new_ref(num, dir, index, name, sctx);
4370 	else if (ret > 0)
4371 		ret = 0;
4372 
4373 	return ret;
4374 }
4375 
4376 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4377 					struct fs_path *name,
4378 					void *ctx)
4379 {
4380 	u64 dir_gen;
4381 	int ret;
4382 	struct send_ctx *sctx = ctx;
4383 
4384 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4385 			     NULL, NULL, NULL);
4386 	if (ret)
4387 		return ret;
4388 
4389 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4390 			dir, dir_gen, name);
4391 	if (ret == -ENOENT)
4392 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4393 	else if (ret > 0)
4394 		ret = 0;
4395 
4396 	return ret;
4397 }
4398 
4399 static int record_changed_ref(struct send_ctx *sctx)
4400 {
4401 	int ret = 0;
4402 
4403 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4404 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4405 	if (ret < 0)
4406 		goto out;
4407 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4408 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4409 	if (ret < 0)
4410 		goto out;
4411 	ret = 0;
4412 
4413 out:
4414 	return ret;
4415 }
4416 
4417 /*
4418  * Record and process all refs at once. Needed when an inode changes the
4419  * generation number, which means that it was deleted and recreated.
4420  */
4421 static int process_all_refs(struct send_ctx *sctx,
4422 			    enum btrfs_compare_tree_result cmd)
4423 {
4424 	int ret;
4425 	struct btrfs_root *root;
4426 	struct btrfs_path *path;
4427 	struct btrfs_key key;
4428 	struct btrfs_key found_key;
4429 	struct extent_buffer *eb;
4430 	int slot;
4431 	iterate_inode_ref_t cb;
4432 	int pending_move = 0;
4433 
4434 	path = alloc_path_for_send();
4435 	if (!path)
4436 		return -ENOMEM;
4437 
4438 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4439 		root = sctx->send_root;
4440 		cb = __record_new_ref;
4441 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4442 		root = sctx->parent_root;
4443 		cb = __record_deleted_ref;
4444 	} else {
4445 		btrfs_err(sctx->send_root->fs_info,
4446 				"Wrong command %d in process_all_refs", cmd);
4447 		ret = -EINVAL;
4448 		goto out;
4449 	}
4450 
4451 	key.objectid = sctx->cmp_key->objectid;
4452 	key.type = BTRFS_INODE_REF_KEY;
4453 	key.offset = 0;
4454 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4455 	if (ret < 0)
4456 		goto out;
4457 
4458 	while (1) {
4459 		eb = path->nodes[0];
4460 		slot = path->slots[0];
4461 		if (slot >= btrfs_header_nritems(eb)) {
4462 			ret = btrfs_next_leaf(root, path);
4463 			if (ret < 0)
4464 				goto out;
4465 			else if (ret > 0)
4466 				break;
4467 			continue;
4468 		}
4469 
4470 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4471 
4472 		if (found_key.objectid != key.objectid ||
4473 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4474 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4475 			break;
4476 
4477 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4478 		if (ret < 0)
4479 			goto out;
4480 
4481 		path->slots[0]++;
4482 	}
4483 	btrfs_release_path(path);
4484 
4485 	/*
4486 	 * We don't actually care about pending_move as we are simply
4487 	 * re-creating this inode and will be rename'ing it into place once we
4488 	 * rename the parent directory.
4489 	 */
4490 	ret = process_recorded_refs(sctx, &pending_move);
4491 out:
4492 	btrfs_free_path(path);
4493 	return ret;
4494 }
4495 
4496 static int send_set_xattr(struct send_ctx *sctx,
4497 			  struct fs_path *path,
4498 			  const char *name, int name_len,
4499 			  const char *data, int data_len)
4500 {
4501 	int ret = 0;
4502 
4503 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4504 	if (ret < 0)
4505 		goto out;
4506 
4507 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4508 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4509 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4510 
4511 	ret = send_cmd(sctx);
4512 
4513 tlv_put_failure:
4514 out:
4515 	return ret;
4516 }
4517 
4518 static int send_remove_xattr(struct send_ctx *sctx,
4519 			  struct fs_path *path,
4520 			  const char *name, int name_len)
4521 {
4522 	int ret = 0;
4523 
4524 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4525 	if (ret < 0)
4526 		goto out;
4527 
4528 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4529 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4530 
4531 	ret = send_cmd(sctx);
4532 
4533 tlv_put_failure:
4534 out:
4535 	return ret;
4536 }
4537 
4538 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4539 			       const char *name, int name_len,
4540 			       const char *data, int data_len,
4541 			       u8 type, void *ctx)
4542 {
4543 	int ret;
4544 	struct send_ctx *sctx = ctx;
4545 	struct fs_path *p;
4546 	struct posix_acl_xattr_header dummy_acl;
4547 
4548 	p = fs_path_alloc();
4549 	if (!p)
4550 		return -ENOMEM;
4551 
4552 	/*
4553 	 * This hack is needed because empty acls are stored as zero byte
4554 	 * data in xattrs. Problem with that is, that receiving these zero byte
4555 	 * acls will fail later. To fix this, we send a dummy acl list that
4556 	 * only contains the version number and no entries.
4557 	 */
4558 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4559 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4560 		if (data_len == 0) {
4561 			dummy_acl.a_version =
4562 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4563 			data = (char *)&dummy_acl;
4564 			data_len = sizeof(dummy_acl);
4565 		}
4566 	}
4567 
4568 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4569 	if (ret < 0)
4570 		goto out;
4571 
4572 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4573 
4574 out:
4575 	fs_path_free(p);
4576 	return ret;
4577 }
4578 
4579 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4580 				   const char *name, int name_len,
4581 				   const char *data, int data_len,
4582 				   u8 type, void *ctx)
4583 {
4584 	int ret;
4585 	struct send_ctx *sctx = ctx;
4586 	struct fs_path *p;
4587 
4588 	p = fs_path_alloc();
4589 	if (!p)
4590 		return -ENOMEM;
4591 
4592 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4593 	if (ret < 0)
4594 		goto out;
4595 
4596 	ret = send_remove_xattr(sctx, p, name, name_len);
4597 
4598 out:
4599 	fs_path_free(p);
4600 	return ret;
4601 }
4602 
4603 static int process_new_xattr(struct send_ctx *sctx)
4604 {
4605 	int ret = 0;
4606 
4607 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4608 			       __process_new_xattr, sctx);
4609 
4610 	return ret;
4611 }
4612 
4613 static int process_deleted_xattr(struct send_ctx *sctx)
4614 {
4615 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4616 				__process_deleted_xattr, sctx);
4617 }
4618 
4619 struct find_xattr_ctx {
4620 	const char *name;
4621 	int name_len;
4622 	int found_idx;
4623 	char *found_data;
4624 	int found_data_len;
4625 };
4626 
4627 static int __find_xattr(int num, struct btrfs_key *di_key,
4628 			const char *name, int name_len,
4629 			const char *data, int data_len,
4630 			u8 type, void *vctx)
4631 {
4632 	struct find_xattr_ctx *ctx = vctx;
4633 
4634 	if (name_len == ctx->name_len &&
4635 	    strncmp(name, ctx->name, name_len) == 0) {
4636 		ctx->found_idx = num;
4637 		ctx->found_data_len = data_len;
4638 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4639 		if (!ctx->found_data)
4640 			return -ENOMEM;
4641 		return 1;
4642 	}
4643 	return 0;
4644 }
4645 
4646 static int find_xattr(struct btrfs_root *root,
4647 		      struct btrfs_path *path,
4648 		      struct btrfs_key *key,
4649 		      const char *name, int name_len,
4650 		      char **data, int *data_len)
4651 {
4652 	int ret;
4653 	struct find_xattr_ctx ctx;
4654 
4655 	ctx.name = name;
4656 	ctx.name_len = name_len;
4657 	ctx.found_idx = -1;
4658 	ctx.found_data = NULL;
4659 	ctx.found_data_len = 0;
4660 
4661 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4662 	if (ret < 0)
4663 		return ret;
4664 
4665 	if (ctx.found_idx == -1)
4666 		return -ENOENT;
4667 	if (data) {
4668 		*data = ctx.found_data;
4669 		*data_len = ctx.found_data_len;
4670 	} else {
4671 		kfree(ctx.found_data);
4672 	}
4673 	return ctx.found_idx;
4674 }
4675 
4676 
4677 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4678 				       const char *name, int name_len,
4679 				       const char *data, int data_len,
4680 				       u8 type, void *ctx)
4681 {
4682 	int ret;
4683 	struct send_ctx *sctx = ctx;
4684 	char *found_data = NULL;
4685 	int found_data_len  = 0;
4686 
4687 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4688 			 sctx->cmp_key, name, name_len, &found_data,
4689 			 &found_data_len);
4690 	if (ret == -ENOENT) {
4691 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4692 				data_len, type, ctx);
4693 	} else if (ret >= 0) {
4694 		if (data_len != found_data_len ||
4695 		    memcmp(data, found_data, data_len)) {
4696 			ret = __process_new_xattr(num, di_key, name, name_len,
4697 					data, data_len, type, ctx);
4698 		} else {
4699 			ret = 0;
4700 		}
4701 	}
4702 
4703 	kfree(found_data);
4704 	return ret;
4705 }
4706 
4707 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4708 					   const char *name, int name_len,
4709 					   const char *data, int data_len,
4710 					   u8 type, void *ctx)
4711 {
4712 	int ret;
4713 	struct send_ctx *sctx = ctx;
4714 
4715 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4716 			 name, name_len, NULL, NULL);
4717 	if (ret == -ENOENT)
4718 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4719 				data_len, type, ctx);
4720 	else if (ret >= 0)
4721 		ret = 0;
4722 
4723 	return ret;
4724 }
4725 
4726 static int process_changed_xattr(struct send_ctx *sctx)
4727 {
4728 	int ret = 0;
4729 
4730 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4731 			__process_changed_new_xattr, sctx);
4732 	if (ret < 0)
4733 		goto out;
4734 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4735 			__process_changed_deleted_xattr, sctx);
4736 
4737 out:
4738 	return ret;
4739 }
4740 
4741 static int process_all_new_xattrs(struct send_ctx *sctx)
4742 {
4743 	int ret;
4744 	struct btrfs_root *root;
4745 	struct btrfs_path *path;
4746 	struct btrfs_key key;
4747 	struct btrfs_key found_key;
4748 	struct extent_buffer *eb;
4749 	int slot;
4750 
4751 	path = alloc_path_for_send();
4752 	if (!path)
4753 		return -ENOMEM;
4754 
4755 	root = sctx->send_root;
4756 
4757 	key.objectid = sctx->cmp_key->objectid;
4758 	key.type = BTRFS_XATTR_ITEM_KEY;
4759 	key.offset = 0;
4760 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4761 	if (ret < 0)
4762 		goto out;
4763 
4764 	while (1) {
4765 		eb = path->nodes[0];
4766 		slot = path->slots[0];
4767 		if (slot >= btrfs_header_nritems(eb)) {
4768 			ret = btrfs_next_leaf(root, path);
4769 			if (ret < 0) {
4770 				goto out;
4771 			} else if (ret > 0) {
4772 				ret = 0;
4773 				break;
4774 			}
4775 			continue;
4776 		}
4777 
4778 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4779 		if (found_key.objectid != key.objectid ||
4780 		    found_key.type != key.type) {
4781 			ret = 0;
4782 			goto out;
4783 		}
4784 
4785 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4786 		if (ret < 0)
4787 			goto out;
4788 
4789 		path->slots[0]++;
4790 	}
4791 
4792 out:
4793 	btrfs_free_path(path);
4794 	return ret;
4795 }
4796 
4797 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4798 {
4799 	struct btrfs_root *root = sctx->send_root;
4800 	struct btrfs_fs_info *fs_info = root->fs_info;
4801 	struct inode *inode;
4802 	struct page *page;
4803 	char *addr;
4804 	struct btrfs_key key;
4805 	pgoff_t index = offset >> PAGE_SHIFT;
4806 	pgoff_t last_index;
4807 	unsigned pg_offset = offset_in_page(offset);
4808 	ssize_t ret = 0;
4809 
4810 	key.objectid = sctx->cur_ino;
4811 	key.type = BTRFS_INODE_ITEM_KEY;
4812 	key.offset = 0;
4813 
4814 	inode = btrfs_iget(fs_info->sb, &key, root);
4815 	if (IS_ERR(inode))
4816 		return PTR_ERR(inode);
4817 
4818 	if (offset + len > i_size_read(inode)) {
4819 		if (offset > i_size_read(inode))
4820 			len = 0;
4821 		else
4822 			len = offset - i_size_read(inode);
4823 	}
4824 	if (len == 0)
4825 		goto out;
4826 
4827 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4828 
4829 	/* initial readahead */
4830 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4831 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4832 
4833 	while (index <= last_index) {
4834 		unsigned cur_len = min_t(unsigned, len,
4835 					 PAGE_SIZE - pg_offset);
4836 
4837 		page = find_lock_page(inode->i_mapping, index);
4838 		if (!page) {
4839 			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4840 				NULL, index, last_index + 1 - index);
4841 
4842 			page = find_or_create_page(inode->i_mapping, index,
4843 					GFP_KERNEL);
4844 			if (!page) {
4845 				ret = -ENOMEM;
4846 				break;
4847 			}
4848 		}
4849 
4850 		if (PageReadahead(page)) {
4851 			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4852 				NULL, page, index, last_index + 1 - index);
4853 		}
4854 
4855 		if (!PageUptodate(page)) {
4856 			btrfs_readpage(NULL, page);
4857 			lock_page(page);
4858 			if (!PageUptodate(page)) {
4859 				unlock_page(page);
4860 				put_page(page);
4861 				ret = -EIO;
4862 				break;
4863 			}
4864 		}
4865 
4866 		addr = kmap(page);
4867 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4868 		kunmap(page);
4869 		unlock_page(page);
4870 		put_page(page);
4871 		index++;
4872 		pg_offset = 0;
4873 		len -= cur_len;
4874 		ret += cur_len;
4875 	}
4876 out:
4877 	iput(inode);
4878 	return ret;
4879 }
4880 
4881 /*
4882  * Read some bytes from the current inode/file and send a write command to
4883  * user space.
4884  */
4885 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4886 {
4887 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4888 	int ret = 0;
4889 	struct fs_path *p;
4890 	ssize_t num_read = 0;
4891 
4892 	p = fs_path_alloc();
4893 	if (!p)
4894 		return -ENOMEM;
4895 
4896 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4897 
4898 	num_read = fill_read_buf(sctx, offset, len);
4899 	if (num_read <= 0) {
4900 		if (num_read < 0)
4901 			ret = num_read;
4902 		goto out;
4903 	}
4904 
4905 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4906 	if (ret < 0)
4907 		goto out;
4908 
4909 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4910 	if (ret < 0)
4911 		goto out;
4912 
4913 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4914 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4915 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4916 
4917 	ret = send_cmd(sctx);
4918 
4919 tlv_put_failure:
4920 out:
4921 	fs_path_free(p);
4922 	if (ret < 0)
4923 		return ret;
4924 	return num_read;
4925 }
4926 
4927 /*
4928  * Send a clone command to user space.
4929  */
4930 static int send_clone(struct send_ctx *sctx,
4931 		      u64 offset, u32 len,
4932 		      struct clone_root *clone_root)
4933 {
4934 	int ret = 0;
4935 	struct fs_path *p;
4936 	u64 gen;
4937 
4938 	btrfs_debug(sctx->send_root->fs_info,
4939 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4940 		    offset, len, clone_root->root->root_key.objectid,
4941 		    clone_root->ino, clone_root->offset);
4942 
4943 	p = fs_path_alloc();
4944 	if (!p)
4945 		return -ENOMEM;
4946 
4947 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4948 	if (ret < 0)
4949 		goto out;
4950 
4951 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4952 	if (ret < 0)
4953 		goto out;
4954 
4955 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4956 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4957 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4958 
4959 	if (clone_root->root == sctx->send_root) {
4960 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4961 				&gen, NULL, NULL, NULL, NULL);
4962 		if (ret < 0)
4963 			goto out;
4964 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4965 	} else {
4966 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4967 	}
4968 	if (ret < 0)
4969 		goto out;
4970 
4971 	/*
4972 	 * If the parent we're using has a received_uuid set then use that as
4973 	 * our clone source as that is what we will look for when doing a
4974 	 * receive.
4975 	 *
4976 	 * This covers the case that we create a snapshot off of a received
4977 	 * subvolume and then use that as the parent and try to receive on a
4978 	 * different host.
4979 	 */
4980 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4981 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4982 			     clone_root->root->root_item.received_uuid);
4983 	else
4984 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4985 			     clone_root->root->root_item.uuid);
4986 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4987 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4988 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4989 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4990 			clone_root->offset);
4991 
4992 	ret = send_cmd(sctx);
4993 
4994 tlv_put_failure:
4995 out:
4996 	fs_path_free(p);
4997 	return ret;
4998 }
4999 
5000 /*
5001  * Send an update extent command to user space.
5002  */
5003 static int send_update_extent(struct send_ctx *sctx,
5004 			      u64 offset, u32 len)
5005 {
5006 	int ret = 0;
5007 	struct fs_path *p;
5008 
5009 	p = fs_path_alloc();
5010 	if (!p)
5011 		return -ENOMEM;
5012 
5013 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5014 	if (ret < 0)
5015 		goto out;
5016 
5017 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5018 	if (ret < 0)
5019 		goto out;
5020 
5021 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5022 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5023 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5024 
5025 	ret = send_cmd(sctx);
5026 
5027 tlv_put_failure:
5028 out:
5029 	fs_path_free(p);
5030 	return ret;
5031 }
5032 
5033 static int send_hole(struct send_ctx *sctx, u64 end)
5034 {
5035 	struct fs_path *p = NULL;
5036 	u64 offset = sctx->cur_inode_last_extent;
5037 	u64 len;
5038 	int ret = 0;
5039 
5040 	/*
5041 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5042 	 * fallocate (for extent preallocation and hole punching), sending a
5043 	 * write of zeroes starting at EOF or beyond would later require issuing
5044 	 * a truncate operation which would undo the write and achieve nothing.
5045 	 */
5046 	if (offset >= sctx->cur_inode_size)
5047 		return 0;
5048 
5049 	/*
5050 	 * Don't go beyond the inode's i_size due to prealloc extents that start
5051 	 * after the i_size.
5052 	 */
5053 	end = min_t(u64, end, sctx->cur_inode_size);
5054 
5055 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5056 		return send_update_extent(sctx, offset, end - offset);
5057 
5058 	p = fs_path_alloc();
5059 	if (!p)
5060 		return -ENOMEM;
5061 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5062 	if (ret < 0)
5063 		goto tlv_put_failure;
5064 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5065 	while (offset < end) {
5066 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5067 
5068 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5069 		if (ret < 0)
5070 			break;
5071 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5072 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5073 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5074 		ret = send_cmd(sctx);
5075 		if (ret < 0)
5076 			break;
5077 		offset += len;
5078 	}
5079 	sctx->cur_inode_next_write_offset = offset;
5080 tlv_put_failure:
5081 	fs_path_free(p);
5082 	return ret;
5083 }
5084 
5085 static int send_extent_data(struct send_ctx *sctx,
5086 			    const u64 offset,
5087 			    const u64 len)
5088 {
5089 	u64 sent = 0;
5090 
5091 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5092 		return send_update_extent(sctx, offset, len);
5093 
5094 	while (sent < len) {
5095 		u64 size = len - sent;
5096 		int ret;
5097 
5098 		if (size > BTRFS_SEND_READ_SIZE)
5099 			size = BTRFS_SEND_READ_SIZE;
5100 		ret = send_write(sctx, offset + sent, size);
5101 		if (ret < 0)
5102 			return ret;
5103 		if (!ret)
5104 			break;
5105 		sent += ret;
5106 	}
5107 	return 0;
5108 }
5109 
5110 static int clone_range(struct send_ctx *sctx,
5111 		       struct clone_root *clone_root,
5112 		       const u64 disk_byte,
5113 		       u64 data_offset,
5114 		       u64 offset,
5115 		       u64 len)
5116 {
5117 	struct btrfs_path *path;
5118 	struct btrfs_key key;
5119 	int ret;
5120 	u64 clone_src_i_size = 0;
5121 
5122 	/*
5123 	 * Prevent cloning from a zero offset with a length matching the sector
5124 	 * size because in some scenarios this will make the receiver fail.
5125 	 *
5126 	 * For example, if in the source filesystem the extent at offset 0
5127 	 * has a length of sectorsize and it was written using direct IO, then
5128 	 * it can never be an inline extent (even if compression is enabled).
5129 	 * Then this extent can be cloned in the original filesystem to a non
5130 	 * zero file offset, but it may not be possible to clone in the
5131 	 * destination filesystem because it can be inlined due to compression
5132 	 * on the destination filesystem (as the receiver's write operations are
5133 	 * always done using buffered IO). The same happens when the original
5134 	 * filesystem does not have compression enabled but the destination
5135 	 * filesystem has.
5136 	 */
5137 	if (clone_root->offset == 0 &&
5138 	    len == sctx->send_root->fs_info->sectorsize)
5139 		return send_extent_data(sctx, offset, len);
5140 
5141 	path = alloc_path_for_send();
5142 	if (!path)
5143 		return -ENOMEM;
5144 
5145 	/*
5146 	 * There are inodes that have extents that lie behind its i_size. Don't
5147 	 * accept clones from these extents.
5148 	 */
5149 	ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5150 			       &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5151 	btrfs_release_path(path);
5152 	if (ret < 0)
5153 		goto out;
5154 
5155 	/*
5156 	 * We can't send a clone operation for the entire range if we find
5157 	 * extent items in the respective range in the source file that
5158 	 * refer to different extents or if we find holes.
5159 	 * So check for that and do a mix of clone and regular write/copy
5160 	 * operations if needed.
5161 	 *
5162 	 * Example:
5163 	 *
5164 	 * mkfs.btrfs -f /dev/sda
5165 	 * mount /dev/sda /mnt
5166 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5167 	 * cp --reflink=always /mnt/foo /mnt/bar
5168 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5169 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5170 	 *
5171 	 * If when we send the snapshot and we are processing file bar (which
5172 	 * has a higher inode number than foo) we blindly send a clone operation
5173 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5174 	 * a file bar that matches the content of file foo - iow, doesn't match
5175 	 * the content from bar in the original filesystem.
5176 	 */
5177 	key.objectid = clone_root->ino;
5178 	key.type = BTRFS_EXTENT_DATA_KEY;
5179 	key.offset = clone_root->offset;
5180 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5181 	if (ret < 0)
5182 		goto out;
5183 	if (ret > 0 && path->slots[0] > 0) {
5184 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5185 		if (key.objectid == clone_root->ino &&
5186 		    key.type == BTRFS_EXTENT_DATA_KEY)
5187 			path->slots[0]--;
5188 	}
5189 
5190 	while (true) {
5191 		struct extent_buffer *leaf = path->nodes[0];
5192 		int slot = path->slots[0];
5193 		struct btrfs_file_extent_item *ei;
5194 		u8 type;
5195 		u64 ext_len;
5196 		u64 clone_len;
5197 		u64 clone_data_offset;
5198 
5199 		if (slot >= btrfs_header_nritems(leaf)) {
5200 			ret = btrfs_next_leaf(clone_root->root, path);
5201 			if (ret < 0)
5202 				goto out;
5203 			else if (ret > 0)
5204 				break;
5205 			continue;
5206 		}
5207 
5208 		btrfs_item_key_to_cpu(leaf, &key, slot);
5209 
5210 		/*
5211 		 * We might have an implicit trailing hole (NO_HOLES feature
5212 		 * enabled). We deal with it after leaving this loop.
5213 		 */
5214 		if (key.objectid != clone_root->ino ||
5215 		    key.type != BTRFS_EXTENT_DATA_KEY)
5216 			break;
5217 
5218 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5219 		type = btrfs_file_extent_type(leaf, ei);
5220 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5221 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5222 			ext_len = PAGE_ALIGN(ext_len);
5223 		} else {
5224 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5225 		}
5226 
5227 		if (key.offset + ext_len <= clone_root->offset)
5228 			goto next;
5229 
5230 		if (key.offset > clone_root->offset) {
5231 			/* Implicit hole, NO_HOLES feature enabled. */
5232 			u64 hole_len = key.offset - clone_root->offset;
5233 
5234 			if (hole_len > len)
5235 				hole_len = len;
5236 			ret = send_extent_data(sctx, offset, hole_len);
5237 			if (ret < 0)
5238 				goto out;
5239 
5240 			len -= hole_len;
5241 			if (len == 0)
5242 				break;
5243 			offset += hole_len;
5244 			clone_root->offset += hole_len;
5245 			data_offset += hole_len;
5246 		}
5247 
5248 		if (key.offset >= clone_root->offset + len)
5249 			break;
5250 
5251 		if (key.offset >= clone_src_i_size)
5252 			break;
5253 
5254 		if (key.offset + ext_len > clone_src_i_size)
5255 			ext_len = clone_src_i_size - key.offset;
5256 
5257 		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5258 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5259 			clone_root->offset = key.offset;
5260 			if (clone_data_offset < data_offset &&
5261 				clone_data_offset + ext_len > data_offset) {
5262 				u64 extent_offset;
5263 
5264 				extent_offset = data_offset - clone_data_offset;
5265 				ext_len -= extent_offset;
5266 				clone_data_offset += extent_offset;
5267 				clone_root->offset += extent_offset;
5268 			}
5269 		}
5270 
5271 		clone_len = min_t(u64, ext_len, len);
5272 
5273 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5274 		    clone_data_offset == data_offset) {
5275 			const u64 src_end = clone_root->offset + clone_len;
5276 			const u64 sectorsize = SZ_64K;
5277 
5278 			/*
5279 			 * We can't clone the last block, when its size is not
5280 			 * sector size aligned, into the middle of a file. If we
5281 			 * do so, the receiver will get a failure (-EINVAL) when
5282 			 * trying to clone or will silently corrupt the data in
5283 			 * the destination file if it's on a kernel without the
5284 			 * fix introduced by commit ac765f83f1397646
5285 			 * ("Btrfs: fix data corruption due to cloning of eof
5286 			 * block).
5287 			 *
5288 			 * So issue a clone of the aligned down range plus a
5289 			 * regular write for the eof block, if we hit that case.
5290 			 *
5291 			 * Also, we use the maximum possible sector size, 64K,
5292 			 * because we don't know what's the sector size of the
5293 			 * filesystem that receives the stream, so we have to
5294 			 * assume the largest possible sector size.
5295 			 */
5296 			if (src_end == clone_src_i_size &&
5297 			    !IS_ALIGNED(src_end, sectorsize) &&
5298 			    offset + clone_len < sctx->cur_inode_size) {
5299 				u64 slen;
5300 
5301 				slen = ALIGN_DOWN(src_end - clone_root->offset,
5302 						  sectorsize);
5303 				if (slen > 0) {
5304 					ret = send_clone(sctx, offset, slen,
5305 							 clone_root);
5306 					if (ret < 0)
5307 						goto out;
5308 				}
5309 				ret = send_extent_data(sctx, offset + slen,
5310 						       clone_len - slen);
5311 			} else {
5312 				ret = send_clone(sctx, offset, clone_len,
5313 						 clone_root);
5314 			}
5315 		} else {
5316 			ret = send_extent_data(sctx, offset, clone_len);
5317 		}
5318 
5319 		if (ret < 0)
5320 			goto out;
5321 
5322 		len -= clone_len;
5323 		if (len == 0)
5324 			break;
5325 		offset += clone_len;
5326 		clone_root->offset += clone_len;
5327 		data_offset += clone_len;
5328 next:
5329 		path->slots[0]++;
5330 	}
5331 
5332 	if (len > 0)
5333 		ret = send_extent_data(sctx, offset, len);
5334 	else
5335 		ret = 0;
5336 out:
5337 	btrfs_free_path(path);
5338 	return ret;
5339 }
5340 
5341 static int send_write_or_clone(struct send_ctx *sctx,
5342 			       struct btrfs_path *path,
5343 			       struct btrfs_key *key,
5344 			       struct clone_root *clone_root)
5345 {
5346 	int ret = 0;
5347 	struct btrfs_file_extent_item *ei;
5348 	u64 offset = key->offset;
5349 	u64 len;
5350 	u8 type;
5351 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5352 
5353 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5354 			struct btrfs_file_extent_item);
5355 	type = btrfs_file_extent_type(path->nodes[0], ei);
5356 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5357 		len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
5358 		/*
5359 		 * it is possible the inline item won't cover the whole page,
5360 		 * but there may be items after this page.  Make
5361 		 * sure to send the whole thing
5362 		 */
5363 		len = PAGE_ALIGN(len);
5364 	} else {
5365 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5366 	}
5367 
5368 	if (offset >= sctx->cur_inode_size) {
5369 		ret = 0;
5370 		goto out;
5371 	}
5372 	if (offset + len > sctx->cur_inode_size)
5373 		len = sctx->cur_inode_size - offset;
5374 	if (len == 0) {
5375 		ret = 0;
5376 		goto out;
5377 	}
5378 
5379 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
5380 		u64 disk_byte;
5381 		u64 data_offset;
5382 
5383 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5384 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5385 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5386 				  offset, len);
5387 	} else {
5388 		ret = send_extent_data(sctx, offset, len);
5389 	}
5390 	sctx->cur_inode_next_write_offset = offset + len;
5391 out:
5392 	return ret;
5393 }
5394 
5395 static int is_extent_unchanged(struct send_ctx *sctx,
5396 			       struct btrfs_path *left_path,
5397 			       struct btrfs_key *ekey)
5398 {
5399 	int ret = 0;
5400 	struct btrfs_key key;
5401 	struct btrfs_path *path = NULL;
5402 	struct extent_buffer *eb;
5403 	int slot;
5404 	struct btrfs_key found_key;
5405 	struct btrfs_file_extent_item *ei;
5406 	u64 left_disknr;
5407 	u64 right_disknr;
5408 	u64 left_offset;
5409 	u64 right_offset;
5410 	u64 left_offset_fixed;
5411 	u64 left_len;
5412 	u64 right_len;
5413 	u64 left_gen;
5414 	u64 right_gen;
5415 	u8 left_type;
5416 	u8 right_type;
5417 
5418 	path = alloc_path_for_send();
5419 	if (!path)
5420 		return -ENOMEM;
5421 
5422 	eb = left_path->nodes[0];
5423 	slot = left_path->slots[0];
5424 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5425 	left_type = btrfs_file_extent_type(eb, ei);
5426 
5427 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5428 		ret = 0;
5429 		goto out;
5430 	}
5431 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5432 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5433 	left_offset = btrfs_file_extent_offset(eb, ei);
5434 	left_gen = btrfs_file_extent_generation(eb, ei);
5435 
5436 	/*
5437 	 * Following comments will refer to these graphics. L is the left
5438 	 * extents which we are checking at the moment. 1-8 are the right
5439 	 * extents that we iterate.
5440 	 *
5441 	 *       |-----L-----|
5442 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5443 	 *
5444 	 *       |-----L-----|
5445 	 * |--1--|-2b-|...(same as above)
5446 	 *
5447 	 * Alternative situation. Happens on files where extents got split.
5448 	 *       |-----L-----|
5449 	 * |-----------7-----------|-6-|
5450 	 *
5451 	 * Alternative situation. Happens on files which got larger.
5452 	 *       |-----L-----|
5453 	 * |-8-|
5454 	 * Nothing follows after 8.
5455 	 */
5456 
5457 	key.objectid = ekey->objectid;
5458 	key.type = BTRFS_EXTENT_DATA_KEY;
5459 	key.offset = ekey->offset;
5460 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5461 	if (ret < 0)
5462 		goto out;
5463 	if (ret) {
5464 		ret = 0;
5465 		goto out;
5466 	}
5467 
5468 	/*
5469 	 * Handle special case where the right side has no extents at all.
5470 	 */
5471 	eb = path->nodes[0];
5472 	slot = path->slots[0];
5473 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5474 	if (found_key.objectid != key.objectid ||
5475 	    found_key.type != key.type) {
5476 		/* If we're a hole then just pretend nothing changed */
5477 		ret = (left_disknr) ? 0 : 1;
5478 		goto out;
5479 	}
5480 
5481 	/*
5482 	 * We're now on 2a, 2b or 7.
5483 	 */
5484 	key = found_key;
5485 	while (key.offset < ekey->offset + left_len) {
5486 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5487 		right_type = btrfs_file_extent_type(eb, ei);
5488 		if (right_type != BTRFS_FILE_EXTENT_REG &&
5489 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5490 			ret = 0;
5491 			goto out;
5492 		}
5493 
5494 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5495 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
5496 			right_len = PAGE_ALIGN(right_len);
5497 		} else {
5498 			right_len = btrfs_file_extent_num_bytes(eb, ei);
5499 		}
5500 
5501 		/*
5502 		 * Are we at extent 8? If yes, we know the extent is changed.
5503 		 * This may only happen on the first iteration.
5504 		 */
5505 		if (found_key.offset + right_len <= ekey->offset) {
5506 			/* If we're a hole just pretend nothing changed */
5507 			ret = (left_disknr) ? 0 : 1;
5508 			goto out;
5509 		}
5510 
5511 		/*
5512 		 * We just wanted to see if when we have an inline extent, what
5513 		 * follows it is a regular extent (wanted to check the above
5514 		 * condition for inline extents too). This should normally not
5515 		 * happen but it's possible for example when we have an inline
5516 		 * compressed extent representing data with a size matching
5517 		 * the page size (currently the same as sector size).
5518 		 */
5519 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5520 			ret = 0;
5521 			goto out;
5522 		}
5523 
5524 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5525 		right_offset = btrfs_file_extent_offset(eb, ei);
5526 		right_gen = btrfs_file_extent_generation(eb, ei);
5527 
5528 		left_offset_fixed = left_offset;
5529 		if (key.offset < ekey->offset) {
5530 			/* Fix the right offset for 2a and 7. */
5531 			right_offset += ekey->offset - key.offset;
5532 		} else {
5533 			/* Fix the left offset for all behind 2a and 2b */
5534 			left_offset_fixed += key.offset - ekey->offset;
5535 		}
5536 
5537 		/*
5538 		 * Check if we have the same extent.
5539 		 */
5540 		if (left_disknr != right_disknr ||
5541 		    left_offset_fixed != right_offset ||
5542 		    left_gen != right_gen) {
5543 			ret = 0;
5544 			goto out;
5545 		}
5546 
5547 		/*
5548 		 * Go to the next extent.
5549 		 */
5550 		ret = btrfs_next_item(sctx->parent_root, path);
5551 		if (ret < 0)
5552 			goto out;
5553 		if (!ret) {
5554 			eb = path->nodes[0];
5555 			slot = path->slots[0];
5556 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5557 		}
5558 		if (ret || found_key.objectid != key.objectid ||
5559 		    found_key.type != key.type) {
5560 			key.offset += right_len;
5561 			break;
5562 		}
5563 		if (found_key.offset != key.offset + right_len) {
5564 			ret = 0;
5565 			goto out;
5566 		}
5567 		key = found_key;
5568 	}
5569 
5570 	/*
5571 	 * We're now behind the left extent (treat as unchanged) or at the end
5572 	 * of the right side (treat as changed).
5573 	 */
5574 	if (key.offset >= ekey->offset + left_len)
5575 		ret = 1;
5576 	else
5577 		ret = 0;
5578 
5579 
5580 out:
5581 	btrfs_free_path(path);
5582 	return ret;
5583 }
5584 
5585 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5586 {
5587 	struct btrfs_path *path;
5588 	struct btrfs_root *root = sctx->send_root;
5589 	struct btrfs_file_extent_item *fi;
5590 	struct btrfs_key key;
5591 	u64 extent_end;
5592 	u8 type;
5593 	int ret;
5594 
5595 	path = alloc_path_for_send();
5596 	if (!path)
5597 		return -ENOMEM;
5598 
5599 	sctx->cur_inode_last_extent = 0;
5600 
5601 	key.objectid = sctx->cur_ino;
5602 	key.type = BTRFS_EXTENT_DATA_KEY;
5603 	key.offset = offset;
5604 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5605 	if (ret < 0)
5606 		goto out;
5607 	ret = 0;
5608 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5609 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5610 		goto out;
5611 
5612 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5613 			    struct btrfs_file_extent_item);
5614 	type = btrfs_file_extent_type(path->nodes[0], fi);
5615 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5616 		u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
5617 		extent_end = ALIGN(key.offset + size,
5618 				   sctx->send_root->fs_info->sectorsize);
5619 	} else {
5620 		extent_end = key.offset +
5621 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5622 	}
5623 	sctx->cur_inode_last_extent = extent_end;
5624 out:
5625 	btrfs_free_path(path);
5626 	return ret;
5627 }
5628 
5629 static int range_is_hole_in_parent(struct send_ctx *sctx,
5630 				   const u64 start,
5631 				   const u64 end)
5632 {
5633 	struct btrfs_path *path;
5634 	struct btrfs_key key;
5635 	struct btrfs_root *root = sctx->parent_root;
5636 	u64 search_start = start;
5637 	int ret;
5638 
5639 	path = alloc_path_for_send();
5640 	if (!path)
5641 		return -ENOMEM;
5642 
5643 	key.objectid = sctx->cur_ino;
5644 	key.type = BTRFS_EXTENT_DATA_KEY;
5645 	key.offset = search_start;
5646 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5647 	if (ret < 0)
5648 		goto out;
5649 	if (ret > 0 && path->slots[0] > 0)
5650 		path->slots[0]--;
5651 
5652 	while (search_start < end) {
5653 		struct extent_buffer *leaf = path->nodes[0];
5654 		int slot = path->slots[0];
5655 		struct btrfs_file_extent_item *fi;
5656 		u64 extent_end;
5657 
5658 		if (slot >= btrfs_header_nritems(leaf)) {
5659 			ret = btrfs_next_leaf(root, path);
5660 			if (ret < 0)
5661 				goto out;
5662 			else if (ret > 0)
5663 				break;
5664 			continue;
5665 		}
5666 
5667 		btrfs_item_key_to_cpu(leaf, &key, slot);
5668 		if (key.objectid < sctx->cur_ino ||
5669 		    key.type < BTRFS_EXTENT_DATA_KEY)
5670 			goto next;
5671 		if (key.objectid > sctx->cur_ino ||
5672 		    key.type > BTRFS_EXTENT_DATA_KEY ||
5673 		    key.offset >= end)
5674 			break;
5675 
5676 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5677 		if (btrfs_file_extent_type(leaf, fi) ==
5678 		    BTRFS_FILE_EXTENT_INLINE) {
5679 			u64 size = btrfs_file_extent_ram_bytes(leaf, fi);
5680 
5681 			extent_end = ALIGN(key.offset + size,
5682 					   root->fs_info->sectorsize);
5683 		} else {
5684 			extent_end = key.offset +
5685 				btrfs_file_extent_num_bytes(leaf, fi);
5686 		}
5687 		if (extent_end <= start)
5688 			goto next;
5689 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5690 			search_start = extent_end;
5691 			goto next;
5692 		}
5693 		ret = 0;
5694 		goto out;
5695 next:
5696 		path->slots[0]++;
5697 	}
5698 	ret = 1;
5699 out:
5700 	btrfs_free_path(path);
5701 	return ret;
5702 }
5703 
5704 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5705 			   struct btrfs_key *key)
5706 {
5707 	struct btrfs_file_extent_item *fi;
5708 	u64 extent_end;
5709 	u8 type;
5710 	int ret = 0;
5711 
5712 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5713 		return 0;
5714 
5715 	if (sctx->cur_inode_last_extent == (u64)-1) {
5716 		ret = get_last_extent(sctx, key->offset - 1);
5717 		if (ret)
5718 			return ret;
5719 	}
5720 
5721 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5722 			    struct btrfs_file_extent_item);
5723 	type = btrfs_file_extent_type(path->nodes[0], fi);
5724 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5725 		u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
5726 		extent_end = ALIGN(key->offset + size,
5727 				   sctx->send_root->fs_info->sectorsize);
5728 	} else {
5729 		extent_end = key->offset +
5730 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5731 	}
5732 
5733 	if (path->slots[0] == 0 &&
5734 	    sctx->cur_inode_last_extent < key->offset) {
5735 		/*
5736 		 * We might have skipped entire leafs that contained only
5737 		 * file extent items for our current inode. These leafs have
5738 		 * a generation number smaller (older) than the one in the
5739 		 * current leaf and the leaf our last extent came from, and
5740 		 * are located between these 2 leafs.
5741 		 */
5742 		ret = get_last_extent(sctx, key->offset - 1);
5743 		if (ret)
5744 			return ret;
5745 	}
5746 
5747 	if (sctx->cur_inode_last_extent < key->offset) {
5748 		ret = range_is_hole_in_parent(sctx,
5749 					      sctx->cur_inode_last_extent,
5750 					      key->offset);
5751 		if (ret < 0)
5752 			return ret;
5753 		else if (ret == 0)
5754 			ret = send_hole(sctx, key->offset);
5755 		else
5756 			ret = 0;
5757 	}
5758 	sctx->cur_inode_last_extent = extent_end;
5759 	return ret;
5760 }
5761 
5762 static int process_extent(struct send_ctx *sctx,
5763 			  struct btrfs_path *path,
5764 			  struct btrfs_key *key)
5765 {
5766 	struct clone_root *found_clone = NULL;
5767 	int ret = 0;
5768 
5769 	if (S_ISLNK(sctx->cur_inode_mode))
5770 		return 0;
5771 
5772 	if (sctx->parent_root && !sctx->cur_inode_new) {
5773 		ret = is_extent_unchanged(sctx, path, key);
5774 		if (ret < 0)
5775 			goto out;
5776 		if (ret) {
5777 			ret = 0;
5778 			goto out_hole;
5779 		}
5780 	} else {
5781 		struct btrfs_file_extent_item *ei;
5782 		u8 type;
5783 
5784 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5785 				    struct btrfs_file_extent_item);
5786 		type = btrfs_file_extent_type(path->nodes[0], ei);
5787 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5788 		    type == BTRFS_FILE_EXTENT_REG) {
5789 			/*
5790 			 * The send spec does not have a prealloc command yet,
5791 			 * so just leave a hole for prealloc'ed extents until
5792 			 * we have enough commands queued up to justify rev'ing
5793 			 * the send spec.
5794 			 */
5795 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5796 				ret = 0;
5797 				goto out;
5798 			}
5799 
5800 			/* Have a hole, just skip it. */
5801 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5802 				ret = 0;
5803 				goto out;
5804 			}
5805 		}
5806 	}
5807 
5808 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5809 			sctx->cur_inode_size, &found_clone);
5810 	if (ret != -ENOENT && ret < 0)
5811 		goto out;
5812 
5813 	ret = send_write_or_clone(sctx, path, key, found_clone);
5814 	if (ret)
5815 		goto out;
5816 out_hole:
5817 	ret = maybe_send_hole(sctx, path, key);
5818 out:
5819 	return ret;
5820 }
5821 
5822 static int process_all_extents(struct send_ctx *sctx)
5823 {
5824 	int ret;
5825 	struct btrfs_root *root;
5826 	struct btrfs_path *path;
5827 	struct btrfs_key key;
5828 	struct btrfs_key found_key;
5829 	struct extent_buffer *eb;
5830 	int slot;
5831 
5832 	root = sctx->send_root;
5833 	path = alloc_path_for_send();
5834 	if (!path)
5835 		return -ENOMEM;
5836 
5837 	key.objectid = sctx->cmp_key->objectid;
5838 	key.type = BTRFS_EXTENT_DATA_KEY;
5839 	key.offset = 0;
5840 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5841 	if (ret < 0)
5842 		goto out;
5843 
5844 	while (1) {
5845 		eb = path->nodes[0];
5846 		slot = path->slots[0];
5847 
5848 		if (slot >= btrfs_header_nritems(eb)) {
5849 			ret = btrfs_next_leaf(root, path);
5850 			if (ret < 0) {
5851 				goto out;
5852 			} else if (ret > 0) {
5853 				ret = 0;
5854 				break;
5855 			}
5856 			continue;
5857 		}
5858 
5859 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5860 
5861 		if (found_key.objectid != key.objectid ||
5862 		    found_key.type != key.type) {
5863 			ret = 0;
5864 			goto out;
5865 		}
5866 
5867 		ret = process_extent(sctx, path, &found_key);
5868 		if (ret < 0)
5869 			goto out;
5870 
5871 		path->slots[0]++;
5872 	}
5873 
5874 out:
5875 	btrfs_free_path(path);
5876 	return ret;
5877 }
5878 
5879 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5880 					   int *pending_move,
5881 					   int *refs_processed)
5882 {
5883 	int ret = 0;
5884 
5885 	if (sctx->cur_ino == 0)
5886 		goto out;
5887 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5888 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5889 		goto out;
5890 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5891 		goto out;
5892 
5893 	ret = process_recorded_refs(sctx, pending_move);
5894 	if (ret < 0)
5895 		goto out;
5896 
5897 	*refs_processed = 1;
5898 out:
5899 	return ret;
5900 }
5901 
5902 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5903 {
5904 	int ret = 0;
5905 	u64 left_mode;
5906 	u64 left_uid;
5907 	u64 left_gid;
5908 	u64 right_mode;
5909 	u64 right_uid;
5910 	u64 right_gid;
5911 	int need_chmod = 0;
5912 	int need_chown = 0;
5913 	int need_truncate = 1;
5914 	int pending_move = 0;
5915 	int refs_processed = 0;
5916 
5917 	if (sctx->ignore_cur_inode)
5918 		return 0;
5919 
5920 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5921 					      &refs_processed);
5922 	if (ret < 0)
5923 		goto out;
5924 
5925 	/*
5926 	 * We have processed the refs and thus need to advance send_progress.
5927 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5928 	 * inode into account.
5929 	 *
5930 	 * On the other hand, if our current inode is a directory and couldn't
5931 	 * be moved/renamed because its parent was renamed/moved too and it has
5932 	 * a higher inode number, we can only move/rename our current inode
5933 	 * after we moved/renamed its parent. Therefore in this case operate on
5934 	 * the old path (pre move/rename) of our current inode, and the
5935 	 * move/rename will be performed later.
5936 	 */
5937 	if (refs_processed && !pending_move)
5938 		sctx->send_progress = sctx->cur_ino + 1;
5939 
5940 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5941 		goto out;
5942 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5943 		goto out;
5944 
5945 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5946 			&left_mode, &left_uid, &left_gid, NULL);
5947 	if (ret < 0)
5948 		goto out;
5949 
5950 	if (!sctx->parent_root || sctx->cur_inode_new) {
5951 		need_chown = 1;
5952 		if (!S_ISLNK(sctx->cur_inode_mode))
5953 			need_chmod = 1;
5954 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
5955 			need_truncate = 0;
5956 	} else {
5957 		u64 old_size;
5958 
5959 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5960 				&old_size, NULL, &right_mode, &right_uid,
5961 				&right_gid, NULL);
5962 		if (ret < 0)
5963 			goto out;
5964 
5965 		if (left_uid != right_uid || left_gid != right_gid)
5966 			need_chown = 1;
5967 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5968 			need_chmod = 1;
5969 		if ((old_size == sctx->cur_inode_size) ||
5970 		    (sctx->cur_inode_size > old_size &&
5971 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
5972 			need_truncate = 0;
5973 	}
5974 
5975 	if (S_ISREG(sctx->cur_inode_mode)) {
5976 		if (need_send_hole(sctx)) {
5977 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5978 			    sctx->cur_inode_last_extent <
5979 			    sctx->cur_inode_size) {
5980 				ret = get_last_extent(sctx, (u64)-1);
5981 				if (ret)
5982 					goto out;
5983 			}
5984 			if (sctx->cur_inode_last_extent <
5985 			    sctx->cur_inode_size) {
5986 				ret = send_hole(sctx, sctx->cur_inode_size);
5987 				if (ret)
5988 					goto out;
5989 			}
5990 		}
5991 		if (need_truncate) {
5992 			ret = send_truncate(sctx, sctx->cur_ino,
5993 					    sctx->cur_inode_gen,
5994 					    sctx->cur_inode_size);
5995 			if (ret < 0)
5996 				goto out;
5997 		}
5998 	}
5999 
6000 	if (need_chown) {
6001 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6002 				left_uid, left_gid);
6003 		if (ret < 0)
6004 			goto out;
6005 	}
6006 	if (need_chmod) {
6007 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6008 				left_mode);
6009 		if (ret < 0)
6010 			goto out;
6011 	}
6012 
6013 	/*
6014 	 * If other directory inodes depended on our current directory
6015 	 * inode's move/rename, now do their move/rename operations.
6016 	 */
6017 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6018 		ret = apply_children_dir_moves(sctx);
6019 		if (ret)
6020 			goto out;
6021 		/*
6022 		 * Need to send that every time, no matter if it actually
6023 		 * changed between the two trees as we have done changes to
6024 		 * the inode before. If our inode is a directory and it's
6025 		 * waiting to be moved/renamed, we will send its utimes when
6026 		 * it's moved/renamed, therefore we don't need to do it here.
6027 		 */
6028 		sctx->send_progress = sctx->cur_ino + 1;
6029 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6030 		if (ret < 0)
6031 			goto out;
6032 	}
6033 
6034 out:
6035 	return ret;
6036 }
6037 
6038 struct parent_paths_ctx {
6039 	struct list_head *refs;
6040 	struct send_ctx *sctx;
6041 };
6042 
6043 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6044 			     void *ctx)
6045 {
6046 	struct parent_paths_ctx *ppctx = ctx;
6047 
6048 	return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6049 			  ppctx->refs);
6050 }
6051 
6052 /*
6053  * Issue unlink operations for all paths of the current inode found in the
6054  * parent snapshot.
6055  */
6056 static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6057 {
6058 	LIST_HEAD(deleted_refs);
6059 	struct btrfs_path *path;
6060 	struct btrfs_key key;
6061 	struct parent_paths_ctx ctx;
6062 	int ret;
6063 
6064 	path = alloc_path_for_send();
6065 	if (!path)
6066 		return -ENOMEM;
6067 
6068 	key.objectid = sctx->cur_ino;
6069 	key.type = BTRFS_INODE_REF_KEY;
6070 	key.offset = 0;
6071 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6072 	if (ret < 0)
6073 		goto out;
6074 
6075 	ctx.refs = &deleted_refs;
6076 	ctx.sctx = sctx;
6077 
6078 	while (true) {
6079 		struct extent_buffer *eb = path->nodes[0];
6080 		int slot = path->slots[0];
6081 
6082 		if (slot >= btrfs_header_nritems(eb)) {
6083 			ret = btrfs_next_leaf(sctx->parent_root, path);
6084 			if (ret < 0)
6085 				goto out;
6086 			else if (ret > 0)
6087 				break;
6088 			continue;
6089 		}
6090 
6091 		btrfs_item_key_to_cpu(eb, &key, slot);
6092 		if (key.objectid != sctx->cur_ino)
6093 			break;
6094 		if (key.type != BTRFS_INODE_REF_KEY &&
6095 		    key.type != BTRFS_INODE_EXTREF_KEY)
6096 			break;
6097 
6098 		ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6099 					record_parent_ref, &ctx);
6100 		if (ret < 0)
6101 			goto out;
6102 
6103 		path->slots[0]++;
6104 	}
6105 
6106 	while (!list_empty(&deleted_refs)) {
6107 		struct recorded_ref *ref;
6108 
6109 		ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6110 		ret = send_unlink(sctx, ref->full_path);
6111 		if (ret < 0)
6112 			goto out;
6113 		fs_path_free(ref->full_path);
6114 		list_del(&ref->list);
6115 		kfree(ref);
6116 	}
6117 	ret = 0;
6118 out:
6119 	btrfs_free_path(path);
6120 	if (ret)
6121 		__free_recorded_refs(&deleted_refs);
6122 	return ret;
6123 }
6124 
6125 static int changed_inode(struct send_ctx *sctx,
6126 			 enum btrfs_compare_tree_result result)
6127 {
6128 	int ret = 0;
6129 	struct btrfs_key *key = sctx->cmp_key;
6130 	struct btrfs_inode_item *left_ii = NULL;
6131 	struct btrfs_inode_item *right_ii = NULL;
6132 	u64 left_gen = 0;
6133 	u64 right_gen = 0;
6134 
6135 	sctx->cur_ino = key->objectid;
6136 	sctx->cur_inode_new_gen = 0;
6137 	sctx->cur_inode_last_extent = (u64)-1;
6138 	sctx->cur_inode_next_write_offset = 0;
6139 	sctx->ignore_cur_inode = false;
6140 
6141 	/*
6142 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6143 	 * functions that the current inode's refs are not updated yet. Later,
6144 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6145 	 */
6146 	sctx->send_progress = sctx->cur_ino;
6147 
6148 	if (result == BTRFS_COMPARE_TREE_NEW ||
6149 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6150 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6151 				sctx->left_path->slots[0],
6152 				struct btrfs_inode_item);
6153 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6154 				left_ii);
6155 	} else {
6156 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6157 				sctx->right_path->slots[0],
6158 				struct btrfs_inode_item);
6159 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6160 				right_ii);
6161 	}
6162 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6163 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6164 				sctx->right_path->slots[0],
6165 				struct btrfs_inode_item);
6166 
6167 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6168 				right_ii);
6169 
6170 		/*
6171 		 * The cur_ino = root dir case is special here. We can't treat
6172 		 * the inode as deleted+reused because it would generate a
6173 		 * stream that tries to delete/mkdir the root dir.
6174 		 */
6175 		if (left_gen != right_gen &&
6176 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6177 			sctx->cur_inode_new_gen = 1;
6178 	}
6179 
6180 	/*
6181 	 * Normally we do not find inodes with a link count of zero (orphans)
6182 	 * because the most common case is to create a snapshot and use it
6183 	 * for a send operation. However other less common use cases involve
6184 	 * using a subvolume and send it after turning it to RO mode just
6185 	 * after deleting all hard links of a file while holding an open
6186 	 * file descriptor against it or turning a RO snapshot into RW mode,
6187 	 * keep an open file descriptor against a file, delete it and then
6188 	 * turn the snapshot back to RO mode before using it for a send
6189 	 * operation. So if we find such cases, ignore the inode and all its
6190 	 * items completely if it's a new inode, or if it's a changed inode
6191 	 * make sure all its previous paths (from the parent snapshot) are all
6192 	 * unlinked and all other the inode items are ignored.
6193 	 */
6194 	if (result == BTRFS_COMPARE_TREE_NEW ||
6195 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6196 		u32 nlinks;
6197 
6198 		nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6199 		if (nlinks == 0) {
6200 			sctx->ignore_cur_inode = true;
6201 			if (result == BTRFS_COMPARE_TREE_CHANGED)
6202 				ret = btrfs_unlink_all_paths(sctx);
6203 			goto out;
6204 		}
6205 	}
6206 
6207 	if (result == BTRFS_COMPARE_TREE_NEW) {
6208 		sctx->cur_inode_gen = left_gen;
6209 		sctx->cur_inode_new = 1;
6210 		sctx->cur_inode_deleted = 0;
6211 		sctx->cur_inode_size = btrfs_inode_size(
6212 				sctx->left_path->nodes[0], left_ii);
6213 		sctx->cur_inode_mode = btrfs_inode_mode(
6214 				sctx->left_path->nodes[0], left_ii);
6215 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6216 				sctx->left_path->nodes[0], left_ii);
6217 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6218 			ret = send_create_inode_if_needed(sctx);
6219 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6220 		sctx->cur_inode_gen = right_gen;
6221 		sctx->cur_inode_new = 0;
6222 		sctx->cur_inode_deleted = 1;
6223 		sctx->cur_inode_size = btrfs_inode_size(
6224 				sctx->right_path->nodes[0], right_ii);
6225 		sctx->cur_inode_mode = btrfs_inode_mode(
6226 				sctx->right_path->nodes[0], right_ii);
6227 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6228 		/*
6229 		 * We need to do some special handling in case the inode was
6230 		 * reported as changed with a changed generation number. This
6231 		 * means that the original inode was deleted and new inode
6232 		 * reused the same inum. So we have to treat the old inode as
6233 		 * deleted and the new one as new.
6234 		 */
6235 		if (sctx->cur_inode_new_gen) {
6236 			/*
6237 			 * First, process the inode as if it was deleted.
6238 			 */
6239 			sctx->cur_inode_gen = right_gen;
6240 			sctx->cur_inode_new = 0;
6241 			sctx->cur_inode_deleted = 1;
6242 			sctx->cur_inode_size = btrfs_inode_size(
6243 					sctx->right_path->nodes[0], right_ii);
6244 			sctx->cur_inode_mode = btrfs_inode_mode(
6245 					sctx->right_path->nodes[0], right_ii);
6246 			ret = process_all_refs(sctx,
6247 					BTRFS_COMPARE_TREE_DELETED);
6248 			if (ret < 0)
6249 				goto out;
6250 
6251 			/*
6252 			 * Now process the inode as if it was new.
6253 			 */
6254 			sctx->cur_inode_gen = left_gen;
6255 			sctx->cur_inode_new = 1;
6256 			sctx->cur_inode_deleted = 0;
6257 			sctx->cur_inode_size = btrfs_inode_size(
6258 					sctx->left_path->nodes[0], left_ii);
6259 			sctx->cur_inode_mode = btrfs_inode_mode(
6260 					sctx->left_path->nodes[0], left_ii);
6261 			sctx->cur_inode_rdev = btrfs_inode_rdev(
6262 					sctx->left_path->nodes[0], left_ii);
6263 			ret = send_create_inode_if_needed(sctx);
6264 			if (ret < 0)
6265 				goto out;
6266 
6267 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6268 			if (ret < 0)
6269 				goto out;
6270 			/*
6271 			 * Advance send_progress now as we did not get into
6272 			 * process_recorded_refs_if_needed in the new_gen case.
6273 			 */
6274 			sctx->send_progress = sctx->cur_ino + 1;
6275 
6276 			/*
6277 			 * Now process all extents and xattrs of the inode as if
6278 			 * they were all new.
6279 			 */
6280 			ret = process_all_extents(sctx);
6281 			if (ret < 0)
6282 				goto out;
6283 			ret = process_all_new_xattrs(sctx);
6284 			if (ret < 0)
6285 				goto out;
6286 		} else {
6287 			sctx->cur_inode_gen = left_gen;
6288 			sctx->cur_inode_new = 0;
6289 			sctx->cur_inode_new_gen = 0;
6290 			sctx->cur_inode_deleted = 0;
6291 			sctx->cur_inode_size = btrfs_inode_size(
6292 					sctx->left_path->nodes[0], left_ii);
6293 			sctx->cur_inode_mode = btrfs_inode_mode(
6294 					sctx->left_path->nodes[0], left_ii);
6295 		}
6296 	}
6297 
6298 out:
6299 	return ret;
6300 }
6301 
6302 /*
6303  * We have to process new refs before deleted refs, but compare_trees gives us
6304  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6305  * first and later process them in process_recorded_refs.
6306  * For the cur_inode_new_gen case, we skip recording completely because
6307  * changed_inode did already initiate processing of refs. The reason for this is
6308  * that in this case, compare_tree actually compares the refs of 2 different
6309  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6310  * refs of the right tree as deleted and all refs of the left tree as new.
6311  */
6312 static int changed_ref(struct send_ctx *sctx,
6313 		       enum btrfs_compare_tree_result result)
6314 {
6315 	int ret = 0;
6316 
6317 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6318 		inconsistent_snapshot_error(sctx, result, "reference");
6319 		return -EIO;
6320 	}
6321 
6322 	if (!sctx->cur_inode_new_gen &&
6323 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6324 		if (result == BTRFS_COMPARE_TREE_NEW)
6325 			ret = record_new_ref(sctx);
6326 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6327 			ret = record_deleted_ref(sctx);
6328 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6329 			ret = record_changed_ref(sctx);
6330 	}
6331 
6332 	return ret;
6333 }
6334 
6335 /*
6336  * Process new/deleted/changed xattrs. We skip processing in the
6337  * cur_inode_new_gen case because changed_inode did already initiate processing
6338  * of xattrs. The reason is the same as in changed_ref
6339  */
6340 static int changed_xattr(struct send_ctx *sctx,
6341 			 enum btrfs_compare_tree_result result)
6342 {
6343 	int ret = 0;
6344 
6345 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6346 		inconsistent_snapshot_error(sctx, result, "xattr");
6347 		return -EIO;
6348 	}
6349 
6350 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6351 		if (result == BTRFS_COMPARE_TREE_NEW)
6352 			ret = process_new_xattr(sctx);
6353 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6354 			ret = process_deleted_xattr(sctx);
6355 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6356 			ret = process_changed_xattr(sctx);
6357 	}
6358 
6359 	return ret;
6360 }
6361 
6362 /*
6363  * Process new/deleted/changed extents. We skip processing in the
6364  * cur_inode_new_gen case because changed_inode did already initiate processing
6365  * of extents. The reason is the same as in changed_ref
6366  */
6367 static int changed_extent(struct send_ctx *sctx,
6368 			  enum btrfs_compare_tree_result result)
6369 {
6370 	int ret = 0;
6371 
6372 	/*
6373 	 * We have found an extent item that changed without the inode item
6374 	 * having changed. This can happen either after relocation (where the
6375 	 * disk_bytenr of an extent item is replaced at
6376 	 * relocation.c:replace_file_extents()) or after deduplication into a
6377 	 * file in both the parent and send snapshots (where an extent item can
6378 	 * get modified or replaced with a new one). Note that deduplication
6379 	 * updates the inode item, but it only changes the iversion (sequence
6380 	 * field in the inode item) of the inode, so if a file is deduplicated
6381 	 * the same amount of times in both the parent and send snapshots, its
6382 	 * iversion becames the same in both snapshots, whence the inode item is
6383 	 * the same on both snapshots.
6384 	 */
6385 	if (sctx->cur_ino != sctx->cmp_key->objectid)
6386 		return 0;
6387 
6388 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6389 		if (result != BTRFS_COMPARE_TREE_DELETED)
6390 			ret = process_extent(sctx, sctx->left_path,
6391 					sctx->cmp_key);
6392 	}
6393 
6394 	return ret;
6395 }
6396 
6397 static int dir_changed(struct send_ctx *sctx, u64 dir)
6398 {
6399 	u64 orig_gen, new_gen;
6400 	int ret;
6401 
6402 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6403 			     NULL, NULL);
6404 	if (ret)
6405 		return ret;
6406 
6407 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6408 			     NULL, NULL, NULL);
6409 	if (ret)
6410 		return ret;
6411 
6412 	return (orig_gen != new_gen) ? 1 : 0;
6413 }
6414 
6415 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6416 			struct btrfs_key *key)
6417 {
6418 	struct btrfs_inode_extref *extref;
6419 	struct extent_buffer *leaf;
6420 	u64 dirid = 0, last_dirid = 0;
6421 	unsigned long ptr;
6422 	u32 item_size;
6423 	u32 cur_offset = 0;
6424 	int ref_name_len;
6425 	int ret = 0;
6426 
6427 	/* Easy case, just check this one dirid */
6428 	if (key->type == BTRFS_INODE_REF_KEY) {
6429 		dirid = key->offset;
6430 
6431 		ret = dir_changed(sctx, dirid);
6432 		goto out;
6433 	}
6434 
6435 	leaf = path->nodes[0];
6436 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6437 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6438 	while (cur_offset < item_size) {
6439 		extref = (struct btrfs_inode_extref *)(ptr +
6440 						       cur_offset);
6441 		dirid = btrfs_inode_extref_parent(leaf, extref);
6442 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6443 		cur_offset += ref_name_len + sizeof(*extref);
6444 		if (dirid == last_dirid)
6445 			continue;
6446 		ret = dir_changed(sctx, dirid);
6447 		if (ret)
6448 			break;
6449 		last_dirid = dirid;
6450 	}
6451 out:
6452 	return ret;
6453 }
6454 
6455 /*
6456  * Updates compare related fields in sctx and simply forwards to the actual
6457  * changed_xxx functions.
6458  */
6459 static int changed_cb(struct btrfs_path *left_path,
6460 		      struct btrfs_path *right_path,
6461 		      struct btrfs_key *key,
6462 		      enum btrfs_compare_tree_result result,
6463 		      void *ctx)
6464 {
6465 	int ret = 0;
6466 	struct send_ctx *sctx = ctx;
6467 
6468 	if (result == BTRFS_COMPARE_TREE_SAME) {
6469 		if (key->type == BTRFS_INODE_REF_KEY ||
6470 		    key->type == BTRFS_INODE_EXTREF_KEY) {
6471 			ret = compare_refs(sctx, left_path, key);
6472 			if (!ret)
6473 				return 0;
6474 			if (ret < 0)
6475 				return ret;
6476 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6477 			return maybe_send_hole(sctx, left_path, key);
6478 		} else {
6479 			return 0;
6480 		}
6481 		result = BTRFS_COMPARE_TREE_CHANGED;
6482 		ret = 0;
6483 	}
6484 
6485 	sctx->left_path = left_path;
6486 	sctx->right_path = right_path;
6487 	sctx->cmp_key = key;
6488 
6489 	ret = finish_inode_if_needed(sctx, 0);
6490 	if (ret < 0)
6491 		goto out;
6492 
6493 	/* Ignore non-FS objects */
6494 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6495 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6496 		goto out;
6497 
6498 	if (key->type == BTRFS_INODE_ITEM_KEY) {
6499 		ret = changed_inode(sctx, result);
6500 	} else if (!sctx->ignore_cur_inode) {
6501 		if (key->type == BTRFS_INODE_REF_KEY ||
6502 		    key->type == BTRFS_INODE_EXTREF_KEY)
6503 			ret = changed_ref(sctx, result);
6504 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
6505 			ret = changed_xattr(sctx, result);
6506 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
6507 			ret = changed_extent(sctx, result);
6508 	}
6509 
6510 out:
6511 	return ret;
6512 }
6513 
6514 static int full_send_tree(struct send_ctx *sctx)
6515 {
6516 	int ret;
6517 	struct btrfs_root *send_root = sctx->send_root;
6518 	struct btrfs_key key;
6519 	struct btrfs_path *path;
6520 	struct extent_buffer *eb;
6521 	int slot;
6522 
6523 	path = alloc_path_for_send();
6524 	if (!path)
6525 		return -ENOMEM;
6526 
6527 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6528 	key.type = BTRFS_INODE_ITEM_KEY;
6529 	key.offset = 0;
6530 
6531 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6532 	if (ret < 0)
6533 		goto out;
6534 	if (ret)
6535 		goto out_finish;
6536 
6537 	while (1) {
6538 		eb = path->nodes[0];
6539 		slot = path->slots[0];
6540 		btrfs_item_key_to_cpu(eb, &key, slot);
6541 
6542 		ret = changed_cb(path, NULL, &key,
6543 				 BTRFS_COMPARE_TREE_NEW, sctx);
6544 		if (ret < 0)
6545 			goto out;
6546 
6547 		ret = btrfs_next_item(send_root, path);
6548 		if (ret < 0)
6549 			goto out;
6550 		if (ret) {
6551 			ret  = 0;
6552 			break;
6553 		}
6554 	}
6555 
6556 out_finish:
6557 	ret = finish_inode_if_needed(sctx, 1);
6558 
6559 out:
6560 	btrfs_free_path(path);
6561 	return ret;
6562 }
6563 
6564 static int tree_move_down(struct btrfs_path *path, int *level)
6565 {
6566 	struct extent_buffer *eb;
6567 
6568 	BUG_ON(*level == 0);
6569 	eb = btrfs_read_node_slot(path->nodes[*level], path->slots[*level]);
6570 	if (IS_ERR(eb))
6571 		return PTR_ERR(eb);
6572 
6573 	path->nodes[*level - 1] = eb;
6574 	path->slots[*level - 1] = 0;
6575 	(*level)--;
6576 	return 0;
6577 }
6578 
6579 static int tree_move_next_or_upnext(struct btrfs_path *path,
6580 				    int *level, int root_level)
6581 {
6582 	int ret = 0;
6583 	int nritems;
6584 	nritems = btrfs_header_nritems(path->nodes[*level]);
6585 
6586 	path->slots[*level]++;
6587 
6588 	while (path->slots[*level] >= nritems) {
6589 		if (*level == root_level)
6590 			return -1;
6591 
6592 		/* move upnext */
6593 		path->slots[*level] = 0;
6594 		free_extent_buffer(path->nodes[*level]);
6595 		path->nodes[*level] = NULL;
6596 		(*level)++;
6597 		path->slots[*level]++;
6598 
6599 		nritems = btrfs_header_nritems(path->nodes[*level]);
6600 		ret = 1;
6601 	}
6602 	return ret;
6603 }
6604 
6605 /*
6606  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6607  * or down.
6608  */
6609 static int tree_advance(struct btrfs_path *path,
6610 			int *level, int root_level,
6611 			int allow_down,
6612 			struct btrfs_key *key)
6613 {
6614 	int ret;
6615 
6616 	if (*level == 0 || !allow_down) {
6617 		ret = tree_move_next_or_upnext(path, level, root_level);
6618 	} else {
6619 		ret = tree_move_down(path, level);
6620 	}
6621 	if (ret >= 0) {
6622 		if (*level == 0)
6623 			btrfs_item_key_to_cpu(path->nodes[*level], key,
6624 					path->slots[*level]);
6625 		else
6626 			btrfs_node_key_to_cpu(path->nodes[*level], key,
6627 					path->slots[*level]);
6628 	}
6629 	return ret;
6630 }
6631 
6632 static int tree_compare_item(struct btrfs_path *left_path,
6633 			     struct btrfs_path *right_path,
6634 			     char *tmp_buf)
6635 {
6636 	int cmp;
6637 	int len1, len2;
6638 	unsigned long off1, off2;
6639 
6640 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
6641 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
6642 	if (len1 != len2)
6643 		return 1;
6644 
6645 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6646 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6647 				right_path->slots[0]);
6648 
6649 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6650 
6651 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6652 	if (cmp)
6653 		return 1;
6654 	return 0;
6655 }
6656 
6657 /*
6658  * This function compares two trees and calls the provided callback for
6659  * every changed/new/deleted item it finds.
6660  * If shared tree blocks are encountered, whole subtrees are skipped, making
6661  * the compare pretty fast on snapshotted subvolumes.
6662  *
6663  * This currently works on commit roots only. As commit roots are read only,
6664  * we don't do any locking. The commit roots are protected with transactions.
6665  * Transactions are ended and rejoined when a commit is tried in between.
6666  *
6667  * This function checks for modifications done to the trees while comparing.
6668  * If it detects a change, it aborts immediately.
6669  */
6670 static int btrfs_compare_trees(struct btrfs_root *left_root,
6671 			struct btrfs_root *right_root,
6672 			btrfs_changed_cb_t changed_cb, void *ctx)
6673 {
6674 	struct btrfs_fs_info *fs_info = left_root->fs_info;
6675 	int ret;
6676 	int cmp;
6677 	struct btrfs_path *left_path = NULL;
6678 	struct btrfs_path *right_path = NULL;
6679 	struct btrfs_key left_key;
6680 	struct btrfs_key right_key;
6681 	char *tmp_buf = NULL;
6682 	int left_root_level;
6683 	int right_root_level;
6684 	int left_level;
6685 	int right_level;
6686 	int left_end_reached;
6687 	int right_end_reached;
6688 	int advance_left;
6689 	int advance_right;
6690 	u64 left_blockptr;
6691 	u64 right_blockptr;
6692 	u64 left_gen;
6693 	u64 right_gen;
6694 
6695 	left_path = btrfs_alloc_path();
6696 	if (!left_path) {
6697 		ret = -ENOMEM;
6698 		goto out;
6699 	}
6700 	right_path = btrfs_alloc_path();
6701 	if (!right_path) {
6702 		ret = -ENOMEM;
6703 		goto out;
6704 	}
6705 
6706 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
6707 	if (!tmp_buf) {
6708 		ret = -ENOMEM;
6709 		goto out;
6710 	}
6711 
6712 	left_path->search_commit_root = 1;
6713 	left_path->skip_locking = 1;
6714 	right_path->search_commit_root = 1;
6715 	right_path->skip_locking = 1;
6716 
6717 	/*
6718 	 * Strategy: Go to the first items of both trees. Then do
6719 	 *
6720 	 * If both trees are at level 0
6721 	 *   Compare keys of current items
6722 	 *     If left < right treat left item as new, advance left tree
6723 	 *       and repeat
6724 	 *     If left > right treat right item as deleted, advance right tree
6725 	 *       and repeat
6726 	 *     If left == right do deep compare of items, treat as changed if
6727 	 *       needed, advance both trees and repeat
6728 	 * If both trees are at the same level but not at level 0
6729 	 *   Compare keys of current nodes/leafs
6730 	 *     If left < right advance left tree and repeat
6731 	 *     If left > right advance right tree and repeat
6732 	 *     If left == right compare blockptrs of the next nodes/leafs
6733 	 *       If they match advance both trees but stay at the same level
6734 	 *         and repeat
6735 	 *       If they don't match advance both trees while allowing to go
6736 	 *         deeper and repeat
6737 	 * If tree levels are different
6738 	 *   Advance the tree that needs it and repeat
6739 	 *
6740 	 * Advancing a tree means:
6741 	 *   If we are at level 0, try to go to the next slot. If that's not
6742 	 *   possible, go one level up and repeat. Stop when we found a level
6743 	 *   where we could go to the next slot. We may at this point be on a
6744 	 *   node or a leaf.
6745 	 *
6746 	 *   If we are not at level 0 and not on shared tree blocks, go one
6747 	 *   level deeper.
6748 	 *
6749 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
6750 	 *   the right if possible or go up and right.
6751 	 */
6752 
6753 	down_read(&fs_info->commit_root_sem);
6754 	left_level = btrfs_header_level(left_root->commit_root);
6755 	left_root_level = left_level;
6756 	left_path->nodes[left_level] =
6757 			btrfs_clone_extent_buffer(left_root->commit_root);
6758 	if (!left_path->nodes[left_level]) {
6759 		up_read(&fs_info->commit_root_sem);
6760 		ret = -ENOMEM;
6761 		goto out;
6762 	}
6763 
6764 	right_level = btrfs_header_level(right_root->commit_root);
6765 	right_root_level = right_level;
6766 	right_path->nodes[right_level] =
6767 			btrfs_clone_extent_buffer(right_root->commit_root);
6768 	if (!right_path->nodes[right_level]) {
6769 		up_read(&fs_info->commit_root_sem);
6770 		ret = -ENOMEM;
6771 		goto out;
6772 	}
6773 	up_read(&fs_info->commit_root_sem);
6774 
6775 	if (left_level == 0)
6776 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
6777 				&left_key, left_path->slots[left_level]);
6778 	else
6779 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
6780 				&left_key, left_path->slots[left_level]);
6781 	if (right_level == 0)
6782 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
6783 				&right_key, right_path->slots[right_level]);
6784 	else
6785 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
6786 				&right_key, right_path->slots[right_level]);
6787 
6788 	left_end_reached = right_end_reached = 0;
6789 	advance_left = advance_right = 0;
6790 
6791 	while (1) {
6792 		cond_resched();
6793 		if (advance_left && !left_end_reached) {
6794 			ret = tree_advance(left_path, &left_level,
6795 					left_root_level,
6796 					advance_left != ADVANCE_ONLY_NEXT,
6797 					&left_key);
6798 			if (ret == -1)
6799 				left_end_reached = ADVANCE;
6800 			else if (ret < 0)
6801 				goto out;
6802 			advance_left = 0;
6803 		}
6804 		if (advance_right && !right_end_reached) {
6805 			ret = tree_advance(right_path, &right_level,
6806 					right_root_level,
6807 					advance_right != ADVANCE_ONLY_NEXT,
6808 					&right_key);
6809 			if (ret == -1)
6810 				right_end_reached = ADVANCE;
6811 			else if (ret < 0)
6812 				goto out;
6813 			advance_right = 0;
6814 		}
6815 
6816 		if (left_end_reached && right_end_reached) {
6817 			ret = 0;
6818 			goto out;
6819 		} else if (left_end_reached) {
6820 			if (right_level == 0) {
6821 				ret = changed_cb(left_path, right_path,
6822 						&right_key,
6823 						BTRFS_COMPARE_TREE_DELETED,
6824 						ctx);
6825 				if (ret < 0)
6826 					goto out;
6827 			}
6828 			advance_right = ADVANCE;
6829 			continue;
6830 		} else if (right_end_reached) {
6831 			if (left_level == 0) {
6832 				ret = changed_cb(left_path, right_path,
6833 						&left_key,
6834 						BTRFS_COMPARE_TREE_NEW,
6835 						ctx);
6836 				if (ret < 0)
6837 					goto out;
6838 			}
6839 			advance_left = ADVANCE;
6840 			continue;
6841 		}
6842 
6843 		if (left_level == 0 && right_level == 0) {
6844 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6845 			if (cmp < 0) {
6846 				ret = changed_cb(left_path, right_path,
6847 						&left_key,
6848 						BTRFS_COMPARE_TREE_NEW,
6849 						ctx);
6850 				if (ret < 0)
6851 					goto out;
6852 				advance_left = ADVANCE;
6853 			} else if (cmp > 0) {
6854 				ret = changed_cb(left_path, right_path,
6855 						&right_key,
6856 						BTRFS_COMPARE_TREE_DELETED,
6857 						ctx);
6858 				if (ret < 0)
6859 					goto out;
6860 				advance_right = ADVANCE;
6861 			} else {
6862 				enum btrfs_compare_tree_result result;
6863 
6864 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
6865 				ret = tree_compare_item(left_path, right_path,
6866 							tmp_buf);
6867 				if (ret)
6868 					result = BTRFS_COMPARE_TREE_CHANGED;
6869 				else
6870 					result = BTRFS_COMPARE_TREE_SAME;
6871 				ret = changed_cb(left_path, right_path,
6872 						 &left_key, result, ctx);
6873 				if (ret < 0)
6874 					goto out;
6875 				advance_left = ADVANCE;
6876 				advance_right = ADVANCE;
6877 			}
6878 		} else if (left_level == right_level) {
6879 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6880 			if (cmp < 0) {
6881 				advance_left = ADVANCE;
6882 			} else if (cmp > 0) {
6883 				advance_right = ADVANCE;
6884 			} else {
6885 				left_blockptr = btrfs_node_blockptr(
6886 						left_path->nodes[left_level],
6887 						left_path->slots[left_level]);
6888 				right_blockptr = btrfs_node_blockptr(
6889 						right_path->nodes[right_level],
6890 						right_path->slots[right_level]);
6891 				left_gen = btrfs_node_ptr_generation(
6892 						left_path->nodes[left_level],
6893 						left_path->slots[left_level]);
6894 				right_gen = btrfs_node_ptr_generation(
6895 						right_path->nodes[right_level],
6896 						right_path->slots[right_level]);
6897 				if (left_blockptr == right_blockptr &&
6898 				    left_gen == right_gen) {
6899 					/*
6900 					 * As we're on a shared block, don't
6901 					 * allow to go deeper.
6902 					 */
6903 					advance_left = ADVANCE_ONLY_NEXT;
6904 					advance_right = ADVANCE_ONLY_NEXT;
6905 				} else {
6906 					advance_left = ADVANCE;
6907 					advance_right = ADVANCE;
6908 				}
6909 			}
6910 		} else if (left_level < right_level) {
6911 			advance_right = ADVANCE;
6912 		} else {
6913 			advance_left = ADVANCE;
6914 		}
6915 	}
6916 
6917 out:
6918 	btrfs_free_path(left_path);
6919 	btrfs_free_path(right_path);
6920 	kvfree(tmp_buf);
6921 	return ret;
6922 }
6923 
6924 static int send_subvol(struct send_ctx *sctx)
6925 {
6926 	int ret;
6927 
6928 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6929 		ret = send_header(sctx);
6930 		if (ret < 0)
6931 			goto out;
6932 	}
6933 
6934 	ret = send_subvol_begin(sctx);
6935 	if (ret < 0)
6936 		goto out;
6937 
6938 	if (sctx->parent_root) {
6939 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6940 				changed_cb, sctx);
6941 		if (ret < 0)
6942 			goto out;
6943 		ret = finish_inode_if_needed(sctx, 1);
6944 		if (ret < 0)
6945 			goto out;
6946 	} else {
6947 		ret = full_send_tree(sctx);
6948 		if (ret < 0)
6949 			goto out;
6950 	}
6951 
6952 out:
6953 	free_recorded_refs(sctx);
6954 	return ret;
6955 }
6956 
6957 /*
6958  * If orphan cleanup did remove any orphans from a root, it means the tree
6959  * was modified and therefore the commit root is not the same as the current
6960  * root anymore. This is a problem, because send uses the commit root and
6961  * therefore can see inode items that don't exist in the current root anymore,
6962  * and for example make calls to btrfs_iget, which will do tree lookups based
6963  * on the current root and not on the commit root. Those lookups will fail,
6964  * returning a -ESTALE error, and making send fail with that error. So make
6965  * sure a send does not see any orphans we have just removed, and that it will
6966  * see the same inodes regardless of whether a transaction commit happened
6967  * before it started (meaning that the commit root will be the same as the
6968  * current root) or not.
6969  */
6970 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6971 {
6972 	int i;
6973 	struct btrfs_trans_handle *trans = NULL;
6974 
6975 again:
6976 	if (sctx->parent_root &&
6977 	    sctx->parent_root->node != sctx->parent_root->commit_root)
6978 		goto commit_trans;
6979 
6980 	for (i = 0; i < sctx->clone_roots_cnt; i++)
6981 		if (sctx->clone_roots[i].root->node !=
6982 		    sctx->clone_roots[i].root->commit_root)
6983 			goto commit_trans;
6984 
6985 	if (trans)
6986 		return btrfs_end_transaction(trans);
6987 
6988 	return 0;
6989 
6990 commit_trans:
6991 	/* Use any root, all fs roots will get their commit roots updated. */
6992 	if (!trans) {
6993 		trans = btrfs_join_transaction(sctx->send_root);
6994 		if (IS_ERR(trans))
6995 			return PTR_ERR(trans);
6996 		goto again;
6997 	}
6998 
6999 	return btrfs_commit_transaction(trans);
7000 }
7001 
7002 /*
7003  * Make sure any existing dellaloc is flushed for any root used by a send
7004  * operation so that we do not miss any data and we do not race with writeback
7005  * finishing and changing a tree while send is using the tree. This could
7006  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7007  * a send operation then uses the subvolume.
7008  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7009  */
7010 static int flush_delalloc_roots(struct send_ctx *sctx)
7011 {
7012 	struct btrfs_root *root = sctx->parent_root;
7013 	int ret;
7014 	int i;
7015 
7016 	if (root) {
7017 		ret = btrfs_start_delalloc_snapshot(root);
7018 		if (ret)
7019 			return ret;
7020 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7021 	}
7022 
7023 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
7024 		root = sctx->clone_roots[i].root;
7025 		ret = btrfs_start_delalloc_snapshot(root);
7026 		if (ret)
7027 			return ret;
7028 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7029 	}
7030 
7031 	return 0;
7032 }
7033 
7034 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7035 {
7036 	spin_lock(&root->root_item_lock);
7037 	root->send_in_progress--;
7038 	/*
7039 	 * Not much left to do, we don't know why it's unbalanced and
7040 	 * can't blindly reset it to 0.
7041 	 */
7042 	if (root->send_in_progress < 0)
7043 		btrfs_err(root->fs_info,
7044 			  "send_in_progress unbalanced %d root %llu",
7045 			  root->send_in_progress, root->root_key.objectid);
7046 	spin_unlock(&root->root_item_lock);
7047 }
7048 
7049 static void dedupe_in_progress_warn(const struct btrfs_root *root)
7050 {
7051 	btrfs_warn_rl(root->fs_info,
7052 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7053 		      root->root_key.objectid, root->dedupe_in_progress);
7054 }
7055 
7056 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
7057 {
7058 	int ret = 0;
7059 	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
7060 	struct btrfs_fs_info *fs_info = send_root->fs_info;
7061 	struct btrfs_root *clone_root;
7062 	struct btrfs_key key;
7063 	struct send_ctx *sctx = NULL;
7064 	u32 i;
7065 	u64 *clone_sources_tmp = NULL;
7066 	int clone_sources_to_rollback = 0;
7067 	unsigned alloc_size;
7068 	int sort_clone_roots = 0;
7069 	int index;
7070 
7071 	if (!capable(CAP_SYS_ADMIN))
7072 		return -EPERM;
7073 
7074 	/*
7075 	 * The subvolume must remain read-only during send, protect against
7076 	 * making it RW. This also protects against deletion.
7077 	 */
7078 	spin_lock(&send_root->root_item_lock);
7079 	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7080 		dedupe_in_progress_warn(send_root);
7081 		spin_unlock(&send_root->root_item_lock);
7082 		return -EAGAIN;
7083 	}
7084 	send_root->send_in_progress++;
7085 	spin_unlock(&send_root->root_item_lock);
7086 
7087 	/*
7088 	 * Userspace tools do the checks and warn the user if it's
7089 	 * not RO.
7090 	 */
7091 	if (!btrfs_root_readonly(send_root)) {
7092 		ret = -EPERM;
7093 		goto out;
7094 	}
7095 
7096 	/*
7097 	 * Check that we don't overflow at later allocations, we request
7098 	 * clone_sources_count + 1 items, and compare to unsigned long inside
7099 	 * access_ok.
7100 	 */
7101 	if (arg->clone_sources_count >
7102 	    ULONG_MAX / sizeof(struct clone_root) - 1) {
7103 		ret = -EINVAL;
7104 		goto out;
7105 	}
7106 
7107 	if (!access_ok(arg->clone_sources,
7108 			sizeof(*arg->clone_sources) *
7109 			arg->clone_sources_count)) {
7110 		ret = -EFAULT;
7111 		goto out;
7112 	}
7113 
7114 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7115 		ret = -EINVAL;
7116 		goto out;
7117 	}
7118 
7119 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7120 	if (!sctx) {
7121 		ret = -ENOMEM;
7122 		goto out;
7123 	}
7124 
7125 	INIT_LIST_HEAD(&sctx->new_refs);
7126 	INIT_LIST_HEAD(&sctx->deleted_refs);
7127 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7128 	INIT_LIST_HEAD(&sctx->name_cache_list);
7129 
7130 	sctx->flags = arg->flags;
7131 
7132 	sctx->send_filp = fget(arg->send_fd);
7133 	if (!sctx->send_filp) {
7134 		ret = -EBADF;
7135 		goto out;
7136 	}
7137 
7138 	sctx->send_root = send_root;
7139 	/*
7140 	 * Unlikely but possible, if the subvolume is marked for deletion but
7141 	 * is slow to remove the directory entry, send can still be started
7142 	 */
7143 	if (btrfs_root_dead(sctx->send_root)) {
7144 		ret = -EPERM;
7145 		goto out;
7146 	}
7147 
7148 	sctx->clone_roots_cnt = arg->clone_sources_count;
7149 
7150 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
7151 	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7152 	if (!sctx->send_buf) {
7153 		ret = -ENOMEM;
7154 		goto out;
7155 	}
7156 
7157 	sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
7158 	if (!sctx->read_buf) {
7159 		ret = -ENOMEM;
7160 		goto out;
7161 	}
7162 
7163 	sctx->pending_dir_moves = RB_ROOT;
7164 	sctx->waiting_dir_moves = RB_ROOT;
7165 	sctx->orphan_dirs = RB_ROOT;
7166 
7167 	alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
7168 
7169 	sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
7170 	if (!sctx->clone_roots) {
7171 		ret = -ENOMEM;
7172 		goto out;
7173 	}
7174 
7175 	alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
7176 
7177 	if (arg->clone_sources_count) {
7178 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7179 		if (!clone_sources_tmp) {
7180 			ret = -ENOMEM;
7181 			goto out;
7182 		}
7183 
7184 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7185 				alloc_size);
7186 		if (ret) {
7187 			ret = -EFAULT;
7188 			goto out;
7189 		}
7190 
7191 		for (i = 0; i < arg->clone_sources_count; i++) {
7192 			key.objectid = clone_sources_tmp[i];
7193 			key.type = BTRFS_ROOT_ITEM_KEY;
7194 			key.offset = (u64)-1;
7195 
7196 			index = srcu_read_lock(&fs_info->subvol_srcu);
7197 
7198 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
7199 			if (IS_ERR(clone_root)) {
7200 				srcu_read_unlock(&fs_info->subvol_srcu, index);
7201 				ret = PTR_ERR(clone_root);
7202 				goto out;
7203 			}
7204 			spin_lock(&clone_root->root_item_lock);
7205 			if (!btrfs_root_readonly(clone_root) ||
7206 			    btrfs_root_dead(clone_root)) {
7207 				spin_unlock(&clone_root->root_item_lock);
7208 				srcu_read_unlock(&fs_info->subvol_srcu, index);
7209 				ret = -EPERM;
7210 				goto out;
7211 			}
7212 			if (clone_root->dedupe_in_progress) {
7213 				dedupe_in_progress_warn(clone_root);
7214 				spin_unlock(&clone_root->root_item_lock);
7215 				srcu_read_unlock(&fs_info->subvol_srcu, index);
7216 				ret = -EAGAIN;
7217 				goto out;
7218 			}
7219 			clone_root->send_in_progress++;
7220 			spin_unlock(&clone_root->root_item_lock);
7221 			srcu_read_unlock(&fs_info->subvol_srcu, index);
7222 
7223 			sctx->clone_roots[i].root = clone_root;
7224 			clone_sources_to_rollback = i + 1;
7225 		}
7226 		kvfree(clone_sources_tmp);
7227 		clone_sources_tmp = NULL;
7228 	}
7229 
7230 	if (arg->parent_root) {
7231 		key.objectid = arg->parent_root;
7232 		key.type = BTRFS_ROOT_ITEM_KEY;
7233 		key.offset = (u64)-1;
7234 
7235 		index = srcu_read_lock(&fs_info->subvol_srcu);
7236 
7237 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
7238 		if (IS_ERR(sctx->parent_root)) {
7239 			srcu_read_unlock(&fs_info->subvol_srcu, index);
7240 			ret = PTR_ERR(sctx->parent_root);
7241 			goto out;
7242 		}
7243 
7244 		spin_lock(&sctx->parent_root->root_item_lock);
7245 		sctx->parent_root->send_in_progress++;
7246 		if (!btrfs_root_readonly(sctx->parent_root) ||
7247 				btrfs_root_dead(sctx->parent_root)) {
7248 			spin_unlock(&sctx->parent_root->root_item_lock);
7249 			srcu_read_unlock(&fs_info->subvol_srcu, index);
7250 			ret = -EPERM;
7251 			goto out;
7252 		}
7253 		if (sctx->parent_root->dedupe_in_progress) {
7254 			dedupe_in_progress_warn(sctx->parent_root);
7255 			spin_unlock(&sctx->parent_root->root_item_lock);
7256 			srcu_read_unlock(&fs_info->subvol_srcu, index);
7257 			ret = -EAGAIN;
7258 			goto out;
7259 		}
7260 		spin_unlock(&sctx->parent_root->root_item_lock);
7261 
7262 		srcu_read_unlock(&fs_info->subvol_srcu, index);
7263 	}
7264 
7265 	/*
7266 	 * Clones from send_root are allowed, but only if the clone source
7267 	 * is behind the current send position. This is checked while searching
7268 	 * for possible clone sources.
7269 	 */
7270 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
7271 
7272 	/* We do a bsearch later */
7273 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
7274 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7275 			NULL);
7276 	sort_clone_roots = 1;
7277 
7278 	ret = flush_delalloc_roots(sctx);
7279 	if (ret)
7280 		goto out;
7281 
7282 	ret = ensure_commit_roots_uptodate(sctx);
7283 	if (ret)
7284 		goto out;
7285 
7286 	mutex_lock(&fs_info->balance_mutex);
7287 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
7288 		mutex_unlock(&fs_info->balance_mutex);
7289 		btrfs_warn_rl(fs_info,
7290 		"cannot run send because a balance operation is in progress");
7291 		ret = -EAGAIN;
7292 		goto out;
7293 	}
7294 	fs_info->send_in_progress++;
7295 	mutex_unlock(&fs_info->balance_mutex);
7296 
7297 	current->journal_info = BTRFS_SEND_TRANS_STUB;
7298 	ret = send_subvol(sctx);
7299 	current->journal_info = NULL;
7300 	mutex_lock(&fs_info->balance_mutex);
7301 	fs_info->send_in_progress--;
7302 	mutex_unlock(&fs_info->balance_mutex);
7303 	if (ret < 0)
7304 		goto out;
7305 
7306 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7307 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7308 		if (ret < 0)
7309 			goto out;
7310 		ret = send_cmd(sctx);
7311 		if (ret < 0)
7312 			goto out;
7313 	}
7314 
7315 out:
7316 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7317 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7318 		struct rb_node *n;
7319 		struct pending_dir_move *pm;
7320 
7321 		n = rb_first(&sctx->pending_dir_moves);
7322 		pm = rb_entry(n, struct pending_dir_move, node);
7323 		while (!list_empty(&pm->list)) {
7324 			struct pending_dir_move *pm2;
7325 
7326 			pm2 = list_first_entry(&pm->list,
7327 					       struct pending_dir_move, list);
7328 			free_pending_move(sctx, pm2);
7329 		}
7330 		free_pending_move(sctx, pm);
7331 	}
7332 
7333 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7334 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7335 		struct rb_node *n;
7336 		struct waiting_dir_move *dm;
7337 
7338 		n = rb_first(&sctx->waiting_dir_moves);
7339 		dm = rb_entry(n, struct waiting_dir_move, node);
7340 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
7341 		kfree(dm);
7342 	}
7343 
7344 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7345 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7346 		struct rb_node *n;
7347 		struct orphan_dir_info *odi;
7348 
7349 		n = rb_first(&sctx->orphan_dirs);
7350 		odi = rb_entry(n, struct orphan_dir_info, node);
7351 		free_orphan_dir_info(sctx, odi);
7352 	}
7353 
7354 	if (sort_clone_roots) {
7355 		for (i = 0; i < sctx->clone_roots_cnt; i++)
7356 			btrfs_root_dec_send_in_progress(
7357 					sctx->clone_roots[i].root);
7358 	} else {
7359 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
7360 			btrfs_root_dec_send_in_progress(
7361 					sctx->clone_roots[i].root);
7362 
7363 		btrfs_root_dec_send_in_progress(send_root);
7364 	}
7365 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
7366 		btrfs_root_dec_send_in_progress(sctx->parent_root);
7367 
7368 	kvfree(clone_sources_tmp);
7369 
7370 	if (sctx) {
7371 		if (sctx->send_filp)
7372 			fput(sctx->send_filp);
7373 
7374 		kvfree(sctx->clone_roots);
7375 		kvfree(sctx->send_buf);
7376 		kvfree(sctx->read_buf);
7377 
7378 		name_cache_free(sctx);
7379 
7380 		kfree(sctx);
7381 	}
7382 
7383 	return ret;
7384 }
7385